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  ABSTRACT 

 

 

 

MODELING FUZZY CRITERIA PREFERENCE TO EVALUATE TRADESPACE OF 

SYSTEM ALTERNATIVES 

 

 

 

 This dissertation explores techniques for evaluating system concepts using the point of 

diminishing marginal utility to determine a best value alternative with an optimal combination of 

risk, performance, reliability, and life cycle cost.  The purpose of this research is to address the 

uncertainty of customer requirements and assess crisp and fuzzy design parameters to determine 

a best value system.  At the time of this research, most commonly used decision analysis (DA) 

techniques use minimum and maximum values under a specific criterion to evaluate each 

alternative.  These DA methods do not restrict scoring beyond the point of diminished marginal 

utility resulting in superfluous capabilities and overvalued system alternatives.  Using these 

models, an alternative being evaluated could receive significantly higher scores when reported 

capabilities are greater than ideal customer requirements.  This problem is pronounced whenever 

weights are applied to criteria where excessive capabilities are recorded.  The techniques 

explored in this dissertation utilize fuzzy membership functions to restrict scoring for alternatives 

that provide excess capabilities beyond ideal customer requirements.  This research investigates 

and presents DA techniques for evaluating system alternatives that determine an ideal 

compromise between risk, performance criteria, reliability and life cycle costs.   
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1. INTRODUCTION 

1.1 Motivation and Background  

System analysis is difficult during early system design due to lack of test data from new, 

immature technologies and uncertain customer requirements.  Since decisions made during 

conceptual design significantly influence all phases of development, researchers have focused on 

optimizing the decisions made during this critical phase.  The United States (US) Government 

Accountability Office (GAO) recently reported that approximately 75 percent of a program’s 

total Life Cycle Cost (LCC) is influenced by decisions made before a program is approved to 

start development.  This GAO report also determined that several large acquisition programs 

have not provided a robust assessment of system options during the Analysis of Alternatives 

(AoA) [1].  Over the past few decades, acquisition professionals have focused on reducing 

system LCC while increasing reliability and performance.  During this time, several authors have 

determined that concept designs heavily affect detailed designs [2]–[4] where approximately 80 

percent of a system’s total design and manufacturing cost is determined by the preferred 

conceptual design [5]. To address high military equipment costs, Gupta [6] reported that 

operation and support costs for a typical weapon system accounted for approximately 75 percent 

of total cost.  Supporting Gupta’s findings, Wilson [7] discovered that the cost of operating and 

supporting a product may exceed the initial purchase price of an item as much as ten times.  

While studying design for affordability, Noble and Tanchoco [8] demonstrated that the goal of 

designing the best product possible was often contrary to the goal of cost minimization.   

Dowlatshahi [9] established that the design of a product influences between 70 to 80 percent of a 

product’s total Life Cycle Cost (LCC).   
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To address the imprecision and subjectivity of information during early system design, 

several researchers have turned to fuzzy sets to better represent this imprecise data [10]–[12].  To 

address varying degrees of customer preference during early system design, researchers have 

also used fuzzy sets to model ambiguous customer requirements [13]–[15].  There is inherent 

uncertainty in most decision making techniques.  In Fuzzy Set Theory and its Applications, 

Zimmermann explored the various causes of uncertainty and categorized the various types as 

either stochastic uncertainty or fuzziness [16].  Stochastic uncertainty relates to uncertainty of 

occurrences and is best modeled using probability theory.  Fuzzy uncertainty relates to imprecise 

and ambiguous system data or when information cannot be defined or described well due to 

limited knowledge or understanding.  Fuzzy uncertainty represents vague or imprecise 

information and is best modeled as a membership function using fuzzy theory [17].  In Decision-

Making in a Fuzzy Environment, Bellman and Zadeh [18] differentiated between randomness 

and fuzziness and argued the latter as a major source of imprecision in decision processes.  They 

described the decision environment as fuzzy since goals and constraints are often fuzzy in nature.  

As an example, they described a fuzzy constraint as “x should be approximately in the range of 

20-25” and a fuzzy goal as “x should be in the vicinity of x2”.  During the early stages of 

technology development, fuzzy methods better represent uncertainty stemming from a lack of 

empirical data available during concept development and preliminary design.   

Along with uncertainty in decision making, mental mistakes and overexploited, shared 

resources can often lead to poor decisions.  Since trade studies are typically led and evaluated by 

people, human error is often a factor.  While studying the psychology of choice, Tversky and 

Kahneman [19] demonstrated that decision makers (DM), individuals with a high position within 

an organization with authority to make important decisions [20], easily anchor on certain values 
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before evaluating all numerical data.  While researching group decisions, Pennock [21] argued 

that government acquisition programs serve as a shared resource that disparate stakeholders often 

exploit to realize individual goals. In an effort to decrease human error in decision making, 

Smith et. al. [22] recommended that DMs increase their awareness of cognitive bias in order to 

make good, rational choices among alternatives. These abovementioned examples may explain 

why acquisition programs with high performance but high Life Cycle Costs (LCC) are still 

common in defense programs.  Since anchoring and shared resources tend to bias DMs towards 

an overemphasis on technical performance, a decision control is necessary to reduce this natural 

human tendency.   

The AH-24A “Apache” attack helicopter is an example of a system with high performance 

capabilities but poor reliability and high LCC.  The Apache helicopter was introduced to the US 

Army in 1986.  Although the AH-64 was considered the most advanced attack helicopter in the 

world at the time, the Apache helicopter suffered abysmal reliability and availability rates with 

operational readiness rates below the Army’s fully mission capable goal [23], [24]. The primary 

motivation behind this research is to study and develop a Decision Analysis (DA) technique that 

provides the best compromise between cost, reliability, and performance for selecting a best 

value system alternative.  

 

1.2 Problem Statement  

Best value acquisition decisions are difficult to make in system acquisition due to conflicting 

requirements.  How does one design and build a reliable system with low life cycle costs while 

achieving high performance standards?  According to a United States (US) General Accounting 

Office (GAO) report, Department of Defense (DOD) requirement setters aim for the most 
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capability possible because they believe it may be several years before they get another 

opportunity for another weapon system.  This belief creates willingness amongst DOD customers 

to accept cost increases and schedule delays that a commercial customer would otherwise not 

accept. [25] In 2010, the DOD conducted a Unmanned Aeiral Vehicle (UAV) reliability study 

and discovered that the services used lower quality parts in an attempt to keep costs down.  

Unfortunately, this approach resulted in lower availability and reliability with much higher 

maintenance hours than originally anticipated. [26]  In an effort to expedite the acquisition 

process and incentivize better value alternatives, the US government created the Lowest Price 

Technically Acceptable (LPTA) source selection process.  However, LPTA is only effective 

when DOD customers are sufficiently satisfied with threshold requirements.  Whenever the DOD 

customer is willing to pay above threshold requirements and may benefit from a technologically 

superior solution, a tradeoff source selection between cost and performance factors is optimal 

[27]. This research explores fuzzy customer preference for evaluating system concepts to 

determine a best value alternative with an optimal combination of performance, reliability, and 

cost.  Although the research initially focused on government applications, the techniques 

presented in paper can be successfully applied to any system engineering decision problem.   

 

1.3 Research Objectives 

This research introduces a new, innovative approach to optimize decisions at the point of 

diminished marginal utility.  After conducting a comprehensive literature review, the lack of 

Decision Analysis (DA) research in ideal customer requirements became noticeably apparent.   

Although customer utility can be measured per requirement, most decision techniques do not 

optimize around this ideal value.  Most decision techniques use maximum, minimum or mean 
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aggregation techniques that often mask ideal customer value. The research presented in this 

dissertation addresses this customer utility void in the literature and presents techniques to solve 

this problem. As illustrated in Figure 1-1, customer utility increases steadily with additional 

performance until the point of diminished marginal utility where little customer utility is gained 

with increased performance.  This research is focused on optimizing decisions at this “knee in 

the curve” where customer utility is ideal for a given performance criterion.   

 
Figure 1-1: Customer Utility versus System Performance 

The purpose of this research is to explore modeling fuzzy criteria preference to evaluate 

tradespace of system alternatives for determining the best value system.  The primary research 

objective is to develop a straightforward technique for modeling customer criteria preference to 

select a best value alternative with an optimal mix of performance, reliability, and cost.  

Supporting research objectives include: evaluating customer preference on criteria weights and 

values; restricting decision scoring beyond point of diminished marginal utility; assessing ideal 

customer preference constraints on decision outcomes; determining an efficient method for 

handling mixed fuzzy and crisp information in decision data; and determining an effective way 

to incorporate risk in fuzzy criteria preference DA methods. 

This research will significantly contribute to the educational literature by applying fuzzy 

customer preference and system data to decisions while saturating evaluation criteria at ideal 
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customer requirements.  Since Zadeh’s revolutionary work in fuzzy numbers, much DA research 

has been conducted on applying fuzzy methods to various problems.  However, most DA 

research focused on uncertainty associated with linguistic variables and little effort has been 

focused on other fuzzy applications.  Chen’s FTOPSIS approach was specifically created to 

incorporate linguistic variables in the decision process but hasn’t been used to assess fuzzy 

design concepts.  Although Bellman and Zadeh later introduced fuzzy goals to the DA 

community, little research has focused on incorporating fuzzy customer goals in DA problems.  

Additionally, little DA research has been conducted on constraining scores on alternatives that 

exceed ideal customer requirements. 

