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ABSTRACT 
 
 
 

CHARACTERIZATION OF URBAN WATER USE AND PERFORMANCE EVALUATION OF 

CONSERVATION PRACTICES USING THE INTEGRATED URBAN WATER MODEL IN SÃO 

PAULO, BRAZIL 

 
 
 

Increasing urban population around the globe has intensified the need for water, food 

and energy. The residential sector is responsible for the highest water use in urban settings. 

Understanding the factors affecting water use helps to improve management strategies, 

incentivize conservation practices, develop public educational events, feed demand forecasting 

models and support policy creation. 

Modelling urban water demand in the long-term is a complex process because of 

incorporation of multiple dynamic components in the urban-environment system. The Integrated 

Urban Water Model – IUWM – offers capabilities of long-term modelling by using a mass-

balance approach for urban water demand predictions and potential demand reductions 

assessment.  

A combination of climate anomalies, water resources management practices over the 

years and watershed conservation contributed to the water shortage in Southeastern Brazil in 

2014-2015. In the city of São Paulo, the shortage was worsened by drops in reservoir levels, 

rise in water use patterns and in number of inhabitants, and the historical tendency to neglect 

local water sources. Residential water demand, which accounts for 84% of the total water use, 

faced compulsory reductions through behavioral changes and reuse of graywater and roof 

runoff harvesting.  

The goals of this study are to apply IUWM to the city of São Paulo to quantify savings 

produced by graywater and roof runoff use and to evaluate the potential of conservation 
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practices for demand reduction. The first part of the study focuses on exploring differences in 

water demand patterns under shortage conditions using a water use time-series from 2013-

2017. In this part, IWUM is trained to estimate indoor and outdoor demand through calibration 

procedures. Determinants of water demand are also investigated through a multiple linear 

regression, which identified household size and socioeconomic variables as having a significant 

effect in water use.  

The second portion focuses on applying IUWM to evaluate reductions during the 

shortage and performance of graywater, stormwater, roof runoff harvesting and effluent reuse 

for potable and non-potable purposes. Climate change was added to assess shifts in 

performances of conservation practices due to future reductions in precipitation. Lastly, a 

comparison of maximum potential and benefits of fit-for-purpose technology adoption is done 

using a cost-benefit matrix. The matrix was adapted for required treatment representing cost 

and percentage reductions in water demand as benefit. 

The results of this work support decision-making with respect to conservation practices 

adoption by enhancing the list of options to manage water demand, especially during shortage 

conditions. Ultimately, these results can encourage development of water reuse policies in 

Brazil. 
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Chapter 1 - Introduction 
 
 
 

Urban sprawl over the past decades has caused researchers, governments, society and 

environmentalists to dedicate special attention to the impacts of unplanned growth on the 

population and the available resources. According to the World Bank (2018), in 2014, urban 

population was estimated to be almost 3.9 billion people, increasing the demand for basic needs 

such as water, housing, food and energy.  

Despite the abundance of water on Earth, its unequal availability for consumption poses 

a challenge for major urban cities in terms of reliability, quality, and costs. In addition, population 

growth and climate change are also expected to impact the water supply and demand in highly 

urbanized areas, not to mention the natural competition with other uses such as agricultural, 

industrial, power generation, and ecological uses. Even in regions where water availability per 

person is reasonable, it is not possible to guarantee this condition will persist in the long-run. 

The diversity of water use within urban areas is worth attention due to the substantial 

number of ongoing activities. The main uses for water in urban areas are residential, 

commercial, industrial and institutional.  

The residential sector is responsible for the largest use of urban water. Factors that 

account for household water demand variations are climate, time of the year, family behavior 

and habits, number of persons living in the house, persons in the household during the day, 

persons employed and working outside of home, number of children and teenagers, income, 

education, cost of water and wastewater, quantity and quality of fixtures and appliances and 

parcel size (DeOreo et al., 2016). 

Understanding the factors that affect water use helps to improve water management 

strategies and recommend conservation practices to promote demand reduction, especially in 

more vulnerable regions due to extreme climatic events or growing population. In addition, this 
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understanding enables the development of public outreach and educational events, and the 

feeding of demand forecasting models (Makki et al., 2013).  

Demand forecasting models based on water supply and demand assessment are an 

asset to enhance actions of water managers and urban planners (House-Peters and Chang, 

2011; Cominola et al., 2015). Urban water can be modeled for short and long terms using 

different types of models. Short-term demand forecast analysis is useful for adjusting water 

supply operations and management, whereas long-term demand forecasting is important in the 

decision-making process for planning and infrastructure design. Therefore, long-term 

forecasting models are more complex, because they can incorporate dynamic components of 

climate, behavioral factors, and possible water conservation and reuse scenarios (Bougadis et 

al., 2005; Sharvelle et al., 2017). 

Regression and time-series analyses, along with Artificial Neural Networks (ANN), have 

been used to forecast short-term demand. Santos (2014) compared the use of ANN’s against a 

multiple linear regression (MLR) method in the Metropolitan Region of São Paulo, Brazil. The 

study focused on supply from the Cantareira distribution system through application of water 

use, meteorological, and socio-environmental variables. Results showed forecast feasibility of 

up to 12 hours in advance when using ANNs for the Cantareira system which performed better 

than MLR. Bougadis et al. (2005) investigated the applicability of ANNs, regression and time-

series analysis for short-term forecasting in the city of Ottawa, Canada. Both studies agree 

regarding better performance of ANNs compared to other methods. 

Urban water models have advanced over time as the availability of data and 

technological support have risen, thus allowing for long-term modelling and more sophisticated 

analysis at several spatial scales (House-Peters and Chang, 2011). Modelling urban water 

based on an integration concept leads to three key points, as explained by Bach et al. (2014): 

(1) modelling is made using multiple components and interactions among them, (2) long term 

modelling timeframe considers impacts in water quality and quantity, (3) better oriented support 
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for strategic management through consideration of local and global perspectives of the urban-

environment system. Therefore, long-term urban water modelling can support the adoption of 

the Integrated Urban Water Management approach. 

The Integrated Urban Water Management approach – also known as one water 

approach – embraces the triple bottom line of sustainability while combining numerous factors 

of long-term water demand predictions. The approach acknowledges the role of natural system 

and built infrastructure on urban water and vice-versa and seeks to augment economic and 

social strength as results of a holistic view of the urban water components: water supply, 

sanitation and drainage (Whitler and Warner, 2014). As described by Mitchel (2006), Integrated 

Urban Water Management emphasizes both demand and supply aspects including the use of 

nontraditional water resources, fit-for-purpose water and decentralization to reduce demand. In 

addition, land use and landscaping policies, economics and urban development, regulations, 

legislations, community education and participation are part of the approach. The main goal is to 

maximize system efficiency while minimizing adverse impacts.  

Most efforts towards one water approach and applications of urban water models have 

been done in the United States and Australia where extensive studies and surveys on various 

water subjects like water availability, water demand patterns, and end uses of water can feed 

the models and enhance results. Undeveloped countries struggle with implementation and 

improvement of sanitation infrastructure and urban drainage systems, enforcement of 

regulations for land use and occupation and income concentration. These factors hinder 

advancement of data collection and further studies on water consumption patterns.  

According to the United Nations (2016), in 2016 of 31 megacities – (more than 10 million 

inhabitants) – 24 were in Africa, Latin America and undeveloped countries of Asia, including the 

Middle East. Shanghai and Beijing in China, Delhi and Mumbai in India, Mexico City in Mexico, 

Cairo in Egypt and São Paulo in Brazil were part of the top ten megacities list located in the 

“global South” in 2016. Water management, water supply, and water availability in these 
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megacities clash with the same reality – the greater the population gets, these cities are at more 

risk of not meeting demand either because of quality concerns, poor management or water 

scarcity. 

China is the most populous and one of the most polluted nations worldwide. These 

factors may negatively impact economic development, public health, food production, social 

well-being and environmental aspects that compromise both surface and groundwater. Urban 

water use per capita was near 212 liters per day – 55.9 gallons per day (Cheng et al., 2009). 

This value reached a peak in 2013 since 2005 and started to decline in the following years 

(Udimal et al., 2017). Water reuse and non-conventional sources have the potential to 

overcome the differences in supply and demand even though quality is still a factor to be 

considered (Udimal et al., 2017).  Non-conventional water sources and practices performed in 

China are rainwater harvesting, seawater utilization, precipitation enhancement and wastewater 

reuse. Beijing stands out as a city performing wastewater reclamation (Wang et al., 2017). In 

addition, the Chinese government has put in place policies to incentivize the use of water 

efficient devices in agricultural irrigation, industrial facilities and urban centers (Cheng et al., 

2009).  

In India, water supply is intermittent and nearly 30% of households do not have access 

to tap water (Wankhade et al., 2014). Service efficiency is poor, and most cities receive only 69 

liters per capita per day. The amount is lower than the required Indian national standards of 135 

to 150 liters per capita per day causing households to seek and rely on multiple sources of 

water. These figures contrast with water use in the United States that is about 222 liters per 

capita per day – 58.6 gallons per capita per day (DeOreo et al., 2016). Slums and periphery 

zones are also vulnerable. In Mumbai, 54% of inhabitants live in slums, but use only about 5% 

of the supplied water (Wankhade et al., 2014). Delhi and Mumbai depend mostly on surface 

water from very distance sources implying energy costs and greater possibility of losses which 
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should be reasons to encourage local conservation (McDonald and Shemie, 2014; Wankhade et 

al., 2014). 

Over 90% of the population is offered potable water through municipal utilities in the 

Valley of Mexico where Mexico City is located. However, for part of this population the supply is 

still intermittent (World Bank, 2013). The main water source for the urban portion is local 

aquifers that are intensely exploited, but less than 35% of the treated water per year is reused 

(World Bank, 2013). In addition, almost 40% of urban use is losses that may be attributed to 

domestic or system leaks, irregular connections and deficient infrastructure or even metering 

errors. According to the World Bank (2013), another aggravating factor is the unsustainable 

economic and financial systems of tariffs and taxes for both the user and the service provider 

which prevents the application of price tools for limiting demand and discourages use control. 

This situation causes the provider to be constantly dependent on government support, 

deepening the service inefficiency. 

The largest population density in Egypt is concentrated in the Nile Delta, where Cairo 

and Alexandria are located. The Nile River is the largest renewable water supply source, but 

groundwater from renewable and non-renewable sources is also available (World Bank, 2005). 

A demand management intervention caused by economic and social development resulted in 

non-conventional sources to be adopted such as wastewater reuse, agricultural drainage reuse, 

sea and brackish water desalination and rain harvesting. These practices demand more 

attention regarding water quality, given that only approximately 52% of urban population has 

access to wastewater collection and treatment (World Bank, 2005; Abdel-Dayem, 2011).  

The distribution of water in Brazil is unequal with respect to population density across 

regions. Agricultural irrigation is ranked first in consumptive use of water and municipal use 

follows (ANA, 2017). Potable water serves 100% of the urban population in São Paulo, while the 

water loss index is one of the lowest in Brazil, around 30% (SNIS, 2015). Provided by two 

watersheds – the Piracicaba, Capivari and Jundiai (PCJ) Basin and the Upper Tiete Basin – 
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surface water is the main water source to the city. The Metropolitan Integrated System (MIS) is 

made up of nine producer systems consisting of 24 reservoirs distributed in these watersheds. 

The system is managed and controlled by the same state water utility that also treat and 

distribute water for 35 municipalities in the Metropolitan Region of São Paulo (MRSP) (Sabesp, 

2015; Borges et al., 2017). From a mass-balance perspective, the volume of wastewater 

generated is greater than the installed capacity of wastewater treatment plants and tend to 

increase as new diversions into the MIS are expected with the objective to increase water 

security (Hespanhol, 2008). This difference in volume that is beyond treatment capacity could 

allow for a potential reuse and conservation in the MRSP. However, guidelines and water 

quality regulations for indirect and direct potable reuse do not yet exist in Brazil. Hence, 

conservation practices are not widely implemented (Hespanhol, 2015). 

Poor water services, unsustainable use, temporal and spatial water availability, and 

pollution are the main causes for lack of efficiency of management. Most of the cities 

exemplified present these issues even though alternative and non-conventional sources are 

employed in certain cases. As climate change becomes more evident and population growth is 

a reality, other cities around the globe are also susceptible to increased water scarcity. Cape 

Town, in South Africa, has faced a serious drought since 2015 with price and non-price 

restrictions imposed for agriculture and residential use, limiting a maximum of 50 liters per day 

per person – 13 gallons per day per person. According to the City of Cape Town (2018), this 

condition required the water sources portfolio to be expanded, thus working towards 

implementing programs and infrastructure to facilitate adoption of alternative sources. 

Desalination, water reclamation, water transfer and groundwater use are planned to grow until 

2022. The main immediate measures to avoid complete lack of water are graywater reuse and 

behavioral changes. 

Inefficient management practices also curb the employment of survey tools for thorough 

quantification of water use habits, end uses of water, realistic capacity of reuse possibilities, and 
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identification of system strengths and weaknesses. Lack of knowledge to support decision-

making can worsen management abilities. A cycle breaker is essential to create a clear picture 

of the necessities and opportunities for better understanding of the details and system 

components. This comprehension aids the proposal of management solutions, guidelines 

considerations, and regulation and policy creation. 

Rising population and climate change have also been compelling enhanced water 

management practices associated with conservation programs that can be price or non-price 

based. Olmstead and Stavins (2007) state that non-price tools, such as education, public 

information and appliance retrofit (Michelsen et al., 1999), can contribute anywhere from no 

water savings whatsoever to significant water savings, but they are closely related to human 

behavior towards water. This might explain why voluntary policies and educational programs 

have weaker effects than mandatory ones. This issue requires an intense campaign of 

education and outreach about water topics to impact behavior. In addition, policies that originate 

from solid knowledge and established supervision are more likely to be effective. 

Given that urban areas will continuously grow, and authorities must be able to provide 

safe water to meet basic population needs and support economic development, urban water 

models are important tools for planning and management. The dynamism and abilities for a 

systemic analysis of the urban water components, with alternatives evaluation of non-

conventional sources and reuse strategies as well as identifying key factors affecting demand 

are extremely useful. An integrated approach enables better management practices while 

offering ways to a one-water proposal, therefore, minimizing effects of shortages, decreasing 

water supply vulnerability and expanding quality of services and community engagement. 

 
Motivation 
 

The motivation for this study arose from the concern of water security in São Paulo and 

the MRSP, especially after the water crisis of 2014-2015. The exploration of components that 
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drove demand during the time-series enables the understanding of the variation in water use 

and demand across shortage conditions. The assessment of system capacity for adoption of 

conservation practices to enlarge the alternatives portfolio for demand reduction is relevant to 

maximize potential and benefits should another shortage occur in the future. In addition, 

estimating the gains from application of technologies that support fit-for-purpose can contribute 

to decision-making and cost savings. 

A supplementary motivation arose from the interest in diversifying the study areas where 

the Integrated Urban Water Model (IUWM) is applied to assess its flexibility and enhance its 

applicability as a long-term demand projection tool. 

