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Abstract - One benefit ofpartitionable parallel processing
systems is theirabilitytoexecute multiple. independent tasks
simultaneously. Previous work has identified conditions
suchthat.whentherearek taskstobeprocessed. partitioning
thesystemsuchthatallk tasksareprocessedsimultaneously
results in a minimum overall execution time. An alternate
condition is developed thatprovidesadditional insightinto
theeffectsofparallelism on execution time. Thisresult. and
previousresults. however, assume that execution times are
dataindependent. It willbe shownthatdata-dependent tasks
donotnecessarily execute faster whenprocessedsimultane
ouslyevenif thecondition is met. A modelis developed that
providesforthepossiblevariabilityofatask'sexecution time
andisusedinanewframework tostudytheproblemofftnding
an optimal mapping for identical. independent data
dependent execution time tasksonto partitionable systems.
Extension of thisframework to situations where the k tasks
arenon-identical isdiscussed.

1.Introduction

Large-scaleparallelisminvolvestheuseofthousandsof
processorscooperatingto process a task, where a task is an
instanceof a problemthatcan be solvedon one or morepro
cessors, independentof other tasks. In manycases, one way
to efficientlyutilizea large-scaleparallelprocessingsystem
istopartitionthesystem,allowingacollectionof taskstoexe
cute concurrently, each on a portion of the entire machine.
Thus, large-scale parallel processing system users may be
able to minimizethe executiontimeof a set of multiplecon
currenttasksbyexploitingpartitioning.Thisworkexamines
whenpartitioningwillbebeneficial.

Partitionable systems can be subdivided into smaller
independentsubmachines of varioussizesto use thesystems
more efficiently[25]. Here, the problemof determiningthe
"best" numberof processorsto allocate toeach of a givena
set of identical,independenttasks is explored,as well as the
way the tasksmay be "placed" on the systemin relation to
one another to achieve a minimumoverall execution time.
Such situationswhere multipleidentical, independent tasks
are to be performedoccurfrequently. Examplesin the signal
processing domain include the processing of satellite
imageryandtheintermittentrecalibration ofradar.

A simulation study [15] pointed out that a set of four
identicalglobalhistogramtasksexecuteintheshortesttimeif
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all four are processedsimultaneously, each on a submachine
consisting of one-fourth of the partitionable system. An
analytical study [12] showed that this result is true for all
algorithms whose execution times on various submachine
sizesmatchacertaincondition.That is,givenanN-processor
partitionablesystemand k identical,data-independenttasks
matchingthe condition, it is always best to partition the sys
tem into k submachines, each of size N Ik, and process all
tasks simultaneously. An alternate condition is developed
herethatprovidesadditionalinsightinto theeffectsof the use
of parallelismon the execution time. This result, and most
previouswork,implicitlyassumesthatexecutiontimeisdata
independent,i.e., the execution timeof a task is independent
of thedataset values. The workhereextendspreviousresults
by couplinganexpressionrepresentingtheexecutiontimeof
a single task with a new expression for the total execution
time of a collectionof tasks where one, some, or all of the k
tasksare executedsimultaneously. On this new platformthe
issue of algorithms with data-dependent execution time is
addressed,whereit isseenthat it maynotbebesttoprocessall
taskssimultaneously, even if thedata-independent condition
derivedin [12]ismet.

In [14], the task allocationproblem for data-dependent
taskswas introduced. Executiontime was modeledas a ran
dom variable and several specific parallel algorithms were
studiedindetail. It wasconcludedin [14]thattrade-offsexist
in choosing the optimum submachine size and scheduling
strategyfor data-dependenttasks,and thatit "is of interestto
build abstract models for studying these trade-offs." The
developmentof a generalframeworkfor studyingthealloca
tionof data-dependenttasks is the focusof this work. It will
be seen that thisnewframeworkis extendibletocases where
the k tasks may not be identical, but have similar execution
timestatisticalcharacteristics.

Whilethisworkhasaheavyemphasison themappingof
tasksontoa setofprocessors,itdoesnotconsidertheproblem
of decomposing a single task (or sets of communicating
tasks)and finding an optimalmappingof thatdecomposition
onto a parallel system. That is a related problem and has
receivedmuchattentionin the literature,e.g., [5,7,9,11,18,
22,27]. Stated concisely, results from these related works
indicatethatthe workof a taskshouldbedistributedasevenly
as possible while minimizing inter-processor communica
tion. This reinforces the result of [12] becausecommunica
tion is minimized when all tasks are executed simultane
ously, i.e., only N Ik processors are assigned to each task
(minimizingcommunication)and all N processorsare busy.
However, these related works cannot be applied directly to
the problem of allocating identical, data-dependent tasks
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onto partitionable systems. This is because the models used
do not take into account the variability of execution time,
based on the nature of the algorithm and data, and the interac
tions of this variability on the spatial and temporal juxtaposi
tion ofother tasks.

