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ABSTRACT 

 
NOWCASTING FOR A HIGH-RESOLUTION WEATHER RADAR NETWORK 

 
Short-term prediction (nowcasting) of high-impact weather events can lead to 

significant improvement in warnings and advisories and is of great practical importance. 

Nowcasting using weather radar reflectivity data has been shown to be particularly useful. 

The Collaborative Adaptive Sensing of the Atmosphere (CASA) radar network provides 

high-resolution reflectivity data amenable to producing valuable nowcasts. The high-

resolution nature of CASA data requires the use of an efficient nowcasting approach, 

which necessitated the development of the Dynamic Adaptive Radar Tracking of Storms 

(DARTS) and sinc kernel-based advection nowcasting methodology. This methodology 

was implemented operationally in the CASA Distributed Collaborative Adaptive Sensing 

(DCAS) system in a robust and efficient manner necessitated by the high-resolution 

nature of CASA data and distributed nature of the environment in which the nowcasting 

system operates. Nowcasts up to 10 min to support emergency manager decision-making 

and 1–5 min to steer the CASA radar nodes to better observe the advecting storm patterns 

for forecasters and researchers are currently provided by this system. Results of 

nowcasting performance during the 2009 CASA IP experiment are presented. 

Additionally, currently state-of-the-art scale-based filtering methods were adapted and 

evaluated for use in the CASA DCAS to provide a scale-based analysis of nowcasting. 

DARTS was also incorporated in the Weather Support to Deicing Decision Making 
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system to provide more accurate and efficient snow water equivalent nowcasts for aircraft 

deicing decision support relative to the radar-based nowcasting method currently used in 

the operational system. Results of an evaluation using data collected from 2007–2008 by 

the Weather Service Radar-1988 Doppler (WSR-88D) located near Denver, Colorado, 

and the National Center for Atmospheric Research Marshall Test Site near Boulder, 

Colorado, are presented. DARTS was also used to study the short-term predictability of 

precipitation patterns depicted by high-resolution reflectivity data observed at microalpha 

(0.2–2 km) to mesobeta (20–200 km) scales by the CASA radar network. Additionally, 

DARTS was used to investigate the performance of nowcasting rainfall fields derived 

from specific differential phase estimates, which have been shown to provide more 

accurate and robust rainfall estimates compared to those made from radar reflectivity data. 
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CHAPTER I. INTRODUCTION 

 

1.1 Introduction 

The term “nowcasting” refers to short-term (0–6 h) automated weather forecasting. 

Nowcasts of high-impact weather events such as flood-producing rains, hail, and snow 

can be made with sufficient time and space specificity within this time frame such that 

appropriate action can be taken to effectively mitigate losses of life, property, and time 

and cost due to transportation delays. Thus the term “nowcasting” emphasizes specificity 

and short time nature of a weather event forecast (Browning 1982; Wilson 2004). 

Modern meteorological radars provide favorable measurement resolution and range 

for nowcasting. Radar reflectivity or derived products such as Vertically Integrated 

Liquid (VIL; Greene and Clark 1972; Boudevillain and Andrieu 2003; Smalley et al. 

2003) are useful for nowcasting high-impact weather events. While several different 

types of meteorological radars and radar networks are currently in operation worldwide, 

the Collaborative Adaptive Sensing of the Atmosphere (CASA) radar network is unique 

in that it provides high-resolution dual-polarized measurements of the atmosphere close 

to the ground with suitable spatial extent to facilitate better observation and study of 

severe weather events. The CASA network consists of four dual-polarized X-band 

Doppler radar nodes and provides high- resolution reflectivity observations covering an 

approximate area of 7000 km2 over central Oklahoma amenable to producing valuable 

nowcasts. 
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The high resolution of CASA radar data over a relatively large spatial extent allows 

for observation of microalpha scale (0.2–2 km) meteorological phenomena including 

wind circulations, cloud patterns, tornadoes, and deep convection (Orlanski 1975; 

National Weather Service 2009) and misoscale (0.04–4 km) meteorological phenomena 

including microbursts and rotation within thunderstorms (Fujita 1981; National Weather 

Service 2009). While observations of such phenomena are beneficial to operational 

forecasters and researchers, implementation of an accurate and computationally efficient 

nowcasting method is required to produce nowcasts useful for operational or research use. 

A nowcasting method consisting of the Fourier-based Dynamic Adaptive Radar Tracking 

of Storms (DARTS) algorithm for motion estimation in conjunction with an analytic sinc 

kernel-based advection scheme has been developed and evaluated for nowcasting and 

potential inclusion in the CASA radar network with positive results. 

1.2 Research challenges and opportunities 

Currently in the CASA Distributed Collaborative Adaptive System (DCAS; 

McLaughlin et al. 2005), radar observations are collected and processed at the local site, 

namely the Systems Operations Control Center (SOCC) located in Norman, Oklahoma, 

and sent via a Transmission Control Protocol/Internet Protocol (TCP/IP)-based peer-to-

peer file transfer network to a central facility at Amherst, Massachusetts, approximately 

2600 km away where the nowcasting software runs. Thus, operational nowcasting in the 

CASA DCAS provides several unique challenges. The system implementation of a 

nowcasting method must generate nowcasts of desired lead times before data files 

containing new observations become available. The system must also be robust to data 

anomalies such as network latency and unpredictable delays in data transfer leading to 
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dropped or mistimed data transfer or long periods of inactivity. The nowcasting system 

must also run on different processing platforms. Thus, the operational nowcasting system 

in CASA DCAS must use a nowcasting method that is inherently computationally 

efficient and the implementation of such a method must also be computationally efficient, 

robust, and portable. 

Naturally it is desired to implement the most accurate nowcasting system possible. 

Selective filtering of precipitation pattern scales depicted by radar observations has been 

shown in previous research to enhance nowcasting accuracy. One currently operational 

method filters volatile scales from predicted continental-scale reflectivity observations 

via a wavelet-based filtering approach (Turner et al. 2004). Another method uses a spatial 

elliptical filtering procedure applied to High-Resolution VIL (HRVIL; Smalley et al. 

2003) fields estimated from WSR-88D observations used as input to a cross-correlation-

based nowcasting technique. This filtering method seeks to extract a large-scale 

precipitation pattern envelope whereby translation due to intensification of precipitation 

at one end of the pattern and dissipation at the opposite end can be detected (Wolfson et 

al. 1999). The DARTS model incorporates a provision for Fourier filtering of the 

observed data sequence used for motion estimation. The determination of the filtering 

approach or combination of approaches that yields the most accurate nowcasts in the 

CASA DCAS environment has yet to be determined. 

The nowcasting methodology used in CASA DCAS can also be incorporated in other 

operational decision support systems to improve performance. The Weather Support to 

Deicing Decision Making (WSDDM; Rasmussen et al. 2001, 2003) system calibrates the 

Z-S equation in real-time to provide snow water equivalent (SWE) nowcasts to support 
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decisions made by airport managers responsible for determining the type and application 

frequency of aircraft deicing fluid (Stefl and George 1992). WSDDM is currently 

deployed at several major airports in the U.S. and uses reflectivity fields observed by a 

radar or radars covering the airspace over the deployment site as input to a cross-

correlation-based nowcasting method currently used to provide reflectivity (Z) nowcasts. 

These nowcasts are converted to SWE values using the Z-S relationship calibrated by 

surface SWE measurements (S) and observed reflectivity values most likely producing 

the surface measurement. It has been observed that this cross-correlation-based 

nowcasting method is the main source of computational cost in the system and fails to 

provide accurate motion estimates in the presence of radar data anomalies, specifically 

artificially stationary regions of reflectivity due to the presence of a zero velocity isodop 

(i.e., the area of estimated zero velocity caused by the scan radial being perpendicular to 

the wind direction) resulting from ground clutter mitigation. 

The predictability of precipitation patterns observed by meteorological radar is an 

important concept in the development of effective nowcasting systems by establishing a 

means to characterize precipitation patterns and features and provide an upper limit on 

the extent and utility of nowcasting. Previous studies investigating the predictability of 

precipitation patterns considered continental-scale reflectivity observations (Germann 

and Zawadzki 2002, 2006) and data collected by a single WSR-88D (Grecu and 

Krajewski 2000). These studies were practically significant in three ways. First, they 

provided insight as to what is achievable in terms of nowcasting. Second, they provided a 

reference against which the progress of any nowcasting technique can be evaluated. Third, 

they gave insight into the predictability as a function of space and time scales. Such 
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studies have yet to be extended to investigate the predictability of microscale scale 

precipitation patterns represented by CASA radar observations. 

While nowcasting of precipitation has traditionally been done using radar reflectivity 

data, research over the last decade indicates that using the specific differential phase (Kdp), 

defined as one-half the range derivative of the two-way differential phase (�dp), has 

several advantages over using reflectivity for estimating rainfall accumulation including 

being robust to radar calibration error, attenuation, beam blockage, variations in drop size 

distribution, anomalous propagation, and the presence of dry, tumbling hail. A new 

method for Kdp estimation has been developed (Wang and Chandrasekar 2009) that 

provides more accurate and robust estimates of Kdp relative to previous methods. Such 

estimates can be converted to rainfall rates using an R-Kdp relationship for X-band radar 

and integrated to produce rainfall accumulation estimates. Studies investigating the 

feasibility of nowcasting rainfall fields based on Kdp estimates calculated in this manner 

have yet to be performed. 

1.3 Research objectives 

This research aimed to address the specific challenges and opportunities associated 

with nowcasting in CASA DCAS introduced in the preceding subsection. The DARTS 

and sinc kernel-based advection methodology was implemented operationally in the 

CASA DCAS in a robust and efficient manner necessitated by the high-resolution nature 

of the data and distributed nature of the environment in which the nowcasting system 

operates. Nowcasts up to 10 min to support emergency manager decision-making and 1–

5 min nowcasts to steer the CASA radar nodes to better observe the advecting storms for 

forecasters and researchers are currently provided by this system. Additionally, the 
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currently state-of-the-art scale-based filtering methods described in the preceding 

subsection were evaluated for potentially improving the operational performance of 

nowcasting in CASA DCAS. DARTS was also incorporated in the WSDDM system to 

provide more efficient SWE nowcasts relative to the radar-based nowcasting method 

currently used in the operational system. 

The DARTS and sinc kernel-based nowcasting methodology was also used as a tool 

to study the short-term predictability of precipitation patterns represented by reflectivity 

fields observed at microalpha to mesobeta scales by the CASA radar network. 

Additionally, the DARTS and sinc kernel-based nowcasting methodology was used to 

investigate the extent of nowcasting rainfall fields based on Kdp estimates and an R-Kdp 

relationship applicable for X-band radar where nowcasts were verified by rain gauge 

observations. 

1.4 Organization of the dissertation 

This dissertation is organized as follows. 

Chapter II introduces current nowcasting approaches and a presents a review of 

current methods. The DARTS motion estimation and sinc kernel-based advection 

methods are introduced and placed in the context of other nowcasting approaches. 

Chapter III presents the rationale behind using an area-based nowcasting method in 

CASA DCAS, discusses the concepts of Eulerian and Lagrangian persistence, and 

describes the DARTS and sinc kernel-based advection methods in detail. 

Chapter IV describes the operational implementation of nowcasting in the CASA 

DCAS and presents a performance assessment of successful operation during the 2009 

CASA Integrative Project 1 (IP1) experiment (Chandrasekar et al. 2010). 
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Chapter V describes the methodology and results of an evaluation of Fourier, wavelet, 

and elliptical spatial filtering approaches seeking to improve nowcasting performance 

within the CASA DCAS. 

Chapter VI describes the WSDDM system and presents results demonstrating the 

successful implementation of DARTS in WSDDM to provide more accurate and efficient 

SWE nowcasts. Radar data collected by the KFTG WSR-88D located outside Denver, 

Colorado, and surface measurements from a World Meteorological Organization (WMO) 

Geonor Double Fence Intercomparison Reference (DFIR) standard reference gauge 

located at the National Center for Atmospheric Research (NCAR) Marshall Field Site 

outside of Boulder, Colorado, are used for evaluation. 

Chapter VII presents a study of the short-term predictability of precipitation patterns 

observed at microalpha (0.2–2 km) to mesobeta (20–200 km) scales by the CASA IP1 

network. In this context, results from a preliminary investigation of the dependence of 

predictability on precipitation event type are presented, the spatio-temporal scale 

dependence of predictability is quantified, an estimated upper-bound on nowcasting using 

the Lagrangian persistence paradigm represented by the DARTS and sinc kernel-based 

nowcasting methodology is established, and a connection of predictability to larger scales 

is made. 

Chapter VIII exhibits an evaluation of the DARTS and sinc kernel-based 

methodology to nowcast rainfall fields based on Kdp estimates made using a new 

algorithm (Wang and Chandrasekar 2009). Short-term predictability characteristics of 

such fields are also investigated. 

Chapter IX summarizes the dissertation and presents suggestions for future work. 
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CHAPTER II. BACKGROUND 

 

2.1 Overview of current nowcasting methods 

In current operational nowcasting systems, extrapolation of radar echoes, satellite 

imagery of clouds, and/or lightning location data is the primary mechanism used to 

generate forecasts in the 0–3 h time frame, with such forecasts gradually combined with 

numerical weather prediction (NWP) model forecasts made during the 3–6 h forecast lead 

time period (Bowler et al. 2004; Dupree et al. 2009; Li and Lai 2004; Wolfson et al. 

2008). The underlying assumption that relatively predictable translation of precipitation 

patterns dominates relatively less predictable growth and decay of precipitation intensity 

forms the basis for using extrapolation-based nowcasting methods for such short 

prediction periods. Although studies have shown the accuracy of extrapolation-based 

nowcasts decreases rapidly during the 0–1 h forecast window with a rate closely related 

to the scale of the precipitation pattern and the associated forcing mechanism (Browning 

1980; Wilson et al. 1998), extrapolation-based nowcasts of radar data up to 30 min have 

lead to significant improvement in warnings and advisories resulting in substantial 

savings of life and property (National Research Council 1995).  

Currently, strictly radar-based nowcasting methods belong to one of four general 

categories (or a combination thereof): area-based, object-based, statistical, and 

probabilistic approaches. These categories and methods are introduced in Figure 1, 

summarized in Figure 2, and further explained in this section. 
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Area-based nowcasting approaches estimate a motion vector field over the entire 

radar observation domain and have shown effectiveness in estimating translation of a 

variety of precipitation pattern types. Additionally, the motion vector fields generated by 

area-based nowcasting methods not only provide a means for tracking internal storm 

motions (e.g., rotation and vortices) but also vector convergence (representing areal 

decay) and divergence (representing areal growth). Thus, area-based nowcasting methods 

provide a means to track storm motion and require a separate advection algorithm to 

suitably (and recursively) advect the latest observed (or predicted) radar data field 

according to the estimated motion vector field to produce future estimated data fields up 

to a desired lead time (Sawyer 1963; Robert 1981; Rood 1987; Germann and Zawadzki 

2002). The estimation of a distributed motion vector field and the advection process can 

make such approaches computationally expensive. Examples of area-based, image 

template-matching methods include Tracking of Radar Echoes by Correlation (TREC; 

Rinehart and Garvey 1978; Rinehart 1981; Tuttle and Foote 1990; Chornoboy et al. 1994), 

where locations maximum cross-correlation coefficients between subgrids of successive 

radar data fields are determined to estimate motion, COntinuity of TREC vectors 

(COTREC; Li et al. 1995), where a variational constraint is applied to smooth the TREC-

derived motion vector field, and the Growth and Decay Storm Tracker (GDST; Wolfson 

et al. 1999), where radar data fields are pre-filtered with a directional elliptical filter to 

separate precipitation pattern envelope motion from internal motion prior to estimation 

using a cross-correlation-based approach. 
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Figure 1. Overview of current nowcasting methods. 
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Figure 2. Summary of current nowcasting methods. 
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An example of an area-based approach predicated on an atmospheric model is the McGill 

Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation (MAPLE; Germann 

and Zawadzki 2002), where a cost function based on atmospheric physics is minimized to 

estimate the motion vector field and a wavelet-based filtering method is applied to the 

resulting predicted reflectivity fields to remove unpredictable scales (Turner et al. 2004). 

Object-based nowcasting schemes attempt to identify areas of high reflectivity in 

radar observations and track the size, shape, and translation of coherent features in time 

across successive observations. Object-based nowcasting methods have been shown to 

work very well with strong, well-defined and well-behaved storm structures. Additionally, 

the object identification process introduces error. Examples of current object-based 

nowcasting methods include the Thunderstorm Identification Tracking, Analysis, and 

Nowcasting algorithm (TITAN; Dixon and Wiener 1993), where combinatorial 

optimization techniques with the capability to detect cell mergers and splits are used to 

track reflectivity objects, the Storm Cell Identification and Tracking (SCIT; Johnson et al. 

1998) method, where reflectivity objects are tracked using a k-means algorithm in a 3D 

paradigm, TRACE3D (Handwerker 2002), where a two-stage cell detection method is 

combined with a tracking procedure similar to that used in SCIT to account for cell 

splitting and merging and track crossings, and the approach used in the Weather Decision 

Support System 2 (WDSS2) “SegMotion” module (Lakshmanan et al. 2003), where a 

hierarchical k-means algorithm is used to identify reflectivity objects in a 3D paradigm 

and an optimization technique with Kalman filtering are used to estimate object motion. 

The Enhanced TITAN method (ETITAN; Han et al. 2009) combines the TREC and 

TITAN approaches. 
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Nowcasting methods also exist where atmospheric evolution is represented by 

statistical models able to incorporate knowledge of atmospheric dynamics. Radar 

reflectivity fields are modeled as random processes using radial (Cornford 2004) or 

parameterized elliptical basis functions (Xu et al. 2005; Fox and Wikle 2005). Future 

fields are then predicted within a Bayesian hierarchical model framework using Markov 

Chain Monte Carlo (MCMC; Jones and Hobert 2002) simulation techniques where the 

mean field of the resulting posterior distribution is taken to be the nowcast and the 

standard deviation field the measure of forecast uncertainty. Physical characteristics of 

precipitation patterns are modeled as parameters for which a range is pre-selected based 

on meteorological expertise. Although each level of the Bayesian hierarchical model can 

be parameterized, computational complexity of such models is high and a comprehensive 

evaluation of such methods has yet to be performed. Another statistical approach is called 

Spectral Prognosis (S-PROG; Seed 2003), where a radar reflectivity field is decomposed 

into a cascade of random fields using a notch filter in the frequency domain. Nowcasts 

are generated by extrapolating each level in the cascade of precipitation scales by a single 

motion vector estimated by maximizing cross-correlation over similar levels in 

successive reflectivity fields and by modeling the temporal development at each level in 

the cascade using a second-order autoregressive (AR) model. Radar-based nowcasting 

models based on Artificial Neural Networks (ANN) also exist (Otsuka et al. 1999; Grecu 

and Krajewski 2000; Montanari et al. 2006; Tomasetti et al. 2008; Dutta et al. 2010). 

Germann and Zawadzki (2004) introduced a probabilistic nowcasting approach where 

the probability of encountering a precipitation rate above a certain threshold at each point 

in the field of radar coverage is computed for a given lead time. For example, it may be 
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quite certain a thunderstorm will develop but the exact future position in time and space 

is less certain. In this case, a probability forecast can be generated. Such probability 

forecasts are generally complementary to predictions of expected point rainfall rates and 

the requirements for a specific application or end-user will dictate the utility of 

probability forecasts. Similar probabilistic nowcasting methods have been proposed by 

other researchers (Megenhardt et al. 2004; Schmeits et al. 2008; Dance et al. 2010). 

Other current nowcasting methods combine radar with other atmospheric sensor data, 

NWP models, or nowcasting methods. The Nimrod (Golding 1998) system combines 

radar, satellite, surface reports, and NWP model fields to forecast precipitation (type and 

lightning rate), visibility, and cloud cover via extrapolation using trends from the NWP 

model, modified for growth and decay using model products, relaxing towards model 

values with extended lead time. The Autonowcaster (AN; Mueller et al. 2003) uses 

boundary layer information with storm and cloud characteristics to augment extrapolation 

to produce 0–1 h nowcasts of storm initiation, growth, and dissipation. A fuzzy logic 

routine combines predictor fields based on observations (radar, satellite, sounding, 

mesonet, and profiler), a numerical boundary layer model and its adjoint, forecaster input, 

and feature detection algorithms. The Integrated Nowcasting through Comprehensive 

Analysis (INCA; Steinheimer and Haiden 2007) system combines surface station radar 

and satellite data, NWP model forecast fields, and high-resolution topographic data to 

produce nowcasts of convective precipitation, convective boundary layer (CBL) flow 

convergence, specific humidity, lifted condensation level (LCL), convective available 

potential energy (CAPE), convective inhibition (CIN) analysis fields, and other 

convective stability indices. The Consolidated Storm Prediction for Aviation (CoSPA; 
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Wolfson et al. 2008) is an FAA-sponsored consortium combining aviation-oriented storm 

research in a coordinated fashion whose products will be related to a new generation of 

National Oceanic and Atmospheric Association (NOAA) models now assimilating radar 

reflectivity and lightning, including the High-Resolution Rapid Refresh (HRRR; 

Weygandt et al. 2009) model, and ensemble-based products from both. Other such multi-

modal systems include Adjustment of Rain Models with Radar (ARMOR; DuFran et al. 