 
Objectives 
 

This work includes two main objectives: 

1. Comprehensively characterize urban water demand and use in the city of São 

Paulo, Brazil, through the application of the Integrated Urban Water Model focusing on 

residential demand. More specifically, this characterization comprises the:  

1.1 Investigation of factors affecting water demand. 

1.2 Exploration of differences in water use patterns under shortage 

conditions; 

2. Evaluate the demand reduction potential of conservation practices by: 

2.1 Assessing performance of practices and potential to maximize savings 

and fit-for-purpose benefits; 

2.2 Exploring impacts of climate change in performance of practices. 
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Chapter 2 - Characterization of Residential Urban Water Demand 

Under Pre-Shortage, Shortage and Post-Shortage Conditions 
 
 
 
Introduction  
 

The start of the hydrologic year of 2013-2014 in Southeastern Brazil was severely 

affected by climatic anomalies that prevented summer rainfall from reaching water supply 

reservoirs (Marengo and Alves, 2015). In São Paulo city and state, the water crisis in the years 

of 2014 and 2015 was a result of climatic conditions, water resources management practices 

over the past years, watershed conservations efforts, and public awareness based on press 

releases (Rodrigues and Villela, 2015). At distinct levels, these factors contributed to the reality 

faced by the people in a few municipalities in the state of São Paulo.  

In the city of São Paulo, a combination of drops in reservoir levels aggravated by the 

number of inhabitants, rise in water use patterns and the historical tendency to neglect local 

sources led to the shortage period (Cesar Neto, 2015; Custodio, 2015; Rodrigues and Villella, 

2015). 

The city was founded next to two main rivers: the Tamanduateí and the Anhangabaú 

Valley. Over the years, public policies prioritized channelization and rectification of water bodies 

that modified the landscape of most streams and rivers crossing the city, especially the Tietê 

and Pinheiros Rivers. Historically, urban development and economic growth caused water 

supply to be prioritized over wastewater and stormwater infrastructure (Custodio, 2015). 

Water quality of local sources has been repudiated by the public since the 18th century. 

The water was also polluted because of mining exploration, early urban settlements, river bank 

excavation and raw effluent discharge (Custodio, 2015). The practice of importing water from 

distant basins started in the late 19th century, but the political, institutional, operational and 

environmental problems of this practice have been exacerbated in the past years by increase in 

population and demand for different uses. Climate change has further imposed increasing 
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pressures on water supplies. In addition, local watercourses pollution and the gap between 

water supply and sewage treatment are still bottlenecks to be overcome in São Paulo 

(Hespanhol, 2008). 

Residential water use accounts for approximately 84% of the total use in the city 

(Sabesp, 2017). Water use per capita fluctuates depending on the region’s climate, culture, 

social development, public policies, public awareness, household income, cost, and availability 

(Hafner, 2007). Detailed studies about the residential demand profile are still scarce in Brazil, 

especially ones that describe differences in indoor and outdoor uses. Santos (2011) identified 

that the average water demand follows the cyclic annual trend of temperature and precipitation 

and points out that habits – laundry, car washing, cleaning after floods – after long rainy periods 

tend to increase water use.  

Despite the recent shortage, there is still an absence of studies that detail residential 

water use in São Paulo in a comprehensive manner during the shortage using a district and 

regional approach. Moreover, future projections of water demand in São Paulo are still limited to 

short-term forecasting in a portion of the city (Santos, 2011) and do not include a broader view 

of the urban water elements as proposed in the One Water concept. The application of the 

Integrated Urban Water Model (IUWM) to aid characterizing water demand in the city is relevant 

in order to expand knowledge of conservation efforts potential along with explaining the factors 

playing roles in demand. 

 
Objectives 

 
The goal of this chapter is to comprehensively characterize residential urban water 

demand in the city of São Paulo while applying the Integrated Urban Water Model to support the 

analysis of the next chapter. More specifically, this chapter aims to: 

1. Evaluate the applicability of IUWM in predicting residential water demand by the 

estimation of parameters under pre-shortage, shortage, and post-shortage conditions; 
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2. Investigate factors affecting water demand during the shortage condition. 

 
Research Questions  

 
The main research questions to be answered in this chapter are: 

1. How is the water demand pattern across regions in São Paulo? 

2. How did the shortage condition affect water demand? 

3. What are the main contributors to variations in water demand in the city during 

the time-series? 

 
Study area – City of São Paulo 

 

Geography and Demographics 
 

The municipality of São Paulo is located in the southeastern region of Brazil and is the 

most populous city nationwide. São Paulo and other 38 municipalities form the Metropolitan 

Region of São Paulo (MRSP), the largest urban agglomeration in South America and the fifth 

worldwide (United Nations, 2015). The MRSP corresponds to about 18% of the Brazilian Gross 

Domestic Product and concentrates approximately 21.5 million people (Emplasa, 2018). 

In 1992, São Paulo was geographically divided into 96 districts that became territorial 

reference for the municipal government (São Paulo, 1992). In 2002, administration boroughs 

were established to bring the decisions and management from the municipal government to 

local levels, having their territorial boundaries based on socioeconomic characteristics. In 2013, 

there were 32 boroughs (São Paulo, 2002; 2013). In addition, five macro-regions (regions) 

(figure 1) are also denoted for geographic reference, as detailed on appendix I.  

According to the Brazilian Institute of Geography and Statistics (IBGE), the annual rate 

of population growth in the city was lower when compared to the national and state rates and 

has decreased over the decades from 1.16, in 1980 to 1991, to 0.76, in 2000 to 2010 

(Infocidades, 2017). 
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Figure 1. São Paulo location, macro-regions and districts (Shape sources: 
Geosampa/NEREUS-USP) 

 
Population estimates calculated by the State System Foundation of Data Analysis 

(SEADE) project that the number of inhabitants will surpass 12 million by 2025 and slower 

growth rates are expected until 2050. Most characteristics of the MRSP can be used to describe 

São Paulo. However, this study will address the particularities of the city alone.  

From SEADE’s projections for the year of 2015, population and household densities 

display similar spatial distribution across regions and districts (Figure 2). Population and 

household densities are greater in districts of the Center and South and the periphery of the 

East.  
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Figure 2. Demographic distributions in São Paulo in 2015 – Population density (left) and 
household density (right) 

 
Climate 

 
Koppen classification for the city is the Cwa characterized by warm temperate climate 

with dry winter (Pwintermin < Psummermin and Psummermax > 10Pwintermin) and hot summer 

(maximum temperature equal or greater than 22°C) (Kottek et al., 2006). Figure 3 shows the 

historic climate pattern using the climate data from the IAG-USP station. According to the 

hydrologic year, wet and dry seasons are from October to March and April to September, 

respectively.  

The hotter and cooler months also follow the latter cycle. The driest month is August and 

the wettest is January. The coldest month is July and the hottest is February. 

The temperature variability is greater in the winter months, while the precipitation 

variability is greater during summer months. The variance in the temperature data ranges from 
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4.1°C in February to 11.4°C in September. For the precipitation data, the variance goes from 

970 millimeters in August to 10,746 millimeters in January. 

 

Figure 3. São Paulo historical climate pattern from 1980 to 2010 – average daily 
temperature (left) and total monthly precipitation (right) (Source: IAG-USP) 

 
Land use and urbanization  

 
Founded in 1554, São Paulo experienced an industrial development boom in the 20th 

century. The arrival of migrants from other parts of the country demanded land for housing and 

infrastructure that contributed to a disorderly growth in the urban area (Sporl and Seabra, 1997).  

The urban area in São Paulo is very diverse. It contrasts luxury apartment complexes to 

slums, known as “favelas”, irregular settlements in the most peripheral lines of the city and 

middle-class households. Residential, commercial and industrial activities are spread across the 

city. The population density in 2017 is almost 8,000 inhabitants per square kilometer (Emplasa, 

2018), with the largest density in the Center. Likewise, districts in western Center and 

surrounding districts have the strongest presence of multi-family homes, explaining higher 

population and household densities in these areas (figure 4). 

Large ratios of imperviousness are also present in the urban area, aggravating heat 

islands, increasing runoff and contributing to inland flooding. Ratio of impervious to pervious is 

inversely proportional to vegetation cover. The largest vegetation cover occurs in the South and 
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North, as remaining of the Atlantic Rainforest. The Center and the West have the largest portion 

of impervious area with less vegetation cover (Rede Nossa São Paulo, 2013). 

 

Figure 4. Residential use spatial distribution and land use in São Paulo (Source: 
GeoSampa shapefiles) 
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Income and socioeconomics 
 

Although São Paulo is the economic and business center in Brazil, the high social 

inequality across districts is still striking. The Map of Inequality from the Our São Paulo Network 

for the year of 2017 shows several indicators among districts. According to the report, slums 

and shanty towns are distributed in the outskirts of all regions, with the lowest percentages in 

the Center and the highest percentages in the South, compared to the total number of 

households in each district. In addition, in 2015, five out of ten top average wages were 

registered in the West, and the lowest average wages occurred in the East.  

Corroborating this report, figure 5 shows household income distribution across districts 

contrasting with household size. Estimations were made using a weighted average from the 

income data of the 2010 Census household projections from the SEADE foundation. From the 

maps, it is possible to notice the opposition between higher income households in the West and 

South districts and their lower household size.  

 

Figure 5. Household socioeconomic spatial configuration (2015) – Household income 
(left) and household size (right) 
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Water resources  
 

The Brazilian National Basic Sanitation Policy (Brasil, 2007) defines basic sanitation as 

the infrastructure, services and operations of potable water supply, wastewater collection and 

treatment, drainage and stormwater management and urban solid waste management. 

Currently, the Basic Sanitation Company of the State of São Paulo (Sabesp) provides sanitation 

services of water treatment and supply and wastewater collection and treatment for 35 out of 39 

municipalities of the MRSP including São Paulo. Sabesp is a public-held, mixed capital 

company 50.3% owned by the State and 49.7% as shares in the stock market (Sabesp, 2016). 

Sabesp owns the grants of right of use of the water in the reservoirs for public supply but does 

not perform reservoir management, which is under responsibility of the state and/or federal 

water management authorities. Four major producer systems in the MIS supply water to São 

Paulo (São Paulo, 2010), as described on appendix II. 

The Cantareira system, the largest of all producer systems, is the only one located in the 

Piracicaba, Capivari and Jundiai (PCJ) Basin. The PCJ is mainly an industrial and agricultural 

basin. This basin is very critical because the second largest urban and industrial agglomeration 

in the state, the Metropolitan Region of Campinas, partially depends on the basin’s production 

capacity as well. In the end of 2013, this system provided water for about 65% of the 

municipality of São Paulo (Sabesp, 2015). The Upper Tiete Basin is a primary urban and 

industrial basin (São Paulo, 2013) and comprises the other systems, including Guarapiranga, 

the second largest water supplier to São Paulo city. Table 1 provides a few characteristics 

within the city’s service area. 

During the 2014-2015 shortage, the Cantareira System had the most critical levels. The 

largest reservoir in the system, the Jaguari-Jacarei, had its levels dropped below operational 

levels of 820.8 m above sea level, considered the minimum level for transfer to the next 

reservoir in the system (Sabesp, 2014). Figure 6 presents observed water use in São Paulo 

from 2013 to June of 2017 and levels of the Jaguari-Jacarei reservoir. 
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Table 1. Service area characteristics 

Area (km2) (2010) 1,521.11a 

Population (2010) 11,253,503a 

Households (2010) 3,608,581a 

Average daily per capita demand (gpcd) (1995-2005-2015) 62 – 42 - 38.5b 

% Urban population served with water supply (2015) 100b 

Water loss index 30.46%b 

Average annual precipitation (1980-2010) [mm] 1543.7c 

Average annual temperature (1980-2010) [oC] 20.3 c 

Source: a Infocidade/IBGE, 2010; b SNIS, 2015; c IAG-USP, 2017 
 
From figure 6, the reservoir level began to decline after the end of the rainy season in 

the month of March of 2013 and start of colder and drier months. Reservoir went below 

operational levels around June of 2014 and remained under until January of 2016, when 

summer rainfalls started replenishment and recovery. The lowest level recorded was about 810 

meters above sea level in October of 2015, which is 10 meters below minimum level and 25 

meters below levels of early 2013. 

 

Figure 6. Water use in São Paulo and Jaguari-Jacarei monthly levels 

  
Water use fluctuated down and up following temperature variations until early 2014, 

when it started to decline. The lowest use was observed in May of 2015, about 11 billion 
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gallons, contrasting with the highest use observed in the time-series of about 15 billion gallons 

in December of 2013. As reservoir level started to recover, water use also showed a slight 

increase, but it did not reach use observed previously to the shortage. 

As a mean to address the shortage and avoid water rationing, Sabesp developed a 

contingency plan based on three strategies: economic tools to incentivize demand reduction 

through application of discounts and penalty fees; replace areas supplied by the Cantareira 

System with water transfers from other systems, and intensify actions to prevent and fix leaks, 

implying infrastructure improvements and investments (Sabesp, 2015). 

The economic tools directly impacted the residential group of consumers. The program 

started in March of 2014 offering a 30% discount in the total bill price (water and wastewater) for 

users that reduced their monthly water use by 20% compared to their average use from 

February of 2013 until January of 2014. It was applied only in the areas of MRSP that were 

supplied by the Cantareira System, (Sabesp, 2015a). In April 2014, the discounts were 

expanded to all households in the MRSP supplied by other producer systems. 

In October of 2014, ranges of discounts were created for levels of reductions achieved to 

encourage customers who had been decreasing use but were still exempt from the discounts. In 

January of 2015, a penalty fee over water use was created for customers who increased use in 

comparison to their average consumption from February of 2013 until January of 2014. The fee 

was implemented because about 24% of users still showed increase in use (Arsesp, 2015). 

Table 2 presents the ranges of discounts and fees for changes in use. 

Customers who used the monthly minimum of 10 cubic meters (m3) – 2641 gallons – or 

below were exempted from the fee. The program was officially ended in March of 2016 and 

stopped being applied on the bills in the month of May of that year (Arsesp, 2016; Arsesp, 

2016a).  

Souza (2016) concluded that the application of the discounts had a strong correlation 

with demand reduction and performed better than the penalty fee. Income also had a significant 
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influence in demand reduction; in higher income households the reduction was greater. 

However, the author mentions that in these households the use is higher which gives margin to 

greater reductions.  

Table 2. Discounts and fees ranges 

Discounts* Penalties** 

% discount % reduction % fee % increase 

30 20 or more 40 up to 20 

20 15-20 100 20 or more 

10 10-15   
*over total bill price; **over water bill price 
(Source: adapted from Sabesp, 2015) 

  
Water Use 

 

According to the Aquastat Database from the Food and Agriculture Organization of the 

United Nations (2018), the largest total renewable water resources volume worldwide is in Brazil 

with 8647x109 m3 per year. The same source also shows that the total water withdraws per 

inhabitant in 2010 was 369.7 m3 – 97.7 thousand gallons – per year in the country.  

