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ABSTRACT 

 

POTATO AND GRAPE POLYPHENOLS, RESPECTIVELY, SUPPRESS HIGH-FAT DIET-

ELEVATED OXIDATIVE STRESS/INNATE INFLAMMATION MARKERS IN PORCINE 

MODEL AND INDUCE APOPTOSIS IN HCT-116 P53 +/+ AND P53 -/- HUMAN COLON 

CANCER CELL LINES IN VITRO 

Rationale 

In Vitro Study 

Bioactive compounds from fruits and vegetables have demonstrated anti-inflammatory, 

anti-oxidant and anti-cancer properties. Grapes and purple-fleshed potatoes are rich sources of 

polyphenols. Grape seed extract (GSE) a popular dietary supplement rich in proanthocyanidins, 

demonstrated anti-cancer properties in a variety of in vitro and in vivo models. Red grapes are 

rich in resveratrol (RSV), a compound that has shown anti-oxidant, anti-inflammatory and anti-

cancer properties in a variety of models including human studies. We previously reported that 

RSV suppressed proliferation, and induced apoptosis via p53 activation in human colon cancer 

cell lines HT-29 and SW-480, however, only at high concentration > 75-100 µM. Since bioactive 

compounds exist as a complex mixture in fruits and vegetables with synergistic or additive 

chemopreventive/protective actions, we hypothesized that the combination of RSV and GSE 

would be a more potent mixture with efficacy at lower concentrations. We tested anti-cancer 

efficacy of RSV and GSE, alone and in combination, in HCT-116 p53 +/+ and -/- human colon 

cancer cells. We tested anti-cancer efficacy of RSV and GSE in the presence of IGF-1, a mitogen 

elevated during obesity. 
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Animal Study 

High-fat diet (HFD) consumption is linked to elevated risk for a variety of disorders. 

HFD elevated oxidative stress and inflammation and provides conducive environment for 

chronic disorders such as colon cancer. Dietary modification can help reduce risk for such 

conditions. Indeed, higher consumption of bioactive compounds present in fruits and vegetables 

are inversely associated with risk for such inflammatory disorders. The potato is the third largest 

source of phenolic compounds in the human diet after oranges and apples. Purple-fleshed 

potatoes are rich in anthocyanins and phenolic acids with anti-oxidant and anti-inflammatory 

properties. Unlike other anthocyanin-rich sources such as blueberries, purple-fleshed potatoes are 

relatively inexpensive and widely available, but they are almost always consumed in processed 

form. Thus, it is important to understand the effect of processing on purple-fleshed potato 

bioactive compounds before we present it as a functional food – a delivery vehicle for health 

promoting bioactive constituents. The overall goal of these studies was to determine the extent to 

which purple-fleshed potato consumption, even after processing, prevent or reverse HFD 

elevated oxidative stress and innate inflammatory markers (colon, mesenteric fat and systemic 

circulation) in a pig model. 

 

Animal Study Experiment Design 

We hypothesized that consumption of purple-fleshed potatoes, even after processing, will 

suppress HFD elevated colonic, mesenteric fat and systemic oxidative stress/inflammation 

markers in the pig model compared to white-fleshed potatoes and HFD control. To test this 

hypothesis, we performed two studies – a prevention study where 64 pigs, 3 weeks post-

weaning, consumed one of the eight diets: standard diet (SD), HFD and HFD supplemented with 
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raw, baked or chipped purple or white-fleshed potatoes (10 % w/w) for 13 weeks; and a reversal 

study where pigs (12 weeks on HFD) consumed HFD containing 10/20 % purple or white-

fleshed potato chips for additional 5 weeks (n = 8).  

 

Results and Conclusions 

In Vitro Study 

Our results demonstrated that RSV (~ 25 µM) and GSE (35-50 µg/ml) mixture is potent 

in suppressing proliferation and elevating apoptosis in HCT-116 p53 +/+ human colon cancer 

cell lines at lower concentrations compared to RSV or GSE alone. RSV potentiated GSE induced 

p53 dependent apoptosis via mitochondrial apoptotic signaling as evidenced by elevated 

Bax:Bcl-2 ratio, reactive oxygen species and activated caspase-3. The RSV-GSE combination 

suppressed proliferation and induced apoptosis even in presence of IGF-1 (elevated during 

obesity), suggesting its potential role as a chemopreventive agent against IGF-1 promoted colon 

cancer. Moreover, RSV-GSE did not suppress proliferation or induce apoptosis in normal 

colonic epithelial cell line CRL-1831, demonstrating its specificity to cancer cells. These results 

strongly support our hypothesis that combining bioactive compounds like RSV and GSE could 

provide similar or better anti-colon cancer properties compared to individual compounds at lower 

concentrations. This lends support to the proposal that combinatorial approach towards colon 

cancer chemoprevention using bioactive compounds is a feasible approach. However, animal 

studies using such a RSV-GSE combination is warranted. 
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Animal Study 

In the prevention study, only the purple-fleshed potato raw group had significantly lower 

distal colonic and mesenteric fat oxidative stress (measured using GSH:GSSG ratio, a sensitive 

marker for oxidative stress) compared to the HFD control. However, all the potato diets 

consuming animals had suppressed (P ≤ 0.05) distal colonic and mesenteric fat expression of 

innate inflammatory markers TLR-4, NF-B, and TNF-α compared to the HFD control and 

similar to that of SD control animals. Animals consuming potato diets had significantly 

suppressed urinary 8-isoprostane (8IP) and DNA adduct 8-OHDG (Enzyme immunoassay), and 

serum TNF-α (ELISA) and IL-1β (Milliplex immunoassay) compared to the HFD control 

animals. In the reversal study, the markers of distal colonic and systemic oxidative stress and 

inflammation were consistently suppressed only in the purple-fleshed potato consuming groups 

compared to HFD controls (P ≤ 0.05), suggesting that time of intervention is very important. 

Results from both studies show that only the purple-fleshed potato, even after processing, 

prevented and reversed HFD elevated oxidative stress/inflammation markers in the distal colon, 

mesenteric fat and systemic circulation, in the pig – a human relevant animal model. Thus, 

purple-fleshed potatoes can serve as a great delivery vehicle for anti-inflammatory bioactive 

compounds. 
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CHAPTER I 

 

INTRODUCTION 

 

Although some dietary fat is necessary for health, in countries like the US, the major 

issue is consuming too much rather than too little. It is commonly pointed out that people in the 

US have reduced their percentage of calories from fat over the last three decades; however, 

actual fat consumption (i.e., grams of fat per day) has remained quite high since the 1960s. The 

reduction in fat percentage is due to the fact that total calorie intake has increased rather than that 

fat intake has decreased (for men, average energy intake increased from 2,450 kcals to 2,618 

kcals, and for women, from 1,542 kcals to 1,877 kcals (CDC 2004)). Excess dietary fat 

consumption is a concern because considerable research suggests that higher dietary fat 

consumption can lead to oxidative stress, elevated innate inflammatory response, and increased 

risk for chronic disease such as colon cancer (Reddy 2002, Lovejoy 2010, Silviera, Smith et al. 

2012). Dietary modification can help reduce risk for such conditions. Increased consumption of 

bioactive compounds present in fruits and vegetables are inversely correlated with chronic 

disease risk (Hooper and Cassidy 2006, Pan, Lai et al. 2009). Plant bioactive compounds such as 

anthocyanins, proanthocyanidins, and stilbenoids like resveratrol (RSV) have shown to possess 

anti-inflammatory and anti-cancer properties in multiple in vitro and in vivo studies (Kowalczyk, 

Krzesinski et al. 2003, Cooke, Schwarz et al. 2006, Kaur, Singh et al. 2006, Vanamala, Reddivari 

et al. 2010). Grapes (proanthocyanidins and RSV), and purple-fleshed potatoes (anthocyanins 

and phenolic acids) are attractive delivery vehicles for these bioactive compounds as they are one 

of the highest consumed fruit and vegetable crops around the world.  
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RSV and grape seed extract (GSE, rich in proanthocyanidins, typically lacks RSV) have 

demonstrated anti-cancer properties in both in vitro and in vivo models. They have shown to alter 

p53 related pathways in suppression of colon cancer cell proliferation and induction of apoptosis 

typically at high concentrations difficult to achieve with dietary supplementation (Agarwal, 

Singh et al. 2002, Laurent, Besancon et al. 2004, Kaur, Singh et al. 2006, Kaur, Mandair et al. 

2008, Vanamala, Reddivari et al. 2010, Vanamala, Radhakrishnan et al. 2011). Single bioactive 

compound approach has often failed during clinical trials to suppress colon cancer growth 

(Saldanha and Tollefsbol 2012). Therefore, there is a growing interest in using combination of 

bioactive compounds that act synergistically and at low concentrations to suppress cancer 

growth. There is no direct evidence linked to the possible synergistic or additive effect (and 

mechanism of action) of the RSV-GSE combination in human colon cancer cell line HCT-116 

kinetics, especially in the presence of IGF-1, a mitogen elevated during obese conditions 

(Vanamala, Reddivari et al. 2010).   

The potato is the third largest source of phenolic compounds in the human diet after 

oranges and apples (Chun, Kim et al. 2005). Purple-fleshed potatoes are rich in anthocyanins and 

phenolic acids with anti-oxidant and anti-inflammatory properties. Unlike other anthocyanin-rich 

sources such as blueberries, purple-fleshed potatoes are relatively inexpensive and widely 

available, but they are almost always consumed in processed form (Madiwale 2012). Thus, it is 

important to understand the effect of processing on the anti-inflammatory and anti-oxidant 

properties of purple-fleshed potato bioactive compounds in vivo before we present it as a 

functional food – a delivery vehicle for health promoting bioactive compounds.  

The overall hypothesis we aimed to verify is that bioactive compounds from grapes and 

purple-fleshed potatoes (fresh, baked and chips) suppress colon cancer and HFD elevated 
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oxidative stress and inflammatory biomarkers, respectively. This hypothesis was tested using in 

vitro (human HCT-116 colon cancer cells) and in vivo (pig) models, respectively.  

 

1.1 Aims 

Aim 1: Determine if RSV and GSE synergistically suppress human HCT-116 colon cancer 

cell proliferation and induce apoptosis and determine the mechanisms of action of the 

combination. 

 

Approach: Human colon cancer cells (HCT-116 p53 +/+ and p53 -/-) and normal colon 

epithelial cells (CRL-1831) treated with bioactive compounds from grapes (RSV, GSE) at 

different concentrations alone or in combination were assayed for their anti-proliferative and pro-

apoptotic effects. We used inhibitor assays and western blotting technique to elucidate 

mechanisms of action of the RSV-GSE combination. Efficacy of RSV-GSE combination in 

presence of IGF-1 was also determined. 

 

Outcomes: This in vitro study determines 1) whether addition of RSV to proanthocyanidin-rich 

GSE, which lacks RSV, potentiates the chemopreventive properties of GSE; 2) whether the 

RSV-GSE combination induces apoptosis and arrests the cell proliferation selectively in cancer 

cells not in the normal human colon epithelial cells; 3) if the RSV-GSE combination works even 

in the presence of IGF-1 and 4) molecular mechanisms underlying anti-cancer properties of the 

grape compounds in combination. These in vitro data will facilitate future in vivo studies to 

determine the anti-cancer properties of grape bioactive compounds using laboratory animal 

models. 
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Aim 2: Determine extent to which purple-fleshed potato consumption, even after 

processing, prevents or reverses HFD elevated oxidative stress, and innate inflammation 

markers in a pig model.  

 

Approach: We performed two studies – a prevention study where 64 pigs, 3 weeks post-

weaning, consumed one of the eight diets (n = 8): standard diet (SD), HFD and HFD 

supplemented with raw, baked or chipped purple or white-fleshed potatoes (10 % w/w) for 13 

weeks; and a reversal study where pigs (12 weeks on HFD after 3 week post weaning period) 

consumed HFD containing 10/20 % purple or white-fleshed potato chips for additional 5 weeks 

(n = 8). Samples (distal colon mucosa, mesenteric fat, serum, urine) were assayed for markers of 

oxidative stress and inflammation. The pig with nutrient metabolism and gut structure 

anatomically and physiologically similar to humans was used in the study (Houpt, Houpt et al. 

1979).  

 

Outcomes: Elevated oxidative stress and inflammation markers in the colon, mesenteric fat and 

systemic circulation are central to progression of various chronic diseases. This study provided 

first in vivo evidence that delivery of anti-inflammatory and anti-oxidant bioactive compounds 

using purple-fleshed potatoes may potentially reduce risk for chronic diseases such as colonic 

inflammation and colon cancer.  
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CHAPTER II 

 

REVIEW OF LITERATURE 

 

PART 1 – SYNERGY OF BIOACTIVE COMPOUNDS AGAINST COLON CANCER 

 

2.1 General Overview of Bioactive Compounds 

Bioactive compounds are secondary metabolites of plants that target physiological or 

cellular pathways and provide a beneficial health effect. Bioactive compounds typically occur in 

small amounts in foods, however, it is estimated that almost 0.2–1 g/day of these compounds are 

consumed as part of a regular healthy diet (Kris-Etherton, Hecker et al. 2002, Kris-Etherton, 

Lefevre et al. 2004). They belong to different classes and include phenolic acids, anthocyanins, 

carotenoids, stilbenes, glucosinolates, etc. They are found in fruits, vegetables, nuts, herbs etc., 

and in commonly consumed beverages such as wine, tea, and coffee. These compounds have 

demonstrated anti-oxidant and anti-inflammatory properties via targeting enzymes, cell surface 

and intracellular receptors, and by influencing gene expression, among other actions (Kris-

Etherton, Hecker et al. 2002, Kris-Etherton, Lefevre et al. 2004). There has been wide interest in 

the field of bioactive compounds as they have been linked to a reduced risk for a variety of 

chronic diseases including cancer (Kris-Etherton, Hecker et al. 2002, Kris-Etherton, Lefevre et 

al. 2004). Moreover, they fit the characteristics of an ideal chemopreventive agent, as these 

compounds are selective to cancerous or precancerous cells, target most types of cancers, can be 

consumed orally, and is generally accepted by humans (Kaur, Agarwal et al. 2009). 
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2.2 Colon Cancer 

Colon cancer is the 3rd most prevalent cancer in both men and women, and accounts for 

almost 9 % of total deaths due to all cancers. Colon cancer is highly affected by environmental 

factors including diet and lifestyle. It is a concerning fact that the highest incidence rates of colon 

cancer are observed in developed nations including the US (Marshall 2008). Studies dealing with 

the migration of individuals from developing nations (colon cancer risk is low) to developed 

countries have seen that within one generation, risk for colon cancer in these individuals is 

elevated (Marshall 2008). In addition, colon cancer rates are rapidly rising in developing nations 

and could be due to adoption of several features of the western lifestyle (Marshall 2008). 

Western dietary and lifestyle factors are linked to high incidence of colorectal cancer in 

developed countries. Diets rich in red and processed meat, refined starches, sugar, and saturated 

and trans-fatty acids but poor in fruits, vegetables, fiber, omega-3 fatty acids and whole grains 

are closely associated with an increased risk of colon cancer (Bruce, Wolever et al. 2000, 

Marshall 2008, Cappellani, Zanghi et al. 2013).  

However, these factors are highly controllable and thus, colon cancer is highly 

preventable. Nutritional recommendations from the American Cancer Society include adequate 

intake of fruits and vegetable in a regular diet (Society 2012). A meta-analysis of case-control 

studies suggests that fruit and vegetable consumption in general is associated with a slight 

decrease in the risk of colon cancer (Marshall 2008). For example, fruit consumption was 

associated with a 13% decrease in colon cancer risk, and vegetable consumption was associated 

with a 40% decrease (Marshall 2008). Thus, the benefits from consuming a diet rich in fruit and 

vegetables could be attributed to the plethora of bioactive compounds present in them.  
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2.3 Resveratrol 

Resveratrol (trans-3, 5, 4` trihydroxystilbene, RSV) is a polyphenol found in grapes and 

red wine among other plant products (Vanamala, Reddivari et al. 2010). RSV is synthesized in 

plant species in response to stress by the enzyme trihydroxystilbene synthase. Fresh grape skins 

contain 50-100 mg RSV per gram, and the concentration in wine ranges from 0.2 mg/l to 7.7 

mg/l (Osei-Mensah 2011). The epidemiological finding of an inverse relationship between 

consumption of red wine and incidence of cardiovascular disease has been called the "French 

paradox" and the benefits of red wine consumption have been attributed to RSV (Vanamala, 

Tarver et al. 2008, Vanamala, Reddivari et al. 2010). RSV has demonstrated anti-oxidant, anti-

inflammatory, anti-aging properties in a variety of studies (Baxter 2008). RSV interferes with all 

three stages of carcinogenesis: initiation, promotion and progression (Jang, Cai et al. 1997). We 

previously reported that RSV (> 100 µM) suppressed HT-29 human colon cancer cell 

proliferation and elevated apoptosis even in the presence of IGF-1 via suppression of IGF-

1R/Akt/Wnt signaling pathways and activation of p53 (Vanamala, Reddivari et al. 2010). In 

other studies, RSV (100 µM) induced apoptosis independently of p53 in HCT-116 human colon 

cancer cells via mitochondrial intrinsic apoptotic pathway (Mahyar-Roemer, Katsen et al. 2001). 

In Caco-2 human colon cancer cells, RSV (> 100 µM) inhibited growth and proliferation, 

induced caspase-3 activation and apoptosis, and induced cell cycle arrest via modulation of 

cyclins and cylin dependent kinases (Wolter, Akoglu et al. 2001).  

RSV elicited anti-cancer effects in animal and human models (Bishayee 2009). Oral 

resveratrol (200 μg/kg/day in drinking water) suppressed the number and multiplicity of 

azoxymethane-induced aberrant crypt foci, a precursor lesion for colon cancer, in the colon of 

rats. These effects were linked to alterations in Bax and p21 expression (Tessitore, Davit et al. 
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2000). In another rat study, RSV (8 mg/kg body weight) markedly reduced the number of 1,2-

dimethylhydrazine induced aberrant crypt foci and incidence and size of tumors, possibly 

through the modulation of antioxidant defense status and activities of carcinogen-detoxifying 

enzymes (Sengottuvelan and Nalini 2006, Sengottuvelan, Senthilkumar et al. 2006, 

Sengottuvelan, Viswanathan et al. 2006). In a human study, daily oral doses of RSV at 0.5 or 1.0 

g reduced colon tumor cell proliferation by 5 % (Patel, Brown et al. 2010). Anti-cancer 

properties of RSV in a variety of in vitro and in vivo models are reviewed elsewhere (Athar, 

Back et al. 2007). 

 

2.4 Grape Seed Extract 

Grape seed extract (GSE, lacks RSV, (Radhakrishnan, Reddivari et al. 2011)) is a 

bioactive mixture that is commonly consumed as a dietary supplement and is sold in the form of 

capsules or tablets (100–500 mg). The consumer interest in GSE has been primarily due to the 

high content of antioxidants in the form of proanthocyanidins in this extract. The antioxidant 

capacity of GSE is greater than known antioxidants such as vitamin C and E (Kaur, Agarwal et 

al. 2009). Grape seed proanthocyanidins have demonstrated a wide spectrum of biological, 

pharmacological, therapeutic, and chemopreventive properties in multiple models (Kaur, 

Agarwal et al. 2009). 

Chemopreventive potential of GSE against colorectal cancer was evaluated in vitro in 

LoVo and HT-29 human colon cancer cell lines. GSE (> 50 µg/ml) suppressed the growth of 

these cancer cells. More importantly, GSE inhibited the growth of HT-29 cells in vitro as well as 

in tumor xenografts in athymic nude mice at dose of 200 mg/kg (Kaur, Singh et al. 2006). In 

animal models for colon cancer chemoprevention, grape seed proanthocyanidins (1 % w/w) 
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significantly inhibited azoxymethane-induced colonic aberrant crypt foci in a rat dual-organ 

tumor model (Singletary and Meline 2001). GSE (0.25 – 0.5 % w/w) prevented azoxymethane-

induced colonic aberrant crypt foci formation in Fischer 344 rats and this was most likely via 

targeting β-catenin and NF-B signaling (Velmurugan, Singh et al. 2010). Grape seed extract is 

generally well tolerated when taken by mouth. It has been used safely for up to 8 weeks in 

clinical trials. Human studies on anti-cancer efficacy of GSE are however, currently lacking 

(Medicine 2012). Anti-cancer properties of GSE and their mechanisms of action are summarized 

in detail elsewhere (Kaur, Agarwal et al. 2009). 

 

2.5 Synergy of Bioactive Compounds 

Consumption of fruits and vegetables has generally been associated with a decrease in 

cancer incidence and cardiovascular disease. As a result, numerous bioactive compounds have 

been isolated and identified, and their potential health-promoting effects have been evaluated 

extensively, both in vitro and in vivo (Kris-Etherton, Hecker et al. 2002, Kris-Etherton, Lefevre 

et al. 2004, Marshall 2008, Chuang and McIntosh 2011). However, purified phytochemicals may 

not necessarily exert the same beneficial health effect compared to when the compound is in its 

food matrix and among other bioactive compounds. There is a growing body of evidence that the 

actions of phytochemicals administered as dietary supplements alone do not explain the observed 

health benefits of diets rich in fruits, vegetables and whole grains (de Kok, van Breda et al. 

2008). Relatively high doses of single bioactive agents may show potent anti-carcinogenic 

effects, however, the synergistic interactions between different dietary ingredients that potentiate 

the activities of any single constituent better explain the observed benefits of whole foods and 

diets in many epidemiological studies (Liu 2004, de Kok, van Breda et al. 2008). In a recent 
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study that compared GSE induced anti-cancer effects to the effects of its individual components, 

the researchers found that GSE was more potent in growth inhibition compared to its individual 

constituents epigallocatechin, procyanidins and their association (Dinicola, Cucina et al. 2012). 

Thus, the beneficial effect of fruit/vegetable consumption may not be the result of a single 

bioactive compound, but may arise from combination of different compounds.  

In addition, bioactive compounds may have pleiotropic effects that in combination reduce 

the risk of chronic disease. Different compounds might target different pathways and the net 

effect might be a greater suppression of cancer cell growth (Kris-Etherton, Lefevre et al. 2004, 

Majumdar, Banerjee et al. 2009). Over the last few years, there have been many studies on 

bioactive components and their synergistic anti-cancer effects (Mertens-Talcott, Talcott et al. 

2003, Aggarwal, Bhardwaj et al. 2004, Mertens-Talcott and Percival 2005, Vanamala, 

Glagolenko et al. 2008, Yang and Liu 2009, Chuang and McIntosh 2011, Del Follo-Martinez, 

Banerjee et al. 2013). However, there is no direct evidence linked to the possible synergistic or 

additive effect (and mechanism of action) of the grape bioactive components (RSV and GSE) in 

a colon cancer model.   
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2.6 Aim 1 

Determine if RSV and GSE Synergistically Suppress Human HCT-116 Colon Cancer Cell 

Proliferation and Induce Apoptosis and Determine the Mechanisms of Action of the 

Combination. 

 

Approach: Human colon cancer cells (HCT-116 p53 +/+ and p53 -/-) and normal colon 

epithelial cells (CRL-1831) treated with bioactive compounds from grapes – RSV and GSE at 

different concentrations alone or in combination were assayed for proliferation, apoptosis and 

p53-dependent pathways. These in vitro data will facilitate future in vivo studies to determine the 

anti-cancer properties of grape bioactive compounds using laboratory animal models. 

Chemotherapeutic combination approaches have been used to reduce drug toxicity and 

obtain greater efficacy than the use of a single active component (Yang and Liu 2009). In a 

similar fashion, the phytochemicals in fruits could be used in combination as anti-cancer agents. 

However, there is little or no evidence for synergistic, additive, or antagonistic effects of grape 

compounds in combination against human colon cancer cells. This project provides evidence for 

the in vitro anti-cancer actions of the RSV-GSE combination which is already marketed as a 

popular supplement. In vivo confirmation of these results is clearly warranted. 
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PART 2 – POTATO BIOACTIVE COMPOUNDS AGAINST HIGH-FAT DIET ELEVATED 

OXIDATIVE STRESS AND INNATE INFLAMMATION 

 

2.7 Diet and Oxidative Stress/Inflammation 

Diets high in calories, especially from sugars, saturated fatty acids, and long-chain 6 

polyunsaturated fatty acids, and sedentary lifestyles contribute significantly to chronic diseases 

such as colon cancer (Chuang and McIntosh 2011). Life expectancy is predicted to decline in the 

US in the next few decades primarily due to chronic diseases now developing at early age, 

attributed mainly to poor diet and lifestyle (CDC 2009, CDC 2010).  

Colonic health is especially a major problem in countries like the US where inflammatory 

conditions, such as inflammatory bowel disease (IBD) are prevalent. The prevalence in the US of 

IBD, including Crohns disease (CD) and ulcerative colitis (UC), is greater than 200 cases per 

100,000, with the total number of IBD patients between 1 and 1.5 million (Rubin, Shaker et al. 

2012). Chronic colonic inflammation observed in UC or CD patients is a risk factor for colon 

carcinogenesis (Terzić, Grivennikov et al. 2010, Ullman and Itzkowitz 2011). Epidemiologic 

evidence suggests that high-fat diet (HFD) consumption is a risk factor for the development of 

colonic disorders, including IBD and colon cancer (Vanamala, Tarver et al. 2008, Hou, Abraham 

et al. 2011). Chronic consumption of a HFD enhances colonic oxidative stress and innate 

inflammatory (Ding, Chi et al. 2010, Kim, Gu et al. 2012) response in rats (Slavin 2013) and 

humans (Sakamoto, Kono et al. 2005, Higgins 2014). Ingestion of HFD has shown to induce 

changes in gut bacteria, alter gut permeability, leading to elevated lipopolysaccharide (LPS, a 

component of gram negative bacteria) levels and toll-like receptor (TLR-4, receptor for LPS) 

activation in the colon (Kim, Gu et al. 2012).  
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Recent papers have reported that inflammation of colonic mucosa causes inflammatory 

responses in mesenteric fat (fat surrounding intestinal segments), a key component of visceral fat 

(Karagiannides, Kokkotou et al. 2006) and in liver and other organs (Li, Lelliott et al. 2008). In 

animal models with intracolonic trinitrobenzene sulfonic acid instillations (experimentally 

induced colitis), there was elevated expression of inflammatory cytokines in the mesenteric fat 

(Karagiannides, Kokkotou et al. 2006, Gambero, Marostica et al. 2007). HFD induced 

inflammation and altered gut permeability exposes gut microbiota and their products (e.g. 

Flagellin, LPS) to the mesenteric adipose tissue. LPS induced TLR-4/NF-B innate 

inflammatory signaling has shown to promote macrophage (ATM) recruitment in the mesenteric 

fat depot. Although, other targets might be involved, current literature suggests that 

inflammation induced impaired gut barrier function and resulting leakage of microbial antigens 

induces inflammation in the mesenteric fat depot (Lam, Mitchell et al. 2011, Drouet, Dubuquoy 

et al. 2012, Kim, Gu et al. 2012). 

Adipose tissue is no longer recognized as a passive storehouse of excess energy, but an 

active endocrine and secretory organ, and a major contributor to the elevated levels of a number 

of inflammatory proteins (Li, Lelliott et al. 2008). Adipose tissue inflammation is linked to 

systemic inflammation with elevated levels of circulating cytokines such as TNF-α, IL-1β, IL-6 

etc. which are pro-inflammatory, and IL-10 and TGF-β which are anti-inflammatory (Li, Lelliott 

et al. 2008). Elevated low-grade systemic inflammation observed in animals on HFD has shown 

to be a silent killer as it forms the bedrock for development and progression of a variety of 

chronic inflammatory disorders such as rheumatoid arthritis, cancer etc. (Wilson, Finch et al. 

2002, Li, Lelliott et al. 2008, Terzic, Grivennikov et al. 2010, Chuang and McIntosh 2011). HFD 

consuming animals have the colonic mucosa in a pro-inflammatory state, together with elevated 
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oxidative stress/inflammation in mesenteric fat and systemic circulation could contribute to 

elevated risk for chronic diseases (Li, Lelliott et al. 2008).  

