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Abstract

Enzyme Selection for Optical Mapping is Hard

The process of assembling a genome, without access to a reference genome, is prone to a

type of error called a misassembly error. These errors are difficult to detect and can mimic

true, biological variation. Optical mapping data has been shown to have the potential

to reduce misassembly errors in draft genomes. Optical mapping data is generated using

digestion enzymes on a genome. In this paper, we formulate the problem of selecting optimal

digestion enzymes to create the most informative optical map. We show this process in NP-

hard and W[1]-hard. We also propose and evaluate a machine learning method using a

support vector machine and feature reduction to estimate the optimal enzymes. Using this

method, we were able to predict two optimal enzymes exactly and estimate three more within

reasonable similarity.
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CHAPTER 1

Introduction

Genome sequencing using paired-end read data is becoming widely used for a variety

of biological applications. This technology enables the large-scale sequencing of genomic

data from a variety of organisms, enabling analysis of genetic variation between individuals

or species [? ]. While the first sequencing technology was slow and expensive, modern

advances in next-generation sequencing allow for rapid and inexpensive sequencing of whole

genomes [? ? ]. However, errors and mistakes in sequenced genomes can arise due to a

variety of factors—the most prevalent being due to how genomes are constructed by the

assembly programs [? ] and limitations in the size of DNA strands that are capable of being

processed. As life science research becomes more dependent upon sequencing and assembly

technologies, ensuring their accuracy is increasingly important.

The process of next generation sequencing (NGS) works as follows: genetic material is

extracted, fragmented into smaller pieces, loaded onto a sequencing machine (e.g., Illumina

sequencing technology), the sequencing machine is run, and sequence reads are generated

from the machine. Each read is a sequence of nucleotides that corresponds to one small

fragment of DNA. Most commonly, the nucleotides in the strands of DNA are read from

both directions and paired-end read data is created. Paired-end read data means that there

are two reads corresponding to each fragment, and these reads are identified to be mate-

pairs. Lastly, we mention that each sequence read typically consists of 100 to 150 base pairs

(bp) [? ].

Assembly programs were created in order to take paired-end reads and assemble them

into the digitally transcribed genome for the organism of interest. The most common type
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of assemblers are Eulerian assemblers [? ? ], which build a de Bruijn graph from the read

data. This graph is later simplified in order to build longer, contiguous sequences of paired-

end reads, called contigs [? ]. Hence, these contigs represent collections of base pairs that

were present in the original genome. This process of assembling paired-end reads into a

full genome, without access to a reference genome, is called de novo assembly. Contigs are

frequently joined together using other computational approaches to create longer regions,

called scaffolds.

The sequencing and assembling of small to moderate size genomes is currently able to be

done efficiently. However, one fundamental problem in this process that remains difficult is

the introduction of errors in assembled contigs or scaffolds. For our purposes, we will divide

these errors into subclasses based on their size. The first type of errors are single nucleotide

erroneous changes in the contigs that are referred to as substitution errors, and small (≤

50 bp) insertion and deletions. The second type of error, which we call a misassembly

error consists of large segments being assembled incorrectly. According to QUAST [? ],

a misassembly error is a region in an assembled contig with a significantly large insertion,

deletion, inversion, or rearrangement of base pairs generated by the assembler. This error

is caused by the logic of the assembly program rearranging the reads in the incorrect order.

Misassembly errors can mimic real, biological variation and thus, can be misconstrued as

having some biological relevance [? ].

Whereas there exist methods to identify and correct small errors (see Ronen et al. [? ]),

misassembly errors are more difficult to identify with short read data alone. Hence, short

read data can give a local view of a genome, but data that gives insight to the structure

of the genome on a larger scale is needed for misassembly detection. Muggli et al. [? ]
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demonstrated that optical mapping data can provide this independent, large-scale informa-

tion about the genome. Optical mapping works as follows [? ? ]: (1) DNA molecules adhere

to a magnetized, glass plate; (2) these molecules are elongated by flowing fluid; (3) next,

one or more digestion enzymes are selected to cut the DNA; (4) these cut segments are then

dyed and digitally measured under a microscope; (5) the images are analyzed to produce

a molecular map, containing the relative order and length of the fragments [? ]. We note

that multiple copies of the genome are processed this way, and a consensus map is formed,

showing roughly how many base pairs are between the enzymes’ recognition sequences [?

]. These enzymes cut the DNA strands in certain places; the location of this nucleotide

sequence is known in advance.

Despite the vast potential of optical mapping data, very few publicly available tools

exist to analyze this type of data, and even fewer tools exist to computationally identify

misassembly data. The review article by Menelowitz and Pop [? ] discussed this former

point; they state: “relatively few methods exist for analyzing and using optical mapping

data, and even fewer are available in effective publicly-available software packages...There

is, thus, a critical need for the continued development and public release of software tools

for processing optical mapping data” [? ]. Muggli et al. [? ] created misSEQuel in

order to address these needs. misSEQuel combines short read data and optical mapping

data in order to detect misassembly errors. It works by first taking an assembled contig

and simulates digesting it with three digestion enzymes. After this process, called in silico

digestion, the digested contigs are then aligned to an optical map of the entire genome to

determine if the contig was misassembled.

Muggli et al. [? ] used a combination of real and simulated optical mapping data. They

report both the true positive rate (the percentage of misassembled contigs that were deemed
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as such) and the false positive rate (the percentage of correctly assembled contains that

were deemed to be misassembled). The experiments with the simulated data considered all

combinations of three digestion enzymes by constructing a simulated optical map for each

combination, completing the in silico digestion with those enzymes, and running misSEQuel

to determine a prediction as to which contigs were misassembled. The best true positive rate

(TPR) and false positive rate (FPR) are then reported. However, the work of Muggli et al

[? ] required prior knowledge of a reference genome and hence, demonstrated how good the

sensitivity and specificity of their method can be when the enzymes are chosen optimally.