The architectural model assumed is a partitionable sys
tem with N processors, N memory modules, and an intercon
nection network. The iilterconnection network provides for
communications among processors and memory modules of
the system. The network topology must ensure that the com
putations and communications in one submachine do not
interfere with other submachines [20]. Examples of inter
connection networks suitable for large-scale parallel pro
cessing systems that support partitionability are the single
stage cube (hypercube) [20], multistage cube [21,23,28],
ADM/IADM [21], and gamma [19]. The processors may be
paired with local memory modules to form processing
elements (PEs) communicating via message passing. This is
the PE-to-Wconfiguration. With the processor-to-memory
configuration, processors are placed on one side of the inter
connection network, memory modules on the other side, and
communication among processors is through shared
memory. The results here apply to both the PE-to-PE and
processor-to-memory configurations. Some partitionable
systems that have been constructed include: MIMD systems
(BBN Butterfly [3] and NCube [10]), SIMD systems with
multiple control units (CM-2 [26]), and reconfigurable
SIMD/MIMD systems (PASM [24] and TRAC [16]). The
results are also applicable to non-partitionable systems:
SIMD system users can benefit when processing identical
tasks (where execution times are independent of the data
values) on disjoint subsets of processors, all following a sin
gle instruction stream [21].

Section 2 presents a general expression that will be used
to represent the execution time of k tasks on N processors
where either Nor N Ik processors are used to process each
data-independent task. Basic properties of this expression,
and thus the algorithm it represents, are derived. Assigning
arbitrary numbers of processors to data-independent tasks is
considered in Section 3. In Section 4, calculating partition
sizes to minimize the execution time of sets of identical,
data-dependenttasks is examined.

2. General Model of Execution Time

This section introduces a general expression for the time
required to execute a single task in parallel and explores pro
perties of the expression. A task will require ts seconds to ex
ecute on a serial machine. This represents the minimum
amount of work needed to process the task and assumes an
optimal coding of the "best" serial algorithm. Because this
discussion is based on execution time and not work, it is
necessary to assume that the serial machine is based on a sin
gle processor of the same computational power that is used in
each of the N processors of the parallel machine. It is as
sumed that any parallel program for the task would distribute
this minimum amount of work among N processors such that
at least tslN seconds are required to execute the task. While
this may not always be true (due to, for example, elimination
of a loop index when N processors are used), itisareasonable
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approximation.
Often, a different algorithm is chosen for the parallel

program because the' 'best" parallel algorithm is not neces
sarily a parallel version of the "best" serial algorithm. The
added instructions in the parallel program related to the
change in basic computation method is algorithmic overhead
[17]. Also, the parallel program may incorporate some
additional instructions to handle communication and/or
synchronization. The time spent by a parallel machine on
communication, synchronization, and algorithmic overhead
is the overhead for parallelism (V(N». Included in the over
head for parallelism is the time spenton intra -task idle time.

Thus, the time to execute a task on Nprocessors, tp(N) is
tp(N) = tslN +V (N), which isageneral expression thatparal
lei execution time is the sum of the time spent on the
minimum amount of work that is necessary and on overhead
for parallelism. The expression tp(N) specifies total execu
tion time for N processors, and docs not indicate anything
about the time spent by an individual processor on either the
required minimum amount of work (its part of t s ) or overhead
for parallelism. It will be a useful representation for parallel
execution time in the remaining sections. Previous studies of
the decomposition of a problem onto N processors use similar
general expressions, e.g., [7,17,27].

As stated in Section I, this work focuses on task alloca
tion strategies for mapping k identical tasks onto a partition
able system such that total execution time is minimized. The
problem of deciding whether to partition a parallel machine
and execute all k tasks simultaneously, each on an N Ik
processor submachine, or to process the k tasks sequentially,
each on an N-processor machine (in effect, by not partition
ing), reduces to determining the validity of the expression
tp(N Ik)$k tp(N). Theorem I shows when this expression is
true for data-independent tasks.

Theorem I: Ifthe overhead function for each of the k identical
data- independent tasks satisfies the condition

d V(N) =V'(N) ~ _ V(N) then t (N Ik) $ k t (N).
dN N' P P

Proof If the condition l/'(N)~-V(N)INis true, then it can be
shown that g (N) =NV (N) is monotonically increasing. This
result is immediate.

V'(N) ~ -V(N)IN

NV'(N) + V(N) ~ 0

g'(N) =NV'(N) + V(N) ~ 0

g'(N) ~ 0

Because g'(N) ~O, g (N) is monotonically increasing [6]. In
tuitively, this means that the total time spent by a task on over
head by all processors of a submachine increases as the sub
machine size increases. The following concludes the proof of
Theorem I. BecauseNV (N) is monotonically increasing:

(N Ik) V(N Ik) $ N V(N)



V(N Ik) s k V(N)

tp(N Ik) - k tslN s k (tp(N) - tslN)

tp(N Ik) s k tp(N)

and the proof is complete. 0

AdiscreteversionofTheorem I canbederivedbutisomitted
hereforthesakeofbrevity.

The condition of Theorem I implies that N V (N) is
monotonically increasingwhich,asstatedabove, meansthat
whenincreasingthesubmachinesize,theoverheadforparal
lelism(V (N» maydecreasebutonlyby a factorless than the
increase in submachinesize. This property is analogous to
the condition given in [12]. Here, the condition
V'(N) ~ - V(N)INwillbeusedtoprovideadditionalinsight.