Oxidative stress plays a critical role in the pathogenesis of various diseases. Oxidative 

stress activates inflammatory pathways converging to either JNK activation or via the NF-B 

pathways (Solinas and Karin 2010). The activated inflammatory cells further release reactive 

oxygen species (ROS) and reactive nitrogen species (Nagata 2005). The excessively produced 

ROS can injure cellular biomolecules such as nucleic acids, proteins, and lipids causing cellular 

and tissue damage, which can worsen state of inflammation. Chronic low grade oxidative stress 

and inflammation are commonly observed in HFD consuming models and are conducive to 

development of disorders such as colon cancer (Furukawa, Fujita et al. 2004, Gregersen, 

Samocha-Bonet et al. 2012). Indeed, Western-style diets induced oxidative stress and 

deregulated immune responses in the colon in a mouse model of sporadic colon cancer (Erdelyi, 

Levenkova et al. 2009). 

Chronic inflammatory conditions have a long latency period and thus, there exists a 

window to institute appropriate dietary strategies and/or pharmacological interventions to 

prevent such disorders. There is a growing interest in finding natural plant-based 

strategies/agents against inflammatory disorders (Vanamala, Tarver et al. 2008). Dietary 

bioactive compounds (for e.g. anthocyanins, phenolic acids) can elicit pharmacological effects 

and can significantly alter activity of therapeutic agents by modulating biochemical pathways 

(Pan, Lai et al. 2009). Bioactive compounds like anthocyanins, phenolic acids and other 

polyphenols have shown potent anti-inflammatory properties in both animals and humans (Kim, 

Araki et al. 1998, Kowalczyk, Krzesinski et al. 2003, Baur and Sinclair 2006, Jurenka 2009, 

Chuang and McIntosh 2011). Anthocyanins, in particular, are known for their broad spectrum 
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action which include anti-inflammatory, anti-oxidant, anti-cancer properties etc. (Kowalczyk, 

Krzesinski et al. 2003). 

 

2.8 The Potato 

The potato (Solanum tuberosum) is indigenous to the central Andean region of South 

America and was introduced to Europe by the Spanish in the 16th century. Currently, the 

potato is the world’s 4th largest food crop and the leading vegetable crop in the US, with per 

capita consumption of about 126 lbs annually (NPC 2005, 2006, NPC 2007). Potato is a good 

source of vitamins, minerals, and high quality proteins. The International Year of the Potato 

(2008) was officially launched at United Nations headquarters (New York) in October 2007 to 

focus world attention on the role potato can play in providing food security and eradicating 

poverty (UN 2008). This popularity makes potatoes and potato products an attractive “delivery 

system” for bioactive compounds in humans. However potatoes have been tarnished by bad press 

primarily due to being considered a high glycemic form of carbohydrate that could increase 

insulin resistance and risk of type 2 diabetes (Halton, Willett et al. 2006). It should be noted that 

studies providing the bad press are epidemiological and not experimental or clinical in nature.  

Potatoes accumulate a wide variety of secondary metabolites including polyphenols. The 

polyphenol content of potato tubers ranges from 530-1770 µg/gfw (Reddivari 2007). Major tuber 

phenolic acids include caffeic acid, chlorogenic acid, ferulic acid, and cryptochlorogenic acid. 

Other phenolic acids in potato include neochlorogenic acid, p-coumaric acid, and ferulic acid 

amides (Reddivari 2007). Research has reported that chlorogenic acid constitutes up to 90 % of 

the total phenolic content of potato tubers (Friedman 1997). Chlorogenic acid, caffeic acid and 

p-coumaric acid have demonstrated anti-inflammatory properties in multiple studies (da Cunha, 
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Duma et al. 2004, Chao, Mong et al. 2010, Chauhan, Satti et al. 2011). Chlorogenic acid reduced 

liver inflammation and fibrosis through inhibition of TLR-4 signaling pathway in male Sprague-

Dawley rats treated with carbon tetrachloride (CCl4 – causes hepatotoxicity). Chlorogenic acid 

suppressed CCl4 induced NF-κB activation, and hepatic mRNA expression and serum levels of 

TNF-α, IL-6 and IL-1β (Shi, Dong et al. 2013). Phenolics acids like caffeic acid have shown 

TNF-α lowering ability in vivo (Chao, Hsu et al. 2009). Caffeic acid and some of its derivatives 

such as caffeic acid phenethyl ester and octyl caffeate are potent antioxidants which present 

important anti-inflammatory actions (da Cunha, Duma et al. 2004).  

Purple-fleshed potatoes are rich in phenolic acids and anthocyanins. We (Madiwale, 

Reddivari et al. 2011, Madiwale 2012, Madiwale, Reddivari et al. 2012) and others (Rodriguez-

Saona, Giusti et al. 1998, Brown 2005) have shown that phenolic acids are present at amounts 5 

– 12 times higher in purple-fleshed potatoes compared to their white-fleshed 

counterparts. Purple-fleshed cultivars had ~ 10 – 20 times greater anti-oxidant activity compared 

to white-fleshed potatoes and could be attributed mainly to the presence of anthocyanins and 

greater amounts of phenolic acids (Radhakrishnan, Reddivari et al. 2011, Madiwale, Reddivari et 

al. 2012). However, the anthocyanin content in these specialty cultivars greatly varies by variety 

of the potato. Purple-fleshed cultivars have shown to contain anthocyanins in a wide range (6-300 

mg/100 gfw). The major anthocyanins identified were coumaryl–rutino–glucosides of petunidin, 

peonidin, malvidin and pelargonidin (Reddivari 2007).  

There are numerous reports on the anti-inflammatory properties of anthocyanins both in 

vitro and in vivo. Anthocyanins from bilberries and black currants suppressed the secretion of 

pro-inflammatory cytokines such as IL-8, MCP-1, IL-1β, IL-6, and TNF-α in in vitro and animal 

models (Karlsen, Retterstol et al. 2007). The same anthocyanins (300 mg/d for 3 weeks) 
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inhibited NF-B activation in monocytes and reduced plasma concentrations of pro-

inflammatory mediators in healthy adults (Karlsen, Retterstol et al. 2007). Anthocyanin-rich 

berry extracts inhibited nitric oxide production in LPS/IFN-γ activated RAW 264.7 macrophages 

(Wang and Mazza 2002). In addition, anthocyanins from different sources (cherry, berries, soy) 

have demonstrated pronounced anti-inflammatory properties in multiple models (Rossi, Serraino 

et al. 2003, Tall, Seeram et al. 2004, Han, Sekikawa et al. 2006, Nizamutdinova, Kim et al. 

2009). Reports demonstrate the anti-cancer properties of anthocyanins against colon cancer both 

in vitro and in vivo (Kang, Seeram et al. 2003, Zhao, Giusti et al. 2004, Lala, Malik et al. 2006).  

However, potato is known to contain some undesirable compounds; which are either 

naturally occurring such as glycoalkaloids (Friedman 2006), or produced by heating  during 

processing of potatoes at a high temperature like acrylamide. Glycoalkaloids found in the potato 

tubers include α-chaconine and α-solanine; which form approximately 95 % of the total 

glycoalkaloids. Glycoalkaloids are affected by pre-and postharvest factors such as poor growing 

conditions, sprouting, mechanical injury, fungal attack, exposure to light and sub-optimal storage 

conditions (Friedman 1997). However, most of freshly harvested commercial potato varieties 

contain safe levels of GAs, below the limit of 200 mg glycoalkaloids/kg of potato fresh weight 

(Knuthsen, Jensen et al. 2009).  

Processing of potato such as frying and baking generate acrylamide which is formed from 

the reaction of reducing sugars (free glucose, fructose, sucrose and hydrolyzed starch during cold 

potato storage) with amino acid asparagine via Maillard reaction, which occurs during 

processing temperature above 212 °F (Pelucchi, La Vecchia et al. 2011). Acrylamide is 

considered as a neurotoxicant and carcinogen in animal models (Friedman and Levin 2008). 

Potato products such as French fries and potato chips contain a high level of acrylamide ranging 
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424-1739 µg/kg. Acrylamide however, is found in many foods specifically that have been 

roasted to temperatures above 120 oC (for e.g. cocoa powder and chocolate, formed during cacao 

bean roasting). Current knowledge suggests that it is difficult to consume doses high enough to 

reach toxic levels or cause cancer. However, over time, it may be possible to consume enough 

(depending on diet) to cause enough DNA damage to lead to cancer (FDA 2013).  

The potato is known for its carbohydrate content of which starch form a predominant 

percentage. A small but significant portion of this starch is resistant to digestion by enzymes in 

the stomach and small intestine, and so reaches the large intestine essentially intact where it is 

fermented by the gut bacteria to short chain fatty acids predominantly butyrate (Fung, Cosgrove 

et al. 2012, Haenen, Souza da Silva et al. 2013). This resistant starch is considered to have 

similar physiological effects and health benefits as fiber (Slavin 2013, Higgins 2014). It provides 

bulk, offers protection against colon cancer, improves glucose tolerance and insulin sensitivity, 

improves lipid profile etc. (Dias 2012). However, the amount of resistant starch in potatoes 

depends much on preparation methods. Cooking and then cooling potatoes significantly 

increases resistant starch. For example, cooked potato starch contains about 7% resistant starch, 

which increases to about 13% upon cooling (Englyst, Kingman et al. 1992). 

The potato is an important nutrient-dense component of the Western diet and represents a 

potentially very important source of energy for combating hunger around the world. Color-

fleshed potatoes offer similar profile of compounds as traditional white-fleshed potatoes, in 

addition they contain bioactive compounds such as anthocyanins and carotenoids (Brown 2005, 

Camire, Kubow et al. 2009). 
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2.9 Potato Processing 

It is well known that processing changes the physical and chemical composition of foods 

(Spanos, Wrolstad et al. 1990, Price, Bacon et al. 1997), thus affecting their bioactivity (Nicoli, 

Anese et al. 1999, Dewanto, Wu et al. 2002). Potatoes are almost always consumed after 

processing (baked, chipped, fried, boiled or microwaved) making it critical to understand the 

effect of such processing techniques on the activity of bioactive compounds in potatoes.  

Reports from our lab suggest that when compared with raw samples, depending on the 

potato variety, baking decreased or increased the phenolic content (Madiwale, Reddivari et al. 

2012). Purple-fleshed clones CO97215-2P/P and CO97227-2P/PW showed increased phenolic 

content post-baking, whereas phenolic content decreased in white- and yellow-fleshed cultivars 

(Madiwale, Reddivari et al. 2012). Researchers have reported both an increase and a decrease in 

the phenolic content post-baking (Im, Suh et al. 2008, Xu, Li et al. 2009, Blessington, Nzaramba 

et al. 2010, Navarre, Shakya et al. 2010). The increase in the phenolic content post-baking could 

be due to release of bound phenolic compounds during baking. Cooking may weaken the matrix 

thus, improving the extractability of phenolic compounds and inactivate enzymes that use 

phenolic compounds as substrate (Ezekiel, Singh et al. 2011). However, effects of processing 

cannot be generalized for all potato clones as results differ depending on potato genotype – this 

could be due to the differential content of free vs bound phenolic compounds in different 

varieties. Thus, both genotype and processing affect the bioactive content of potatoes (Madiwale 

2012). Among different processing methods, chipping/slicing increases the surface area, thus 

there is greater degradation of bioactive compounds compared to baked and raw samples 

(Madiwale 2012, Madiwale, Reddivari et al. 2012).  
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Processing of potatoes also affects the content and composition of other bioactive 

compounds in the potato including vitamin C, glycoalkaloids, acrylamide and resistant starch. 

Effects of processing on the potato toxicants (glycoalkaloids and acrylamide) and resistant starch 

are reviewed in the earlier section. In vitro data from our lab showed that ethanolic extracts of 

raw, baked and chipped purple-fleshed potatoes suppressed proliferation and elevated apoptosis 

in HCT-116 human colon cancer cell line. Anti-proliferative and pro-apoptotic properties of 

baked potatoes were similar to that of raw potatoes, while chipping caused a significant 

reduction in the biological activity (Madiwale 2012). However, there is a dearth of data on health 

benefits of potato bioactive compounds, especially after processing in vivo. It is important to 

document, using appropriate in vivo models, if processed (raw vs. baked vs. chips) anthocyanin-

rich purple-fleshed potatoes retain their anti-oxidant and anti-inflammatory properties in vivo, as 

this aspect has received little consideration. 

 

2.10 Pig as a Model 

There are major drawbacks to the use of rodents or cats/dogs as models for the study of 

human ingestive behavior. In addition to the anatomical and physiological differences between 

rodents and humans, rats and mice were originally granivores. Dogs and cats are carnivores 

whose natural diet and meal patterns differ from those of humans. The expense and scarcity of 

primates have limited their use in studies on food intake (Houpt, Houpt et al. 1979). Thus, the 

pig is an excellent model for studies of nutrition and food intake in humans. An ideal model of 

the human gastrointestinal tract should faithfully replicate the ecology of the gut. Such a model 

would be susceptible to diseases affecting humans, develop similar symptoms, mimic the adults 

or infant gastrointestinal tract and would be experimentally tractable and affordable. The pig 
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model used in the study fulfills several criteria; specifically it is experimentally tractable and it is 

a clinically relevant model of the human gastrointestinal tract (Houpt, Houpt et al. 1979, Cooper, 

Berry et al. 1997, Pond and Lei 2000). 

 

2.11 Aim 2 

Determine Extent to Which Purple-Fleshed Potato Consumption, Even After Processing, 

Prevents or Reverses HFD Elevated Oxidative Stress, and Inflammation Markers in a Pig 

Model.  

 

Approach: We performed two studies – a prevention study where 64 pigs, 3 weeks post-

weaning, consumed one of the eight diets: standard diet (SD), HFD and HFD supplemented with 

raw, baked or chipped purple or white-fleshed potatoes (10 % w/w) for 13 weeks; and a reversal 

study where pigs (12 weeks on HFD after 3 weeks post weaning) consumed HFD containing 10 

or 20 % purple or white-fleshed potato chips for additional 5 weeks (n = 8). Experiment design is 

presented in Figure 2.1. Distal colon mucosa, mesenteric fat, serum, and urine were assayed for 

oxidative stress and inflammatory markers. The pig with nutrient metabolism and gut structure 

anatomically and physiologically similar to humans than any other non-primate mammal was an 

appropriate model used in the study.  
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Figure 2.1 Experiment design for the prevention and the reversal studies involving high-fat diet 

consuming pig model. C1, standard control, C & C2, high-fat diet control in reversal and 

prevention studies, respectively, letters P and W indicate purple and white-fleshed potato diets, 

R, B & C indicate processing treatments raw, baked and chips, respectively in the prevention 

study at 10 % supplementation. The numbers 10 and 20 in the reversal study experimental diets 

indicate 10 and 20 % potato supplementation in the diet (chips, w/w).  

 

Providing answers to the in vivo stability and bioactivity of phenolic acids, anthocyanins 

and other bioactive compounds in the purple-fleshed potato, post processing will assist producers 

and consumers to make a more informed decision on shifting production to color-fleshed 

potatoes and determine purchasing preferences, respectively. In addition, understanding the anti-

oxidant and anti-inflammatory effects of potato consumption in a human relevant pig model will 

provide information to help overcome the negative attitudes held by consumers regarding potato 

consumption. 
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CHAPTER III 

 

RESVERATROL POTENTIATES GRAPE SEED EXTRACT INDUCED HUMAN COLON 

CANCER CELL APOPTOSIS VIA ACTIVATION OF P53-DEPENDENT SIGNALING 

PATHWAYS. 

 

3.1 Summary 

Colon cancer is the third leading cause of cancer deaths in men and women. We and 

others have reported grape seed extract (GSE) and resveratrol (RSV) are potent chemopreventive 

agents against colon cancer both in vitro and in vivo, however, these compounds work in the 

colon only at relatively high concentrations. Since, phytonutrients occur as complex mixtures in 

fruits and vegetables and may work together to modulate their cancer preventive/protective 

properties; we hypothesized that RSV and GSE may act in concert with each other in 

potentiating their anti-cancer properties in vitro at sub-optimal doses. In this study, we showed 

that sub-optimal doses of RSV (~25 µM) potentiated GSE (≤ 35 µg/ml) chemoprotective effects 

via suppressing colon cancer cell proliferation and elevating apoptosis via activation of p53 

dependent pathways. Elevation of apoptosis was more pronounced in p53 +/+ cells compared to 

p53 -/- cells. Apoptosis strongly correlated with phosphorylated p53 (serine 15) levels and 

Bax:Bcl-2 ratio, key players in the mitochondrial apoptotic pathway. Inhibitors of caspase-3 and 

anti-oxidants (quenching free radicals) attenuated apoptosis induced by the combination. RSV-

GSE combination suppressed proliferation and induced apoptosis of HCT-116 colon cancer cells 

in the presence of mitogenic growth factor IGF-1, but did not suppress proliferation or induce 

apoptosis of normal colonic epithelial cell line CRL-1831 demonstrating specificity to cancer 
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cells. These observations suggest that RSV-GSE combination and other such naturally occurring 

phytonutrients need to be studied and assessed in combination as they would occur in nature, 

rather than individually.  

 

3.2 Introduction 

In 2009, the American Cancer Society estimated there were more than 100,000 new cases 

and over 40,000 deaths occurred due to colon cancer alone in the US (American Cancer Society 

2009). Since colon cancer has a long latency period before it is detected even in its pre-clinical 

stage (such as colon polyp) (Grady and Carethers 2008), an opportunity exists to institute 

appropriate dietary preventive strategies to halt its progression. Dietary bioactive phytochemicals 

with chemopreventive properties that occur in nature  as complex mixtures in fruits, vegetables, 

grains and herbs, are particularly suited for this purpose (Liu 2004). However, little information 

is available on additive, synergistic or antagonistic interactions among these phytochemicals. 

Resveratrol (RSV), grape seed extract (GSE) and their combination(s) are marketed as popular 

dietary supplements. Independently, RSV and GSE showed anti-cancer activity both in vitro and 

in vivo. But, no studies have been performed or reported on their possible additive or synergistic 

chemoprevention/protective effects.   

Vitis vinifera (Grape vine) is a rich source of several bioactive compounds including 

anthocyanins, flavonoids, polyphenols, proanthocyanidins, and stilbenes (Nassiri-Asl and 

Hosseinzadeh 2009). GSE, a mixture containing about 95% standardized proanthocyanidins, is a 

popular dietary supplement due to its anti-cancer and anti-inflammatory properties (Agarwal et 

al. 2002). In vitro studies showed that GSE has significant growth inhibitory action on a variety 

of colon cancer cells in a dose and time dependent manner (Kaur et al. 2008). GSE significantly 
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inhibited cell viability and elevated apoptosis in cancer cells without altering the viability of  the 

normal colon cell lines, thus selectively targeting cancer cells (Laurent et al. 2004). GSE induced 

G1 phase arrest and caspase-3 mediated apoptosis in cancer cells (Laurent et al. 2004; Sharma et 

al. 2004; Kaur et al. 2006). GSE might thus exert its beneficial effects by elevating apoptosis and 

suppressing proliferative pathways. Even though GSE is available through different vendors, 

researchers have reported that regardless of the commercial source, GSE can produce 

comparable biological effects via cell growth suppression in a panel of human colon cancer cell 

lines (Kaur et al. 2008).  

It is well known that GSE typically lacks RSV, except in special preparations, where 

RSV is added back in (Khanna et al. 2001). RSV, a stilbenoid derived from the skin of red 

grapes, has been shown to be active against various cancers in vitro and in vivo (Asensi et al. 

2002; Bhat and Pezzuto 2002; Sexton et al. 2006; Alkhalaf 2007). RSV interferes with all three 

stages of carcinogenesis: initiation, promotion and progression (Jang et al. 1997; Jang and 

Pezzuto 1999; Aziz et al. 2003). We have previously shown that RSV has anti-proliferative and 

pro-apoptotic properties against HT-29 and SW480 human colon cancer cell lines even in the 

presence of mitogenic insulin like growth factor-1 (IGF-1) by elevating phosphorylated p53 (ser 

15) and suppressing IGF-1R/Wnt signaling (Vanamala et al. 2010). However, RSV was effective 

at relatively high concentrations in in vitro studies (RSV > 25-100 µM in different cell lines). 

Though in an occasional instance, RSV was found to be active at low concentrations in vitro 

(Hope et al. 2008). In view of these evidences, we opined that addition of RSV at relatively low 

concentrations (~ 25 μM) to a natural food supplement such as GSE might potentiate the 

effectiveness of GSE in suppressing colon cancer cell growth, as both of them exist in the fruit 
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matrix in the form of mixtures. Furthermore, the inhibitory efficacy of such a RSV-GSE 

combination on colon carcinogenesis has not yet been reported. 

Insulin like growth factor-1 (IGF-1) is a growth factor and the IGF axis is frequently 

activated during obesity and thus, could play a critical role in obesity-promoted colon cancer 

(Ma et al. 1999; LeRoith and Roberts 2003; Wei et al. 2005). The IGF system includes ligands, 

receptors, and ligand-binding proteins (IGFBPs). Positive energy balance and chronic 

hyperinsulinemia observed in obese conditions may deregulate colonocyte growth kinetics, as 

elevated insulin and suppressed IGFBP-1 and IGFBP-2 levels increase the pool of free or 

bioavailable IGF-1. A larger concentration of bioavailable IGF-1 can activate the IGF-1 receptor 

(IGF-1R is over expressed in colon cancer cells), and stimulate colonocyte proliferation (LeRoith 

and Roberts 2003; Frystyk 2004; Davies et al. 2006; Ahmed et al. 2007; Vanamala et al. 2008). 

Previously, we showed that RSV suppressed IGF-1R protein levels in vitro in human colon 

cancer cells (Vanamala et al. 2010).   

Chemotherapeutic combination approaches have been used to reduce drug toxicity and  

obtain greater efficacy compared to a single active component (Yang and Liu 2009). In a similar 

fashion, the phytochemicals in fruits could be used in combination as anti-cancer agents. 

However, there is little or no evidence for synergistic, additive, or antagonistic effects of grape 

compounds in combination against human colon cancer cells. We hypothesized that RSV and 

GSE work synergistically to suppress colon cancer cell proliferation, at least, in part by inducing 

apoptosis via p53 dependent mechanisms. P53, a critical tumor suppressor gene, is frequently 

deregulated in many cancers and is activated upon DNA damage (Galluzzi et al. 2008). Even 

though GSE induced apoptosis in a p53 dependent manner in skin cancer fibroblasts (Roy et al. 

2005), information on GSE’s p53 dependent effects on colon cancer cells is limited. Results of 
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the present study suggest that RSV potentiates the anti-proliferative and pro-apoptotic properties 

of GSE in a p53-dependent manner. However, this combination induced apoptosis in p53 -/- 

cells, but to a lesser extent. Apoptosis was elevated via p53 activation, and Bax/Bcl-2/ROS and 

caspase-3 pathways. Even in the presence of IGF-1, a mitogenic growth factor elevated during 

obesity, RSV-GSE combination suppressed proliferation and induced apoptosis in HCT-116 p53 

+/+ cells. The promising in vitro results of the RSV-GSE combination in inducing apoptosis of 

colon cancer cells in a synergistic manner, via p53-dependent pathways, even in the presence of 

IGF-1, implies that this combination has therapeutic potential and warrants further investigation 

using in vivo studies. 

 

3.3 Materials and Methods 

3.3.1 Chemicals   

Grape seed extract (GSE, ORAC value 9000-13000 µmole Trolox equivalents/g, total 

phenolic content > 85% gallic acid equivalents was a generous gift from San Joaquin Valley 

Concentrates (Fresno, CA). It is important to note that GSE has been shown to produce 

comparable biological actions irrespective of its commercial source (Kaur et al. 2008). GSE is a 

mixture of mainly dimers, trimers and other oligomers of catechin and epicatechin and their 

gallate derivatives. UPLC-MS analysis of GSE used in the study detected presence of catechin 

and epicatechin monomers and their oligomers, and their gallate derivatives indicating that GSE 

had a similar profile as used in earlier studies ((Agarwal et al. 2007; Weber et al. 2007), Figure 

3.1). We know that GSE typically lacks resveratrol (RSV) and UPLC-MS analysis of GSE 

confirmed the absence of RSV. We could not detect RSV, indicating RSV content in GSE is at 
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best below 0.016% by mass (value obtained by standard curve) even if we assume 90% 

ionization suppression due to the complex matrix of GSE.   

Fetal bovine serum (FBS) was purchased from Fisher Scientific (Pittsburgh, PA). 

McCoy’s 5A medium (modified, 1X) was purchased from Invitrogen (Carlsbad, CA). The p53 

inhibitor Pifithrin-α, the caspase-8 inhibitor z-IETD-FMK, and the caspase-3 inhibitor z-DEVD-

FMK were purchased from Calbiochem (San Diego, CA). N-acetylcysteine, catalase enzyme, 

Dulbecco’s Modified Eagle’s Medium F-12 (DMEM/F-12), 5-florouracil (5-FU) and RSV were 

from the Sigma Chemical Co. (St. Louis, MO). IGF-1 was obtained from the R&D Systems 

(Minneapolis, MN). 
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Figure 3.1 Representative single ion UPLC-MS chromatograms of catechin and epicatechin 

monomers and their oligomers, and their gallate derivatives present in the grape seed extract 

used in the study prepared at 5 mg/ml in water-methanol mixture. Detailed procedure for LC/MS 

is mentioned in the materials and methods. 

 

3.3.2 LC-MS Analysis of Grape Seed Extract 

GSE was dissolved in water-methanol mixture to attain a concentration of 5 mg/ml. 1 µl 

injections of the solution were performed on a Waters Acquity UPLC system. Separation was 

performed using a Waters Acquity UPLC HSS T3 column (1.8 µM, 1.0 x 100 mm), using a 

gradient from solvent A (Water + 0.1% formic acid) to solvent B (95% methanol, 5% water, 

0.1% formic acid). Injections were made in 100% A, which was held for 2 minutes, there was a 
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13 minute linear gradient to 100% B which was held at 100% B for 2 minutes then returned to 

starting conditions over 0.1 minute, and finally allowed to reequilibrate for 2.9 minutes. Flow 

rate was constant at 140 µl/min for the duration of the run. The column was held at 50°C, 

samples were held at 5°C. Column eluent was infused into a Micromass Q-Tof Micro MS fitted 

with an electrospray source. Data was collected in positive ion mode, scanning from 50-1200 at a 

rate of 0.9 scans per second with 0.1 second interscan delay. Calibration was performed prior to 

sample analysis via infusion of sodium formate solution, with mass accuracy within 5 ppm. The 

capillary voltage was held at 2200V, the source temp at 130°C, and the desolvation temperature 

at 300°C at a nitrogen desolvation gas flow rate of 400 l/hr. The quadrupole was held at collision 

energy of 7 volts.   

 

3.3.3 Cell Lines 

The HCT-116 p53 +/+ and p53 -/- colon cancer cell lines were obtained  from Dr. Bert 

Vogelstein (School of Medicine, the Johns Hopkins University, Baltimore, MD, USA). Cells 

were maintained at 37oC with 5% CO2 and grown in McCoy’s 5A medium supplemented with L-

glutamine, 25 mM HEPES buffer, 100 ml/l fetal bovine serum and 10 ml/L Penicillin-

Streptomycin mix. CRL-1831 cells were obtained from American Type Culture Collection 

(Manassas, VA) and were maintained at 37°C with 5% CO2 and grown in Dulbecco's Modified 

Eagle's Medium F-12 (DMEM/F-12) supplemented with 2.2 g/l sodium bicarbonate, 0.2 g/l 

bovine serum albumin, 100 ml/l fetal bovine serum and 10 ml/l Penicillin-Streptomycin mix. 