 

1.4 Overview of Dissertation  

This dissertation will present and evaluate three complimentary methods for modeling fuzzy 

criteria preference to evaluate the tradespace of system alternatives.  An overview of system life 

cycle costs, fuzzy sets, Multiple Criteria Decision Analysis (MCDA) methods and other pertinent 

prior work will be discussed in Chapter 2. Techniques for conducting system evaluation during 

early system development will be reviewed in Chapter 3.  Modeling system data and customer 

preference will be discussed in Chapters 4 and 5, respectively.  Chapter 6 will introduce new 

Objective Criteria Saturation (OCS) MCDA techniques followed by a discussion of applying risk 

to OCS-MCDA in Chapter 7.  Chapter 8 will demonstrate the effectiveness of the OCS-MCDA 

techniques through two case studies.  To conclude, a summary and discussion of future work will 

be covered in Chapter 9.  
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2. PRIOR WORK AND BACKGROUND 

2.1 System Life Cycle Analysis 

System life cycle analysis is the assessment of system performance from a total life cycle 

perspective, from design to salvage.  Life Cycle Costs (LCC) are total costs from initiation to 

disposal for both equipment and projects. [28]  The primary goal of systems engineering is to 

reduce the risk associated with new systems or modifications to complex systems.  The risk 

associated with system development is captured in the Figure 2-1.  As indicated in the chart, 80 

percent of total LCC has already been determined when only 20 percent of the actual costs have 

been accrued. [29]  This figure highlights the importance of good information and sound analysis 

during early system decisions.  Unfortunately, the lack of information available during early 

system development exacerbates this decision dilemma.   Fortunately, this uncertainty can be 

modeled through fuzzy sets to model the imprecision and subjectivity during early system 

design. 

 
Figure 2-1: Committed Life Cycle Cost versus Time [30] 
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2.2 Fuzzy Sets  

Zadeh [31] first introduced fuzzy set theory in 1965.  Since Decision Makers (DM) often 

express preference in natural language, such as “poor” and “good”, Zadeh utilized fuzzy sets to 

represent DM preference in linguistic terms.  Building on Zadeh’s research in fuzzy sets, several 

researchers have developed decision models capable of handling linguistic information [10], 

[32]–[34]. Expanding beyond linguistic uncertainty, Bellman and Zadeh [18] expanded fuzzy set 

theory to handle fuzziness of input information for decision making.  Fuzzy input information 

covers two types: fuzzy requirements and fuzzy system data.  In an effort to address the 

ambiguity of customer requirements, quite a few researchers have developed techniques that 

incorporate fuzzy numbers [13]–[15], [35].  To address the uncertainty of system data during 

early system design, Otto and Antonsson [11] created the Method of Imprecision (MOI) that 

leverages fuzzy numbers as well.  While conducting their research, Otto and Antonsson observed 

that design descriptions are vague or imprecise during early system design.  They noted that the 

design process at later stages of development reduced this imprecision until a final description 

became more precise.  This research by Otto and Antonsson highlight the benefit of fuzzy 

methods early in technology development with a transition towards probability approaches as 

more precise information and test data become available. 

A fuzzy set is comprised of two groups of variables.  The first group of values are 

independent variables that are located along the x axis on the real number line  .  The second 

group of values are dependent variables that are located along the y axis.  These dependent 

variables are called membership functions   and represent the degree an independent variable x 

belongs in a set.  Normal fuzzy sets have at least one      = 1.  The entire area of a fuzzy set on 
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  is called the support. The region of a fuzzy set where      = 1 is called the core.  The region 

of a fuzzy set where       1 is called the boundary.  [36]–[39]  

 
Figure 2-2: Core, Support, and Boundaries of a Fuzzy Set [39] 

 

2.2.1 Multiple Meaning of Membership Functions.  Fuzzy sets can be useful in modeling 

system criteria during Multiple Criteria Decision Analysis (MCDA).  However, fuzzy 

membership functions can also have multiple meanings depending on the context.  Fuzzy 

membership can represent a degree of uncertainty, preference, or similarity [36]. Fuzzy 

membership can also correspond to a random set or measurement viewpoint [40].  During early 

system development, imprecision and lack of information can be modeled as a degree of 

uncertainty using fuzzy sets.  Conversely, ambiguous customer requirements can be modeled 

during early system design using fuzzy sets to model degrees of preference.  The membership 

functions presented in this dissertation will represent either a degree of preference or uncertainty.  

The membership functions that represent degrees of uncertainty can be further separated into 

incomplete and unquantifiable information [41].  The following three meanings of membership 

functions will be used throughout this dissertation. 

2.2.1.1 Fuzzy Preference.  A membership function representing a degree of preference 

contains a set of more or less preferred objects or values.  According to this viewpoint, the      
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of a decision variable represents the intensity of preference in favor of  x. [36]  Therefore, in the 

fuzzy preference view, fuzzy sets represent criteria or flexible constraints.[18] This perspective 

of fuzzy sets is useful for modeling fuzzy criteria preference that is often expressed as tradespace 

threshold and objective values.   

2.2.1.2 Imprecise System Data.  A membership function representing a degree of uncertainty 

with incomplete information contains a set of variables that have a possibility of containing a 

specific value.  This concept of membership functions representing a degree of uncertainty was 

proposed by Zadeh when he introduced his possibility and approximate reasoning theories [42].  

According to the fuzzy uncertainty viewpoint,    ) represents the possibility that a parameter 

has value x given limited information.  This fuzzy uncertainty perspective also assumes the 

values encompassed by the support of the membership function (see Fig 2) are mutually 

exclusive where the membership degrees rank these values by their respective possibility. [39] 

This fuzzy uncertainty view is useful for modeling imprecise system data when limited 

information is known about the system, such as concept development or preliminary design. 

2.2.1.3 Linguistic Data.  A membership function representing a degree of uncertainty with 

unquantifiable information may consist of a set of linguistic data.  Linguistic uncertainty is 

where words such as good, fair, and poor are used to describe a characteristic.  Linguistic 

qualifiers, such as “very tall”, “around two meters”, or “approximately six feet” also result in 

unquantifiable information that can lead to uncertainty [33], [39]. Whenever linguistic qualifiers 

are used to describe a system criterion, this fuzzy linguistic uncertainty perspective is useful for 

modeling this unquantifiable information.    
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2.3 Multiple Criteria Decision Making (MCDA) 

Multiple Criteria Decision Analysis (MCDA) methods, also called Multiple Criteria Decision 

Making (MCDM), have received much attention from researchers in evaluating, assessing and 

ranking alternatives across diverse industries [43]. Decision Makers (DM) are often faced with 

conflicting selection criteria where no solution can satisfy all criteria simultaneously.  MCDA 

was established to evaluate conflicting criteria in decision making in an effort to select the best 

alternative.  There are several MCDA techniques that attack different problems from diverse 

perspectives and methods.  However, despite the various methods available, they all have certain 

aspects in common, such as the notion of alternatives and attributes [41].  MCDA can be largely 

classified into two categories: Multiple Objective Decision Making (MODM) and Multiple 

Attribute Decision Making (MADM) [16].   

 

2.3.1 Multiple Objective Decision Making (MODM).  Multiple objective decisions are 

problems where the decision space is continuous and the alternatives have not been 

predetermined.  A typical example of a MODM method is mathematical programming problems 

with multiple objective functions.  [41], [44] 

 

2.3.2 Multiple Attribute Decision Making (MADM).  Multiple attribute decisions are 

problems with discrete decision space where the alternatives have been predetermined [41], [44]. 

 

2.4 MCDA Methods Selected for Best Value Enhancement 

The Weighted Sum Model (WSM), the Technique for Order of Preference by Similarity to 

Ideal Solution (TOPSIS), and Fuzzy Technique for Order of Preference by Similarity to Ideal 
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Solution (FTOPSIS) are MADM methods that were selected as dissertation study candidates due 

to their wide use across various industries. [44]–[46]   

 

2.4.1 Weighted Sum Model (WSM).  The Weighted Sum Model (WSM) is the simplest and 

probably the most widely used method in decision making [45].  The WSM method applies the 

additive utility hypothesis to imply that the overall value of every alternative for a specific 

criterion is equivalent to the total sum [47].  Due to this additive utility assumption, WSM 

typically provides the most acceptable results using the same units and ranges across all criteria.  

However, since most problem solving problems include a wide range of units and ranges, WSM 

can also be applied to MCDA problems as long as the evaluation data is normalized [48], [49] 

and the decision objectives are not conflicting [50].  If a decision problem has both benefit and 

cost criteria that require determining both a minimum and a maximum for specific criteria, then 

the WSM will produce inaccurate results.  Therefore, in MCDA problems with conflicting 

benefit and cost criteria, another decision tool should be used to ensure accurate results.  

The steps for using the WSM method are as follows: 

1. Populate the decision matrix   with data from each alternative   ; where     is the value 

for the ith alternative    with respect to the jth criterion   ; and    represents the weight of the 

jth criterion   . 

                          

  

  
  
  
 
   

 
 
 
 
             
             
             
     

              
 
 
 
 

    (2-1) 
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2. Create a normalized decision matrix   from decision matrix   using Equation 2-2. 

 
     

   

         

                                  (2-2) 

    where     is the normalized value of    . 

 

3. Calculate the weighted sum of matrix   using Equation 2-3. 

 
            
          

 

   

              
 

(2-3) 

 

4. The alternative with the highest score represents the best alternative 

 

2.4.2 Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS).   

To handle conflicting requirements, Hwang and Yoon [51] created the Technique for Order 

Preference by Similarity to an Ideal Solution (TOPSIS) to solve MCDA problems. Using 

TOPSIS, the best alternative should have the shortest distance from a Positive Ideal Solution 

(PIS) and the farthest distance from a Negative Ideal Solution (NIS). Expanding on Hwang and 

Yoon’s initial technique, several researchers have applied TOPSIS to a wide range of 

applications [52]–[55].  To address the rank reversal phenomenon with TOPSIS, Garcia-Cascales 

and Lamata [56] recommended alterations to TOPSIS to prevent rank reversal.  