The United Nations (UN) classifies that the water availability for a region is acceptable 

when ranging between 2,500 and 20,000 cubic meters – 66 thousand to 5 MG – per year per 

capita. The water availability in the Upper Tiete Basin is 130.68 m3 – 34.5 thousand gallons – 

per year per capita. This is the lowest value for all basins in the state of São Paulo and is 

intensified by the large population (FABHAT, 2016). In the PCJ Basin, the water availability per 

capita varies from 49.6 to 116.8 m3 – 13.1 thousand to 30.9 thousand – per year per capita for 

the portion directed to supply the population of the MRSP. During times of most availability, it 

rounds to the highest end which is still classified in the “critical” range by the UN (Sabesp, 

2016a; Sabesp, 2018). 

Few studies were performed to describe the end water uses patterns in Brazilian cities 

and most of them had a small sample size. In the residential sector, Almeida (2007) studied the 

end use of water in Feira de Santana. The city is the second most populous in the state of Bahia 

with about 556 thousand inhabitants (IBGE Cidades, 2010). Located in the semi-arid portion of 



 

21 
 

the country, measurements were collected from five households. In the findings, the author 

notes that the habit of having lunch at home could be an indicator of large kitchen faucet use, 

and that the toilet water use depends on the type of flush and household habits as well as use 

proportion to other uses. Studies conducted in the United States in 1999 and 2016 showed that 

toilet water was responsible for the largest use with shower use outranking clothes washing in 

2016 in second place (DeOreo et al, 2016). 

The socioeconomic factor is also a relevant consideration. Hafner (2007) acknowledged 

the several variations in different regions of Brazil and the difficulties in creating a standard of 

end use categories. For example, in the absence of a dishwasher that is an extraordinary 

appliance for Brazilian families, the kitchen faucet use is increased and both uses must be 

aggregated. Bathtubs are also not common in Brazilian homes accounting for only 6% of one-

story single-family and 4% of multi-family households in São Paulo (Sanchez, 2007), thus their 

use should also be aggregated with shower use. Considering studies made in Brazil only, 

Hafner (2007) established their average as a standard residential profile for Brazilian cities. 

Barreto (2008) conducted a study in a residential sample of seven households monitored 

for seven days with an average household size of three persons per household in western São 

Paulo city to measure the residential water use profile and the end uses of water. The author 

clarified that the other uses classification comprises gardening, patio, driveway and garage 

washing, general outdoor uses and invisible leaks, and were points that could not be measured 

separately (personal communication). 

The Program of Rational Water Use of the University of São Paulo (PURA-USP) was 

structured in six large-scale projects with the objective to reduce on campus demand and 

improve local water management (Silva and Goncalves, 2005). PURA-USP was applied to the 

university main campus in the city of São Paulo, also located in the Western region. By mapping 

the water connections and measuring the flow in the buildings, the program was able to quantify 
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demand by end uses and users in different buildings and departments including student 

apartments to promote significant reduction in demand (Tamaki, 2003; Hafner, 2007). 

Rocha and Barreto (1999) performed an end use study in one single family home 

located in an apartment complex in the city of São Paulo. The studies end-uses are summarized 

on table 3. 

Table 3. End uses of water from Brazilian studies 

 % of total household use 

Category 
Feira de 
Santanaa 

Average 
Brazilian 
studiesb 

Western São 
Paulo Cityc 

USPd 
Single 
family 
homee 

Kitchen faucet 33 18 12.0 17 18 

Faucet 10 7 4.2 6 8 

Shower 28 37 13.9 28 55 

Laundry sink faucet 5 4 5.4 6 3 

Toilet 8 22 5.5* 29 5 

Clothes Washer 12 9 10.9 9 11 

Top loading washing 
machine - - 9.2 - - 

Clothes washer + sink - - 8.3 - - 

Gardening/Car and 
patio washing - 3 - - - 

Outdoor faucet 3 - - - - 

Other uses - - 30.6 - - 

Dishwasher - - - 5 - 

Source: a Almeida, 2007; b Hafner, 2007; c Barreto, 2008; d apud Goncalves, 2006; e Rocha and Barreto, 1999 
*Close coupled toilets 

 
The constraints of these studies are related to the measure of outdoor use of water. Due 

to socio-cultural and climatic characteristics, irrigation is not performed within household levels. 

The City of São Paulo, through the Parks Division, and some irrigation system design 

companies stated that the urban population in the city does not apply automatic irrigation 

techniques. In addition, park landscaping is made using species of low water requirements and 

easy planting that rely mostly on rainfall or receive manual watering as needed (personal 

communication). 

Outdoor water uses in São Paulo are mostly for patio, driveway, garage and sidewalk 

washing and cleaning (floor washing), car washing and leisure – swimming pools. Watering 
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cans or hoses are used for small flower or vegetable gardens as needed. In the analysis made 

by Almeida (2007), the questions related to outdoor use (irrigated area, frequency of irrigation 

using equipment, presence of swimming pools, washing and cleaning and number of pets) had 

no correlation with water use, being little representative of outdoor use in those particular 

homes. 

  
Methodology 
 

The development of this work demanded extensively data collection, which was used for 

statistical analysis and model input. The focus was residential water use and demand and its 

components, such as indoor and outdoor demand. Local features also drove specific model 

features to be adapted. 

This methodology section details the data used, considerations and assumptions, 

calculations and model modifications to achieve the proposed objectives. In Data Description, 

all information used in this work was explained, including their original aggregation, sources and 

considerations for use. The following section – Water use influencing factors – describes the 

multiple linear regression tools and variables adopted to identify determinants of water use 

during the time-series available. Lastly, the Integrated Urban Water Model (IUWM) is presented, 

following by its customization to fit São Paulo’s regional and socio-cultural characteristics and 

details about its training procedures and parameter selection. 

 
Data description 
 
In this section, water use, demographics, land use, climate and socioeconomic datasets 

are detailed regarding their sources, aggregation and preparation for use. Further explanation 

on use and assumptions are described within the respective section. 

São Paulo datasets required as input for IUWM were often readily available online 

mainly through governmental agencies databases or were requested. These databases are 
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periodically updated depending on the frequency of measurements. The geographic level of 

information can also be classified into districts (96), administration boroughs (32), regions (5) or 

city level.  

 
Water Use  

 
Sabesp’s administrative model is based on watersheds with a decentralized 

administration composed by the Boards and Business Units (BU). Within the Metropolitan 

Board, the BU’s are divided according to the slopes and river beds of sub-basins in the Upper 

Tiete Basin (São Paulo, 2010). The BU’s do not necessarily correspond to the district limits. 

 Observed water use provided dataset was split into the Center, East, North, West and 

South BU’s. The data was aggregated in a monthly basis starting in January of 2013 through 

June of 2017 totalizing 54 months in four years and a half of observed water use. It provided 

monthly volume consumed by category of use (commercial, industrial, public, residential, mixed 

use, total), and the number of accounts. This study focused on the residential category of use. 

One account is defined as a building or its subdivisions with independent occupation that 

uses one single water and/or sewer main connection (Sabesp, 2017a). The mixed-use category 

does not specify the types of categories nor the number of accounts included in the 

measurements, preventing the precise estimation of residential, commercial, industrial and 

institutional (CII) portions from it. Therefore, its 2% contribution to the total water demand was 

excluded from this study. It is not specified in the dataset the end uses of water for any 

category.  

 
Demographics 

 
The Brazilian Institute of Geography and Statistics (IBGE) conducts the census survey 

for demographics characterization every 10 years throughout the country. The last Census year 

was 2010. The Municipal Department of Urbanism and Licensing of the City of São Paulo 

compiles demographic data in different geographic scales based on the Census results. In 
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addition, the State System Foundation of Data Analysis (SEADE) makes projections of 

demographics down to the district scale.  

In order to match the time series of the water use dataset, population and household 

counts were collected from SEADE’s projections for the years of 2013, 2014, 2015, 2016 and 

2017. The projections were available at the district level.  

 
Land use and residential outdoor area 

 
Data of vegetation cover for the year of 2013 is available online from the Rede Nossa 

São Paulo (Our São Paulo Network) at the boroughs level, based on indicators from the 

Municipal Department of Green and Environment of the City of São Paulo, the São Paulo State 

Bureau of Environment and the IBGE. Estimates of impervious area were calculated from 

vegetation cover, building area and total borough area followed by proportional distribution into 

district areas. It is assumed constant from 2013 to 2017. 

For the residential type of use, outdoor areas can be patios, driveways, porches, 

pathways and decks. From the Territorial, Building, Conservational and Cleaning (TPCL) 

registry, total plot size and total constructed area were available by district and land cover type – 

residential, single or multi-family, low, middle, high income standards. Because the constructed 

area has a real estate taxation purpose, the types of property influence on how this area is 

presented. In São Paulo City, the TPCL registry bases property market value on gross 

constructed area bounded by walls and columns, except for multi-family residential buildings 

(São Paulo, 1986; São Paulo, 2018). The difference between plot size and constructed area in 

the residential land cover type was interpreted as non-constructed area, thus, outdoor area. 

In single-family homes, constructed area was considered as presented with a straight-

forward subtraction for outdoor area. Constructed area in multi-family homes was defined by the 

occupation coefficient of the plot that is defined by municipal urban regulations. Occupation 

coefficient (OC) is the relationship between the projected horizontal building area and the plot 
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size, the former interpreted as the gross constructed area (São Paulo, 2014). This approach 

using OC was applied due to the total constructed area in multi-family homes be larger than the 

total plot size.  

Occupation coefficients are different for plot sizes in every urban zone of development 

defined by the City, i.e. Transformation, Qualification, Preservation (São Paulo, 2016). Most of 

the urban area is inserted in the Qualification zone with OC varying from 0.5 to 0.85. Thus, 

considering the OC in the high end, at least 15% of the total plot size would be non-constructed 

in multi-family residential land cover and might be subjected to some type of outdoor use in the 

form of washing. The TPCL registry was available for estimation by districts and the estimation 

was later aggregated by regions. All areas were also assumed the same for all years. 

Over this study, constructed area is denoted as developed area as well as non-

constructed area is referred as both undeveloped area and outdoor area. The latter does not 

necessarily represent impervious or non-impervious surfaces, but it is assumed to be subjected 

to some type of outdoor use of water that will be described in the following sections. 

 
Climate 

 
The Santana Observatory and the IAG-USP Station are the two main meteorological 

stations. They are located in the northern and the southeastern parts of the city and are 

operated by the National Meteorological Institute (INMET) and the Institute of Astronomy, 

Geophysics and Atmospheric Sciences (IAG) from the University of São Paulo (USP), 

respectively. Dataset from the IAG-USP station was provided under request and was used in 

this study from 1980 to 2017 due to its completeness. The variables considered are precipitation 

and temperature (maximum, minimum and average).  

 
Socioeconomics 

 
Socioeconomic data was available from the 2010 Census for every district and was 

assumed constant throughout the time-series. The dataset presented the number of households 
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containing in a range of income, quantified in minimum wages per month – up tp ½, more than 

½ to 1, more than 1 to 2, more than 2 to 5, more than 5 to 10, more than 10 to 20, more than 20. 

Minimum wage in 2010 was 510 reais – Brazilian currency. A weighted average in each range 

was computed and multiplied by the number of households. The sum of all ranges of income 

produced the total district income, which could be normalized by both number of households 

(permanent private) and population from SEADE’s projections for the time-series years. 

Regional variability of household income is presented on figure 7.  

 
Figure 7. Boxplot of regional income per household in 2013 

 
Water use influencing factors – Multiple linear regression 
 
To better explore the determinants of water use during the time-series available and 

understand the key factors driving the unusual consumption pattern observed, a regression 

model was applied. Using observed water use dataset, a multiple linear regression including 

several explanatory variables was performed to investigate what factors had a significant effect 

on residential water use.  
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The regression was normalized by household, this way monthly household observed 

water use was defined as the response variable and the predictor variables were both 

qualitative and quantitative. The qualitative variables were region and the economic tools 

applied by the water company. The quantitative variables were household size, areas – 

residential developed and undeveloped – temperature, precipitation and income per capita 

(table 4). The variables included geographical, meteorological, demographical and 

socioeconomic aspects that are featured within regions in the city. 

Table 4. Regression variable labels and categories 

Variable Labels Categories 
Household water use (gal per month) USE - 

Region REG Center (1), East (2), North (3), 
South (4), West (5) 

Household size (pop/hh) SIZE - 
Area [developed, undeveloped] (acres) DEV, UNDEV - 

Temperature [min. and max.] (°C) Tmin, Tmax - 
Precipitation (mm) PREC - 

Average household income (R$/month) INC  

Economic incentive ECON No incentives (1), Discounts (2), 
Discounts + penalty fee (3) 

  

The multiple linear regression model is represented in equation (1). 𝑈𝑆𝐸 =  𝛽0 +  𝛽𝑅𝑔𝑅𝐸𝐺 + 𝛽𝑆𝑧𝑆𝐼𝑍𝐸 + 𝛽𝐴𝑑𝐷𝐸𝑉 +  𝛽𝐴𝑢𝑈𝑁𝐷𝐸𝑉 +                       𝛽𝑇𝑚𝑎𝑥 𝑇𝑚𝑎𝑥 +  𝛽𝑇𝑚𝑖𝑛𝑇𝑚𝑖𝑛 +  𝛽𝑃𝑟𝑃𝑅𝐸𝐶 + 𝛽𝐼𝐼𝑁𝐶 + 𝛽𝐸𝐸𝐶𝑂𝑁 +  𝜀               (1) 

For analysis of the city variables, the time-series had a total of 54 months for each 

region from January of 2013 to June of 2017, totalizing 270 months of realizations from all 

regions. R statistical software was used for the calculations. Using the cor function, a correlation 

matrix was computed for all explanatory variables using the Pearson correlation coefficient 

method. Descriptive statistics was also calculated for the mean, standard deviation, minimum 

and maximum values for each of the quantitative variables. 

The multi-linear regression fit was executed using the lm function in R using all nine 

explanatory variables, denoting the full model. Akaike information criterion (AIC) was used to 

select the model containing the most relevant explanatory variables with the stepAIC function in 
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both directions. The model with the lowest AIC was considered the reduced model and another 

multi-linear regression was executed using the most relevant variables. 

Another regression was executed using the same functions for each region separately to 

find the variables most influential in each. The total number of realizations was 54 and the 

categorical variable REG was dismissed. The ECON monthly classification was kept the same 

for all regions. 

The significance levels evaluated were 95% (α=0.05), 99% (α=0.01) and 99.999% 

(α=0.001). For regional analysis, a significance level of 90% (α=0.1) was also added. 

 

Integrated Urban Water Model – IUWM 
 

The Integrated Urban Water Model - IUWM - is a web tool, cloud-based, mass balance 

approach for urban water demand prediction and potential savings assessment. IUWM allows 

for projections of water management scenarios (Sharvelle et al., 2017). Main input datasets are 

population and households, land use and climate with a selection of a service area to mark a 

geographic boundary. In the United States, the input datasets are readily available through the 

U.S. Census Bureau, the Multi-Resolution Land Characteristics Consortium (National Land 

Cover Dataset - NLCD), and PRISM Climate Group which makes the model flexible enough for 

application in any area nationwide. The application of IUWM outside of the U.S demands data 

gathering of the main inputs in order to meet the model’s basic requirements. For further details 

on IUWM and its parameters, refer to Sharvelle et al. (2017). 