Cell cultures at approximately 75% confluence were used for all experimental treatments. 
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3.3.4 Cell Proliferation Assay 

Cell viability was assessed by a modified 3-(4, 5-dimethylthiazol-2-yl)-2, 5-

diphenyltetrazolium bromide assay (WST-1 assay; Roche Diagnostics, Indianapolis, IN) 

following the supplier’s protocol. WST-1 assay was used after validating the assay using cell 

counting. Briefly, cells were grown in 96-well plates (5,000 cells/well), overnight at 37°C, in a 

5% CO2 incubator and treated with RSV and/or GSE for indicated time period. After addition of 

WST-1 reagent (1:10 dilution in media), cells were incubated for 3 h and absorbance at 450 nm 

was measured by a micro plate reader. The experiments were repeated three times each time in 

triplicate and data were expressed as the means ± SEs. For experiments using IGF-1, cell 

proliferation was measured via cell counting using Cellometer (Nexcelom Biosciences, 

Lawrence, MA). The experiments were repeated three times each time in triplicate and data were 

expressed as the means ± SEs. 

 

3.3.5 Cytotoxicity Detection 

To validate, if the concentrations of RSV and GSE used in the study are not toxic to the 

cells (induce necrosis), a dose response cytotoxicity detection assay using different 

concentrations of RSV and GSE was done. HCT-116 p53 +/+ and p53 -/- cells (5,000/well) were 

seeded in 96-well plates and after treatment for 24 h, the Cytotoxicity Detection Kit (Roche 

Diagnostics, Indianapolis, IN) was used to measure the Lactate-dehydrogenase (LDH) activity in 

supernatants of cells treated with respective treatments, according to the instruction manual 

protocol. Briefly, after 30 min incubation at 37°C, absorbance was recorded on a micro plate 

reader at 492 nm. The experiments were done in triplicate and repeated at least three times, and 

data were expressed as the means ± SE. Triton X-100 was the positive control. Cytotoxicity was 
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calculated with the formula: % Cytotoxicity = (experimental value - low control) X 100 / (high 

control - low control), where low control is the assay medium plus cells and high control is the 

assay medium plus 2 % Triton X-100 plus cells. 

 

3.3.6 Apoptosis Assay 

Apoptosis induction was measured using 2 different assays; a nucleosomal fragmentation 

assay (Cell Death Detection Enzyme Linked ImmunoSorbent Assay (ELISA), Roche 

Diagnostics, Indianapolis, IN) followed by confirmation using caspase-3 cleavage (Caspase-

Glo 3/7 assay, Promega, Madison, WI). Briefly, for the nucleosome ELISA assay, 100,000 cells 

were plated per well in 12-well plates, and then treated with the respective treatments. After 12 h 

or 24 h incubation, cells were counted and assayed for apoptosis as per the manufacturer’s 

protocol. Absorbance was recorded on a micro plate reader at 405 nm. The optical density was 

normalized to total number of cells in each treatment. For the caspase-glo 3/7 assay, cells were 

incubated for 12 h or 24 h with respective treatments. After incubation, cells were trypsinized 

and approximately 20,000 cells from each treatment were incubated with 100 µl of caspase-glo 

3/7 reagent for 3 h. The luminescence of each sample was measured using a luminometer. 

DMSO was the solvent control. These experiments were repeated at least twice and each time in 

triplicate and data were expressed as the means ± SEs.   

 

3.3.7 Experimental Design of Combination Study 

A two-way combination of RSV and GSE against HCT-116 p53 +/+ and p53 -/- cell 

proliferation was designed (Yang and Liu 2009). The IC 50 values of RSV and GSE were 

determined on the basis of the dose-response curve (Figure 3.2A and 3.2B). Based on IC 50 
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values of RSV and GSE, a series of concentrations were used to select a few combinations that 

might demonstrate synergistic, additive or antagonistic response (C1-C9, Table 3.1).  

The combination effects were analyzed by the combination index (CI) method. The CI is 

based on the classic isobologram equation (Sharma et al. 2004); CI = D1/d1 + D2/d2; where  D1 

and D2 are the doses of RSV and GSE, respectively, in the combination system; d1 and d2 are 

the doses of RSV and GSE alone for the same fractional inhibition, respectively. For data 

analysis of combinations, CI ≤ 1, CI = 1, and CI > 1 indicate synergistic, additive, and 

antagonistic effects, respectively (Sharma et al. 2004; Yang and Liu 2009). C1 and C2 were 

chosen for further experiments based on low concentrations of RSV (~ 25 µM) and its ability to 

induce apoptosis comparable to high doses of RSV and GSE (100 µM or 100 µg/ml) in HCT-116 

p53 +/+ colon cancer cells (Table 3.1).   
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Figure 3.2 Anti-proliferative, cytotoxic and apoptotic effects of resveratrol (RSV) and grape 

seed extract (GSE). (A) RSV and (B) GSE suppressed HCT-116 colon cancer cell proliferation 

and (C) induced apoptosis but do not show any (D) cytotoxic effects. HCT-116 p53 +/+ and -/- 

cells were treated with RSV (25, 50, 75, and 100 µM) or GSE (25, 37.5, 50, 75 and 100 μg/ml) 

for 48 h and cell proliferation was determined using WST-1 assay and cytotoxicity was detected 

in the supernatants using LDH assay. HCT-116 p53 +/+ and -/- cells were treated with RSV (25, 

50, 75 and 100 µM) or GSE (37.5, 50, 75 and 100 μg/ml) for 12 h and induction of apoptosis was 

determined by cell death detection ELISA assay. The rate of apoptosis was expressed as 

absorbance value measured at 405 nm. Results were expressed as mean ± SE for three replicate 

experiments for each treatment group. DMSO served as a solvent control. Triton X-100 was used 
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as a positive control for LDH assay. Means that differ by a common letter (a, b, c, d, e, f, g for 

p53 +/+ cells and w, x, y, z for p53 -/- cells) differ (P ≤ 0.05).  
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Table 3.1 Combination index (CI) analysis of HCT-116 p53 +/+ and p53 -/- cells treated with different combinations of resveratrol 

(RSV) and grape seed extract (GSE). HCT-116 p53 +/+ and -/- cells were treated with combination of GSE and RSV at different 

concentrations for 48 h and cell proliferation was determined using WST-1 assay and apoptosis (24 h, only in p53 +/+ cells) was 

measured using caspase-glo 3/7 assay. Fractional inhibition was calculated as a percentage with respect to control and CI values were 

calculated based on method of Chou and Talalay (Chou and Talalay 1983). C1 and C2 (in bold) were chosen for further experiments 

based on low concentrations of RSV (~ 25 µM) and its ability to induce apoptosis comparable to high doses of RSV and GSE (100 

µM or 100 µg/ml) in HCT-116 p53 +/+ colon cancer cells. 

Treatment P53 +/+ cells P53 -/- cells 

Combinations RSV (µM) GSE (µg/ml) Fractional inhibition (%) CI value 

Apoptosis (X 100 

Lumens) 

Fractional inhibition (%) CI value 

C1 27 35.2 70.17 0.668 201.7 74.16 0.687 

C2 23.59 50.93 79.03 0.812 245.0 75.17 0.858 

C3 15.73 33.95 70.05 0.561 129.4 72.47 0.608 

C4 23.6 30 59.82 0.61 139.7 59.95 0.792 

C5 31.45 67.9 81.64 1.078 383.4 80.36 1.008 

C6 31.5 40 54.79 0.846 187.8 68.63 0.884 
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C7 41.25 24.75 48.24 0.755 99.1 66.86 0.753 

C8 45 58.75 83.93 1.09 317.0 77.43 1.067 

C9 55 33 63.11 0.896 192.0 72.57 0.893 
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3.3.8 Fluorescence Activated Cell Sorting Analysis (FACS) 

HCT-116 p53 +/+ and p53 -/- cells were plated at a density of 15 × 106 cells per 100 mm 

plate and after 24 h treatment with either the control or the RSV-GSE combinations, cells were 

trypsinized and centrifuged. The pellet was resuspended with 1 ml of PI staining buffer 

containing 4 mM sodium citrate, 0.1% Triton X-100, 50 μg/ml propidium iodide and 200 μg/ml 

RNAse and incubated for 10 minutes at 37°C in the dark, and the final concentration of sodium 

chloride was adjusted to 0.15 M. Cells were analyzed using MoFlo (Dako Colorado, Inc.) flow 

cytometer and high speed cell sorter. Results were reported as percent cells in each phase of the 

cell cycle. 

 

3.3.9 Western Blot Analysis 

HCT-116 p53 +/+ and p53 -/- cells were seeded at a density of 1.5 x 105 cells/ml in 

DMEM F-12 media with 5% charcoal-stripped fetal bovine serum for 24 h. After treating cells 

for 24 h, protein was extracted into a high-salt buffer containing 1% protease and phosphatase 

inhibitor cocktail from Thermo Scientific (Rockford, IL), and protein concentrations were 

determined by using the BCA Protein Assay kit from Thermo Scientific (Rockford, IL). Cell 

lysates (45 g) were incubated at 98oC for 5 minutes and separated by 10% polyacrylamide gels 

running at 120 V for 2 h in 1X running buffer, and electrophoretically transferred to Immobilon-

FL, low fluorescent PVDF membranes from Millipore (Billerica, MA) at 30 V for 98 min in 

Tris-glycine transfer buffer. The membranes were blocked with Superblock blocking buffer from 

Thermo Scientific (Rockford, IL) for 2 h at room temperature. The membranes were incubated 

with rabbit polyclonal anti-pp53 antibody, rabbit polyclonal anti-Bax antibody, both from Cell 

Signaling (1:1,000; Danvers, MA), and rabbit polyclonal anti-Bcl-2, goat polyclonal anti-β-actin 
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both from Santa Cruz Biotechnology (1:500 for Bcl-2, 1: 5000 for β-actin; Santa Cruz, CA) for 2 

h at room temperature. Membranes were subsequently probed with anti-goat or anti-rabbit IR 

Dye secondary antibodies, Licor Biosciences (all 1:10,000, Lincoln, NE). Membranes were 

scanned and quantified with Odyssey infrared imaging system, Licor Biosciences (Lincoln, NE) 

using Odyssey software (Licor Biosciences). Membranes were also probed with respective IgG-

HRP secondary antibodies from Santa Cruz Biotechnology (1:20,000; Santa Cruz, CA) and 

scanned using UVP imaging software (UVP BioDoc-It® Imaging System; Upland, CA). β-actin 

served as a loading control.  

 

3.3.10 IGF-1 Treatment 

Cells were plated at a density of 5 X 104 per well in 12-well plates in DMEM/F-12 

containing 5% charcoal-stripped fetal bovine serum. After 24 h, cells were treated with DMSO 

(solvent control), 25 nM IGF-1 and/or combinations of RSV and GSE (C1 and C2), and anti-

proliferative properties of the RSV-GSE combinations were evaluated after 48 h. As colonocytes 

have greater exposure to the bioavailable IGF-1 in obese condition, in the IGF-1 treatments, the 

cells were pre-incubated with IGF-1 for 10 minutes followed by the combination treatment to 

assess the effect of RSV-GSE combination when the cells are already primed to proliferate. Dose 

response study showed that 25 nM IGF-1 is essential to produce a significant elevation of HCT-

116 p53+/+ cell proliferation (data not shown). In case of  HT-29 and SW-480 advanced colon 

cancer cell lines, even 10 nM IGF-1 was sufficient to prime the cells to proliferate (Vanamala et 

al. 2010). Thus, we used 25 nM concentration of IGF-1 for subsequent experiments in HCT-116 

p53 +/+ cells. In the apoptosis experiment, after 24 h of treatment, cells were assayed with the 
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manufacturer’s protocol using the cell death detection ELISA kit using the manufacturer’s 

protocol. 

 

3.3.11 Statistical Analysis 

Analysis of variance and Fisher’s least square difference at 5 % significance level 

determined degree of significance between treatments. Pearson correlation at 1 % determined 

correlation between apoptosis and Bax/Bcl-2 ratio.  

 

3.4 Results 

3.4.1 Resveratrol (RSV) or Grape Seed Extract (GSE) Suppressed Cell Proliferation of 

HCT-116 Cells 

Anti-proliferative and cytotoxic effects of RSV or GSE were investigated using HCT-116 

p53 +/+ and p53 -/- colon cancer cells. RSV or GSE resulted in suppression of cell proliferation 

in a dose dependent manner (Figure 3.2A, 3.2B). Our results demonstrated that RSV suppresses 

the colon cancer cell proliferation in both p53 +/+ and p53 -/- cells (Figure 3.2A), however, cell 

proliferation suppression was more potent in p53 -/- cells (IC 50 of RSV was 72 M in p53 -/- 

cells compared to 110 M in p53 +/+ cells). Treatment of HCT-116 p53 +/+ cells with 37.5, 50, 

75, 100 and 125 g/ml of GSE resulted in 31-90% cell proliferation suppression (Figure 3.2B). 

Similar growth inhibition was seen in p53 -/- cells, however the IC 50 for GSE was higher in p53 

-/- cells (47 g/ml compared to 37.5 g/ml in p53 +/+ cells). Together, the data in Figures 3.2A 

and 3.2B clearly demonstrate the efficacy of RSV or GSE to inhibit the growth of human colon 

cancer cells (HCT-116 p53 +/+ and p53 -/-). The cytotoxicity of RSV or GSE towards HCT-116 

p53 +/+ and p53 -/- in vitro was evaluated using LDH assay. Minimal cytotoxicity was observed 
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for RSV or GSE even at concentrations up to 100 M and 100 g/ml, respectively (Figure 3.2D). 

Cytotoxicity was compared against the positive control Triton X-100. 

 

3.4.2 RSV or GSE Induced Apoptosis 

Induction of apoptosis by RSV or GSE in HCT-116 p53 +/+ and p53 -/- cells was 

analyzed using nucleosomal fragmentation assay (Cell Death Detection ELISA). RSV induced 

apoptosis in both p53 +/+ and p53 -/- cells, however, only at higher concentrations close to 100 

µM (Figure 3.2C). GSE also induced apoptosis, but mainly in p53 +/+ cells (GSE > 75 µg/ml) 

(Figure 3.2C). This suggests that low concentrations of RSV and GSE, are unable to induce 

apoptosis even though they might be able to suppress cell proliferation (Figure 3.2A, 3.2B and 

3.2C). Confirmation using a p53 inhibitor (Figure 3.4E), suggest that RSV induced apoptosis in a 

p53-independent manner; however, GSE requires a functional p53 to induce apoptosis in HCT-

116 cells.   

 

3.4.3 RSV-GSE Combination Suppressed Cell Proliferation and Induced Apoptosis.  

Based on the anti-proliferative and pro-apoptotic properties of RSV or GSE in the HCT-

116 cell lines, the effect of the combination of RSV and GSE on the HCT-116 p53 +/+ and p53 -

/- cells was analyzed. Possible combinatorial effects (synergy, additive or antagonism) were 

assessed using a series of nine different combinations (Table 3.1). Data were analyzed using 

combination index (CI) values by the method of Chou and Talalay (Chou and Talalay 1983). 

Results indicated that a combination of RSV and GSE resulted in a greater growth inhibition as 

compared to either agents alone at the same concentrations (Table 3.1, Figure 3.2A and 3.2B) in 

HCT-116 p53 +/+ cells after 48 h of treatment. Interestingly, seven out of the nine combinations 
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showed synergism, whereas the other two showed additive effects in p53 +/+ cells (Table 3.1). 

Elevated cell proliferation suppression was seen in p53 -/- cells, wherein the same seven 

combinations demonstrated synergism as in p53 +/+ cells (Table 3.1). For the nine combinations, 

apoptosis was measured, albeit only in p53 +/+ cells. Out of the nine combinations, two 

combinations (C1: RSV 27 µM and GSE 35 µg/ml and C2: RSV 25 µM and GSE 51 µg/ml) 

were selected for further experiments based on their ability to adequately suppress cell 

proliferation, induce apoptosis comparable to RSV doses of 100 µM, low CI values and reduced 

RSV levels. Low doses of RSV and GSE in combinations C1 and C2 are unable to elicit 

apoptosis individually in p53 +/+ cells (Figure 3.2C). 

 

3.4.4 RSV-GSE Combination Induced Cell Cycle Arrest in Go/G1 Phase in Both HCT 116 

P53 +/+ and P53 -/- Cells 

Fluorescence-activated cell sorting analysis (FACS) technique was used to determine the 

effect of RSV-GSE combination on cell cycle progression in HCT-116 cells. Figures 3.3A and 

3.3B illustrate the distribution of HCT-116 p53 +/+ cells and p53 -/- cells in the G0/G1, S and 

G2/M phases after treatment with the RSV-GSE combination, respectively. RSV-GSE 

combination had higher percentage of cells in the G0/G1 phase compared to control in both p53 

+/+ and p53 -/- cells. These results suggest that the RSV-GSE combination targets G0/G1 to S 

phase progression to arrest HCT-116 cell proliferation.  
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Figure 3.3 Effect of combination of resveratrol (RSV) and grape seed extract (GSE) on cell 

cycle progression of HCT 116 colon cancer cells. HCT-116 p53 +/+ (A) and p53 -/- (B) cells 

were plated at a density of 15 × 106 cells per 100 mm plate and after 18 h treatment with the 

vehicle (DMSO), C1 and C2; they were analyzed by fluorescence-activated cell sorting analysis 

(FACS). Results were expressed as % of cells in each phase. Numbers on top of the bars 

represent percent cells in respective phases in each treatment group. C1 and C2 have RSV (27 

µM and 25 µM) and GSE (35 and 51 µg/ml), respectively.  

 

3.4.5 RSV-GSE Combination Induced Apoptosis is P53-Dependent 

We used nucleosomal fragmentation assay and caspase-glo 3/7 assay to detect whether 

combination of RSV and GSE induces apoptotic death. There was an increase in apoptosis with 

the two combination doses (C1 and C2) compared to the control (Figure 3.4A). This is 

particularly important, since RSV (~ 25 µM) or GSE (~ 37.5 µg/ml) alone do not induce 

apoptosis at the concentrations present in the combination (Figure 3.2C and Table 3.1). Similar 

results were obtained when apoptosis was measured using the caspase-glo 3/7 assay confirming 

the synergy between RSV and GSE (Figure 3.4B). 
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RSV or GSE alone at high concentrations demonstrated p53 independent and p53 

dependent apoptosis respectively, at 24 h time point (Figure 3.2C), however, at the low 

concentrations used in C1 or C2 neither RSV nor GSE induced apoptosis in p53 +/+ or p53 -/- 

cells. However, we did see a difference in the induction of apoptosis by RSV-GSE combination 

in p53 +/+ and p53 -/- cells at 12 h (Figure 3.4A and 3.4B). To confirm, if p53 plays an 

important role in apoptosis induction by the RSV-GSE combination, cells were treated with RSV 

and/or GSE for a further 12 h (total 24 h). After 24 h, significant differences were observed 

between p53+/+ and p53-/- cells in the induction of apoptosis with RSV-GSE combination, 

suggesting that combination treatment requires a functional p53 to induce apoptosis (Figure 

3.4B). Results were confirmed using caspase-glo 3/7 assay (Figure 3.4D). However, increasing 

GSE concentration to 50 µg/ml did not elevate apoptosis in C2 compared to C1 indicating that 

once GSE levels reach 50 µg/ml, RSV had a marginal effect to potentiate GSE actions. This also 

suggests that the effect of synergy is at best when the two compounds are at low concentrations 

together.  

To confirm the role of p53, transcriptional activity of p53 was inhibited using the p53 

inhibitor pifithrin-α (40 µM, (Murphy et al. 2004)) and then treated with the combination 

treatment for 24 h and assayed for apoptosis. HCT-116 p53 +/+ cells treated with the p53 

inhibitor acted like the p53 -/- cells, and the RSV-GSE combination did not induce apoptosis in 

p53 +/+ cells in the presence of the p53 inhibitor (Figure 3.4E). This confirms that the RSV-GSE 

combination induced apoptosis via p53 related signaling pathways. Further experiments 

delineating mechanisms of the RSV-GSE combination were only performed in p53 +/+ cells. 
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Figure 3.4 Synergistic combination of resveratrol (RSV) and grape seed extract (GSE) induced 

apoptosis in HCT-116 human colon cancer cell lines. (A, C) HCT-116 p53 +/+ and -/- cells were 
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treated with RSV and/or GSE for 12 and 24 h and induction of apoptosis was determined by cell 

death detection ELISA assay. The rate of apoptosis was expressed as absorbance value measured 

at 405 nm, normalized to 106 cells. (B, D) HCT-116 p53 +/+ and -/- cells were treated with RSV 

and GSE alone and in combination for 12 and 24 h and apoptosis was determined using caspase-

glo 3/7 assay. E) HCT-116 p53 +/+ cells were pretreated with the p53 inhibitor pifithrin-α (40 

µM) for 45 minutes followed by RSV and/or GSE for 24 h and apoptosis was detected using 

caspase-glo 3/7 assay. Results were expressed as mean ± SE for three replicate experiments for 

each treatment group. C1 and C2 have RSV (27 µM and 25 µM) and GSE (35 and 51 µg/ml), 

respectively.  Means that differ by a common letter (a, b, c, d, e for p53 +/+ cells and w, x, y, z 

for p53 -/- cells or pifithrin-α treatment) differ (P ≤ 0.05).  

 

3.4.6 RSV-GSE Combination Suppressed Cell Proliferation and Induced Apoptosis via 

Caspase-3 Dependent and Bax/Bcl-2 Pathways. 

To investigate whether the induction of apoptosis by RSV-GSE combination in HCT-116 

p53 +/+ cells was through activation of p53 downstream pathways, lysates from cells treated 

with RSV and GSE, alone and in combination, were subjected to western blot analysis. RSV in 

combination with GSE elevated pp53 (activated p53, ser 15) in HCT-116 p53 +/+ cell lines 

(Figure 3.5A). This is particularly interesting because RSV or GSE were not as effective in 

elevating pp53 levels at lower concentrations present in the combination (Figure 3.5A). Levels of 

Bax and Bcl-2, pro and anti-apoptotic members of the BH3 family of apoptotic proteins were 

measured in the combination treatment in p53 +/+ cells. Combination of RSV and GSE elevated 

Bax levels and concomitantly suppressed levels of Bcl-2, overall elevating the Bax:Bcl-2 ratio 

(Figure 3.5B). Bax:Bcl-2 ratio showed significant correlation with apoptosis in both the cell lines 



 
 

65 
 

(Pearson correlation coefficient = 0.878 for p53 +/+ cells, P ≤ 0.01), indicating the RSV-GSE 

induced apoptosis might be via the mitochondrial mediated apoptotic pathway (De Angelis et al. 

1998).  

To further confirm the route of apoptosis, caspase-3 and caspase-8 were inhibited 

separately and then treated with the combination treatment. We measured apoptosis using the 

nucleosomal fragmentation assay 24 h post treatment. Treatment with the cell-permeable 

caspase-3 inhibitor DEVD-CHO (50 µM) suppressed RSV-GSE combination induced apoptosis 

(Figure 3.5C). In contrast, incubation with the caspase-8 inhibitor IETH-CHO (50 µM) had no 

significant effect on apoptosis induction by RSV-GSE combination, indicating that the cell death 

is not through the death receptor-mediated pathway involving caspase-8 activation (Figure 3.5C). 

5-florouracil served as the positive control for p53 dependent apoptotic pathway (Sun et al. 

2007).  
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Figure 3.5 Apoptotic induction by the synergistic combination of resveratrol (RSV) and grape 

seed extract (GSE) involves pathways downstream of p53. HCT-116 p53 +/+ and p53 -/- cells 

were treated with RSV, GSE and combination of RSV and GSE. C1 and C2 have RSV (27 µM 
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and 25 µM) and GSE (35 and 51 µg/ml), respectively. Whole cell lysates were analyzed by 

western blotting for (A) pp53, (B) Bax, Bcl-2 as described in materials and methods. Blots were 

incubated with the indicated antibodies. Similar results were obtained in duplicate experiments. 

(C) HCT-116 p53 +/+ cells were treated with cell permeable caspase-3 (50 µM) and caspase-8 

(50 µM) inhibitors for 45 minutes followed by RSV and/or GSE and apoptosis was detected 

using cell death detection ELISA assay. 5-florouracil (5-FU) served as the positive control. RSV 

100 and GSE 100 also served as positive control based on earlier reports (Park et al. 2001; Roy 

et al. 2005). Results were expressed as mean ± SE for three replicate experiments for each 

treatment group. * indicates significant suppression compared to control (no inhibitor). Means 

that differ by a common letter (a, b, c, d) differ (P ≤ 0.05).  

 

3.4.7 N-Acetyl Cysteine (NAC) Inhibited RSV-GSE Combination Induced Apoptosis in 

HCT-116 P53 +/+ Cells  

 HCT-116 p53 +/+ cells were pre-incubated with NAC (2 mM), a free radical scavenger 

and/or catalase (CAT; 100 U/ml), a hydrogen peroxide radical scavenger, for 1 h and then treated 

with RSV-GSE combination for a total time of 24 h. Both proliferation and apoptosis were 

measured using WST-1 and caspase-glo 3/7 assays, respectively. In the presence of NAC, RSV-

GSE combination induced proliferation arrest, however apoptosis was suppressed. However, 

CAT could suppress neither proliferation arrest nor apoptosis induced by the combination 

(Figure 3.6A, 3.6B). 
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3.4.8 RSV-GSE Combination is Non-Toxic to Normal Cells 

 To know the effect of RSV-GSE combination on normal cells, CRL-1831 normal colon 

epithelial cells were treated with the RSV-GSE combination for 24 h and assessed for 

proliferation and apoptosis using WST-1 and caspase-glo 3/7 assays, respectively. RSV-GSE 

combination induced neither proliferation arrest nor apoptosis elevation suggesting that the 

combination is effective against cancer cells with no adverse action on normal cells (Figure 3.6C, 

3.6D) in vitro. 
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Figure 3.6 N-acetyl cysteine (NAC) suppresses resveratrol (RSV)-grape seed extract (GSE) 

combination’s anti-proliferative (A) and pro-apoptotic (B) properties. HCT 116 p53+/+ and p53 -

/- cells were pre-incubated with NAC (2 mM) or catalase (100 U/ml) for 1 hr and then subjected 
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to the RSV-GSE combination (24 h treatment in total) and assessed for proliferation and 

apoptosis using WST-1 and caspase-glo 3/7 assay respectively. C-F: RSV-GSE combination is 

non-toxic to normal cells, but showed anti-proliferative and pro-apoptotic properties even in the 

presence of insulin like growth factor-1 (IGF-1) in HCT-116 cells. CRL-1831 normal colonic 

epithelial cells were treated with RSV, GSE alone and in combination and proliferation (48 h) 

(C) and apoptosis (24 h, D) were measured by WST-1 and caspase-glo 3/7 assay respectively. 

HCT-116 p53 +/+ cells were primed to proliferate by incubation with IGF-1 (25 nM) for 10 

minutes followed by RSV and/or GSE. Cell proliferation (E) was measured using WST-1 assay 

48 h after treatment. For apoptosis (F), cells were seeded in 12 well plates pre-treated with IGF-1 

(25 nM) followed by treatment with RSV and/or GSE and apoptosis was measured using cell 

death detection ELISA assay 24 h post treatment. Results were expressed as mean ± SE for three 

replicate experiments for each treatment group. C1 and C2 have RSV (27 µM and 25 µM) and 

GSE (35 and 51 µg/ml), respectively. Means that differ by a common letter (a, b, c, d, e, f for 

p53 +/+ cells and w, x, y, z for IGF-1 treatments) differ (P ≤ 0.05).  

 

3.4.9 RSV-GSE Combination Suppressed Cell Proliferation and Induced Apoptosis Even in 

the Presence Of IGF-1 

Growth stimulatory effects of IGF-1 and the anti-proliferative effects of RSV-GSE 

combinations were investigated using HCT-116 p53 +/+ cells. Our results demonstrated that 

RSV-GSE combinations suppressed colon cancer cell proliferation even when the cells were 

primed to proliferate with IGF-1. After 48 h, IGF-1 (25 nM) treatment elevated HCT-116 cell 

proliferation confirming its growth stimulatory effects (Figure 3.6E). Moreover, pre-incubation 

with IGF-1 (25 nM) for 10 minutes followed by treatment with the combination resulted in 
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suppressed cell proliferation (Figure 3.6E). Induction of apoptosis by the RSV-GSE combination 

in the presence of IGF-1 was analyzed using nucleosomal fragmentation assay. The combination 

treatment induced apoptosis even in the presence of IGF-1 suggesting its role as a potential 

chemopreventive agent even against IGF-1-promoted colon cancers (Figure 3.6F). 