 

The steps for Hwang and Yoon’s TOPSIS are as follows: 

1. Populate the decision matrix   using Equation 2-1.     
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2. Create a normalized decision matrix   from matrix   using Equation 2-4. 

 
     

   

     
  

   

                                  (2-4) 

    where     is the normalized value of    . 

 

3. Calculate the weighted normalized decision matrix   by multiplying the normalization 

values     by the criterion weights   . 

                                             (2-5) 

    where                 

 

4. Determine the Positive Ideal Solutions (PIS)   
 and Negative Ideal Solutions (NIS)    

  

using Equations 2-6 and 2-7. 

        
    

     
      

          (2-6) 

        
    

     
      

       (2-7) 

    where, 

  
    

                                             

                                                 
      

  
    

                                             

                                                 
      

   

5.  Use Equations 2-8 and 2-9 to calculate the Euclidean distances    
 and   

  of alternative 

   to PIS and NIS, respectively. 

               
            

  
  

   ,                  (2-8) 
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   ,                (2-9) 

 

6. Calculate the closeness coefficient    .  The closeness coefficient represents the distances 

of each alternative to   
  and   

  and is calculated: 

     
  
 

  
    

 ,                (2-10) 

 

7. The alternative with the highest     represents the best alternative and is closest to PIS and 

farthest from NIS. 

 

2.4.3 Fuzzy Technique for Order of Preference by Similarity to Ideal Solution 

(FTOPSIS).  To address uncertainty in decision analysis, many researchers have combined fuzzy 

theory with TOPSIS. The concept of applying fuzzy numbers to TOPSIS was first suggested by 

Negi [57] and was revised by Triantaphyllou and Lin [45] who developed a fuzzy version of 

TOPSIS that calculated a fuzzy relative closeness for each alternative.  Chen [58] applied 

TOPSIS to a fuzzy environment using triangular fuzzy numbers to replace the numeric linguistic 

scales for rating and weights. After Chen published his Fuzzy TOPSIS method for group 

decision making, several researchers published papers proposing extensions to his FTOPSIS with 

applications across multiple industries [35], [46], [59]–[61].   
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The steps to Chen’s FTOPSIS are as follows: 

1. Populate the decision matrix    with data from each alternative system   ; where      is the 

value for the ith alternative    with respect to the jth criterion   ; and    represents the weight of 

the jth criterion   . 

                                       

         

  
  
  
 
   

 
 
 
 
                 
                 
                 
     

                  
 
 
 
 

    (2-11) 

                                                     

         

2. Create a normalized decision matrix    from decision matrix   .  First, perform a linear 

scale transformation to transform the various criteria scales into a comparable scale and obtain a 

normalized fuzzy decision matrix   . 

 

               ,      (2-12)        

 

Next, perform a normalization calculation to preserve the property that the ranges of 

normalized triangular fuzzy numbers belong to [0,1].  Equation 2-13 calculates the set of benefit 

criteria    and Equation 2-14 calculates the set of cost criteria   .  

      
   

  
  

   

  
  

   

  
  ,                    (2-13) 

  
                    

          
  
 

   
 
  
 

   
 
  
 

   
                         (2-14) 
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3. Calculate the weighted normalized decision matrix    by multiplying the normalization 

values      by the criterion weights   . 

                                            (2-15) 

where                          

 

4. Define FPIS    and FNIS    using Equation 2-16 and 2-17, respectfully. 

 

         
     

       
  ,     (2-16) 

         
     

       
  ,     (2-17) 

   where, 

   
    

                                                         

                                                             
     

   
    

                                                         

                                                             
     

 

5. Calculate the distance of each alternative from    and   . 

  
         

 
            

       (2-18) 

  
         

 
            

       (2-19) 

   where            is the distance measurement between two fuzzy numbers.   

 

The distance between     and    can be calculated using the vertex method by:  

            
 

 
                                      (2-20) 
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6. Calculate the closeness coefficient    .  The closeness coefficient represents the distances 

to    and    and is calculated: 

 

     
  
 

  
    

 ,                (2-21) 

 

7. The alternative with the highest     represents the best alternative and is closest to    and 

farthest from   . 
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3. SYSTEM EVALUATION DURING EARLY DEVELOPMENT 

3.1 Measures of Effectiveness (MOE) and Measures of Performance (MOP) 

Measures of Effectiveness (MOE) are a set of criteria that identify characteristics of a system 

response to its environment that are critical to its operational utility.  MOEs are used to conduct 

an effectiveness analysis to determine whether or not a system concept is feasible and satisfies 

the operational objectives required to meet a projected need [62].  MOEs must be defined by a 

specified level of importance, as determined by the customer and the criticality of the functions 

the system will perform [63] and be independent of any particular solution [64].   

Measures of Performance (MOP) are a set of criteria that characterize a physical or 

functional attribute relating to the execution of a process, function, activity or task.  MOPs are 

used to assess quantity, quality, timeliness, and readiness of system performance characteristics.  

MOPs are determined by the following: selected standards; system boundaries; external 

interfaces, utilization environment, life cycle process requirements; design consideration, 

constraints, and verification criteria, and configuration control. [29] MOPs often become system 

performance requirements that result in achieving a critical threshold for the system MOEs [64]. 

For US DOD acquisition programs, MOPs are typically expressed as Key Performance 

Parameters (KPP) or Key System Attributes (KSA) that contain threshold and objective values 

[65]. 

The difference between MOEs and MOPs may be difficult for anyone not working with them 

consistently. The primary distinction between MOEs and MOPs is that they are formulated from 

different viewpoints. An MOE is expressed from the user viewpoint and refers to the 

effectiveness of a solution from mission or operational success. A MOP is expressed from the 
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system viewpoint and represents actual performance which may only be indirectly related to user 

concerns. [64] 

The United States (US) Department of Defense (DOD) mandates the use of MOEs and 

MOPs during large system acquisition.  Although the military definitions of MOE and MOP are 

more combat focused than the aforementioned definitions, they still adhere to the same overall 

concept.  According to the Defense Acquisition University (DAU) Defense Acquisition 

Guidebook (DAG), the definition of MOE is: 

The data used to measure the military effect (mission accomplishment) that comes 

from using the system in its expected environment.  That environment includes the system 

under test and all interrelated systems, that is, the planned or expected environment in terms 

of weapons, sensors, command and control, and platforms, as appropriate, needed to 

accomplish an end-to-end mission in combat. [65] 

The DAG definition of MOP is “system particular performance parameters such as speed, 

payload, range, time-on-station, frequency, or other distinctly quantifiable performance 

features”.  The DAG also states that several MOPs may be related to the achievement of a 

particular MOE [65]. By associating MOPs to MOEs, a system can be analyzed quantitatively to 

determine the degree it meets operational utility.  

 

3.2 Concept of Operations (CONOPS) Evaluation  

A Concept of Operations (CONOPS) for a system consists of a range of scenarios that 

represent the full scope of expected operational situations that the system may encounter.  These 

scenarios must be based on extensive study of operational environments, discussions with 

experienced users, and a thorough understanding of past experiences and deficiencies of the 
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current system [62].  Scenario thinking is an enduring concept that can be traced back to early 

philosophers such as Plato and Seneca[66].  Operational scenarios serve as a useful methodology 

for planning and decision making in complex and uncertain environments [29].  If a system if for 

a military user, there may be a requirement to develop several Operational Views (OV) for each 

CONOPS.  The following are six common Operational Views (OV)[67]: 

 High Level Operation Concept Graphic (OV-1) 

 Operational Node Connectivity Description (OV-2) 

 Operational Information Exchange Matrix (OV-3) 

 Organizational Relationship Chart (OV-4) 

 Operational Activity Model (OV-5) 

 Operational Event/Trace Description (OV-6c) 

 

Figure 3-1: Operational Views (OV) 

                
        Figure 3-1-A: High-Level Operational Concept (OV-1) [67]     Figure 3-1-B: Node Connectivity (OV-2) [67] 
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Figure 3-1 (continued): Operational Views (OV) 

      
     Figure 3-1-C:  Information Exchange Matrix (OV-3) [67]       Figure 3-1-D: Command Relationships (OV-4) [67] 

 

      
    Figure 3-1-E: Operational Activity Model (OV-5) [67]    Figure 3-1-F: Event Trace Description (OV-6c) [67] 

 

3.2.1 MOE Evaluation.  During systems analysis, MOEs are used to ascertain how well a 

design alternative meets system goals.  Typically, this assessment is accomplished through trade 

studies that are conducted to determine the best solution that can be realistically achieved with 

the available resources.  The NASA Systems Engineering Handbook [64] proposes the following 

basic steps for analyzing alternative design solutions: 

1. Determine system architectures / designs 

2. Evaluate alternatives in terms of MOEs and system cost 

3. Rank the alternatives according to appropriate selection criteria 

4. Drop less promising alternatives and proceed to next level of abstraction, if necessary 
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3.2.2 System Performance Evaluation.  Alternative system performance can be assessed 

using MOPs to evaluate how well a system meets performance requirements. 

3.2.2.1 Mapping MOPs to MOEs.  Since MOPs contribute to MOEs, MOPs can be used to 

quantitatively measure how well MOEs meet operational needs.  By mapping MOPs to MOEs, 

quantitative Decision Analysis (DA) methods can be employed to evaluate system alternatives 

against evaluation criteria. 