Solving V'(N)=-V(N)IN gives the overhead function
with the minimum allowed rate of change such that
tp(NIk)S.k tp(N) is true. This "minimal" overheadfunction
has theform V(N)=A IN, whereA is a positiveconstant(i.e.,
for V (N)=A IN, V'(N) = d (A IN)/d N = -A /N 2 = -V(N)/N).
Intuitively, an algorithm with this "minimal" overhead
functionconsistsof a constantamountofoverheadforparal
lelismthatisevenlydistributedoverallprocessors. Thus,the
condition V'(N)?-V(N)IN implies that all algorithms have
overhead functions satisfying V(N)?AIN. Not only can
V(N) beanyincreasingfunctionofN, but itcan bea decreas
ingfunctionas well.

In the next section,Theorem I is built upon to consider
arbitrarysubmachine sizes. Thisrequiresextendingthe exe
cution time equation to be able to represent a sequence of
tasks being executed on a submachine. Both data
independentanddata-dependenttasksareconsidered.

3. Data-IndependentExecution Time Tasks

Thissectionstudiesthebenefitsofpartitioningaparallel
systemto minimizethe totalexecutiontimeof collectionsof
taskshavingdata-independent execution time. First, a gen
eralexpressiontorepresenttheexecutiontimeofk taskswill
be derivedthat incorporatesother strategies(e.g., allocating
morethanN Ik processorstotaskssuchthatsubmachinespro
cess some number of tasks sequentially). This expression
forms the basis of the framework for studying data
dependenttasksina latersection.Next,theresultof Section2
isgeneralizedto statethat,whereall tasksare identical,data
independentand satisfytheconditionV'(N)=-V(N)IN, it is
alwaysbesttopartitiona machineandexecuteall taskssimul
taneously.

The total execution time of k tasks, T", is the time
elapsed from the time the first task begins~ution to the
timethelast taskhas concluded. The totaltimethatprocessor
ljl,os ljl<N, isbusyworkingon anyone or moreof thek tasks
is~ Recall from Section2 that B ~ includes intra-taskidle
time. For themodelusedhere, inter-taskidle timeisdenoted
as I~, which is defined to be the total time that processor ljl,
Os. ljl<N, isnotworkingon anyof thek tasks. Thatis,I~ is the
total time that processor ljl is not a member of some sub
machineworkingon a task. I q> also includes time spent by
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processors waiting for the last task to complete. Therefore,
the valueofBj+lj =Bj+lj =Tko OS.i,j <N, and T" can be ex
pressedas

I N-I

T" = N 1: (B ~ + I ~ ) =B ~ + I ~ for any ljl
~

If!!L is the numberof processors assigned to taskj, OS.} «k,

andtpj(n) isthe timle ::ro[cess taskjona, JProceS;O:S~lthen

T" = - 1: 1: tpj(nj) + N 1: Ill> .
N ~=O ~j where ~O

task j is

S ed
. al tl assigned to 0

tat equiv en y,

I "-I l I N-I
T" = - 1: 1: tp/nj) + N 1: I ~ .

N j=O ..~ where ~
processor ~
. allocated

to task j

Let!.Hand Vj(nj) be theserialexecutiontimeoftaskj and the
overheadforparallelismwhentask}isexecutedonnj proces
sors,respectively.Then, tpj(nj)=ts/nj+ V/nj) and

1: ( tpj(nj» = nj(tpj(nj» = nj (ts/nj) + nj V/nj)'
..~ where

processor 0
is allocated

to task j

Then,
I "-I I "-I I N-I

T" = N j~ tSJ + N J~ nJV/nJ) + N to 10 ,

The tsj componentof T" is independentof the taskallocation
strategyand, thus,can be ignored when comparing the rela
tive meritsof any two strategies.Overhead of parallelismis
representedby the second termand is an explicit functionof
the numberof processorsassigned to each taskand the over
headfunctionfor that task(i.e., thepenaltyforusingparallel
ism for the single task, which includes the intra-task idle
time). The idle timegivenby the thirdtermofT" willdepend
on therelativeplacementof thetasks in timeandspaceon the
partitionablesystemand is a measureof thepenaltypaid for
inter-taskidletime.

With this framework, the general result can be proven.
This is analogous toa result reported in [12]. However,here
the result is based on an alternative view of execution time
(i.e., the V'(N)~-V (N)/N condition)and on thenew general
frameworkdevelopedhere thatcan also accommodatedata
dependenttasks,as seeninthenextsection.

Theorem 2: The totalexecution time,T", fork identical tasks
with data-independentexecution times satisfyingthe condi
tionV'(N)? - V (N)IN onanN-processorpartitionablesystem
is minimizedwheneach task is allocatedN /k processorsand
all tasksareprocessedsimultaneously.