 

3.5 Discussion 

Current strategy of cancer management includes: surgery, radiation therapy and 

chemotherapy, and in occasional instances investigational drug use on a case by case basis. 

However, conventional therapy is associated with many side-effects. Hence, methods are 

designed to improve the efficacy of these treatment modalities or to devise newer ways to treat or 

even prevent cancer are needed. However, most chemoprevention trials with single active 

compounds fail to provide satisfactory results. Epidemiological studies showed that plant based 

diets are associated with reduced risk of developing chronic diseases, such as cancer and 

cardiovascular disease (Liu 2004). Phytochemicals possess potent antioxidant and anti-

proliferative properties (Liu 2003). We previously showed that RSV at concentrations  > 100 µM 

suppressed colon cancer proliferation even in the presence of IGF-1, a mitogenic growth factor, 

by  inhibiting the critical components in the IGF-1R/Wnt signaling pathway, and elevated 

apoptosis (Vanamala et al. 2010). However, in fruits and vegetables, bioactive compounds exist 

as a complex mixture that synergize or complement each other’s chemopreventive/protective 

actions. The results of the present study are in support of such belief since the present study 

showed that suppression of proliferation and elevation of apoptosis in HCT-116 p53 +/+ human 

colon cancer cell lines at 100 µM or higher concentrations of RSV could be accomplished at 25 

µM, when combined with GSE at doses of 35-50 µg/ml (Table 3.1). These results strongly 
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support our hypothesis that combining bioactive compounds like RSV and GSE could reduce the 

dose of either compound while providing similar or better anti-cancer properties in vitro lending 

support to the proposal that combinatorial approach towards colon cancer chemoprevention is a 

feasible approach. RSV and GSE induced apoptosis in a variety of cancer cell lines (Jang et al. 

1997; Agarwal et al. 2002; Banerjee et al. 2002; Bhat and Pezzuto 2002; Laurent et al. 2004; 

Sharma et al. 2004; Kaur et al. 2006; Sexton et al. 2006; Alkhalaf 2007; Engelbrecht et al. 2007; 

Kaur et al. 2008; Athar et al. 2009; Vanamala et al. 2010). Even though synergistic combination 

treatments enhanced apoptosis in both HCT-116 p53 +/+ and p53 -/- cells, at 12 h post treatment, 

apoptosis was more pronounced in p53 +/+ cells compared to p53 -/- cells, suggesting a 

significant role for p53. At 24 h post treatment, both the combinations induced apoptosis only in 

p53 +/+ cells. Involvement of p53 in the enhancement of apoptosis in HCT-116 p53 +/+ by 

RSV-GSE combination was reaffirmed by the use of p53 transcriptional inhibitor pifithrin-α, that 

is known to block p53-dependent transcriptional activation and apoptosis.  

RSV and GSE demonstrated p53 independent and p53 dependent apoptosis alone at high 

concentrations at 24 h time point (Figure 3.2C). RSV when used at > 100 µM effectively 

suppressed proliferation and augmented apoptosis in comparison to the action of GSE when used 

alone or in combination with RSV in HCT-116 p53 -/- cells. These results indicate that RSV at 

higher concentrations works via p53 independent pathways to suppress cell proliferation and 

induce apoptosis. However, in HCT-116 p53 -/- cells, combination of GSE and RSV did enhance 

apoptosis to a small extent possibly via p53 independent pathways indicating that RSV might 

potentiate apoptotic action of GSE independent of p53 status of the cells. Overall, the results are 

still intriguing since the low concentrations of RSV and GSE in C1 and C2 did not induce 

apoptosis individually in p53 +/+ or p53 -/- cells (Figure 3.2C). It should be noted that C1 and 
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C2 did not differ significantly in inducing apoptosis indicating that the potentiating effect of 

RSV is marginal once the GSE concentration reaches 50 µg/ml.  

In the present study, RSV-GSE combination induced apoptosis via activating p53 (pp53), 

elevating Bax and suppressing Bcl-2 (increase in the Bax:Bcl-2 ratio) in p53 +/+ cells, which 

alters mitochondrial membrane permeability. Such altered mitochondrial membrane permeability 

releases cytochrome C into the cytosol (Lomonosova and Chinnadurai 2008; Kang and Reynolds 

2009) that triggers activation of caspase-9, which accelerates apoptosis by activating other 

caspases. It is evident from the results of the present study that caspase-3 inhibitor suppressed 

apoptosis induced by the combination of RSV-GSE while caspase-8 inhibitor had no significant 

effect on apoptosis, suggesting that the cell death is not through the major death receptor-

mediated pathway involving caspase-8 activation.  
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Figure 3.7 Summary of the signaling pathways for resveratrol-grape seed extract (RSV-GSE) 

combination-induced apoptosis. RSV-GSE combination induced apoptosis involves interplay of 

reactive oxygen species (ROS), p53, Bax/Bcl-2 and caspase-3. 

 

Several studies have suggested that cancer chemotherapeutic drugs induce apoptosis of 

tumor cells, in part, by inducing the formation of reactive oxygen species (ROS) (Hou et al. 

2005; Low et al. 2010). The p53 tumor suppressor gene can induce either apoptosis 

or senescence in response to cellular stresses (Shatrov et al. 2000; Macip et al. 2003). ROS 

accumulation and mitochondrial function can contribute to p53-dependent apoptosis and it has 

been shown in multiple studies that ROS inducers like bioactive agents collaborate with p53 to 

influence apoptosis (Tinhofer et al. 2001; Hou et al. 2005; Reddivari et al. 2007; Zhou et al. 
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2008). Recent articles have pointed out the importance of the Bax, Bcl-2 and ROS production in 

tumor cells (Chen and Pervaiz 2007). Bcl-2 overexpression, in particular, has shown to suppress 

apoptosis induced by RSV by a pathway that involves ROS production (Low et al. 2010). Our 

results indicated that N-acetylcysteine, a free radical scavenger and glutathione precursor, 

suppressed apoptosis induced by the RSV-GSE combination. However, catalase, an anti-oxidant 

enzyme that brings about its cytoprotective action by suppressing or neutralizing the toxic 

hydrogen peroxide radicals, could not inhibit the cytotoxic action of RSV-GSE. These results 

indicate that this combination (RSV-GSE) does not bring about its actions by augmenting 

hydrogen peroxide radical formation (Aragon et al. 1992). Since NAC could protect against the 

combination induced apoptosis, the activation of caspase cascade could be linked to the 

generation of ROS (Hou et al. 2005). Our results explain that the pathway that the combination 

induces apoptosis involves an interplay between ROS, p53, Bax/Bcl-2 and caspase-3 (Figure 3.7) 

(Liu et al. 2008; Low et al. 2010). ROS can act via enhancing mitochondrial membrane 

permeability and thus can induce apoptosis via the caspase-3 cascade (Hou et al. 2005). Overall, 

these results are in support that mitochondrial apoptotic pathway is responsible for the observed 

apoptosis in HCT-116 cells.  

Further, RSV-GSE combination did not suppress the proliferation or induce apoptosis of 

normal colon epithelial cell CRL-1831 line indicating that the RSV-GSE combination 

preferentially target cancer cells while sparing their normal counterparts. The exact reason for 

this is not clear but could be due to differential metabolism of bioactive compounds in normal 

and cancer cells (Lu et al. 2001; Potter et al. 2002; Jayaprakasha et al. 2010) that remains to be 

established.  
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The germline adenomatous polyposis coli mutations in colonocytes are highly predictive 

of colon cancer. Hence, the use of RSV-GSE combination that selectively activates p53 to induce 

apoptosis in colon cancer but not in normal cells could be a promising dietary approach in its 

prevention. This is particularly interesting in the light of the known fact that polyps possess 

intact p53 and colon cancers develop from the polyps. Based on these results, it is important to 

pursue the chemopreventive and chemoprotective properties of RSV-GSE synergistic 

combination in both rodent and human models of colon cancer in future studies.  

Members of IGFs family and the IGF-binding proteins (IGFBPs) play a critical role in the 

progression of a variety of cancers during obesity including colon cancer (Dupont et al. 2003). 

Recently we showed that RSV at ≥ 100 µM concentration could effectively suppress IGF-1 

(elevated during obesity) stimulated growth of human colon cancer cell lines via suppression of 

IGF-1R/PI3K/-catenin pathway. IGF-1 binding to IGF-1R stimulates downstream proliferating 

pathways such as the PI3K/Akt (Laurino et al. 2005) and Ras signaling (Desbois-Mouthon et al. 

2001) resulting in increased human colon cancer cell proliferation. RSV could effectively 

suppress IGF-1R levels and downstream PI3K/Akt/beta-catenin signaling. This study, for the 

first time, demonstrated that RSV-GSE combination suppressed IGF-1 stimulated HCT-116 

colon cancer cell proliferation and induced apoptosis suggesting its potential role as a 

chemopreventive agent against colon cancer even in obese subjects.   

In summary, the current study revealed that RSV and GSE act in concert with each other 

in potentiating their anti-cancer properties in human colon cancer cell line HCT-116 via p53 

dependent mechanisms, but not in normal CRL-1831 colon epithelial cells. Thus, these results 

established the molecular basis for the beneficial effect of RSV-GSE combination that is a 

popular dietary supplement. It is possible that the combination of RSV-GSE may result in the 
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formation of a variety of potent bioactive metabolites that possess chemoprotective effect in 

animal/human models at even lower concentration compared to the present in vitro combinations 

used in the study (Tessitore et al. 2000; Banerjee et al. 2002; Li et al. 2002; Vanamala et al. 

2010). However, current knowledge on the effect of RSV-GSE combination is based mainly on 

our in vitro study. In vivo studies are needed to confirm these results, especially in the colon 

using sporadic/spontaneous colon cancer mice models, so that this system can be manipulated for 

the prevention and treatment of colon cancer. 
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CHAPTER IV 

 

PURPLE-FLESHED POTATOES REVERSED HIGH-FAT DIET ELEVATED OXIDATIVE 

STRESS AND INNATE INFLAMMATION MARKERS IN A PIG MODEL. 

 

4.1 Summary 

Intake of anthocyanins and anthocyanin-rich fruits has shown to suppress risk of colon 

inflammation, colon cancer and other chronic diseases. Although consumption of white-fleshed 

potatoes declined, consumption of color-fleshed potatoes, rich in anthocyanins and other 

bioactive compounds, increased by 17 % in the US in 2009-10. This may be partly attributed to 

the putative health benefits of anthocyanins and other bioactive constituents. However, little 

information exists if purple-fleshed potatoes, rich in anti-oxidant and anti-inflammatory 

anthocyanins, even after processing, retain their health benefiting properties in vivo. We 

hypothesized that processed (chipped) purple-fleshed potatoes will retain bioactivity and 

suppress high-fat diet (HFD) elevated oxidative stress/inflammation biomarkers in a pig model. 

We conducted a study, where 40 pigs (12 weeks on HFD, n=8/group) consumed HFD or HFD 

containing 10 or 20 % w/w purple or white-fleshed potato chips for an additional 5 weeks. 

Analytical (UPLC-MS) data on purple and white-fleshed potato chips showed significant 

differences in metabolite profiles between the two cultivars. In the animal study, the purple-

fleshed potato diets had no effect on food intake and weight gain at the end of the study. In the 

distal colon, only the purple-fleshed potato consuming animals (P10) had elevated GSH:GSSG 

ratio (oxidative stress marker, P = 0.05) and lower expression of inflammatory markers (P10 and 

P20; NF-B, P = 0.05; TNF-α, P = 0.05; TLR-2, P = 0.02; and TLR-4, P = 0.02) compared to 
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HFD controls; levels in the white-fleshed potato consuming animals were not significantly 

different from the HFD control animals. Similar results were obtained in the mesenteric fat, as 

only the purple-fleshed potato consuming animals (P10) had greater GSH:GSSG ratio and 

adiponectin expression (P = 0.1) and lower TNF-α expression (P10 and P20, P = 0.05) compared 

to the HFD control animals. Systemic markers of oxidative stress were suppressed in the purple-

fleshed group P10 compared to control. Results of this intervention study suggest that the 

consumption of purple-fleshed potato chips reversed HFD elevated oxidative and inflammatory 

biomarkers in the distal colon, mesenteric fat and the systemic circulation; lending support to the 

health benefits of purple-fleshed potato consumption. 

 

4.2 Introduction 

Consumption of a diet rich in fat and low in anti-oxidants is linked to chronic low-grade 

oxidative stress and inflammation that are conducive for development of disorders like colon 

cancer (Erdelyi, Levenkova et al. 2009). Animals provided with high-fat diet (HFD) have 

demonstrated elevated oxidative stress in various tissues and in systemic circulation (Wisse 

2004, Berg and Scherer 2005, Shoelson, Herrero et al. 2007, Erdelyi, Levenkova et al. 2009). 

Indeed, reactive oxygen species (ROS) production was upregulated in the adipose tissue (and the 

liver) of C57BL/6J mice consuming a HFD (Matsuzawa-Nagata, Takamura et al. 2008). In a 

Western diet consuming mouse model of sporadic colon cancer, oxidative stress and altered 

immune responses occurred long before tumors in the colon (Erdelyi, Levenkova et al. 2009).  

Oxidative stress and inflammatory processes are very well connected as elevated 

oxidative stress can activate inflammatory pathways via the NF-B signaling (Solinas and Karin 

2010). Prolonged or chronic, low grade inflammation in the gut can create a local tissue 
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microenvironment where ROS are released from inflammatory cells. ROS can cause DNA 

damage and elevate risk for colorectal cancer (Pot, Geelen et al. 2010). Studies have shown that 

HFD consuming rodent models have dysregulated gut microbiota with greater numbers of 

harmful bacteria (Kim, Gu et al. 2012) and elevated gut inflammation (Ding, Chi et al. 2010, 

Kim, Gu et al. 2012). HFD induced altered gut bacteria and TLR activation are key elements for 

induction of the innate inflammatory response via triggering signaling cascades including the 

transcription factor NF-B (Takeda and Akira 2004). Indeed, mice consuming HFD had elevated 

colonic inflammation indexed by the elevated expression of pro-inflammatory cytokines, the 

induction of TLR-4, iNOS, COX-2, and the activation of NF-B compared to the control mice 

(Kim, Gu et al. 2012).  

Current body of evidence supports the role of the gut in visceral fat dysfunction (Drouet, 

Dubuquoy et al. 2012). Colonic inflammation and altered gut bacterial diversity results in an 

increase in paracellular permeability of the colon and subsequent translocation of harmful 

bacteria and bacterial products (LPS, flagellin etc.) into the adjacent mesenteric fat (Gambero, 

Marostica et al. 2007, Lam, Mitchell et al. 2011). Indeed, in animal and human models of Crohns 

disease, an inflammatory condition of the colon, the mesenteric fat gets inflamed. Inflamed 

mesenteric fat exhibited elevated pro-inflammatory gene expression and cytokine production, 

adipocyte hypertrophy, leading to macrophage infiltration and activation over time (Gambero, 

Marostica et al. 2007, Maury and Brichard 2010, Lam, Mitchell et al. 2011). The adipose-derived 

cytokines and increased fatty acid flux from the expanded fat mass have been associated to 

systemic dysfunction and feed forward to further exacerbate the intestinal and adipose 

dysfunction – creating a vicious cycle (Lam, Mitchell et al. 2011, Drouet, Dubuquoy et al. 2012).  



 
 

88 
 

Elevated adipose inflammation can contribute to elevated circulating inflammatory 

markers like TNF-α and IL-6 (Arkan, Hevener et al. 2005, Bastard, Maachi et al. 2006, 

Shoelson, Herrero et al. 2007). TNF-α is over expressed in adipose tissue and plays an important 

role in mediating the insulin resistance (Berg and Scherer 2005). In addition, HFD consuming 

animal models had elevated ROS production in the adipose tissue (Matsuzawa-Nagata, 

Takamura et al. 2008), which can damage lipids. In particular, unsaturated fatty acids are 

susceptible to ROS damage leading to formation of reactive intermediates such as 8-isoprostane 

and malondialdehyde, biomarkers in urine/serum for measuring systemic oxidative stress (Apel 

and Hirt 2004).  

Foods abundant in bioactive polyphenols have demonstrated anti-oxidant and anti-

inflammatory properties in multiple models both in vitro and in vivo (Rossi, Serraino et al. 2003, 

Pan, Lai et al. 2009, Chuang and McIntosh 2011). Several studies have demonstrated an 

inhibitory effect of polyphenols on the NF-B activation pathways in intestinal models of 

inflammation (Hogan, Canning et al. 2010, Umesalma and Sudhandiran 2010, Chuang and 

McIntosh 2011, Piberger, Oehme et al. 2011). Most studies, however, have been conducted with 

individual standard polyphenols or plant extracts. However epidemiological studies supporting 

an anti-inflammatory role for polyphenols are on whole foods including fruits and vegetables, 

that contain complex mixtures of polyphenols (Romier-Crouzet, Van De Walle et al. 2009). 

The potato (Solanum tuberosum L.) is the world’s 4th largest food crop with over 300 

million tons of global production per year. The potato is the most consumed vegetable crop in 

the US with per capita consumption of approximately 52 kg/person/year (NPC 2010). Due to its 

high consumption, it is considered as the third largest source of phenolic compounds in the 

human diet after oranges and apples (Chun, Kim et al. 2005). Purple-fleshed potatoes are rich in 
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phenolic acids and anthocyanins. We and others have shown that phenolic acids are present at 

amounts 5-12 times higher in purple-fleshed potatoes compared to white-fleshed potatoes 

(Rodriguez-Saona, Giusti et al. 1998, Brown 2005, Madiwale, Reddivari et al. 2011, 

Radhakrishnan, Reddivari et al. 2011). Recently, we reported that purple-fleshed potatoes were 

more efficient than white- or yellow-fleshed potatoes in suppressing proliferation and elevating 

apoptosis in early (HCT-116) and advanced (HT-29) stage human colon cancer cell lines 

(Madiwale, Reddivari et al. 2011, Madiwale, Reddivari et al. 2012). However, unlike other 

anthocyanin-rich sources such as blueberries, potatoes are almost always processed before 

consumption (Brown 2005, Walton, Lentle et al. 2006, NPC 2007). Thus, it is important to test if 

processed purple-fleshed potatoes exert anti-oxidant and anti-inflammatory properties in vivo, as 

this aspect has received little consideration.  

To determine extent to which purple-fleshed potatoes, even after chipping, suppress HFD 

elevated oxidative stress and inflammatory markers in vivo compared to white-fleshed potato, 40 

pigs (on HFD for 12 weeks; > 130 kg) were provided with HFD and HFD containing 10 or 20 % 

purple or white-fleshed potato chips for additional 5 weeks (n = 8). We hypothesized that dietary 

supplementation with 10-20 % purple-fleshed potato chips will reverse the elevated oxidative 

stress/inflammation biomarkers in the distal colon, mesenteric fat and systemic circulation 

compared to the HFD consuming controls. We used the pig as an animal model due to similar 

nutrient metabolism, and gut anatomy, and physiology to humans (Cooper, Berry et al. 1997, 

Pond and Lei 2000). Evaluation of the anti-oxidant and anti-inflammatory effects of purple-

fleshed potato bioactive compounds in HFD consuming pigs might provide evidence for the 

health benefits of potato consumption and increase market for specialty potato cultivars. 
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4.3 Materials and Methods 

All protocols for the use of animals in this study were approved by both the Colorado 

State University Institutional Animal Care and Use Committee (CSU-IACUC) and the North 

Carolina State University Animal Care and Use Committee. CSU-IACUC Protocol approval 

number 08-318A-03. 

 

4.3.1 Animals 

Forty male pigs, (3 weeks post weaning, breed: SPG), were obtained from Murphy-

Brown LLC (Warsaw, NC) and were individually housed in solid concrete floor indoor pens at 

the North Carolina State University Swine Educational Unit (Raleigh, NC). Pigs were provided 

at 6 weeks age with HFD (C, Table 4.1) for 12 weeks until they are ~130 kg. The animals were 

grouped, so that mean initial body weight was similar among the treatment groups (n = 8 

animals/treatment). Initial average body weight was 133.3 ± 1.2 kg. All the animals completed 

the study and no adverse side effects were reported. 

 

4.3.2 Experimental Diets 

After 12 weeks of consuming HFD, pigs were assigned to one of the 5 iso-caloric high-

fat dietary groups; Control (no potato), and purple- and white-fleshed potato chips at 10 and 20 

% of the diet (w/w). Purple-fleshed potatoes (Purple Majesty) and white-fleshed (Atlantic) 

potatoes were grown at Black Gold Farms (Pearsall, TX), and were chipped and fried in the 

industrial collaborators facility at H. E. B. (San Antonio, TX). We have previously characterized 

the anthocyanin, phenolic acid and anti-oxidant properties of Purple Majesty and Atlantic 

potatoes used in this study (Madiwale 2012). The potato chips were analyzed using proximate 
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analysis (IEH-Warren Laboratory, Greeley, CO) before incorporation into diet to ensure that 

macronutrient composition was similar across the groups. Composition of all the diets is 

presented in Table 4.1. Pigs consumed the experimental diets for 5 weeks (35 days); the feed and 

drinking water were provided ad libitum. Body weight, weight gain and feed intake were 

measured every week during the experimental feeding period.  
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Table 4.1 Composition of diets used in the study. 

 Control Purple Chips White Chips 

Ingredients (%) C P10 P20 W10 W20 

White Corn 72.80 65.80 58.80 65.80 58.80 

Purple-fleshed Potato Chips  0.00 10.00 20.00 0.00 0.00 

White-fleshed Potato Chips  0.00 0.00 0.00 10.00 20.00 

Soybean meal w/o Hulls 15.00 15.00 15.00 15.00 15.00 

Trace Mineral Premix 0.15 0.15 0.15 0.15 0.15 

Salt 0.32 0.32 0.32 0.32 0.32 

NCSU Vit AgPro 0.03 0.03 0.03 0.03 0.03 

Poultry Fat 5.00 3.50 2.00 3.50 2.00 

Dry Fat 5.00 3.50 2.00 3.50 2.00 

Di-Calcium Phosphate 1.00 1.00 1.00 1.00 1.00 

Limestone 0.70 0.70 0.70 0.70 0.70 

Total 100.00 100.00 100.00 100.00 100.00 

Calculated Composition (% unless mentioned) 

Dry Matter 90.5 91.0 91.6 91.0 91.6 

Metabolizable Energy, Cal/kg 3810 3800 3800 3800 3800 

Crude Protein 13.2 13.0 12.8 13.0 12.8 

Lysine 0.64 0.65 0.66 0.65 0.66 
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Methionine 0.47 0.47 0.46 0.47 0.46 

Tryptophan 0.14 0.14 0.14 0.14 0.14 

Threonine 0.49 0.48 0.48 0.48 0.48 

Crude Fat 12.91 12.93 12.95 12.93 12.95 

Calcium 0.60 0.60 0.60 0.60 0.60 

Available Phosphorus 0.23 0.23 0.23 0.23 0.23 

Phosphorous 0.49 0.48 0.48 0.48 0.48 

C: High-fat diet control, P10 and P20 - purple-fleshed potato chips at 10 and 20 % of diet w/w and W10 and W20 - 

white-fleshed potato chips at 10 and 20 % of the diet w/w. 
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4.3.3 Blood, Urine and Tissue Collection 

The animals were euthanized at the end of study using a captive bolt method. At 

termination, jugular vein blood was collected without anticoagulant and serum was stored at −80 

°C for biochemical analysis. Urine was collected at the end of the study in falcon tubes. Once 

collected, urine samples were stored at −20 °C for a day and transferred to −80 °C for long term 

storage until analysis. The distal colon was resected and cleaned with RNAse-free phosphate-

buffered saline. The mucosa was scraped using a glass slide into an RNAse free tube, 

immediately snap frozen in liquid nitrogen, and later transferred to −80 °C for long term storage. 

Mesenteric fat was collected, cleaned with RNAse free phosphate buffered saline, snap frozen in 

liquid nitrogen and stored at −80 °C prior to analysis. 

 

4.3.4 Tissue Oxidative Stress  

Glutathione levels (GSH: reduced and GSSG: oxidized) were measured in the distal 

colon and the mesenteric fat using UPLC/PDA (Waters ACQUITY UPLC H-class system) 

according to the HPLC method of Yilmaz et al (Yilmaz, Keser et al. 2009) with minor 

modifications. In particular, the protocol (solvent flow rate, total run time) was modified for the 

UPLC system using the Waters Empower 3 software. 

 

4.3.5 Real Time Polymerase Chain Reaction 

Real-time PCR analysis was used to measure the gene expression of pro-inflammatory 

and anti-inflammatory markers in the distal colon mucosa and the mesenteric fat. Total RNA was 

extracted using the Phenol-Free Total RNA Purification Kit (Amresco, Solon, OH) and cDNA 

synthesis was carried out using the qScript™ cDNA SuperMix (Quanta Biosciences, 
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Gaithersburg, MD), according to the manufacturer’s instructions. Real-time PCR was performed 

using qPCR SYBR Green Supermix (Quanta Biosciences) on an Illumina Eco instrument (San 

Diego, CA). Messenger RNA expression of genes was calculated using the Eco and Eco Study 

software (Illumina). Primers used for the study are presented in Table 4.2. 
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Table 4.2 Primers used in the manuscript for real time PCR. 

 

 

 

Gene Forward Primer Sequence  Reverse Primer Sequence  Product Length (bp) 

Actin GGCCGGGACCTGACCGACTA GGAGGAGGAGGAGGCGGCC 162 

Adiponectin GCGAATGGGCATGTTAGGGA AAATCCGGGGCAGAAAAGGA 107 

COX-2 CATTGATGCCATGGAGCTGTA CTCCCCAAAGATGGCATCTG 70 

IL-10 TGATGGGGAGGATATCAAGG TGATGGGGAGGATATCAAGG 150 

NF-B CCCATGTAGACAGCACCACCTATGAT ACAGAGGCTCAAAGTTCTCCACCA 132 

TGF-β CGAGCCCTGGATACCAACTA AGGCTCCAGATGTAGGGACA 164 

TLR-2 CAGTCCGGAGGTTGCATATT ATGCTGTGAAAGGGAACAGG 137 

TLR-4 ATGGCCTTTCTCTCCTGCCTGA AGGTCCAGTATCTTGACTGATGTGGG 139 

TNF-α ATGGATGGGTGGATGAGAAA TGGAAACTGTTGGGGAGAAG 151 
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4.3.6 Systemic Oxidative Stress Markers 

Serum samples were analyzed for oxidative stress markers, 8-isoprostane – free and 

bound, and malondialdehyde using an ELISA and Thiobarbituric Acid Reactive Substances 

(TBARS) assay kit, respectively, following the manufacturer’s protocol (Cayman, Ann Harbor, 

MI). The oxygen radical absorbance capacity (ORAC) value of serum was calculated based on 

the previously published method (Huang, Ou et al. 2002). Urine samples were analyzed for 

oxidative stress markers 8-isoprostane and DNA adduct 8-hydroxy-2′-deoxyguanosine (8-

OHDG) following manufacturer’s protocol (Cayman). Urinary concentrations were normalized 

to creatinine levels measured using a colorimetric kit (Cayman).  

 

4.3.7 Serum Inflammatory Markers 

Inflammatory markers, TNF-α (Swine ELISA, Life Technologies, Grand Island, NY), 

leukotriene B4 (LTB4, Cayman), lipopolysaccharide (LPS, Limulus Amebocyte Lysate Kit, 

Lonza, Basel Switzerland) and acute phase C-reactive protein (CRP ELISA; Life Diagnostics, 

West Chester, PA) were analyzed in the serum based on the manufacturer’s protocols.  