Unfortunately, it is not feasible in a laboratory environment to try all combinations of the

over 500 digestion enzymes in the REBASE enzyme database [? ].

In this paper, we focus on the problem of selecting the set of restriction enzymes for mis-

assembly error detection in a de novo manner. While Muggli et al [? ] detected misassembly

errors using optical mapping data, they did so by using prior knowledge about the problem.

Specifically, they were able to try all possible digestion enzymes because they had the refer-

ence genome and were able to simulate the optical map. However, in a de novo manner, we

only select the restriction enzymes using the REBASE database, and the assembled contigs;

a reference genome is not used. What is returned is a prediction as to which enzymes should

be used for building the optical map.

As this problem has never been studied before, our formalization and approach is the first

in the field. Thus, we begin by formulating the digestion enzyme selection problem and show

that it is both NP-complete and W[1]-hard with the respect to the number of enzymes to be

chosen. Since the number of enzymes to be chosen is likely the only parameter to remain small

in practice, our W[1]-hardness result demonstrates that parameterized complexity will not be

fruitful in giving a practical algorithm. Hence, in order to solve the problem from a practical
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perspective we develop and implement a machine learning-based method to estimate the

optimal enzyme for optical mapping. Our machine learning approach consists of transforming

the problem into a binary, or two class, classification problem and training a support vector

machine (SVM) from Francisella tularensis assembly data. In this transformation, we assign

misassembly data from QUAST as the labels and set the digestion enzymes as the features.

We then use feature reduction to find the enzymes that add the most information to the

classifier.

Our results demonstrate that it is possible to estimate reasonably close digestion enzymes

for optical mapping. Using support vector machines, we were able to formulate misassembly

error detection as a binary classification problem and use feature reduction to estimate a

solution to digestion enzyme selection. Our results were able to predict two of the top eleven

digestion enzymes exactly, as well as find an approximate enzyme for three of the top eleven

enzymes.

1.1. Related Work

There are three other tools capable of finding and correcting misassembly errors: amosval-

idate [? ], REAPR [? ] and Pilon [? ]. REAPR uses both short insert and long insert

paired-end sequencing library data. However, it can only use one of these types of sequenc-

ing data at a given time. Amosvalidate is included in the AMOS assembly package [? ]. It

was specifically developed for first generation sequencing libraries [? ]. iMetAMOS [? ] is

an automatic assembly tool that provides both validation of the assembly and error correc-

tion. It brings several open-source tools together and creates annotated assemblies from an

ensemble of assemblers and tools. Presently, it uses Pilon [? ] to detect a variety of errors,

including misassembly errors in draft genomes; it also uses REAPR for misassembly error
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correction. REAPR and Pilon are specifically designed to use short insert and long insert

library data. Unlike REAPR and amosvalidate, Pilon is designed specifically for microbial

genomes.

As stated by Menelowitz and Pop [? ], few methods exist to analyze optical mapping

data; however, previous work has still been done. SOMA [? ] uses a dynamic programming

algorithm to align in silico digested contigs to optical mapping data. AGORA [? ] uses

the optical map information to construct a de Bruijn graph; this graph is used to improve

the resulting assembly. TWIN [? ] is an index-based method for aligning contigs to an

optical map; it is capable of aligning in silico digested contigs orders of magnitude faster

than competing methods. Xavier et al. [? ] have evaluated proprietary software to detect

misassembly errors in bacterial genomes.
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CHAPTER 2

The Enzyme Selection Problem is Hard

2.1. Background

Strings. Throughout we consider a string X = X[1..n] = X[1]X[2] . . .X[n] of |X| = n

symbols drawn from the alphabet [0..σ − 1]. For i = 1, . . . , n we write X[i..n] to denote the

suffix of X of length n− i+ 1, that is X[i..n] = X[i]X[i+ 1] . . .X[n]. Similarly, we write X[1..i]

to denote the prefix of X of length i. X[i..j] is the substring X[i]X[i + 1] . . .X[j] of X that

starts at position i and ends at j.

Optical Mapping. From a computational point of view, optical mapping is a process

that takes two strings: a genome A[1, n] and a restriction sequence B[1, b], and produces an

array (string) of integers M[1,m], such that M[i] = j if and only if A[j..j + b] = B is the ith

occurrence of B in A.

For example, if we let B = act and

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

A a t a c t t a c t g g a c t a c t a a a c t

then we would have M = 3, 7, 12, 15, 20. Furthermore, it will also be convenient to view

M slightly differently, as an array of fragment sizes, or distances between occurrences of

B in A (equivalently differences between adjacent values in M). We denote this fragment

size domain of M, as the array F[1,m], defined such that F[i] = (M[i] − M[i − 1]), with

F[1] = M[1]− 1. Continuing with the example above, we have F = 2, 4, 5, 3, 5.

Parameterized Complexity and Approximation. Algorithms whose complexity can

be expressed as a function of a parameter k of the input are called parameterized algorithms.

The complexity class FPT (fixed-paremeter tractable) contains all problems for which there

is an algorithm running in time f(k) · |x|O(1), where |x| is the length of the input, k is a
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parameter of the input, and f(k) is a computable function which depends only on k and

not on |x|. For example, one would like to replace an algorithm which is exponential in the

entire input size |x|, by one which is exponential only in some (small) parameter k of the

input, and otherwise polynomial in |x|. If the value of k remains relatively small in practice,

and if the function f(k) is not growing too fast, then such an algorithm may be efficient

for large datasets. For some problems, it can be shown that there is no FPT algorithm, by

showing that there is a so-called parameterized reduction to a complexity class called W[1].