2009), Atmospheric Motion Vector (AMV; Hohti et al. 2000), Canadian Radar Decision 

Support (CARDS; Joe et al. 2003), GANDOLF (Pierce et al. 2000), Global/Regional 

Assimilation and PrEdiction System (GRAPES; Zhang and Shen 2008), Short-range 

Warnings of Intense Rainstorms in Localized Systems (SWIRLS; Li and Lai 2004), 

Short-Term Ensemble Forecasting (STEPS; Bowler et al. 2007), Thunderstorm 

Interactive Forecast System (TIFS; Bally 2004), Thunderstorms Radar Tracking (TRT; 

Hering et al. 2004) system, and the nowcasting system developed by the Czech 

Hydrometeorological Institute (CHMI; Novák 2007). Despite the relative complexity of 

such systems, their performance has been shown to be mixed (Pierce et al. 2004; Wilson 

et al. 2004; Wilson 2009). 

Motivated by the ability to estimate motion vectors over the entire space where radar 

observations are rendered to provide deterministic nowcasts desired by end-users, an 

efficient area-based nowcasting method was developed for use in the CASA nowcasting 

system. The area-based Dynamic and Adaptive Radar Tracking of Storms (DARTS) 

nowcasting method represents the general continuity equation describing the flux and 

evolution of an observed precipitation pattern as a discrete spatiotemporal linear model 

that is formulated in the Fourier domain and solved using linear least-squares estimation. 



16 
 

Thus DARTS is “dynamic” in the sense it is built upon a dynamic equation and is 

considered “adaptive” because the smoothness of the estimated motion field, tracking 

scale, and computational efficiency are regulated by truncating model coefficients. 

Fourier low-pass filtering can be conveniently implemented by truncating the number of 

these coefficients in the model. 

2.2 Advection in nowcasting 

Development of accurate and computationally efficient advection methods has 

historically been a major area of research in fluid dynamics, atmospheric transport, and 

chemistry models and finds an important application in nowcasting (Rood 1987; 

Staniforth and Cote 1991). In its simplest form (i.e., “straight” advection) the motion 

vector field forms a mapping where data points in the current field are simply moved to 

locations designated by the estimated motion vectors to form the predicted data field. The 

problem with this simple method is the condition where the mapping described by the 

vectors in a distributed motion vector field is not one-to-one and dictates that two points 

in the current field occupy the same location in the predicted field. This creates a 

situation of two overlapping data points as well as an empty data point in the predicted 

field. This is illustrated in Figure 3, which shows the motion vectors, (U1,V1) and (U2,V2), 

both direct values (gray) at points P1 and P2 to Q1. This creates an overlap (black) of 

values at Q1 and vacancy (white) at Q2. Thus, an advection algorithm is needed to smooth 

values where vector convergence exists (i.e., overlapping data) and interpolate regions of 

missing data where vector divergence exists. 
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Figure 3. Illustration of the advection problem. 
 

Germann and Zawadzki (2002) categorized advection schemes as forward (where 

data are advected forward in time and downstream in space), backward (where the origin 

of a data point predicted to occupy a certain location is found by a backward search), 

constant vector (where motion vectors are extended to match the desired lead time), and 

semi-Lagrangian (where data points in predicted data fields are traced along trajectories 

of motion vector fields). Therefore, in a forward advection scheme, the advected value is 

redistributed to the neighboring grid points while in a backward scheme interpolation is 

required to determine the value at the predicted origin. Both redistribution and 

interpolation result in a loss of power at small scales. Additionally, only forward schemes 

maintain mass conservation (i.e., the mean of the advected field is conserved). The 

challenge associated with forward schemes is choosing the optimum radius of influence 
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when redistributing (spreading) the advected value to the neighboring grid points. The 

radius must be large enough to smooth ripples caused by divergence, but small enough to 

limit the loss of power at small scales. When using high-resolution CASA data, the semi-

Lagrangian scheme is preferred over the constant vector scheme to adequately represent 

prediction of internal rotations within precipitation patterns. 

The two most common problems in numerical advection schemes are numerical 

diffusion and numerical dispersion. Numerical diffusion refers to the loss of peak power 

resulting from the redistribution or the interpolation, for example, in the semi-Lagrangian 

scheme (Ostiguy and Laprise 1990; Germann and Zawadzki 2002) and causes a loss of 

power at small scales. Numerical dispersion refers to the phenomena of oscillations 

resulting from different phase speeds among different Fourier components in numerical 

schemes and leads to erroneous variance in the advected field (Ostiguy and Laprise 1990). 

Several types of advection methods are used in current nowcasting systems. The 

MAPLE nowcasting method (Germann and Zawadzki 2002) uses a modified semi-

Lagrangian backward advection scheme that allows for rotation, is nearly conservative in 

mass, and limits the loss of power at small scales that results from interpolation. The 

SWIRLS nowcasting method (Li and Lai 2004) uses a two-time-level semi-Lagrangian 

method described by Staniforth and Cote (1991) exhibiting unconditional stability, 

absence of serious dispersion effects, and computational efficiency. The basic idea of the 

method is to temporally extrapolate the precipitation field to time t + �t/2, where �t is the 

time spacing between data frames, using the motion vector fields derived at times t and t 

– �t using two iterations to solve a displacement equation via linear interpolation for the 

first half-step and cubic interpolation for the second half-step. The advection algorithm 
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used in the CoSPA system (Dupree et al. 2009) uses two steps to advect separate scales. 

First, semi-Lagrangian advection is applied according to the small-scale motions (cell and 

envelope), and then an Eulerian (i.e., constant vector) advection step is applied according 

to the synoptic scale motion. For the small-scale step, the synoptic motion is subtracted 

from the cell- and envelope- scale motion and the resulting field is applied in a pseudo-

Lagrangian sense to the data field. The cell-scale and envelope-scale motion vectors are 

used out to lead times of 30 and 90 min, respectively. Because the cell- and envelope-

scale motion estimates don’t accurately represent motion at longer time scales, the cell 

and envelope scale vectors are reduced over time up to a 90-min lead time. Once the final 

lead time is reached, the Eulerian step is applied where data are advected using the 

synoptic-scale motion vectors. 

An efficient advection technique based on a sinc kernel expansion has been 

developed for use within the CASA nowcasting system. This scheme belongs to the 

forward semi-Lagrangian class of advection schemes and is similar to the spectral and 

pseudo-spectral schemes using functional expansions (Germann and Zawadzki 2002) 

which have been shown to provide the highest degree of accuracy at the cost of more 

computational expense and difficulties associated with the Gibbs phenomenon. The 

DARTS and sinc kernel-based advection methodology facilitates accurate and efficient 

predictions of storm motion, areal evolution, and position using high-resolution data in 

the CASA DCAS. A more detailed presentation on these approaches is given in the next 

section. 
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CHAPTER III. CASA NOWCASTING METHODOLOGY 

 

3.1 Selection of an area-based nowcasting approach 

Storm motion is driven by winds at some steering level and this motion is well 

captured by tracking radar echoes using a nowcasting algorithm that describes motion of 

the radar data field by a distributed motion vector field where rotation, stretching, and 

shearing of steering level winds resulting in changes in echo patterns can be observed. 

Storms also propagate through development and dissipation (i.e., when propagation 

occurs through new development of convection at the front of the system while there is 

dissipation at the rear, the result is an apparent displacement) that is also well captured by 

such a nowcasting method. If this propagation is systematic and relatively persistent, the 

resulting motion vector field will show skill in nowcasting based on this motion. What is 

not captured is neither new development of convection in a region, separate from the old 

pattern where none was present before nor the dissipation of entire regions of 

precipitation. Thus, Lagrangian persistence, in the sense used here could include a good 

deal of systematic and persistent growth and decay and the degree that this is effective 

depends on the skill of the nowcasting algorithm (Germann et al. 2006). 

Grecu and Krajewski (2000) found that larger-scale precipitation features were more 

persistent in both in Eulerian and Lagrangian systems of reference than smaller scales. 

However, in time, the mass distribution within such features was shown to change rather 

quickly. Their results showed reasonable nowcasting skill for a lead time of 1 h relative 
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to 30 min when using WSR-88D data degraded to 4 km resolution. One hour was shown 

to be longer than the lifetime of an individual storm cell, which is generally less than 30 

min. This suggests a complex interaction among storm cells responsible for the mass 

organization in large-scale precipitation volumes. That is, a cell dying in less than 30 min 

at a certain location must be accompanied by storm intensification at some relatively 

close location within the resolution of the data to maintain predictability. Even in the case 

of complex, multicell storms (Weisman and Klemp 1986), changes in small scale features 

not expected to show predictability in terms of nowcasting skill beyond 30 min were 

shown to be strongly coupled at larger scales where the predictability extended over 

longer time scales. 

Area-based nowcasting methods produce a distributed motion vector field and are 

capable of providing useful predictions of areal growth and decay of precipitation 

patterns, a capability desired by the users of the CASA nowcasting system. Necessary 

conditions for useful performance of this capability include the presence of such 

evolution in the observed data used to make predictions and that such observed evolution 

is relatively consistent. Thus, the distributed motion vector field generated by area-based 

nowcasting methods not only provides a means for tracking internal storm motions (e.g., 

rotation and vortices) but vector convergence within the vector field is a means to 

represent areal decay and vector divergence is a means to represent areal growth. Such 

capability depends on the radar coverage area and the resolution of the motion vector 

field. Current cell tracking methods are inherently limited by the identification of such 

cells and the ability to estimate the motion of only the centroid of such cells. This 

precludes the ability to estimate areal growth and decay in the manner described. 
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Additionally, area-based nowcasting methods are able to account for the complex 

interactions between neighboring smaller-scale features by the distributed motion vector 

field they produce. Thus, an accurate and efficient area-based nowcasting method was 

chosen for use in the CASA nowcasting system and for this research. 

3.2 Eulerian and Lagrangian persistence 

The term Eulerian persistence (or simply persistence as used throughout this work) 

refers to keeping the most recent observation frozen in space and considering it as all 

predictions up to a desired lead time. This is shown mathematically as (Zawadzki 1973) 

),(�),(�̂ 00 xx t�t =+ , (3.1) 

where 0�( , )t x  is the observed data field, t0 is the start time of the forecast, � is the 

forecast lead time, x is the position, and ),(�̂ 0 xτ+t  is the forecasted data field at time t0 

+ �. Eulerian persistence represents the simplest forecast and is typically used a reference 

for more sophisticated nowcasting methods (Pierce et al. 2004; Ebert et al. 2004). 

A forecast in which the precipitation field is advected by an estimated velocity 

(motion vector) field, leaving the total intensity unchanged, is referred to as Lagrangian 

persistence. In other words, Lagrangian persistence refers to keeping the last estimate of 

motion constant and considering the latest observation (and subsequently prediction) 

advected according to this motion estimate as predictions up to a desired lead time, 

shown by (Zawadzki 1973) 

),(�),(�̂ 00 �xx −=+ t�t , (3.2) 

where � is the estimated displacement vector. In the constant-vector advection scheme, 

the displacement vector is shown to be 
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),( 0 pt xu� ⋅= τ , (3.3) 

where u(t0, xp) is the echo motion at the grid point p and � is the forecast lead time. Thus, 

the constant-vector approach uses one constant translation vector for each grid point and 

does not allow for rotation. To overcome this drawback, a semi-Lagrangian scheme can 

be used where the advection is divided into N steps of length �t, with N�t = �, and for 

each time step � is iteratively determined and represented by 

�
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� −⋅∆=
2
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�xu� tt , (3.4) 

starting with � = 0. The final displacement vector is the sum of the N vectors of the 

individual time steps. Thus in the semi-Lagrangian scheme the trajectory of a data point 

is determined by following the motion vectors either upstream or downstream assuming 

stationarity, that is u(t, x) = u(t0, x). In meteorological situations where rotation is not 

negligible and the shape of the precipitation pattern must be conserved in the presence of 

such rotation, semi-Lagrangian advection is obviously preferred. 

Eq (3.1) can be expressed in differential form using the 2D conservation equation of 

�, as 
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Neglecting the compressibility term, �(�u/�x + �v/�y), (Acheson 1990) gives 
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In the Eulerian persistence paradigm, the local rate of change, ��/�t, is set to zero. In the 

Lagrangian persistence paradigm, the total intensity is unchanged, represented 

mathematically by 
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or (3.7) 

0�� =+∇⋅ �v , (3.8) 

where v = (u, v).  

Additionally, intensification and dissipation of intensity can be accounted for by 

including a source/sink term, S = d�/dt, and transformation (e.g., filtering or spatial 

averaging) of �, �
~ , can be included in Eq (3.2), shown as 

),(),(�
~

),(�̂ 000 �x�xx −+−=+ tSt�t  (3.9) 

and subsequently shown in Eq (3.6). 

The inclusion of the S-term in the nowcasting model is discussed in the next section. 

3.3 Nowcasting growth and decay of precipitation intensity 

While both cell-based and area-based nowcasting methods can predict short-term 

growth and decay of precipitation intensity based on intensity trends in past radar 

observations, studies have shown that doing so does not provide significant improvement 

in nowcasting performance. The study performed by Tsonis and Austin (1981), which 

investigated the use of several statistical regression techniques to track intensity growth 

and decay trends in precipitation cells, showed that extrapolating such trends in growth 

and decay provided no improvement in nowcasting performance using a cross-correlation 

tracking method to extrapolate rainfall fields estimated from reflectivity data collected by 

a ship-borne radar (4 km/5 min resolution) when compared to solely nowcasting 

translation for lead times out to 75 min This assertion was supported in a more recent 

study performed by Wilson, et al. (1998) using TITAN and KFTG Weather Surveillance 

Radar-1988 Doppler (WSR-88D) data. Li et al. (1995) did show some skill in nowcasting 
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growth and decay trends for up to 20 min using the TREC method and data from 2 storm 

cases observed in complex orography over the Swiss Alps. However, the authors also 

state such a small sample set cannot be used to generalize such results. 

The study by Grecu and Krajewski (2000) examined the use of a neural network-

based precipitation intensity growth and decay tracking method applied to approximately 

one year of WSR-88D data to make nowcasts up to 3 h into the future. They also found 

no improvement was gained by nowcasting evolution based on past radar observations. 

Like earlier studies, they found an extrapolative nowcasting scheme should consider 

advection but that statistical modeling of growth and decay of precipitation patterns using 

neural network-based methods showed no measurable improvement in nowcasting 

performance. Their study focused primarily on radar echoes of weak to moderate 

intensity (i.e., 15–25 dBZ). 

Montanari et al. (2006) evaluated neural network and AR models to represent storm 

evolution using rainfall fields estimated from radar observations (1 km/15 min resolution) 

covering an area of 256 km × 256 km collected during eight rainfall events 

(approximately 26 h) over Northern Italy. They found using ANN and AR techniques in 

addition to Lagrangian persistence did not provide an appreciable improvement of the 

forecasts for lead times of 15–60 min and varying grid spacing from 1–30 km. 

Germann et al. (2006) stated a compromise must be made between the desire of 

capturing as much of growth and dissipation as possible and the stability of the motion 

vector field. Too much sensitivity to growth and dissipation of intensity may result in 

decrease of skill if the captured growth and dissipation is not persistent. Since most of the 

growth and dissipation is not persistent over short time scales, too much sensitivity may 
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improve the very short term nowcasting but degrade longer term performance. The period 

over which the motion vector field is determined and the resolved scales of the motion 

field determine the compromise. Germann and Zawadzki (2002) considered the inclusion 

of a source-sink term in the Variational Echo Tracking (VET; Laroche and Zawadzki 

1994) nowcasting model using the Lagrangian persistence paradigm to study the 

predictability of continental-scale radar data. They concluded that the inclusion of the 

source-sink term provided mixed and inconsistent results and did not consider the source-

sink term in their analysis. 

Similar results were observed when including such capability in the DARTS and thus 

the provision for nowcasting growth and decay of precipitation intensity was not 

considered in the operational nowcasting implementation or research. 

3.4 The Dynamic Adaptive Radar Tracking of Storms algorithm 

The DARTS nowcasting algorithm is built upon the general continuity equation 

modified for nowcasting describing the flux and evolution of a precipitation pattern 

represented by a temporal sequence of radar reflectivity fields, F(x, y, t), given by 

(Jacobson 2005) 
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∂

, (3.10) 

where F(x, y, t) is the sequence of radar reflectivity fields, U(x, y) is the east-west 

component of the velocity field, V(x, y) is the north-south component of the velocity field, 

and the source-sink term, S(x, y, t), includes additive evolutionary mechanisms such as 

growth and decay of intensity. DARTS estimates precipitation pattern motion in terms of 
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a motion vector field consisting of components U(x, y) and V(x, y) by representing (3.10) 

as a discrete spatiotemporal linear model, given by (Xu and Chandrasekar 2005) 
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where FDFT(kx, ky, kt) represents the 3D Discrete Fourier Transform (DFT) coefficients of 

the observed radar data field sequence F(i, j, k), UDFT(k’x, k’y) represents the 2D DFT 

coefficients of the field of estimated east-west motion vector components U(i, j), VDFT(k’x, 

k’y) represents the 2D DFT coefficients of the field of estimated north-south motion 

vector components V(i, j), and SDFT(kx, ky, kt) represents the 3D DFT coefficients of the 

sequence of estimated evolution (i.e., growth and decay) fields S(i, j, k), Tx and Ty are the 

lengths of the east-west and north-south dimensions of the observed gridded reflectivity 

fields, respectively, Tt is the number of reflectivity fields considered for motion 

estimation (i.e., the temporal span of the sequence of gridded reflectivity fields), Nx and 

Ny are the maximum harmonic numbers of FDFT(kx, ky, kt) in the horizontal and vertical 

dimension, respectively, and +
xN  = Nx/2, −

xN  = -Nx/2, +
yN  = Ny/2, and −

yN = -Ny/2. 

Eq (3.11) can be written in linear form as 

,=y Hx  (3.12) 

where 

T

m  1 0 , , ,r i
K KY Y Y× � �≡ � �y  (3.13) 
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DFT ( )K tY k F K≡ , (3.14) 

0 (0,0,0)Y Y≡ , (3.15) 

{ }Rer
K KY Y≡ , (3.16) 

{ }Imi
K KY Y≡ , (3.17) 

[ ] [ ]1, 1, 1,x x y y t tK k N k N k N� �≡ ∈ × ∈ × ∈� � , (3.18) 

where × represents the Cartesian product and noting the conjugate symmetric harmonics 

have been excluded, 

{ }, ,x y tN N N N= , (3.19) 

 is the integer set of selected maximum harmonic numbers of FDFT(kx, ky, kt),  

m = (2Nx + 1) (2Ny + 1)(2Nt + 1) + 1, (3.20) 

T

n × 1 0 0 0 ' ' ' ' '' '', , , , , , , , ,r i r i r i
K K K K K KU V S U U V V S S� �≡ � �x  (3.21) 

where 

( )' DFT 'KU U K≡ , (3.22) 

( )' DFT 'KV V K≡ , (3.23) 

( )'' DFT ''KS S K≡ , (3.24) 

0 (0,0)U U= , (3.25) 

0 (0,0)V V= , (3.26) 

0 (0,0,0)S S= , (3.27) 

( ){ }' DFTRe 'r
KU U K≡ ,

 
(3.28) 

( ){ }' DFTIm 'i
KU U K≡ , (3.29) 
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( ){ }' DFTRe 'r
KV V K≡ , (3.30) 

( ){ }' DFTIm 'i
KV V K≡ , (3.31) 

( ){ }'' DFTRe ''r
KS S K≡ , (3.32) 

( ){ }'' DFTIm ''i
KS S K≡ , (3.33) 

[ ]' ' 1, ' 1,x x y yK k M k M� �≡ ∈ × ∈� �, (3.34) 

[ ] [ ]'' '' 1, '' 1, '' 1,x x y y t tK k L k L k L� �≡ ∈ × ∈ × ∈� � , (3.35) 

{ },x yM M M=
 
and (3.36) 

{ }, ,x y tL L L L=  (3.37) 

are the integer sets of selected maximum harmonic number for the DFTs
 
of the estimated 

motion vector fields, UDFT(kx, ky) and VDFT(kx, ky), and the evolution term, SDFT(kx, ky, kt), 

respectively, and  

n = 2(2Mx + 1)(2My + 1) + (2Lx + 1)(2Ly + 1)(2Lt + 1). (3.38) 

The matrix, H, is constructed according to Eq (3.11) such that Eq (3.12) is satisfied. 

The DFT coefficients of the components of the motion vector field can then be estimated 

efficiently using linear least squares estimation by 

( ) 1T T ,
− += =x H H H y H y  (3.39) 

where + represents the matrix pseudoinverse operation. For implementation in the CASA 

system, N = {30, 30, 4}, M = {1, 1}, L = {0, 0, 0} were the selected parameters sets 

determined from empirical studies. 

The nature of the continuity equation [Eq (3.10)] upon which the nowcasting model is 

based imposes continuity of motion vectors over the entire grid, even where no 
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reflectivity is observed (missing data points and reflectivity values below a pre-

determined threshold are set to a value of zero). This is important because while 

observations may not exist in a particular region at time t0, observations (and subsequent 

predictions) may be advected into these regions at times up to t0+�, where � is the 

maximum lead time for prediction. 