 

4.3.8 Statistical Analysis 

Completely randomized block design was used in this study. Individual pigs were the 

experimental unit. Data were analyzed using the MIXED procedure in SAS (SAS Institute, Cary, 

NC). P ≤ 0.05 was considered significant. The results were expressed as means ± S.E. for each 

treatment group. 
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4.4 Results 

4.4.1 UPLC-MS Profile of Phenolic Compounds in Potato Chips 

Typical total ion chromatograms (TIC, Figure 4.1A) illustrated differences between the 

purple (top panel) and the white-fleshed potato chip extracts. From the LC-MS analysis, a total 

of 2352 ions characterized by a mass to charge ratio and a retention time were represented as 

points on the volcano plot (Figure 4.1B). Each ion on this graph is represented according to its P-

value (y-axis) and fold change (x-axis). Features/ions located on the right indicate those which 

are abundant in purple-fleshed potato; and those on the left indicate that are abundant in the 

white-fleshed potato. We gated the graph (in red lines) using a P value ≤ 0.01 to be significantly 

altered and fold change of 4 between two varieties. Thus, 466 features were significantly higher 

in purple-fleshed potato compared to white-fleshed potato, whereas only 62 features were higher 

in the white-fleshed potato (P value ≤ 0.01, fold change > 4). 825 features were not significantly 

different between the two potato varieties whereas 999 features were significantly different (P ≤ 

0.01) but fold change difference between varieties was ≤ 4. Thus, we observed that number of 

significant features with higher abundance was more in the purple-fleshed potato compared to 

the white-fleshed potato. Peak annotations using METLIN metabolite database were presented in 

Table 4.3. Phenolic acids (chlorogenic acid and p-coumaric acid) were detected in both white 

and purple-fleshed varieties; however, the relative abundance was higher in the purple-fleshed 

potato. Glycosylated anthocyanins were only detected in the purple-fleshed potato and are 

presented in Table 4.3. 
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Figure 4.1A Typical total ion chromatograms from LC/MS analysis of purple- (top) and white- 

(bottom) fleshed potato phenolic extracts. 

 

Figure 4.1B Volcano plot of the 2352 features (mass by charge ratio/retention time) obtained 

after comparison of the UPLC/MS metabolite profile between purple-(Purple Majesty) and 
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white-(Atlantic) fleshed potato varieties. Each point (ion) on this graph is represented according 

to its –Log10 (P value) on the y-axis and Log2 (fold change) on the x-axis. The plot was gated 

(red lines) using a P value ≤ 0.01 and a fold change ≥ 4 to display differences between the two 

varieties. Numbers in red circles indicate number of features in each gated areas.  
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Table 4.3 Phenolic and anthocyanin composition of potato chips by UPLC/MS 

 

Compound Identity Molecular Ion M+ (m/z) Retention Time (minutes) White-fleshed Potato Chips Purple-fleshed Potato Chips 

Phenolic Acids 

P-coumaric acid 165.1 5.55 527.5 ± 41.9 544.5 ± 23.2 

Chlorogenic acid 355.1 6.08 6543.5 ± 35.9 15176.6 ± 73.9 

Anthocyanins 

Pet-3-rut-5-glc 787.3 5.79 0.0 1578.6 ± 105.7 

Mal-3-rut-5-glc 801.3 6.19 0.0 237.5 ± 14.8 

Cya-3-O(6-O-malonyl-β-D-glc) 535.1 6.37 0.0 691.1 ± 3.2 

Peo-3-(p-coum)-isophoro-5-glc 933.3 7.26 0.0 2729.2 ± 275.7 

Peo-3-rut-5-glc 771.3 7.80 0.0 2871.1 ± 29.9 

Pet-3-(p-coum)-rut-5-glc 933.3 7.92 0.0 28748.5 ± 235.7 

Peo-3-caffeyl-rut-5-glc 933.3 8.03 0.0 27215.4 ± 2295.1 

Pel-3-(p-coum)-rut-5-glc 887.3 8.11 0.0 80.8 ± 5.4 

Pel-3-(4'''-ferul-rut)-5-glc 917.3 8.15 0.0 1569.3 ± 142.7 

Peo-3-(p-coum)-rut-5-glc 917.3 8.21 0.0 1810.2 ± 135.2 

Mal-3-(p-coum)-rut-5-glc 947.3 8.31 0.0 2707.4 ± 204.4 

The compounds are reported as the area under the curve per gram dry weight. Values are presented as the means ± S.E. of 6 replicates. 
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4.4.2 Physical Parameters  

Initial body weight of pigs did not differ among treatments. There were no significant 

differences in overall feed intake and overall weight gain among four treatment groups at week 5 

(C, P10, P20 and W10), however, W20 group had lower overall feed intake and weight gain 

compared to control (P ≤ 0.05, Table 4.4). However, by week 5, there were no significant 

differences in body weight, weight gain or feed intake among the 5 treatment groups. It should 

be noted that, overall feed conversion ratio, weight gain/feed consumed, did not differ among the 

five groups of animals at the end of the study (0.3 ± 0.1 for all groups, Appendix I). No 

significant differences were observed among treatment groups in back-fat thickness (Appendix 

I). All the 40 animals completed the study, and no adverse side effects/infections were reported. 
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Table 4.4 Growth performances (body weight, weight gain and feed intake) of pigs consuming experimental diets during the 5 week 

feeding period. 

Dietary Group Week 0 Week 1 Week 2 Week 3 Week 4 Week 5  

 Body Weight (kg)  

C 134.5 ± 2.9a 140.1 ± 3.3a 145.8 ± 3.7a 151.0 ± 4.1a 153.6 ± 3.9a 158.6 ± 4.0a  

P10 133.6 ± 2.1a 139.7 ± 2.2a 143.6 ± 2.4a 150.0 ± 2.4a 154.0 ± 2.3a 157.7 ± 2.1a  

P20 133.2 ± 2.6a 133.9 ± 2.8b 139.8 ± 3.1ab 144.8 ± 2.4a 151.6 ± 3.2a 155.5 ± 3.5a  

W10 132.3 ± 3.0a 137.6 ± 3.2ab 141.2 ± 3.6ab 146.4 ± 3.1a 150.1 ± 3.1a 153.8 ± 3.2a  

W20 132.8 ± 2.8a 132.4 ± 3.5b 134.6 ± 4.3b 143.6 ± 4.2a 147.1 ± 3.7a 150.0 ± 3.4a  

 Average Daily Gain (kg/d) Overall Weight 

 Gain (kg/d) 

C  0.8 ± 0.1a 0.8 ± 0.1a 0.7 ± 0.1a 0.4 ± 0.1a 0.7 ± 0.1a 0.7 ± 0.0a 

P10  0.9 ± 0.1a 0.6 ± 0.1ab 0.9 ± 0.1a 0.6 ± 0.1ab 0.5 ± 0.1a 0.7 ± 0.0a 

P20  0.1 ± 0.3b 0.8 ± 0.1a 0.7 ± 0.2a 1.0 ± 0.2b 0.6 ± 0.1a 0.6 ± 0.0ab 

W10  0.8 ± 0.1a 0.5 ± 0.1ab 0.7 ± 0.1a 0.5 ± 0.1a 0.5 ± 0.1a 0.6 ± 0.0ab 

W20  -0.1 ± 0.3b 0.3 ± 0.2b 1.3 ± 0.2b 0.5 ± 0.2a 0.4 ± 0.1a 0.5 ± 0.1b 
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 Average Daily Feed Intake (kg/d) Overall Feed  

Consumed (kg/d) 

C   2.8 ± 0.1a 2.4 ± 0.1a 2.6 ± 0.1a 2.1 ± 0.1a 1.9 ± 0.1a 2.4 ± 0.1a 

P10  2.5 ± 0.2a 2.2 ± 0.1ab 2.6 ± 0.1a 2.2 ± 0.1a 2.0 ± 0.1a 2.3 ± 0.1a 

P20  1.3 ± 0.3b 2.1 ± 0.2ab 2.6 ± 0.1a 2.5 ± 0.2a 2.1 ± 0.1a 2.1 ± 0.1ab 

W10  2.1 ± 0.3a 2.0 ± 0.1ab 2.4 ± 0.1a 2.0 ± 0.1a 1.7 ± 0.1a 2.1 ± 0.1ab 

W20  1.1 ± 0.3b 1.8 ± 0.3b 2.3 ± 0.2a 2.1 ± 0.1a 1.9 ± 0.1a 1.8 ± 0.1b 

Data are presented as means ± S.E. Means in columns (within a week between treatment groups) that differ by a common letter (a, b) differ 

(P ≤ 0.05). C: High-fat diet control, P10 and P20 - purple-fleshed potato chips at 10 and 20 % of diet w/w and W10 and W20 - white-

fleshed potato chips at 10 and 20 % of the diet w/w. 
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4.4.3 Colonic GSH:GSSG Ratio  

Glutathione is an intracellular anti-oxidant in cells. Glutathione exists in two forms 

reduced (GSH) and oxidized (GSSG). When cells are exposed to increased levels of oxidative 

stress, GSSG accumulates and the ratio of GSH to GSSG decreases. Therefore, the determination 

of the GSH:GSSG ratio is a useful indicator of oxidative stress in animal tissues (Owen and 

Butterfield 2010). We measured GSH:GSSG ratio in the distal colon of the animals. The animals 

consuming HFD for the entire duration of the study (C) had lower GSH:GSSG ratio compared to 

animals in the potato groups. GSH:GSSG ratio was significantly higher only in the animals 

consuming purple-fleshed potato chips at 10 % (P10) compared to the HFD control (P = 0.05, 

Figure 4.2). This suggests that the color of the potato and the supplementation levels are 

important considerations to suppress HFD induced oxidative stress indexed by glutathione redox 

ratio in the distal colon. 

 

Figure 4.2 Glutathione (GSH-reduced and GSSG-oxidized) were measured in the distal colon 

using UPLC/PDA. Results were expressed as mean ± S.E. for 7-8 animals in each treatment 

group. Means that differ by a common letter (a, b) differ (P ≤ 0.05). C, high-fat diet control, 
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letters P and W indicate the chipped purple and white-fleshed potato diets and the numbers 10 

and 20 indicate 10 and 20 % potato supplementation in the diet (w/w).  

 

4.4.4 Colonic Inflammatory Markers 

We measured expression of a panel of innate inflammatory markers in distal colon 

mucosa using qPCR. Relative expression of the pro-inflammatory markers including NF-B, 

TNF-α, TLRs 2 and 4 were suppressed, irrespective of dosage, only in the purple-fleshed potato 

diet groups compared to the animals on HFD control (NF-B, P = 0.05; TNF-α, P = 0.05; TLR-

2, P = 0.02; and TLR-4, P = 0.02). The relative expression of TLR-2 and TLR-4 in the white-

fleshed potato diet group were not statistically significant compared to HFD control or the 

purple-fleshed potato diet group (Figures 4.3 A-C). We measured relative expression of anti-

inflammatory cytokines IL-10 and TGF-β in the distal colon mucosa of these animals. There 

were no significant differences among groups (Figure 4.3 D).  

 

Figure 4.3A Relative expression of TLR-4 and NF-кB as measured using real time PCR in the 

distal colon mucosa. Results were expressed as mean ± S.E. for 7-8 animals in each treatment 

group. Means that differ by a common letter (a, b) differ (P ≤ 0.05). C, high-fat diet control, 
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letters P and W indicate the chipped purple and white-fleshed potato diets and the numbers 10 

and 20 indicate 10 and 20 % potato supplementation in the diet (w/w).  

 

Figure 4.3B Relative expression of TNF-α and COX-2 as measured using real time PCR in the 

distal colon mucosa. Results were expressed as mean ± S.E. for 7-8 animals in each treatment 

group. Means that differ by a common letter (a, b) differ (P ≤ 0.05). C, high-fat diet control, 

letters P and W indicate the chipped purple and white-fleshed potato diets and the numbers 10 

and 20 indicate 10 and 20 % potato supplementation in the diet (w/w).  

 

Figure 4.3C Relative expression of TLR-2 as measured using real time PCR in the distal colon 

mucosa. Results were expressed as mean ± S.E. for 7-8 animals in each treatment group. Means 

that differ by a common letter (a, b) differ (P ≤ 0.05). C, high-fat diet control, letters P and W 
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indicate the chipped purple and white-fleshed potato diets and the numbers 10 and 20 indicate 10 

and 20 % potato supplementation in the diet (w/w).  

 

Figure 4.3D Relative expression of IL-10 and TGF-β as measured using real time PCR in the 

distal colon mucosa. Results were expressed as mean ± S.E. for 7-8 animals in each treatment 

group. Means that differ by a common letter (a, b) differ (P ≤ 0.05). C, high-fat diet control, 

letters P and W indicate the chipped purple and white-fleshed potato diets and the numbers 10 

and 20 indicate 10 and 20 % potato supplementation in the diet (w/w).  

 

4.4.5 Mesenteric Fat GSH:GSSG Ratio 

As a marker for oxidative stress, we measured GSH:GSSG ratio in the mesenteric fat of 

the animals. Only the purple-fleshed potato consuming animals, P10 group, tended to have 

higher mesenteric fat GSH:GSSG ratio compared to the HFD controls (P = 0.1). GSH:GSSG 

ratio in animals in the white-fleshed potato groups were not significantly different compared to 

animals on HFD control or the purple-fleshed potato group P20 (Figure 4.4).  



 
 

109 
 

 

Figure 4.4 Glutathione (GSH-reduced and GSSG-oxidized) were measured in the mesenteric fat 

using UPLC/PDA. Results were expressed as mean ± S.E. for 7-8 animals in each treatment 

group. Means that differ by a common letter (a, b) differ (P ≤ 0.05). C, high-fat diet control, 

letters P and W indicate the chipped purple and white-fleshed potato diets and the numbers 10 

and 20 indicate 10 and 20 % potato supplementation in the diet (w/w).  

 

4.4.6 Mesenteric Fat Inflammatory Markers 

We measured relative expression of the innate inflammatory markers in the mesenteric 

fat. Only the animals consuming purple-fleshed potato (P10 and P20) had suppressed TNF-α (P 

= 0.05) and numerically lower NF-B and TLR-4 (P ≤ 0.15) expression in the mesenteric fat 

compared to the HFD control animals (Figure 4.5 A, 4.5 B). Mesenteric fat expression of TNF-α, 

NF-B and TLR-4 in the animals consuming white-fleshed potato diet W10 was similar to the 

purple-fleshed potato groups (Figure 4.5 A, 4.5 B). 

 Expression of adiponectin, an anti-inflammatory adipokine and an insulin sensitizer, was 

elevated in the purple-fleshed potato consuming animals (P10) compared to animals on the HFD 
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control and the white-fleshed potato (Figure 4.5 A, P ≤ 0.05). In addition, expression of anti-

inflammatory cytokines IL-10 and TGF-β were higher in the animals consuming purple-fleshed 

potato P10 compared to the animals on the white-fleshed potato diets, however, were not 

significantly different from HFD control group (Figure 4.5 C, P ≤ 0.05). 

 

Figure 4.5A Relative expression of TNF-α and adiponectin as measured using real time PCR in 

the mesenteric fat. Results were expressed as mean ± S.E. for 7-8 animals in each treatment 

group. Means that differ by a common letter (a, b) differ (P ≤ 0.05). C, high-fat diet control, 

letters P and W indicate the chipped purple and white-fleshed potato diets and the numbers 10 

and 20 indicate 10 and 20 % potato supplementation in the diet (w/w).  

 

Figure 4.5B Relative expression of TLR-4 and NF-B as measured using real time PCR in the 

mesenteric fat. Results were expressed as mean ± S.E. for 7-8 animals in each treatment group. 
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Means that differ by a common letter (a, b) differ (P ≤ 0.05). C, high-fat diet control, letters P 

and W indicate the chipped purple and white-fleshed potato diets and the numbers 10 and 20 

indicate 10 and 20 % potato supplementation in the diet (w/w).  

 

Figure 4.5C Relative expression of IL-10 and TGF-β as measured using real time PCR in the 

mesenteric fat. Results were expressed as mean ± S.E. for 7-8 animals in each treatment group. 

Means that differ by a common letter (a, b, c) differ (P ≤ 0.05). C, high-fat diet control, letters P 

and W indicate the chipped purple and white-fleshed potato diets and the numbers 10 and 20 

indicate 10 and 20 % potato supplementation in the diet (w/w).  

 

4.4.7 Systemic Oxidative Stress Markers 

Serum 8-isoprostane (8IP) concentrations (pg/ml) were lower in both purple-fleshed 

potato diet (P10; P ≤ 0.03, P20; P ≤ 0.04) consuming groups compared to HFD control (Figure 

4.6). Serum concentration (µmol/L) of MDA, a lipid peroxidation marker, tended to be 

suppressed by the P10 diet compared to HFD control (Figure 4.6, P ≤ 0.07 for P10). There was a 

significant correlation between MDA and 8IP (P ≤ 0.03; r = 0.54). However, there were no 

significant differences in urinary concentrations of 8IP or DNA adduct 8-hydroxy-2′-
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deoxyguanosine among the treatment groups (Appendix II). Potato consumption did not 

significantly elevate serum total anti-oxidant status (Appendix II).  

 

Figure 4.6 8-isoprostane was measured using ELISA following manufacturers protocol 

(Cayman). Malondialdehyde was measured using a colorimetric TBARS assay (Cayman). TNF-

α was measured in porcine serum using ELISA following manufacturers protocol (Life 

Technologies). Results were expressed as mean ± S.E. for 7-8 animals in each treatment group. 

Means that differ by a common letter (a, b) differ (P ≤ 0.05). C, high-fat diet control, letters P 

and W indicate the chipped purple and white-fleshed potato diets and the numbers 10 and 20 

indicate 10 and 20 % potato supplementation in the diet (w/w).  
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4.4.8 Serum Inflammatory Markers 

Serum TNF-α concentration was lower in purple-fleshed potato diet (P ≤ 0.05) 

consuming animals compared to HFD control. Even the white-fleshed potato consuming 

animals, W10, had lower TNF-α concentration (P ≤ 0.05) compared to HFD control animals 

(Figure 4.6). However, there were no significant differences among treatments in serum 

concentrations of other inflammatory markers including C-reactive protein, lipopolysaccharide, 

and the eicosanoid LTB4 (Appendix II) among the treatment groups.  

 

4.5 Discussion  

Our results demonstrate that processed purple-fleshed potato supplementation in the diet 

of the HFD consuming animals reversed the elevated oxidative stress and inflammation 

biomarkers in the distal colon, mesenteric fat and systemic circulation, compared to HFD 

controls. 

We measured the differences in the phenolic profile between white and purple-fleshed 

potato chips using UPLC/MS. In the volcano plot (Figure 4.1B), over 400 features were higher in 

purple-fleshed potato compared to white-fleshed potato, whereas only 62 features were higher in 

the white-fleshed potato (P value ≤ 0.01, fold change > 4). This shows that the white-fleshed 

potatoes have certain phenolic compounds in higher abundance over the purple-fleshed cultivars 

although the number is significantly less. Moreover, from table 4.1, it is evident that both purple- 

and white-fleshed potatoes retained phenolic acids post processing into chips. Anthocyanins, 

however, were only present in the purple-fleshed cultivars. 
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4.5.1 Purple-fleshed Potato Reversed Colonic and Mesenteric Fat Oxidative Stress 

(GSH:GSSG Ratio) in HFD Consuming Animals. 

The GSH and GSH disulfide (GSSG) systems play a critical role in determining 

intracellular redox balance and antioxidant function. GSH has a central role as a tissue 

antioxidant and its oxidative product GSSG, is reduced back to GSH by GSSG reductase. GSH 

in the gut lumen is required for normal intestinal function because its antioxidant functions 

protect the lumen from damage by ROS (Benton, Liang et al. 2012). Depletion of GSH can lead 

to degeneration of colonic epithelial cells in mice and is also associated with upregulated levels 

of pro-inflammatory cytokines (Haddad 2011). Indeed, studies in animal models showed that 

intestinal ischemia, radiation injury, or infection is associated with a decrease in GSH in tissues 

and associated organ dysfunction (Holmes, Yong et al. 1998, Benton, Liang et al. 2012). 

Considering the apparent role of oxidative stress in inflammatory conditions of the colon, and the 

importance of GSH to the integrity of the colon (Holmes, Yong et al. 1998), we measured both 

GSH and GSSG in the distal colon using a highly sensitive UPLC/PDA method (Yilmaz, Keser 

et al. 2009). Our results demonstrate that only the consumption of purple-fleshed potato (P10) 

suppressed distal colonic oxidative stress as measured using GSH:GSSG ratio compared to HFD 

control (Figure 4.2).  

The adipose tissue is subjected to increased oxidative stress (Berg and Scherer 2005) in 

HFD consuming animal models (Charradi, Elkahoui et al. 2013). Elevated ROS seen in 

hypertrophied adipose tissue is accompanied by a decrease in mRNA expression levels and 

activities of antioxidant enzymes such as glutathione peroxidase (GPX), Cu/Zn superoxide 

dismutase (Cu/Zn SOD), and catalase, which are essential for homeostasis of the redox state and 

are induced to detoxify ROS when cells are exposed to oxidative stress. GSH is an essential 
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factor for the enzymatic function of GPXs on the reduction reaction and also acts as an 

antioxidant itself to scavenge ROS. The regulatory systems of intracellular GSH content and 

GSH/GSSG ratio are not well known in the adipose tissue, however as GSH itself is an 

antioxidant, accumulation of GSH will protect against ROS (Kobayashi, Matsuda et al. 2009). 

Our results suggest that in the mesenteric fat, the animals consuming purple-fleshed potato group 

P10 tended to have elevated GSH:GSSG ratio compared to the HFD controls (P = 0.1, Figure 

4.4). Thus, unlike the distal colon, in the mesenteric fat, purple-fleshed potato consumption 

provides only a modest anti-oxidant benefit as measured using GSH:GSSG ratio in HFD 

consuming pigs. 

 

4.5.2 Purple-fleshed Potato Reversed Colonic and Mesenteric Fat Inflammatory Markers 

in HFD Consuming Animals. 

HFD has shown to cause changes in the gut bacterial population – leading to elevated 

lipopolysaccharide (LPS) induced toll like receptor-4 (TLR4) activation in the colon (Li, Lelliott 

et al. 2008). Saturated fatty acids, typically present in Western diets, can activate TLRs directly 

and leading to innate inflammatory response not only in the colon, but also in the adipose tissue 

(Chait and Kim 2010, Maury and Brichard 2010). TLR activation is a key element for induction 

of the innate inflammatory response via triggering downstream signaling cascades including the 

transcription factor NF-B (Takeda and Akira 2004). Indeed, studies have shown elevated 

expression of both TLR-2 and TLR-4 in the colonic mucosa of children with inflammatory 

bowel disease (Szebeni, Veres et al. 2008); mice lacking TLR-4 were protected from HFD 

induced colonic inflammation and obesity (Kim, Gu et al. 2012). Thus, we measured expression 

of TLR-2 and TLR-4 in the colonic mucosa in these animals.  
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In our study, only the purple-fleshed potato consuming animals had lower relative 

expression of TLR-2 and TLR-4 compared to the HFD control. There were no significant 

differences among the white-fleshed potato groups and the HFD controls (Figure 4.3 A, C). We 

measured relative expression of TLR-4 in the proximal colon and ileum mucosa of these animals 

in both studies. We did not observe any significant differences in the relative expression of TLR-

4 among the treatment groups (Appendix III). In addition, we did not see any significant 

alterations in the TLR-4 expression in the mesenteric fat (Figure 4.5 B). 

We measured relative expression of a broad panel of innate inflammatory mediators in 

the distal colon mucosa and mesenteric fat of these animals. Only the animals consuming purple-

fleshed potato supplemented diets had significantly lower distal colonic expression of NF-B 

and TNF-α compared to the HFD controls. Levels in the white-fleshed potato group did not 

differ significantly compared to the HFD control (Figure 4.3 A-C). This is in concert with earlier 

studies in colitis models, where anthocyanins have shown amelioration of experimental colitis 

(Piberger, Oehme et al. 2011, Wu, Xu et al. 2011). In particular, bilberry anthocyanins (Piberger, 

Oehme et al. 2011) in mice suppressed intestinal inflammation in acute and chronic DSS-colitis 

with significant suppression of TNF-α and IFN-γ.   

Since under physiological normal conditions a balance is maintained between pro- and 

anti-inflammatory indices, we measured relative expression of anti-inflammatory cytokines IL-

10 and TGF-β in the distal colon mucosa of these animals. There were no differences in the 

relative expression of anti-inflammatory cytokines; TGF-β and IL-10, among the treatment 

groups in the distal colon mucosa (Figure 4.3 D). Results suggest that the consumption of purple-

fleshed potatoes reversed elevated distal colonic inflammatory markers in HFD consuming 

animals. White-fleshed potato consumption, in the short duration of the study could not reverse 
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the detrimental effects of HFD. We measured expression of NF-B and TNF-α in the proximal 

colon and ileum mucosa of these animals. We did not detect any significant difference among the 

animals consuming potato diets compared to the HFD control (Appendix III). 

Most adipokines with pro-inflammatory properties (e.g. TNF-α) are overproduced with 

increasing adiposity, while some anti-inflammatory adipokines like adiponectin are decreased 

(Berg and Scherer 2005, Maury and Brichard 2010). This dysregulation of adipokine production 

may promote risk for chronic diseases (Berg and Scherer 2005). Our results show that, the 

purple-fleshed potato consuming animals had lower mesenteric fat expression of TNF-α, a 

critical pro-inflammatory cytokine (Figure 4.5 A). In addition, expression of adiponectin was 

elevated in the P10 group compared to the HFD controls and the white-fleshed potato groups 

(Figure 4.5 A). However, there were no significant differences in NF-B expression in the 

mesenteric fat (Figure 4.5 B). Results demonstrate only a marginal beneficial effect of purple-

fleshed potato consumption on oxidative stress and inflammatory markers in the mesenteric fat. 

We measured expression of IL-10 and TGF-β in the mesenteric fat of these animals. The 

white-fleshed potato groups had the numerically lowest expression levels even when compared 

to the HFD controls. The animals in the P10 group had significantly elevated IL-10 and TGF-β 

expression compared to the white-fleshed potato consuming groups, however, were not different 

from the HFD controls (Figure 4.5 C).  

 

4.5.3 Purple-fleshed Potato Reversed Systemic Oxidative Stress Markers in HFD 

Consuming Animals. 

F2 isoprostanes are prostaglandin-F2-like compounds formed by oxidation of arachidonic 

acid in the cell membrane via non-enzymatic (COX-2 independent) pathway. Concentrations of 
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8-isoprostane, one of the more prevalent F2 isoprostanes, in the plasma/serum and urine are 

regarded as one of the best indices of lipid peroxidation, and oxidative stress that are currently 

available (Montuschi, Barnes et al. 2004). Systemic 8-isoprostane concentrations are elevated in 

high-fat diet fed mice (Sandu, Song et al. 2005), and is an important oxidative stress biomarker 

in chronic diseases (Schwedhelm, Bartling et al. 2004, Kaviarasan, Muniandy et al. 2009).  

In our study, we measured both free and bound 8-isoprostane in the serum, and urine of 

the HFD consuming pigs. Both the purple-fleshed potato diets suppressed serum 8-isoprostane 

concentrations compared to HFD control. Serum concentrations of 8-isoprostane in white-

fleshed potato group were not significantly different from HFD control suggesting benefits of 

purple-fleshed potato consumption (Figure 4.6). However, no significant differences were seen 

in urinary 8-isoprostane concentrations among the treatments.  

To confirm suppression of oxidative stress, we measured MDA, which is an oxidative 

stress biomarker in systemic circulation and in tissue, used for over 30 years (Lykkesfeldt 2007). 

MDA is mainly produced in biological samples via peroxidation of polyunsaturated fatty acids 

with two or more methylene-interrupted double bonds or by enzymatic processes from various 

prostaglandins (Del Rio, Stewart et al. 2005). MDA is an important marker to measure systemic 

oxidative stress and is used in many studies employing dietary interventions in high-fat diet 

consuming animal models (Meng, Zhu et al. 2011, He, Wang et al. 2012). In our study, there was 

only a tendency for MDA to be suppressed in the animals consuming purple-fleshed potato diet 

(P10), Figure 4.6). There were no differences among HFD control and the white-fleshed potato 

diets consuming animals. Significant correlation observed between MDA and 8IP (P ≤ 0.03; r = 

0.54) lends support to the anti-oxidant benefits of purple-fleshed potato consumption.  
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4.5.4 Purple-fleshed Potato Suppressed Serum TNF-α in HFD Consuming Animals. 