Another algorithmic technique to deal with NP-completeness is approximation. A prob-

lem admits a polynomial time approximation scheme (PTAS) if it finds a solution that is at

most a factor (1 + ε) worse than the optimum [? ] in nO( 1
ε2

log 1
ε
)-time. If the exponent of

the polynomial in the running time of a PTAS is independent of ε then the PTAS is called

an efficient PTAS (EPTAS). The difference in run time for a PTAS and an EPTAS can be

quite dramatic. For instance, running a O(21/εn)-time algorithm is reasonable for ε = 1
10

and

n = 1000, whereas running a O(n1/ε)-time algorithm is infeasible on this same input. Hence,

considerable effort has been devoted to improving PTASs to EPTASs, and showing that

such an improvement is unlikely for some problems. The relationship between problems that

admit an EPTAS and those that are W[1]-hard is well-defined; Boucher et al. [? ] showed

that problems that are W[1]-hard with respect to a parameter k cannot admit a EPTAS

with respect to that parameter.
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2.2. Problem Definition

In order to show that the problem of selecting an enzyme for optical mapping is both

NP-hard and W[1]-hard, we need to formalize the problem mathematically. We begin by

giving the following formal definition of the Enzyme Selection problem:

Definition 1 (Barcode). Given a set of t strings A = a1, a2, . . . , at, and another string

s[1 . . . n], the barcode of s with respect to A is the set of positions p1, p2, . . . p` such that for

every pi there exists some aj that is a prefix of s[pi . . . n].

Enzyme Selection

Input: A set of m strings (enzymes) E = (e1, e2, . . . em), another set of n

strings (contigs) C = (c1, c2, . . . , cn), and integer parameters k and

t.

Parameter: Subsets E ′ of E and C ′ of C, where |E| = k and |C| = t or E and

C are empty.

Question: Does there exist subsets E ′ of E and C ′ of C, where |E ′| = k and

|C ′| = t, such that every ci ∈ C ′ has a different non-empty barcode

with respect to the strings in E ′, and every cj 6∈ C ′ is the empty set

with respect to the barcodes in E ′? If no such C ′ and E ′ exist then

the empty set is returned for both.

2.3. Enzyme Selection Problem is NP-Complete

Let G be a bipartite graph with partite sets A and B. We denote by N(v) the set of

neighbors of a vertex v. A set D ⊆ B is called a discriminating code of G if the following

conditions hold:

• for all v ∈ A, N(v) ∩D 6= ∅, and
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• for all u, v ∈ A, N(u) ∩D 6= N(v) ∩D.

The following problem was proven NP-complete in [? ]. Given a bipartite graph G with

partite sets A and B, and an integer k, decide whether there exists a discriminating code

D ⊆ B such that |D| ≤ k.

Theorem 1. The Enzyme Selection problem is NP-complete even when restricted to

ternary alphabets.

Proof. Let G = (A ∪ B,F ) be a bipartite graph with A = {a1, . . . , an} and B =

{b1, . . . , bm}. From G we construct an instance (E,C) to the Enzyme Selection problem,

with E = {e1, . . . , em} and C = {c1, . . . , cn}. The vertices in B will be modeled by enzymes

and the vertices in A will be modeled by contigs. We will construct each contig such that it

contains exactly one occurrence for each of its neighboring enzymes in G.

For every bi ∈ B, we construct an enzyme ei as a binary string of length ` := dlog2me

consisting of the binary encoding of i − 1 (possibly padded with ‘0’s). For every aj ∈ A,

contig cj is obtained as the concatenation of m strings of length `, separated by the character

‘#’: for each i ∈ [1..m], if bi ∈ N(aj), we set the ith string of cj to ei, otherwise we set it to

a string made up of ` occurrences of ‘#’. See also Figure 2.1.

We claim that G admits a discriminating code of size x if and only if there is a solution

to the Enzyme Selection problem on the instance (E,C) constructed above, with parameters

k = x and t = n. For the forward implication, let D = {bi1 , . . . , bik} be a discriminating code

of G, and consider the corresponding set of enzymes E ′ = {ei1 , . . . , eik}. By construction,

each contig ci contains (single) occurrences of a different set of enzymes. Since each enzyme

occurs at the same position in each contig, we have that each contig in C has a unique

barcode with respect to E ′. The reverse implication follows analogously, with the additional
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observation that the barcode of any contig in C cannot be empty by definition, thus each

vertex in A has at least one neighbor in the corresponding discriminating set.

This proves the NP-hardness of the problem. The NP-completeness follows from the

fact that given a subset E ′ of enzymes and a subset C ′ of the contigs, one can compute in

polynomial time the barcodes of the strings in C ′, and also check in polynomial time that

the resulting barcodes satisfy the requirements of of the Enzyme Selection time �

a1 a2 a3

b1 b2 b3 b4

e1 = 00
e2 = 01
e3 = 10
e4 = 11

positions: 1 2 3 4 5 6 7 8 9 10 11

c1 = 0 0 # 0 1 ######
c2 = 0 0 #### 1 0 # 1 1
c3 =######### 1 1

barcodes:

1, 4
1, 7, 10
10

Figure 2.1. On the left, a bipartite graph G = (A ∪B,F ); a discriminating
code for G is highlighted. On the right, the instance (E,C) to the Enzyme
Selection problem, with E = {e1, e2, e3, e4} and C = {c1, c2, c3}, and the bar-
codes of the contigs in C. The discriminating code {b1, b4} of G corresponds
to the enzymes e1 = 00 and e4 = 11.

2.4. Enzyme Selection is W[1]-Hard

The most natural question to ask is whether the Enzyme Selection problem admits FPT

algorithm with respect to k; since k would remain relatively small in practice (aka, less than

five), then the algorithm would be expected to be fairly efficient. Unfortunately, we show

that this is unlikely to be the case, unless W[1] = FPT. We reduce the problem from the

k-Independent Set problem on 2-interval graphs to prove that Enzyme Selection is W[1]-hard.