IUWM customization for São Paulo 

 
São Paulo is the first location outside of the United States in which IUWM is being 

applied. Therefore, the model flexibility for creation of not yet established boundaries and 

boundaries outside of the American national dataset ranges ensures the application of it 

anywhere through the upload of geospatial features (shapefiles) and dataset feeding. Due to 

diverse land use, water use and demand characteristics, climate and cultural features in São 
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Paulo compared to the United States, prompted adaptations and assumptions to improve model 

suitability for the city. 

Basic input data and land use shapefiles were gathered for descriptive and model 

calibration purposes. Modifications were mainly focused on the core Python code in which 

IUWM runs, but also included an addition on the web interface.  This addition addressed land 

use features within the intended service area, enabling the user to upload GIS shapefiles and 

specify land use attributes to match those to the NLCD classification. The option was named 

import service area layer (figure 8) and is helpful in areas where landscape irrigation is the 

primary outdoor use, which is strictly associated with land use in IWUM. The main barrier to 

continue using the NLCD classification in São Paulo was the absence of irrigation, that is a local 

socio-cultural habit supported by climatic conditions. 

To address this specific habit in São Paulo households, two main adaptations were 

created in the Python core code, in which IUWM is written. The first one was the incorporation 

of the residential land use definition, based on developed and undeveloped areas, as previously 

described. The second was a creation of a customized code for outdoor demand, based on 

these areas, activity frequency and volume per unit area. 

Originally, IUWM allows the calculation of open space, low, medium and high-density 

development using from a land use shapefile using GIS tools or the NLCD database. These 

variables are used to estimate the outdoor demand for irrigation which is not applicable to this 

study. 

As an alternative, a customized function in Python was created and incorporated into the 

core of IUWM to calculate residential washing demand in outdoor areas. The estimation of 

outdoor water use for floor washing was based on the engineering parameters suggested by 

Tomaz (2009), as shown on table 5, and outdoor area. The residential area was split into 

developed and undeveloped area, equivalent to constructed and non-constructed areas, 

respectively. Frequency of washing was selected as once a week – 4 times a month. 
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Figure 8. IUWM interface when importing the service area layer already uploaded by the 
user 

 
Table 5. Engineering parameters for outdoor use estimation (Tomaz, 2009) 

Regular garden watering 2 L/m2.day 

Patio/Floor washing 2 L/m2.day 
Frequency 2x/week or 1x/week or once every 15 days 

 
Residential end-uses of water  

 
The definition of the most accurate demand profile for São Paulo considered only the 

studies performed by Barreto (2008) and PURA-USP (apud Goncalves, 2006). The two studies 

were performed in São Paulo city and presented larger sample size compared to other studies. 

In IUWM, the end-use percentages of indoor residential demand are based on the Residential 

End Uses of Water – REUWS (DeOreo et al., 2016).  

“Dish” (kitchen faucet), “faucets”, “shower” and “toilet” were the average of values from 

both studies. “Clothes” was aggregated values of the averages of clothes washer and laundry 

sinks. “Bath” was not separately measured in any study. For other uses – evaporative cooling, 
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humidification, water softening and other unclassified uses – the value from the REUWS 2016 

was adopted, and the difference was attributed to leaks, because none of the studies in São 

Paulo accounted for these types of use. Dishwasher portion from the USP study was not 

included because it is not representative of the entire city population.  

The combination of Barreto (2008) and PURA-USP are the adopted indoor demand 

profile for São Paulo and is summarized on table 6. 

Table 6. Demand profiles for São Paulo based on Barreto (2008) and USP (apud 
Goncalves, 2006) 

Categories % of total household use 

Bath 0 

Clothes  20.25 

Dish 17 

Faucet 5.1 

Leak 15.65 

Other uses 3.8 

Shower 20.95 

Toilet 17.25 

 
Training and testing 

 

The City of Fort Collins, Colorado, was used for IUWM original validation. A few 

modifications were needed in order to adapt it to be representative of São Paulo, particularly 

regarding outdoor water demand. The water use dataset provided by Sabesp was applied for 

estimation of outdoor washing demand and calibration procedures of indoor parameters. The 

water use dataset was comprised of 54 months and a total of 1642 days. Because the patterns 

of water use during 2014-2015 shifted drastically, the dataset was divided into three distinct 

conditions of pre-shortage, shortage and post-shortage.  

The observed month to month water use slopes were in accordance with the months in 

which the economic incentives were in place. Therefore, the three conditions were defined 

accordingly and deemed representative of each period. The conditions were then defined as: 
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1. Pre-shortage: from January of 2013 to February of 2014, totalizing 424 days in 14 

months; the predominant year is 2013; 

2. Shortage: from March 2014 to January 2016, totalizing 702 days in 23 months; the 

predominant year is 2015; 

3. Post-shortage: from February 2016 to June 2017, totalizing 516 days in 17 months; the 

predominant year is 2016. 

The predominant year was used in the calibration procedures in each condition. The 

median in the shortage is the lowest, at the same time this condition holds the greater variability 

(figure 9). This shortage is also the longest condition in the time-series. A one-way ANOVA was 

used to test whether there was a significant difference in the means of the three conditions. 

The regions – Center, East, North, South and West - were selected as service areas for 

calibration having districts as subunits. Because the geographic division of BU’s does not match 

the district boundaries, the full district areas were considered into the BU in which their largest 

area was inserted (São Paulo, 2010). The district of Itaim Bibi and Capão Redondo had 

significant portions of their areas in different BU’s and for practical purposes they were placed 

into the BU where the largest portions of their boroughs are located. The water use dataset was 

disaggregated by household for the districts in each BU and then the districts were gathered in 

their belonging region for calibration. 

Calibration procedures were performed using Python. Generation of parameter sets was 

made using a Monte Carlo method for 1500 simulations. The calibration process aimed the 

selection of the optimal α and β parameters that describe average daily household indoor water 

usage over time, according to the mathematical model developed by DeOreo et al., (2016). In a 

simplistic form, this model may be represented by equation 2, in which gphd is gallons per 

household per day, H is the household size, represented by the average number of people per 

household, and α and β are the estimated indoor parameters. 
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Figure 9. Boxplots of total monthly water use in the pre, shortage and post-shortage 
conditions in São Paulo 

 

   𝑔𝑝ℎ𝑑 = 𝛼𝐻𝛽                                                          (2) 𝑔𝑝ℎ𝑑𝑖,𝑝 =  𝛼𝑖,𝑝𝐻𝛽𝑖,𝑝 + 𝐹𝑤𝑖; 𝑖 = 1,2,3,4,5; 𝑝 = 1,2,3    (3) 𝐹𝑤𝑖 =  𝐴𝑢𝑑𝑖 ∗ 𝑉 ∗  𝑡                                                    (4) 

In this mathematical model, i corresponds to each region – Center, East, North, South, 

West, p corresponds to the period – pre-shortage, shortage or post-shortage, α and β are 

calibrated parameters, H is household size – number of people per household, and Fw is the 

floor washing demand, which is calculated using equation 4 from the region undeveloped area 

(Aud), the volume of water used (V), and the washing frequency (t). In this estimation, V and t 

had assumed values as previously described. 

Based on the described approach, the model inputs previously detailed for a service 

area – end-uses, population, households, climate, residential land use – are the variables 
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accounted in IUWM. Table 7 presents the parameters applied for estimation of indoor use and 

will be used for scenarios projections in the next chapter.  

Table 7. Parameters used during calibration 

Parameter Realistic value or range 

α 35 - 90 

β 0.30 - 0.90 

% precipitation runoff 90a 

Faucet % graywater 33.3a 

Leak % blackwater 50a 

Indoor % consumed 10a 

Total Population (2013 - 2017) 11,446,275 – 11,696,088 

Total Households (2013 - 2017) 3,737,441 – 3,951,074 

Source: aSharvelle et al, 2017. 
 

Parameters selection was performed based on the maximum likelihood and mean 

relative errors. Fifteen sets of parameters α and β were selected and applied in the regions for 

the conditions through Python simulations, resulting in monthly demands of indoor in all 

shortage conditions.  

The customized code for outdoor projections was run during calibration simulations to 

separate the indoor portion to be calibrated from the observed use. Model performance was 

evaluated using Percent BIAS fraction and Nash-Sutcliffe coefficient of efficiency on simulated 

and observed monthly household demand for 270 realizations in the time-series – 54 from each 

region –, using the functions nse and pbias in the R software. 

The version of IUWM code used for calibrations was 3.1.2. Testing of the model using 

the selected parameters was not performed on different temporal or spatial scales. 

 
Analysis of variance - ANOVA 

 
A monthly calibration for pre and post-shortage was also performed to examine specific 

trends such as seasonality within these conditions. The best monthly regional parameter was 

selected based on the mean relative error (MRE) and percent bias fraction error statistics for 
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each month in each region. Pre and post-shortage monthly demand simulations was normalized 

by household to obtain gphd and then by sum of gphd for each condition for ANOVA 

calculations. 

An analysis of variance (ANOVA) was performed in all regions using the aov function in 

the R statistical software to investigate seasonality. Sample size was 14 and 17 in the pre and 

post-shortage, respectively. Regional gphd was the response variable in a linear regression with 

different groups as predictor variables. The groups were split in calendar seasons (summer, fall, 

winter, spring) with 3 months of each year; wet, moist and dry conditions (WMD), ranked by the 

amount of precipitation, with 4 months of each year; and wet and dry (WD) months, based on 

the hydrologic calendar with 6 months of each year (table 8). A statistical difference in the 

means can indicate a seasonal pattern over the months. Significance levels of 90% (α=0.1) and 

95% (α=0.05) were evaluated in this analysis. 

Table 8. Groups used in the ANOVA and its corresponding months of the year 

Month Seasons WMD WD 

Jan Summer Wet Wet 
Feb Summer Wet Wet 
Mar Fall Wet Wet 
Apr Fall Moist Dry 
May Fall Dry Dry 
Jun Winter Dry Dry 
Jul Winter Dry Dry 
Aug Winter Dry Dry 
Sep Spring Moist Dry 
Oct Spring Moist Wet 
Nov Spring Moist Wet 
Dec Summer Wet Wet 

 
Results and Discussion 
 

Multi-linear regression and residential water use influencing factors 
 

The regression was performed using pertinent variables for the three shortage 

conditions. The four spatial scale variables were - region (REG), developed or constructed 
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residential area (DEV) and residential undeveloped or outdoor area (UNDEV). Demographics 

variables were household size (SIZE). The meteorological variables were minimum and 

maximum temperature (Tmin, Tmax) and precipitation (PREC). The socioeconomics variables 

were – average household income (INC) and presence or not of economic tools (ECON).  

All variables considered are known to have effects in residential water demand and were 

key-factors during the shortage periods. Table 9 shows a summary of the descriptive statistics 

of the data used from 270 realizations. The two qualitative variables – REG and ECON – were 

not included. 

Table 9. Descriptive statistics of MLR variables 

Variable Mean Standard deviation Min. Max. 

USE [gph] 3399.1 392.2 2778.3 4351.5 
REG - 

SIZE [people/hh] 2.86 0.32 2.29 3.20 
DEV [acre] 9451.9 5188.8 1155.3 16045.8 

UNDEV [acre] 5392.0 3684.2 201.4 9986.5 
Tmin [ºC] 15.8 2.7 10.2 19.6 
Tmax [ºC] 26.3 2.8 21.3 31.8 

PREC [mm] 133.0 88.5 2.8 368.2 
INC [R$/mo] 3197 924 2148 4810 

ECON - 
 
Pearson correlation coefficients were calculated for all variables and the correlation 

matrix is presented on table 10. High correlations were considered equal or above 0.800 and 

medium correlations were in the interval of 0.600 and 0.799. USE was not highly or medium 

correlated to any of the variables.  

Variables REG, PREC, INC and ECON were not highly correlated with any variable, 

however PREC had medium positive correlation with Tmin and INC had a medium negative 

correlation with SIZE, DEV and UNDEV. High positive correlations are present between SIZE 

and spatial variables of residential areas. The absence of stronger correlations of USE across 

the city could be due to the shortage and change of water patterns occurring during the time-

series. 
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Table 10. Pearson correlation coefficient matrix 

Variable USE REG SIZE DEV UNDEV 

USE 1.000 -0.092 -0.257 -0.313 -0.282 
REG -0.092 1.000 0.262 0.249 0.236 
SIZE -0.257 0.262 1.000 0.900 0.833 

DEV -0.313 0.249 0.900 1.000 0.956 

UNDEV -0.282 0.236 0.833 0.956 1.000 
Tmin 0.027 0.000 -0.008 0.000 0.000 
Tmax 0.010 0.000 -0.009 0.000 0.000 
PREC -0.114 0.000 -0.016 0.000 0.000 
INC 0.278 0.365 -0.751 -0.712 -0.737 

ECON -0.570 0.000 -0.014 0.000 0.000 
 

Variable Tmin Tmax PREC INC ECON 

USE 0.027 0.010 -0.114 0.278 -0.570 
REG 0.000 0.000 0.000 0.365 0.000 
SIZE -0.008 -0.009 -0.016 -0.751 -0.014 
DEV 0.000 0.000 0.000 -0.712 0.000 

UNDEV 0.000 0.000 0.000 -0.737 0.000 
Tmin 1.000 0.866 0.660 -0.005 0.190 
Tmax 0.866 1.000 0.474 -0.006 0.215 
PREC 0.660 0.474 1.000 -0.010 0.067 
INC -0.005 -0.006 -0.010 1.000 -0.010 

ECON 0.190 0.215 0.067 -0.010 1.000 
                     High correlation: > ± 0.800, medium correlation: 0.600 - 0.799 
 
The MLR with USE as response variable was fit with a full and a reduced model. The 

latter was defined based on AIC values. The results are presented on table 11. AIC values from 

both models have a minimum difference. From all nine variables in the full model, only Tmax did 

not have a significant effect in USE at a minimum of 95% confidence level, being the only 

variable removed in the reduced model. All other variables had a significant effect in USE at a 

99.999% confidence level.  

REG, DEV, PREC and ECON showed a strong negative effect on USE in the full and 

reduced models, while UNDEV, Tmin, Tmax and INC showed a strong positive effect on USE. 

SIZE showed a positive effect in the full model and a negative one in the reduced model.  
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With lower AIC, the reduced model does not contain the non-significant variables from 

the full model. Even though the estimates for the variables may slightly change, their effect 

strength remains at the same confidence level from the full to the reduced model. 