3.2.2.2 Using MCDA Methods to Evaluate System Alternatives.  Multiple Criteria Decision 

Analysis (MCDA) methods are useful in assisting DMs evaluate system alternatives.  Both 

Multiple Objective Decision Making (MODM) and Multiple Attribute Decision Making 

(MADM) methods can be employed to evaluate alternatives using both continuous and discrete 

methods.  Since the decision space is continuous for MODM, these methods can be beneficial for 

conducting concept space exploration.  An example of a MODM technique used for concept 

exploration is the Genetic Algorithm (GA), a technique that is based on Darwin’s theory of 

evolution and survival of the fittest.  The GA method enables the exploration of non-convex, 

multimodal, and displaced design spaces by searching the range through multiple points 

simultaneously. [68] Once the best alternative candidates are selected using MODM techniques, 

MADM can be used to evaluate alternatives using discrete MOPs.  Some MADM techniques that 

are useful for this type of analysis are the aforementioned Weighted Sum Model (WSM), the 

Technique for Order of Preference by Similarity to Ideal Solutions (TOPSIS) and Fuzzy 

Technique for Order of Preference by Similarity to Ideal Solutions (FTOPSIS).  The scope of 

this dissertation research is constrained to MADM techniques with a particular focus on WSM, 

TOPSIS, and FTOPSIS methods. 
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4. MODELING SYSTEM DATA 

4.1 Crisp Data 

Developers of mature systems with sufficient test and field data often provide crisp system 

performance data for potential customers.  In fact, the majority of system data available is in a 

crisp format.  According to naïve set theory [69], a crisp Set   can be defined as a collection of 

elements   out of a universal set  , where all elements in   have the same characteristics.  The 

universal set   is a nonempty set containing all possible elements  . [70]  For Multi Criteria 

Decision Analysis (MCDA), set operations can be useful for assessing alternative system 

characteristics for a single criterion. 

 

4.1.1 Operations on Crisp Sets. Given two crisp sets   and   on the universal set  , the 

following operations can be applied to crisp sets[39]. 

Union                               (4-1) 

Intersection                              (4-2) 

Complement                          (4-3) 

Difference                               (4-4) 

 

4.1.2 Properties of Crisp Sets. Given multiple sets on the universal set  , the following 

properties are significant because of the mathematical manipulation of sets and their similarity to 

fuzzy sets [39]. 

Commutativity                                                     

                                                                                                                                                    (4-5) 
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Associativity                                                      

                                                                                                                                   (4-6) 

Distributivity                                                         
                                                                                                                            (4-7) 

Idempotency                                                   

                                                                                                                                            (4-8) 

Identity                                                            

                                                                              

                                                                         

                                                                                                                                                          (4-9) 

Transivity                                                                                                      (4-10) 

Involution                                                                                                                              (4-11) 

De Morgan’s Principles                                                                                               (4-12) 

                                                                                       (4-13) 

 

4.1.3 Types of Crisp Data. Unless developers incorporate fuzzy methods in their data 

collection, most data will be in a crisp format.  Crisp data can be generally categorized in two 

forms: nominal and numeric. 

4.1.3.1 Nominal Data.  For decision making, nominal data represents values without any 

quantitative information.  Nominal data may represent unstructured information that lacks the 

ability to be measured.  Nominal data may also signify labels or descriptions, such as color or 

location names.  In some circumstances, nominal data is applied to decision analysis to capture 

user preference.  This preference could either be a mandatory or favoritism requirement.  An 

example of a mandatory requirement would be the purchase of a specific colored jersey for a 
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professional sports team.  An example of a favoritism requirement would be the selection of a 

food entrée for a catered event. 

4.1.3.2 Numerical Data.  For decision making, numerical data represents values with 

quantitative information that can be measured and compared against other data.  For most DA 

applications, numerical data is useful for measuring the degree parameters meets user preference.   

 

4.2 Fuzzy Data   

During early system development, most designs can best be represented with some level of 

imprecision or approximation [71]. According to Goguen [72] “Fuzziness is more than the 

exception in engineering design problems: usually there is no well-defined best solution or 

design.”  This quote by Goguen captures the reason for using fuzzy sets in early system design.  

For decision making during early system development, fuzzy sets are useful at capturing the 

approximations made during the early phases of engineering design. [71] 

 A fuzzy set contains elements that have varying degrees of membership in the set.  This 

partial membership is what differentiates fuzzy sets from crisp sets where elements are either in 

or out of a defined set.  For an element in a universe that contains fuzzy sets, the transition can be 

gradual.  This gradual transition results in vague and ambiguous set boundaries where the 

membership function of fuzzy sets captures this uncertainty. [39]  By relaxing boundaries 

conditions, fuzzy sets provide a useful means for modeling imprecise and ambiguous data that is 

often prevalent in early system design.   

 

4.2.1 Operations on Fuzzy Sets Given sets   ,    and    on the universal set  , the following 

operations can be applied to fuzzy sets[39]. 
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Union        
 ( ) =   

       
            (4-14) 

Intersection       
 ( ) =   

       
            (4-15) 

Complement    
  

( ) = 1 -   
          (4-16) 

Unlike crisp sets, Difference operations are rarely applied on fuzzy sets and most fuzzy 

mathematics textbooks omit difference equations for fuzzy sets.  A further discussion on 

different calculations is beyond the scope of this dissertation but additional information can be 

found at [73]. 

 

4.2.2 Properties of Fuzzy Sets. Fuzzy sets follow the same properties as crisp sets [39], [70].  

Therefore, the properties given in Equations 4-5 through 4-13 are identical to those for fuzzy 

sets. 

  

4.2.3 Types of Fuzzy Data Fuzzy data represents imprecise and ambiguous system data or 

when information cannot be defined or described well due to limited knowledge or 

understanding.  Fuzzy data can be generally categorized in two forms: linguistic and imprecise. 

4.2.3.1 Linguistic Data.  During early system design and evaluation, engineers and DMs may 

use words such as good, fair, and poor to describe a characteristic or evaluate a system.  

Linguistic qualifiers, such as “very long”, “around ten meters”, or “approximately 15 feet” also 

result in unquantifiable information that can lead to uncertainty [33], [39].  Fuzzy sets are useful 

in modeling this ambiguous and ill defined information. 

4.2.3.2 Imprecise Data.  Despite high uncertainty during early system development, the 

design engineers of each alternative typically provide the best performance and reliability 

estimates [74]. By using the Method of Imprecision (MoI), designers can formally incorporate 
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their judgment and experience using fuzzy sets. By applying MoI, designers can model their 

preference for a particular value or range [11].  Although cost estimates are often performed 

separate from design engineers, the cost estimates are often provided in a range from worst, most 

likely, to best case.  These cost estimates, as well as MoI design estimates, can be modeled as a 

triangular membership function, where: 

 

  
 ( )  

 
 
 

 
 

               
     

       
             

      

      
             

              

           (4-17) 

 

 MoI design estimates can also be modeled as a trapezoid membership function, where: 

 

  
 ( )  

 
  
 

  
 

               
     

       
             

                      
      

      
             

              

      (4-18) 

 

4.3 Mixed Data (Crisp & Fuzzy)  

Due to the inherent differences between crisp and fuzzy numbers, the existence of both types 

of data in a decision matrix may cause calculation errors.  For example, the Euclidean distance 

calculations for TOPSIS are different from FTOPSIS.  If both fuzzy and crisp data are used in 

either calculation, the analysis could produce undesirable results.   Therefore, fuzzification or de-

fuzzification should be performed in order to facilitate comparisons between fuzzy and crisp 

data.  Unfortunately, there is no steadfast guidance on whether to perform fuzzification or de-



29 
 

fuzzification, although many DA techniques seem to prefer crisp transformation[43].  Perhaps a 

heuristic could be to decide a technique based on the higher occurrence of data type within a 

decision matrix.  For example, if a higher percentage of crisp data is present in the data set, then 

de-fuzzification should be performed on all fuzzy data.  Conversely, if more fuzzy data is 

present, then fuzzification should be performed on all crisp data.  However, given the higher 

availability of crisp data, it may be assumed that de-fuzzification would be used more often.  

Perhaps this is why crisp transformations appear more frequently in the literature.  This may 

change in the future, however, if fuzzy methods continue expanding in industry. 

 

4.4 Transformations  

In order to conduct effective decision analysis, fuzzy and crisp data should be transformed 

into a similar format.  Fuzzification is the process of making a crisp number fuzzy and de-

fuzzification, or crisp transformation, is the process of making a fuzzy number crisp. 

 

4.4.1 Fuzzification.  If crisp data is associated with imprecision, ambiguity, or vagueness, 

then the value can be represented by a fuzzy membership function.   Under these circumstances, 

the uncertainty can be captured in the boundary portion of the fuzzy set.  For example, hardware 

such as a digital voltmeter displays crisp data but is subject to experimental error.  This 

experimental error can be modeled as a fuzzy membership function.  Figure 4-1 depicts a range 

of errors for a voltage reading and its associated membership function represents that 

imprecision.[39] 
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Figure 4-1: Membership function of crisp data with imprecision [39] 

 

4.4.2 De-Fuzzification.  There are many de-fuzzification techniques, each with advantages 

and disadvantages.  The fuzzy sets in this dissertation are associated with normal triangular or 

trapezoidal fuzzy numbers.  Therefore, the de-fuzzification techniques for non-normal fuzzy sets 

as well as techniques for different shaped fuzzy numbers were not included in this dissertation.  

Additional information about de-fuzzification techniques can be found at [39], [70], [75]. 