Proof: When all tasksare identicaland are processedsimul
taneously,each onN Ik processors,noprocessorexperiences
inter-task idle time (i.e., I ~ =0, Os.ljl <N). It is claimed that
thisresults in the minimumexecution time«T,,)min)and that

-- -~-T----



all other task-to-submachine assignments will not result in a
t; less than (T/c)min, where

I /c-I I /c-I

(T/c)min = N L tsj + - L (N/k)V/N /k)
j=O N jdJ

All other possible assignments of tasks to submachines fall
into two cases: (A) one or more tasks are assigned to less
thanN /k processors, and (B) one or more tasks are assigned to
more than N /k processors while the rest (if any) are assigned
to N /k processors. The remainder of the proof shows that no
assignment in either Case A or Case B results in an execution
time less than (T/C)rnin'

Case A: Choose one of the tasks assigned to less than N /k pro
cessors, j', The execution time of task l' is tp/(n/) and is no
less than tpj(N/k) = (T/C)min. If such a case arises, where a
smaller submachine size yields a smaller execution time, then
it can be shown that the algorithm for the larger submachine is
sub-optimal. The larger submachine algorithm can be im
proved to match the performance of the smaller submachine
algorithm by using the smaller submachine algorithm on the
larger submachine and forcing some of the processors to be
idle. Thus, there is at least one task with execution time no
less than tp/N /k) seconds and no assignment in Case A
results inan execution time less than (T/C)rnin'

Case B: Becausenj V/nj) is a monotonically increasing func
tionof'x, (from Theorem 1proof):

/c~ Ie~

L (N /k)V/N/k) :5 L njVj(n)
j=O j=O

because3jsuchthatnj > N /k. It follows that

1 Ie-I 1 /c-I

N
L tsj + - L (N /k)Vj(N/k)
j=O N j=O

1 Ie-I 1 /c-I 1 N-I

:5 - L tsj + N L njVj(nj) + - L I~
N j=O j=O N ~

and thus,
1 /c-I 1 /c-I 1 N-I

(TIe)rnin:5 - L tSI + N L nlVin) + - L I~
N j=O 1=0 N ~

where 3jsuch thatx, > N /k. The proofis complete. D

The remainder of this section explores an algorithm ex
ample to determine its overhead function and to demonstrate
that it meets the V'(N)~-V(N)/N condition. A PE-to-PE
configuration is assumed.

Consider smoothing an M x M image (see [21], page
111-112). One way to smooth an image is to replace each pix
el with the average value of that pixel and its eight nearest
neighbors. When the time to "smooth" a single pixel is
denoted TSMOOTH, then the serial execution time is
ts =M 2

x TSMOOTH (ignoring incorrect values computed for
boundary pixels). II1~pa@llel implementation, ifthe PEs are
treated as a logical W x'JN grid, M 2/Npixels are assigned to
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each PE as an (M/--J"jj) x (M/,lN) subimage. To smooth the
pixels at the edge of a subimage, pixels from adjacent subim
age~.!!).ustbe transferred. Therefore, each PE requires at most
M /.... N pixels from each of its four adjacent neighbors and one
pixel from each of the four PEs diagonally adjacent to the PE.
Thus, assuming that the time to transfer a pixel is TrRANS and
that computationcannot be overlapped with data transfers,

tp(N) = (M2/N)xTsMOOTH + (4M~N + 4)xTTRANS

where V(N)=(4M/--J~+4) x TTRANS
and V'(N)=-2M/ N 3 xTrRANS' /_
The condition V'(N)~-V(N)/Nreduces toM ~-2'YN,which
is always true.

At this point, the expression for Tie has been developed
and used to show known results for data-independent tasks.
Tie was developed to serve as a framework to study data
dependent tasks in the next section,

4. Data-Dependent Execution Time Tasks

The basic result of Section 3 is that tasks meeting the
condition V' (N) ~ - V (N)/N with data- independent execution
time always achieve minimal execution time when all of the
tasks are processed simultaneously. If the same strategy (of
allocatingN /kprocessors per task and executing tasks simul
taneously) is taken when execution times are data dependent:
(1) the tasks will not all concludeatthe same time, (2) the total
execution time will be determined by the processing time of
the longest task, and (3) the processors not allocated to the
longest task will experience some idle time.

Consider the simplistic case of a data-dependent algo
rithm with V(N)=O for all data sets, i.e., there is no penalty
for allocating more processors per task. For this case, total
execution time is minimized when no submachine is idle at
any time during the tasks' execution, i.e., inter-task idle time
I ~ =O. The only way to guarantee this is to process the tasks
sequentially, each onN processors. This contradicts previous
results due to the following. With data-dependent tasks and
any other allocation, one submachine may finish before
another, implying that there may 34> such that! Q > O. Howev
er, by Theorem 2, with data-independent tasks, an allocation
of N /k processors per task yields I Q=01/4>. Thus, where the
results of Section 3 indicated that maximal partitioning
minimizes execution time, there will be some trade-offs with
regard to partitioning when considering tasks with data
dependent execution times.

Because the model of [12] has no provision for idled
submachines, it is not directly applicable to this problem.
Also, the scheduling algorithm of [12] does not permit any
processor to execute more than one task, i.e., it forces simul
taneous execution of tasks.

Another scheduling algorithm [4] allows sequential ex
ecution of some or all tasks. However, it assumes that the ex
ecution time of a given task with a given number of proces
sors is fixed, i.e., the model used does not include tasks whose
execution times are functions of the data set as well as the
number of processors used.

The following analyses model the execution time of
tasks as functions of random variables and at several points
the following question will be raised: what is the expected



(mean)executiontime of the last task to finish processing?
Orderstatisticswillbeusedtoanswerthisquestion.