3.5 The sinc kernel-based advection method 

An advection technique based on a sinc kernel expansion has been developed for use 

within the CASA nowcasting system. In this scheme, the reflectivity field F(x, y, t) is 

approximated according to the Whittaker-Shannon-Kotelnikov sampling theorem 

(Whittaker 1915; Shannon 1949; Higgins 1996) as 

1 1

( , , ) ( ) sinc( / )sinc( / )
yx

NN

kl
k l

F x y t F t x x k y y l
= =

= ∆ − ∆ − , (3.40) 

where the equidistant samples of F(x, y, t), Fkl(t) = F(k�x, l�y, t), may be interpreted as 

the coefficients of the 2D product basis that are obtained by appropriate translation and 

rescaling of the sinc kernel function, sinc(x) = sin(�x)/(�x). The discrete approximation of 

Eq (3.16) can be written as 

[ ] [ ]kl
y

kl
kl

kl
kl t

V
t

x
U

tF
t

ZFAF )()()( ⋅
∆

−⋅
∆

−=
∂
∂

 and (3.41) 

[ ] [ ]( ) ( ) ( ) ( ) ,kl kl
kl t kl tkl kl

U V
F t F t t t

x y
δ δ� �

+ = − +� �∆ ∆� �
AF F Z  (3.42) 

where 

[ ] [ ]Dsinc( )kmA k m≡ = −A , (3.43) 

[ ] [ ]Dsinc( )nlZ n l≡ = −Z , (3.44) 
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[ ] [ ]( ) ( )   or  ( ) ( )ml knt F t t F t≡ ≡F F , (3.45) 

[ ]1
cos( ) sinc( )      0

Dsinc( ) sinc( )
0                                      0.

x x xd
x x x

dx x

π� − ≠�≡ = �
� =�

 (3.46) 

Eqs (3.41)–(3.46) show that numerical advection is conducted by a matrix computation 

where the temporal integration is done by recursion of matrix computations relative to the 

temporal resolution of the data determined by the choice of �t in Eq (3.42). 

The implementation of the DARTS and sinc kernel-based nowcasting methodology is 

described in the next section. 
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CHAPTER IV. REAL-TIME IMPLEMENTATION IN CASA DCAS 

 

4.1 Introduction 

The National Science Foundation (NSF) Engineering Research Center (ERC) for the 

Collaborative Adaptive Sensing of the Atmosphere (CASA) is a consortium of four 

universities [Colorado State University, University of Massachusetts (lead university), 

University of Oklahoma, and University of Puerto Rico at Mayaguez] and a partnership 

with industry and government laboratories. CASA aims to lay the fundamental and 

technological foundations for dense, adaptive radar networks; conduct proof-of-concept 

demonstrations using field-scale test beds deployed in hazard-prone areas; and ultimately 

transition the concepts and technologies into practice through commercialization and 

technology transfer mechanisms (McLaughlin et al. 2009). The common objective of 

CASA is to change the weather sensing paradigm through Distributed Collaborative 

Adaptive Sensing (DCAS; McLaughlin et al. 2005), improving the coverage of the lowest 

portion of the atmosphere through coordinated scanning of low-power, short-range 

networked radars. Junyent and Chandrasekar (2009) developed a framework to study the 

coverage characteristics of such radar networks. 

DCAS represents a new paradigm in remote sensing based on low-cost, dense 

networks of radars that operate at short ranges, communicate with one another, and adjust 

their sensing strategies in direct response to the evolving weather and to changing user 

needs (McLaughlin et al. 2005; Kurose et al. 2006; Philips et al. 2007). The overarching 
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DCAS concept is illustrated in Figure 4. Current operational meteorological radar 

networks, such as the Next Generation Radar Network (NEXRAD) in the U.S., sample 

the atmosphere with “sit-and-spin” volume coverage patterns where such a pattern is 

predetermined. DCAS is an end-user driven approach that targets sensitivity when and 

where the needs of its end-users are greatest. The advantages gained by adaptively 

allocating sensitivity of short-range weather radars with overlapping coverage include 

higher quality measurements due to the ability to dwell longer in volumes where echoes 

are weak, faster sampling of volumes with rapidly evolving dynamics, mitigating spatial 

resolution degradation due to broadening of the radar beam at farther ranges, and multi-

Doppler looks for high accuracy wind field retrieval. Additionally, effects of the earth’s 

curvature and terrain-induced blockage that diminish coverage at low altitudes and thus 

prevent the observation of low-altitude phenomena such as tornadoes and limit the 

accuracy of precipitation estimates near the ground are reduced (National Research 

Council 2002; Junyent et al. 2010). These features enable the network to 

comprehensively map damaging winds and heavy rainfall from the tops of storms down 

to the boundary layer and maximize the radar system’s capability to best fulfill each 

particular user’s expectations (McLaughlin et al 2009). 

The first DCAS demonstration test bed, the CASA Integrated Project 1 (IP1), was 

deployed in southwestern Oklahoma in a region frequented by tornadoes and severe 

thunderstorms during the winter and spring of 2006. 
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Figure 4. Illustration of the CASA DCAS concept. 
 

The IP1 radar nodes (Figure 5) are installed along U.S. Interstate 44, southwest of 

Oklahoma City, Oklahoma, located at Chickasha (KSAO; 35.0314o lat, -97.9561o lon, 

355 m alt), Rush Springs (KRSP; 34.8128o, -97.9306o, 436 m), Cyril (KCYR; 34.8740o, -

98.2512o, 445 m), and Lawton (KLWE; 34.6239o, -98.2708o, 396 m), Oklahoma. They 

are separated by approximately 30 km and cover approximately 7000 km2 (Figure 6). 

The IP1 network consists of a computer cluster called the System Operation and 

Control Center (SOCC; SOCC 2010) that runs a suite of network control algorithms 

known as Meteorological Command and Control (MCC) providing a closed-loop 

software control system to coordinate interaction between the radar nodes. The SOCC, 

which contains the scan rules and algorithms responsible for automated network 

operation, is located in the National Weather Center building in Norman, Oklahoma. The 

SOCC (or multiple SOCCs) can be physically located wherever there is an adequate 

network connection to provide connectivity between the radar node sites and the SOCC. 
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Figure 5. The four polarimetric radars forming the CASA radar network. 
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Figure 6. The CASA radar network coverage area map. Coverage circles are 40 km in 
radius [from Junyent et al. (2010)]. 
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The MCC continuously ingests and stores data files received from the radar nodes, 

detects the relevant weather features in the individual and overlapping radar data, and 

creates a list of tasks associated with the detected features (Zink et al. 2005). The 

detected features and their associated tasks are then used to generate optimized scan 

strategies that are fed back to the radar nodes with a 1-min period (i.e., the system 

heartbeat). During each heartbeat, each radar performs a 360o PPI surveillance sweep at 

an elevation angle of 2o (20 s) followed by a multiple-elevation PPI sector scan targeted 

on one or more important meteorological phenomenon (40 s). The orientation and width 

of the sector in azimuth is determined by the MCC to cover the meteorological features 

of interest to the users, whereas the number of elevations scanned within the sector varies 

with the width of the sector. For example, a 60° sector includes seven elevations, whereas 

a 180° sector includes only four elevations. The elevation angles used are 1°, 3°, 5°, 7°, 

9°, 11°, and 14° for coverage from less than 600 m to more than 10 km above ground 

level (McLaughlin et al. 2009). Based on client-server architecture, the radar user (i.e., 

the MCC algorithms running at the SOCC or any other authorized entity connecting to it) 

can send high-level commands specifying radar parameters and actions. Further details of 

the IP1 radar network are given by McLaughlin et al (2009) and Junyent et al. (2010). 

A nowcasting system was implemented in the CASA DCAS to produce predictions of 

radar reflectivity fields up to 10 min into the future to support emergency manager 

decision-making and in a novel manner to support researchers and operational forecasters 

where 1–5-min nowcasts are used to steer the radar nodes to better observe moving 

precipitation systems. The nowcasting system implemented in the CASA DCAS is 

described in the next sub-section. 
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4.2 Architecture of the operational nowcasting system 

The nowcasting system development and maintenance are done by Colorado State 

University located at Fort Collins, Colorado. The MCC located at the SOCC at the 

University of Oklahoma at Lawton, Oklahoma, ingests data from the radars, identifies 

meteorological features in the data, and determines each radar’s future scan strategy 

based on detected feature contours and end-user requirements. The data are converted to 

Network Common Data Format (NetCDF; Rew and Davis 1990a) and sent to the SOCC 

located at the University of Massachusetts at Amherst via a Local Data Manager (LDM; 

Rew et al., 1990b; Fulker et al. 2000). The overall system architecture illustrating this 

process is depicted in Figure 7. While the entire nowcasting process could have been 

performed at the SOCC located at Norman, Oklahoma, this process was established as a 

demonstration experiment to understand the challenges related to distributed processing 

as part of the CASA network scaling (Jogalekar and Woodside 2000) operation. 

After the radar data files are suitably synchronized by the ingester, the individual 

radar data files are gridded and merged. These gridded and merged data files are input to 

the DARTS nowcasting module, which generates predicted reflectivity fields that are 

presented to the end-user via an Internet-based display. The diagram of the operational 

DARTS software module is shown in Figure 8 with an example observed reflectivity 

field and corresponding 10-min prediction as shown on the Internet-based display 

depicted in Figure 9. 

Evaluation of the performance of the DARTS nowcasting system during the 2009 IP1 

experiment is described in the next section. 
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Figure 7. Operational CASA nowcasting system architecture. 
 

 

 

 

 

Figure 8. Operational CASA nowcasting software architecture. 
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Figure 9. Example CASA operational Internet display of an observation from the 10 Feb 
event. 
 

4.3 Assessment of nowcasting performance during the CASA 2009 IP1 

experiment 

4.3.1 Data 

Radar reflectivity data collected during 17 events through the 2009 CASA IP1 

experiment were considered for evaluation. The average duration of each event in the 

dataset was approximately 3.9 h for a total of approximately 66 h of data 

(approximately 3960 data frames). The set of events covered a wide range of 

precipitation pattern types, consisting of super-cellular, strong and steady quasi-linear, 

and disorganized multi-cellular events (Byers and Braham 1949; Weisman and 

Klemp 1986). Details of the events are given in Table 1. 
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Table 1. Summary of precipitation event data collected during the CASA IP1 experiment 
used for nowcasting evaluation. 

 

Event No. Start time Approximate duration (h) Type 
1 2111 UTC 10 Feb 5.75 Supercell 
2 0014 UTC 10 Mar 4.75 Line 
3 2307 UTC 23 Mar 6.00 Multicell 
4 0025 UTC 31 Mar 2.00 Line 
5 2236 UTC 16 Apr 3.00 Multicell 
6 2347 UTC 18 Apr 1.00 Single-cell 
7 2337 UTC 26 Apr 5.00 Line 
8 0721 UTC 29 Apr 8.00 Multicell 
9 0251 UTC 30 Apr 6.00 Multicell 

10 0858 UTC 02 May 6.75 Multicell 
11 1422 UTC 05 May 3.00 Multicell 
12 0334 UTC 09 May 1.50 Single-cell 
13 0907 UTC 11 May 1.75 Multicell 
14 0930 UTC 12 May 2.50 Multicell 
15 0319 UTC 13 May 3.25 Supercell 
16 0430 UTC 14 May 2.50 Supercell 
17 0234 UTC 16 May 3.00 Line 

 

Constant Altitude Plan Position Indicator (CAPPI) grids at an altitude of 1 km 

above ground level (AGL) with grid spacing of 0.5 km covering an area of dimension 

±70 km in the east-west and north-south directions were generated by merging 

attenuation-corrected reflectivity data from each of the four network radar nodes 

during each 1-min volume scan. The reflectivity resolution is 1 dBZ and a threshold 

of 20 dBZ was applied. Figure 10 shows examples of the reflectivity and DARTS 

motion vector fields for four of the 17 events (one for each of the storm types 

identified: line, multicell, single cell, and supercell) illustrating the differences in 

structure between the weather event types and the corresponding estimated motion 

vector fields. 
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Figure 10. Example observed reflectivity field and corresponding DARTS-estimated 
motion vector field depicting spatial variability between events for (a) 2225 UTC 10 Feb 
(supercell), (b) 0103 UTC 31 Mar (line), (c) 2352 UTC 18 Apr (single-cell), and (d) 0918 
UTC 11 May (multicell) events. Levels of gray shading correspond to reflectivity values 
20-35 dBZ, 35-50 dBZ, and larger than 50 dBZ, respectively. 
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4.3.2 Quantitative performance assessment 

Nowcasting applications involving warning decision support for detection of 

potentially severe weather typically measure nowcasting performance in terms of 

categorical yes/no (e.g., rain/no-rain) detection relative to a predetermined 

measurement threshold representative of a desired threat (Doswell et al. 1990; Ebert 

and McBride 2000; Schaefer 1990; Stensrud and Wandishin 2000). Three widely 

used attributes to assess categorical nowcasting performance are the Threat Score or 

Critical Success Index (CSI), False Alarm Ratio (FAR), and Probability of Detection 

(POD), each defined as (Donaldson et al. 1975; Wilks 2006) 

CSI
A

A B C
=

+ +
, (4.1) 

FAR
B

A B
=

+
, and (4.2) 

POD
A

A C
=

+
, (4.3) 

where A represents the intersection of the areas over which the event was forecast and 

subsequently occurred (i.e., a “hit”), B represents the area over which the event was 

forecasted and subsequently did not occur (i.e., a “false alarm”), and C is the area 

over which the event occurred but was not forecast to occur (i.e., a “miss”). Values of 

the CSI, POD, and FAR range from 0 to 1, with a value of 1 representing perfect CSI 

and POD scores and a value of 0 representing a perfect FAR score. 

Nowcasting for hydrological applications is typically assessed using continuous 

scalar measures of forecast accuracy such as Mean Absolute Error (MAE; Vivoni et 

al. 2007). The MAE is defined as (Wilks 2006) 
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1

1
MAE

N

i i
i

F O
N =

= − , (4.4) 

where (Fi, Oi) is the ith pair of N forecasts and observations. Both categorical (CSI, 

FAR, and POD) and continuous (MAE) scores were used to assess performance of 

the CASA nowcasting system during the 2009 IP1 experiment. 

A study was performed to determine the optimal parameter settings for the 

DARTS model [Eq (3.11)] using CASA reflectivity data. DARTS was run with 

several lengths of the reflectivity data sequence used for assimilation [i.e., the 

temporal span of F(x, y, t) in Eq (3.10) hereby referred to as the “history length”] and 

combinations of parameters Nx, Ny, and Nt using data from the 10 Feb (supercell), 31 

Mar (line), and 11 May (multicell) events. The results depicted in Figure 11 and 

Figure 12 show DARTS to be relatively insensitive to the history length and Nx, Ny, 

and Nt parameters, with nearly identical performance when considering history 

lengths between 10 and 25 data frames and slightly better performance when 

considering Nx = Ny = 30 and Nt = 4. These settings and an assimilation window of 10 

min (10 data frames) were adopted for operational use. 

Another study was performed to investigate the effect of scoring area (box) size 

and reflectivity threshold on CSI, FAR, and POD scores. Scoring box sizes of 1 km × 

1 km to 4 km × 4 km and thresholds of 20–45 dBZ were considered. The results 

depicted in Figure 13 and Figure 14 show a large difference in scores over different 

choices of box size and reflectivity thresholds. It was decided to use the smallest box 

size (1 km × 1 km) for assessment of nowcasting performance in the CASA network 

to coincide with the resolution of the data. 
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Figure 11. Effect of variation of the assimilation window length (history length) on 
nowcasting performance using the DARTS model. 
 

 

 

 

Figure 12. Effect of variations of spectral parameter values on nowcasting performance 
using the DARTS model. 
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Figure 13. Effect of variation scoring box size values on nowcasting scores (a) CSI, (b) 
FAR, and (c) POD for DARTS and persistence (PERS) nowcasts. 
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Figure 14. Effect of variation of scoring threshold values on nowcasting scores (a) CSI, 
(b) FAR, and (c) POD for DARTS and persistence (PERS) nowcasts. 
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A threshold of 30 dBZ was chosen as this level typically demarcates convective from 

stratiform rain (Hilgendorf and Johnson 1998). 

The effect of including the S-term in Eq (3.11) was investigated. Figure 15 

depicts an example prediction from the 31 Mar event comparing a 20–min prediction 

including the S-term to a corresponding prediction excluding the S-term. Figure 16 

compares the CSI scores for the prediction model with and without inclusion of the S-

term using data from the 10 Feb, 31 Mar, and 11 May events. The results are 

consistent with previous studies that showed no improvement in performance by 

including the S-term in the nowcasting model (Section 3.3). 

The CSI, FAR, POD, and MAE score statistics for lead times up to 10 min 

averaged over all events are shown in Figure 17. The scores corresponding to 

nowcasting using the DARTS and sinc kernel-based advection methodology are 

favorable, with mean CSI scores above 0.5 and for the entire forecast period and 

improvement of approximately 1 standard deviation at a lead time of 10 min vs 

nowcasting using persistence. As expected, mean values decrease and standard 

deviation values increase with increasing lead time for both methods. 

High computational efficiency of the DARTS algorithm is critical when running 

in the CASA radar network with scan update rates of 1 min. Average motion field 

generation and advection times were approximately 0.30 s and 47 s, respectively, 

when running the nowcasting system on a standard Linux-based compute server. 
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Figure 15. Example 20-min prediction corresponding to the 012311 UTC 31 Mar 2009 
observation (a) without including the S-term and (b) including the S-term in the 
prediction model. 
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Figure 16. Comparison of (a) CSI and (b) MAE scores including and excluding the S-
term in the prediction model. 
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Figure 17. (a) CSI, (b) FAR, (c) POD, and (d) MAE score statistics comparing the 
performance of the DARTS and sinc-kernel-based advection nowcasting method vs 
persistence forecasts during the 2009 CASA IP1 experiment. The markers depict the 
mean scores over all 17 events in the dataset and each associated whisker represents one 
standard deviation above and below the mean value. 
 

4.3.3 Improved radar observations via adaptive scanning 

Until the 2009 IP1 experiment, the CASA system was optimized to scan based on 

observations from past scans. This latency was found to be detrimental in fast-moving 

weather systems and was significant enough that the automated scans occasionally 

cut off the leading edges of moving storms. To mitigate this condition, nowcasting 

was introduced into the DCAS closed-loop to generate fields of predicted reflectivity 

to provide better estimates of storm location for scanning purposes. In this sense, the 

motion vector field estimates generated by DARTS can be used to schedule future 

scanning strategies based on predicted motion (and thus future location) of storms. 

This information can be used to generate specific warning areas and allow for precise 
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deployment of spotters and first responders during severe weather events. Such 

capability also allows for faster sampling of important weather features as the radars 

are not scanning relatively unimportant regions throughout the entire 360o sweep. 

The ability of nowcasting to adjust the CASA radar scan strategy to observe the 

leading edge of a moving storm is illustrated in Figure 18, which depicts an image of 

the MCC display of the 0246 UTC 17 May observation comparing coverage afforded 

by radar node steering using previous observations vs steering using 5-min nowcasts. 

In this case, the storm was advecting towards the northeast. It is apparent the leading 

edge of the storm is observed when steering based on 5-min nowcasts and is missed 

when steering using previous observations. 

The utility of the adaptive scanning capability was assessed by NWS forecasters, 

local emergency managers, and researchers during the 2009 IP1 experiment via end-

user surveys (Phillips et al. 2008). End-user impact was considered to be the most 

valued performance appraisal in the CASA IP1 experiment and end-user feedback on 

radar scanning strategy adaptation was unanimously positive. 

4.4 Summary and conclusions 

Operational nowcasting capability was successfully incorporated into the CASA IP1 

radar network. The DARTS and sinc kernel-based nowcasting methodology was 

implemented to mitigate the concern of computational efficiency given the 0.5 km/1 min 

data resolution and distributed nature of the system. 
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Figure 18. Example operational MCC display of the 0246 UTC 17 May observation 
comparing coverage afforded by radar node steering using previous observations (left) vs 
adaptive scanning using 5-min nowcasts (right). The observed reflectivity field is 
depicted with identified contours of interest shown by the blue, yellow, and red shaded 
areas. Radar coverage is depicted by the white shaded areas. The storm was advecting 
towards the northeast and it is apparent the leading edge of the storm is missed on the left 
and observed on the right. 
 

Nowcasting out to 10 min provides emergency decision-making support to end-users 

of the CASA system. In this context, DARTS was evaluated quantitatively in a 

categorical (i.e., rain/no rain above a desired threshold) sense using CSI, FAR, and POD 

scores and in a continuous sense using MAE. The DARTS model was tuned for optimal 

performance in the CASA system and results were favorable regarding operational 

nowcasting during the 2009 IP1 experiment. The efficient and robust nowcasting 

methodology and implementation allowed for successful operation given the 1 min 

temporal resolution of the data and the distributed nature of the system architecture. 

Nowcasting was also used at 1–5 min time scales to set up the radar network scanning 

strategy where steering the radar using nowcasting allowed the radar network to better 
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observe the atmosphere. Operational forecaster surveys were unanimously favorable 

regarding the use of nowcasting in this context. 



55 
 

 

 

CHAPTER V. SCALE-BASED FILTERING METHODS FOR OPTIMIZATION 
OF NOWCASTING PERFORMANCE 

 

5.1 Introduction 

Precipitation patterns include features over a range of scales where generally small-

scale features have shorter lifetimes than larger-scale features [e.g., small, isolated 

thunderstorms typically have lifetimes of a few 10s of minutes, whereas continental-scale 

systems can have lifetimes of several hours or days (Orlanski 1975)]. Thus, each scale 

has a maximum lead time up to which variation at that scale can be predicted and 

attempting to predict scales past this maximum lead time can degrade nowcasting 

performance. Current nowcasting approaches account for scale-dependency by either 

building scale-dependency into the nowcasting model itself (Johnson et al. 1998; 

Lakshmanan et al. 2003; Seed 2003; Xu and Chandrasekar 2005) or by applying separate 

scale filters as either a pre-processing step to the input data (Wolfson et al. 1999) or as a 

post-processing step to predictions  (Turner et al. 2004). 