Table 11. Full and reduced models result for São Paulo 

 Full model Reduced model 

 Estimate t-value p-value Estimate t-value p-value 

Interc. -13280 -20.04 2.00E-16 -13120 -20.187 2.00E-16 
REG -737.3 -25.547 2.00E-16 -734.3 -20.187 2.00E-16 
SIZE 4601 25.017 2.00E-16 4581 -20.187 2.00E-16 

DEV -0.2943 -24.13 2.00E-16 -0.2932 -20.187 2.00E-16 
UNDEV 0.4422 24.379 2.00E-16 0.4404 24.334 2.00E-16 
Tmin 32.72 4.002 8.21E-05 41.04 8.997 2.00E-16 
Tmax 8.363 1.225 0.222 x 

PREC -0.6678 -4.641 5.50E-06 -0.7144 -5.144 5.28E-07 
INC 1.839 26.062 2.00E-16 1.831 26.028 2.00E-16 
ECON -236.3 -21.64 2.00E-16 -235.3 -21.587 2.00E-16 
AIC 2710.51 2710.06 

 
The socioeconomic variables in both models had a strong effect on USE. The positive 

relationship between INC and USE suggests that water use is greater where household income 

is higher. The ECON variable effect, which is a qualitative variable denoting the months in which 

the economic tools were applied, corroborates the findings of Souza (2016), proving the 

effectiveness of the discounts and penalty fees in reducing demand. 

Similarly, a multiple linear regression performed by region with 54 realizations in each 

corresponding to the months in the time-series identifies the most significant variables by 

region. Using the same approach of a full and a reduced model based on AIC values, tables 12 

and 13 present the results showing whether the variables produces a positive or negative effect 

within the region and the significance level in which it occurs. The variable REG was dismissed 

in this analysis. 

In the full model, Tmin had no effects whatsoever in the USE of any region, whereas it 

had a positive effect only in the East in the reduced model. The demographic and 
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socioeconomic variables of SIZE, INC and ECON had effects in the USE of all regions in both 

models. SIZE showed negative effects in all regions, except for the East. Likewise, INC had a 

positive effect in all regions, except for the East. ECON had a negative effect in all regions. 

Tmax and PREC had positive and negative effects, respectively, in both models. 

Table 12. Significant variables from full model by region and corresponding significance 

  Full  
 SIZE Tmin Tmax PREC INC ECON 

Center [-] 0.01 - - [-] 0.05 [+] 0.001 [-] 0.01 
East [+] 0.001 - - - [-] 0.001 [-] 0.001 
North [-] 0.001 - [+] 0.1 [-] 0.1 [+] 0.001 [-] 0.001 
South [-] 0.001 - [+] 0.1 [-] 0.05 [+] 0.001 [-]0.001 
West [-] 0.001 - - [-] 0.05 [+] 0.001 [-] 0.01 

Significance levels: α = 0.001, 99.9%; α = 0.01, 99%; α = 0.05, 95% 
 

Table 13. Significant variables from reduced model by region and corresponding 
significance 

  Reduced 
 SIZE Tmin Tmax PREC INC ECON 

Center [-] 0.001 - [+] 0.01 [-] 0.05 [+] 0.001 [-] 0.01 
East [+] 0.001 [+] 0.001 - [-] 0.05 [-] 0.001 [-] 0.001 
North [-] 0.001 - [+] 0.001 - [+] 0.001 [-] 0.01 
South [-] 0.001 - [+] 0.001 [-] 0.05 [+] 0.001 [-] 0.001 
West [-] 0.001 - [+] 0.001 [-] 0.05 [+] 0.001 [-] 0.01 

Significance levels: α = 0.001, 99.9%; α = 0.01, 99%; α = 0.05, 95% 
 

The socioeconomic variables of INC agree with other studies for having an overall 

positive effect on water use (Ruijs et al., 2008; Willis et al., 2011; Makki et al., 2013; Romano et 

al., 2014). Although, this is not true for the East, possibly because this region holds the lowest 

household income, which could make these households more mindful of their expenses. At 

different levels, all regions reduced water consumption during the shortage, proving the 

negative effect of the ECON variable. 

 
Shortage Impacts in Water Demand Pattern – IUWM testing  

 
The evolution pattern of water use along the time series – January 2013 to June 2017 - 

was very unusual because it comprehends the beginning and end of the 2014-2015 shortage 
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during which compulsory changes in demand were needed. In order to have a full 

understanding of the water demand patterns in São Paulo the water use dataset was split into 

pre-shortage, shortage and post-shortage conditions. 

The customized code created to estimate outdoor demand applied to floor washing was 

based on the non-constructed residential area according to urban regulations and real estate 

taxation. Engineering parameters were used to approximate the volume of water consumed and 

it was established that the frequency of washing happened once a week – four times a month. 

This estimation aimed at the minimum outdoor washing demand, because it considers 

maximum occupation coefficient in the parcel and only one washing per week. Other reasons 

and habits, such as presence of pets in the household and dust control, may increase the 

washing frequency as well as lower occupation coefficients and larger outdoor areas. 

It was assumed that the outdoor area was constant during the time series and, therefore 

the water demand for washing was also constant. The estimated volume of outdoor washing 

demand was embedded in the calibration procedure of behavioral indoor parameters, α and β. 

Outdoor washing demand accounted for only 2% of the total residential demand. Due to its 

lower estimated outdoor use, the calibrated indoor parameters represented a reasonable 

estimation close to the total residential demand in each region for different conditions. 

As a result of calibration and validation procedures, table 14 presents the selected 

parameters sets that best describe indoor household water demand in each region of São Paulo 

under different conditions. 

Model performance was checked using the Nash-Sutcliffe (NSCE) coefficient of 

efficiency and the Percent BIAS fraction (BIAS). NSCE varies from -∞ to 1, indicating how well 

the plot of observed versus simulated values fits the 1:1 line, in which 1 is the optimal value. 

BIAS indicate whether the model average tendency is to predict smaller or greater values than 

the observed one, with the optimal value being zero, positive values indicating underestimation 

bias and negative values indicating overestimation bias (Moriasi et al., 2007).  
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Table 14. Regional parameters selected for the shortage conditions 

 Pre-shortage Shortage Post-shortage 

 α β α β α β 

Center 88.42 0.53 50.33 0.89 58.44 0.81 
East 80.63 0.36 55.01 0.47 69.24 0.34 
North 87.77 0.32 44.86 0.66 46.90 0.70 
South 47.76 0.86 43.03 0.74 48.62 0.72 
West 75.63 0.55 59.36 0.52 55.44 0.67 

 
Both calculations were made using the values presented on figure 10, containing 270 

realizations and the monthly household indoor and outdoor demands. NSCE was 0.703, 

indicating a very good model fit, and BIAS was -1, indicating an overall tendency of 

overestimation. On figure 10, monthly household demand by region is plotted with the 

regression line and 95% tolerance intervals for future observations – prediction intervals. The 

upper cluster of points represents the pre-shortage condition. Shortage and post-shortage 

values are blended among regions but show a clear separation with respect to the pre-shortage. 

It is possible to notice the variation in demand across regions, with the Center presenting largest 

demands and the East, the lowest. Further explanations are presented in the next section. 

 
Figure 10. Monthly household demand for the time-series – 2013-2017. Red dotted-line is 

the regression line and black lines are the 95% prediction intervals  
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Daily Household Indoor Water Usage  

 
Using the simplified equation developed by DeOreo et al., (2016) and applying the 

selected parameter sets, average daily household indoor demand projections was calculated in 

each shortage condition for all the regions to explore regional differences in household water 

demand. The Residential End Use (REU) studies from 1999 and 2016 developed based on 

North-American household usage were added for comparison purposes (DeOreo et al., 2016). 

In addition, the Home Efficiency study (HE) from 2011 is also projected. This study explores 

baseline water uses for new and high-efficient homes through intense application of the best 

available technology for high-efficiency fixtures and appliances (DeOreo, 2011). 

During the pre-shortage, household water demand was greater when compared to the 

other two conditions. At the regional level, household demand also varied across conditions, but 

more importantly, varied across regions. Figure 11 presents the projections of average daily 

household water use in each region from selected parameters for the pre-shortage.  

 
Figure 11. Daily Household Usage during the Pre-shortage 
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Considering the city average household size of three persons per household in 2013, the 

Center had the highest daily household usage, which was also greater than the REU 2016. This 

study shows about the same household demand for the West with 3 ppl/hh. East and North are 

also very close in daily household usage for all household sizes, being the lowest uses for 

households greater than the average. Table 15 shows the household sizes for the predominant 

year in the pre-shortage with its respective household daily water usage. 

Table 15. Household size and gphd during the Pre-shortage 

Region Household Size (2013) gphd 
Center 2.4 139.5 
West 2.7 130.9 
South 3.1 124.5 
North 3.2 127.4 
East 3.2 122.2 

 
From the table, the two regions with lowest household sizes, Center and West, have 

gphd greater than the East, which has the largest household size. This observation suggests 

that on a per capita basis, the water use in the households in the East is lower than in the 

Center and the West. This is also an indication of different features across regions that influence 

household demand. 

Figure 12 presents daily household usage for the shortage. All curves shifted downward 

and the Center fell below REU 2016 in household sizes smaller than 3.5 persons. All other 

regions are either below – East, North, South – or about the same as the HE study – West. 

Considering the household demand for average regional household sizes, as it 

happened in the pre-shortage, the regions with largest household sizes are the ones with lowest 

gphd. During the shortage, all demands were reduced to below 100 gphd, except in the Center 

(table 16). 

In the post-shortage, it is possible to notice a little upward shift in the regions again 

(figure 13). The West and the South moved above the HE study curve, while the increase in 

demand in the Northern household brought this curve to HE values. 
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Figure 12. Daily Household Usage during the Shortage 

 
Table 16. Household size and gphd during the Shortage 

Region Household Size (2015) gphd 
Center 2.3 106.0 
West 2.7 99.5 
South 3.0 97.0 
North 3.1 95.9 
East 3.1 94.5 

 

 
 

Figure 13. Daily Household Usage during the Post-shortage 
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Considering that household size did not change from the shortage to the post-shortage, 

the increase in demand suggests that other factors caused this rebound from one condition to 

the other (table 17).  

Table 17. Household size and gphd during the Post-shortage 

Region Household Size (2016) gphd 
Center 2.3 115.2 
West 2.7 107.5 
South 3.0 106.3 
North 3.1 103.4 
East 3.1 102.0 

 
Furthermore, the pattern of water use varies across regions depending on its 

characteristics. Overall, a few explanations are raised that may help understand the overall drop 

in water use from the pre-shortage to the shortage condition.  

1. Quicker showers 

2. Use of washing machine water to clean patio and sidewalks (graywater use) 

3. Rainwater/roof runoff harvesting 

4. Decrease in car washing frequency 

5. Sidewalk/patio sweeping instead of washing 

6. Attempt to not refill swimming pools  

7. Mindful use of faucets during tooth brushing, dish washing, hand washing and shaving 

8. Less water use for recreation 

 
These hypotheses are essentially associated with behavioral changes applied by the 

population according to their awareness, capabilities and willingness. In addition, as 

demonstrated by Souza (2016) and the previous section, the economic incentives also played a 

meaningful role in decreasing demand. 

In all conditions, household sizes in the Center and the West are always the lowest 

whereas water uses are the greatest. Associating findings from previous sections and studies, 

these regions are examples of socioeconomics having a positive significant impact on water 

use. In addition, residential land use follows household income patterns, showing that homes of 

medium and high-income standards are most found in districts with progressively higher 
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incomes. The large concentration of multi-family homes in these districts also suggests a 

possible preference of that higher income families to live in multi-family buildings. This practice 

could be related to greater feeling of safety provided by these buildings compared to single 

family homes. On the other hand, as experienced by Sanchez (2007), the possibility of leaks 

and losses in these types of buildings is also greater, which would increase water use in these 

districts. 

 
Seasonality investigation using ANOVA 

 
As previously explained, several factors influence residential water demand.  From the 

MLR in the previous section, temperature and precipitation also have significant effect on 

demand. A seasonal analysis was performed to explore the presence of patterns of water use in 

the pre and post-shortage. For the latter condition, the objective was to examine whether this 

pattern, if existent, returned despite acquired habits during the shortage that were motivated by 

the need to comply with reduction.  

The following boxplots of daily household demand (figure 14) show that the medians 

during the pre-shortage months were greater than during the post-shortage months. From this 

observation, the rebound effect did not occur when comparing these two conditions. A slightly 

visual monthly variation that follows the weather cycles of precipitation and average 

temperatures is more perceivable in the pre-shortage than in the post-shortage.  

Water demand is expected to be higher during summer months due to higher 

temperatures and demand is increased due to more shower use, recreational use, clothes 

washing and drinking. Summer months also have higher precipitation indices. Santos (2011) 

noticed an increase in water demand after long rainy periods, because population would wash 

cars, clothes, and shoes and take advantage of following sunny days to let them dry. 

The school summer break also occurs from mid-December until mid-February. January 

is when families usually travel on vacation and that can contribute to lower water demands. On 
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the other hand, the presence of more individuals at home during the break may contribute to 

increase demand. The winter months of June, July and August are expected to have the lowest 

water demand. However, the low air relative humidity in the month of August may increase 

demand (Santos, 2011). 

 

Figure 14. Pre and post-shortage gphd from monthly simulations by IUWM 

 
The ANOVA method was applied to check whether the differences in the mean of gphd 

over the months are statistically significant and can prove a seasonality effect. According to the 

results on table 18, at a significance level of 95% (α=0.05), a statistically significant difference in 

the monthly means occur only in the wet/dry condition, or every six months, in the North only. 

The wet set of months goes from October to March, and the dry set goes from April to 

September. This classification was based on the hydrologic year, in which the wet months are 

also the hottest, and the dry months are also the coldest months. 

Table 18. ANOVA results for the Pre-shortage 

Region 
Season WDM WD Sample 

size F-test p-value F-test p-value F-test p-value 
Center 0.544 0.663 1.047 0.384 0.598 0.454  

East 1.451 0.286 2.001 0.181 2.561 0.136  

North 2.240 0.146 3.504 0.067 4.760 0.049 14 

South 1.119 0.387 1.641 0.238 1.890 0.197  

West 0.669 0.590 1.152 0.351 0.758 0.401  
 Significance level: 90%– Dotted line; 95% – continuous line 
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At a 90% significance level (α=0.1), the North also has a statistically significant 

difference in the WDM condition. This condition adds moderate levels of temperature and 

precipitation. In this case, the seasonality effect would happen every four months. 

The ANOVA results for the post-shortage (table 19) show that the North is the region 

with statistically significant difference in the means of the months in all monthly groups at a 

significance level of 95% (α=0.05). That being said, it is possible to notice a seasonality effect in 

the North every three months, according to the calendar season. The East and the South also 

present a significant difference under the WDM group at the same significance level of 95%. 

At a 90% significance level (α=0.1), the Center and West also show a significant 

difference in the monthly means in the WDM group. The East show significant differences in the 

season and WD group, meaning that at this level, seasonality is noticeable starting at every 

three months. The South shows statistically significant differences at the same level in the WD 

group as well. 