In 2008, Fellows et al. [? ] proved that k-Independent Set is W[1]-hard even when the

problem is restricted to 2-interval graphs. A multiple-interval graph G can be thought of as a

mapping from a graph G = (V,E) to a set of intervals F . The mapping assigns an interval fi

for each vertex vi in V and a non-empty collection of intervals where the following property

holds: two distinct vertices vi and vj are adjacent if and only if intervals f(vi) and f(vj) are

11



v1f1

f2

f3

f4

f5

G = (V, E)

v3

v2

v4

v5

Figure 2.2. We illustrate a 2-interval graph of five 2-intervals. Hence, in this
example F = f1, f2, f3, f4, f5 corresponds to an interval graph G = (V,E) that
contains five vertices and four edges (disjoint pair of intervals).

disjoint. We let |f(v)| denote the number of intervals in fv. The class of 2-interval graphs

are those where |f(v)| = 2 for each v ∈ V . See Figure 2.2 for an example of a 2-interval

graph. The input to the 2-Interval Graph k-Independent Set problem is a 2-interval graph G,

a family of 2-intervals F and a parameter k and the aim is to determine whether there exists

a set of k intervals in F that are pairwise disjoint, i.e, does there exist a subset F ′ ⊆ F ,

such that |F ′| = k and any pair of interval (fi, fj) ∈ F ′ is disjoint?

Theorem 2. Limited Enzyme Selection is W[1]-hard with respect to k.

Proof. Given an instance (G,F , k) of the 2-Interval k-Independent Set problem we

produce in f(k)|F|O(1)-time an instance (E,C, t, k∗) of Enzyme Selection with the following

property. Let m be the number of disjoint pairs in F . Our construction has the following

property: F has a subset of k intervals that are disjoint if and only if there exists subsets E ′

of enzymes E of size k∗ = k+ k2 and C ′ of enzymes C of size t = 2k2 + 4(m+ 1)k2 such that

every ci ∈ C ′ has a different barcode with respect to the strings in E ′ and every cj 6∈ C ′ is

the empty set, whereas if no independent set of size k exists in F then no such subsets E ′

and C ′ exist. Thus, the reduction is a parameterized, gap-creating reduction where the size

of gap decreases as k increases but the decrease is a function of k only.
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We describe how the instance (E,C, k∗, t) is constructed from (G,F , k). In our construc-

tion we will create contigs strings in C that encode for edge selection and vertex selection.

The edge selection contig strings will correspond to the selection of a vertex in G (i.e. inter-

val in F) and the vertex selection contain strings will ensure that the vertices of the edges

selected are chosen, meaning all the k2 edges must be between the same k vertices. The

alphabet for which our enzyme strings and contig strings will be defined is {0, 1,#}. To

begin the construction, we give the description of E: for each pair of intervals in F , say fi

and fj (corresponding to vertices vi and vj in the interval graph G), we create an enzyme

eij in E, and for each interval in F we create an enzyme ei in E. Hence, we have separate

enzymes for the vertices and edges in the 2-interval graph. Each enzyme string in E is as-

signed an unique code using Huffman encoding and therefore, all enzymes in E are unique,

binary strings and have the property that no enzyme string is a prefix of another enzyme

string. We assume that k ≥ 2 since k = 1 produces trivial cases.

Edge Selection. For each pair of intervals in F , say fi and fj, we create two contig

strings in C: c1ij and c2ij. The string c1ij will be the concatenation of a length-`ij1 string of

#’s, and eij, and similarly, c2ij will be the concatenation of a length-`ij2 string of #’s, and

eij. The following property holds for `ij1 and `ij2: if the intervals fi and fj are disjoint

then `ij1 6= `ij2, otherwise `ij1 = `ij2. Clearly, `ij1 and `ij2 can be assigned uniquely for

each disjoint pair fi and fj by keeping a counter of the number of disjoint pairs seen so

far. Therefore, the intervals fi and fj are only selected if and only they are disjoint; since

selecting eij can only make the barcodes unique.

Vertex Selection. We create 4(m + 1)m contig strings C, where m is the number of

disjoint pairs in F . We split the discussion into two subsets: (1) validation of the selection

of the endpoints of the edges and (2) validation of the selection of the edges of the endpoints.
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We will begin describing (1). We create m+ 1 contig strings for each disjoint pair in F : c′1i,j,

c′2i,j, . . ., c
′m+1
i,j . The string c′kij will be the concatenation of a xij-length string of #’s, the

string eij, a `′ijk-length string of #’s, and the string ei, where k = 1, . . . ,m + 1. Similarly,

we create m+ 1 contig strings for each disjoint pair in F : c′′1i,j, c
′′2
i,j, . . ., c

′′m+1
i,j each of which

is the concatenation of the xij string of #’s, the string eij, xij string of #’s, the string eij,

a `′′ijk-length string of #’s, the string ej, where k = 1, . . . ,m + 1. The selection of these

vertices ensures that if you select enzyme eij then ei and ej must also be selected (otherwise,

you would have contig strings in C ′ that do not have an unique barcode).

Next, we construct 2(m + 1)m contig strings that ensure the opposite is true: if ei or

ej is selected then eij must be selected. These are similar to those just defined; the only

difference being that eij is replaced with ei or ej. Hence, we create m+ 1 contig strings for

each disjoint pair in F : c′′′1i,j, c
′′′2
i,j, . . ., c

′′′m+1
i,j . The string c′′′kij will be the concatenation of

a xij-length string of #’s, the string ei, a `′′′ijk-length string of #’s, and the string eij, where

k = 1, . . . ,m + 1. Similarly, c′′′′1i,j, c
′′′′2
i,j, . . ., c

′′′′m+1
i,j are defined in an identical manner as

c′′′1i,j, c
′′′2
i,j, . . ., c

′′′m+1
i,j , with the exception that ei replace with ej.

One important point to note is that `′ijk, `
′′
ijk, `

′′′′
ijk, and `′′′′ijk, and xij are unique for

all k = 1, . . .m + 1 and all pairs of i and j. And these values are unique from all the `ij1

and `ij2 values assigned for the contig strings used for edge selection. All these values can

be trivially assigned uniquely by using using a counter and incrementing it each time one is

assigned. Hence, the vertex selection implies that if eij is selected then ei and ej must also

be selected from the set E.