Selective scale-based filtering of radar data has been shown to improve nowcasting 

performance. Wilson (1966) determined that small-scale features in reflectivity or rainfall 

fields need not be forecast beyond their correspondingly short temporal scales. Browning 

(1979) used a large-scale filtering step in his FRONTIERS forecasting process, where 

data resolution was degraded from 5 km × 5 km to 20 km × 20 km and major storm cores 

were reintroduced after the patches had been advected. Bellon and Zawadzki (1994) 

showed that a consistent reduction in root mean square forecast errors could be obtained 
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by eliminating the small-scale perishable information by spatially averaging rainfall maps 

collected by a single radar (1 km/5 min resolution). Their results showed that optimum 

forecasts of hourly rainfall accumulations were achieved if the forecasted data field was 

smoothed by an 11 km × 11 km moving-average filter after a lead time of 23 min. A 

power-law related the length scale of the spatial filter to the forecast lead time and thus 

prevented structures from being reproduced beyond their lifetimes by increasing the 

smoothing window for increasing lead times. This power-law relationship was found to 

be nearly independent of the characteristics of the precipitation field. The S-PROG 

nowcasting model uses Fourier bandpass filtering to decompose observed reflectivity 

fields into a spatial scale-based cascade and a second-order autoregressive model to 

smooth forecast fields as various scales evolve through their life cycles (Seed 2003). 

These studies considered filters with an isotropic region of support, but Wolfson et al. 

(1999) noted that boundary layer forcing for convection tends to organize storms in 

regions that are often several times longer than they are wide. To attempt to match this 

geometry, they used a filter with an elliptical region of support where the major axis of 

the ellipse was about four times longer than the minor axis to extract the large-scale 

signal from observed WSR-88D High-Resolution Vertically Integrated Liquid (HRVIL; 

Greene and Clark 1972; Boudevillain and Andrieu 2003; Smalley et al. 2003) fields (1 

km/5 min/0.3 kg m-2 resolution). Smalley et al. (2003) stated VIL, which ranges from 0–

80 kg m-2, is preferred over composite reflectivity for air traffic control concerns as VIL 

is less susceptible to anomalous propagation breakthrough and provides depiction of an 

integrated 3D structure of the atmosphere that more accurately represents storm structure 

and intensity. The filtered HRVIL fields, which are related to reflectivity fields by a non-
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linear function, are then used as input to a cross-correlation-based nowcasting method 

(Chornoboy et al. 1994) to compute an estimated motion vector field. Since the direction 

of the front was not known a priori, several filters with the ellipse at different orientations 

were used and the filter that yielded the maximum response at a particular location was 

assumed to be the one aligned with the front direction at that location. They stated while 

a large square filter would over-filter in the cross-front direction, the elliptical filter 

having a support area that is elongated along the front direction would allow extraction of 

these long narrow large-scale regions with a high degree of long-front filtering. They 

showed an approximate 20% improvement in CSI scores over a set of five storm events 

(approximately 26 h total) represented by HRVIL fields by applying this spatial elliptical 

filtering technique. Cartwright (1999) performed a comprehensive study to determine the 

optimal parameters of the elliptical filter kernel to maximize average CSI scores over a 

large dataset. Lakshmanan (2000) presented a fast algorithm to facilitate operational use. 

Van Horne et al. (2006) showed an approximate 3–14% improvement in CSI scores over 

three rainfall events (72 h) by pre-filtering NOWrad rainfall fields (4.8 km/15 min/1.27 

mm resolution; Grassotti et al. 2003) using a square moving average filter before 

nowcasting using the cross correlation tracker used by Wolfson et al. (1999). 

Turner et al. (2004) considered the localized pulse functions of the wavelet transform 

to better represent the often localized and intermittent characteristics of rainfall fields by 

providing many wavelet coefficients at each wavelet scale and position instead of a single 

Fourier coefficient for each Fourier scale (wavenumber). They used the wavelet 

transform to develop measures of predictability at each wavelet scale and used these 

measures to design an adaptive filter to remove scales deemed unpredictable from the 
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forecasts. They did so by weighting the wavelet scales representing the reconstructed 

predicted reflectivity fields according to the level of similarity in the wavelet cospectra 

between the observed and predicted fields at a given lead time. They showed the average 

correlation at a lead time of 4 h was increased from 0.50 for the original forecasts to 0.62 

with this filtering method using four precipitation events (78 h total) depicted by 

NOWrad composite continental-scale reflectivity fields (4 km/15 min/5 dBZ resolution; 

Grassotti et al. 2003) using a variational nowcasting method (Laroche and Zawadzki 

1994). Due to mathematical tractability, this adaptive filter was built to minimize mean 

squared error so they employed a rescaling technique to reverse the spreading effects 

from filtering to improve CSI scores that showed an approximate 12% improvement in 

CSI scores over a 20 h period of a single storm event. Germann et al. (2006) used this 

methodology to investigate the predictability of precipitation depicted by continental-

scale reflectivity composites using a large dataset and affirmed that normally the scale 

weights at each scale become larger with increasing scale at a given lead time suggesting 

small scales are less predictable and decorrelate faster than larger-scale features. 

This section presents a study to determine the optimal filtering strategy for 

nowcasting in the CASA DCAS system. This section provides an assessment of the 

elliptical, wavelet, and Fourier filtering methods for improving nowcasting performance 

using a common dataset of high spatial and temporal resolution reflectivity and the 

DARTS nowcasting method. Thus, the contribution of this work is to perform a direct 

comparison between the elliptical, wavelet filtering, and Fourier filtering methods for 

nowcasting performance improvement using the DARTS nowcasting model and high-

resolution CASA radar reflectivity data. Consequently, understanding of the space-time 
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scale structure of precipitation patterns depicted by high-resolution radar reflectivity data 

can be inferred. 

5.2 Filtering Methodology 

The flowchart depicting the system-level implementation of each of the three filtering 

methods is shown in Figure 19. Further details of each of the three filtering strategies 

evaluated in this study are given in the following subsections. Since the purpose of the 

study was to determine the best operational filtering scheme for nowcasting in the CASA 

network, each filter was individually tuned for optimal performance based on results 

from empirical preliminary studies before comparison. 

5.2.1 Fourier filtering 

The DARTS algorithm provides a convenient means to perform ideal Fourier 

low-pass filtering on the observed input data. Fourier filtering is implemented by 

choosing the number of Fourier coefficients in the linear system representing Eq 

(3.11) to be less than the size of the input fields. In this manner, wavenumbers larger 

than Nx and Ny in each respective dimension are not considered in the motion vector 

field estimation process. Such filtering also truncates the size of the linear system (i.e., 

the linear system becomes overdetermined) facilitating faster computation necessary 

given the rapid scan rates of the CASA radars. In this context, scale is represented by 

Fourier wavenumbers, where high wavenumbers correspond to small scales and vice 

versa. 
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Figure 19. Illustration of the three filtering processes assessed for potential nowcasting 
performance improvement in CASA DCAS: (a) filtering before prediction (pre-filtering), 
(b) filtering after prediction (post-filtering), and (c) both pre- and post-filtering. 
 

Results from a preliminary study using CASA reflectivity data determined 

truncating the Fourier space with a normalized cut-off frequency of about 0.2 in each 

direction yielded the best CSI scores (Figure 12). This parameter setting was 

considered in this research for filtering both observed and predicted data fields. 

5.2.2 Spatial elliptical filtering 

The elliptical filter used by Wolfson et al. (1999) was designed to match the 

geometry of observations where boundary layer forcing for convection tends to 

organize storms in regions that are often 3–4 times or more long than they are wide. 
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The motion of the small and large-scale storm components can be very different [for 

the example given in (Wolfson et al. 1999), the large-scale component was moving to 

the south-southeast at about 17.5 m s-1 while the small-scale component was moving 

to the east-northeast at about 10.8 m s-1). Filtering the input data to remove small-

scale components before motion estimation also allows for the estimation of storm 

motion due to cellular growth and decay within the storm envelope. Storm motion is 

driven by environmental wind at some steering level. This motion is well captured by 

radar echo tracking (cross-correlation in this case). They also propagate through 

development and dissipation. When propagation occurs through new development of 

convection at the front of the system while there is dissipation at the rear, it results in 

an apparent displacement. If this propagation is systematic and persistent, the 

resulting motion vector field will carry it as a skill in nowcasting. It must be persistent 

and systematic in order to be captured during the period over which the motion 

vectors are determined (Germann et al. 2006). The elliptical filter seeks to extract the 

envelope of the precipitation area by matching the shape of this area and better detect 

this motion driven by growth and dissipation. In this context, scale is represented by 

the area and dimensions of the filter kernel where a larger area removes more smaller-

scale features organized by the major and minor axes specifications of the ellipse. 

The elliptical filtering algorithm is described by the following steps: 

1) The center point of the 2D elliptical filter is placed over a point, p, in the data 

field to be filtered. The average of all data points that lie in the region of support 

is computed. 
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2) The filter is rotated by 10o (through 180o) and the average value for each 

orientation is computed. 

3) The value at p in the filtered data field is set to the maximum of the average 

values computed at each filter orientation. 

4)  Steps 1–3 are repeated for each location in the data field. 

The elliptical filtering method is illustrated in Figure 20. 

Results from a preliminary study considering CASA reflectivity data collected 

during the 10 Feb, 31 Mar, and 11 May events showed that a filter kernel with a 

major axis of 21 points (11 km) and a minor axis of 5 points (3 km), the same size 

filter kernel used by Wolfson et al. (1999), yielded the best nowcasting performance 

in terms of CSI scores (Figure 21). These parameters were used in this study and Nx 

and Ny were set equal to Tx and Ty in the DARTS model given by Eq (3.11) when 

applying this filtering procedure to the observed data sequence used for motion 

estimation. 

5.2.3 Wavelet filtering 

Because radar reflectivity regularly exhibit highly localized features with sharp 

spatial gradients, Turner et al. (2004) employed an adaptive filtering method based on 

the wavelet transform whose localized pulse functions are believed to better represent 

such localized intermittent fields. Instead of a single Fourier transform coefficient for 

each Fourier scale, many wavelet coefficients are obtained at each wavelet scale for 

each position. A wavelet filter was designed to selectively weaken or remove less 

predictable precipitation features from a forecast. 
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.  

Figure 20. Illustration of elliptical filtering process using a 21 × 5 point filter kernel. The 
point, p, is represented by the black square and the region of support of the filter is 
represented by the gray squares. 
 

 

Figure 21. Effect of variation of elliptical filter parameter values on nowcasting 
performance using DARTS. The parameters A and B represent the major and minor axis 
diameters (in grid points) of the filter kernel, respectively. 
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In this context, the filtered forecast field, Iff, is given by 

1WT
f ff( , ) ( , , ), ( , )w m T W m x y f x y I

−

→ , (5.1) 

where Wf(m, x, y) are the wavelet coefficients of the forecasted reflectivity field, f(x,y), 

at each wavelet scale, m, and position, (x, y). Here, WT-1 represents the inverse 

wavelet transform and the overbar denotes the spatial (areal) average. The weight, 

w(m, T), at each m and lead time, T, is given by 
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The wavelet coefficients of the observed field are given by Wo(m, x, y). The 

spectrum of the forecasted field, Sf(m), is thus a measure of the importance of each 

interval (or band) of scales in the forecasted field. The cospectrum, Cofo(m), indicates 

the level of similarity between the spectra of observed and predicted fields. In this 

study, Sf(m) and Cofo(m) were based on the Haar wavelet as used by Turner et al. 

(2004) and a maximum scale index, mmax, beyond which wavelet coefficients were 

not calculated, was set equal to 3. 

The rescaling procedure used by Seed (2003) to enhance CSI scores by 

counteracting the smoothing effects of the wavelet filtering procedure was 

implemented in this study. The forecast reflectivity field was renormalized to 

preserve the fraction of the field that exceeds a threshold (25 dBZ was considered in 

this study). The fraction of the observed reflectivity field that exceeded 25 dBZ, f25, 



65 
 

was calculated. The cumulative probability distribution for the forecast field was 

calculated and used to find the threshold in the forecast field, Zf, which had 

probability to exceed 25 dBZ equal to f25. Each data point in the original forecast field, 

�i, j, was then normalized to yield the rescaled forecast field, �’i, j, according to 

, ,'
,

(25 )    if 

0                           otherwise.
i j f i j f

i j

Z ZΩ + − Ω >��Ω = �
��

 (5.5) 

5.3 Assessment methodology 

5.3.1 The radially averaged power spectral density 

The radially averaged power spectrum (RAPSD) is a useful tool for objectively 

illustrating relative differences in spatial scale structure in 2D radar data fields. The 

RAPSD converts the coordinates of the power spectrum of 2D data from Cartesian to 

polar and removes the angular dependence through averaging to yield a 1D 

representation of the spectrum. The method was first made popular in the field of 

digital image processing, namely, used to quantify anisotropies in binary output 

images resulting from halftoning (Ulichney 1988). Sinclair and Pegram (2005) used 

the RAPSD to illustrate the effectiveness of the Empirical Mode Decomposition 

(EMD) to decompose spatial rainfall fields into their intrinsic spatial scale 

components and Germann and Zawadzki (2002) used the RAPSD to illustrate the 

effects of advection procedures on the suppression of power in reflectivity fields 

according to scale (i.e., spatial wavelength). The RAPSD finds utility in this study to 

provide a tractable and convenient means to illustrate the relative quantitative effects 

of scale filtering methods. 



66 
 

The RAPSD used in this study is defined as follows. The power spectrum of a 2D 

image, f(x, y), of dimension M × N, is defined as (Gonzalez and Woods 2002) 

2( ) ( , )P f F u v≡ , (5.6) 
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Figure 22 shows how spectral estimates P(f) can be partitioned into annuli of width � 

for regular rectangular grids. Each annulus has a central radius, fr, the radial 

frequency, and Nr(fr) frequency samples. The sample mean of the frequency samples 

of P(f) in the annulus ||f| - fr| = �/2 about fr, is defined as the RAPSD (Ulichney 1988) 
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where, 

[ ]22 vuf r +=  (5.9) 

and [ ]�  represents the nearest integer operator. Spatial radial wavelength (in km) is 

then given by � = s/fr, where s represents the grid spacing of the data. According to 

the Nyquist Theorem, the smallest resolvable scale in the data is equal to twice the 

grid spacing (Su and Clemens 2003). Since the grid spacing of the reflectivity fields 

used in this study is 0.5 km, the smallest resolvable meteorological scale is 1 km. The 

maximum radial frequencies corresponding to the radius producing the largest circle 

wholly contained within the grid are considered. 



67 
 

 

Figure 22. Illustration of the radially averaged power spectrum. 
 

5.3.2 The Critical Success Index 

Gerapetritis and Pelissier (2004) presented an analysis to characterize the CSI in 

terms of FAR and POD. By considering the slope of the CSI function with respect to 

POD and FAR, they demonstrated that equal changes in FAR and POD produce an 

equal change in CSI when POD = 1 - FAR. When POD > 1 - FAR, CSI was found to 

be more sensitive to changes in FAR and when POD < 1 - FAR, CSI was shown to be 

more sensitive to changes in POD. They showed a more accurate forecast would 

result in an improvement in both FAR and POD and a corresponding improvement in 

CSI. Nevertheless, CSI is still considered a valid indicator of nowcasting performance 

and is considered the primary evaluation score in this study. 
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5.4 Results 

The effect of each filter is illustrated using a reflectivity field from the 31 Mar squall 

line event depicted in Figure 23. The effects of scale filtering this data are quantified 

using the RAPSD depicted in Figure 24, which shows that the elliptical filtering process 

began to suppress power relative to the unfiltered data around the 14 km scale while 

Fourier filtering began to suppress power around the 4 km scale. Figure 25 compares the 

line-averaged power spectra along the major and minor axes of an ellipse oriented along 

the line storm shown in Figure 23 to the corresponding radially averaged power spectrum. 

Figure 25 shows the reflectivity fields to be fairly isotropic, especially at scales below 

about 20 km, suggesting and the application of elliptical filtering has a negligible effect 

on the spectral structure of the data and a fair comparison can be made between the 

radially averaged power spectra shown in Figure 24. 

Figure 26 illustrates the effect of each filter on a 20-min prediction corresponding to 

the observation depicted in Figure 23. The Fourier and elliptical filtered reflectivity fields 

were generated by applying each respective filter to the input data sequence used to 

estimate the motion vector field. In this case, there was no filtering performed on the 

predicted reflectivity fields. The filtered predicted reflectivity fields were created by 

applying Fourier and wavelet filters, respectively, to the predicted reflectivity fields. The 

effects of filtering the predicted images are quantified by the radially averaged power 

spectra shown in Figure 27, which shows Fourier filtering began to suppress power 

around the 5 km scale and the wavelet filter suppressed power between the 2 km and 14 

km scales relative to the unfiltered predicted reflectivity fields. It is interesting to note the 

wavelet filter preserves the scales between 1 km and 2 km. 
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Figure 23. The observation at 0103 UTC 31 Mar 2009: (a) unfiltered, (b) Fourier filtered, 
and (c) elliptically filtered. 
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Figure 24. The radially averaged power spectra corresponding to the filtered observations 
depicted in Figure 23. 
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Figure 25. Comparison of the radially averaged power spectrum with the line-averaged 
power spectra computed along the major and minor axes of an ellipse oriented along the 
line storm depicted in Fig. 5 for the unfiltered observation (left) and elliptically filtered 
observation (right). 



72 
 

 

Figure 26. The 20-min prediction corresponding to the 0101 UTC 31 Mar observation: 
(a) Fourier pre-filtered, (b) elliptical pre-filtered, (c) Fourier pre- + Fourier post-filtered, 
and (d) Fourier pre- + wavelet post-filtered. 
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Figure 27. The radially averaged power spectra corresponding to corresponding to the 20-
min predictions depicted in Figure 26. 
 

Figure 28 depicts the average CSI (considering a 25 dBZ threshold and 1 × 1 km 

scoring neighborhood) and MAE scores computed over the events in the dataset 

described in Table 1. The scores were generated by comparing predictions to the 

appropriate unprocessed reflectivity fields. The 10- and 20-min, mean (averaged over the 

20-min lead time period), and mean percent change values corresponding to these results 

are presented in Table 2. Figure 28 and Table 2 show that applying Fourier filtering in the 

context of truncating Fourier coefficients in the prediction model provided the best 

performance in terms of CSI and applying additional Fourier filtering to the predicted 

reflectivity fields provided the best performance in terms of MAE for lead times up to 20 

min. Both the CSI and MAE scores were generated by comparing the resulting predicted 

reflectivity fields to the corresponding unfiltered observed field.  
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Figure 28. (a) CSI and (b) MAE score comparison for the scale filtering procedures 
depicted in Figure 19. 
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Table 2. Summary of nowcasting performance scores for scale filtering analysis 
(NF = No filtering, FP = Fourier pre-filtering, EP = Elliptical pre-filtering, FF = 
Fourier pre- + Fourier post-filtering, FW = Fourier pre- + wavelet post-filtering). 

 

Filter Score parameter 
NF FP EP FF FW 

10-min CSI 0.3565 0.4362 0.3733 0.4118 0.4070 
20-min CSI 0.2334 0.2821 0.2414 0.2647 0.2649 

Avg CSI 0.3888 0.4579 0.4033 0.4301 0.4322 
%� Avg CSI 0.00 17.76 3.72 10.62 11.16 
10-min MAE 2.3368 2.0355 2.2061 1.9784 2.0530 
20-min MAE 2.7858 2.5348 2.6432 2.4570 2.5044 

Avg MAE 2.2061 1.9354 2.0807 1.8877 1.9609 
%� Avg MAE 0.00 -12.27 -5.68 -14.43 -11.11 

 

5.5 Summary and conclusions 

Selectively filtering small-scale features with short lifetimes from precipitation 

patterns has been shown to improve prediction accuracy in terms of CSI scores when 

predicting WSR-88D HRVIL and NOWrad composite continental-scale radar data using 

a cross-correlation-based (Wolfson et al. 1999; Van Horne et al. 2006) and a variational-

based nowcasting technique (Turner et al. 2004), respectively. 

The effects of Fourier, elliptical, and wavelet filtering techniques on prediction 

precision using a spectral-based nowcasting algorithm and approximately 66 h (3960 data 

frames) of high-resolution composite reflectivity data were studied. Each filter was 

individually tuned for optimal performance based on the results of empirical preliminary 

studies. The results showed that Fourier filtering in the context of the truncation of 

spectral coefficients in the prediction model [i.e., reducing the values of Nx and Ny in Eq 

(3.11) to have normalized cut-off frequencies of 0.2 in each direction] yielded the best 

performance for lead times up to 20 min in terms of CSI and additionally Fourier filtering 

the predicted reflectivity fields yielded the best performance in terms of MAE. 
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Generating predictions based on motion vector fields estimated using Fourier-filtered 

data without filtering the predicted data showed an approximate 6% and 1% 

improvements in terms of average CSI and MAE, respectively, over applying the wavelet 

filtering method to the predicted data. Fourier filtering within the context of truncating 

Fourier coefficients in the prediction model was also shown to yield an approximate 13% 

improvement in terms of CSI and 6% in terms of MAE over using the elliptical filtering 

procedure. Additional filtering of the predicted reflectivity fields using a Fourier low-pass 

filter showed no increase in CSI but showed an additional approximate 2% improvement 

in MAE. Any filtering method was shown to improve performance vs no filtering, with 

the maximum difference being approximately 0.06 (26%) in terms of CSI and 0.3 dBZ 

(11%) in terms of MAE. 