Fuzzy parameters derived from Method of Imprecision (MoI) usually conform to a normal 

fuzzy set where data with the highest design engineer confidence have a membership value of 

one.  For symmetric triangular and trapezoidal membership functions, the maximum membership 

and mean maximum membership de-fuzzification techniques could be used to transform the 

fuzzy sets to crisp data, respectively.  Equation 4-19 could be used for triangular membership 

functions and Equation 4-20 could be used for trapezoidal membership functions, where    is a 

defuzzified value for both equations.  For Equation 4-20,   and   represent the peak of the 

trapezoidal membership function where   
 ( ) = 1.  If the membership function is asymmetrical 

with a noticeable skew, the graded mean integration technique [76] may be a better technique to 

capture the skewness in the data.  The graded mean integration technique is a simple, 

straightforward de-fuzzification technique that is suitable for triangular and trapezoidal fuzzy 

sets.  Since most MoI data is captured in triangular and trapezoidal fuzzy sets [11], the graded 
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mean integration technique should be adequate for most calculations.  To perform the graded 

mean integration technique for triangular membership functions, use Equation 4-21 and for 

trapezoidal membership functions, use Equation 4-22. 

 

  
 (        

 (                (4-19) 

 

    
   

 
      (4-20) 

 

       
 

 
                    (4-21) 

 

       
 

 
                      (4-22) 
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5. MODELING CUSTOMER PREFERENCE 

Customer preference is often elicited through several methods.  The three most common 

types of elicitation are collaborative, research, and experiments.  Collaborative elicitation 

involves direct interaction with stakeholders to glean their experiences, expertise and judgment.  

Research involves methodically discovering and studying information from material or sources.  

Experiments include identifying previously unknown information through a controlled test. [77]  

 

5.1 Customer Preference on Criteria Weights 

Criteria weights are determined by requirements prioritization.  This occurs after 

requirements are traced to ensure that requirements and designs at different levels are aligned to 

one another.  After requirements are prioritized, they are often modeled to analyze, synthesize 

and refine customer elicitation results.  During requirements modeling, different viewpoints are 

often employed for addressing the concerns of a particular stakeholder group.   This process is 

similar to the Operational Viewpoints (OV) [67] that was discussed in section 3.2.  Once all 

stakeholder issues have been addressed, the requirements are eventually verified and validated 

for further decision analysis. [77] 

 

5.1.1 Requirement Prioritization Methods.  Requirements prioritization is the act of 

ranking requirements to determine their relative importance to stakeholders.  There are several 

factors that influence prioritization such as benefit, cost, risk, and dependencies of each 

requirement.  All of these factors have to be addressed to adequately prioritize requirements.  

When conducting requirements prioritization, there are many techniques that can be used such as 

financial analysis, business cases, interviews, risk analysis, and workshops. [77]  Requirement 
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prioritization can also be performed through technical importance measurement using the 

Quality Functional Deployment (QFD) [68].  QFD is a method, developed by Yoji Akao, to 

transform the “voice of the customer” into engineering characteristics for a product [78].  In 

decision analysis, determination of criteria weights can sometimes be ad hoc [68], but it is 

preferred to link criteria weights to prioritized requirements that were elicited with one or more 

formalized techniques. 

 
Figure 5-1: Quality Function Deployment [79] 

 

5.1.2 Ranking Criteria Weights.  Criteria weights play an important role for measuring 

overall preference of alternatives.  There are several weighting methods available, each with 

advantages and disadvantages.  Since the aim of the OCS-MCDA techniques is to reduce 

decision maker bias during system analysis, a rank sum weighting method [80] was used to rank 

criteria according to prioritized customer requirements.  The rank sum method was selected 

because its ranking methodology and weight results reflect a prioritized list.  To record criteria 

weights, the technique works best using a prioritized requirements list that was generated using 
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standard business analysis processes.  For government projects, any document that describes Key 

Performance Parameters (KPP) thresholds, objectives, and priorities should be sufficient. For 

most US government Request for Proposals (RFP), the solicitation document lists evaluation 

criteria in order of importance from most to least significant.  Other sources of US government 

threshold, objective, and priorities include DODs Initial Capabilities Document (ICD), 

Capability Development Document (CDD) and the Department of Homeland Security’s (DHS) 

Operational Requirements Document (ORD).  Regardless of where criteria weights originate, the 

OCS-MCDA methods use the following weighting technique: 

 1. Rank criteria 1 through n to reflect customer priorities from most to least significant 

 2. Weight rank position using the rank sum method 

   
        

        
 
   

      (5-1) 

     where    is the rank of the     criterion,   = 1, 2, …, n.  

 3. Ensure that all weights    sum up to one 

   
 
    = 1           (5-2) 

 

5.2 Customer Preference on Criteria Values  

An important goal when conducting customer data elicitation is to determine the point of 

diminished marginal utility for each significant system criterion.  Diminished marginal utility 

occurs when each additional unit provides less and less additional utility [81], [82].  For 

engineering applications, the point of diminished marginal utility is often referred to as the “knee 
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in the curve” where the cost to increase a parameter is no longer worth the performance benefit 

[83]–[85].  Restricting diminished marginal utility is one of the objectives of this dissertation.  

The Objective Criteria Saturation (OCS) Multiple Criteria Decision Analysis (MCDA) 

techniques proposed in this research were created to constrain inflated scoring beyond the “knees 

in the curve”.  

 

5.2.1 Elicitation Methods.  There are several elicitation techniques available to determine 

customer preference on criteria values.  Some of these techniques include: benchmarking and 

market analysis; concept modeling; data mining; document analysis; focus groups; interface 

analysis; interviews and workshops. [77]  After the customer elicitation data has been confirmed, 

verified and validated, it can be used with the OCS-MCDA decision techniques.  The OCS 

techniques work best with validated customer preference data where the point of diminished 

marginal utility has already been identified and validated. 

 

5.2.2 Modeling Validated User Needs.  After user needs have been properly validated, they 

can be modeled using fuzzy sets.  Since customers frequently explain their requirements in a 

vague and fuzzy manner, fuzzy sets are useful in modeling this uncertainty.  Customer 

requirements are also frequently conflicting, such as low cost and high performance.  

The US government applies threshold and objective criteria for its requirements, which can 

be modeled as a fuzzy set.  By establishing objective and threshold requirements, the US 

government provides a trade space for developers to adjust conflicting capabilities to best meet 

government needs.  Fuzzy sets provide a means for representing and dealing with flexible goals, 

in which the flexibility in the goals can be exploited to satisfy contradictory goals [86].  Previous 
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researchers have advocated using triangular fuzzy numbers to model fuzzy customer 

requirements [13]–[15]. If cost and benefit criteria are aggregated, then the intersection of cost 

and benefit criteria should provide the maximum utility resulting in a triangular membership 

function (see Figure 5-2).  However, if criteria are evaluated independently, then open shoulder 

  and   fuzzy sets better represent separate customer requirements, where the   membership 

function monotonically increases from the threshold value and the   membership function 

monotonically decreases from the threshold value.   

 
Figure 5-2: Relationship between Cost and Performance Criteria 

According to the US Department of Defense (DOD), threshold criteria are mandatory 

minimum requirements and objective criteria are “applicable when a higher level of performance 

represents significant increase in operational utility”.  Conversely, “performance above the 

objective value does not justify additional expense” [87].  The US DOD’s definition of objective 

criteria is essentially the point of diminished marginal utility, or the “knee in the curve”.  Figure 

5-3 illustrates how objective criteria can be established at the point of diminished marginal 

utility.  The aforementioned US DOD definitions explain why   and   fuzzy sets are preferred 

for modeling fuzzy customer requirements.  As long as objective criteria is thoroughly 

researched and calculated, increased performance beyond objective requirements should gain 

marginal utility for the customer.  For example, a crop dusting company has little utility for an 
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aircraft that can fly extremely fast at high altitudes.  However, this doesn’t mean this particular 

customer doesn’t have a preference for speed and altitude.  Although some minimal requirements 

may be acceptable, this customer may prefer an aircraft that can perform at the required density 

altitude (e.g. Colorado on a hot summer day) at speeds that minimize transit times.  Therefore, 

when conducting decision analysis using fuzzy requirements,   fuzzy sets should be applied to 

benefit criteria and   fuzzy sets should be applied to cost criteria. 

 
Figure 5-3: Customer Utility to define Objective Requirements 

System requirements for the US government are often expressed as a Measures of 

Performance (MOP).  MOPs are typically a quantitative measure of a system characteristic, such 

as velocity or scan rate.  Each MOP should have a threshold value that states a minimum system 

requirement.  Most MOPs also contain an objective value that represents an ideal requirement 

that is more demanding than the threshold value. MOP values may come from a requirement 

document or from Subject Matter Experts (SME). Regardless of how MOPS are established, the 

rationale for selecting threshold and objective values should be well documented [88].  In most 

US government documents, MOPs are expressed as Key Performance Parameters (KPP) or Key 

System Attributes (KSA). These KPP and KSAs usually contain threshold and objective values.  

The threshold and objective values from MOP, KPP, and KSAs provide a trade space that can be 

represented as a fuzzy set.  If threshold criteria            represents minimum requirements and 
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objective criteria            represents maximum requirements, then cost criteria can be modeled 

as: 

  
 (    

           
   

   
      

            

               (5-3) 

    where   represents             and   represents           .   

Benefit criteria can be modeled as: 

  
 (    

           
   

   
      

            

        (5-4) 

    where   represents            and   represents           .   

 
Figure 5-4: Cost (left) and Benefit (right) Criteria [39] 

 

 
Figure 5-5: L Membership Function – Takeoff Distance Evaluation Criterion 
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Using criteria objectives as a maximum value should disincentive decision makers from 

anchoring their decisions based on excessive capabilities under a specific criterion.  Currently, 

WPM and TOPSIS methods use minimum and maximum values under a specific criterion to 

evaluate each alternative.  Using these current models, an alternative being evaluated could 

receive significantly higher scores when reported capabilities are greater than objective criteria.  