Analysis. Our construction has |F|+|F|2 total enzymes (size of E), and |F|2+4(m+1)m

contain strings (size of C) and hence, our construction can be completed in O(|F|2 + 4(m+
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1)m + |F| log |F|)-time. The |F| log |F| in this running time is from the time required for

enzyme construction using Huffman coding.

Next, we need to show that the construction also ensures that there is a solution to an

instance of the 2-Interval k-Independent Set problem if and only if there is a solution to the

constructed instance of Enzyme Selection. Clearly, if there is a k-independent set in the 2-

interval graph then there exists a subset E ′ of E of size k+k2 and C ′ of size 2k2 +4(m+1)k2

that satisfies the conditions of the Enzyme Selection problem. Therefore, we only need to

show that the reverse is true.

Suppose there exists subset E ′ of E of size k + k2 and C ′ of size 2k2 + 4(m + 1)k2 such

that each ci ∈ C ′ has an unique barcode and every cj 6∈ C ′ is the empty set. We first argue

that (1) if eij is selected then the intervals fi and fj in F are disjoint; (2) if eij is selected the

ei and ej must be selected; and (3) if ei is selected then eij is selected. The edge selection

contig strings ensure that (1) is true; if eij is selected then `ij1 6= `ij2 since otherwise it would

contradict that cij1 and cij2 have unique barcodes. The condition `ij1 6= `ij2 implies fi and fj

in F are disjoint. Next, we show (2) is true. Suppose otherwise that eij is selected but ei or

ej is not selected then it follows that there exists 2(m+1) strings in C ′ (namely c′1i,j, c
′2
i,j, . . .,

c′m+1
i,j and c′′1i,j, c

′′2
i,j, . . ., c

′′m+1
i,j ) that do not have an unique barcode, which contradicts the

definition of C ′. Lastly, we show (3) is true. Similarly, suppose otherwise that ei is selected

but eij is not selected. Then it follows that there exists m+ 1 strings in C ′ that do not have

an unique barcode (namely, c′′′1i,j, c
′′′2
i,j, . . ., c

′′′m+1
i,j ) which contradicts the definition of C ′.

It follows from (1), (2) and (3) every triple of enzymes ei, ej, eij ∈ E ′ corresponds to

a pair of disjoint intervals fi and fj in F , 4(m + 1) contig strings constructed for vertex

selection having an unique barcode, and two contig strings for vertex selection having an

unique barcode. Hence, this shows that if there exists a subset of E ′ of E of size k + k2 and
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a subset C ′ of C of size t = 2k2 + 4(m+ 1)k2 then there exists a subset of intervals in F of

size k such that each pair of intervals is disjoint. �

We have shown that Enzyme Selection is W[1]-hard and the following result follows

directly from this and the result of Boucher et al. [? ].

Corollary 1. There exists no EPTAS for Enzyme Selection, unless FPT = W[1].
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CHAPTER 3

A Practical Approach

Our practical approach to this problem involved formulating the problem as a binary

classification problem for machine learning approximation. This approach to digestion en-

zyme selection has three main components: feature acquisition, model training, and feature

reduction. The model was trained using the genome of Francisella tularensis ; this genome

has a reference genome and various draft genomes (set of contigs).

3.1. Feature Acquisition

For each enzyme, an optical map was simulated using the reference genome. For each

assembly of the data, TWIN [? ] was used to align the sets of assembled contains to the

simulated optical map, reads were aligned to the contigs and discordant read alignments

were identified using misSEQuel, and lastly, the output of this processes was parsed to

create a feature set. We note that a contig may align more than once to an optical map.

For each alignment, TWIN uses the following alignment scoring function:

|
t∑
i=s

Fi −
v∑
j=u

lj| ≤ Fσ

√√√√ v∑
j=u

σ2
j ,

where Fi refers to the list of contigs and lj are the regions of the optical map. Fσ is a

parameter and σ is standard deviation. We refer to this as the Fvalue statistic. As described

by Nagarajan et al. [? ], Fvalue is a heuristic that any good alignment will satisfy; a good

alignment will have a low Fvalue, but it is also possible for a poor alignment to also have

a low Fvalue. However, a good alignment should not have a high Fvalue. We used the

following features for training the SVM:
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• Least and greatest Fvalue. As previously mentioned, each alignment has the

Fvalue statistics. The least (and greatest) Fvalue is the smallest (and largest)

Fvalue witnessed over all alignments of a single contain.

• χ2 sum. When TWIN finds an alignment, it calculates a deviation for each frag-

ment, standardizes it by dividing it by the 150bp standard deviation, squares the

result, and accumulates those across all the aligned fragments. The resulting value

is the χ2 sum. The largest χ2 sum, comparing over all alignments, is used as a

feature.

• Deviation sum. Using the process described in χ2 sum, TWIN also outputs the

sum of the absolute value of the deviations. The greatest deviation sum is used as

a feature.

• Discordant read alignment. misSEQuel outputs whether there exists a region that

has size ≥ 200bp that contains improper read alignment, meaning that either the

depth of aligned reads was significantly larger or smaller than the expected coverage

or the mate-pair alignment is discordant.

3.2. Model Training

The data was next formulated as a binary classification problem. Support vector ma-

chines (SVMs) have shown significant success in binary classification and were therefore used

as our machine learning algorithm. We used the SVM implementation in Weka[? ] with

the LibSVM[? ] library. Weka is a generalized machine learning tool that supports a large

variety of machine learning algorithms and feature reduction techniques.

The SVMs were trained and evaluated with the linear kernel. We used paired-end read

data from the Francisella tularensis genome that was assembled in three different assemblers:
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ABySS [? ], SOAPdenovo [? ], and SPAdes [? ]. For the SOAPdenovo assembly, we used

both an original set and a set balanced with an equal number of positive and negative

examples. The original data had too many negative examples and caused the SVM to be

over-fitted. We report the performance of both sets of data. The balanced SOAPdenovo set

was created by randomly removing negative examples until an equal number of positive and

negative examples remain.