An isotropic Fourier filter as investigated in this study likely more closely matches 

the spectral structure of the fairly isotropic CASA reflectivity data used in this evaluation 

(Figure 25) than the elliptical or wavelet filters. These results are consistent with those 

presented by Zawadzki (1973), who found at scales comparable with a rain cell size (less 

than 10km), that precipitation is, on average, isotropic. Bellon and Zawadzki (1994) also 

found that in spite of the marked elongation of a rainfall pattern associated with a frontal 

passage, the difference between anisotropic and isotropic filtering procedures was barely 

perceptible and more elaborate and time-consuming anisotropic filtering resulted in a 

negligible improvement in forecast quality. This provides one explanation why isotropic 

Fourier filtering yielded the best nowcasting performance in this study. The suppression 

of scales probably useful for prediction (Figure 24 and Figure 27) dictated by the small-

scale nature of the CASA reflectivity data may also provide an explanation of the 
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difference in nowcasting scores. Bellon and Zawadzki (1994) showed that over-filtering 

rain rate maps reduced cross-correlation between forecasts and observations. Additionally, 

the rescaling procedure that is part of the wavelet filtering method can also introduce 

error. Furthermore, the truncation of Fourier coefficients in the prediction model will 

affect motion vector field estimation aside from scale suppression afforded by the 

inherent Fourier filtering. This may further explain the difference in CSI scores between 

the Fourier-filtered results (via model coefficient truncation) and the elliptical-filtered 

results (without model coefficient truncation). 
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CHAPTER VI. IMPROVED SNOW WATER EQUIVALENT NOWCASTING IN 
THE WEATHER SUPPORT TO DEICING DECISION MAKING SYSTEM 

 

6.1 Introduction 

The operation of aircraft during winter precipitation conditions is a significant safety 

concern. A relatively thin coating of ice on an aircraft wing can cause substantial loss of 

lift and increase in drag making safe flight impossible. Thus, the formation of ice must be 

removed or prevented using a deicing fluid prior to take-off. 

A key quantity used to assess the type and application frequency of deicing fluid for 

winter conditions is the snow water equivalent (SWE) value. Accurate short-term 

forecasts of SWE values are useful to facilitate efficient resource allocation and planning 

of airport deicing operations. Accurately forecasted SWE values are needed by pilots and 

ground personnel to assess whether the snow accumulation on an aircraft wing since 

deicing has exceeded the capability of the deicing fluid to keep the surface ice-free. The 

Society of Automotive Engineering (SAE) Ground Deicing Committee produces 

Holdover Tables that indicate the amount of time a deicing fluid can prevent ice 

formation on an aircraft for a given precipitation type, rate, and temperature. The 

Holdover Tables are based on testing of deicing fluids at 1 and 2.5 mm h-1 liquid 

equivalent snowfall rates and at various temperatures. Thus, knowledge of the occurrence 

of rates less than 1 mm h-1, between 1 and 2.5 mm h-1, or greater than 2.5 mm h-1 are 

critical in the proper use of the Holdover Tables. Figure 29 illustrates the SWE categories 

of interest in this context. 
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The Weather Support to Deicing Decision Making (WSDDM; Rasmussen et al. 2001, 

2003) method was developed to predict SWE values and is currently deployed at several 

airports in the U. S. WSDDM was also used to provide nowcasting at the Vancouver 

2010 Winter Olympic and Paralympic Games (Joe et al. 2010). WSDDM produces 

nowcasts of SWE values by calibrating the Z-S relationship, which relates radar 

reflectivity to SWE rate, in real-time to account for variability in precipitation density. 

Extrapolated WSR-88D Level III base reflectivity values are converted to SWE estimates 

using the Z-S relationship calibrated by previous radar observations and surface gauge 

measurements. Reflectivity values are extrapolated according to motion vectors estimated 

by a tracking method that maximizes cross-correlation between subgrids in successive 

data frames. 

While WSDDM has shown operational benefit at many U. S. airports, ground clutter 

mitigation artifacts observed in reflectivity fields generated by the WSR-88D outside of 

Denver, Colorado, have been shown to severely degrade the accuracy of SWE predictions 

generated by the WSDDM system deployed at Denver International Airport (DIA). The 

zero isodop resulting from perpendicular wind direction and scan radial has been shown 

to produce regions of artificially high correlation between successive base reflectivity 

fields (Maddox 2010). Because of this, the cross-correlation tracking algorithm was 

shown to produce erroneous motion vector estimates by fixating on these regions of high 

correlation. The cross-correlation-based nowcasting algorithm is also well-known to be 

computationally intensive thus potentially delaying the updates of SWE estimates.
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Figure 29. Snow water equivalent categories critical to proper deicing decision-making 
support. 
 

A method is presented in this section to improve SWE forecasts made by the 

WSDDM system. The method incorporates DARTS into the WSDDM system by 

replacing the cross-correlation-based radar nowcasting method currently used. 

Approximately 69 h of data collected using a WMO standard reference gauge during five 

winter precipitation events at the NCAR Marshall Field Site and the KFTG WSR-88D 

near DIA from 2007–2008 was used for evaluation. Results showed an approximate 10% 

improvement in CSI and a runtime reduction of approximately 2 orders of magnitude for 

lead times up to 1 h. 

6.2 Background 

The SWE rate nowcasting algorithm used in WSDDM is based on real-time 

calibration of the Z-S relationship, which mathematically relates the radar reflectivity 

factor (Z) to the SWE rate (S). A real-time calibration is needed to take into account the 

natural variations in the Z-S relationship that occur during a storm because of changes in 

snow crystal type, degree of riming and aggregation, wetness, and size distribution. By 

integrating the SWE rate over time, an SWE value is generated. 

The Z-S relationship is shown as 

baSZ = . (6.1) 
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Here, Z is in units of mm6 m-3 and S is in units of mm h-1. As a result of this direct 

relationship, a nowcast of radar reflectivity produces a nowcast of S at a desired location. 

Likewise, the motion vectors produced by a radar-based nowcasting algorithm used in 

conjunction with snow gauge, surface temperature, and (optionally) surface wind velocity 

measurements allow for real-time calibration of parameters a and b in Eq (6.1). 

To perform this calibration, S is measured at a desired location at a given time. Then, 

a search back in time from this location using motion vectors estimated by the Tracking 

of Radar Echoes by Correlation (TREC; Rinehart and Garvey 1978; Rinehart 1981; 

Tuttle and Foote 1990; Chornoboy 1994; Li et al. 1995; Li and Lai 2003) algorithm and 

surface wind speed measurements corresponding to this time and location estimate the 

location of the precipitation falling into the gauge. The median (linear) reflectivity value 

corresponding to this location is used to estimate the SWE rate at the gauge. The free 

parameter a is adjusted such that the estimated liquid equivalent value matches the 

measured liquid equivalent value by integrating the estimated liquid water equivalent 

rate, Se, and the measured liquid water equivalent rate, Sm, respectively, over a given time 

period. The other free parameter, b, is adjusted based on the measured surface 

temperature. This calibration procedure is illustrated in Figure 30. 

Once calibrated, nowcasts of SWE rate values (S) can be made by applying the 

calibrated equation to nowcast reflectivity values at the desired location by searching 

back in time using the combined surface measured and TREC-derived wind vectors. The 

algorithm runs continuously such that equation parameters and snow water equivalent 

estimates are updated whenever new radar data becomes available. The WSDDM system 

diagram is shown in Figure 31. 
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Figure 30. Illustration of the WSDDM Z-S calibration procedure. 



83 
 

 

Figure 31. The WSDDM system diagram. The Z-S equation is calibrated using surface 
measurements and the initial radar reflectivity estimate, 0Ẑ . Nowcasts of SWE, Ŝτ , are 

made using nowcasts of radar reflectivity, Ẑτ , and the calibrated Z-S equation. 
 

An integral component of the WSDDM system is the TREC nowcasting algorithm. 

The TREC algorithm is used to estimate the spatial change between two gridded data 

fields in time. TREC computes the maximum location(s) of 2D cross-correlation between 

subsets of two input grids (Cartesian-gridded reflectivity fields are used in the WSDDM 

system) to generate matrices of motion vectors representing the most probable motion in 

the horizontal and vertical directions. 

The three main steps in the TREC algorithm are summarized as follows: 

1) Determine the global motion vector. The global motion vector is a single vector that 

represents the overall (large-scale) motion of the grid in time. The 2D cross-

correlation field between two complete grids is computed and the maximum value is 

found. The distance between the locations of this maximum cross-correlation value 

and the center of the grid in the horizontal and vertical directions is computed to 

determine the global motion vector. 

2) Determine the distributed motion vector field. The motion vector field is a matrix of 

motion vectors representing small-scale motions within the grid. To compute this 

field, a subgrid of predetermined size (much smaller than the data grid size) is 
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centered over each location in the earlier of the 2 input grids. This “feature box” is 

moved and centered over each location in the older input grid. A feature box in the 

later grid is centered on the same location as the feature box in the earlier grid. The 

size of the feature box in the later data field is the size of the first box plus a 

predetermined maximum data displacement (maximum speed) value. The 2D cross-

correlation between these two feature boxes is then computed. The distance between 

the locations of the maximum cross-correlation value and the subgrid center point is 

found and a motion vector is computed. This process is repeated for every grid point 

(or a desired subset of grid points) in the grid and is illustrated in Figure 32. 

3) Check and smooth the motion vector field. The maximum cross-correlation analysis 

used by TREC has been found to be sensitive to errors thus requiring error checking 

and smoothing of the resulting motion vector field. Temporal smoothing is 

accomplished by linearly weighting previous estimates of the global motion vector 

and motion vector field with the current respective estimates.  

Gross spatial errors in the motion vector field are corrected by replacing vectors 

which deviate too much in direction and magnitude from the global motion vector or 

average of local vectors. An exponential spatial smoothing filter is then applied. 

6.3 Data 

Data collected during five winter precipitation events (approximately 69 h) were 

considered in this study which encompassed a range of winter weather characteristics. 

Details of the events are summarized in Table 3. 
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Figure 32. Illustration of the TREC method to estimate a distributed motion vector field. 
By optimizing a test criterion (correlation coefficient), the best displacement vector is 
found for each grid point [or a subset of points; from Mecklenburg et al. (2000)]. 
 

 

 

Table 3. Description of precipitation events used in the evaluation of incorporating 
DARTS in the WSDDM system. 

 

Start time Duration 
(h) 

High temp 
(C) 

Low temp 
(C) 

Max wind 
speed  
(m s-1) 

Snow 
total 
(mm) 

WSR-88D 
Operating 

Mode 
0404 UTC 21 

Oct 2007 
14.00 17.8 0.0 14.8 2.5 Precipitation 

0008 UTC 11 
Dec 2007 

14.75 -1.1 -6.7 10.7 170.2 Clear Air 

0813 UTC 27 
Dec 2007 

9.40 -6.1 -11.7 9.4 73.7 Clear Air 

0002 UTC 04 
Feb 2008 

14.60 0.6 -0.56 6.7 58.4 Clear Air 

0007 UTC 17 
Mar 2008 

16.20 2.2 -2.8 9.4 139.7 Clear Air 
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Surface precipitation data was collected at the NCAR Marshall Test Site (39.9491o lat, 

-105.1954o lon, 1744 m alt) using a World Meteorological Organization (WMO) 

standard-reference Geonor Double Fence Intercomparison Reference (DFIR) gauge. A 

wind shield is a barrier made of wooden or metal strips that prevents wind from blowing 

the precipitation over the top of the gauge. Previous research has shown that without a 

wind shield, gauges can under-estimate precipitation by 50% or more during windy 

events (Landolt et al. 2004). The diameter of a wind shield can also effect the 

measurement. Wind shields that are sufficiently large cause turbulence in the air flowing 

over the gauge rather than downward forcing and measurements closer to the accuracy 

standard set by the WMO (Landolt et al. 2004).The Intercomparison study recommended 

the double-fence wind shield, which is an octagonal double fence shield, as the accuracy 

standard (Figure 33). The DFIR shield consists of two concentric rings of fencing at 12 m 

and 4 m in diameter, with the snow gauge at the center. The snow gauge is surrounded by 

an additional wind shield at a diameter of about 1.5 m. Thus, the Geonor snow gauge in 

the DFIR was a triple-shielded gauge reducing wind-induced catchment loss and of the 

seven wind shields tested by NCAR, the DFIR shield resulted in the greatest catch. 

An R.M. Young anemometer was used to collect surface wind velocity data and a 

Vaisala WXT-510 was used to collect temperature data. Temporal resolution of all 

surface gauge data was 1 min Gauge measurement errors were ignored in this study. 

Radar data consisted of Level III Base Reflectivity products collected by the KFTG 

WSR-88D radar outside Denver, Colorado (39.7852o lat., -105.5431o lon., 1679 m alt.). 
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Figure 33. The WMO DFIR Geonor gauge located at the NCAR Marshall Test Site. 
 

Data collected during the lowest elevation angle scan (0.5o) was gridded to Plan Position 

Indicator (PPI) fields and processed using median filtering and interpolation to remove 

residual clutter. Data collected during the lowest elevation angle scan is desired in this 

application for their proximity to the ground. The data were gridded to a spatial 

resolution of 1 km covering an area of approximately 200 km × 200 km. The data update 

rate was approximately 5.5 min and 10 min when the radar was operating in Precipitation 

and Clear Air Mode, respectively. The map of the sensor layout used for this evaluation 

is shown in Figure 34. 

6.4 Results 

The performance of WSDDM to nowcast SWE values using TREC as the radar-based 

nowcasting method was compared to that using persistence blending and DARTS for the 

data collected from the five winter precipitation events. 
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Figure 34. Map of the WSDDM evaluation sensor layout. 
 

Table 4 compares the CSI scores and average radar-based nowcasting runtime for this 

dataset. 

Figure 35 shows example reflectivity fields and motion vector fields for both 

nowcasting methods from the 27 Dec 2007 event. The storm moved in a SE direction and 

the zero isodop extended from the radar to the SW and NE. The erroneous TREC vectors 

are apparent and no motion vectors are present over the gauge used for system calibration. 

The nature of DARTS (i.e., the continuity constraint incorporated in the physical model) 

allows for accurate motion vector predictions over the gauge site used for system 

calibration despite the presence of the zero isodop. In each case, WSDDM was run using 

the latest release of MATLAB on a standard Linux compute server.  
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Table 4. Results comparing the performance of WSDDM using TREC for radar 
pattern motion estimation (TREC-WSDDM) and using DARTS for radar 
pattern estimation (DARTS-WSDDM) for the Marshall dataset. Scores are 
averaged over the five events. 

 

System/comparison 30-min CSI 60-min CSI Avg runtime (s) 
TREC-WSDDM 0.54 0.55 196.36 

DARTS-WSDDM 0.59 0.60 2.58 
� (%) +8.75 +9.70 -98.69 

 

 

Figure 35. Example reflectivity field and (a) TREC motion vectors and (b) DARTS 
motion vectors from the 12 Dec 2007 winter storm event. The gauge location is indicated 
by the ‘o’ and the radar location by the ‘x’. The surface wind vector is shown at the 
gauge site. 
 

The computational complexities of the DARTS and TREC algorithms can be 

quantified more formally. Considering an N × N data field, a forward and inverse Fast 

Fourier Transform (FFT) operation each with computational complexity O(Nlog2N) 

(Cooley and Tukey 1965; Johnson and Frigo 2007), a matrix pseudo-inversion [O(M3) 

when considering the modified Golub-Reinsch algorithm (Chan 1982)], and lower-order 

computations to construct and retrieve the linear system, the overall computational 

complexity is O(M3), where M < N is the dimension of the truncated field of FFT 
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coefficients determined by the choice of parameters Nx and Ny in Eq. (3.11). Considering 

M is on the order of N and there are on the order of N data fields considered for motion 

estimation, the computational complexity of DARTS can be given as O(N4). The 

computational complexity of TREC is O(q2n2N2) (Tsai and Lin 2003), where q and n (q < 

n < N) are the dimensions of the square sub-template and search area used for pattern 

matching at each data point, respectively. Both q and n are determined by parameter 

selection and are on the order of N. The computational complexity of the TREC 

algorithm can be represented as O(N6), consistent with the results presented in Table 4. 

6.5 Summary and conclusions 

The results presented in this section show the utility of replacing the TREC radar-

based nowcasting method with DARTS in the WSDDM system to nowcast SWE rates for 

aviation deicing decision support. The continuity equation upon which DARTS is built 

allows for more accurate estimation of precipitation pattern motion in the presence of 

anomalies such as the zero isodop (Figure 35). As a result, SWE estimates using DARTS 

were shown to be approximately 10% more accurate on average than those made using 

TREC in terms of CSI scores when considering approximately 69 h of data collected by a 

WMO DFIR gauge at the NCAR Marshall Test Site and the KFTG WSR-88D. Runtime 

was also reduced by approximately two orders of magnitude when TREC was replaced 

by DARTS in the WSDDM system. This savings can be attributed to the efficient linear 

formulation of the DARTS method. In a more general sense, the results presented in this 

section show that DARTS performs favorably when nowcasting winter precipitation 

patterns and relatively low-resolution radar data compared to the data provided by CASA 

DCAS. 
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CHAPTER VII. AN INVESTIGATION OF THE PREDICTABILITY OF 
PRECIPITATION USING HIGH-RESOLUTION COMPOSITE RADAR 

OBSERVATIONS 
 

7.1 Introduction 

The predictability of precipitation patterns observed by meteorological radar is an 

important concept as it establishes a means to characterize precipitation patterns and 

provides an upper limit on the extent of useful forecasting. Predictability also varies 

based on spatial and temporal scales of observed meteorological phenomena. This section 

describes an investigation of the predictability of precipitation patterns containing 

microalpha (0.2–2 km) to mesobeta (20–200 km) scales using high-resolution (0.5 km/1 

min/1 dBZ) composite radar reflectivity data extending the analysis presented by Grecu 

and Krajewski (2000) and Germann et al. (2006) to smaller scales in space and time. An 

experimental approach is used where continuous and categorical lifetimes of radar 

reflectivity fields in Eulerian and Lagrangian space are used to quantify predictability. 

The results are stratified according to the type of weather event. A practical upper-limit 

on the extent of nowcasting performance is also estimated. The space-time scale-

dependency of predictability is investigated and connections to the predictability of 

larger-scale features are made. The results show that predictability in terms of lifetime is 

approximately 14–15 and 20–21 min in Eulerian and Lagrangian space, respectively, and 

a strong approximation to a linear relationship exists between predictability and space-

time structure from microalpha to macrobeta (2 000–10 000 km) scales. 
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7.2 Background 

7.2.1 The predictability of precipitation 

The predictability of precipitation is a complex concept. From a purely dynamic 

point of view, predictability is related to the dependence of the trajectory of the 

atmospheric state in phase space [i.e., the space in which all possible states of a 

system are represented, with each possible state of the system corresponding to one 

unique point in that space (Gibbs 1902)] and small perturbations in the initial 

conditions. This sensitivity of the trajectory of the atmospheric state to small 

perturbations in initial conditions is an intrinsic and fundamental property of any 

nonlinear system referred to as the initial value problem. For a simple, low-

dimensional system, the initial value problem can be investigated analytically, but for 

more complicated systems such as precipitation patterns, the study of predictability 

becomes more difficult and any approach can only give an estimate of the true 

predictability (Germann et al. 2006). 

A variety of studies have been performed that sought to make inferences about the 

predictability of the atmosphere with some studies following a purely analytical 

approach while others were experimental in nature. An example of a purely analytical 

approach is the evaluation of the Liouville equation, which generalizes Euler’s 

equations of motion to systems that are not rigid (Goldstein 2001), and describes the 

evolution of the probability density of the atmospheric state in phase space (Gleeson 

1966; Epstein 1969) to examine perturbation growth of a dynamic system. Principally, 

the Liouville equation can be solved analytically for any dynamic system but in 



93 
 

practice such an approach is only applicable to low-dimensional problems [e.g., 1D 

Riccati equation (Ehrendorfer 1994)]. 

Several studies of predictability were based purely on observations, such as 

autocorrelation analysis of the variable of interest (Lorenz 1973; Zawadzki 1973) or 

studies seeking precursors in the observation space (Bocquet 2002). There also exist a 

variety of studies employing statistical and numerical weather prediction (NWP) 

models that combine analytical concepts and observations (Buizza et al. 1999; 

Ehrendorfer et al. 1999; Massacand et al. 1998; Palmer 2002; Walser et al. 2004). In 

these methods, predictability was measured by the skill of the model to predict a 

certain phenomenon as evaluated by statistical comparison with observations or by 

the growth of initially small perturbations in model phase space using singular vector 

analysis or ensembles of model runs (Germann et al. 2006). 

Several factors contribute to predictability in this sense as used in this study. First, 

there is persistence of variables, atmospheric phenomena, and processes that are 

related to precipitation (e.g., cloud water content, instability, and uplift of warm air in 

a warm front). Second, there is forcing with predictable or partly predictable 

amplitude (e.g., the diurnal and annual cycle of net radiation, orographic forcing, or 

Rossby wave dynamics). And, third, there are processes and feedback mechanisms 

that lead to convergence in phase space (e.g., latent heat release in a convective 

updraft), which at scales of a few tens of minutes and kilometers leads to stabilization. 

This is not the case at microscales where latent heat release triggers turbulence, which 

is non-linear (Germann et al. 2006). 
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7.2.2 Justification for using an experimental approach 

While analytical approaches allow understanding of basic concepts of 

nonlinearity, perturbation growth, and sensitivity dependence, studies based on 

idealized systems of dynamic equations or with state-of-the-art NWP models both 

assume the model to be representative of the true system. Errors in the model 

structure and/or scale interactions, lack of resolution, inadequate parameterization, 

parameter uncertainty, problems in boundary conditions if running a regional model, 

and numerical and computational errors that result hamper such approaches. Wave 

interactions in the earth’s atmosphere produce an energy cascade to both larger and 

smaller scales. Energy at the smaller scales is removed by molecular dissipation. In a 

numerical model small-scale energy is erroneously aliased to large scales. These 

large-scale waves interact with other waves and generate an energy cascade in both 

directions. The resulting small-scale waves, again, alias energy to the large scales. 

This accumulation of energy at large scales leads to nonlinear instability and renders 

a numerical solution meaningless (Grasso 2000). Likewise, no precise definition 

exists for resolution in regards to numerical modeling (Durran 2000). In practice it is 

difficult to separate the problem of predictability into a component associated with 

initial error and a component associated with model error (Palmer 2002). Thus, the 

validity of the results of predictability studies using NWP models can be very 

sensitive to model errors. 