This problem is pronounced whenever weights are applied to criteria where excessive capability 

is recorded.  Figure 5-3 represents cost and benefit criteria membership functions using 

           and              for minimum and maximum values.  The cost membership function, 

Equation 5-3 is on the left side of the figure and the benefit membership function, Equation 5-4 

is on the right side.  Figure 5-4 provides an example of a   (cost) membership function of an 

evaluation criterion using            and             from DOD customer requirements. By 

saturating criteria at a maximum value of           , the OCS-MCDA methods restrict bias 

scoring for alternatives that provide excess capabilities beyond ideal customer requirements.   

 
Figure 5-6: MoI Design Estimate as a Triangular membership Function[70] 
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Figure 5-7:   Membership Function – Design Estimates and Takeoff Criteria 

Membership functions are useful in measuring the degree a particular value belongs to a 

vaguely defined set.  Since early system design is often subjective and imprecise, membership 

functions can be useful in determining how well a design meets requirements.  Figure 5-5 

demonstrates how a design estimate can be modeled using a triangular membership function.  

The example depicts higher certainty on greater performance over lower performance from a 

point estimate.  Figure 5-6 illustrates how design estimates, represented as blue and green 

colored fuzzy triangular numbers, can be evaluated against a cost criterion, represented as a red 

colored   membership function.  To determine the degree a value meets customer requirements, 

Equations 5-3 and 5-4 can be used for cost and benefit criteria, respectively.  To determine the 

degree a value meets both a design estimate as well as customer requirements, a fourth 

membership function could be derived from Figure 5-6 by calculating the intersection of a design 

fuzzy set    and the cost fuzzy set    using Equation 5-5. For benefit criteria, Equation 5-6 can be 

used, where    is a fuzzy set of benefit criteria.               

    
 ( ) =        

 ,   
 )       (5-5) 

    
 ( ) =        

 ,   
 )       (5-6) 
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Developers of mature systems with sufficient test and field data often provide crisp system 

performance data for potential customers.  Displaying the system data as a membership function 

provides a visual and mathematical representation of the degree each alternative meets customer 

requirements.  Figures 5-7 and 5-8 provide an example of a   (benefit) membership function and 

demonstrate how system data from each alternative can be modeled as a crisp membership 

function.  Figure 5-7 displays system alternatives with various performance attributes and 

various degrees of membership.  Figure 5-8 displays system alternatives with various 

performance attributes but the same degree of membership.  Figure 5-8 visually depicts 

saturating criteria at a maximum value of            .  Since each alternative in Figure 5-8 

exceeded objective requirements, each alternative is completely in the set and receives the same 

numeric value.  By saturating excessive values through a membership function, the OCS-MCDA 

technique restricts bias scoring for alternatives that provide excess capabilities beyond ideal 

customer requirements.   

  
Figure 5-8: Membership Function – Within Trade Space Figure 5-9: Membership Function – Exceeds Objective 

    
                         

5.2.2.1 Mandatory Requirements.  Mandatory requirements are customer needs that a 

system must meet.  For US DOD acquisitions, threshold criteria are considered mandatory 

minimum requirements. [87] 
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5.2.2.1.1 Screening Criteria with no Preference Limitation.  For some criteria, only threshold 

requirements are provided.  For these criteria, there is no determination of a point of diminished 

marginal utility.  This may occur if a mandatory requirement is nominal, such as a mandatory 

color required for a professional sports team.  In this situation, all alternatives that do not meet 

the mandatory requirement would be screened out for further consideration.  Criteria without 

preference requirements may also occur if there is little to no diminished marginal utility with 

increased capability.  Under these situations, the alternatives that meet threshold requirements 

would be evaluated by the degree each alternative meets the requirement.  This is typically how 

alternatives are evaluated using traditional WSM and TOPSIS methods. 

5.2.2.1.2 Screening Criteria with Preference Limitations.  For the purpose of this Objective 

Criteria Saturation (OCS) research, preference limitation refers to the “knee in the curve” where 

diminished marginal utility is expected.  For US DOD acquisitions, objective criteria can be 

considered a preference limitation since “performance above the objective value does not justify 

additional expense” [87].  Under these situations, the alternatives that meet threshold 

requirements should be evaluated using OCS-MCDA techniques to ensure that overinflated 

scoring does not occur. 

5.2.2.2 Preference Requirements and Limitations.  As defined above, preference limitation 

refers to the “knee in the curve” where diminished marginal utility is expected.  For the purpose 

of this OCS research, preference requirements refer to customer desires that are not mandatory.  

Typically, preference requirements are nominal characteristics that may be nice to have, but not 

truly needed.  For example, someone looking to purchase a new car may prefer a red car to a 

maroon car but is fine with either color. Other examples using the car buying analogy may 

include leather seats, heated steering wheel and autonomous parallel parking.  Of course, 
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determining what is required and what is not required is usually from the user viewpoint (e.g. 

some users may require autonomous parallel parking).   

5.2.2.2.1 Preference Requirement without Mandatory Requirements.  A preference 

requirement without a mandatory requirement usually occurs with optional capabilities.  

Depending on the importance of the capability, alternatives may receive a binary scoring (e.g. 1 

or zero) depending on whether they meet the preference requirement.  This may be useful if two 

alternatives are very close together in final ranking. 

5.2.2.2.2 Preference Limitation with Mandatory Requirements.  Mandatory requirements and 

preference limitations are often stated as threshold and objective requirements in US DOD 

acquisition documents [87].  These requirement conditions are ideal for OCS-MCDA techniques 

to ensure a best value decision with an optimal mix of performance, cost and reliability. 

 

5.2.3 Overview of Objective Criteria Saturation (OCS) Multiple Criteria Decision 

Making (MCDA) Techniques.  The OCS-MCDA methods are differentiated by which axis of 

the membership function the technique uses to perform calculations.  One method is calculated 

on the Y-Axis of the membership function with the other two using the X-Axis for calculations.  

A brief explanation of the three techniques is provided below.   

5.2.3.1 OCS-MCDA Methods (Y-Axis).  The following technique utilizes the dependent 

variables on the Y-Axis of each membership function.  By obtaining discrete preference 

information directly from each membership function, the technique provides an uncomplicated, 

straight forward technique.  

5.2.3.1.1 Membership Function – Weighted Sum Model (MF-WSM).  This decision analysis 

(DA) technique was created to provide an uncomplicated, best value Decision Maker (DM) tool 
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that addresses the uncertainty of fuzzy requirements expressed as minimum and maximum 

values. The goal was also to reduce DM bias when faced with superfluous capabilities that may 

distract DMs and lead to anchoring on specific alternatives. The MF-WSM technique models 

fuzzy customer preference using fuzzy membership functions to determine user utility for a 

given design parameter. By leveraging both benefit and cost membership functions to determine 

user utility per criterion, the MF-WSM method can accurately handle conflicting requirements. 

By incorporating fuzzy numbers that have a maximum value of one, the MF-WSM method also 

restricts preferential scoring for alternatives that provide excess capabilities beyond ideal 

customer requirements resulting in a ranked list of alternatives that is more aligned with 

customer stated requirements. 

5.2.3.2 OCS-MCDA Methods (X-Axis).  The following techniques utilize the independent 

variables on the X-Axis of the membership function.  These techniques are modified versions of 

the Technique for Order of Preference by Similarity to Ideal Solutions (TOPSIS) and Fuzzy 

Technique for Order of Preference by Similarity to Ideal Solutions (FTOPSIS). 

5.2.3.2.1 Objective Criteria Saturation – Technique for Order of Preference by Similarity to 

Ideal Solutions (OCS-TOPSIS).  The OCS-TOPSIS method was created for evaluating mature 

concept designs with crisp design parameters using fuzzy customer requirements.  In this 

technique, minimum and maximum customer requirements are used to establish the Negative 

Ideal Solution (NIS) and Positive Ideal Solution (PIS) in order to define and constrain the trade 

space.  Since most conventional TOPSIS models use minimum and maximum values under a 

specific criterion to evaluate each alternative, a best value alternative may not be selected due to 

another alternative possessing excess capability in a heavily weighted criterion. This problem 

can become pronounced whenever evaluation criteria and priorities are published, such as in an 
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Request for Proposal (RFP).  Since most government contracts require competitive selection, 

system providers may be compelled to focus on the highest weighted criteria while providing 

less focus to lower weighted criteria. This OCS-TOPSIS method addresses this problem by 

restricting preferential scoring for alternatives that provide excess capabilities beyond ideal 

customer requirements resulting in a ranked list of alternatives that is more aligned with 

customer stated requirements. 

5.2.2.3.2.2 Objective Criteria Saturation – Fuzzy Technique for Order of Preference by 

Similarity to Ideal Solutions (OCS-FTOPSIS).  The OCS-FTOPSIS method was created for 

evaluating immature concept designs with fuzzy design parameters using fuzzy customer 

requirements.  In this technique, minimum and maximum customer requirements are used to 

establish the Fuzzy Negative Ideal Solution (FNIS) and Fuzzy Positive Ideal Solution (FPIS) in 

order to define and constrain the trade space.  Instead of using linguistic variables to evaluate 

each criterion, like most FTOPSIS techniques, fuzzy design estimates are used to calculate 

Euclidean distances from FNIS and FPIS.  Criteria weights are assigned according to a 

customer’s prioritized requirements.  Similar to the previous two techniques, the OCS-FTOPSIS 

method also restricts preferential scoring for alternatives that provide excess capabilities beyond 

ideal customer requirements. 
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6. OBJECTIVE CRITERIA SATURATION (OCS) MULTIPLE CRITERIA 

DECISION MAKING (MCDA) TECHNIQUES 

The Objective Criteria Saturation (OCS) Multiple Criteria Decision Making (MCDA) 

techniques were established to prevent inflated scoring from unnecessary capabilities and system 

overdevelopment.  Under certain conditions using WSM and TOPSIS, an alternative meeting 

much fewer objective requirements than other alternatives can be selected as the best alternative.  