The data sets were used in seven different combinations to train and evaluate the SVMs:

only ABySS, only SOAPdenovo (original), only SOAPdenovo (balanced), only SPAdes, com-

bined ABySS/SOAPdenovo (balanced), combined ABySS/SPAdes, and combined SPAdes/

SOAPdenovo (balanced). We combined the data sets because the Francisella tularensis

genome is fairly small and some sets did not have enough examples to properly train the

classifier.

3.3. Feature Reduction

We used Weka’s SVMAttributeEval method from its ”attribute selection” framework for

feature reduction. Each of the seven data sets were reduced to eleven features, which would

represent the best eleven digestion enzymes for optical mapping. The rationale behind this

method is that enzymes that are most predictive of misassembly errors will build the best

optical map.

SVMAttributeEval evaluates the worth of a feature by training an SVM with all features.

Attributes are then ranked by the square of their weight in the SVM. The attributes with

the greatest weights are considered the best attributes.

We used this method to reduce each of the seven data sets to their best eleven features.

As stated earlier, these best features represent the estimate of the optimal enzymes for optical
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mapping. These final, reduced features should be similar to the known optimal features. The

data sets were then reduced to contain only the features selected from the above technique.

These reduced sets were then used to retrain the SVMs.
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CHAPTER 4

Results

In order to evaluate the effectiveness of our method, we used several evaluation metrics.

The first describes the results of five-fold cross validation (5CV) for the classifiers trained

on data from each assembly and grouping of assemblies. Next, we compare the predicted

enzymes for the ABySS assembly with a list of known, optimal enzymes. Finally, we evaluate

the effectiveness of all classifiers on data from the Porphyromonas gingivalis assembly. The

Porphyromonas gingivalis genome was assembled using SPAdes.

4.1. Francisella tularensis Dataset Description

We use data consisting of approximately 6.9 million paired-end 101 bp reads from the

prokaryote genome Francisella tularensis for training and cross-validating the models. These

data were gathered from the Illumina Genome Analayzer (GA) IIx platform. We use the

NCBI Short Read Archive (accession number [SRA:SRR063416]) to obtain the pair-end

read data themselves. We obtained the reference genome from the NCBI website (Reference

genome [RefSeq:NC 006570.2]). The Francisella tularensis genome is 1,892,775 bp in length

with a GC content of 32%. In order to ensure quality, we aligned the reads to the Francisella

tularensis genome using BWA (version 0.5.9) [? ] with default parameters. A read is mapped

if BWA outputs an alignment for it and unmapped otherwise. We found that 97% of the

reads mapped to the reference genome. Given there is no public optical map for Francisella

tularensis, we created a simulated optical map from the reference genome.

We assembled these Francisella tularensis reads with a set of assemblers. The versions

used were those that were publicly available before or on September 1, 2014: SPAdes (version

3.1, after repeat resolution) [? ]; SOAPdenovo (version 2.04) [? ]; and ABySS (version
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Table 4.1. The performance statistics for the major assembly tools on the
Francisella tularensis dataset. We note the dataset had a genome length of
1,892,775 bp, and 6,907,220 number of 101 bp reads, while using QUAST in
default mode [? ]. All statistics are based on contigs no shorter than 500 bp.
Contigs with fewer than 500 bp were thrown out of the dataset.

Assembler # contigs N50 Largest (bp) Total (bp) MA / local MA GF (%)
(# unaligned) (MA (bp))

SOAPdenovo 307 (3 + 31 part) 8,767 39,989 2,018,158 10 / 35 (96,258) 92.05
ABySS 96 (1 part) 27,975 88,275 1,875,628 64 / 32 (1,330,684) 95.87
SPAdes 100 (2 + 17 part) 26,876 87,891 1,797,197 23 / 31 (497,356) 93.75

1.5.2) [? ]. These assemblers generate both contigs and scaffolds. However, we considered

only contigs.

We used Quast [? ] in default mode to evaluate the assemblies for misassembly errors.

Quast defines misassembly error as being extensive or local. An extensively misassembled

contig is defined as one that satisfies one of the following conditions: (a) the left flanking

sequence aligns over 1 kbp away from the right flanking sequence on the reference; (b)

flanking sequences overlap on more than 1 kbp; (c) flanking sequences align to different

strands or different chromosomes [? ]. A local misassembled contig is one that satisfies the

following conditions: (a) two or more distinct alignments cover the breakpoint; (b) the gap

between left and right flanking sequences is less than 1 kbp; and the left and right flanking

sequences both are on the same strand of the same chromosome of the reference genome. A

correctly assembled contig is one that does not contain either type of error.

Table 4.1 presents the assembly statistics for the initial alignments. Note that a contig

can be both extensively and locally misaligned at the same time. Table 4.1 gives the number

of contigs having at least one extensive misassembly error and the number of contigs having

at least one local misassembly error.
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Figure 4.1. The true positive rate of the 5CV. The left bars represent the
mean TPR before feature reduction and the right bars are after feature reduc-
tion. The error bars are the standard deviation over the TPR for the 5CV.

Figure 4.2. The false positive result of the 5CV. The left bars represent
the mean FPR before feature reduction and the right bars are after feature
reduction. The error bars are the standard deviation over the FPR for the
5CV.
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Table 4.2. The number of positive and negative examples in each machine
learning data set. As seen below, SOAPdenovo (original) had far more negative
examples than positive examples, which caused the model to be over-fitted.
The first seven are from the Francisella tularensis data set, while the last
example is from Porphyromonas gingivalis.