Experimental approaches also have shortcomings, namely, measurement errors 

exist and the difficulty connecting the results of such analyses to the nonlinear nature 

of the underlying system. The formation of precipitation in a numerical weather 
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prediction model may be closer to the real atmospheric system than the simplistic 

concept of Lagrangian persistence of radar data, yet Germann and Zawadzki (2004) 

stated that the precipitation physics of current models are oversimplified. Despite 

these shortcomings, the concept of taking the skill of a forecasting technique, such as 

persistence of radar precipitation patterns, as a measure of predictability follows 

Lorenz (1973) who said, “Regardless of what may be indicated by theory, a 

conclusive proof that partial predictability exists at a given range would be afforded 

by any demonstration that at least one forecasting procedure exhibits skill at that 

range.” Thus Lorenz suggested predictability is a concept better taken in a relative 

sense (i.e., relative to a method of forecasting) and the Lagrangian persistence 

forecasting model can thus not only be used for nowcasting but also as tool to 

measure predictability of precipitation patterns. 

It is possible to obtain a quantitative estimate of the predictability of precipitation 

by examining the Eulerian and Lagrangian persistence of radar precipitation patterns, 

where quantitative measures and the skill of forecasts obtained from Eulerian and 

Lagrangian persistence nowcasts of radar data are taken as measures of predictability. 

An Eulerian persistence nowcast is obtained by keeping the latest radar observation 

frozen and considering this image for all future predictions up to a desired forecast 

lead time. By advecting the precipitation patterns following the field of estimated 

storm motion a Lagrangian persistence forecast is obtained. The forecast data are then 

compared to observations at the given lead times to calculate correlation, lifetime, and 

skill scores. Since this approach is conceptually simple, an easy-to-interpret measure 

of predictability of precipitation patterns is obtained that can be applied to a large 
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sample of data. Calculation of lifetime and scores can be stratified according to 

spatial and temporal scales, location, time, and precipitation pattern type in order to 

determine the dependence of predictability on these parameters. A similar 

stratification of predictability is not straightforward when using a numerical weather 

prediction model because design and implementation of a model both have a 

significant influence on the performance at different scales, locations, and in different 

weather situations (Germann et al. 2006). 

7.2.3 Previous experimental approaches using radar data 

Zawadzki et al. (1994) presented a detailed study on the predictability of 

precipitation using rain rate fields and the Lagrangian persistence paradigm as the 

measure of predictability. They defined predictability of precipitation as the ability to 

forecast precipitation over an area by Eulerian and Lagrangian persistence and 

considered the maximum forecast time lags where the skill of Lagrangian persistence 

exceeded the skill of climatology in terms of mean-square error of rain rate as 

nowcasting model skill thresholds. They also attempted to relate a range of 

predictability to larger-scale meteorological parameters [e.g., thermal wind, wind 

shear energy, helicity, geostropic vorticy, convective available potential energy 

(CAPE), and the bulk Richardson number]. They considered 11 precipitation patterns 

depicted by 4 km/10 min 2–3 km CAPPI data fields with each event lasting 2–4 h and 

encompassing a wide range rain event types collected by a single radar on Montreal 

Island, Quebec, Canada. They found that all forecast skill was lost between 40–112 

min, depending upon the individual case, and that observations first smoothed with a 

16-km moving-average filter were predictable up to 120 min. They found significant 
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storm-to-storm variability in the predictability of precipitation fields but were unable 

to relate this variability to synoptic-scale meteorological parameters. 

Grecu and Krajewski (2000) used a dataset consisting of 145 days of volume 

scans observed by the WSR-88D at Tulsa, Oklahoma, to evaluate three nowcasting 

schemes, Eulerian persistence, Lagrangian persistence, and a neural network 

approach, and calculated the predictability of precipitation patterns as a function of 

forecast resolution. They defined predictability limits as the forecast lead time when 

an efficiency coefficient, E, becomes negative and the lead time when the correlation 

coefficient between prediction and observation falls to a value equal to 0.5. They 

considered a range of spatial resolutions between 4 km × 4 km and 32 km × 32 km at 

6 min temporal resolution. Their results showed that large-scale precipitation features 

were characterized by longer Lagrangian persistence and consequently precipitation 

fields were only predictable at scales that exceeded 20 km after 60 min. 

The use of a single radar put an upper limit to the scales of observations, and, 

consequently, also to the timescale over which the forecast was useful (Germann and 

Zawadzki 2002). To address this issue, Germann and Zawadzki (2002) considered the 

lifetime of precipitation patterns in Eulerian and Lagrangian space derived from 

continental-scale composite (i.e., the vertical maximum value measured by any WSR-

88D radar in the given space-time frame of one location) reflectivity fields as the 

definition of predictability. The measures of predictability introduced by Germann 

and Zawadzki (2002) were the lead time when the cross-correlation function between 

observed and forecast reflectivity fields decays to 1/e and the lead time when the ETS 

falls to a value of 0.3. Spectral and spatial filters were also used to decompose 
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precipitation patterns according to scales for two reasons. First, Bellon and Zawadzki 

(1994) showed that applying a spatial filter to the forecast data improved the RMS 

error where increasing smoothing windows for increasing lead times were used to 

prevent structures from being reproduced beyond their lifetimes. Secondly, by 

calculating the correlation between forecast and observation as a function of scale, 

scale-dependence of predictability was determined. Their work thus introduced the 

framework for investigating predictability of precipitation and presented first results. 

They found the range of predictability increased with increasing scale and concluded 

that filtering efficiently increased the lifetime of precipitation patterns if the 

predictability is predominantly limited by the smallest scale present in a radar 

observation. 

This methodology to characterize predictability was adopted by the other papers 

in the series (Germann and Zawadzki 2004, Turner et al. 2004, Germann et al. 2006). 

Germann and Zawadzki (2004) extended the method of persistence of radar 

precipitation patterns to produce probabilistic forecasts. Instead of predicting the 

precipitation for a given lead time and position, forecasts of the probability that 

precipitation at a given lead time and position exceeds a given threshold were made. 

Turner et al. (2004) applied measures of scale-dependent predictability to the 

forecasting method itself, designing forecast filters that reduced RMS errors and 

improved CSI scores. They showed nowcasting performance was improved using a 

wavelet filter. Germann et al. (2006) investigated scale dependence of precipitation 

by applying this wavelet filter in the following manner. Two scale-dependent 

variations of the Lagrangian lifetime parameter were applied to the observations and 
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forecasts of this study: low-pass lifetimes (i.e., lifetimes of observations computed 

after applying a low-pass filter) of spatially filtered observations and forecasts and 

bandpass lifetimes (i.e., lifetimes of observations computed after applying a band-

pass filter) calculated from wavelet spectra and cospectra. For low-pass lifetimes, 

features smaller than a cutoff scale were eliminated from forecasts and the verifying 

observations. Features below the cutoff scale were removed by block-averaged 

smoothing around each point, with side lengths representing different linear cutoff 

scales. This removed details at scales considered smaller by the two-dimensional 

Haar wavelet transform. Low-pass lifetimes were then calculated by integrating under 

the curve of correlation between the set of low-pass filtered forecasts (from a 

particular forecast time) and the low-pass filtered versions of the verifying 

observations. Bandpass lifetimes were calculated using a measure of the coherence 

between forecasts and observations as a function of scale. Integrating this expression 

over all forecast lead times provided a measure of lifetime for each spatial scale. 

Germann et al. (2006) also investigated two other factors influencing limits of the 

predictability of precipitation. First, they examined the relative importance of growth 

and dissipation on forecast error. There are two sources of forecast uncertainty when 

using Lagrangian persistence of precipitation patterns: growth and dissipation of 

precipitation and changes in the storm motion vector field. To determine the relative 

importance of these two limiting factors, they performed the following experiment. 

They first determined the correlation function between observation and forecast and 

the corresponding lifetime assuming stationary storm motion. Radar patterns were 

advected along the trajectories derived from a single motion vector field that had been 
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calculated at the time when the forecast was issued using the radar data of the past 

hour (i.e., standard Lagrangian persistence forecasting). They then computed the 

correlation function between the observations and forecasts and the corresponding 

lifetime taking into account the evolution of the storm motion vector field. Instead of 

using a single motion vector field, they used a time series of motion vector fields 

calculated a posteriori using all data over the entire forecast period. Finally, they took 

the difference of the correlation function and lifetime between the two as a measure 

of the importance of changes in the storm motion vector field. Second, they 

investigated the space and time scales that significantly influenced changes in the 

motion vector field. They determined the lifetime of Lagrangian persistence with 

nonstationary motion for a set of motion vector fields with different spatial (2600, 

520, 200, and 104) and temporal (8 h, 4 h, 2 h, 1 h, and 15 min) resolutions using data 

from a single 60-h precipitation event. 

Germann and Zawadzki (2002) and Germann et al. (2006) investigated the 

predictability of precipitation patterns using continental-scale NOWrad [2720 km × 

2720 km, macrobeta scale and masoscale defined by Orlanski (1975) and Fujita 

(1981), respectively] radar reflectivity composites with 4 km/15 min resolution using 

a threshold of 10 dBZ. Germann and Zawadzki (2002) considered four events (78 h 

total) and Germann et al. (2006) extended this dataset to include five rainfall events 

and three wet periods for a total of 1424 h of data. They stated there were several 

sources of errors when using radar measurements to estimate precipitation rates. 

Apart from convolution and blocking (Pellarin et al. 2002) the transformation from 

radar reflectivity, Z, to precipitation rates, R, also introduces uncertainty since the Z-R 
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relationship depends on the type of hydrometeors and its size distribution. Thus, 

variability of the Z-R relationship can lead to significant errors, in particular at small 

scales (Lee and Zawadzki 2005). Germann and Zawadzki (2002, 2004), Turner et al. 

(2004), and Germann et al. (2006) neglected these inadequacies and assumed that the 

distribution of radar reflectivity represented the precipitation field. 

Germann et al. (2006) stated, “The experimental approach presented in this series 

of papers provides valuable contribution to the fundamental question of predictability. 

Its strength lies in its simplicity.” The studies by Germann and Zawadzki (2002) and 

Germann et al. (2006) were practically significant in two ways. First, they provided a 

baseline against which any forecasting technique can be evaluated. Second, they 

determined the predictability of precipitation as a function of space-time scales. These 

points are extended in this study to microscale precipitation phenomena by 

performing similar analyses using CASA radar data. 

Germann and Zawadzki (2002) also stated, “Note that, based on the analyses 

presented here, nothing can be said about the lifetime of scales with wavelengths 

smaller than 10 km.” Germann et al (2006) also stated, “Given the discretization of 

our input data of 5 dBZ, 15 min, and 4 km, features at or below the lower end of the 

mesogamma scale are not sampled at a sufficiently high resolution. Examples of such 

features are individual convective cells, turbulence in the melting layer, or drop 

sorting. Input data with higher resolution and a different setup would be required if 

emphasis is on these small-scale phenomena.” The 4 km spatial resolution 

(mesogamma scale) includes thunderstorms (Orlanski 1975) but does not include 

microalpha scale meteorological phenomenon such as wind circulations, cloud 
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patterns, tornadoes, and deep convection (NWS 2009; Orlanski 1975), or misoscale 

meteorological phenomena include microbursts and rotation within thunderstorms 

(Fujita 1981; NWS 2009). From the perspective of seeking forecast certainty, 

previous studies of Eulerian and Lagrangian persistence of radar precipitation patterns 

from the storm to synoptic scales took an important step towards understanding the 

predictability of precipitation. Another important step is taken here by examining the 

Eulerian and Lagrangian persistence of microscale precipitation patterns and 

comparing the results to those attained from previous studies that investigated 

predictability of larger scales. 

7.2.4 Predictability of precipitation using high-resolution radar data 

This study investigates the predictability of microalpha scale (0.2–2 km; Orlanski 

1975) and misoscale (0.4–4 km; Fujita 1981) precipitation patterns from 66 h of 

mesobeta scale (20–200 km; Orlanski 1975) and mesoscale (4–400 km; Fujita 1981) 

CASA composite reflectivity observations with 0.5 km/1 min/1 dBZ resolution 

spanning an approximate 140 km × 140 km coverage area collected during the 2009 

IP1 experiment as described in Table 1. CASA composite radar reflectivity 

observations include Mesoscale Convective Complex (MCC), Mesoscale Convective 

Systems (MCS), and squall lines (NWS 2009; Orlanski 1975) and provide suitable 

spatial extent to observe microalpha scale phenomena given that microalpha scale 

phenomena typically last a few min to 1 h (Orlanski 1975). The coverage area is thus 

sufficient as the likelihood of a precipitation pattern will move more than 140 km in 

the lifetimes of microscale precipitation features is small. 
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7.3 Methodology 

7.3.1 Estimation of Lagrangian persistence 

This study used DARTS and the sinc kernel-based advection method to provide 

the estimates of Lagrangian persistence. DARTS was used with the same settings as 

those described in Chapter V. The sinc kernel-based advection method preserves 

small scales in predicted reflectivity fields during advection necessary to assess the 

predictability of small-scale features. This is illustrated by comparing the RAPSD of 

an observation and corresponding prediction from the 31 Mar event (Figure 36). 

7.3.2 Assessment of predictability 

This study considers “continuous” and “categorical” lifetimes of radar 

observations to quantitatively assess the predictability of precipitation. While several 

other scores can be considered for this purpose (Grecu and Krajewski 2000), these 

two quantities were chosen for simplicity and to compare the results presented here to 

those found in literature for larger-scales. 

The continuous lifetime is considered to be the lead time, �, when the correlation 

function, c(�), between observed, 0�( , ),t τ+ x  and forecasted, 0�̂( , ),t τ+ x  reflectivity 

fields in the domain, �, shown as (Zawadzki 1973), 
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decays to a value of 1/e. The correlation function quantifies the linear association and 

phase (displacement) error between variables (Wilks 2006). 
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Figure 36. Radially-averaged power spectra of a 20-min forecast (FCST) and the 
corresponding observation (OBS) from the 31 Mar 2009 event depicting the numerical 
diffusion characteristics of the sinc-based advection scheme. 

 

The categorical lifetime is considered to be lead time when the Equitable Threat 

Score (ETS), also known as the Gilbert skill score (Gilbert 1884; Mason 2003), 
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where A represents the intersection of the areas over which the event was forecast and 

subsequently occurred, B represents the area over which the event was forecasted and 

subsequently did not occur, and C is the area over which the event occurred but was 

not forecast to occur, and D represents the intersection of the areas over which the 

event was not forecast to occur and did not occur, falls to a value of 0.3. This value 

corresponds approximately to POD and FAR values both being equal to 0.5. The ETS 

was chosen to quantify predictability because of its straightforward interpretation and 
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wide-spread use for verification of rainfall predicted by NWP models (Mesinger 

2008; Weygandt et al. 2004), where the (asymptotic) “equitability” allows scores to 

be compared more fairly across different regimes and across different events (Hogan 

et al. 2010). Values of the ETS range from -1/3 to 1, with a zero-score indicating no 

skill, a negative score indicating more skill is attained by chance, and a score of unity 

indicating a perfect forecast. 

Like the CSI, the ETS depends on threshold and scoring neighborhood parameters 

and, in general, will behave similarly to but exhibit lower values than the CSI as 

forecast “hits” due to random chance are removed (Schaefer 1990). A threshold of 25 

dBZ and scoring neighborhood of 1 km × 1 km were used in this study. The ETS has 

been shown to be sensitive to hits (Accadia 2003), directly proportional to bias 

(Mason 1989; Hamill 1999), and inversely proportional to phase errors (Baldwin et al. 

2006) and rare events (Stephenson et al. 2008). 

The shortcomings of the ETS (e.g., Hogan et al. 2010) can be mitigated and a 

more complete analysis of the predictability of precipitation can be made by 

considering the results of continuous and categorical predictability collectively. A 

relationship exists between the scores of a categorical (or dichotomous) forecast and 

the errors of a continuous precipitation forecast, but Tartaglione (2010) showed that a 

strict one-to-one relationship does not exist between them. He asserted the 

precipitation intensity or amount, the chosen threshold, and the manner in which 

precipitation is distributed can alter the score values and consequently such 

relationships. Categorizing precipitation causes a loss of information about the 

numerical values of precipitation and a direct link between the dichotomous score and 
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the continuous forecast errors might not be possible. This suggests multiple 

quantitative assessment methods should be used to assess the predictability of 

precipitation in the manner presented here. Thus, the correlation function and ETS 

were chosen to assess predictability based on the numerical accuracy and skill of the 

forecasts, respectively. 

7.4 Data 

The complete dataset described in Table 1 was used in this study. Spatial scale- 

dependency was investigated by degrading the resolution of the predicted fields to 1, 2, 

and 4 km via moving-averaging linear reflectivity values at each grid point using square 

filter kernels of appropriate side lengths. Example observations at 0.5, 1, 2, and 4 km 

resolutions are shown in Figure 37. Dependence on temporal resolution was investigated 

by downsampling the temporal sequence of radar observations and then resampling the 

sequence back to the original length by inserting the last observed data frame between 

downsampled frames (i.e., data frames were reinserted according to Eulerian persistence). 

This process is illustrated in Figure 38. Example motion vector field estimates generated 

by DARTS corresponding to the observations at spatial resolutions shown in Figure 37 

are shown in Figure 39. Example motion vector field estimates corresponding to the data 

sequence at 0.5 km resolution for 1, 2, 4, and 8 min temporal resolutions are shown in 

Figure 40. Figure 39 shows relatively low sensitivity of the motion vector field estimates 

to changes in spatial resolution while Figure 40 shows that degrading temporal resolution 

has a marked effect on the motion vector field estimated by the DARTS model. A history 

length of 10 data frames (10 min) for assimilation into the DARTS model was considered 

in this study. 
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Figure 37. Reflectivity observations at 0103 UTC 31 Mar 2009 at spatial resolutions of 
(a) 0.5 km, (b) 1 km, (c) 2 km, and (d) 4 km. 



108 
 

 

Figure 38. Example reflectivity observation sequence from the 31 Mar 2009 event 
processed for one-half the original resolution to analyze the effect of temporal resolution 
on predictability. 
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Figure 39. Example motion vector field estimates for the reflectivity fields depicted in 
Figure 37, for spatial resolutions of (a) 0.5 km, (b) 1 km, (c) 2 km, and (d) 4 km. 
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Figure 40. Example motion vector field estimates for the reflectivity fields depicted in 
Figure 37, for temporal resolutions of (a) 1 min, (b) 2 min, (c) 3 min, and (d) 8 min.
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7.5 Results 

The average CC and ETS scores corresponding to Eulerian and Lagrangian 

persistence nowcasting methods calculated over the 17-event 2009 CASA IP1 dataset are 

depicted in Figure 41. The results show that Lagrangian lifetimes are longer than Eulerian 

lifetimes, as expected. Continuous and categorical lifetimes are shown to be 

approximately 14 min and 15 min, respectively, in Eulerian space and approximately 21 

min and 20 min, respectively, in Lagrangian space. 

Results for each of the 17 events collected during the 2009 CASA IP1 experiment and 

associated continuous (LCC) and categorical (LETS) lifetimes for Eulerian (EP) and 

Lagrangian (LP) persistence are given in Table 5. Here, average lifetime values 

correspond to the average of the lifetime values computed for each event (i.e., the 

average of the lifetime values vs the lifetime computed from the average CC and ETS 

scores). Lifetime values beyond 30 min were estimated by linear extrapolation of the 

score array to the longer lead times. The results show the average continuous and 

categorical lifetimes to be approximately 21.3 and 21.5 min, respectively, in Eulerian 

space and approximately 24.2 min and 24.0 min, respectively, in Lagrangian space. 

Again, average Lagrangian lifetime values were higher than those corresponding to 

Eulerian persistence. 

The following subsections present results of studies that further investigated 

characteristics of the predictability of precipitation patterns depicted by CASA IP1 radar 

data. 
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Figure 41. (a) Cross-correlation coefficient and (b) ETS vs prediction lead time estimated 
by Eulerian persistence (EP) and Lagrangian persistence (LP) nowcasting methods. 
Markers represent the mean value taken over the 17 events in the 2009 IP1 dataset and 
horizontal bars represent one standard deviation above and below the mean value. The 
dashed horizontal line in (a) represents the 1/e value where the corresponding lead time is 
taken to indicate the concept of “continuous lifetime”. The dashed horizontal line in (b) 
represents the 0.3 value where the corresponding lead time is taken to indicate the 
concept of “categorical lifetime”. 
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Table 5. Summary of precipitation event data collected during the CASA IP1 experiment 
used for nowcasting evaluation and lifetime estimates (L) based on cross-correlation (CC) 
and Equitable Threat Score (ETS) values in Eulerian (EP) and Lagrangian (LP) space. 
     