Table 19. ANOVA results for the Post-shortage 

Region 
Season WDM WD 

Sample size 
F-test p-value F-test p-value F-test p-value 

Center 1.133 0.372 2.927 0.087 1.380 0.258 

17 
East 2.666 0.091 4.723 0.027 3.363 0.087 
North 3.695 0.040 5.881 0.014 5.016 0.041 
South 2.437 0.111 4.304 0.035 3.394 0.085 
West 1.328 0.308 2.870 0.090 1.509 0.238 

 Significance level: 90%– Dotted line; 95% – continuous line 
 

It is important to remark that the sample size in the post-shortage is 3 months larger than 

in the pre-shortage. From these findings, it is possible to note a seasonal pattern happening 

every four months in the post-shortage in all regions at a 90% significance level, which did not 

occur in the pre-shortage. Because the WDM group was based on precipitation volumes and 

temperature, it is likely that after the shortage, people were more aware and concerned about 

rainfall levels and it may have had an impact in monthly water demand. 
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Conclusion 
 
The shortage in the city of São Paulo caused compulsory demand reduction in the 

residential sector, which accounts for 84% of total water use in the city. Understanding changes 

in demand that occurred during the time-series of 2013 to mid-2017. 

Water demand pattern across regions varies depending on their features. Determinants 

of demand are different in each region. The economic tools during the shortage was a common 

factor that contributed to demand reductions in all regions. High correlations of water use with 

other variables were not found, probably because of the changing patterns due to the shortage. 

All variables analyzed had a significant effect on water use (α = 0.001) in São Paulo, except for 

maximum temperature. Income and the economic incentives also had a very high effect on 

demand in all regions.  

The calibrations of IUWM for indoor demand predictions enabled a high NSCE, proving 

a very good fit of the model for to project water demand in São Paulo under different shortage 

conditions. Furthermore, the method used to estimate outdoor demand during calibrations 

caused a very close approximation of indoor demand to total use due to a 2% outdoor use 

contribution.  Average household sizes in each region show that households in the Center 

consume more water than all other regions, while households in the East consume less of all. 

Average household sizes shifting along the shortage did not change this pattern.  

There was a demand reduction of over 12% from the pre to the post-shortage. This was 

achieved by behavioral changes and reuse practices emergently implemented drove by the 

need to reduce demand. An observed seasonality of at least four months was found in the post-

shortage for all regions at a 90% confidence level.  The shortage also reduced average daily 

household demand in all regions, with the demand in the East, North and South inferior than 

values projected in the High Efficiency study done in the United States. 

IWUM testing in this chapter supports the analysis in the next part of this study.  
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Chapter 3 – Evaluation of Conservation Practices for Potential and 

Benefits Maximization 
 
 
 
Introduction 
 

Hespanhol (2008) advocates for water reuse initiatives and water conservation in São 

Paulo as a form to alleviate the overflow of non-treated sewage discharged into water bodies 

and avoid inter-basin water transfers into the MRSP. A survey conducted by Sanchez (2007) in 

the city of São Paulo found that residents in over 90% of the interviewed households think 

saving water is important, but only 61 to 71% of the households allegedly save water somehow. 

The survey also revealed that almost half of these households save water by rational use and 

less than 30% of all single-family residential units (two-story plus single-family households) 

reuse water for some purpose. These results suggest that in addition to public acceptance and 

awareness, further incentives and support are needed for the implementation of alternative 

water sources succeed.   

Conservation strategies have the potential to reduce potable demand for a variety of 

purposes, i.e. toilet flushing, floor washing, irrigation, cleaning of vehicles, civil construction, 

dust control and groundwater recharge (Hespanhol, 2002). Graywater reuse, stormwater use, 

effluent use and roof runoff harvesting are alternatives to promote reuse and conservation that 

can be applied from household scale up to neighborhood or larger spatial scales. However, the 

purpose of reuse will define the water quality to be met, the best type of treatment and the costs 

of operation and maintenance.  

The fit-for-purpose concept is ideal to prevent overtreatment and under-treatment of 

reclaimed water and save energy, resources and costs during the process. The level of 

treatment can be defined for the appropriate water quality and is based on the end use of 

reclaimed water (Chhipi-Shrestha et al., 2017). 
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In Brazil, the Ministry of Health established standards for potable use through the 

Ordinance 2914 (Brasil, 2011). However, the lack of specific regulations for non-potable reuse 

of water is an obstacle for the development of large scale decentralized non-potable water 

systems. The reuse of water in single-residence homes, such as laundry graywater for toilet 

flushing or floor washing, poses fewer risk to the residents in the household due to a closed 

cycle, in which the pathogens load in this water proceed from and involve the same residents 

(Sharvelle et al., 2017a). In this case, the need for treatment and the risk of exposure are 

minimal. The same does not apply to graywater collection and distribution from and to multiple 

residences or commercial buildings. Hence, the influent quality must also be considered when 

applying fit-for-purpose technologies in large-scale systems to safeguard public health. 

During the 2014-2015 shortage, change of habits was adopted by the population to 

promote demand reduction. Lafloufa (2016) describes that people decreased shower duration 

and frequency, car washing frequency and used less water for tooth-brushing as well. The uses 

of roof runoff and graywater were also embraced in both rudimentary and sophisticated 

manners for non-potable reuses, such as floor washing, toilet flushing and plant watering 

(Sousa, 2015; Veja, 2015; G1, 2016; Akatu, 2018).  

Albeit the shortage proved the potential for water reuse and conservation in São Paulo, it 

was deepened by climatic abnormalities in the Southeastern region of the country that was 

considered an extreme climatic event (Marengo and Alves, 2015). Extreme events of 

precipitation and temperature are projected to intensify until the end of the century and are likely 

to adversely impact large urban agglomeration as São Paulo, posing risks to economy, public 

health, community welfare and water resources (Nobre, 2011). A hot and dry scenario is 

projected with an addition in maximum temperatures of up to 9°C by the end of this century in 

the RCP 8.5 scenario and annual precipitation reduction between 40 to 45% in São Paulo (Lyra 

et al., 2017).  
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A reduction in precipitation implies increasing supply vulnerability and the possibility of 

recurring water shortages. Furthermore, less precipitation level can also compromise 

performance of roof runoff and stormwater use, reducing conservation reliability of these two 

practices. In order to ensure water for basic needs, it is crucial to explore the potential of 

conservations strategies to maximize savings while reducing sole dependency on reservoir 

withdraws. 

  
Objectives 
 

This chapter aims to investigate the potential of conservation strategies for water 

demand reduction. More specifically, the objectives are to: 

1. Evaluate savings of graywater reuse and roof runoff that contributed to 

residential demand reduction from pre to post-shortage; 

2. Assess residential demand reduction potential of conservation practices of 

graywater reuse, stormwater use, roof runoff harvesting, and wastewater reuse; 

3. Project maximum potential and benefits that can be gained by adoption of 

technologies for fit-for-purpose water and estimate the how climate change influences 

performance of conservation strategies. 

 
Research questions 

 
Over this chapter, the following research questions will be answered: 

1. How much saving was possible using graywater and roof runoff from pre to post-

shortage? 

2. What are the maximum savings that can be achieved through the application of 

conservation practices? 

3. What are the cost-benefit tradeoffs of each scenario and climate change 

implications in practice performance? 
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Methods 
 
 Conservation strategies evaluation 
 

The Integrated Urban Water Model has the ability to estimate the conservation potential 

of alternative sources to meet potable and non-potable demand. The available strategies in the 

model include indoor conservation using more efficient fixtures, landscape irrigation 

conservation, and use of graywater, stormwater and treated wastewater (Sharvelle et al., 2017). 

As previously described, the use of graywater and roof runoff to meet a portion of non-

potable demand in households was applied during the shortage period. The potential of these 

two strategies are here compared against the pre and post-shortages to evaluate their 

contributions to demand reduction during that time.  

Furthermore, in order to enlarge the portfolio of conservation options two more 

alternatives – stormwater and effluent reuse - were analyzed along with graywater and roof 

runoff harvesting under three scenarios.  All four practices can be applied to meet potable and 

non-potable demand, depending on quality required and the level of treatment available.  

 
Conservation savings during shortage 

 
The Technological Research Institute (IPT) published a manual for emergency roof 

runoff harvest, storage and use in early 2015, and a manual for emergency graywater collection, 

storage and reuse a year later (Zanella, 2015; Alves et al., 2016). The scope of the manuals did 

not include plumbing and structural building adaptations. Instead, both manuals aimed to 

instruct and inform consumers on water quality and ways to handle graywater and roof runoff 

given that these types of reuse became widespread during the shortage. 

 Roof runoff harvesting, according to the manual (Zanella, 2015), can be used in normal 

conditions for gardening, car and floor washing and toilet flushing. In abnormal or extreme 

cases, roof runoff can be used for shower, dish washing, clothes washing and drinking, only if 

followed the instructions provided to ensure acceptable quality for these purposes. Graywater 
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can be used for toilet flushing, wall, floor and car washing, watering of trees, bushes, grasslands 

and flower gardens; it is not recommended for vegetable gardens and sports fields (Alves et al., 

2016).  

Using the regional α and β parameters from table 14 for pre and post-shortage, adoption 

calibrations of graywater and roof runoff adoptions were performed to examine the adoption that 

met demand reduction during the shortage condition in all regions. Calibration procedures were 

again conducted using IUWM Python code, and estimated uses for floor washing and toilet 

flushing, both non-potable uses. The practices were evaluated separately with 1500 simulations 

using a Monte Carlo method as in Chapter 2. 

Selecting percentages of adoption by the maximum likelihood method, different storages 

were set to evaluate the conservation potential of the practices. The Brazilian Standard (NBR) 

5626/98 establishes the requirements for design, execution and maintenance of cold water 

plumbing for domestic use, residential or not, including specifications of water storage in a 

building. Contrary to many developed countries, the water supply to Brazilian households 

consists of indirect supply – the water is delivered into a head storage tank that is connected to 

the water fixtures in the house. In some households, there may be fixtures connected directly to 

the public supply in addition to the storage tank (Sanchez, 2007). 

According to the NBR, the storage tank used for indirect potable supply must be 

designed taking into account the patterns of water use in the building and the stored volume 

must be, at least, enough for 24 hours of use in case of supply interruptions. For small 

households, the minimum volume recommended is 132 gallons – 500 liters. Therefore, selected 

storage volumes for evaluation were 33 gal, 66 gal and 132 gal – 125, 250 and 500 liters. 

Emphasizing that the non-potable plumbing structures must be separated from potable ones, 

this storage volume selection aims to not surpass the already existing potable storage. 

The comparison was made between practice performance with different storages and 

pre and post-shortage conditions through bar charts and percentage reductions. 
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Conservation practices potential to decrease potable demand 

 
The potential reduction with application of conservation practices of graywater, 

stormwater, effluent reuse and roof runoff harvesting was assessed to meet both potable and 

non-potable demand. The pre-shortage condition was set as the benchmark for comparison 

using the set of regional α and β parameters from Chapter 2 for conservation projection. In the 

pre-shortage, it is assumed that no reuse is being done and water demand uses raw water from 

the supply system for all household end uses. 

Three scenarios were evaluated for each practice – a combination of potable (includes 

toilet flushing) and floor washing demands (Pot+FW), combination of floor washing and toilet 

flushing demands (FW+TF), and floor washing demand alone (FW). Table 20 specifies the 

adoption and storages selected for the evaluation.  

Table 20. Level of adoption and storage volumes for scenarios evaluation 

 Adoption (%) Storage (gallons (liters)) 

Graywater 85 132 (500) 
Stormwater 85 3000 (11370) 
Roof runoff 85 132 (500) 
Effluent 85 no storage 

 
For all scenarios, 85% of the service area would adopt the practices whereas 15% would 

not adopt any practice whatsoever. This selection aimed an aggressive approach, but still gives 

margins for more savings. 

Storage volumes for all scenarios were selected aiming practicality and feasibility. 

Graywater and roof runoff practices allows for building scale storage (single or multi-family 

homes). Stormwater is projected to be collected from a neighborhood or larger spatial scales – 

i.e. districts, thus requiring larger storage. Effluent reuse is considered with the implementation 

of a dual-system distribution with minimum or system storage. 

Graywater production is calculated based on the end uses of water from faucets (except 

kitchen), shower and clothes washing. Stormwater is estimated from precipitation depth, runoff 
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coefficient and impervious area in the spatial subunit. Roof area and precipitation are used to 

calculate roof runoff for harvesting at a building scale. At last, effluent potential is calculated 

based on produced blackwater (toilet and kitchen faucets). 

The projections were made for each region and the average period demand – 14 months 

in the pre-shortage – were added up to project the demand for the city and compare reductions. 

Reuse to meet potable demand requires a minimum mixing fraction with raw water, here 

selected as 60%. All practices had 100% of availability to be used to meet residential demand. 

After scenarios evaluation, a cost-benefit matrix was created, having level of treatment 

represented as cost and percentage reductions represented as benefit. The levels of treatment 

are very low, low, medium, high and very high with very low treatment level being the best-case 

scenario. All potable reuses require high or very treatment level, depending on the source. 

Table 21 presents the reduction ranges and table 22 the level of treatment needed for each 

scenario. This classification enables matching the concept of fit-for-purpose when choosing the 

most appropriate conservation scenario.   

Combinations of treatment level and percentage reductions were classified into four 

categories to facilitate selection of the most adequate scenario from 25 possible combinations 

(table 23). The ideal scenario would combine very low treatment levels and yield very high 

reductions in demand, whereas the worst possible scenario would be the exact opposite.  

Table 21. Classification of % reductions ranges 

 % reduction range 

Very low 0 - 5 
Low 5 - 10 

Medium 10 - 15 
High 15 - 25 

Very high > 25 
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Table 22. Scenarios and level of treatment required 

Scenario ID Treatment level required 
Graywater for floor washing GW-FW Medium 

Graywater for floor washing and toilet flushing GW-FW+TF Medium 
Graywater for potable uses and floor washing GW-Pot+FW Very high 

Stormwater for floor washing SW-FW Medium 
Stormwater for floor washing and toilet flushing SW-FW+TF Medium 
Stormwater for potable uses and floor washing SW-Pot+FW High 

Roof runoff for floor washing RR-FW Very low 
Roof runoff for floor washing and toilet flushing RR-FW+TF Very low 
Roof runoff for potable uses and floor washing RR-Pot+FW High 

Effluent reuse for floor washing Eff-FW High 
Effluent reuse for floor washing and toilet flushing Eff-FW+TF High 
Effluent reuse for potable uses and floor washing Eff-Pot-FW Very high 

 
Table 23. Possible combinations of treatment levels and reductions 

 Required treatment Reduction 

Preferred 

Very low Very high 
Very low High 

Low Very high 
Low High 

Acceptable 

Very low Medium 
Low Medium 

Medium Very high 
Medium High 
Medium Medium 

High Very high 
High High 

Very high Very high 
Very high High 

Undesirable 

Very low Low 
Low Low 
High Medium 

Very high Medium 
Very low Very low 

Low Very low 
Medium Very low 
Medium Low 

Not acceptable 

Very high Very low 
Very high Low 

High Low 
High Very low 
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All categories are ranked by treatment levels but prioritize reduction targets. The 

preferred category describes the ideal combinations of low or very low treatment and high or 

very high reductions in potable demand. This category highlights best choices for both items. 

Because treatment required is minimum, this situation could be applied under normal conditions 

to incentivize savings but when shortage is not an imminent concern. In this case, shortage 

events would be delayed, and water supply could be preserved.  