 TNF-α is a critical pro-inflammatory cytokine and elevated levels of TNF-α in the 

systemic circulation are linked to variety of disorders. TNF-α is linked to heart disease, as it 

works with other pro-inflammatory cytokines, chemokines, and various immune cells towards 

the development of atherosclerotic lesions, the recruitment and activation of inflammatory cells, 

and the initiation of the inflammatory cascade inside the arterial wall. TNF-α also contributes to 

endothelial dysfunction in ischemia/reperfusion injury (Zhang, Xu et al. 2006, Gao, Xu et al. 

2007). TNF-α level in the blood were found to positively correlate with markers of insulin 

resistance in a community-based cohort study (Hivert, Sullivan et al. 2008, Ouchi, Parker et al. 

2011). Blocking TNF- α in mice reduced colorectal carcinogenesis associated with chronic 

colitis (Popivanova, Kitamura et al. 2008) – thus, TNF-α is an important target for anti-

inflammatory interventions against chronic diseases. 

The purple-fleshed potato groups (P10 and P20) and the white-fleshed potato group 

(W10) had lower concentrations of TNF-α compared to HFD control (Figure 4.6). Interestingly, 

similar expression profiles of TNF-α, and NF-κB and TLR-4 (non-significant, tends only) were 

seen in the mesenteric fat of these animals among the treatment groups (Figure 4.5 A-B). 

Although white-fleshed potatoes lack anthocyanins, they contain phenolic acids such as 

chlorogenic acid, caffeic acid, p-coumaric acid etc. that demonstrated anti-inflammatory 

properties in multiple studies (da Cunha, Duma et al. 2004, Chao, Mong et al. 2010, Chauhan, 

Satti et al. 2011). Indeed, we found 62 features that were higher and significantly different (fold 

change > 4 and P ≤ 0.01) in white-fleshed potato compared to purple-fleshed potato (Figure 

4.1B). Phenolics acids like caffeic acid, rich in white-fleshed potatoes, have shown TNF-α 

lowering ability in vivo (Chao, Hsu et al. 2009). In addition, potatoes in general are rich sources 
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of Vitamin C, resistant starch and their contribution cannot be neglected. However, to elucidate 

the contribution of different bioactive compounds in the potato towards the in vivo anti-

inflammatory activity, further research is necessary. Our results, however, provide first in vivo 

evidence that purple-fleshed potatoes, even after processing, retain their anti-oxidant and anti-

inflammatory properties.  

 

4.5.5 Limitations of the Study 

Although, white-fleshed potatoes could not reverse the HFD elevated oxidative stress and 

inflammatory biomarkers in the distal colon, mesenteric fat and systemic circulation, there was a 

trend for beneficial effects of consuming white-fleshed potato. This study was short (5 weeks) 

and might explain the difference. However, purple-fleshed potato consumption demonstrated 

beneficial effects in the short time period suggesting the potent anti-inflammatory and anti-

oxidant efficacy of anthocyanins and higher phenolic acids present in the purple-fleshed potato.  

One limitation of the study is the lack of normal control animals to elucidate deleterious 

effect of consumption of a HFD. The study mentioned in ((Radhakrishnan, Reddivari et al. 

2012), Chapter V) employed a standard control, and we showed that standard control animals 

had lower systemic 8-isoprostane and TNF-α compared to pigs on a HFD. Another limitation of 

the study is the relatively high dose of potato chips (10-20 %) of diet; on an average the animals 

consume approximately 1.2-3 kg of chips per week. However, the potato is an important staple 

food for various populations around the world and it provides approximately 5 % to 15 % of 

dietary calories (Thompson, Thompson et al. 2009). It should be noted that over 80 % of potato 

is consumed in processed form, mainly frying (NPC 2005, NPC 2007, NPC 2010).  
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It is interesting to note that in the present study, we found the 10 % purple-fleshed potato 

group was similar and in some cases more effective in modulating oxidative stress and 

inflammatory parameters than the 20 % dose. The phenomenon that lower doses can be equal or 

more effective than the higher doses has been observed with other phenolic compounds. For e.g., 

freeze dried mango supplementation in the HFD in mice at 1 % supplementation was more 

effective in improving glucose tolerance and lipid profile and reducing adiposity associated with 

a HF diet compared to 10 % supplementation (Lucas, Li et al. 2011). Moreover, a study by 

Marugundanan et al. (Muruganandan, Srinivasan et al. 2005) demonstrated that mangiferin at 10 

mg/kg is as effective as the 20 mg/kg dose for its anti-diabetic, anti-hyperlipidaemic and anti-

atherogenic activities in streptozotocin-diabetic rats.  

Moreover, potatoes are known to contain toxicants such as glycoalkaloids. As the 

potatoes were processed into chips, higher dosage of chips elevates consumption of processing 

induced toxin – acrylamide which is known to induce inflammation and is carcinogenic 

(Capuano and Fogliano 2011, Zhang, Wang et al. 2013). Thus, higher consumption of potato 

chips elevates the concentrations of these toxicants which might counter the health benefits of 

the bioactive compounds in the potato. Thus, we need to identify the optimal dose of foods and 

its bioactive compounds that exert a health benefit and not to work under the assumption that 

more is better. 
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4.6 Conclusions 

Studies in mice have shown that mucosal inflammation leads to systemic genotoxicity 

characterized by elevated systemic oxidative stress markers, DNA damage and inflammatory 

cytokines and contributes early on to genetic instability necessary for progression to 

inflammatory bowel disease-associated dysplasia and the development of cancer (Westbrook, 

Wei et al. 2009). Results of our study suggests that chipped purple-fleshed potatoes suppress 

oxidative stress and inflammatory markers in the distal colon, mesenteric fat, and systemic 

circulation and thus, may suppress risk for colon cancer and other chronic disorders linked with 

HFD. Due to high consumption of potatoes, purple-fleshed potatoes can be an effective delivery 

vehicle for health promoting bioactive compounds.  
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CHAPTER V 

 

PURPLE-FLESHED POTATOES PREVENTED HIGH-FAT DIET ELEVATED OXIDATIVE 

STRESS AND INNATE INFLAMMATION MARKERS IN A PIG MODEL. 

 

5.1 Summary 

Consumption of anthocyanins and anthocyanin-rich fruits has shown to suppress risk for 

colon inflammation, colon cancer, type 2 diabetes etc. Color-fleshed potato consumption 

increased by 17% in the US partly attributed to putative health benefits of bioactive constituents 

such as anthocyanins and phenolic acids. However, little information exists if purple-fleshed 

potatoes, rich in anti-oxidant and anti-inflammatory anthocyanins, even after processing, retain 

their health benefiting properties in vivo. We hypothesized that processed (raw vs. baked vs. 

chips) purple-fleshed potatoes will suppress high-fat diet (HFD) elevated oxidative stress/innate 

inflammation biomarkers in a young pig model. We performed a prevention study, where 64 pigs 

(n = 8/group), 3 weeks post-weaning, consumed one of the eight diets; standard control diet, 

HFD and HFD supplemented with purple or white-fleshed potato (raw, baked and chips, 10 % 

w/w) for 13 weeks. Potato diets had no effect on the average food intake and weight gain 

although the purple-fleshed potato baked group had numerically higher feed intake and weight 

gain compared to the other HFD groups. Irrespective of color/processing, pigs consuming potato 

diets had numerically lower oxidative stress ( GSH:GSSG ratio) and lower expression of 

inflammatory markers (NF-B, P = 0.04; TNF-α, P = 0.05; TLR-2, P = 0.05; TLR-4, P = 0.02; 

and COX-2, P = 0.03) in the distal colon mucosa compared to HFD controls. However, only the 

raw purple-fleshed potato consuming animals had elevated GSH:GSSG ratio compared to the 
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HFD control (P = 0.01). Similar results were obtained in the mesenteric fat – all the potato diet 

consuming animals had lower expression of TLR-4 (P = 0.05), NF-B (P = 0.05), and TNF-α (P 

= 0.03) compared to the HFD control. GSH:GSSG ratio was also elevated in all the purple-potato 

diet consuming groups and white raw group (P = 0.05) compared to the HFD control. Systemic 

markers of oxidative stress (8-isoprostane, P = 0.02; and 8-OHDG, P = 0.01), inflammation 

(TNF-α, P = 0.05; and IL-1β, P = 0.03) and serum triglycerides (P = 0.05) were suppressed in all 

the potato diet consuming animals compared to HFD control. However, there were no 

differences in the lipid profile (total cholesterol, LDL, HDL) or insulin/glucose among the HFD 

treatment groups. Results of this study suggest that potato consumption prevents HFD elevated 

oxidative stress and inflammatory biomarkers in the distal colon, mesenteric fat and the systemic 

circulation and there was only a marginal benefit of anthocyanin-rich potatoes over the 

traditional white-fleshed potatoes in this study. 

 

5.2 Introduction 

Consumption of a diet rich in fat and low in anti-oxidants is linked to elevated risk for  a 

variety of chronic disorders. Chronic low-grade oxidative stress and inflammation are conducive 

for development of disorders including colon cancer and are highly affected by diet (Wisse 2004, 

Chuang and McIntosh 2011). Once a medical rarity in children, disorders like inflammatory 

bowel disease (IBD), metabolic syndrome etc. are increasingly common in kids today. Genetic 

and environmental factors may be responsible for driving this rise. However, as genetic makeup 

does not change drastically in populations over short periods of time, it could be assumed that 

changing environmental factors, mainly diet, are triggering new cases (Autism 2011).  
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Poor eating habits, mainly due to easy access to and consuming oversized portions of the 

high-fat, high-calorie foods, juice and soda, and inactivity, are to blame for the rise in such 

chronic disorders in children (Han, Lawlor et al. 2010). Despite an increasing focus on the 

nutritional content of school meals and multiple initiatives at state and federal government scale, 

children are not meeting the recommended levels of fruit and vegetable consumption (Lin and 

Morrison 2002). Research indicates that children (as well as adults) who eat more fruits tend to 

have lower risk for chronic diseases during adulthood (Lin and Morrison 2002). Both fruits and 

vegetables are low-fat, if not, no-fat foods when consumed straight from the orchard or garden. 

Instead of consuming most of their fruits raw or in juices, unadorned with sauces or fried 

coatings or baked in pies, higher percentage of consumption of vegetables is in the form of deep-

fat frying, topped with high-fat dressings or sour cream, or including them in high-fat mixtures 

(Lin and Morrison 2002). The same is the case with the innocuous potato, which has been 

blamed for increasing risk for diabetes (Khosravi-Boroujeni, Mohammadifard et al. 2012). There 

is thus, a need for more research on the link between fruit and vegetable consumption and risk 

for chronic diseases with focus on how they are processed and consumed. 

High-fat diet (HFD) elevated oxidative stress can increase the susceptibility to chronic 

diseases by oxidizing cellular lipids, proteins, and DNA (Matsuzawa-Nagata, Takamura et al. 

2008, Fernandez-Sanchez, Madrigal-Santillan et al. 2011). Oxidative stress is involved in the 

link between chronic inflammation and cancer. In fact, the activation of NF-κB, a pro-

inflammatory molecule and a master regulator of inflammatory gene transcription, can be 

blocked by antioxidants, such as cysteine, N-acetylcysteine, vitamin C and E, anthocyanins, 

thiols, and green tea polyphenols (Schulze-Osthoff, Bauer et al. 1997, Carcamo, Pedraza et al. 

2002, Karlsen, Retterstol et al. 2007, Rodriguez-Ramiro, Ramos et al. 2013). NF-κB induced 
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secretion of pro-inflammatory cytokines such as IL-1β, TNF-α and IL-6 by lymphocytes is 

responsible for initiating inflammation in the pathogenesis of chronic diseases such as 

atherosclerosis and rheumatoid arthritis (Monaco and Paleolog 2004).  

The potato (Solanum tuberosum L.) is the fourth-most extensively grown and consumed 

food crop across the world after wheat, rice and maize (FAO 2009). Potato is a carbohydrate-

rich, versatile vegetable prepared and served in a variety of ways world-wide. In addition to high 

concentrations of vitamin C and iron in the potato, the highly pigmented potato cultivars are rich 

in phenolic acids, anthocyanins, and carotenoids (Camire, Kubow et al. 2009). Indeed, we and 

others have shown that phenolic acids are present at amounts 5-12 times higher in purple-fleshed 

potatoes compared to their white-fleshed counterparts (Rodriguez-Saona, Giusti et al. 1998, 

Brown 2005, Madiwale, Reddivari et al. 2011, Radhakrishnan, Reddivari et al. 2011). However, 

unlike other anthocyanin-rich sources such as blueberries, potatoes are mostly processed before 

consumption (Brown 2005, Walton, Lentle et al. 2006, NPC 2007). It is well known that 

processing changes the physical and chemical composition of foods (Spanos, Wrolstad et al. 

1990, Price, Bacon et al. 1997), thus, affecting their antioxidant activity (Nicoli, Anese et al. 

1999, Dewanto, Wu et al. 2002). Analytical data from our lab suggested that metabolite profile 

of raw and baked potatoes were quite similar, however, the metabolite profile of chips was very 

different (Madiwale, Reddivari et al. 2012). However, it is critical to understand the effect of 

such processing techniques on the in vivo activity of the bioactive compounds in potatoes. 

We hypothesized that dietary supplementation with purple-fleshed potato (raw, baked 

and chips) will suppress the oxidative stress/inflammation biomarkers in the distal colon, 

mesenteric fat and systemic circulation in a pig model. Young pigs were provided with potato 

supplemented diets (10 % w/w) for 13 weeks and oxidative stress and inflammatory markers 
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were measured. We used the pig as an animal model due to similar nutrient metabolism, and gut 

anatomy and physiology to humans (Cooper, Berry et al. 1997, Pond and Lei 2000). Results of 

the current study provide support for in vivo evidence for the health benefits of color-fleshed 

potatoes, with a focus on how it is processed. 

 

5.3 Materials and Methods 

All protocols for the use of animals in this study were approved by both the Colorado 

State University Institutional Animal Care and Use Committee (CSU-IACUC) and the North 

Carolina State University Animal Care and Use Committee. CSU-IACUC Protocol approval 

number 08-318A-03. 

 

5.3.1 Animals 

Sixty-four young (6 weeks old, breed: SPG) male pigs were obtained from Murphy-

Brown LLC (Warsaw, NC) and were housed individually in solid concrete floor indoor pens at 

the North Carolina State University Swine Educational Unit (Clayton, NC). The animals were 

divided into 8 groups so that mean initial body weight was similar among the treatment groups (n 

= 8 animals/treatment). Prior to the experimental study period of 13 weeks, there was a weaning 

period of 3 weeks and a nursery diet period of 3 weeks. All the animals completed the study and 

no adverse side effects were reported. 

 

5.3.2 Experimental Diets 

Each group was given one of the following diets: Standard control diet (C1, ~5 % fat), a 

HFD control (C2, ~20 % added fat and ~3 % endogenous fat) and 6 different diets with the same 



 
 

138 
 

fat content as the HFD and 10 % of either purple or white-fleshed potato (raw, baked or chips). 

For the chipped diets, the fat percentage was adjusted to match the other diets. We conducted a 

dose response study (Chapter IV) for anti-inflammatory effects of purple-fleshed potato chips in 

an obese pig model and found no difference in 10 and 20 % dose in alteration of HFD elevated 

inflammatory markers. Thus, 10 % was the dose used in this study.   

Purple-fleshed potatoes (Purple Majesty) and white-fleshed potatoes (Atlantic) were 

grown at Black Gold Farms (Pearsall, TX) and chips were prepared at Kettle Chips (Kettle, 

Salem, OR). Raw and baked potatoes were freeze dried at Vandrunen Farms, Illinois, prior to 

incorporation in the diet. Corn and dry fat were used as a major energy source, and soybean meal 

was the major protein source. Ratios between corn and soybean meal were adjusted to match 

energy and protein contents among diets. White corn was used to prevent carotenoids from 

yellow corn to affect the study. Composition of all the diets is presented in Table 5.1. Pigs 

consumed the experimental diets for 13 weeks; the feed and drinking water were provided ad 

libitum. Body weight, weight gain and feed intake were measured every week during the 

experimental feeding period.  
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Table 5.1 Composition of diets used in the study. 

Ingredients (%) 

Standard  

Control 

High-fat 

Control 

Purple 

Raw 

White 

Raw 

Purple 

Baked 

White 

Baked 

Purple 

Chips 

White 

Chips 

 

C1 C2 PR WR PB WB PC WC 

Corn 75.75 56.39 46.09 46.09 46.09 46.09 49.5 49.5 

Purple-fleshed potato 0 0 10 0 10 0 10 0 

White-fleshed Potato 0 0 0 10 0 10 0 10 

Soybean meal w/o hulls 21 21 21 21 21 21 21 21 

L-Threonine 0 0.05 0.01 0.01 0.01 0.01 0.05 0.05 

L-Lysine HCl 0.15 0.2 0.15 0.15 0.15 0.15 0.18 0.18 

DL-Methionine 0 0.06 0.05 0.05 0.05 0.05 0.07 0.07 

Total minerals 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

Salt 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 

Vitamin mix 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

Poultry fat 1 3 3 3 3 3 3 3 

Dry fat 0 17.1 17.5 17.5 17.5 17.5 14 14 

Dicalcium Phosphate 0.9 1 1 1 1 1 1 1 

Limestone 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 

Total 100 100 100 100 100 100 100 100 
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Composition (% unless mentioned) 

Dry matter 89.6 91.7 92.6 92.6 92.6 92.6 92.2 92.2 

Metabolizable energy (Cal/kg) 3388 4278 4300 4300 4300 4300 4221 4221 

Crude protein 16.4 14.9 15.2 15.2 15.2 15.2 14.7 14.7 

Lysine 0.84 0.84 0.84 0.84 0.84 0.84 0.83 0.83 

Methionine 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Tryptophan 0.16 0.15 0.16 0.16 0.16 0.16 0.15 0.15 

Threonine 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 

Fat 4.7 23 23 23 23 23 23 23 

Calcium 0.6 0.62 0.62 0.62 0.62 0.62 0.62 0.62 

Phosphorus available 0.23 0.24 0.23 0.23 0.23 0.23 0.24 0.24 

Phosphorus total 0.52 0.48 0.47 0.47 0.47 0.47 0.48 0.48 

C1, standard control, C2, high-fat diet control, letters P and W indicate purple and white-fleshed potato groups, R, B & C indicate 

processing treatments raw, baked and chips, respectively at 10 % supplementation.  
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5.3.3 Blood, Urine and Tissue Collection 

The animals were fasted for 4-6 hours prior to sacrifice. The animals were euthanized 

using captive bolt method. At termination, jugular vein blood was collected without 

anticoagulant and serum was stored at −80 °C for biochemical analysis. Insulin, glucose and 

lipid analysis were performed on serum samples collected at week 11 where the animals were 

fasted for 12 hours. Urine was collected at the end of the study in 15 ml falcon tubes. Once 

collected, urine samples were snap frozen and transferred to −80 °C for long term storage prior 

to analysis. Two cm of the distal colon was resected and cleaned with RNAse-free phosphate-

buffered saline (PBS). The mucosa was scraped using a glass slide into an RNAse free tube. The 

mucosa and the mesenteric fat were snap-frozen in liquid nitrogen and stored at −80 °C until 

analysis. 

 

5.3.4 Tissue Oxidative Stress  

Glutathione levels (GSH: reduced and GSSG: oxidized) were measured in the distal 

colon mucosa and mesenteric fat using UPLC/PDA (Waters ACQUITY UPLC H-Class) 

according to the HPLC method of Yilmaz et al (Yilmaz, Keser et al. 2009) with minor 

modifications.  

 

5.3.5 Real Time Polymerase Chain Reaction 

Real-time PCR analysis was used to measure the gene expression of pro-inflammatory 

and anti-inflammatory markers in the distal colon mucosa and the mesenteric fat. Total RNA was 

extracted using the Phenol-Free Total RNA Purification Kit (Amresco, Solon, OH) and cDNA 

synthesis was carried out using the qScript™ cDNA SuperMix (Quanta Biosciences, 
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Gaithersburg, MD), according to the manufacturer’s instructions. Real-time PCR was performed 

using qPCR SYBR green supermix (Quanta Biosciences) on an Illumina Eco instrument (San 

Diego, CA) and mRNA expression of genes were calculated using the Eco software (Illumina). 

Primers used for the study are presented in Table 5.2. 
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Table 5.2 Primers used in the manuscript for real time PCR. 

Gene Forward Primer Sequence  Reverse Primer Sequence  Product Length (bp) 

Actin GGCCGGGACCTGACCGACTA GGAGGAGGAGGAGGCGGCC 162 

Adiponectin GCGAATGGGCATGTTAGGGA AAATCCGGGGCAGAAAAGGA 107 

COX-2 CATTGATGCCATGGAGCTGTA CTCCCCAAAGATGGCATCTG 70 

IL-10 TGATGGGGAGGATATCAAGG TGATGGGGAGGATATCAAGG 150 

NF-B CCCATGTAGACAGCACCACCTATGAT ACAGAGGCTCAAAGTTCTCCACCA 132 

TGF-β CGAGCCCTGGATACCAACTA AGGCTCCAGATGTAGGGACA 164 

TLR-2 CAGTCCGGAGGTTGCATATT ATGCTGTGAAAGGGAACAGG 137 

TLR-4 ATGGCCTTTCTCTCCTGCCTGA AGGTCCAGTATCTTGACTGATGTGGG 139 

TNF-α ATGGATGGGTGGATGAGAAA TGGAAACTGTTGGGGAGAAG 151 
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5.3.6 Systemic Oxidative Stress Markers 

Urine samples were analyzed for 8-isoprostane and DNA adduct 8-hydroxy-2′-

deoxyguanosine following manufacturer’s protocol (Cayman, Ann Harbor, MI). Urinary 

concentrations were normalized to creatinine levels measured using a colorimetric kit (Cayman). 

Serum samples were analyzed for oxidative stress marker, 8-isoprostane – free and bound 

following the manufacturer’s protocol (Cayman). Serum oxygen radical absorbance capacity 

(ORAC) was calculated based on the method of Huang et al. (Huang, Ou et al. 2002). 

 

5.3.7 Serum Inflammatory Markers 

Inflammatory markers, TNF-α (Swine ELISA, Life Technologies, Grand Island, NY) and 

lipopolysaccharide (LPS, Limulus Amebocyte Lysate Kit, Lonza, Basel Switzerland) were 

analyzed in the serum based on the manufacturer’s protocols. IL-1β was measured in the serum 

using Milliplex Luminex based multiplex immnoassay method (Millipore, Billerica, MD). 

Insulin was measured using a radioimmunoassay following the manufacturer’s protocol 

(Millipore). Glucose was measured using a commercially available kit (Cayman) following 

standard recommended protocol. Both insulin and glucose were measured after a 12 hour fast at 

week 11 of the study. Serum lipid profile (Total Cholesterol, HDL, LDL and Triglycerides) were 

also measured at week 11 using standard protocols on a Beckman - Olympus AU400e Chemistry 

Analyzer at the University of Colorado Hospital. 

 

5.3.8 Statistical Analysis 

Completely randomized block design was used in this study. Individual pigs were the 

experimental unit. Data were analyzed using the MIXED procedure in SAS (SAS Institute, Cary, 
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NC). P ≤ 0.05 was considered significant. The results were expressed as means ± S.E. for each 

treatment group. 

 

5.4 Results 

5.4.1 Physical Parameters  

Initial body weight of pigs did not differ among treatments. There were no significant 

differences in the overall feed intake/day and weight gain/day among the HFD treatment groups 

at the end of the study (Table 5.3). It should be noted that the overall feed conversion ratio, feed 

consumed/weight gain, did not differ among the all treatment groups at the end of the study 

(Appendix IV). There were no differences in the weight at the end of the study among the HFD 

treatment groups (excluding PB, P ≤ 0.05). No significant differences were observed among 

treatment groups in back-fat thickness (Appendix V). All the animals completed the study, and 

no adverse side effects/infections were reported. 
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Table 5.3 Body weight (in kg, top panel), average daily gain (in kg/day, middle panel) and average daily feed intake (in kg/day, 

bottom panel) of animals in the prevention study. Data are presented as means ± S.E of 8 animals per group.  