Orderstatisticsisthestudyof thestatisticsoforderedse
quences of random variables [8). The notationX indicates
thatX is a random variable. If the execution times of the k
tasks are represented by thekrandomvariables10. I I•12•...•
tk-I andareorderedsuchthatI (j) representstherandomvari
able in the sequence with the j-th least value. then
t(O) ~I(I) ~I(2)~ .. ' ~ICk-I)' (Theparentheses in thesubscripts
denoteorder.) Thus.theexpectedvalueof thelargestrandom
variableisequaltotheE[t(k_I»)'Ifall thatisknownaboutthe
probabilitydistribution oflj is its meanvalueJ.l and standard
deviation<Jthen thefollowingupperbound[8) is knownfor
the E[I(k_I)] where 'ij • TIj. are independently and identically
distributed.

A (k - 1)
E[t(k-I) ) :5 J.l + <JX (2k _ 1)112 .

Ifit is knownthat thedistribution of tj is symmetrical. then
abetterupperboundcanbeexpressed.see[8].

AnexactsolutionforE[I(k-I) ) canbefoundiftheproba
bilitydistribution function.lj(x) oftj isknown.Theprobabili
ty distribution function !j(x) and cumulative distribution
function Fj(x) Oflj are.bydefinition•.Ij(x)=probabilityofthe
event { tj =X } and Fj(x) = probabilityof the event {'ij ~x }

x

whereFj(x)= j.lj(t)dt. Theconditionthati.,Tlj.beidentically
o

distributedcan be relaxedfor theexact solution. Theproba-
bilitydistribution function oft(k-I). the task withthe longest
execution time. is !(k-I) (x) and is given [8) by
!(k-1)(x)=Fj(x)k-1 k.lj(x). Thus.

A J k-lE[tCk-l)]= x Fj(x) k.lj(x)dx.
o

When executiontime is modeledas a function of ran
domvariablestheexpressionfor Tk , the totalexecutiontime
fork tasks.isafunctionofrandomvariables. Thus,

A 1 k-I 1 N-I A

Tk =- L L tp;Cnj) + - L I ep .
N j:IJ vep where N ep=O

~=~
to task j

Becausethe totalexecutiontime i, is a random variable"it
wouldQe insightful toknowE[Tk ) , theexpectedvalueof Ti:
TheE[Tk ) is thequantitywhichwillbe minimizedandcanbe
expressedas

A I k-I I N-I A

E[Tk ) =- 1: 1: E[lpj(nj») + N 1: E[I ep ) .
N j:IJ vep where ep=0

processor ep
is allocated

to taskj

Taskj hasan expected(or average)executiontimeof J.lj(nj)
whenassignedtonj processors(i.e .•E[lpj(nj)] =J.lj(nj» anda
standarddeviationof'c.tx.).

OnewaytodetermineapproximatevaluesforJ.l;Cnj) and
<J/nj) in a productionenvironmentis to requireuserstopro
Vide collections of typical data sets along with their pro-
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grams.An automatedsystemcould then execute the taskon
differentsubmachinesizeswiththevariousdatasetsandcol
lect statisticsabout the executiontime to select appropriate
scheduling strategies. More sophisticated users could ob
serveexecutiontimesduringthecodinganddebuggingphase
of developmentandestimatetheexecutiontimestatisticsthat
are needed. Algorithmic complexityanalysesareyetanother
methodtodetermineexecutiontimestatistics.

Considerthecasewhereallk tasksareidenticalandeach
task is assignedto iN Ik processors.for somefixedl, l:5i :5k.
No fewer thanN Ik processorsare assigned to each task be
cause t!lisforcessomeprocessorstoremainidlefor thedura
tionofTk • Notall valuesof imay be feasibledue to theparti
tioning rules of the system under consideration. Thus. for
nj=LNIk.lfj.

~ [~l L (E[lpj(n;) D] =~ [k[ i~ (E[lp;Cnj) D]] .
]:IJ vep where

processoro
. allocated

to task j A

andtheequationforE[Tk ) reducesto
A 1 N-I A

E[Tk ) = i J.lj(LNIk) + N 1: E[I ep ] .
ep=O

The E[i ep) term is dependenton the task allocationstrategy
and the values of J.lj(nj) and <Jj(nj). For this work what
matters is the executiontime as a function of the input data
andthe numbersofPEsallocated.Thus.thisworkwouldalso
be useful in exploiting concurrency among non-identical
tasks in "computing centers." where tasks are diverse but
maybewellunderstood.

4.1 Strategies To Reduce Execution Time
Considerthe followingfive straight-forward task allo

cationstrategiesfor the situationwhereallk tasksare identi
cal. Although the implications of the following strategies
may be intuitive. it will be seen that each can be analyzed
under a common framework. Users can utilize the actual
statisticsgatheredfrom their applicationsin this framework
to determine the "best" task allocation. Furthermore. this
framework can be appliedtoother strategies.suchas combi
nationsof StrategiesA-E. Anexampleof thepracticalappli
cation of this method to compare strategiesis given in Sub
section4.2.

Strategy A: All tasksare processedconcurrently (N Ik pro
cessorspertask).

Strategy B: All tasksare processedsequentially (N proces
sorspertask).