The acceptable condition presents varying treatment focusing on very high to medium 

reductions. Under this category reduction in potable demand is of primary concern, allowing 

maximizing treatment levels to enable very high or high reductions. When ranking the options, 

treatment levels are still the criteria. This category could be applied during the threat or start of 

another shortage when higher reductions are still a target to reduce and delay aggravated 

shortage effects, especially when uncertainties around its duration exist. However, water 

managers and government agencies must strategically plan the implementation of higher 

treatment levels due to time constraints and financial investments. 

The undesirable category scenarios would be needed in case of deepened shortage. In 

this category, tradeoffs for treatment levels and possible reductions are debatable depending on 

how much reductions are expected – medium reductions are still possible – and the availability 

of investments to support them. At last, the not acceptable category does not appear to have a 

realistic application feasibility. 

 
 Climate change impact on scenario performance of roof runoff and stormwater 
 

The selection of a conservation scenario that contributes to reducing demand is a long-

term application. The performance achieved through demand reductions must be sustained 

over time, especially if investments are required and tradeoffs between multiple options are 

considered. That being said, the practices of stormwater and roof runoff harvesting could face 

diminished reductions if climate change decreases precipitation. 
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To assess the impact of climate change in these two practices, a brief climate analysis of 

the precipitation and temperature variables was executed to check the behavior of the 

projections until the end of the century. Downscaled climate projections for precipitation and 

temperature until 2099 were provided by the National Institute of Space Research (INPE). This 

dataset supported the research published by Lyra et al. (2017). The spatial scale of daily data 

was 5 kilometers and was downscaled from the HadGEM2-ES model for Representative 

Concentration Pathways (RCP) 4.5 and 8.5.  

The closest latitude and longitude of the IAG-USP meteorological station in São Paulo 

was selected for analysis. Time slices of 31 years – 2007-2037, 2038-2068, 2069-2099 – were 

taken of precipitation, minimum and maximum temperature.  

Decrease in precipitation due to climate change may decrease volume of rainfall to be 

stored in these two practices, reducing their performance and increasing raw water demand 

from the system. Adoption of these practices and reduction in their performances could be seen 

as a form of rebound, since it would be increasing demand after a period of decrease. 

The assessment of climate change impacts in practice performance was made with 

IUWM running scenarios of all scenarios with climate data for RCP 8.5 for two intervals, one for 

mid-century (2038-2068) and one for the end of the century (2069-2099). The RCP was chosen 

due to its extreme case that presents the most intensive greenhouse gas concentration level in 

the atmosphere. 

In addition, several studies indicate the impact of higher air temperature in affecting 

water demand (Bougadis et al., 2005; Adamowski, 2008; Santos, 2011). Lyra et al. (2017) also 

indicate the potential increase in maximum temperatures in the MRSP of about 9°C in the end 

of the century. For these reasons, a discussion is made around the importance of higher 

temperature in water use and demand. 
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Results and Discussion 
 

Conservation during shortage 
 

From the pre to the post-shortage condition, several factors contributed to reducing 

water consumption. Reuse practices became widespread with practices of graywater and roof 

runoff harvesting. The investigation of the potential of these two strategies from one condition to 

the other was pertinent to quantify this reuse potential. Separate analysis was made for each 

strategy. 

 A calibration of percentage of graywater adoption of was performed for pre and post-

shortage. This calibration aimed to estimate the optimal adoption of graywater to be used for 

outdoor floor washing and toilet flushing, the two most common non-potable reuses that 

happened during the shortage. The adoption that met demand reduction in the pre-shortage 

was about zero, agreeing with the previous assumptions that no reuse was performed during 

this condition. The adoption in the post-shortage varied, as shown on table 24. 

Table 24. Optimal graywater adoption in Pre and Post-shortage 

Region Period Adoption (%) 

Center Pre-shortage 0.1 

Post-shortage 94.3 

East Pre-shortage 0.2 

Post-shortage 83.4 

North Pre-shortage 0.1 

Post-shortage 97.0 

South Pre-shortage 0.1 

Post-shortage 66.2 

West Pre-shortage 0.15 

Post-shortage 90.4 
 

In the post-shortage, the adoptions that met demand reduction varied by region. Largest 

adoption would have occurred in the North and lowest adoption would have occurred in the 

South. The adoptions were run with three storage volumes: 132, 66 and 33 gallons – 500, 250 

and 125 liters. The variation in storage volume allows accounting for different household 



 

62 
 

realities. In addition, the sizes are practicable, with accessible cost and not larger than the 

minimum recommended by the NBR 5626/98 for potable indirect supply storage. 

The evaluation of percentage adoption of graywater, associated with storage, intended 

to provide an estimation of the capacity of savings allowed by the adoption of graywater from 

one period to another, should this practice had been exclusively adopted (figure 15).  

The reduction in potable demand using graywater is the same regardless the storage 

selected. This can be explained by the difference in supply and demand. Floor washing and 

toilet flushing account for about 19.25% of household demand, which was about 25 and 20.6 

gallons in the pre and post-shortage conditions, respectively. In this case, demand for these 

end-uses is less than the minimum storage defined of 33 gal. Therefore, despite the 41% of 

graywater production within the household, larger storage would not cause further reductions. In 

this case, production larger than storage would cause excess to spill and not be used. 

 
Figure 15. Potential reduction achieved with graywater adoption in São Paulo with 

difference storages 

 
The reduction from pre to post-shortage from IUWM simulations was approximately 

12.55%, while the reduction from pre-shortage to a post-shortage with graywater adoption was 

12.53%. The difference in volume that graywater did not meet was approximately 2.3 million 

gallons, which accounts for about 0.02% of the average post-shortage demand. With such small 
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difference, it is possible to perceive that if graywater reuse was the only practice contributing to 

reducing demand from pre to post-shortage, the adoptions on table 24 could represent the 

contributions from each region. 

Likewise, the same approach was used for roof runoff. This practice was not combined 

with graywater reuse. A calibration for adoption that met demand reduction from the pre to post-

shortage conditions was performed and the values were used to run IUWM with three storage 

volumes of 132, 66 and 33 gallons. Table 25 shows the calibrated adoptions for roof runoff. 

Table 25. Optimal roof runoff adoption in pre and post-shortage 

Region Period Adoption (%) 

Center Pre-shortage 5.8 
Post-shortage 99.95 

East Pre-shortage 7.2 
Post-shortage 99.95 

North Pre-shortage 10.1 
Post-shortage 99.95 

South Pre-shortage 8.0 
Post-shortage 96.8 

West Pre-shortage 6.01 
Post-shortage 99.95 

 
In the pre-shortage, the adoptions are low but above zero, meaning that some small 

adoption of roof runoff harvesting could have been performed under this condition. In the post-

shortage, the adoptions are very high near 100%. The reductions produced by different storage 

volumes are shown on figure 16. 

Different from graywater, varying storage capacity changes the demand reduction 

potential up to 4% when going from 33 to 132 gal and 2% from 33 to 66 gal. However, savings 

provided only by roof runoff harvesting were not sufficient to meet the reduction achieved in the 

post-shortage even at 132 gal storage capacity. The difference between demand with maximum 

storage – 132 gal – and post-shortage demand is almost 700 million gallons, corresponding to 

about 6% of the average total demand in the post-shortage. Nonetheless, the reduction 
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achieved from pre-shortage to post-shortage with roof runoff adoption was about 8% with 

storage of 132 gal. 

 
Figure 16. Potential reduction achieved with roof runoff adoption in São Paulo with 

different storages 

 
Considering that adoptions are at their maximum values, demand reduction from one 

condition to the other could have been achieved with larger storages. However, at the 

household level larger storages may not be viable in terms of costs or space required. 

The potential of graywater reuse is larger than roof runoff. The steady production of 

graywater guarantees it is constantly available, according to the habits of water use within the 

household. However, in this analysis, non-potable demand was less graywater supply. The 

average annual graywater supply is also greater than roof runoff supply, which depends on the 

amount of rainfall that changes over the months and is not as reliable as graywater. 

Both graywater and roof runoff practices contributed to reduce demand during the 

shortage and were used in combination in many homes. The greater potential of both strategies 

can be unfolded if potable reuse becomes available, institutional support is established and 

proper treatment is executed. An aggressive approach to evaluate maximization of potential and 

benefits is performed as follows. 
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Conservation alternatives potential and fit-for-purpose benefit maximization 
 

Three conservation scenarios were evaluated in order to explore the savings and 

conservation options available – combined potable and floor washing (Pot + FW); combined 

floor washing and toilet flushing (FW + TF), and floor washing alone (FW). 

The combination of potable use and floor washing comprises indoor and outdoor uses. 

Potable uses are mainly indoor uses, such as drinking water, shower, laundry and faucets, in 

which there is human contact and exposure in all forms - absorption, ingestion and inhalation. 

For this reason, it is crucial to prevent health hazards by ensuring adequate level of treatment.  

Non-potable uses pose less health-risk, but yet require some degree of treatment that 

can be determined by the source and the end-use to match the fit-for-purpose context. Within 

homes, non-potable uses are irrigation and floor washing, car washing and toilet flushing.  

Enlarging the portfolio of water sources available for both potable and non-potable 

allows for greater reduction, but at the same time, demands investments in treatment options. 

However, conservation that increases efficiency in water use through the urban water mass 

balance avoids compulsory changes in behavior. 

Figure 17 presents the impact in average period demand – pre-shortage – from all 

conservation practices in the combined Pot + FW, FW+TF and FW scenarios, projected with 

storages and adoptions from table 20. IUWM simulations of pre and post-shortage without 

conservation are also present for comparison. Standard errors are also shown. The demands 

are shown for the city of São Paulo from aggregation of all regional simulations. 

The combination of Pot + FW is the scenario that provides largest reductions because all 

uses within the household are being considered for reuse.  In the combined Pot + FW scenario, 

graywater, stormwater and effluent use promote greater savings than roof runoff when 

compared to the pre-shortage. Compared to post-shortage, these three alternatives had the 

potential to further contribute to reduce demand beyond what was actually achieved, except for 

roof runoff, which would have promoted as much savings as reached in post-shortage use. 
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Figure 17. Average period household demand with application of conservation practices 

for Pot + FW, FW + TF and FW demands in the pre-shortage 

 
The scenario of non-potable reuse, FW + TF, produced medium reductions overall, with 

roof runoff still showing the lowest reductions. The scenario of FW produced the lowest 

reductions. This can be explained by the low demand that this scenario supplies. In this last 

scenario, all practices were not able to achieve reductions from the pre to post-shortage 

conditions. 

Percentage reductions are consistent across regions, except for the Center, where 

reductions decrease slightly for roof runoff savings in Pot+FW and FW+TF. Roof runoff shows 

the lowest percentage reduction in all regions (table 26). 

The end-use and the source of the water determine the most adequate treatment, 

security criteria, and costs of installation, operation and maintenance (Hespanhol, 2002). For 

example, graywater and effluent reuse must achieve equal quality for the same end-use, but 

their different sources characteristics may require more or less treatment to reach the desired 

quality. Nevertheless, potable uses require a higher level of treatment than non-potable uses 

despite of the source. 
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Table 26. Regional reductions from scenarios application 

  Center East North South West SP 

Graywater 

FW 0.2% 1.4% 1.4% 1.6% 1.3% 1.3% 
FW+TF 14.8% 15.8% 15.8% 16.0% 15.7% 15.8% 
Pot+FW 31.7% 32.5% 32.5% 32.6% 32.4% 32.5% 

Stormwater 

FW 0.2% 1.4% 1.3% 1.6% 1.3% 1.3% 
FW+TF 14.8% 15.8% 15.7% 16.0% 15.7% 15.7% 
Pot+FW 31.7% 32.4% 32.4% 32.5% 32.3% 32.4% 

Roof runoff 

FW 0.2% 1.3% 1.3% 1.5% 1.3% 1.% 
FW+TF 7.4% 9.5% 9.4% 9.1% 9.6% 9.2% 
Pot+FW 9.7% 13.6% 13.5% 12.7% 14.3% 13.2% 

Effluent 

FW 0.2% 1.4% 1.3% 1.6% 1.3% 1.3% 
FW+TF 14.8% 15.8% 15.8% 16.0% 15.7% 15.8% 
Pot+FW 31.7% 32.5% 32.5% 32.6% 32.4% 32.5% 

 
The types of treatment available can be natural or biological processes – settling/septic 

tank, anaerobic filter/sludge blanket, packed bed filter, trickling filter, activated sludge, wetlands, 

sand filters, treatment ponds -, physical processes by filtration – sand filters, membranes, 

cartridge/bag filter, dual media filter with coagulant - and disinfection processes – chlorination, 

UV radiation, oxidation, pasteurization. These processes can remove chemical components or 

pathogens, the latter can be inactivated by interception, predation, adsorption, settling and die-

off (Sharvelle et al, 2017a). Processes can also be more or less energy intensive, with easy or 

hard operation and maintenance, demand more or less sophisticated facilities or structures, 

among other requirements. The selection of the treatment technology and its impacts can be 

evaluated through a life-cycle assessment (Carre et al., 2017). 

The choice of the scenario that best achieve water demand reductions while needing low 

treatment can be made using a cost-benefit matrix model, with adaptations to present treatment 

versus percentage reduction in demand. Using this matrix, it is possible to visualize the 

scenarios that can maximize benefits – more demand reduction – and minimize costs – lower 

treatment levels. 
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Despite the high percentage reductions for Pot+FW, the potable end-uses require very 

high or high level of treatment. The use of effluent for any scenario also demands very high or 

high level of treatment due to high concentration of pathogens. Using the combinations on table 

23, figure 18 shows no preferred scenario. A summary of the alternatives is presented on table 

27. 

 

Figure 18. Treatment-reduction matrix with percentage reductions for São Paulo 
projected based on the pre-shortage condition 

 
Table 27. Scenarios classification according to practicable categories 

Preferred - 

Acceptable 
GW-FW-TF SW-FW+TF Eff-FW+TF 
GW-Pot+FW SW-Pot+FW Eff-Pot-FW 

Undesirable 
RR-FW+TF RR-Pot+FW 

GW-FW SW-FW RR-FW 

Not acceptable Eff-FW   

 
From the matrix, the priority for overall demand reduction would be adoption of practices 

for non-potable demands, in this case FW+TF. From the fit-for-purpose point of view, this 

finding was expected because non-potable reuses require inferior water quality that can be 
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achieved with medium level of treatment, except for effluent reuse, which requires at least high 

treatment level for non-potable uses. The options from the acceptable category produce very 

high or high reductions for potable and non-potable reuses, respectively. 

The undesirable category is a trade-off between higher treatment levels for medium 

reductions or medium treatment level for lower reductions. Roof runoff harvesting is the practice 

with lowest performance but would require high level of treatment if used for potable purposes. 

Undesirable scenarios could be adopted in case of aggravated long-term shortages. The not 

acceptable category is an investment in high treatment levels for a use that is dismissible in 

critical shortage situations. 

When selecting the most appropriate technology and scenario, it is also relevant taking 

into account the spatial level of reuse – building, neighborhood or larger scales – for treatment 

facilities and infrastructure development. 