Assembly Positive examples Negative examples Total
(Misassembled contig) (Correctly assembled)

ABySS 73 23 96
SOAPdenovo (original) 44 263 307

SOAPdenovo (balanced) 44 44 88
SPAdes 43 57 100

ABySS/SOAP 117 67 184
ABySS/SPAdes 116 80 196
SOAP/SPAdes 87 101 188

P. gingivalis (SPAdes) 14 112 126

4.2. Five-fold Cross Validation

The results of the 5CV for the SVMs trained on each assembly, with all features, are listed

in Table 4.3 and Table 4.4. The 5CV results for the SVMs that have been retrained after

feature reduction are listed in Table 4.5 and Table 4.6. The TPR and FPR are compared

before and after feature reduction in Figure 4.1 and Figure 4.2. The number of positive and

negative examples in each of the data sets can be found in Table 4.2.

The assemblies all performed differently, with the combination of ABySS/SOAPdenovo

(balanced) having the highest TPR. The original SOAPdenovo showed the poorest TPR,

due to over-fitting on the many negative examples in that dataset. The results of the 5CV

showed somewhat high variance. This was because the data sets themselves contained few

data, which increased the variability between folds.

The combined assemblies had better performance than the individual assemblies by them-

selves. This is because the combined assemblies had more data and a more balanced set of

positive and negative examples. After feature reduction, six of the seven data sets showed
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Table 4.3. The true positive rate (TPR) results of 5CV on all data sets, with
all features.

Assembly Mean Std Dev Max Min
ABySS 0.874 0.085 1.000 0.714

SOAPdenovo (original) 0.279 0.153 0.667 0.000
SOAPdenovo (balanced) 0.700 0.167 1.000 0.250

SPAdes 0.709 0.123 0.889 0.375
ABySS/SOAP 0.617 0.108 0.870 0.375

ABySS/SPAdes 0.782 0.095 0.957 0.565
SOAP/SPAdes 0.548 0.114 0.765 0.333

Table 4.4. The false positive rate (FPR) results of 5CV on all data sets, with
all features.

Assembly Mean Std Dev Max Min
ABySS 0.642 0.252 1.000 0.000

SOAPdenovo (original) 0.136 0.046 0.308 0.057
SOAPdenovo (balanced) 0.317 0.148 0.667 0.000

SPAdes 0.287 0.111 0.583 0.083
ABySS/SOAP 0.176 0.053 0.368 0.088

ABySS/SPAdes 0.306 0.121 0.563 0.000
SOAP/SPAdes 0.135 0.039 0.250 0.047

Table 4.5. The true positive rate (TPR) results of 5CV on all data sets, after
feature reduction has completed.

Assembly Mean Std Dev Max Min
ABySS 0.895 0.104 1.000 0.571

SOAPdenovo (original) 0.343 0.196 0.750 0.000
SOAPdenovo (balanced) 0.790 0.162 1.000 0.444

SPAdes 0.844 0.129 1.000 0.625
ABySS/SOAP 0.804 0.136 1.000 0.333

ABySS/SPAdes 0.847 0.114 1.000 0.435
SOAP/SPAdes 0.683 0.219 1.000 0.056

better TPR, while five had better FPR. This is to be expected, as the large number of

features caused poorer performance.

4.3. Predicted Enzymes

The goal of this method is to predict the optimal enzymes for creating optical maps.

While the TPR/FPR are insightful, they are technically measuring if the classifier can predict
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Table 4.6. The false positive rate (FPR) results of 5CV on all data sets,
after feature reduction has completed.

Assembly Mean Std Dev Max Min
ABySS 0.353 0.255 1.000 0.000

SOAP (original) 0.108 0.104 0.491 0.000
SOAP (balanced) 0.266 0.189 0.778 0.000

SPAdes 0.246 0.166 0.909 0.000
ABySS/SOAP 0.298 0.223 0.833 0.000

ABySS/SPAdes 0.359 0.173 0.688 0.063
SOAP/SPAdes 0.285 0.149 0.650 0.050

misassembly errors and do not directly describe if it selected good enzymes as features. We

therefore developed a method of comparison for the predicted enzymes and the optimal

enzymes.

In Table 4.8, each predicted enzyme for the ABySS assembly is compared against the

optimal enzyme using edit distance between the recognition sequences divided by the sum

of the length of the two enzymes. The result will be closer to zero if the enzymes are more

similar. The more dissimilar the comparison, the higher this result will be. Table 4.7 shows

which of the top eleven optimal enzymes are closest to each predicted enzyme. The enzyme

recognition sequences are compared using edit distance because some enzymes have the same

or similar recognition sequences. A suboptimal enzyme may still be sufficiently good if its

recognition sequence is similar to an optimal enzyme.

Our method was able to predict one of the top eleven enzymes with its first selected

feature. Additionally, the seventh selected enzyme is also an exact match with one of the

enzymes in the optimal list. Three of the selected enzymes had a normalized edit distance

of less than 0.18. The sixth predicted enzyme (AleI) was only different from an optimal

enzyme by two nucleotides.

These results suggest that the feature reduction method of enzyme selection is able to

predict enzymes that are sufficiently close to optimal.
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Table 4.7. A comparison of the top 11 best enzymes for ABySS, against
which enzymes were selected by the feature reduction. This list comes from
the best edit distances from the matrix in Table 4.8. The number is parenthesis
is what rank that enzyme is, where 1 is the best enzyme. Note that ∧ is where
in the nucleotide sequence the digestion enzyme cleaves the DNA.

Enzyme Sequence Enzyme Sequence Edit
(Predicted) (Optimal) Distance
MslI (1) CAYNN∧ NNRTG RseI (11) CAYNN∧ NNRTG 0.000
BetI (2) W∧CCGG W VneI (6) G∧TGCA C 0.300
AhlI (3) A∧CTAG T CjeFIII (9) GCAAGG 0.278
EcoT38I (4) G RGCY∧C HgiAI (7) GAYNNNNNVTC 0.100
RdeGBI (5) CCGCAG CjeFIII (9) GCAAGG 0.250
AleI (6) CACNN∧ NNGTG RseI (11) CAYNN∧ NNRTG 0.071
CjeFIII (7) GCAAGG CjeFIII (9) GCAAGG 0.000
RdeGBIII (8) ACCCAG CjeFIII (9) GCAAGG 0.250
RpaTI (9) GRTGGAG VneI (6) G∧TGCA C 0.210
UbaF9I (10) TACNNNNNRTGT UbaF13I (1) GAGNNNNNNCTGG 0.172
Cgl13032II (11) ACGABGG CjeFIII (9) GCAAGG 0.176

Table 4.8. A comparison of the top 11 best enzymes for ABySS, against
which enzymes were selected by the feature reduction. The first column repre-
sents the features selected by the SVM and the first row represents the optimal
features. The enzymes were compared using a modified edit distance, where
the edit distance between the two recognition sequences was divided by the
sum of the length of the two enzymes.