 

Dietary 

Group 

Week 

0 

Week 

1 

Week 

2 

Week 

3 

Week    

4 

Week 

5 

Week 

6 

Week    

7 

Week    

8 

Week      

9 

Week 

10 

Week    

11 

Week 

12 

Week  

13   

 

Body Weight (kg) 

C1 

22.7 ± 

1.3a 

26.8 ± 

1.7 a 

38.7 ± 

2.4 a 

48.7 ± 

2.9 a 

62.2 ± 

3.5 a 

74.3 ± 

4.3 a 

91.7 ± 

4.5 a 

105.8 ± 

5.1 a 

125.3 ± 

5.4 a 

140.9 ± 

5.8 a 

162.9 ± 

6 a 

181.4 ± 

6.2 a 

198 ± 

5.2 a 

216.2 ±                     

7.3 a 

C2 

22.8 ± 

1 a 

27.3 ± 

1 a 

35.2 ± 

1.2 ab 

43 ± 

1.8 b 

54.2 ± 

2.4 b 

64 ± 

3.3 b 

78.2 ± 

3.5 b 

89.2 ± 

3.9 b 

105.6 ± 

4.8 c 

117.7 ± 

5.3 b 

136.4 ± 

6.5 b 

154.2 ± 

6.6 b 

169.1 ± 

7.1 b 

185.8 ±                     

7.8 b 

PR 

22.6 ± 

1 a 

26.9 ± 

1.3 a 

35.3 ± 

1.2 ab 

42.8 ± 

1.4 b 

55.8 ± 

1.8 b 

66 ± 

2.3 b 

81.3 ± 

3.1 b 

92.2 ± 

4.1 b 

109.2 ± 

5.5 bc 

121.3 ± 

6.9 b 

137.9 ± 

8.8 b 

154.3 ± 

10.1 b 

169.6 ± 

11 b 

181.6 ±                         

13.1 b 

WR 

22.7 ± 

1 a 

27.3 ± 

1 a 

36.6 ± 

1.1 ab 

45.1 ± 

1.5 ab 

57.1 ± 

1.9 b 

67.8 ± 

2.3 b 

81.6 ± 

2.3 b 

92.3 ± 

2.7 b 

108.8 ± 

2.9 bc 

121.8 ± 

3.3 b 

138.2 ± 

4.2 b 

153 ± 

4.3 b 

167.8 ± 

5.2 b 

182.1 ±                         

6.5 b 

PB 

22.8 ± 

0.9 a 

27 ± 

0.9 a 

35.9 ± 

1.5 ab 

44 ± 

1.9 b 

58.4 ± 

2.2 ab 

71 ± 

3.5 ab 

87.2 ± 

3.1 a 

99.3 ± 

3.7 ab 

120.3 ± 

4.2 a 

135.9 ± 

5.3 a 

155.9 ± 

5.7 a 

175.4 ± 

5.8 a 

191.1 ± 

5.6 a 

208.9 ±                           

6.9 a 

WB 

22.6 ± 

1 a 

27.3 ± 

1.1 a 

35.4 ± 

1.9 ab 

43.6 ± 

2.7 b 

55.7 ± 

3.2 b 

65.8 ± 

4.3 b 

81 ± 

4.4 b 

92.4 ± 

4.9 b 

110.1 ± 

5.7 b 

124.2 ± 

6.6 ab 

142.8 ± 

7.8 b 

159 ± 

7.6 b 

175.6 ± 

8.6 b 

192.6 ±                          

10.3 b 

PC 

22.5 ± 

0.7 a 

27.3 ± 

0.8 a 

35.7 ± 

0.8 ab 

43.1 ± 

0.9 b 

56 ±    

1 b 

67.3 ± 

1.8 b 

82.9 ± 

1.9 b 

94.4 ± 

2.9 b 

112.2 ± 

3.6 bc 

127.8 ± 

4.3 ab 

147.8 ± 

4.4 ab 

167.2 ± 

5.6 ab 

183 ± 

6.1 ab 

197.1 ±                       

7.8 ab 

WC 

22.6 ± 

0.8 a 

25.8 ± 

1 a 

34.7 ± 

0.9 b 

43.5 ± 

1.1 b 

56.8 ± 

1.3 b 

68.6 ± 

1.8 ab 

85.9 ± 

2.7 ab 

99.5 ± 

2.9 ab 

118.5 ± 

3.7 ab 

130.7 ± 

4.5 ab 

150.2 ± 

6.1 ab 

167.8 ± 

6.5 ab 

184.8 ± 

6.4 ab 

199.4 ±                          

7.7 ab 
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Average Daily Gain (kg/d) 

Overall 

Daily Gain 

(kg/d) 

C1 

 

0.6 ± 

0.1 ab 

1.5 ± 

0.1 a 

1.4 ± 

0.1 a 

1.7 ± 

0.1 a 

1.5 ± 

0.1 a 

2.9 ± 

0.1 a 

2 ±          

0.1 a 

2.4 ±  

0.1 a 

2.2 ±  

0.1 a 

3.1 ±  

0.2 a 

2.3 ±  

0.2 a 

2.1 ±  

0.2 a 

2.6 ± 

0.4 a 

2.2 ±            

0.1 a 

C2 

 

0.6 ± 

0 ab 1 ± 0 b 

1.1 ± 

0.1 b 

1.4 ± 

0.1 b 

1.2 ± 

0.1 b 

2.4 ± 

0.2 b 

1.6 ±  

0.2 b 

2 ±     

0.1 b 

1.7 ±  

0.1 b 

2.7 ±  

0.2 ab 

2.2 ±   

0.1 a 

1.9 ±  

0.1 a 

2.4 ± 

0.2 a 

1.8 ±         

0.1 b 

PR 

 

0.6 ± 

0.1 ab 

1.1 ± 

0.1 b 

1.1 ± 

0.1 b 

1.6 ± 

0.1 ab 

1.3 ± 

0.1 ab 

2.6 ± 

0.2 ab 

1.6 ±  

0.2 b 

2.1 ±  

0.2 ab 

1.7 ±  

0.2 b 

2.4 ±  

0.3 b 

2 ±     

0.2 a 

1.9 ±  

0.2 a 

1.7 ± 

0.3 b 

1.8 ±            

0.1 b 

WR 

 

0.6 ± 

0 ab 

1.2 ± 

0.1 b 

1.2 ± 

0.1 ab 

1.5 ± 

0.1 ab 

1.3 ± 

0.1 ab 

2.3 ± 

0.2 b 

1.5 ±  

0.1 b 

2.1 ±  

0.1 ab 

1.9 ±  

0.1 ab 

2.3 ±  

0.2 b 

1.9 ±  

0.2 a 

1.8 ±  

0.1 a 

2 ± 

0.2 ab 

1.8 ±         

0.1 b 

PB 

 

0.6 ± 

0 ab 

1.1 ± 

0.1 b 

1.2 ± 

0.1 ab 

1.8 ± 

0.1 b 

1.6 ± 

0.2 a 

2.7 ± 

0.1 ab 

1.7 ±  

0.1 b 

2.6 ±  

0.1 a 

2.2 ±  

0.2 b 

2.9 ±  

0.2 a 

2.4 ±  

0.2 a 

2 ±     

0.2 a 

2.5 ± 

0.2 a 

2.1 ±           

0.1 ab 

WB 

 

0.7 ± 

0 b 

1 ± 0.1 

b 

1.2 ± 

0.1 ab 

1.5 ± 

0.1 ab 

1.3 ± 

0.2 ab 

2.5 ± 

0.1 b 

1.6 ±  

0.1 b 

2.2 ±  

0.1 ab 

2 ±     

0.2 ab 

2.7 ±  

0.2 ab 

2 ±     

0.1 a 

2.1 ±  

0.2 a 

2.4 ± 

0.3 a 

1.9 ±          

0.1 b 

PC 

 

0.7 ± 

0 b 

1.1 ± 

0.1 b 

1.1 ± 

0.1 b 

1.6 ± 

0.1 ab 

1.4 ± 

0.1 ab 

2.6 ± 

0.1 ab 

1.6 ±  

0.2 b 

2.2 ±  

0.2 ab 

2.2 ±  

0.2 ab 

2.9 ±  

0.2 b 

2.4 ±  

0.2 a 

2 ±      

0.1 a 

2 ± 

0.3 ab 

1.9 ±              

0.1 b    

WC 

 

0.4 ± 

0.2 a 

1.1 ± 

0.1 b 

1.3 ± 

0.1 ab 

1.7 ± 

0.1 ab 

1.5 ± 

0.1 ab 

2.9 ± 

0.2 a 

1.9 ±  

0.1 ab 

2.4 ±  

0.1 a 

1.7 ±  

0.1 b 

2.8 ±  

0.3 ab 

2.2 ±  

0.2 a 

2.1 ±  

0.2 a 

2.1 ± 

0.2 ab 

1.8 ±              

0.1 b 
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Average Daily Feed Intake (kg/d) 

Overall 

Daily Feed 

Intake 

(kg/d) 

C1 

  

1.9 ± 

0.1 a 

4.2 ± 

0.7 ab 

2.3 ± 

0.2 a 

3.5 ± 

0.2 a 

4.5 ± 

0.2 a 

5 ±     

0.2 a 

5.2 ±  

0.2 a 

4.9 ±   

0.2 a 

6.2 ±  

0.2 a 

6.3 ±  

0.2 a 

4.5 ±  

0.1 a 

8.5 ± 

0.4 a 

4.8 ±          

0.2 a 

C2 

  

1.4 ± 

0.1 b 

4.5 ± 

0.3 ab 

1.9 ± 

0.1 a 

2.6 ± 

0.1 b 

3.4 ± 

0.2 b 

3.6 ± 

0.2b 

3.8 ±  

0.1 b 

3.6 ±  

0.2 b 

4.4 ±  

0.3 b 

4.8 ±  

0.3 b 

3.8 ±  

0.2 b 

6.5 ± 

0.2 b 

3.7 ±          

0.2 b 

PR 

  

1.3 ± 

0.1 a 

4.6 ± 

0.3 ab 

1.9 ± 

0.1 a 

2.9 ± 

0.2 bc 

3.6 ± 

0.2 b 

3.8 ±  

0.2 b 

4.1 ±   

0.3 b 

3.7 ±  

0.4 b 

4.4 ±  

0.4 b 

4.7 ±  

0.4 b 

3.7 ±  

0.3 b 

5.5 ± 

0.5 c 

3.7 ±         

0.3 b 

WR 

  

1.6 ± 

0.1 ab 

4.6 ± 

0.2 ab 

2.1 ± 

0.1 a 

3 ±   

0.1 c 

3.7 ± 

0.1 b 

3.9 ±  

0.1b 

4.1 ±  

0.1 b 

4.1 ±  

0.2 b 

4.5 ±  

0.2 b 

4.7 ±  

0.2 b 

4 ±      

0.2 b 

6 ± 

0.3 bc 

3.9 ±          

0.1 b 

PB 

  

1.4 ± 

0.1 a 

4.9 ± 

0.3 a 

2.2 ± 

0.1 a 

3.2 ± 

0.2 ac 

3.9 ± 

0.1 b 

4.1 ±  

0.1 b 

4.8 ±  

0.1 a 

4.5 ±  

0.2 a 

5.3 ±  

0.3 c 

5.6 ±  

0.2 c 

4.2 ±   

0.2 ab 

6.5 ± 

0.5 bc 

4.2 ±           

0.2 b 

WB 

  

1.4 ± 

0.1 a 

4.5 ± 

0.3 ab 

1.9 ± 

0.1 a 

2.8 ± 

0.2 bc 

3.7 ± 

0.2 b 

3.8 ±  

0.2 b 

4.2 ±  

0.2 b 

4.2 ±  

0.2 ab 

4.8 ±  

0.3 bc 

4.9 ±  

0.2 b 

4.1 ±  

0.3 ab 

6.7 ± 

0.5 b 

3.9 ±           

0.2 b 

PC 

  

1.4 ± 

0.1 a 

4.5 ± 

0.3 ab 

1.9 ± 

0.1 a 

2.8 ± 

0.1 bc 

3.4 ± 

0.2 b 

3.6 ±  

0.2 b 

3.9 ±  

0.2 b 

3.9 ±  

0.2 b 

4.6 ±  

0.2 b 

4.9 ±  

0.2 b 

3.9 ±  

0.2 b 

5.6 ± 

0.3 c 

3.7 ±         

0.1 b 

WC     

1.4 ± 

0.1 a 

4.2 ± 

0.2 b 

1.9 ± 

0.1 a 

2.8 ± 

0.2 bc 

3.7 ± 

0.2 b 

4 ±     

0.1b 

4.2 ±  

0.2 b 

3.5 ±  

0.2 b 

4.3 ±  

0.3 b 

4.7 ±  

0.2 b 

3.9 ±  

0.2 b 

5.6 ± 

0.4 c 

3.9 ±         

0.1 b 

Results were expressed as mean ± SE for 7-8 animals in each treatment group. Means in columns (within a week between treatment groups) that differ by a common letter (a, b, c) differ (P 

≤ 0.05). C1, standard control, C2, high-fat diet control, letters P and W indicate purple and white-fleshed potato diets, R, B & C indicate processing treatments raw, baked and chips, 

respectively, at 10 % supplementation.  
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5.4.2 Colonic GSH:GSSG Ratio 

Glutathione is an intracellular anti-oxidant in cells. Glutathione exists in two forms 

reduced (GSH) and oxidized (GSSG). Almost 90 % of glutathione exists in the reduced form, 

however, in conditions of oxidized stress, GSSG content of the cells increases. Therefore, a 

suppressed ratio of GSH:GSSG is an indicator of elevated oxidative stress (Owen and Butterfield 

2010). We measured GSH:GSSG ratio in the distal colon of the animals. All the potato groups 

irrespective of color/processing had levels similar to the standard diet animals. Only the PR 

group had significantly higher GSH:GSSG ratio compared to the HFD control (P = 0.01, Figure 

5.1).  

 

Figure 5.1. Reduced (GSH) and oxidized (GSSG) glutathione were measured in the distal colon 

mucosa using UPLC/PDA. Results were expressed as mean ± S.E. for 7-8 animals in each 

treatment group. Means that differ by a common letter (a, b) differ (P ≤ 0.05). C1, standard 

control, C2, high-fat diet control, letters P and W indicate purple and white-fleshed potato diets, 

R, B & C indicate processing treatments raw, baked and chips, respectively at 10 % 

supplementation. 
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5.4.3 Colonic Inflammatory Markers 

We measured relative expression of innate inflammatory markers TLRs 2, 4 and NF-B 

in the distal colon mucosa of the animals using quantitative real-time PCR. Expression of TLRs 

2, 4 and NF-B were elevated in the HFD group compared to standard animals. All the animals 

consuming potato diets had suppressed TLRs 2, 4 and NF-B expression compared to levels in 

HFD animals, to levels similar to the standard group (P = 0.05, P = 0.02, and P = 0.04, 

respectively, Figure 5.2A). Similar results were obtained for TNF-α and COX-2 (P = 0.05 and P 

= 0.03, respectively, Figures 5.2B). Combined with the results obtained in GSH:GSSG ratio, we 

show that bioactive components (e.g. phenolic acids, vitamin C, resistant starch etc.) in the 

white-fleshed potatoes were sufficient to prevent HFD induced oxidative stress/inflammation in 

the distal colon. In addition, experimental diets did not alter the relative expression of anti-

inflammatory cytokines IL-10 and TGF-β in the distal colon mucosa of these animals (Figure 

5.3).  
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Figure 5.2A Relative expression of TLR-4, NF-кB and TLR-2 as measured using real time PCR 

in the distal colon mucosa. Results were expressed as mean ± S.E. for 7-8 animals in each 

treatment group. Means that differ by a common letter (a, b) differ (P ≤ 0.05). C1, standard 

control, C2, high-fat diet control, letters P and W indicate purple and white-fleshed potato diets, 

R, B & C indicate processing treatments raw, baked and chips, respectively at 10 % 

supplementation.  
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Figure 5.2B Relative expression of TNF-α and COX-2 as measured using real time PCR in the 

distal colon mucosa. Results were expressed as mean ± S.E. for 7-8 animals in each treatment 

group. Means that differ by a common letter (a, b) differ (P ≤ 0.05). C1, standard control, C2, 

high-fat diet control, letters P and W indicate purple and white-fleshed potato diets, R, B & C 

indicate processing treatments raw, baked and chips, respectively at 10 % supplementation.  

 

Figure 5.3 Relative expression of IL-10 and TGF-β as measured using real time PCR in the 

distal colon mucosa. Results were expressed as mean ± S.E. for 7-8 animals in each treatment 

group. Means that differ by a common letter (a, b) differ (P ≤ 0.05). C1, standard control, C2, 
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high-fat diet control, letters P and W indicate purple and white-fleshed potato diets, R, B & C 

indicate processing treatments raw, baked and chips, respectively at 10 % supplementation.  

 

5.4.4 Mesenteric Fat GSH:GSSG Ratio 

In the mesenteric fat, there were no significant differences in the GSH:GSSG ratio, a 

marker of oxidative stress, between the standard control group and the HFD group. All the 

animals consuming purple-fleshed potato (PR, PB and PC) and the animals consuming white-

fleshed potato (WR) had significantly elevated GSH:GSSG ratio compared to HFD control 

suggesting potent anti-oxidant efficacy of purple-fleshed potatoes in the distal colon even after 

processing (P = 0.05). GSH:GSSG ratio in the processed white-fleshed potato groups (WB, WC) 

was not significantly different from HFD control (Figure 5.4).  

 

Figure 5.4 Glutathione (GSH-reduced and GSSG-oxidized) were measured in the mesenteric fat 

using UPLC/PDA. Results were expressed as mean ± S.E. for 7-8 animals in each treatment 

group. Means that differ by a common letter (a, b) differ (P ≤ 0.05). C1, standard control, C2, 

high-fat diet control, letters P and W indicate purple and white-fleshed potato diets, R, B & C 

indicate processing treatments raw, baked and chips, respectively at 10 % supplementation.  
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5.4.5 Mesenteric Fat Inflammatory Markers 

We measured relative expression of the innate inflammatory markers in the mesenteric 

fat. Animals consuming HFD had elevated TLR-4 and NF-B expression compared to standard 

animals. All the animals on potato diets had significantly suppressed TLR-4 and NF-B 

expression compared to animals on HFD (Figure 5.5A) suggesting an anti-inflammatory role of 

potato, even after processing. Expression of pro-inflammatory cytokine TNF-α was elevated in 

the HFD group compared to standard animals. All the animals on the potato diets had suppressed 

TNF-α expression compared to levels in HFD animals (P = 0.03, Figure 5.5B). Mesenteric fat 

expression of adiponectin, an anti-inflammatory adipokine, was not significantly altered between 

groups (Figure 5.5B). In addition, we measured mesenteric fat relative expression of anti-

inflammatory cytokines IL-10 and TGF-β. We found no significant differences among the 

groups (Figure 5.6).  

 

Figure 5.5A Relative expression of TLR-4 and NF-B as measured using real time PCR in the 

mesenteric fat. Results were expressed as mean ± S.E. for 7-8 animals in each treatment group. 

Means that differ by a common letter (a, b) differ (P ≤ 0.05). C1, standard control, C2, high-fat 
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diet control, letters P and W indicate purple and white-fleshed potato diets, R, B & C indicate 

processing treatments raw, baked and chips, respectively at 10 % supplementation.  

 

Figure 5.5B Relative expression of TNF-α and adiponectin as measured using real time PCR in 

the mesenteric fat. Results were expressed as mean ± S.E. for 7-8 animals in each treatment 

group. Means that differ by a common letter (a, b) differ (P ≤ 0.05). C1, standard control, C2, 

high-fat diet control, letters P and W indicate purple and white-fleshed potato diets, R, B & C 

indicate processing treatments raw, baked and chips, at 10 % supplementation.  

 

Figure 5.6 Relative expression of IL-10 and TGF-β as measured using real time PCR in the 

mesenteric fat. Results were expressed as mean ± S.E. for 7-8 animals in each treatment group. 
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Means that differ by a common letter differ (P ≤ 0.05). C1, standard control, C2, high-fat diet 

control, letters P and W indicate purple and white-fleshed potato diets, R, B & C indicate 

processing treatments raw, baked and chips, respectively at 10 % supplementation.  

 

5.4.6 Systemic Oxidative Stress 

Systemic oxidative stress biomarkers were measured in serum/urine at the end of the 

study. Urinary 8-isoprostane concentrations, normalized to creatinine levels, were elevated in the 

HFD group compared to standard animals (Figure 5.7A). All the potato diets consuming animals 

had lower urinary 8-isoprostane concentrations, suggesting potato diets suppressed systemic 

oxidative stress (P = 0.02). Similar to 8-isoprostane, urinary 8-OHDG, DNA adduct, was also 

elevated in the HFD control group compared to standard control; all the potato diet consuming 

animals had lower urinary 8-OHDG compared to the HFD group (P = 0.01, Figure 5.7A). In 

addition, the levels of urinary 8-isoprostane and 8-OHDG in the potato groups were similar to 

the standard diet group animals (Figure 5.7A). We measured serum concentrations of 8-

isoprostane (free and bound), however, there were no significant differences among the treatment 

groups (Appendix VI). Potato consumption did not significantly elevate serum total anti-oxidant 

capacity (Total ORAC, Appendix VI).  
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Figure 5.7A 8-isoprostane and 8-OHDG concentrations in porcine urine were measured using 

ELISA. Results were normalized to levels of creatinine. ELISA was performed according to 

manufacturer’s protocol (Cayman). Results were expressed as mean ± S.E. for 7-8 animals in 

each treatment group. Means that differ by a common letter (a, b, c) differ (P ≤ 0.05). C1, 

standard control, C2, high-fat diet control, letters P and W indicate purple and white-fleshed 

potato diets and R, B & C indicate processing treatments raw, baked and chips, respectively at 10 

% supplementation.  

 

5.4.7 Systemic Inflammatory Markers 

Systemic inflammation biomarkers were measured at the end of the study. Serum TNF-α 

concentration was significantly elevated in the HFD animals compared to standard control 

animals (Figure 5.7B). Similar to the oxidative stress markers, all the potato diets significantly 

suppressed serum TNF-α levels compared to the HFD controls (P = 0.05, Figure 5.7B). We also 

measured IL-1β, IL-4, IL-6, IL-8 and IL-10 in the serum of these animals using a porcine 

milliplex multiplex immunoassay. Trends in the level of IL-1β in the serum of pigs mirrored 

TNF-α level. HFD consuming animals had elevated IL-1β compared to standard control and all 
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the animals on potato diets had suppressed serum IL-1β compared to HFD group (P = 0.03, 

Figure 5.7B). There were no significant differences between groups in serum concentrations of 

IL-4, IL-6, IL8 and IL-10 (data not shown). We measured insulin and glucose in the serum of 

these animals from week 11 of the study. There were no significant differences (Figure 5.7B) 

among the groups in serum insulin and glucose (P ≤ 0.05). 

 

Figure 5.7B TNF-α was measured in porcine serum using ELISA following manufacturers 

protocol (Life Technologies). IL-1β cytokine levels were measured in porcine serum using 

Millipore Milliplex kit following manufacturers protocol (Millipore). Insulin was measured 

using a radioimmunoassay following the manufacturers protocol (Millipore). Glucose was 

measured using a commercially available kit (Cayman). Results were expressed as mean ± SE 

for 7-8 animals in each treatment group. Means that differ by a common letter (a, b) differ (P ≤ 
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0.05). C1, standard control, C2, high-fat diet control, letters P and W indicate purple and white-

fleshed potato diets, R, B & C indicate processing treatments raw, baked and chips, respectively 

at 10 % supplementation.  

 

 Serum lipids were measured to assess whether the potato diets improved the lipid profile 

of these animals. This profile was measured at week 11 of the study. There were no significant 

differences in the total cholesterol, HDL and LDL among the HFD consuming treatment groups. 

However, total cholesterol and HDL levels were significantly higher in the HFD animals 

compared to the levels in the standard diet animals (Figure 5.7C, P ≤ 0.05). The serum 

triglyceride levels followed similar trend of the inflammatory markers. The HFD control animals 

had elevated serum triglycerides compared to the standard control and all the potato diets 

consuming animals had significantly lower serum triglyceride levels compared to HFD control 

and were not different from the standard animals (P = 0.05, Figure 5.7C). 
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Figure 5.7C Serum lipids profile (Total cholesterol, HDL-direct, LDL and triglycerides) were 

measured on a Beckman-Olympus AU400e Chemistry Analyzer at the University of Colorado 

Hospital facility. Results were expressed as mean ± S.E. for 7-8 animals in each treatment group. 

Means that differ by a common letter (a, b) differ (P ≤ 0.05). C1, standard control, C2, high-fat 

diet control, letters P and W indicate purple and white-fleshed potato diets, R, B & C indicate 

processing treatments raw, baked and chips, respectively, at 10 % supplementation.  
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5.5 Discussion 

Results of our earlier reversal study (Chapter IV) demonstrated that only the consumption 

of purple-fleshed potato suppressed oxidative stress and inflammatory markers in the distal 

colon, mesenteric fat and systemic circulation in HFD consuming pigs. Current results 

demonstrate that purple-fleshed potato supplementation in the diet of the HFD consuming young 

pigs prevented the increase in oxidative stress and inflammation biomarkers due to HFD 

consumption. White-fleshed potato consuming animals showed suppressed levels of oxidative 

stress and inflammation markers compared to the HFD controls. Results suggest that potato diets 

retain anti-oxidant and anti-inflammatory properties in vivo even after processing. 

 

5.5.1 Purple-Fleshed Potato Prevented Colonic and Mesenteric Fat Oxidative Stress 

(GSH:GSSG Ratio) in HFD Consuming Animals. 

Glutathione (GSH) is the most abundant anti-oxidant in aerobic cells, present in 

millimolar (mM) concentrations in tissue. GSH is critical for protecting various tissues from 

oxidative stress, acting as a free radical scavenger and is an inhibitor of lipid peroxidation. GSH 

participates in the detoxification of hydrogen peroxide by various glutathione peroxidases. When 

cells are exposed to increased levels of oxidative stress, GSSG will accumulate and the ratio of 

GSH to GSSG will decrease. Therefore, the determination of the GSH:GSSG ratio is a useful 

indicator of oxidative stress in animal and human tissues (Owen and Butterfield 2010). 

Our results demonstrate that only the animals consuming purple-fleshed potatoes (raw, 

PR) had significantly higher distal colonic GSH:GSSG ratio compared to HFD controls. 

GSH:GSSG ratio in the other groups including the standard control, were numerically higher but 

not significantly different (P ≤ 0.05) compared to the HFD controls (Figure 5.1). Results in the 
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mesenteric fat were similar to colon. In the mesenteric fat, all the purple-fleshed potato groups 

(PR, PB and PC) and the WR group had significantly elevated GSH:GSSG ratio compared to the 

HFD control animals (P ≤ 0.05, Figure 5.4). These results suggest that potato supplementation 

resulted in the prevention of the increased oxidative stress markers in the HFD consuming 

animals. Although, low doses of phenolics are present in the white-fleshed potato, data suggests 

that it was sufficient to positively alter the glutathione redox status in the young animals. There 

was however, a marginal benefit of purple-fleshed potato consumption (Figure 5.1, 5.4). 

 

5.5.2 Purple and White-Fleshed Potato Prevented HFD Elevated Colonic and Mesenteric 

Fat Inflammatory Markers. 

HFD induced inflammation in the gut has been extensively explored in recent studies 

(Ding, Chi et al. 2010, Kim, Gu et al. 2012). HFD induced altered gut bacteria and TLR activation 

are key elements for induction of the innate inflammatory response via triggering signaling 

cascades including the transcription factor NF-B (Takeda and Akira 2004). Thus, we measured 

expression of TLR-2 (flagellin receptor), TLR-4 (LPS receptor) and NF-B in the colonic 

mucosa in these animals. Expression of TLR-2, TLR-4 and NF-B were suppressed in the potato 

consuming animals compared to the HFD control. In addition, these groups had levels similar to 

that of the standard animals suggesting an overall benefit of potato consumption (Figure 5.2A). 

We measured expression of TLR-4 and NF-B in the mesenteric fat. HFD controls had elevated 

expression of TLR-4 and NF-B compared to the standard controls in the mesenteric fat. All the 

potato diet consuming animals, irrespective of color/processing, had significantly lower 

expression levels of TLR-4 and NF-B compared to HFD controls, to levels similar to the 

standard controls. Results suggest an overall benefit of potato consumption (Figure 5.5A).  
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Pro-inflammatory markers including cytokines such as IL-1β, TNF-α and IL-6 are 

increased in colitis in the colonic mucosa (Berg and Scherer 2005). Studies have suggested that 

adipokines secreted by adipose tissue (TNF-α, IL-6, adiponectin etc.) are closely associated with 

chronic inflammatory disorders such as ulcerative colitis (Li, Lelliott et al. 2008, Teixeira, 

Leonel et al. 2011). Thus, during inflammatory conditions of the colon such as colitis; both the 

colonic and the mesenteric fat show a pro-inflammatory profile (Li, Lelliott et al. 2008, Teixeira, 

Leonel et al. 2011) indexed by over-production of TNF-α (Zhang, Xu et al. 2006, Gambero, 

Marostica et al. 2007, Kim, Gu et al. 2012). In our study, results indicate that the potato 

consumption suppressed expression of TNF-α in both the distal colonic mucosa and the 

mesenteric fat compared to the HFD controls (Figure 5.2B, 5.5B). Levels in the potato groups 

were similar to the standard control. Mesenteric fat expression of adiponectin was not different 

among groups (Figure 5.5B).  

High dietary intakes of total fats, omega-6 fatty acids, and meat were shown to be 

associated with an increased risk of CD and UC, colonic inflammatory disorders. High fiber and 

fruit intakes were associated with decreased CD risk, and high vegetable intake was associated 

with decreased UC risk (Hou, Abraham et al. 2011). Bioactive compounds in potatoes such as 

anthocyanins and phenolic acids have shown anti-oxidant and anti-inflammatory properties in 

many models (Luceri, Guglielmi et al. 2004, Piberger, Oehme et al. 2011, Wu, Xu et al. 2011). 

Similarly, our results support an anti-inflammatory role of potato consumption. 

Since under homeostatic conditions a balance is maintained between pro- and anti-

inflammatory indices, we measured relative expression of anti-inflammatory cytokines IL-10 and 

TGF-β in the distal colon mucosa and the mesenteric fat of these animals. There were no 

significant differences among groups in the expression of anti-inflammatory cytokines IL-10 and 
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TGF- β (Figure 5.3, 5.6) suggesting that potatoes exhibit anti-inflammatory action via targeting 

pro-inflammatory molecules. We measured expression of TLR-4, NF-B and TNF-α in the 

proximal colon and ileum mucosa of these animals. We did not detect any significant difference 

among the groups (Appendix VII). There were no differences even in the expression of TLR-4, 

NF-B and TNF-α between the standard and the HFD controls in the proximal colon and the 

ileum mucosa. This might suggest that HFD targets the distal colon in the pig model. Although, 

some studies support this observation (Lam, Mitchell et al. 2011), we are currently using 

advanced metabolomics and pyrosquencing (gut bacteria) methods to confirm this observation.    

 

5.5.3 Potato Diets Suppressed Systemic Oxidative Stress Markers in HFD Consuming 

Animals.  

8-Isoprostane is a prostaglandin-F2-like compound that belongs to the F2 isoprostane 

class. It is produced in vivo by the free radical-catalyzed peroxidation of arachidonic acid. 

Concentrations of 8-isoprostane, one of the more prevalent F2 isoprostanes, in the plasma/serum 

and urine are regarded as one of the best indices of lipid peroxidation, and oxidative stress that 

are currently available (Montuschi, Barnes et al. 2004). In our study, we measured 8-isoprostane 

in the serum, and in the urine of the HFD consuming pigs. All potato diets suppressed urinary 8-

isoprostane concentrations compared to HFD control (P = 0.02). In additions levels in the urine 

were similar to that of the standard control animals (Figure 5.7A). However, no significant 

differences were seen in serum 8-isoprostane concentrations among the treatments.  