 
Climate assessment and impact on roof runoff and stormwater practices 
 
As shown in the previous section, the acceptable scenarios are for non-potable uses of 

FW+TF using graywater, stormwater and effluent. Even though roof runoff promotes up to 

medium savings, this practice, as well as stormwater, depend on the amount of rainfall 

(precipitation depth), along with impervious or roof area and runoff coefficient. The adoption of 

these practices may have its performance diminished by less precipitation volumes caused by 

climate change. This analysis aimed to look at the effects of less precipitation in scenarios 

performance and does not consider decrease in supply which is assumed the same over time.  

The dataset provided by INPE that supported the findings of Lyra et al. (2017) was 

divided into 31-year intervals for trend examination in both RCP 4.5 and 8.5 along with the 

historical dataset. Figure 19 shows the trends of maximum temperature and precipitation for 

each time interval in both RCP’s 4.5 and 8.5. Figure 20 shows yearly values for both variables. 
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In both RCP, there is a tendency of hotter and drier scenarios as described by Lyra et al. 

(2017).  

 
Figure 19. Annual average maximum temperature (left) and total annual precipitation 

(right) for RCP 4.5 and 8.5 

  

 
Figure 20. Average annual maximum temperature (top) and total annual precipitation 

(bottom) of historic data (1985-2015) and projected RCP’s 4.5 and 8.5 (2007-2099) 
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In scenarios of less precipitation, the treatment-reduction matrixes show lower 

reductions for roof runoff harvesting and stormwater use scenarios compared to current 

conditions (figure 21). Variations between mid-century and end-of-century conditions are very 

small, being potentially more perceptible regarding roof runoff for potable and non-potable 

demands. Roof runoff scenarios also show greater differences in reductions when compared to 

current conditions and end-of-the-century simulations (figure 22).  

The reductions provided using roof runoff for Pot+FW in the future fall into low savings 

with less than 10% demand reduction, while in current conditions this saving was classified as 

medium (10-15%). This decrease shifts this scenario to the not acceptable category, for 

requiring high level of treatment and yielding low savings. All other scenario combinations of 

roof runoff remain the same as current conditions. Future simulations for stormwater scenarios 

remained within the same classifications as current conditions, and therefore, are still 

acceptable (SW-Pot+FW, SW-FW+TF) and undesirable (SW-FW) for demand reductions. 

 

 

Figure 21. Treatment-reduction matrix for changes in stormwater and roof runoff 
harvesting in mid-century (top) and end-of-century (bottom) 
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In the roof runoff for Pot-FW in the end of the century, the percentage reductions from 

13.2% to 7.5% are significantly different. Adopting this scenario should be carefully considered, 

but since this strategy falls under the undesirable category, it is not a priority in selection.  

 
Figure 22. Differences in reduction in stormwater and roof runoff scenarios for the three 

climatic conditions  

 

In this analysis, it is also important to ponder that all scenarios account for floor washing 

demand. This demand was estimated based on the minimal outdoor area and, thus, might be 

larger in reality, leading to higher water demand. In this case, lower amounts of precipitation 

would not be able to meet higher demands and the impact in mid and end-of-century 

performances could be even bigger and possibly statistically different from the current condition 

regarding other strategies presented, such as RR-FW+TF and SW-Pot+FW. 

The variations in graywater and blackwater availability resulting from the climatic 

interference in the habits and water uses are not considered in this analysis and are assumed to 

have a steady performance over time. Nonetheless, habits and lifestyle could face changes 

should the climate get hotter and drier, shifting the demand profile and defined percentages of 

end-use of water. That being said, produced graywater and blackwater could also vary the 

performance of graywater and effluent reuse practices.  
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In a hotter scenario, the following habits could be affected: 

• + water for drinking, that can lead to 
• + toilet flushing, increasing 
• + hand-washing and faucet use; 
• + shower frequency; 
• + recreational activities; 
• + clothes washing; 
• + water for air-conditioning. 

 
Less precipitation could increase floor washing for cleaning impulses and dust control 

and increase use of water in humidifiers to improve breathing, in case of lower air relative 

humidity. Practice not affected by changes in temperature or precipitation is consumptive use 

for cooking. Clothes, shower and toilet are the largest end-uses in households (table 6). Should 

climate change increase water demand from these end-uses, with no conservation practice in 

place, supply faces even greater vulnerability. 

 
Conclusion 
 

The adoption of conservation practices for potable and non-potable reuse in São Paulo 

proves to have up to 32% capacity of demand reduction in residential water use. The reduction 

promoted during the shortage could be maximized had potable reuse been implemented with 

proper treatment. However, it is important to notice that outdoor demand in this study was 

assumed to be minimal, based on the smallest undeveloped area and small washing frequency. 

Higher outdoor demand could enhance demand reduction even further using non-potable reuse. 

Savings achieved during the shortage for non-potable reuses of floor washing and toilet 

flushing through the adoption of graywater reuse alone had the potential to promote the real 

reduction from the pre to the post-shortage period, assuming that the adoptions in each region 

corresponded to the estimated ones to meet reduction. On the other hand, roof runoff 

harvesting alone could not have promoted the achieved reduction even with 132-gallon storage, 

which was the maximum volume considered. One possible explanation was that rainfall events 
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did not occur constantly, whereas non-potable use did. This causes the storage to be used up 

quicker than it is replenished, demanding raw water to supply the difference. 

The conservation potential of graywater, stormwater and effluent reuse is higher than 

roof runoff in all regions and scenarios evaluated. The scenario of potable plus floor washing 

achieved the largest reductions of about 32% from graywater, stormwater and effluent reuse 

each compared to the pre-shortage, with an average reduction beyond 4.5 billion gallons per 

month. The practices were not assessed in combination. Reduction in precipitation from climate 

change did not changed stormwater and roof runoff performance significantly. 

The tradeoffs involved in choosing the most adequate scenario and practice is 

associated with required treatment for reuse. The source and the end-use determines the water 

quality to be achieved, which is defined by treatment. Primarily, non-potable reuses of floor 

washing, and toilet-flushing are recommended and deemed acceptable. Potable reuses would 

require higher levels of treatment despite of promoting the highest observed reductions.  

The analysis provided in this chapter can support long-term decision-making for 

conservation practices adoption and encourage development of water reuse policies. 
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Closing remarks 
 
 
 

The present study was based and motivated by the shortage faced by the Brazilian 

Southeastern population, more specifically the city of São Paulo. The shortage was caused and 

aggravated by climatic conditions, deficient water management over the years, lack of proper 

environmental management within watersheds and increasing population and water demand.  

The use of urban water models for demand projection allows for improved management 

practices in various temporal and spatial scales. Integrated modelling also aids with paving the 

way for a one water approach in urban areas, by supporting a systematic view of the urban 

water components. The mass balance approach of IUWM and the model flexibility enable its 

use in any service area worldwide as long as adequate data is available. Its capabilities of 

projecting conservations scenarios are an asset in terms of planning and management to 

promote demand reduction in residential and CII water use. 

The application of IUWM in São Paulo during the shortage condition sought to quantify 

savings that occurred during this condition while exploring the potential for even further demand 

reductions through additional conservation practices. This study contributed to the scientific 

expansion of urban water knowledge in São Paulo and described not shortage causes or 

behavioral changes, but realistic potential solutions to improve water use in the city.  

The regional approach for analysis was valuable to promote decentralization and to 

evaluate variations occurring within the same city and management style. While attempting to 

focus in smaller spatial scales, this study was able to provide a broad view over the whole city. It 

made possible to classify regions with the highest and lowest household demands and prove 

that water use differ across regions. 

 The exploration of determinants of water demand that significantly drove residential 

demand during the period considered – 2013-2017 – enhanced understanding and enabled 
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identification of the most significant variables influencing water use and demand in the regions. 

Even though not all regions were supplied by the Cantareira system, the chain of events caused 

a systemic response and the economic incentive was a significant variable affecting monthly 

use in all regions.  

Associating the determinants of water demand provided in Chapter 2 improves the 

potential for reuse strategies adoption analyzed in Chapter 3. In this case, decisions concerning 

reuse in each region should not only take into account scenario performance but also what 

relevant factors can favor one scenario over the other. For example, adopting a scenario at the 

household level might be easily accepted at higher income household if the treatment level to 

be installed is more sophisticated, while at lower income households, families might be more 

reluctant and willing to prefer the second best alternative if it is more affordable. Other types of 

economic analysis may be required in this case. 

 The reuse potential in the city has been broadcasted but was not yet widely 

implemented. As emergency measures during the shortage, graywater reuse and roof runoff 

harvesting were adopted and contributed to demand reduction. The examination of the possible 

practices and scenarios and the categorization approach for scenario selection have the 

potential to support decision-making with respect to conservation practices adoption and can 

serve to encourage the development of water quality regulations for reuse. In addition, further 

studies based on the quality of the water source and the end use, associated costs and surveys 

of public acceptance of water reuse practices can support guidelines for treatment options in 

different spatial scales, incentivize institutional support and intensify society’s engagement in 

water issues. 

During the development of this study, the main hurdle was the quantification of outdoor 

demand. The method used based on constructed and non-constructed area generalized for a 

minimum non-constructed area due to lack of more detailed data at smaller spatial scales. In 

addition, the inexistence of water end-use studies with larger and more representative sample 
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sizes of a region or at city level was also a challenge to overcome. End-use studies are 

extremely helpful in understanding the consumption within households or other buildings. They 

would also contribute to define a demand profile accounting for outdoor uses and that is faithful 

to regional features and habits. 

Further work to enrich the knowledge on urban water demand in São Paulo could 

include a thorough assessment of outdoor use of water and its quantification to enhance the 

prediction of conservation strategies through end-use studies surveying; characterization of 

water supply and wastewater treatment from a bird-eye view, including another mass-balance 

approach and possibly the impacts in supply and wastewater production from adoption of 

conservation strategies; exploration of the possibilities and requirements for effluent reuse and 

the economic implications of this strategy. Studies focused on commercial, industrial and 

institutional uses of water are also suggested in order to enable projections of demand reduction 

through conservation scenarios. Longer time series of water use data could also support 

evaluation of rebound and post-shortage effects. 

Additional studies taking into account impact of climate change in surface water supply 

and demand forecast based on demographics change over time would also contribute to 

quantifying supply vulnerability, allowing management authorities to seek solutions to prevent 

future shortages. 
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Appendices 
 

 

 

Appendix I: São Paulo Districts, City Boroughs and Macro Regions 
 

Macro region Regional administration  Districts 

Center Sé 

Bela Vista 
Bom Retiro 
Cambuci 
Consolação 
Liberdade 
República 
Santa Cecília 
Sé 

East 

Aricanduva/Formosa/Carrão 
Aricanduva 
Carrão 
Vila Formosa 

Cidade Tiradentes Cidade 
Tiradentes 

Ermelino Matarazzo 
Ermelino 
Matarazzo 
Ponte Rasa 

Guaianases 
Guaianases 
Lajeado 

Itaim Paulista 
Itaim Paulista 
Vila Curuçá 

Itaquera 

Cidade Líder 
Itaquera 
José Bonifácio 
Parque do 
Carmo 

Mooca 

Água Rasa 
Belém 
Brás 
Moóca 
Pari 
Tatuapé 

Penha 

Artur Alvim 
Cangaíba 
Penha 
Vila Matilde 

São Mateus Iguatemi 
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São Mateus 
São Rafael 

São Miguel  
Jardim Helena 
São Miguel  
Vila Jacuí 

Sapopemba Sapopemba 

Vila Prudente 
São Lucas 
Vila Prudente 

North 

Casa Verde/Cachoeirinha 
Cachoeirinha 
Casa Verde 
Limão 

Freguesia/Brasilândia 
Brasilândia 
Freguesia do 
Ó 

Jaçanã/Tremembé 
Jaçanã 
Tremembé 

Perus 
Anhanguera 
Perus 

Pirituba 
Jaraguá 
Pirituba 
São Domingos 

Santana/Tucuruvi 
Mandaqui 
Santana 
Tucuruvi 

Vila Maria/Vila Guilherme 
Vila Guilherme 
Vila Maria 
Vila Medeiros 

West 

Butantã 

Butantã 
Morumbi 
Raposo 
Tavares 
Rio Pequeno 
Vila Sônia 

Lapa 

Barra Funda 
Jaguara 
Jaguaré 
Lapa 
Perdizes 
Vila 
Leopoldina 

Pinheiros 
Alto de 
Pinheiros 
Itaim Bibi 



 

88 
 

Jardim Paulista 
Pinheiros 

South 

Campo Limpo 

Campo Limpo 
Capão 
Redondo 
Vila Andrade 

Capela do Socorro 
Cidade Dutra 
Grajaú 
Socorro 

Cidade Ademar 
Cidade 
Ademar 
Pedreira 

Ipiranga 
Cursino 
Ipiranga 
Sacomã 

Jabaquara Jabaquara 

M'Boi Mirim 
Jardim Ângela 
Jardim São 
Luís 

Parelheiros 
Marsilac 
Parelheiros 

Santo Amaro 

Campo Belo 
Campo 
Grande 
Santo Amaro 

Vila Mariana 
Moema 
Saúde 
Vila Mariana 

Source: Infocidade, 2016 
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Appendix II: Reservoirs for São Paulo Water Supply 
 
 

 Cantareira Guarapiranga Upper Tiete Rio Claro 
Basin PCJ Upper Tiete Upper Tiete Upper Tiete 

Production capacity (m3/s) 33 16 15 4 
Reservoirs 5 1 + diversions 1 1 

Treatment Plant Guarau ABV Taiacupeba Casa Grande 
Source: São Paulo, 2010; Sabesp, 2017b 
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LIST OF ABREVIATIONS AND ACRONYMS 
 
 
 

ANA  National Water Agency (Brazil) 

ANN  Artificial Neural Network 

BU  Business Unit (Sabesp) 

CII  Commercial, Industrial and Institutional 

eRAMS environmental Resources Assessment and Management System 

GIS  Geographic Information System 

gpcd   gallons per capita per day 

gphd  gallons per household per day 

IAG-USP Institute of Astronomy, Geophysics and Atmospheric Sciences from the 

University of São Paulo 

IBGE  Brazilian Institute of Geography and Statistics 

INMET  National Meteorological Institute (Brazil) 

INPE  National Institute of Space Research (Brazil) 

IPT  Technological Research Institute (Brazil) 

IUWM  Integrated Urban Water Model 

MG  Million gallons 

MIS  Metropolitan Integrated System 

MLR  Multiple linear regression 

MRE  Mean relative error 

MRSP   Metropolitan Region of São Paulo 

NBR  Brazilian Standards 

NLCD  National Land Cover Database (United States) 

OC  Occupation coefficient 

PCJ   Piracicaba, Capivari and Jundiai Rivers 

PURA-USP Program of Rational Water Use of the University of São Paulo 

REUWS/REU Residential End Uses of Water 

Sabesp  Basic Sanitation Company of the State of São Paulo 

SEADE State System Foundation of Data Analysis 



 

91 
 

SNIS  National Information System of Sanitation (Brazil) 

TPCL  Territorial, Building, Conservational and Cleaning registry 

UN  United Nations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