Strategy C: Tasksare assignedto submachines of LNIk pro
cessorsand batchesof k Ii tasksare processedsimultaneous
ly.Allk /i tasksinabatchmustconcludebeforethenextbatch
canbeginprocessing.i.e.•allk tl submachines waitforthelast
task of the current batch to finish (and synchronize) before
continuing.



i
(klt)-12

submachines
o 1

time

Figure 2 illustrates this strategy. Although tasks are
independent of each other and there is little intuitive
reason to force submachines to synchronize, this may be
the only option for some systems. For example, an SIMD
system with a partitionable interconnection network but
only one control unit could use this strategy on iterative al
gorithms, for example; disabling submachines one by one
until the last submachine concludes execution.

The total execution time is determined by the sum of
the longest lXxecution time in each batch. Thus, the expect
ed value ofTk will be I times the expected value of the time to
execute one batch of k It tasks.

E[Td=/x [Jlj(lNlk)

1 N-I J
+- L (E[time of longest task in batch] - Jl/IN Ik) ~

N 0=0

Intuitively and algebraically, this reduces to

E[Tk ] = I x Eltime of longest task in batch],

and, as with Strategy A, an upper bound is known:

~ (k II - 1)
E[Tk ] S I Jl/IN /k) + I crj(lN /k) x 112

(2kll- 1)

Once again, if it is known that the distribution of ~PN Ik) is
symmetric, then a better upper bound exists. Also, an more
accurate solution for the optimal value of l can be found by
collecting execution time statistics or modeling execution
time stochastical!y.

Figure 2: Time/space map of k =16 data-dependent tasks
executing in 1=2 synchronized batches tasks on k II = 8
submachines (Strategy C). Each submachine consists of
IN Ik =N 18 processors. The shaded areas indicate time
where submachines are idle.

tively smaller number of trials if the input data sets are gen
erally "similar" in nature. Thus, the upper bound equations
are useful with limitedknowledge of task execution time.

Strategy B: All tasks are processed sequentially (N proces
sorspertask,l =k).

Because all processors are busy all of the time, 14> =0,
OS<1> <N. Thus,E[Tk] =k Jlj(N).

Strategy C: Tasks are assigned to submachines of IN Ik pro
cessors and batches of k II tasks are processed sim ultaneous
ly. Allk II tasks in a batch mustconclude before the next batch
can begin processing.

t
k-I

time
I

submachines
_ 012

< (k - 1)
- Jlj(N Ik) + crj(N Ik) x 1/2

(2k - 1)

If the distribution of tpj(N Ik) is symmetrical, then a better
upper bound can be expressed (as described earlier). An ap
proximate solution for E[Tk ] can be found by following the
method described above. This approximate solution can be
computed efficiently.

In general, many execution trials must be performed to
collect a statistically significantprobability distribution func
tion fortpj(N Ik). However, it may be possible to obtain fairly
accurate estimates for Jlj(IN Ik)andcr/IN Ik) with only arela-

Figure 1: Time/space map of k = 16 data-dependent tasks
executing on k = 16 submachines simultaneously (Strategy
A). Each submachine consists of N Ik processors. The
shaded areas indicate time where submachines are idle.

~ Figure 1 illustrates this strategy. The expected value of
Tkis

E[Tk]=Jl/N Ik)
1 N-I

+ N L (E[time of longest task] - Jlj(N Ik) ).
~

Intuitively andalgebraically, this reduces to

E[Tk ] = E[time of longest task].

TheE[time oflongest task] can be found by studying the ord
er statistics of the execution time of the k tasks. If all that is
known about the probability distribution of tpj(N Ik) is
Jl/N Ik) and crj(N Ik)then the following upper bound for Stra
tegy Aisknown:

E[Tk ] =E[time of longest task]

Strategy D: Tasks are assigned to submachines of INIk pro
cessors and each submachine processes 1tasks sequentially,
without the synchronization ofStrategyC.

Strategy E: Tasks are dynamically assigned to submachines
of INIk processors as the submachines become available
(each submachine processes an average of I tasks sequential
ly).

Strategies A and B are special cases of Strategies C, D, and E
when 1=1 and 1=k, respectively, but are examined here
separately for the intuitive insight they provide.

Strategy A: All tasks are processed concurrently (N Ik pro
cessors per task, 1=1).
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Strategy D: All tasks are assigned to submachines of IN Ik
processorsandeachsubmachineprocesses I taskssequential
ly.

Figure 3: Time/space map of k =16 data-dependent tasks
executing on kll =8 submachines, for 1=2 (Strategy D).
Each submachine consists of INIk =N 18 processors and
executes I =2 tasks in sequence. The shaded areas
indicate time where submachines are idle.

the probability distribution of sl(iN Ik) is the result of I time
convolutions of tpj(IN Ik). Thus, the statistics of a task se
quencecanbe foundbyobservingtheexecutiontimesof indi
vidualtasks,obviatingtheneed toobserveexecutiontimesof
tasksequences. A

The question is, what valueof I will minimizeE[Tk ]? If
J.lj(INIk) andaj(IN Ik) are known, then theequation(s)above
for the upper boundcan be tabulatedeasily and the valueof I
that yields the smallest value for E[Tk ] indicates that IN Ik
processors shouldbe allocated to each task for this strategy.
This assumes that the 'tp/iN Ik) has the extremal distribution

Figure 3 illustrates this strategy. The random variable
sl(IN Ik) denotes theexecution timeof a sequenceof I taskson
iN Ikprocessors.Thus,

E[Tk ] =I J.lj(iNIk)
1 N-I

+ - I: (E[time of longest sequence]- E[sl(iN Ik) ] )
NPFfJ

Because E[SI(iNlk)]=/J.lpNlk), intuitively and algebrai
cally, thisreduces to

E[Tk ] =E[time of longest sequence].