Event No. Start time 
(UTC) 

Approximate 
duration (h) 

Type LCC,EP 
(min) 

LETS,EP 
(min) 

LCC,LP 
(min) 

LETS,LP 
(min) 

1 2111 10 Feb 5.8 Supercell 40.5 35.9 35.2 32.4 

2 0014 10 Mar 4.8 Line 10.4 9.6 20.7 19.1 

3 2307 23 Mar 6.0 Multicell 14.2 12.7 25.5 23.4 

4 0025 31 Mar 2.0 Line 13.4 13.8 23.6 23.4 

5 2236 16 Apr 3.0 Multicell 4.3 3.6 7.7 6.5 

6 2347 18 Apr 1.0 Single-cell 10.4 10.4 15.4 15.7 

7 2337 26 Apr 5.0 Line 14.6 14.5 21.2 20.7 

8 0721 29 Apr 8.0 Multicell 15.0 34.7 20.4 21.8 

9 0251 30 Apr 6.0 Multicell 40.3 36.5 29.0 29.0 

10 0858 02 May 6.8 Multicell 14.3 12.4 17.0 15.3 

11 1422 05 May 3.0 Multicell 12.3 13.4 17.4 17.6 

12 0334 09 May 1.5 Single-cell 7.9 6.7 9.8 8.7 

13 0907 11 May 1.8 Multicell 6.3 6.7 12.9 12.4 

14 0930 12 May 2.5 Multicell 11.1 7.9 19.2 16.8 

15 0319 13 May 3.3 Supercell 17.5 18.1 24.0 27.2 

16 0430 14 May 2.5 Supercell 79.1 56.2 61.6 60.5 

17 0234 16 May 3.0 Line 51.1 71.6 51.1 57.3 

Avg � 3.9 � 21.3 21.5 24.2 24.0 
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7.5.1 Dependence of predictability on precipitation pattern type 

Results stratifying lifetimes according to event type are shown in Table 6. Due to 

the relatively small dataset, lifetime values for each event type were compared to 

lifetime values averaged over the set of remaining event types. Such stratification 

allows for preliminary conclusions about the dependence of predictability on 

precipitation event type to be drawn. 

The results show line events to be more predictable in terms of continuous and 

categorical lifetime than the set of remaining types. This result can be attributed to the 

organized structure of line events yielding more predictability. Regarding nowcasting 

line events, using Lagrangian persistence was shown to provide relative 

improvements of about 30% and 10% in terms of continuous and categorical lifetimes, 

respectively, to facilitate predictability to about 30 min. This relative improvement 

relates directly to the high degree of advection contributing to the overall evolution of 

the event. The results presented in Table 6 also show multicell storms to be less 

predictable than the set of remaining types. This is expected as multicell events 

exhibited less structure and were thus less predictable. Regarding nowcasting 

multicell events, using Lagrangian persistence was shown to provide relative 

improvements of about 27% and 13%, respectively, to facilitate predictability of 

about 18 min. Despite the relatively unstructured nature of multicell events, 

Lagrangian persistence still provided considerable improvement over Eulerian 

persistence even though absolute predictability was shown to be only about 60% that 

of the line events. 
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Table 6. Comparison of average lifetime values, L , vs precipitation event type (LN = 
line, MC = multicell, SC = single-cell, PC = supercell). 

      

Event type set Number of 
events CC,EPL (min) ETS,EPL  (min) CC,LPL  (min) ETS,LPL  (min) 

LN 4 22.38 27.38 29.15 30.13 

MC  SC  PC 13 21.02 19.63 22.70 22.10 

MC 8 14.73 15.99 18.64 17.85 

LN  SC  PC 9 27.21 26.31 29.18 29.44 

SC 2 9.15 8.55 12.60 12.20 

LN  MC  PC 15 20.95 19.71 23.96 23.29 

PC 3 45.70 36.73 40.27 40.03 

LN  MC  SC 14 16.11 18.18 20.78 20.55 
 

Single-cell events were shown to be the least predictable, with Lagrangian persistence 

providing 38% and 43% relative improvement over Eulerian persistence in terms of 

continuous and categorical lifetimes, respectively, but facilitated predictability of 

only about 12 min. This is expected in the absence of complex interaction among 

smaller scales within larger-scale precipitation volumes. Such interaction has been 

shown to be responsible for the mass organization in large-scale precipitation 

volumes, where small scale changes are strongly coupled at larger scales where the 

predictability extends over longer time scales (Grecu and Krajewski 2000). Supercell 

events were shown to be the most predictable, with Eulerian persistence lifetimes 

greater than Lagrangian persistence lifetimes in terms of continuous categorical 

predictability and Lagrangian persistence only providing a relative improvement over 

Eulerian persistence of about 9% in terms of categorical predictability. These results 

are consistent with those presented by Grecu and Krajewski (2000) and Zawadzki et 

al (1994) who found longer decorrelation times for stronger events. The supercell 

events observed were also exceptionally wide-spread and persistent. 
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7.5.2 Dependence of predictability on data resolution 

The results presented in Figure 41 are extended to analyze the dependence of 

predictability on spatial and temporal scales. The dependence on spatial scale was 

investigated by comparing predicted data fields filtered to each resolution to the 

corresponding unfiltered observations. The results are illustrated in Figure 42, which 

shows Lagrangian lifetimes in both continuous and categorical senses increase with 

decreasing spatial resolution. Eulerian lifetimes show less increase with decreasing 

spatial resolution in continuous and categorical senses, respectively. These results are 

consistent with those of similar studies that considered larger scales that showed 

smaller spatial scale features are shorter-lived than larger-scale features (Bellon and 

Zawadzki 1994; Grecu and Krajewski 2000; Germann et al. 2006). 

The dependence on temporal resolution is illustrated in Figure 43, which shows 

Lagrangian persistence lifetimes decrease to the approximate values corresponding to 

Eulerian persistence around a temporal resolution of 8 min and Eulerian lifetimes 

increase slightly with decreasing temporal resolution. This behavior can be attributed 

to the nature of the DARTS nowcasting method, requiring a sequence of past data to 

estimate motion, and the increased number of perfect forecasts made by the Eulerian 

persistence paradigm afforded by the temporal processing methodology. 

7.5.3 Limits to nowcasting using the Lagrangian persistence paradigm 

Aside from the accuracy of the estimated motion vector field, two sources of 

forecast uncertainty exist when considering Lagrangian persistence of precipitation 

patterns: growth and dissipation of precipitation and changes in the storm motion 

vector field during the lead time period. 
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Figure 42. (a) Continuous and (b) categorical lifetime values vs spatial resolution. 
Markers represent the mean value taken over the 17 events in the 2009 IP1 dataset. 
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Figure 43. (a) Continuous and (b) categorical lifetime values vs temporal resolution. 
Markers represent the mean value taken over the 17 events in the 2009 IP1 dataset. 
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The relative importance of the changes in the storm motion vector field during the 

lead time period can be examined by advecting the observed and subsequently 

predicted reflectivity fields according to a time series of estimated motion vector 

fields computed from observations at each lead time instead of using a single, 

persistent motion vector field throughout the lead time. This process is illustrated in 

Figure 44. 

The continuous and categorical lifetime values computed in this manner are 

presented in Figure 45. The results presented by Germann et al (2006) show an 

increase in continuous lifetime from 5.1 to 6.2 h (~22 % increase) when considering 

the paradigm used here. The results of this study show an increase in lifetime from 

about 21 to about 23.5 min (~12% increase) when considering a non-persistent (i.e., 

“Lagrangian updated” or “LU”) motion vector field sequence vs a single motion 

vector field persistent up to the maximum lead time (Lagrangian persistence). Such 

behavior is expected as the assumption of Lagrangian persistence weakens with 

increasing lead time. While this methodology is practically unrealizable, such 

analysis provides an estimate of an upper-bound on nowcasting performance. These 

results suggest that most of the error in nowcasting using the DARTS and sinc kernel-

based advection methodology and CASA IP1 radar data likely comes from evolution 

(i.e., growth and decay of intensity) of precipitation patterns occurring during the 

prediction period. 
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Figure 44. Illustration of the nowcasting procedure to estimate the useful extent of the 
Lagrangian persistence paradigm. While this procedure is practically unrealizable (i.e., 
future observations are used for motion estimation), it provides a practical upper-bound 
on nowcasting performance using the Lagrangian persistence model and CASA IP1 
reflectivity data. 
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Figure 45. (a) Cross-correlation coefficient and (b) ETS vs lead time for Eulerian 
persistence (EP), Lagrangian persistence (LP), and nowcasting using a time series of 
motion vector fields throughout the lead time period (LU). 
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7.5.4 Connection to predictability at larger scales 

The results of predictability presented in this study for microalpha (0.2–2 km) to 

mesobeta (20–200 km) scales using CASA IP1 radar observations, denoted “R10”, is 

compared to results presented by Grecu and Krajewski (2000), denoted “GK00”, that 

considered data at mesogamma (2–20 km) to meso (200–2000 km) scales, and 

Germann et al. (2006), denoted “GZT06”, that considered data at mesogamma to 

macrobeta (2000–10 000 km) scales. Figure 46 illustrates the relationship between 

continuous lifetimes found in this study in Eulerian and Lagrangian space to those 

presented in GK00 and GZT06. These results suggest a linear relationship between 

predictability at microalpha to macrobeta scales and are consistent with those 

presented by the National Research Council (2009), which showed an approximate 

linear relationship between spatial and temporal scales of several types of 

meteorological phenomena across these scales. 

7.6 Summary and conclusions 

The predictability of precipitation patterns observed by weather radar is an important 

concept as it establishes a means to characterize precipitation patterns and provides an 

upper limit on the extent of useful forecasting. Predictability varies based on spatial and 

temporal scales of observed meteorological phenomena. This section presented a study 

that extended previous work by Grecu and Krajewski (2000) and Germann et al. (2006) 

by investigating the predictability of precipitation from microalpha (0.2–2 km) to 

mesobeta (20–200 km) scales using CASA IP1 composite radar reflectivity data and an 

experimental approach to quantify predictability. 
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Figure 46. Relationship between continuous lifetime values in (a) Eulerian and (b) 
Lagrangian space vs maximum spatial scale estimated using the results of this research 
(R10) and those presented by Grecu and Krajewski (2000; GK00) and Germann et al. 
(2006; GZT06). The root mean square error of the linear regression fits are 0.44 and 0.74 
min, respectively. 



124 
 

Lifetimes estimated from predictions based on Eulerian and Lagrangian persistence 

were computed and compared. Continuous lifetime values corresponding to the lead time 

when the cross-correlation coefficient between observations and predictions drops to 1/e 

were computed. Since nowcasting performance is typically assessed in a categorical (i.e., 

“hit” or “miss”) sense, categorical lifetime values corresponding to the lead time when 

the ETS drops to 0.3 (corresponding approximately to FAR and POD scores both being 

equal to 0.5) were also computed. The DARTS and sinc kernel-based advection 

methodology was used to represent Lagrangian persistence. DARTS estimates motion at 

the same resolution as the data and the sinc kernel-based advection method was shown to 

adequately preserve the small-scale spatial features in the predicted reflectivity fields 

(Figure 36). Such an approach provides a relatively simple and practical means to assess 

predictability. 

The results showed Lagrangian persistence lifetime values computed from CC and 

ETS scores averaged over approximately 66 h of data collected by the CASA IP1 radar 

network during the winter and spring of 2009 were about 20 min in both continuous and 

categorical senses, representing improvements of about 30% and 40% (~6 min) over 

Eulerian persistence, respectively. These results suggest that operational nowcasting 

using the DARTS and sinc kernel-based nowcasting methodology should be considered 

to be generally useful up to about 20 min. 

A preliminary study was performed to give insight into the dependence of 

predictability on precipitation event type. The results showed that supercell events 

(exhibiting a high degree of persistence, rotation, and low advection velocities) were 

most predictable in terms of lifetime values, followed by line events (exhibiting 
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organized and persistent structure) and multicell events (where complex interaction 

between individual cells likely enhances predictability). Single-cell events were shown to 

be the least predictable using data from this limited dataset. 

The analysis of predictability was extended to investigate the spatial and temporal 

dependence on space-time scales represented by data resolution on nowcasting 

performance. Results showed that continuous and categorical lifetime values 

corresponding to Lagrangian persistence increased with decreasing spatial resolution and 

were higher than those corresponding to Eulerian persistence. These results support the 

notion that lifetimes of larger-scale features are longer than those for smaller-scale 

features and that selective filtering should be used to improve nowcasting performance. 

The results of the study investigating the dependence on temporal resolution showed that 

Lagrangian lifetime values decreased to values approximately corresponding to Eulerian 

persistence as temporal resolution was reduced to about 8 min by substituting previous 

observations into the sequence of reflectivity observations accordingly. This can be 

attributed to the nature of the DARTS motion estimation method and the increased 

number of perfect forecasts made by Eulerian persistence afforded by the data processing 

methodology. 

Results of a study to assess the contribution of changes in the estimated motion vector 

field during the nowcast lead time to the nowcast error showed that nowcasting using a 

motion vector field updated at each lead time provided an increase in lifetimes of about 

10–12% (~2–3 min). Although such a nowcasting paradigm is not realizable in practice, 

these results establish an approximate upper-bound on nowcasting performance using the 
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DARTS and sinc kernel-based advection nowcasting methodology and CASA IP1 radar 

data. 

Finally, estimates of predictability in this study were compared to those presented in 

literature for larger [mesogamma (2–20 km) to macrobeta (2000–10 000 km)] scales. The 

results suggest a linear relationship between predictability across these scales, with 

RMSE error for a linear regression being less than 1 min. The fact that the regression 

analysis of results from three separate studies conducted by three different researchers 

using different prediction methodologies and radar data collected over different regions 

yielded such a small error makes a strong statement regarding a fundamental linear 

space-time relationship between the atmospheric scales considered in this study. 
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CHAPTER VIII. NOWCASTING RAINFALL FIELDS DERIVED FROM 
SPECIFIC DIFFERENTIAL PHASE ESTMATES 

 

8.1 Introduction 

While nowcasting of precipitation has traditionally been done using radar reflectivity 

data, research over the last decade indicates that using the specific differential phase (Kdp), 

defined as one-half the range derivative of the two-way differential phase (�dp), has 

several advantages over using reflectivity for estimating rainfall accumulation. Since �dp 

is a dual-polarized radar product and not a power measurement, rainfall estimates derived 

from Kdp are not susceptible to radar calibration error, attenuation, or beam blockage and 

are less affected by anomalous propagation. Rainfall rate estimates derived from Kdp are 

also less sensitive to variations in drop size distributions and to the presence of dry, 

tumbling hail than those derived from reflectivity. The specific differential phase can also 

be used to correct for attenuation losses and to verify radar hardware calibration (Brandes 

et al. 2001). 

Additionally, X-band (	 ~ 3 cm) polarimetry used in the CASA network offers 

important practical advantages over longer wavelength radar polarimetry at shorter 

ranges. One advantage is a significantly stronger differential phase shift on propagation, 

which is proportional to the radar frequency [for Rayleigh scattering (Bringi and 

Chandrasekar 2001)]. This allows the use of Kdp -based rainfall estimators for lighter 

rainfall rates when measured with X-band radars vs measurements made by longer 

wavelength radars. X-band radars are also smaller, less expensive, require less energy for 
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the same sensitivity, and are more easily transported compared to their longer-wavelength 

counterparts. These traits make X-band radars a convenient tool for quantitative 

precipitation estimation (QPE) where high-resolution rainfall measurements are needed 

in a limited area such as a relatively small watershed or for specialized studies like those 

in urban hydrology (Maki et al. 2008). 

A new algorithm for estimating Kdp has been developed that has been shown to yield 

more accurate and robust estimates than previous methods (Wang and Chandrasekar 

2009). Studies investigating the feasibility of nowcasting rainfall fields derived from Kdp 

fields estimated using this new algorithm have yet to be performed. This section presents 

a preliminary investigation of the characteristics and extent of nowcasting rainfall derived 

from Kdp fields estimated using the method presented by Wang and Chandrasekar (2009). 

Nowcasting performance was assessed by scoring predicted rain rate fields relative to 

original rain rate field estimates and rain gauge measurements. Approximately 9 h of data 

from two events in the 2009 CASA IP1 dataset was considered for evaluation. 

8.2 Kdp background and estimation 

In dual-linear-polarization bases, the specific differential phase Kdp, defined as the 

slope of range profiles of the differential propagation phase shift �dp between horizontal 

(H) and vertical (V) polarization states (Seliga and Bringi 1978; Jameson 1985; Bringi 

and Chandrasekar 2001), is fundamentally represented as 

dp
dp

( )1
( )

2

d r
K r

dr

Φ
= . (8.1) 

Since falling raindrops are oblate, the electric field will encounter more water content in 

the horizontal direction than in the vertical. The H-pulse will therefore be affected by 
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more water than the V-pulse. Since electromagnetic waves travel more slowly through 

water than through air, the horizontally polarized wave will travel more slowly through 

the field of raindrops than will the vertically polarized pulse. Likewise, the horizontally 

polarized backscattered radiation will also travel more slowly back to the radar than the 

vertically-polarized backscatter (Bringi and Chandrasekar 2001). 

Radar does not measure the forward propagation parameter �dp directly. Instead, the 

total differential phase �dp is estimated from copolar covariance that consists of both the 

phase shifts resulting from forward propagation and backscattering, shown as 

dp dp hv( ) ( )r rδΨ = Φ + . (8.2) 

If the differential backscattering phase �hv is relatively constant or negligible, the profile 

of �dp can be used to estimate Kdp. This is not always the case, however, and significant 

gate-to-gate variation of �hv must be suppressed by filtering and the presence of 

significant �hv over a short range must be detected and removed (Chandrasekar et al. 

1990). 

The estimation of Kdp involves approximating the slope of �dp profiles, which is 

known to be a noisy and unstable computation. Evaluation of the derivative is essentially 

a high-pass filtering process expecting a smooth and continuous input function (Mitra 

2005). The range profile of total differential phase �dp contains �dp and differential 

backscatter phase shift �hv, as well as measurement fluctuations. The fluctuation in the 

estimates of �dp will be magnified during the differentiation resulting in large variance in 

the estimates of Kdp. Furthermore, phase wrapping may exist in �dp requiring proper 

unfolding of the wrapped phase profiles. For a long propagation path in rain or at higher-
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frequency bands such as X-band, �dp values can easily exceed the maximum 

unambiguous range. 

Previous methods for estimating Kdp involved piecewise fitting to predict the local 

trend, where any phase sample deviating too far from this trend was attributed to phase 

wrapping. This solution is neither elegant nor stable because of the statistical fluctuations 

present in the �dp field. Previous approaches have also been sought to reduce the variance 

of Kdp estimates, which included range filtering, linear fitting, or both (Golestani et al. 

1989; Hubbert and Bringi 1995). These techniques reduce the peak Kdp values in the 

estimation that could introduce biases. In addition, only limited adaptive capability can be 

achieved with filtering or fitting to follow the steep slopes within intense rain cells and 

reduce the estimation variance in the rest of the segments simultaneously. 

In CSU–CHILL (Brunkow et al. 2000), logic is adopted to detect the wrapped phase 

and accordingly unfold the range profile of �dp. Low-pass range filtering is used to 

reduce the estimation variance, where variance reduction is approximately proportional to 

the normalized cutoff frequency of the filter. Hubbert et al. (1993) presented a range filter 

that suppresses gate-to-gate fluctuations but preserves the underlying trend of �dp. In the 

CSU–CHILL algorithm, the cutoff scale is chosen to be 3 km and iterative filtering is 

used to adaptively compensate for the persistence of large �hv. This adaptive adjustment 

is meant to follow the steep phase changes in intensive precipitation regions while 

keeping the variation of estimated Kdp low in light precipitation regions. The regression 

length is tailored for the CSU–CHILL radar, which has a range resolution of 150 m. 

Therefore, the estimation can keep up with a small-scale variability up to 1.5 km in heavy 

rain and a large-scale variability up to 4.5 km in light rain. 
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In general, the conventional approach used to estimate Kdp is somewhat complicated 

in the sense that a slope is first approximated for unfolding the phase profiles and then a 

more accurate slope is estimated for Kdp. Its performance also relies on the choice of 

several hard thresholds. 

Wang and Chandrasekar (2009) presented an adaptive scheme to estimate Kdp that 

avoids the need to unfold phases, which they showed to have better range resolution in 

intense rain cells to capture the small-scale variability vs previous approaches. The new 

estimator is based on the complex-valued range profiles of the differential phase shift. 

When the profile crosses a full period, even though the principal phase wraps back with 

an abrupt jump, locally the profile is still continuous in the complex domain. In general 

form, the Kdp estimate is given by 

dp
( )ˆ ( )
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K j e r
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ϑ
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Kdp estimates are made by filtering angular �dp profiles based on angular �dp statistics 

and estimating Kdp using cubic spline interpolation (Gerald and Wheatley 2003). Thus, 

phase unfolding is avoided, and the accuracy is also ensured. 

A regularization technique was introduced to control the balance between estimation 

bias and variance and incorporates adaptive capability to keep up with steep change of 

�dp. The conventional filtering process is avoided by employing a regularization 
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framework, and stable numerical derivatives can be computed with an appropriate choice 

of Lagrangian parameter, �, in the following manner 
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where f(rk) is the range profile of �dp and s(r) is the function to be found to minimize 

both the smoothness of the underlying regression function and the regression errors. 

Using cubic splines as the regression function, the polynomial function for the kth 

interval between nodes rk and rk+1 can be written as 

[ ]1
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and the resulting Kdp estimate is given as 
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Adaptivity to avoid oversmoothing segments of low variations and peak Kdp values is 

achieved by introducing varying weights, q and w, in (8.6) in the following manner 

�
�
�

�
�
� −+′�  �

=
∞−

M

k

r

kkrs

k
drrsrfrwdrrsrq

1

2
222

)(
)()()()()(min λ  (8.9) 

that allows for the control of the balance between bias (to compensate for the variation in 

slope) and variance (to compensate for the statistical fluctuation of the input profiles) for 

different segments. Wang and Chandrasekar (2009) presented a method by which these 

parameters can be updated adaptively and provide robust operational estimation of Kdp 

relative to previous methods. 

Wang and Chandrasekar (2009) showed the new technique matched the structure of a 

single storm event observed by the CASA network much better than previous approaches 
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and that negative Kdp values were largely eliminated. This method for Kdp estimation will 

be used in this research. 