8-hydroxydeoxyguanosine (8-OHdG), an oxidized nucleoside of DNA, is the most 

frequently detected and studied DNA adduct. Upon DNA repair, 8-OHdG is excreted in the urine 

(Halliwell 2000). Urinary 8-OHdG is hypothesized not only to be a biomarker of generalized 
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cellular oxidative stress but might be a risk factor for cancer, atherosclerosis and diabetes (Wu, 

Chiou et al. 2004). In our study, urinary 8-OHDG concentrations followed a similar trend as 8-

isoprostane. The HFD controls had the highest 8-OHDG concentrations suggesting elevated 

oxidative stress. All the potato diet consuming animals had suppressed 8-OHDG concentrations, 

to the levels as standard controls (P = 0.01, Figure 5.7A). We measured serum anti-oxidant status 

using ORAC method. We did not observe any differences in the hydrophilic and lipophilic serum 

ORAC levels among groups (Appendix VI).   

 

5.5.4 Potato Diets Suppressed Systemic TNF-α and IL-1β in HFD Consuming Animals. 

Elevated concentrations of circulating cytokines TNF-α, IL-6 and IL-1β are considered a 

risk factor for disorders such as insulin resistance and cardiovascular diseases (Wisse 2004, Berg 

and Scherer 2005). A growing body of evidence suggests that the pro-inflammatory cytokines 

IL-1β and TNF-α play a critical role in the pathogenesis of inflammatory diseases (Antonelli, 

Ferri et al. 2009). TNF-α and IL-1β share several pro-inflammatory properties including the 

promotion of leukocyte-endothelium interaction, the activation of the arachidonic acid pathway, 

and the induction of cytokine production (Antonelli, Ferri et al. 2009). In our study, serum TNF-

α and IL-1β were suppressed in all the potato diet consuming animals compared to the HFD 

controls. Levels were similar to the standard controls suggesting that potato diets prevented HFD 

elevated systemic inflammatory markers (Figure 5.7B). We measured serum LPS, however, no 

differences were observed in serum LPS among the groups (Appendix VI). 

Previous studies on potatoes have shown that potato peel extracts reduced hyperglycemia, 

oxidative stress, and overall food consumption in diabetic rodents when consumed at 10 % of the 

diet. Plasma glucose levels in the diabetic rats consuming potato peels were 33 % lower than the 
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control diabetic animals (Singh, Kamath et al. 2005, Singh, Kamath et al. 2005). Thus, we fasted 

the animals for 12 hours and collected serum to measure serum insulin/glucose. We did not 

observe any differences among groups in serum insulin or glucose. In fact, the levels of insulin in 

all groups were less than 5 mU/L which suggests that insulin levels were normal in these animals 

including the HFD controls (Figure 5.7B). To confirm, we measured expression of inflammatory 

markers NF-B and TNF-α in the liver of these animals. We did not observe any differences 

among groups in the expression of NF-B and TNF-α or the GSH:GSSG ratio in the livers of 

these animals (Appendix VII). In addition, we asked a trained pathologist to read the H&E slides 

of the livers of these animals. There were no signs of histological inflammation in the liver of 

these animals. Even after 13 weeks of HFD feeding, lack of liver inflammation might explain no 

systemic dysfunction in insulin and glucose levels. Thus, the current model – domestic pigs 

protected against insulin resistance even after 13 weeks of HFD feeding (Sejersen, Sorensen et 

al. 2013). 

Rats consuming potato peels for 4 weeks showed lower plasma cholesterol (40 % 

decrease) and lower hepatic fat cholesterol (30 % decrease) compared with cellulose consuming 

rats (Lazarov and Werman 1996). Rats consuming a diet with 78 % potato for 3 weeks had lower 

plasma cholesterol and triglycerides and reduced liver cholesterol than control rats (Robert, 

Narcy et al. 2006). Therefore, we measured the lipid profile of serum in these animals. We did 

not see any significant differences within the HFD animals in total cholesterol, LDL and HDL 

levels. Levels of HDL and total cholesterol were higher in the HFD animals compared to the 

standard control animals (Figure 5.7C). Only the serum triglyceride levels were suppressed in the 

potato consuming animals compared to the HFD controls and were similar to that of the standard 

group (Figure 5.7C). Nevertheless, the lipid profile in these animals was in normal range 
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(Mersmann, Arakelian et al. 1979), even in the HFD controls, suggesting that there was no 

impairment in lipid metabolism in these animals. Lack of substantial differences between the 

standard control and the high-fat diet fed control animals suggests that the pig model used in the 

study is protected against high-fat diet induced dyslipidemia and insulin resistance in the time 

period employed (13 weeks). However, recently published research indicates that the young 

Göttingen minipig fed on a high-energy diet for 4 months (~ 16-17 weeks) is a better model for 

diet induced childhood/adolescent obesity and metabolic syndrome (Christoffersen, 

Golozoubova et al. 2013), thus future studies focusing on preventing HFD induced insulin 

resistance and dyslipidemia should focus on Göttingen minipigs as a model. 

 

5.6 Conclusions 

In conclusion, our study suggests that both purple and white-fleshed potatoes demonstrate 

anti-oxidant/anti-inflammatory properties – processes involved in progression of colon 

inflammation/cancer and other disorders. Consumption of purple-fleshed potato demonstrated 

only a marginal benefit over white-fleshed potatoes. However, our earlier reversal study revealed 

that only the consumption of purple-fleshed potato reversed detrimental effects of HFD in pigs. 

Results from both studies demonstrate that only the consumption of purple-fleshed potatoes 

could both prevent and reverse HFD elevated oxidative stress and inflammatory markers in HFD 

consuming pigs.  

Regardless of the health-benefits, the sensory attributes and consumer acceptance of these 

new color-fleshed cultivars should not be discounted. Earlier results on sensory analysis from our 

lab revealed consumers’ readiness to accept purple-fleshed potatoes provided they were educated 

on the health benefits (Madiwale, Reddivari et al. 2011, Madiwale, Reddivari et al. 2012). 
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Hence, purple-fleshed potatoes can be a healthier choice as they possess greater levels of 

bioactive compounds, even after processing, as compared with their white-fleshed counterparts. 

However, we should keep in mind that the potato should be a healthy component of a varied diet. 

As a starch food item, it should be consumed in moderation and without excess lipid additions. 

Potato servings do not in themselves promote obesity/related disorders; excess starchy food, 

refined sugar and food laden with high calorie lipid additions might be the culprit (Brown 2005, 

Camire, Kubow et al. 2009).  
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CHAPTER VI 

 

SUMMARY AND CONCLUSIONS 

 

6.1 In vitro Study 

Our results demonstrated that suppression of proliferation and elevation of apoptosis in 

HCT-116 p53+/+ human colon cancer cell lines at 100 µM or higher concentrations of RSV 

could be accomplished at 25 µM, when combined with GSE at doses of 35-50 µg/ml. These 

results strongly support our hypothesis that combining bioactive compounds like RSV and GSE 

could reduce the dose of either compound while providing similar or better anti-colon cancer 

properties. This lends support to the proposal that combinatorial approach towards colon cancer 

chemoprevention using bioactive compounds is a feasible approach – however, in vivo studies of 

such a RSV-GSE combination are clearly warranted.  

RSV-GSE combination induced G0/G1 phase arrest in HCT-116 colon cancer cells. RSV 

potentiated GSE induced p53 dependent apoptosis via mitochondrial apoptotic signaling as it 

involved interplay of reactive oxygen species, p53, Bax/Bcl-2 and caspase-3 pathways. 

Combination of RSV and GSE suppressed proliferation and induced apoptosis even in presence 

of IGF-1, suggesting its potential as a chemopreventive agent against colon cancer even in obese 

subjects. Moreover, RSV-GSE demonstrated specificity as the combination did not alter cell 

kinetics in the normal colonic epithelial cell line CRL-1831. Given the superior in vitro activity, 

further in vivo confirmation, using spontaneous or sporadic colon cancer mice models, of the 

potential effects of such combination as an anti-tumorigenic agent is clearly required.  
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6.2 Animal Study 

In the prevention study, both purple and white-fleshed potato (raw, baked and chips) 

consuming animals had lower distal colonic oxidative stress (measured using GSH:GSSG ratio, 

significant for purple-fleshed potato raw group) and significantly lower distal colonic expression 

of innate pro-inflammatory markers including TLRs 2, 4, NF-B, TNF-α, and COX-2, compared 

to the high-fat diet (HFD) controls (P < 0.05). The levels in the animals consuming potato diets 

were similar to the standard control animals. Similarly, in the mesenteric fat, oxidative stress 

(GSH:GSSG ratio) was lower (only numerical suppression in WB and WC groups), and 

expression levels of TLR-4, NF-B and TNF-α were significantly suppressed in all the potato 

diet consuming animals compared to the HFD controls. Moreover, the animals consuming potato 

diets had significantly lower systemic oxidative stress markers (measured using urinary 8-

isoprostane and 8-OHDG) and circulating pro-inflammatory cytokines (TNF-α and IL-1β) 

compared to the HFD control animals similar to levels observed in the standard control animals 

(P < 0.05).  

However, in the reversal study, only the purple-fleshed potato consuming animals had 

significantly lower distal colonic oxidative stress (GSH:GSSG ratio) and lower distal colonic 

expression of innate inflammatory markers (TLRs 2, 4, NF-B, and TNF-α) compared to HFD 

controls. Levels of these markers in the animals consuming white-fleshed potatoes were not 

significantly different from the HFD controls. Only the animals consuming purple-fleshed potato 

diets had lower expression of TNF-α and higher expression of adiponectin in the mesenteric fat 

compared to the HFD control. Anti-inflammatory/anti-oxidant effect of the purple-fleshed potato 

in the mesenteric fat was only modest in the reversal study. The purple-fleshed potato consuming 

animals had significantly lower serum 8-isoprostane compared to the HFD control, levels in the 
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white-fleshed potato group were not significantly different from HFD control. Serum TNF-α, a 

pro-inflammatory cytokine, however, was suppressed in both purple and white-fleshed groups 

(W10) compared to the HFD control.  

Results of our study demonstrate that only purple-fleshed potato, even after processing, 

prevented and reversed HFD induced oxidative stress/inflammation markers in the distal colon, 

mesenteric fat and systemic circulation in the pig, a human relevant animal model. The 

differences between the purple and white-fleshed potatoes could be explained by the differences 

in their phenolic metabolic profiles as identified using UPLC/MS analysis. However, white-

fleshed potato (rich in phenolic acids) was effective in preventing HFD elevated oxidative 

stress/inflammation markers in the distal colon, mesenteric fat and systemic circulation. Vitamin 

C, phenolic acids and resistant starches present in the white-fleshed potatoes could have 

mediated the health benefits, however further research to elucidate their contributions is required. 

Overall results suggest that purple-fleshed potatoes are a great delivery vehicle for anti-

inflammatory and anti-oxidant bioactive compounds – may potentially reduce risk for systemic 

and colonic inflammatory disorders.  
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APPENDIX I 

Growth performances (feed conversion ratio and back-fat thickness in mm) of pigs consuming experimental diets during the 5 week 

feeding period in the reversal study. 

Dietary Group Week 0 Week 1 Week 2 Week 3 Week 4 Week 5  

 Feed Conversion Ratio  

C  0.3 ± 0 0.3 ± 0 0.3 ± 0 0.2 ± 0 0.4 ± 0 0.3 ± 0 

P10  0.4 ± 0 0.2 ± 0.1 0.4 ± 0 0.3 ± 0 0.3 ± 0 0.3 ± 0 

P20  -0.7 ± 0.6 0.4 ± 0.1 0.3 ± 0.1 0.4 ± 0.1 0.3 ± 0 0.3 ± 0 

W10  0.3 ± 0.1 0.2 ± 0 0.3 ± 0 0.3 ± 0 0.3 ± 0 0.3 ± 0 

W20  -1.3 ± 1.1 0.1 ± 0.2 0.5 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.3 ± 0 

Back-fat Thickness (mm) 

C 18.8 ± 0.2 17.2 ± 0.2 18.6 ± 0.2 18.5 ± 0.2    

P10 18.7 ± 0.3 17.7 ± 0.1 18.5 ± 0.3 18.5 ± 0.3    

P20 18.8 ± 0.3 17.3 ± 0.3 18.7 ± 0.3 18.6 ± 0.3    

W10 18.4 ± 0.1 17.7 ± 0.3 18.3 ± 0.1 18.2 ± 0.1    

W20 18.8 ± 0.2 17.5 ± 0.2 18.6 ± 0.2 18.5 ± 0.2    

Data are presented as means ± S.E. C: High-fat diet control, P10 and P20 - purple-fleshed potato chips at 10 and 20 % of diet w/w and W10 and W20 - 

white-fleshed potato chips at 10 and 20 % of the diet w/w. There were no differences between groups at P ≤ 0.05. 
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APPENDIX II 

Oxidative stress and inflammatory markers measured in porcine serum/urine at week 5 in the reversal study.  

 

 

 

 

 

 

Markers/Parameters C P10 P20 W10 W20 

Serum total oxygen radical absorbance capacity (µmol 

Trolox equivalents/L)  906.6 ± 45.2a 867.1 ± 46.2a 843.1 ± 43.2a 806.0 ± 28.7a 844.0 ± 42.3a 

Serum C-reactive protein (µg/mL) 11.2 ± 1.8a  10.7 ±1.2a 13.9 ±1.9a 11.9 ±3.2a 13.4 ±1.8a 

Serum lipopolysaccharide (ng/mL) 0.09 ± 0.02a 0.11 ± 0.05a 0.12 ± 0.04a 0.09 ± 0.03a 0.1 ± 0.04a 

Serum leukotriene B4 (pg/mL) 2390.0 ± 330.2ab 2054.2 ± 87.1a 2036.2 ± 153.7a 2117.1 ± 215.3ab 2573.1 ± 228.4b 

Urinary 8-hydroxy-2′-deoxyguanosine (ng/mg creatinine)  51.8 ± 8.9a  59.8 ± 10.3a 45.5 ±  5.9a 57.4 ± 9.4a 42.5 ± 6.0a 

Urinary 8-isoprostane (ng/mg creatinine) 0.9 ± 0.1a 1.2 ± 0.3a 1.3 ± 0.3a 1.1 ± 0.2a 1.2 ± 0.2a 

Data are presented as means ± S.E. Means in a row that differ by a common letter (a, b) differ (P < 0.05). C: High-fat diet control, P10 and P20 - purple-

fleshed potato chips at 10 and 20 % of diet w/w and W10 and W20 - white-fleshed potato chips at 10 and 20 % of the diet w/w. 
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APPENDIX III 

Relative expression as measured using real time PCR in the ileum and the proximal colon mucosa in the reversal study.  

 

TLR-4 NF-κB TNF-α 

Dietary Group Ileum Mucosa 

C 1.9 ± 0.8 1.4 ± 0.4 1.6 ± 0.3 

P10 1.3 ± 0.7 1 ± 0.4 1 ± 0.3 

P20 2 ± 0.6 1.2 ± 0.4 0.9 ± 0.3 

W10 2.6 ± 0.6 1.4 ± 0.4 1.5 ± 0.3 

W20 1.5 ± 0.6 1 ± 0.4 1.3 ± 0.3 

 

Proximal Colon Mucosa 

C 0.9 ± 0.1 1.2 ± 0.2 0.9 ± 0.2 

P10 0.8 ± 0.1 0.8 ± 0.2 0.6 ± 0.3 

P20 0.9 ± 0.1 0.9 ± 0.2 0.6 ± 0.2 

W10 0.7 ± 0.1 0.6 ± 0.4 0.5 ± 0.2 

W20 0.8 ± 0.1 0.9 ± 0.2 1.4 ± 0.8 

Results were expressed as mean ± S.E. for 7-8 animals in each treatment group. C: High-fat diet control, P10 and P20 - 

purple-fleshed potato chips at 10 and 20 % of diet w/w and W10 and W20 - white-fleshed potato chips at 10 and 20 % of the 

diet w/w. There were no differences between groups at P ≤ 0.05. 
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APPENDIX IV 

Feed conversion ratio of animals in the prevention study. Data are presented as means ± S.E of 8 animals per group.  

Dietary 

group 

Week 

0 

Week  

1 

Week 

2 

Week 

3 

Week    

4 

Week 

5 

Week 

6 

Week    

7 

Week    

8 

Week      

9 

Week 

10 

Week    

11 

Week 

12 

Week  

13   

 

Feed Conversion Ratio (FCR) 

Overall 

FCR 

C1 

 

 

1.3 ±    

0.2 

4 ±   

0.3 

1.4 ±   

0 

1.9 ± 

0.1 

2 ± 

0.2 

2 ±       

0.1 

1.9 ±   

0.1 

1.9 ± 

0.1 

2 ±   

0.1 

2.4 ± 

0.1 

2.5 ± 

0.2 

2.5 ± 

0.2 2.2 ± 0 

C2 

 

 

1 ±           

0 

4.3 ±  

0.3 

1.4 ±    

0 

1.9 ± 

0.1 

1.7 ± 

0.1 

2 ±      

0.1 

2 ±       

0.1 

1.9 ± 

0.1 

1.8 ± 

0.1 

2.3 ± 

0.1 

2.3 ± 

0.1 

2.5 ± 

0.2 2.1 ± 0 

PR 

 

 

1 ±          

0 

4.5 ± 

0.9 

1.2 ±    

0 

2.1 ± 

0.1 

1.3 ± 

0 

2.5 ±    

0.2 

1.9 ±      

0 

2 ±     

0 

1.5 ± 

0.1 

2.8 ± 

0.4 

2 ±   

0.1 

4.6 ± 

1.2 2.1 ± 0 

WR 

 

 

1 ±          

0 

3.6 ± 

0.3 

1.2 ± 

0.1 

2.6 ± 

0.2 

1.3 ± 

0 

2.4 ±    

0.1 

2 ±         

0 

2.1 ± 

0.1 

1.9 ± 

0.1 

2.2 ± 

0.1 

1.9 ± 

0.1 

2.7 ± 

0.2 2.2 ± 0.1 

PB 

 

 

1 ±          

0 

3.5 ± 

0.4 

1.3 ± 

0.1 

2.1 ± 

0.1 

1.5 ± 

0.1 

2.4 ±    

0.1 

1.8 ±    

0.1 

2.2 ± 

0.1 

1.6 ± 

0.1 

2.7 ± 

0.2 

2.1 ± 

0.1 

3 ±   

0.2 2.1 ± 0 

WB 

 

 

1 ±          

0 

4 ±    

0.2 

1.3 ± 

0.1 

2.4 ± 

0.1 

1.4 ± 

0.1 

2.6 ±   

0.1 

1.9 ±   

0.1 

2.5 ± 

0.2 

2.3 ± 

0.2 

2 ±   

0.1 

2 ±   

0.1 

4.8 ±   

1 

 

2.1 ± 0 
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PC 1 ±          

0 

4.7 ± 

0.8 

1.2 ±    

0 

2.3 ± 

0.1 

1.4 ± 

0.1 

2.5 ±   

0.2 

1.8 ±    

0.1 

2.1 ± 

0.1 

1.5 ± 

0.1 

2.9 ± 

0.2 

1.9 ± 

0.1 

3.4 ± 

0.5 

 

2.2 ± 0.1 

WC 

 

 

1 ±       

0.1 

3.7 ± 

0.3 

1.2 ±    

0 

2.5 ± 

0.2 

1.3 ± 

0 

2.9 ±   

0.3 

1.9 ±   

0.1 

2.2 ± 

0.1 

2 ±   

0.1 

2.1 ± 

0.1 

1.9 ± 

0.1 

3 ±   

0.2 1.9 ± 0.2 

Data are presented as means ± S.E. C1, standard control, C2, high-fat diet control, letters P and W indicate purple and white-fleshed potato groups, R, B & C 

indicate processing treatments raw, baked and chips, respectively at 10 % supplementation. There were no differences between groups in the overall feed 

conversion ratio at P ≤ 0.05. FCR: Feed conversion ratio. 
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APPENDIX V 

Back-fat thickness (mm) of animals in the prevention study. Data are presented as means ± S.E of 8 animals per group.  

Dietary Group Week 1 Week 5 Week 8 Week 13 

 

Back-fat Thickness (inch) 

C1 7 ± 0.5 8.8 ± 0.5 12.4 ± 0.6 19.2 ± 1 

C2 7.2 ± 0.7 11.2 ± 0.8 14.4 ± 1 19.1 ± 1.3 

PR 7.4 ± 0.7 10.2 ± 0.7 14.7 ± 0.9 18.6 ± 1.4 

WR 8.1 ± 0.4 12.4 ± 0.7 16.5 ± 0.5 21.6 ± 1.2 

PB 7.2 ± 0.5 11.4 ± 0.6 16.5 ± 0.7 23.3 ± 0.6 

WB 7.3 ± 0.5 10.9 ± 1 15.5 ± 1.1 20.8 ± 1.9 

PC 7.1 ± 0.4 12.1 ± 0.7 17.1 ± 0.8 24.7 ± 1.5 

WC 7 ± 0.3 12.9 ± 1.1 18.8 ± 1.1 23.1 ± 1.9 

Data are presented as means ± S.E. There were no differences between groups at P ≤ 0.05.  C1, 

standard control, C2, high-fat diet control, letters P and W indicate purple and white-fleshed potato 

groups, R, B & C indicate processing treatments raw, baked and chips, respectively at 10 % 

supplementation. There were no differences between groups at P ≤ 0.05. 
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APPENDIX VI 

Oxidative stress and inflammatory markers measured in porcine serum/urine at week 5 in the prevention study.  

Markers/Parameters C1 C2 PR WR PB WB PC WC 

Serum lipopolysacccharide 

(ng/mL) 0.3 ± 0 0.3 ± 0 0.3 ± 0 0.3 ± 0 0.3 ± 0 0.4 ± 0 0.4 ± 0 0.4 ± 0 

Serum 8-isoprostane (pg/ml) 

507.05 ± 

47.31 

711.04 ± 

116.03 

502.21 ± 

118.28 

791.37 ± 

105.56 

786.58 ± 

88.04 

609.48 ± 

139.84 

511.29 ± 

97.95 

633.08 ± 

147.8 

Serum total oxygen radical 

absorbance capacity (µmol 

Trolox equivalents/L) 

487.8 ±  

28.8 

437.1 ± 

38.4 

531.7 ±  

77.8 

504.9 ±    

66.9 

446.7 ±    

71 

440.1 ± 

44.8 

493.3 ± 

55.9 

604.9 ± 

66.9 

Data are presented as means ± S.E. C1, standard control, C2, high-fat diet control, letters P and W indicate purple and white-fleshed potato groups, R, B & C 

indicate processing treatments raw, baked and chips, respectively at 10 % supplementation. There were no differences between groups at P ≤ 0.05. 
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APPENDIX VII 

GSH:GSSG ratio in the liver was measured using UPLC/PDA. Relative expression of TLR-4, NF-κB and TNF-α was measured using 

real-time PCR in the liver, ileum and the proximal colon mucosa in the prevention study.  

 

GSH:GSSG Ratio NF-κB TNF-α 

Dietary Group Liver 

C1 3.6 ± 0.3 1.3 ± 0.3 1.4 ± 0.5 

C2 3.7 ± 0.1 1.1 ± 0.3 1.2 ± 0.4 

PR 3.5 ± 0.4 0.9 ± 0.3 2.2 ± 0.6 

WR 3.3 ± 0.2 0.8 ± 0.3 1.1 ± 0.5 

PB 3.5 ± 0.3 1.4 ± 0.3 1.9 ± 1.5 

WB 4 ± 0.3 0.9 ± 0.3 2.1 ± 1.4 

PC 3.6 ± 0.2 1 ± 0.3 0.8 ± 0.5 

WC 3.3 ± 0.1 0.9 ± 0.3 1.2 ± 1 

 

TLR-4 NF-κB TNF-α 

 

Ileum Mucosa 

C1 1.3 ± 0.3 1.9 ± 0.3 0.5 ± 0.4 

C2 1 ± 0.3 1 ± 0.3 0.5 ± 0.4 

PR 1.7 ± 0.3 1.5 ± 0.3 1.2 ± 0.5 

WR 0.9 ± 0.3 1 ± 0.3 0.4 ± 0.4 
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PB 0.6 ± 0.3 0.8 ± 0.3 0.6 ± 0.4 

WB 1.5 ± 0.3 1.6 ± 0.3 0.4 ± 0.5 

PC 1.1 ± 0.3 1 ± 0.3 1.1 ± 0.4 

WC 1 ± 0.3 1.3 ± 0.3 1 ± 0.5 

 

TLR-4 NF-κB TNF-α 

 

Proximal Colon Mucosa 

C1 0.6 ± 0.5 0.8 ± 0.4 0.7 ± 0.2 

C2 0.6 ± 0.6 0.5 ± 0.5 1.2 ± 0.5 

PR 1.2 ± 0.5 1.2 ± 0.4 0.9 ± 0.3 

WR 0.5 ± 0.5 0.5 ± 0.4 1.1 ± 0.3 

PB 1 ± 0.5 0.9 ± 0.4 0.5 ± 0.4 

WB 0.5 ± 0.5 0.5 ± 0.4 0.4 ± 0.4 

PC 0.4 ± 0.5 0.4 ± 0.4 0.5 ± 0.3 

WC 0.6 ± 0.5 0.5 ± 0.4 0.9 ± 0.3 

Data are presented as means ± S.E. C1, standard control, C2, high-fat diet control, letters P 

and W indicate purple and white-fleshed potato groups, R, B & C indicate processing 

treatments raw, baked and chips, respectively at 10 % supplementation. There were no 

differences between groups at P ≤ 0.05. 
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LIST OF ABBREVIATIONS 

 

5-FU: 5-florouracil 

8-OHDG: 8-hydroxydeoxyguanosine 

Akt: Protein Kinase B 

APC: Adenomatous polyposis coli 

ATM: Adipose tissue macrophages 

Bax: Bcl-2-associated X protein 

Bcl-2: B-cell lymphoma 2 protein 

CD: Crohn’s disease 

CI: Combination index 

COX-2: Cyclooxygenase-2 

CRC: Colorectal cancer 

DMEM: Dulbecco's modified eagle's medium  

FACS: Fluorescence activated cell sorting analysis  

FBS: Fetal bovine serum 

GSE: Grape seed extract 

GSH: Reduced glutathione 

GSSG: Oxidized glutathione 

HDL: High density lipoprotein 

HFD: High-fat diet 

IBD: Inflammatory bowel disease 

IFN-γ: Interferon- γ 

IGF-1: Insulin like growth factor -1 



 
 

 189 

IGF-1R: Insulin like growth factor-1 receptor 

IGFBP: Insulin like growth factor binding protein 

IL-10: Interleukin-10 

IL-1β: Interleukin-1β 

IL-4: Interleukin-4 

IL-6: Interleukin-6 

IL-8: Interleukin-8 

JNK: c-Jun N-terminal kinases 

LDH: Lactate-dehydrogenase  

LDL: Low density lipoprotein 

LPS: Lipopolysaccharide 

MCP-1: Monocyte chemotactic protein-1  

MDA: Malondialdehyde 

NAC: N-Acetyl cysteine 

NF-B: Nuclear factor kappa-light-chain-enhancer of activated B cells 

NO: Nitric oxide 

ORAC: Oxygen radical absorbance capacity  

PBS: Phosphate buffered saline 

RNS: Reactive nitrogen species 

ROS: Reactive oxygen species 

RSV: Resveratrol 

TGF-β: Transforming growth factor-β 

TLR-2: Toll-like receptor-2 
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TLR-4: Toll-like receptor-4 

TNF-α: Tumor necrosis factor-α 

UC: Ulcerative colitis 

UPLC-MS: Ultra performance liquid chromatography – Mass spectrometry 

 

REVERSAL STUDY 

C: High-fat diet control 

P10 and P20: Purple-fleshed potato chips at 10 and 20 % of diet w/w.  

W10 and W20: White-fleshed potato chips at 10 and 20 % of the diet w/w. 

 

PREVENTION STUDY  

C1: Standard diet control 

C2: High-fat diet control,  

PR, PB, PC, WR, WB and WC: Letters P and W indicate purple and white-fleshed potato 

groups, R, B & C indicate processing treatments raw, baked and chips, respectively at 10% 

supplementation (w/w).  

 