Thestandarddeviationofsl(lN Ik) is'Jiaj(IN Ik),and, as with
StrategyA,anupperboundisknown:

E[Tk ] s I J.lpN Ik) + 'Jiaj(lN Ik)x (k 11- 1~12
(2kll- 1)

Also, if it is known that the distribution of sl(lN Ik) is sym
metric, thenabetter upperboundexists.

There are several waysan approximatesolutionmay be
found. Onemethodinvolvestheobservationof theexecution
times for sequencesof I tasks to form an approximate proba
bilitydistributionforSI(IN Ik). Once thisprobabilitydistribu
tionfunction isknown,theexpected valueof the longest time
of k Il sequences can be calculated numerically by the same
techniqueshownforStrategyA.Because

I-I

sl(iN Ik) = I: tpj(iN Ik)
i=()

thatequals the upperbound.
When finding an approximate solution for the optimal

value of I, it is noted that the collection of run-time data re
quires theobservationofonly a singlesubmachine.

Strategy E: Tasks are dynamically assigned to submachines
of IN Ik processors as the submachines become available
(each submachineprocessesan average of I tasks sequential
ly).

The dynamicassignment of taskscan leadpotentially to
lower totalexecution timesbecause there istheassurance that
agiven taskwillnotbe forced towait foranother task tofinish
if there isan idlesubmachineinthesystem.However, thepar
ticular submachine that a given task will execute on is not
known a priori and cannot be preloaded. This introduces
some additional overhead because processors may be idled
while the next task is being loaded [13]. This is true for both
the PE-to-PE and processor-to-memory configurations (this
occurs in the processor-to-memory case due to network
conflicts that will occur, in general, if data is preloaded arbi
trarily). WithStrategiesCand D, systemsthatallowtheover
lap of I/O and computation, e.g., MPP [2], PASM [24], can
preload tasks so submachines are not idled waiting for the
next task to be loaded into memory. Using Strategy E, these
systemscannotfullyutilizeoverlapped I/Ocapabilities.

With Strategy D, each submachineexecutes a sequence
of I tasks. An ideal schedule may require some submachines
to process more than I tasks while others process less,
depending on the relative execution time of their tasks. Un
fortunately,exactexecutiontimesare notknowninadvance.

For data-independent tasks (i.e., a/INIk) =0), the ideal
schedule is known;each submachineshouldexecute one task
(Theorem 2). For this case, dynamic scheduling(StrategyE)
and the overhead it incurs is not necessary. In fact, there may
be some cases where, for aj(lN Ik) >0, a static schedule of I
tasks per submachine (Strategy D) outperforms the dynamic
schedule (StrategyE) due to the reduction inoverhead. Such
a case is illustratedinthe following.Recall thatforStrategyD
an upper bound for the E[time of longest sequence] was
shown. Likewise,a lowerbound [8]for theE[timeof shortest
sequence] is

Elumeof shortesrsequencel ~

I J.l/lN Ik) - 'Ji a/INIk)x (2~:Z1~ 11~/2

If the expected difference in time between the shortest se
quence and the longest sequence is less than the average
execution time of a single task, then, on average, Strategy
D offers the ideal schedule. That is, because moving the
last task from the longest sequence to the shortest
sequence will not reduce total execution time, on average.
Restated, if thefollowingcondition is true,

? _I-:- (kll-l)
J.liiN Ik)::;;2'11 a/INIk)x (2kll- 1)1/2 '

then, on average, it is "likely" that Strategy D offers the
ideal schedule. The word "likely" can be removed by
providing an exact solution for the average time difference

2 (kll) - I

~

submachines
o I

J
time
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Figure 4: Plot of submachine size versus normalized
expected execution time for the data-dependent image
smoothing example under Strategy C. The normalized
expected execution time is plotted for various values of
ai/~i' Due to the structure of the algorithm, only the
points where I = 4',05. i 5. 4 are of interest (denoted by ~).

Figure 4 is a graph of submachine size versus expect
ed normalized execution time for the image smoothing ex
ample under Strategy C. The curve for a;l~i = 0.0
corresponds to the data-independent case where it is seen that
it is best to allocate each task to the smallest submachine size
(N Ik) and execute all tasks simultaneously. From the graph,
this is truefor a;l~i ratios up to -0.3. The graph in Figure 4 for
a;l~i ratios above -0.3 indicates that the optimal submachine
size is 1024 PEs, i.e., execution time is minimized if tasks are
processed sequentially. Because the family of curves for this
particular example are concave, the optimal submachine size
will be either N Ik =4 or N = 1024, depending on the ai/~i ra-

ofklltasksis:

E[ longest task in batch ]= (ktslIN + V (IN Ik» EUmax] .

and E[Tk ] = I E[ longest task in batch]. By substituting in
known quantities for the image smoothing algorithm with