This sometimes occurs when the selected alternative possesses capabilities that exceed objective 

criteria in the highest weighted criteria despite lower capabilities for the remaining criteria.  This 

problem can become pronounced whenever customer evaluation criteria and priority are 

published for prospective system providers, such as US government acquisition programs.  

Under these circumstances, systems providers may focus their efforts at exceeding objective 

requirements for heavily weighted criteria at the expense of lesser weighted criteria in hopes of 

winning a contract.  Although this practice may produce a high performance system, it may also 

contribute to higher costs and poor reliability.  The OCS-MCDA methods were created to solve 

this problem by saturating scores at ideal customer requirements in an effort to select a best value 

alternative with an optimal mix of performance, cost, and reliability.    

The following OCS-MCDA methods were established from a practitioner’s viewpoint with 

the intent of creating straightforward techniques that could easily transfer to field practice.  

Although the following methods are presently theoretical, they were created to serve as a basis 

for continuing empirical research and experimentation.  Frey argued that “developments based 

on theory alone may prove to be ineffective in practice”[89]. While developing his axiomatic 

basis for statistics and decision making, Savage cautioned taking exaggerated stands regarding 

theoretical foundations and suggested a more balanced view of the interactions between 
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foundations and professional practice[90].  The following DA methods were created as a 

foundation for future professional experimentation and practice.  

There are three methods for applying Objective Criteria Saturation (OCS) in decision 

making.  The three OCS-MCDA methods are either analyzed on the X or Y axis of membership 

functions.  The OCS-TOPSIS and OCS-FTOPSIS procedures are analyzed on the X axis while 

the MF-WSM method is analyzed on the Y axis.     

 

6.1 OCS-MCDA Methods (Y-Axis) 

The following technique utilizes the dependent variables on the Y-Axis of each membership 

function.  By obtaining discrete preference information directly from each membership function, 

the technique provides an uncomplicated, straight forward technique.  

  

6.1.1 Membership Function – Weighted Sum Model (WSM).  The procedure for 

conducting the MF-WSM is summarized as follows: 

1. Populate the decision matrix   with performance, cost, and reliability data from each 

alternative system   ; where     is the system data of the ith alternative    with respect to the jth 

criterion   ; and    represents the weight of the jth criterion   .  

 

                                                   

  

  
  
  
 
   

 
 
 
 
             
             
             
     

              
 
 
 
 

    (6-1) 
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2. Create a membership function matrix   from decision matrix    using Equation 6-2 for 

cost criteria and Equation 6-3 for benefit criteria, where     represents the degree     meets 

criteria   .  

  
 (    

           
   

   
      

            

               (6-2) 

    where   represents             and   represents           .   

Benefit criteria can be modeled as: 

  
 (    

           
   

   
      

            

        (6-3) 

    where   represents            and   represents           .   

 

3. Calculate the weighted sum of matrix   using Equation 6-4. 

 
               
          

 

   

              
 

(6-4) 

   

4. The alternative with the highest score represents the best alternative. 
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6.2 OCS-MCDA Methods (X-Axis) 

The following techniques utilize the independent variables on the X-Axis of the membership 

function.  These techniques are modified versions of the Technique for Order of Preference by 

Similarity to Ideal Solutions (TOPSIS) and Fuzzy Technique for Order of Preference by 

Similarity to Ideal Solutions (FTOPSIS). 

 

6.2.1 Objective Criteria Saturation – Technique for Order of Preference by Similarity 

to Ideal Solutions (OCS-TOPSIS).  The procedure for conducting the OCS-TOPSIS is 

summarized as follows: 

1. Populate the decision matrix   with performance, cost, and reliability data from each 

alternative system   ; where     is the system data of the ith alternative    with respect to the jth 

criterion   ;            represents the objective criteria of the jth criterion   ;            

represents the threshold criteria of the jth criterion   ; and    represents the weight of the jth 

criterion   . 

                                                                                              

  

          
  
  
  
 
  

           
 
 
 
 
 
 
               
             
             
             
     

             

              
 
 
 
 
 
 

    (6-5) 

                                  
   

2. Create a constrained decision matrix   from decision matrix   using Equation 6-6 to 

saturate criteria values greater than             .  
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     (6-6) 

                         

    where     is the constrained value of    . 

 

For    where a specified requirement of            and            is not stated in a government 

document,     =    . 

 

3. Create a normalized decision matrix   from constrained matrix   using Equation 6-7. 

 

 
     

   

         

                                  (6-7) 

    where     is the normalized value of    . 

 

4. Calculate the weighted normalized decision matrix   by multiplying the normalization 

values     by the criterion weights    that were based on the order of importance from a 

government solicitation document. 

                                             (6-8) 

    where                 

 

5. Determine the Positive Ideal Solutions (PIS)   
 and Negative Ideal Solutions (NIS)    

  

using Equations 6-9 and 6-10. 

        
    

     
      

             (6-9) 

        
    

     
      

       (6-10) 
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    where, 

        
    

                                             

                                                 
       

  
    

                                             

                                                 
       

  

6.  Use Equations 6-11 and 6-12 to calculate the Euclidean distances    
 and   

  of alternative 

   to PIS and NIS, respectively. 

    
            

  
  

   ,                 (6-11) 

  
            

  
  

   ,               (6-12) 

 

7. Calculate the closeness coefficient    .  The closeness coefficient represents the distances 

of each alternative to   
  and   

  and is calculated: 

 

     
  
 

  
    

 ,                (6-13) 

8. The alternative with the highest     represents the best alternative and is closest to   
 and 

farthest from   
 . 
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6.2.2 Objective Criteria Saturation – Fuzzy Technique for Order of Preference by 

Similarity to Ideal Solutions (OCS-FTOPSIS).  The procedure for conducting the OCS-

FTOPSIS is summarized as follows: 

1. Populate the decision matrix    with performance, cost, and reliability data from each 

alternative system   ; where      is the system data of the ith alternative    with respect to the jth 

criterion   ;            represents the objective criteria of the jth criterion   ;            

represents the threshold criteria of the jth criterion   ; and    represents the weight of the jth 

criterion   . 

                                                

   

          
  
  
  
 
  

           
 
 
 
 
 
 
 
    

    
    

     

                 
                 
                 
     

                 

    
    

    
      

 
 
 
 
 
 
 

    (6-14) 

                                    
  

2. Create a constrained decision matrix    from decision matrix    using Equation 6-15 to 

saturate criteria values greater than                Equation (6-15) is used for strict adherence to 

threshold criteria and Equation 6-16 is used for partially meeting threshold requirements.  

 

       
                                  
                                  

      (6-15) 

       

                                  
                                

                                   

      (6-16) 

                           

       where      is the constrained value of     .  
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For    where            and             is not stated in a customer requirements document, 

     =     . 

 

3. Create a normalized decision matrix    from constrained matrix   .  First, perform a linear 

scale transformation to transform the various criteria scales into a comparable scale and obtain a 

normalized fuzzy decision matrix   . 

               ,     (6-17)        

 

Next, perform a normalization calculation to preserve the property that the ranges of 

normalized triangular fuzzy numbers belong to [0,1].  Equation 6-18 calculates the set of benefit 

criteria    and Equation 6-19 calculates the set of cost criteria   .  

      
   

  
  

   

  
  

   

  
  ,                    (6-18) 
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For    where a specified customer requirement of            and             is not defined or 

stated in any document, the following normalization technique can be used where   
          

and   
              

      
   

  
  

   

  
  

   

  
  ,                          (6-20) 
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4. Calculate the weighted normalized decision matrix    by multiplying the normalization 

values      by the criterion weights    that were based on customer prioritized requirements. 

 

                                             (6-21) 

where                          

 

5. Define FPIS and FNIS using Equation 6-22 and 6-23, respectfully. 

 

FPIS      
     

       
  ,     (6-22) 

FNIS      
     

       
  ,     (6-23) 

   where, 

  
    

                                                         

                                                             
    

   
    

                                                         

                                                             
     

   

6. Use Equations 6-24 and 6-25 to calculate the Euclidean distances    
 and   

  of alternative 

   to PIS and NIS, respectively. 

 

    
            

  
  

   ,                 (6-24) 

    
            

  
  

   ,          .    (6-25) 

   where     is the defuzzified value of      . 
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To perform defuzzification on     , the graded mean integration technique, Equation 6-26, is a 

simple, straightforward technique that is suitable for triangular fuzzy sets [76]. 

 

       
 

 
                            (6-26) 

 

7. Calculate the closeness coefficient    .  The closeness coefficient represents the distances 

to FPIS and FNIS and is calculated: 

 

     
  
 

  
    

 ,                 (6-27) 

 

8. The alternative with the highest     represents the best alternative and is closest to FPIS 

and farthest from FNIS. 
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7. APPLYING RISK IN OBJECTIVE CRITERIA SATURATION (OCS) 

MULTIPLE CRITERIA DECISION MAKING (MCDA)  

According to the International Council of Systems Engineering (INCOSE), “reducing the risk 

associated with new systems or modifications to complex systems continues to be a primary goal 

of the systems engineer” [91].  From a systems engineering perspective, risk can be viewed as a 

measure of uncertainty for meeting a goal, objective, or requirements pertaining to technical 

performance, cost and schedule [62].  From a project management perspective, risk can be 

viewed as an uncertain event or condition that could have a negative effect on one or more 

project objectives [92].  From a business analyst perspective, risk can be viewed as the 

possibility that a requirement cannot deliver the potential value or cannot be met at all [77].   