8.3 Estimating rainfall from Kdp 

Bringi and Chandrasekar (2001) showed that Kdp in rain is proportional to the product 

of rainwater content and the mass-weighted mean diameter. This also indicates that Kdp is 

related to the fourth moment of the drop size distribution (DSD). Subsequently it was 

shown that a power-law expression relating any moment of the DSD and rainfall rate can 

be derived after normalizing by the intercept parameter of a normalized gamma drop size 

distribution. Therefore, a general Kdp-based estimate of rainfall rate can be expressed as 

(Sachidananda and Zrni
 1986; Chandrasekar et al. 1988) 

dp
bR aK= , (8.10) 

where R is the rainfall rate in mm h-1 and Kdp is in units of o km-1. Even though the R-Kdp 

relationship is relatively insensitive to variation of DSD, subtle difference exists for 

different DSDs and especially for different raindrop shapes. The mean rain drop shape vs 

size has been studied extensively in the literature (Chandrasekar et al. 1988, Bringi et 

al.1998, Brandes et al. 2002, Thurai and Bringi 2005). A range of coefficients has been 

reported for the R-Kdp power law relation at both S-band and X-band (Gorgucci et al. 

2001; Matrosov et al. 2002; Park et al. 2005; Ryzhkov et al. 2005). The R-Kdp 

relationship used in this study is similar to that used in the KOUN dual-polarized radar by 

Ryzhkov (2005) and scaled to X-band operation at 9.4 GHz, shown as 

0.791
dp18.15R K= . (8.11) 
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8.4 Data 

Approximately 9 h of data collected during the 05 May (multicell) and 14 May 

(supercell) CASA IP1 events were used for evaluation. Estimates of Kdp fields using the 

method described by Wang and Chandrasekar (2009) were generated from full 2o 

surveillance sweep scans and converted to gridded and merged Plan Position Indicator 

(PPI) fields using the technique described by Liu et al. (2007). A threshold of 5 mm h-1 

was applied. 

Rain gauge cross-validation was performed using data collected by gauges located 

within the Little Washita River Experimental Watershed (LWREW), which is managed 

by the U. S. Department of Agriculture (USDA) Agricultural Research Service (ARS) as 

part of the Little Washita Micronetwork (Allen and Naney 1991). The LWREW covers 

an area of 611 km2 and is situated in the center of the CASA IP1 test bed allowing for 

overlapping coverage from almost all the CASA IP1 radars (Figure 47). Data from 20 

unheated tipping-bucket rain gauges deployed within the watershed were considered, 

which measure rainfall in discrete bucket tips of 0.254 mm per tip. The gauge data were 

archived as running rainfall accumulation in 5-min intervals over a 24-h period. 

Piecewise Cubic Hermite Interpolating Polynomial derivation was used to temporally 

align the radar and gauge data and estimate rainfall rate from measured accumulation 

(Fritsch and Carlson 1980). 

8.5 Assessment methodology 

The cross-correlation coefficient [CC; Eq (7.1)], ETS [Eq (7.2)], and MAE [Eq (4.4)] 

were used to assess nowcasting performance relative to the initial rainfall intensity 

estimate from which future predictions were generated. 
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Figure 47. The distribution of ARS Micronet gauge network within the IP1 network 
coverage area. A current operational gauge station is denoted by an ‘x’ on the left and 
labeled with station IDs on the right [from Wang and Chandrasekar (2010)]. 
 

A scoring box size of 1 km × 1 km and a threshold of 5 mm h-1 were used for the 

calculation of the ETS scores in this study. 

Additionally, Normalized Bias (NB), Normalized Standard Error (NSE), and the CC 

were used to assess nowcasting performance relative to rain gauge measurements. The 

NB and NSE are defined respectively as follows 

R G

G

NB
R R

R
−

≡  and (8.12) 

R G

G

NSE
R R

R

−
≡ , (8.13) 

where the brackets indicate the  sample (spatial) average, RR is the radar estimate and RG 

is the gauge measurement of instantaneous rainfall rate. The CC is defined in Eq (7.1), 

but in this case is computed between radar measurements chosen at the location of rain 
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gauges and the rain gauge measurements temporally interpolated to the time of the 

estimated or predicted rain rate fields. 

8.6 Results 

Example rain rate fields estimated using Eq (8.11) and corresponding 5-min predicted 

rain rate fields from the 05 May and 14 May data are shown in Figure 48. The average 

CC, ETS, and MAE scores computed relative to the initial rain rate field estimates are 

shown in Figure 49. The results show continuous lifetimes to be about 20 and 11 min and 

categorical lifetimes to be about 18 and 14 min for Lagrangian and Eulerian persistence, 

respectively. MAE values are shown to be about 0.50 mm h-1 lower for Lagrangian 

persistence vs Eulerian persistence for a 20-min lead time. These results are consistent 

with those shown in Figure 41. 

The average NB, NSE, and CC scores computed relative to rain gauge observations 

are shown in Figure 50 to Figure 52. To compensate for the potential time delay between 

Kdp estimates aloft and rain gauge measurements at the surface, nowcasts were verified 

using 0-, 1-, and 2-min time lags of rain gauge data relative to radar estimates. The 

prediction lead times are referenced to the times of the radar estimates (i.e., an n-min 

nowcast corresponding to a 0-min lag aligns with an n – m nowcast corresponding to an 

m-min lag). 

The 0-min lag results show NB corresponding to nowcasts made by the DARTS and 

the sinc kernel-based methodology begins to increase relative to NB values 

corresponding to Eulerian persistence after a lead time of about 5 min. 
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Figure 48. Example (a) estimated rain rate field and (b) 5-min predicted rain rate field 
corresponding to time 1517 UTC 05 May 2009 and (c) estimated rain rate field and (d) 5-
min predicted rain rate field corresponding to time 0414 UTC 14 May 2009. 
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Figure 49. (a) CC, (b) ETS, and (c) MAE scores averaged over the 05 May and 14 May 
2009 CASA IP1 events illustrating the performance of nowcasting rain rate fields 
estimated from Kdp relative to initial field estimates. 
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Figure 50. Normalized bias scores averaged over the 05 May and 14 May 2009 CASA 
IP1 events illustrating the performance of nowcasting rain rate fields estimated from Kdp 
relative to rain gauge measurements for time lags of (a) 0, (b) 1, and (c) 2 min. 
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Figure 51. Normalized standard error scores averaged over the 05 May and 14 May 2009 
CASA IP1 events illustrating the performance of nowcasting rain rate fields estimated 
from Kdp relative to rain gauge measurements for time lags of (a) 0, (b) 1, and (c) 2 min. 
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Figure 52. Cross-correlation coefficients averaged over the 05 May and 14 May 2009 
CASA IP1 events illustrating the performance of nowcasting rain rate fields estimated 
from Kdp relative to rain gauge measurements for time lags of (a) 0, (b) 1, and (c) 2 min. 



142 
 

The values of NSE for Lagrangian persistence are seen to be consistently lower than 

those corresponding to Eulerian persistence from about a lead time of 3 min with a 

maximum difference of about 30% between lead times of 10–14 min. The values CC are 

shown to be higher for Lagrangian persistence relative to Eulerian persistence after a lead 

time of about 3 min, equating to lifetimes of approximately 17.5 and 7.5 min, 

respectively. These results are consistent with those shown in Figure 41 (which shows 

Lagrangian and Eulerian continuous lifetimes about 21 min and 14 min, respectively) and 

Figure 49 (which shows Lagrangian and Eulerian continuous lifetimes about 20 min and 

11 min, respectively). 

The results corresponding to Lagrangian persistence nowcasts for 1- and 2-min time 

lags show improvement in NB for the 0–5-min lead time frame at the expense of higher 

values at lead times greater than about 15 min. The NSE values are shown to be 

approximately equal for lead times up to 20 min. Cross-correlation values corresponding 

to 1- and 2-min time lags are slightly higher for the 0–6-min lead time frame after which 

they steadily decrease to values below those corresponding to the 0-min time lag. 

Estimates of lifetime decrease from about 17.5 min for the 0-min time lag to about 15.5 

and 13.5 min for time lags of 1- and 2-min, respectively. 

The NSE can be considered to be the strictest of the three metrics considered in this 

analysis. Since sample mean errors between radar estimates corresponding to each of the 

20 gauge observations are calculated at each time, the NSE also includes potential bias 

errors, as the errors at different gauge locations cannot possibly cancel out leading to 

lower NB values. The cross-correlation does not take forecast bias into account, as it is 

possible for a forecast with large errors to still have a good correlation with the 
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corresponding observations (Wilks 2006). Krajewski et al. (2010) showed that average 

normalized differences between observations from 44–56 rain gauges located in the 

Oklahoma Mesonet (Brock et al. 1995) and the Little Washita Micronetwork and radar 

rainfall estimates made using the NEXRAD Z-R relationship applied to data collected 

during 20 Oklahoma storms selected from a 6-yr period from January 1998 to December 

2003 by the Oklahoma City WSR-88D radar (KTLX) were between about 15% and 91%. 

Using 91% as a reference, the results shown in Figure 51 suggest nowcasting using rain 

fall fields derived from Kdp estimated using the method proposed by Wang and 

Chandrasekar (2009) and the DARTS and sinc kernel-based nowcasting methodology can 

be done to about out to about 15–16 min. 

8.6.1 Nowcasting rainfall fields derived from Kdp estimates using CAPPI 

fields 

The results in the preceding section were generated using estimated rainfall 

represented by PPI gridded data fields. Several studies comparing radar-based 

estimates of rainfall with rain gauge measurements considered the use of CAPPI data 

fields (Chumchean et al. 2004; Hossain et al. 2004; Wesson and Pegram 2006). A 

study was performed to compare the performance of nowcasting rainfall fields 

derived from Kdp estimates using data fields gridded from the 2o surveillance scans 

(PPI) and gridded CAPPI data fields (Mohr and Vaughan 1979; Mohr et al. 1986). 

Example CAPPI rain rate fields estimated using Eq (8.11) and corresponding 5-

min predicted rain rate fields from the 05 May and 14 May data are shown in Figure 

53. The average CC, ETS, and MAE scores computed relative to the initial CAPPI 

rain rate field estimates are shown in Figure 54. 
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Figure 53. Example (a) estimated rain rate CAPPI field and (b) 5-min predicted rain rate 
CAPPI field corresponding to time 1517 UTC 05 May 2009 and (c) estimated rain rate 
field and (d) 5-min predicted rain rate field corresponding to time 0414 UTC 14 May 
2009. 
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Figure 54. (a) CC, (b) ETS, and (c) MAE scores averaged over the 05 May and 14 May 
2009 CASA IP1 events illustrating the performance of nowcasting CAPPI rain rate fields 
estimated from Kdp relative to initial CAPPI field estimates. 
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Figure 55. (a) NB, (b) NSE, and (c) CC scores averaged over the 05 May and 14 May 
2009 CASA IP1 events illustrating the performance of nowcasting CAPPI rain rate fields 
estimated from Kdp relative to rain gauge measurements. 
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The results show continuous lifetimes to be about 21 and 13 min and categorical 

lifetimes to be about 19 and 16 min for Lagrangian and Eulerian persistence, 

respectively. MAE values are shown to be about 0.6 mm h-1 lower for Lagrangian 

persistence vs Eulerian persistence for a 20-min lead time. These results are 

consistent with or slightly better than those shown in Figure 49 which considered PPI 

data fields. 

The average NB, NSE, and CC scores computed relative to rain gauge 

observations (considering a 0-min time lag of rain gauge measurements relative to 

radar estimates) are shown in Figure 55. Compared to the results shown in Figure 50 

that considered using PPI fields for nowcasting, the results using CAPPI fields show 

consistent CC values but considerably higher initial average NB and NSE values. 

These results suggest future research considering nowcasting rainfall fields based on 

Kdp estimates using CASA radar data and the method for Kdp estimation presented by 

Wang and Chandrasekar (2009) should be done using PPI fields gridded using the 

method introduced by Liu et al. (2007). 

8.7 Summary and conclusions 

Rainfall field estimates using Kdp have been shown to be superior to those using 

reflectivity. Kdp is not susceptible to radar calibration error, attenuation, or beam blockage 

and are less affected by anomalous propagation. Rainfall rate estimates derived from Kdp 

are also less sensitive to variations in drop size distributions and to the presence of dry, 

tumbling hail than those derived from reflectivity. Additionally, X-band polarimetry 

offers important practical advantages over longer wavelength radar polarimetry, 
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including the provision for using Kdp-based rainfall estimators for lighter rainfall rates 

and smaller size and lower cost vs longer wavelength radars. 

A new method to estimate Kdp has recently been developed. This method uses an 

adaptive scheme to estimate Kdp that avoids the need to unfold phases, which has been 

shown to have better range resolution in intense rain cells to capture the small-scale 

variability vs previous approaches. 

This section presented preliminary results illustrating the feasibility of nowcasting 

rainfall fields estimated from Kdp derived from CASA X-band radar data and the method 

proposed by Wang and Chandrasekar (2009). The DARTS and sinc kernel-based 

nowcasting methodology was used to represent Lagrangian persistence. Approximately 9 

h of data collected during the 05 May (multicell) and 14 May (supercell) CASA IP1 

events were used for evaluation. Predicted Kdp-derived rainfall fields were generated up 

to a lead time of 20 min and were compared against an Eulerian persistence forecast. The 

results showed that the extent of useful nowcasts was approximately 20 and 18 min in a 

continuous (cross-correlation coefficient) and categorical (ETS) sense, respectively, when 

using DARTS, constituting approximate 82% and 29% relative improvements over 

Eulerian persistence, respectively. 

In terms of nowcasting relative to rain gauge cross-validation, the continuous lifetime 

for Lagrangian persistence represented by nowcasts made by the DARTS and sinc kernel-

based advection methodology was shown to be about 17.5 min, constituting an 

approximate 133% improvement over Eulerian persistence. Recent literature (Krajewski 

et al. 2010) shows initial normalized error between radar estimates of rainfall based on 

reflectivity and gauge observations to be as high as 91%. Using this value as a reference, 
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the results presented in this section suggest nowcasting rain fall fields derived from Kdp 

estimated using the method by Wang and Chandrasekar (2009) can be done out to about 

15–16 min. The results also showed that introducing a delay between radar estimates and 

gauge measurements improved performance in the first few minutes of the lead time 

period. More data should be analyzed to form stronger conclusions and make further 

statements about the characteristics and nature of nowcasting rainfall fields derived from 

Kdp. Future research considering nowcasting rainfall fields based on Kdp estimates using 

CASA radar data and the method for Kdp estimation presented by Wang and 

Chandrasekar (2009) should be done using PPI fields gridded using data from the 2o 

sweep and the method introduced by Liu et al. (2007). 
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CHAPTER IX. SUMMARY AND CONCLUSIONS 
 

9.1 Summary 

The salient contributions and results of this dissertation are summarized as follows: 

1. The most important practical aspect of this work was the successful operational 

implementation of nowcasting in CASA DCAS via the DARTS motion estimation 

and sinc kernel-based advection methods. Development of the DARTS and sinc 

kernel-based nowcasting methodology was necessitated by the high-resolution nature 

of the CASA IP1 radar data (relative to current NEXRAD data) used for nowcasting. 

Nowcasting was used in this context to provide 1–10 min nowcasts for emergency 

manager decision support and 1–5 min nowcasts to control radar scan strategies to 

better observe the atmosphere. The nowcasting implementation was shown to be 

efficient by successfully processing high-resolution CASA radar data while running 

on a standard computer in a distributed environment, robust to data drops and 

mistiming due to network latency or long periods of inactivity, and portable by 

running on different machines at different locations. Results from the performance 

analysis using data from 17 precipitation events observed by the CASA radar network 

during the 2009 IP1 experiment showed DARTS outperformed a persistence forecast 

by approximately one standard deviation in terms of CSI and MAE scores and 

provided unanimous value to operational forecasters as measured by end-user surveys. 
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2. Currently state-of-the-art scale filtering methods were adapted and evaluated for use 

in the CASA DCAS nowcasting system to optimize performance. Results from the 

analysis of nowcasting performance using data from the 17 2009 IP1 events showed 

that Fourier filtering in the context of truncation of DARTS model coefficients was 

superior in terms of CSI and additional Fourier filtering of predicted reflectivity fields 

provided the best performance in terms of MAE. 

3. DARTS was incorporated in the WSDDM system to provide more efficient and 

accurate estimates of SWE in support of aircraft deicing decision-making. DARTS 

was shown to provide an approximate 9% increase in performance in terms of CSI 

scores at a lead time of 60 min and provided a runtime reduction of approximately 

two orders of magnitude vs the cross-correlation-based nowcasting method currently 

used in WSDDM. The dataset used for evaluation consisted of approximately 69 h of 

data collected by a WMO DFIR standard reference gauge located at the NCAR 

Marshall Field Site and the KFTG WSR-88D during five winter precipitation events 

from 2007–2008. This study also showed that DARTS can be used successfully for 

nowcasting winter precipitation patterns observed by weather radar providing data 

with resolution lower than that provided by the CASA IP1 network. 

4. The predictability of precipitation patterns represented by meteorological radar data is 

an important concept in the development of effective nowcasting systems by 

establishing a means to characterize precipitation patterns and features to provide an 

upper limit on the extent of the utility of nowcasting. Previous studies were extended 

to characterize the predictability of precipitation patterns depicted by radar 

observations to microalpha scale using DARTS and CASA IP1 radar data. The results 
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showed that nowcasting in CASA DCAS was generally useful to a lead time of about 

20 min and that high spatial and temporal resolution data is necessary to make the 

best nowcasts. Preliminary results stratifying predictability results based on the type 

of the observed weather event were presented that showed relatively persistent, wide-

spread supercell events to be the most predictable and single cell events to be the least 

predictable. Results of an investigation of the dependence of predictability on spatial 

and temporal scales supported the notion that lifetimes of larger-scale features are 

longer than those for smaller-scale features and that selective filtering should be used 

to improve nowcasting performance. A practical upper-bound on nowcasting was also 

established that was found to be about 10–12% higher in terms of lifetime than 

Lagrangian persistence. Comparison of predictability results presented here with 

those from studies conducted at larger scales suggested a linear relationship exists 

between the lifetimes of microalpha (0.2–2 km) to macrobeta (2000–10 000 km) 

scales in Eulerian and Lagrangian spaces. 

5. Specific differential phase (Kdp) has been shown to provide more accurate and robust 

rainfall estimates relative to reflectivity and a new method to estimates Kdp has been 

developed. The challenge of estimating precipitation using weather radar and 

assessing accuracy using rain gauge data was extended to nowcasting rainfall fields 

estimated from radar data. The characteristics and extent of nowcasting rainfall fields 

estimated from Kdp were investigated using the currently latest method for Kdp 

estimation with CASA IP1 radar data and the DARTS and sinc kernel-based 

nowcasting methodology. The results corresponding to nowcasting performance 

assessed relative to initial rain rate field estimates were consistent with those 
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presented in Chapter VII. The results considering rain gauge cross-validation showed 

the extent of the utility of nowcasting was about 15–16 min. 

9.2 Suggestions for future work 

Suggestions for future work to extend this research include: 

1. Extending the DARTS model to estimate motion in 3D to facilitate nowcasting the 

vertical profile of storms to provide better warning of impending severe weather 

and/or flooding. 

2. Adapting the DARTS model to nowcast multi-Doppler wind fields for wind 

power/energy prediction.. 

3. Developing the DARTS model to estimate motion based on a weighted least-squares 

approach where more recent observations receive more weight to potentially improve 

accuracy of motion estimates. 

4. Further developing the DARTS model based on turbulence studies (Schertzer et al. 

1997; Venugopal et al. 1999; Seed 2003; Schleiss et al. 2009), which consider spatio-

temporal scale dependence of atmospheric features at scales currently depicted by 

CASA radar observations and smaller scales potentially observed by next-generation 

high-resolution radars. 

5. Incorporating real-time scoring capability in the operational CASA DCAS 

nowcasting system to develop a real-time estimate of forecast confidence. 

6. Assimilating high-resolution CASA radar observations and nowcasts into an NWP 

model to potentially provide longer-term predictions of winds, rainfall, and 

atmospheric state. 
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7. Developing a multi-modal nowcasting system for use in CASA DCAS using surface 

measurements, NWP model output, and convective initiation capability in the model 

to predict boundary layer convergence (Stull 1997) and better predict the onset of 

severe weather. 

8. Incorporating real-time, scale-based adaptive filtering in the DARTS nowcasting 

model by truncating model coefficients to match the geometry of small-scale 

precipitation features depicted by CASA radar observations and filter appropriate 

scales according to lead time. Such capability could improve nowcasting performance 

and the adaptivity of the filtering could be based on the physical characteristics of the 

weather event. 

9. Investigating the use of different wavelet bases in a wavelet-based filtering method in 

the CASA nowcasting system to potentially improve nowcasting accuracy. 

10. Applying scale filtering methods to the motion vector field estimated by DARTS to 

possibly improve nowcasting accuracy and to study the effects of motion vector field 

resolution on predictability. 

11. Using DARTS and WSDDM to investigate winter storm characteristics by analyzing 

time series of calibrated a and b values in Eq (6.1). 

12. Extending the analysis of the predictability of precipitation patterns observed by the 

CASA radar network using a larger dataset and more quantitative assessment 

methods [e.g., bias (Wilks 2006), Heidke Skill Score (Heidke 1926; Barnston 1992), 

Hanssen-Kuipers discriminant (Hanssen and Kuipers 1965), fractions skill score 

(Roberts and Lean 2008)] to more thoroughly analyze the dependence of 
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predictability on event type, intensity, and area, and extending such analysis to 

smaller atmospheric scales when enabling technology becomes available.  

13. Extending the analysis of the characteristics and extent of nowcasting rainfall fields 

estimated from Kdp to include data from more events and investigate the spatio-

temporal characteristics and predictability of such rainfall fields compared to rainfall 

fields estimated from reflectivity. 

14. Exploring the relationship between Kdp-based rain fall estimates aloft and rain gauge 

measurements at the surface to make more accurate rain fall predictions and 

verification of such predictions. 
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