:~;~~k~[~2 T'suoornr':~~)TTM"] ~iM''3Z:~]
For N = 1024 PEs, k = 256 images, where each image is
M »M = 1024 x 1024, and TTRANS=4 TSMOOTH, E[Tk] reduces
to

E [T
A

] _ T (256)(1024) [1024
2

16(1024) 16J
k -~i SMOOTH + .rr: +

x X 'Ix

x[ 1 + ai -..)3 (1024 - X)] .
u, (1024 +x)

Because the relative and not absolute values ofE[Tk ] are of
interest, it is possible to normalize the solution for
u,= TSMOOTH = I.

between the shortest and longest sequence. This is possible if
the probability distribution function of s/(lNIk) is known,
where fi(x) and FI(x) are the probability distribution and cu
mulative distribution functions ofsl(lN Ik), respectively. The
probability distribution function fi(x) is the I-fold convolu
tion of the probability distribution function of tpj(lN Ik) with
itself. Thus [8],

E[timeofshortestsequence]= I,x(kll)fi(x)( 1-FI(x)lll-1
x=O

and

E[time oflongest sequence]= I,x(kll)!/(X)FI(xl I1- 1 .
x=O

If the following condition is true, then it is better, on average,
to use Strategy D rather than StrategyE:

? 00

~/INIk)5. I, x (kIZ)fi(x)FI(x/II-1(I-FI(x) /11-1.

x=O

4.2 Applying the Task Allocation Strategies
This subsection explores the use of Strategies A-C in a

more concrete example. Consider the class of parallel syn
chronized iterative algorithms, e.g., those that can be used to
solve differential equations, find solutions to systems of
equations, and search for extrema in functions, e.g., [1]. Syn
chronized iterative algorithms are characterized by the re
peated execution ofa code kernel that consists of a computa
tion phase followed by a communication phase where inter
mediate data are transferred among processors. Typically,
the number of iterations required is data-dependent.

Ifthe time to execute the code kernel on IN Ik processors,
tck(lN Ik), is represented by tck(lN Ik) = ftslIN + V (IN Ik) and
the number of iterations is modeled as i, a random variable,
then the total time to execute a single synchronized iterative
task is tp(lN Ik)= i (ktslll'f. + V (IN Ik». Where the mean and
standard deviation of i are ~j and aj, then ~(IN Ik)=
~i (ktsllN + V (IN Ik) ) and a(INIk)=aj (kt)IN + V (IN Ik».

As an example, recall the image smoothing algorithm
from Section 3 and consider an application which calls for the
repeated smoothing of an input image until a certain conver
gence (or' 'smoothness") criterion is met. In image process
ing applications one way to remove the effects ofaliasing is to
smooth an image multiple times. The number of times that an
image may have to be smoothed is random. To simplify some
of the notation, a change of variables x = INIk will be used (x
is the number of processors in each submachine). Thus,
ll(x)=fj(tsIX+V(x» a.n..d a(x)=ai(tslx+V(x», where
ts=M and V(x)=(4M I'-Jx +4)x TTRANS' Further assume that
the number of iterations required is a uniformly distributed
random variable (with mean ~j and standard deviation c.). It
is well known that the expected value of the largest of P in
dependently, identically distributed random variables with a
uniformjtistribution having mean u and standard deviation a
is ~+"3a(P-I)/(P+I) [8]. Given k tl tasks are executed
~imultaneously,the expected value of the maximum value of
iis:

-:- f;;"(kll-I)
E[zmax ] = u, + a i'l3 (kll + I) .

Thus, the expected time for the longest task in each batch
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tio. The familyof curvesfor algorithmswithdifferentover
headfunctions yieldscurvesof differentshapes. The salient
pointof thisexampleis thatthereexistsa largeclassof algo
rithmswith data-dependent executiontimewhose totalexe
cution timecan be minimized by applyingthe techniques of
thiswork.

5.Conclusion

Previousworkindicatesthat,whentherearek taskstobe
processedandtheexecutiontimesof thetasksonvarioussub
machinesmeet a certain condition, partitioning the system
suchthatall k tasks are processedsimultaneously resultsina
minimum overall execution time. An analogous condition
wasdevelopedthatprovidesadditionalinsightintoprevious
resultsbecausethe new conditionis basedon the time spent
onoverheadforparallelism, notjust theexecutiontimeof the
task. This,andpreviousresults,however,assumethatexecu
tion times are data independent. A new framework that
representsthe total executiontime of a collectionof k tasks
was developedthatprovidesfor the possiblevariabilityof a
tasks' executiontime and was used to study the problemof
finding an optimalmapping for identicalindependent data
dependentexecutiontime tasks onto partitionable systems.
Tasks whose execution times are data-dependent do not
necessarily executefasterwhenprocessedsimultaneously.

Usingthismodelandgivenexecutionstatisticsof a task,
thechoiceofpartitioningor notcanbe madebasedonexpect
edexecutiontimes. Becausethenewframework isgeneral,it
alsoservesasanew methodfor thestudyofdata-independent
tasks. It canalsobe usedfor non-identical tasks havingsimi
lar executiontime statisticalcharacteristics. This extension
could be useful in exploitingconcurrency among tasks in
"computing centers" where tasks, while possibly diverse,
maybe wellunderstood.

Acknowledgement: The authors are grateful for useful dis
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