UbaF13I Hpy99XIV Jma19592I Ksp632I Hin4I VneI HgiAI WviI CjeFIII NspI RseI
MslI 0.207 0.545 0.478 0.310 0.185 0.458 0.500 0.522 0.455 0.458 0.000
BetI 0.480 0.444 0.421 0.400 0.478 0.300 0.400 0.643 0.333 0.300 0.458
AhlI 0.440 0.333 0.368 0.400 0.391 0.300 0.400 0.619 0.278 0.300 0.417

EcoT38I 0.440 0.333 0.316 0.440 0.391 0.200 0.100 0.643 0.389 0.300 0.500
RdeGBI 0.435 0.312 0.353 0.435 0.524 0.278 0.333 0.675 0.250 0.333 0.455
AleI 0.207 0.546 0.478 0.276 0.222 0.458 0.500 0.500 0.409 0.417 0.071

CjeFIII 0.435 0.313 0.294 0.522 0.476 0.333 0.389 0.675 0.000 0.278 0.455
RdeGBIII 0.435 0.313 0.353 0.478 0.476 0.333 0.389 0.675 0.250 0.333 0.455
RpaTI 0.458 0.294 0.278 0.500 0.455 0.211 0.316 0.683 0.235 0.368 0.478
UbaF9I 0.172 0.500 0.435 0.310 0.185 0.500 0.500 0.500 0.455 0.417 0.179

Cgl13032II 0.417 0.353 0.389 0.500 0.455 0.368 0.368 0.659 0.176 0.316 0.435

4.4. Cross Species Evaluation

In order to determine the quality and robustness of the classifier against other data,

we trained the seven SVMs using all data in the respective sets. These SVMs were then

evaluated using training data from the Porphyromonas gingivalis genome [? ]. All assembled

contigs over 500 bp were used from this genome. The learned models were trained on
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Table 4.9. The TPR and FPR for the trained sets, evaluated against the
Porphyromonas gingivalis data set.

Assembly TPR FPR
ABySS 0.643 0.438

SOAP (original) 0.000 0.170
SOAP (balanced) 1.000 0.661

SPAdes 0.071 0.071
ABySS/SOAP 1.000 0.661

ABySS/SPAdes 0.143 0.214
SOAP/SPAdes 0.071 0.188

the Francisella tularensis genome, using the same techniques as described in section 3.1.

The testing data was created from the Porphyromonas gingivalis genome, using the same

techniques as described in section 3.1. We used TWIN and misSEQuel to generate the

same 2,053 features for the Porphyromonas gingivalis data. The SVMs were only evaluated

on the data sets with all original 2,053 features and not the data sets after feature reduction.

The reason for this is because the digestion enzymes that create a good optical map for one

genome may not be the same as the enzymes for another genome.

Table 4.9 shows the result from the cross species evaluation. It is noteworthy that the

assemblers had a large range of performance on these data. SOAPdenovo (balanced) and the

ABySS/SOAP combination had the highest TPR for the modified data sets, while ABySS

had the highest TPR from the original assemblers. These results largely depend on the

number of positive examples for the original data. ABySS and SOAPdenovo (balanced) had

many positive examples and were able to find more misassembly errors in the Porphyromonas

gingivalis genome. The possibility of over-fitting is especially apparent in the large difference

between the balanced SOAPdenovo data and the original SOAPdenovo data. Note that

Porphyromonas gingivalis only had 14 misassembly errors in its whole genome, so correctly

classifying these examples is difficult.

28



These results indicate this method is able to make reasonable and informed predictions

about the optimal digestion enzymes to use for optical mapping. Over-fitting the model is a

concern, especially in the case of small genomes, but training a model with good TPR/FPR

is still possible using this technique.
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CHAPTER 5

Conclusion

Our contribution is to expand on techniques for using optical mapping data for misas-

sembly error detection. There are few existing methods to detect misassembly errors and

few existing methods that make use of the information provided in optical mapping data.

We developed a method to predict the optimal digestion enzymes in advance, so that a good

optical map can be created for use in de novo genome assembly.

This paper formulates the digestion enzyme selection problem for optical mapping and

evaluates a practical way to estimate the solution. We show that enzyme selection for optical

mapping is both NP-hard and W[1]-hard, so methods to estimate the solution are required.

We also propose and evaluate a practical method to solve this problem. Using a support

vector machine and feature reduction, we were able to predict two optimal enzymes exactly

and predict three enzymes with small edit distance from the list of the top eleven optimal

enzymes.

Future work in this area includes evaluating other aspects of the assembly to use as

features; there are a wide variety of possible features to use in this machine learning approach.

Other machine learning algorithms and feature reduction methods (such as recursive feature

selection) should be evaluated as well.

We evaluated each enzyme individually in this paper, but a combinatorial approach has

the potential to yield different results. As digestion enzymes are often used in groups of three

in the lab, formulating this approach to use groups of enzymes instead of a single enzyme

could provide a more accurate estimate.
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Finally, while this problem is NP-hard and W[1]-hard, there may be potential approxi-

mation algorithms that sufficiently solve the problem. Given the nature of biological data

and the fact many enzymes have similar restriction sites, there may exist an approximation

algorithm that is able to solve the problem in reasonable time.
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