Although these risk definitions may slightly differ, they all generally refer to the possibility of 

negative impacts on a project or system.  Therefore, risk can certainly be viewed as a crucial 

factor that must be effectively addressed to successfully design and develop a system.  As 

illustrated in Figure 2-1 in Chapter 2, approximately 80 percent of total Life Cycle Costs (LCC) 

has already been determined when only 20 percent of the actual costs have been accrued.  This 

figure captures the risk associated with system development and highlights the importance of 

good information and sound analysis during early system decisions.[29] 

 

7.1 Types of Risk 

There are many ways to classify or categorize risk.  Risks can be external, internal, technical, 

or unforeseeable.  Risks can also be classified by where they originate in a project, such as 

schedule, cost, scope, or quality.  Customer satisfaction and company resources can also be a 

source of risk.[93] The US Department of Defense (DOD) focuses on risks that affect project 
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cost, schedule, and performance and groups these risks into three categories: business, 

programmatic, and technical.  Business risks are non-technical risks that typically originate 

outside the program office.  These risks typically come from stakeholders, regulations, market 

factors, weather and other external factors.  Programmatic risks are also non-technical risks but 

fall within the control of the program management office.  These risks area typically associated 

with program estimates, planning, execution, communications or contract structure.  Technical 

risks prevent a system from performing as intended or from meeting performance expectations.  

These risks typically originate from requirements, technology, engineering, test, manufacturing, 

quality, logistics, system security, and training.  Technical risks can also be internally or 

externally generated and may impact cost, schedule and/or performance. [94]  Due to the breadth 

and impact of technical risks, these risks will be the primary focus for the OCS-MCDA methods 

in this dissertation. 

 

7.1.1 Technology Risk.  Technology risk must be accurately assessed during early system 

development since it has an impact on schedule, cost, and quality (see Figure 7-1).  According to 

the US Government Accountability Office (GAO), “maturing new technology before it is 

included in a product is perhaps the most important determinant of the success of the eventual 

product” [95]. Since technology risk is considered to have the biggest impact on project success, 

technology maturity assessments were incorporated into the OCS-MCDA techniques. 
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Figure 7-1: Typical Relationship among Risk Categories [91] 

 

7.2 Risk Evaluation Methods 

During system solution performance analysis, risks should be consistently identified and 

managed [96].  According to PMBOK, risks should be assessed by their probability of 

occurrence and impact [92]. In Proactive Risk Management: Controlling Uncertainty in Product 

Development, Smith and Merritt argue “The key to successful risk management is not managing 

the risk itself but rather the facts leading you to believe the risk will occur”.  The authors call 

these facts risk drivers [97]. According to the GAO, the biggest risk driver for a successful 

product is technology maturity [95].  Due to technology maturity having the largest impact on a 

system’s outcome, technology risk will be the main risk focus in this dissertation.   

 

7.2.1 Technology Evaluation Methods.  The GAO has determined that the readiness of 

critical technologies at the start of system development affects the schedule and cost of 

developing a product [95], [98], [99].  In the US, a Technology Readiness Assessment (TRA) is 

required for large DOD acquisition programs prior to Milestone B [100], the review at the end of 
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Technology Maturation & Risk Reduction  (TM&RR) phase of the acquisition life cycle [101].  

The TRA identifies all critical technologies and verifies that all have been demonstrated in a 

relevant environment on the basis of an independent review [102], [103].  Since the GAO has 

already thoroughly researched the topic of Technology Readiness Assessments (TRA), their 

recommended use of Technology Readiness Levels (TRL) will be used throughout this 

dissertation.  Additional information about TRA can be found in the GAO Technology Readiness 

Assessment Guide [103]. 

Table 7-1: Technology Readiness Levels (TRL) [102] 

TRL Definition Description 

1 Basic principles observed and 

reported.  

Lowest level of technology readiness. Scientific research begins to be 

translated into applied research and development (R&D). Examples might 

include paper studies of a technology’s basic properties.  

2 Technology concept and/or 

application formulated.  

Invention begins. Once basic principles are observed, practical 

applications can be invented. Applications are speculative, and there may 

be no proof or detailed analysis to support the assumptions. Examples are 

limited to analytic studies.  

3 
Analytical and experimental critical 

function and/or characteristic proof of 

concept.  

Active R&D is initiated. This includes analytical studies and laboratory 

studies to physically validate the analytical predictions of separate 

elements of the technology. Examples include components that are not yet 

integrated or representative.  

4 Component and/or breadboard 

validation in a laboratory 

environment.  

Basic technological components are integrated to establish that they will 

work together. This is relatively “low fidelity” compared with the eventual 

system. Examples include integration of “ad hoc” hardware in the 

laboratory.  

5 Component and/or breadboard 

validation in a relevant environment.  

Fidelity of breadboard technology increases significantly. The basic 

technological components are integrated with reasonably realistic 

supporting elements so they can be tested in a simulated environment. 

Examples include “high-fidelity” laboratory integration of components.  

6 
System/subsystem model or prototype 

demonstration in a relevant 

environment.  

Representative model or prototype system, which is well beyond that of 

TRL 5, is tested in a relevant environment. Represents a major step up in a 

technology’s demonstrated readiness. Examples include testing a prototype 

in a high-fidelity laboratory environment or in a simulated operational 

environment.  

7 System prototype demonstration in an 

operational environment.  

Prototype near or at planned operational system. Represents a major step 

up from TRL 6 by requiring demonstration of an actual system prototype 

in an operational environment (e.g., in an air-craft, in a vehicle, or in 

space)  

8 Actual system completed and qualified 

through test and demonstration.  

Technology has been proven to work in its final form and under expected 

conditions. In almost all cases, this TRL represents the end of true system 

development. Examples include developmental test and evaluation 

(DT&E) of the system in its intended weapon system to deter-mine if it 

meets design specifications.  

9 Actual system proven through 

successful mission operations.  

Actual application of the technology in its final form and under mission 

conditions, such as those encountered in operational test and evaluation 

(OT&E). Examples include using the system under operational mission 

conditions.  
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7.2.1.1 Technology Readiness Levels (TRL).  Technology Readiness Levels (TRL) are used 

to designate a technology maturation level through professional expert judgment.  The TRL scale 

begins at TRL 1 where scientific research begins to be translated into applied research and 

development (R&D).  As technology matures, it moves higher in the TRL scale until it reaches 

the highest TRL rating where a system is proven in actual mission operations.  The TRL 

definitions and descriptions for TRL 1 through 9 are listed in Table 7-2.  For assessing a 

system’s technology maturity and overall technical risk, TRLs are suggested to be incorporated 

in the OCS-MCDA techniques presented in this dissertation. 

7.2.1.1.1 TRL Transformation to Fuzzy Numbers.  In some applications, there may be a need 

to convert Technical Readiness Levels (TRL) to fuzzy numbers.  The “science and technology, 

systems engineering, and program management communities each views technology readiness 

through its own lenses, which can make for variable and subjective TRA results” [103]. Since 

the TRA is a subjective evaluation, there may be a level of uncertainty to the TRL rating.  

Therefore, if crisp data is associated with imprecision, ambiguity, or vagueness, then a crisp 

value can be represented by a fuzzy membership function.   Under these circumstances, the 

uncertainty can be captured in the boundary portion of the fuzzy set.  Figure 7-2 depicts an 

example of fuzzy representations of TRLs where uncertainty is captured on both sides of the 

rating.  In the figure example, each TRL designation, except TRLs 1 and 9, depicts an 

uncertainty that the actual TRL could be one TRL higher or lower than the given rating.  
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Figure 7-2: TRL Transformation to Fuzzy Numbers 
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8. APPLICATION OF OBJECTIVE CRITERIA SATURATION (OCS) 

MULTIPLE CRITERIA DECISION MAKING (MCDA)  

 

8.1 Case Study #1 – Unmanned Aerial System (UAS) 

 The three OCS-MCDA techniques will be demonstrated using a United States Coast Guard 

(USCG) Unmanned Aerial System (UAS) development case study. The case study will apply the 

OCS methods to evaluate UAS design alternatives against performance, reliability and cost 

criteria. 

 

 
Figure 8-1: Unmanned Aerial System (UAS) Alternatives 

A1-Predator XP (top), A2-Shadow M2(middle), & A3-Hunter MQ5B (bottom) [104]–[106] 
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8.1.1 Scenario Background.  In 2016, the United States elected Donald Trump as president.  

Throughout his campaign, Trump campaigned heavily on vastly improving border security.  

Although he mostly campaigned on building a physical wall, several of his advisors advocated 

for a virtual wall consisting of sensor systems [107]. Due to these recent political pressures for 

increased border security, the United States Coast Guard (USCG) may experience an increase in 

systems acquisitions during Trump’s presidency.  DHS Customs and Border Protection (CBP) 

already employs a network of manned and unmanned aircraft as well as tower mounted sensors 

[108]. The US Coast Guard (USCG), however, has only begun exploring the use of unmanned 

systems. [109] 

  As of 2016, the USCG began researching the use of UAS for land and cutter-based aviation 

capabilities.  The USCG plans to augment is aviation fleet with cutter-based, low altitude small 

UAS and land-based, mid-altitude UAS.  The small UAS will provide a tactical, on-demand 

capability while the medium UAS will provide a wide-area surveillance capability [109].  To 

demonstrate the utility of OCS-MCDA techniques, the focus of the study will be on medium 

UAS that can be used for USCG operations. 

 

 8.1.2 Data used in Study.  To provide an example of the OCS-MCDA methods, all three 

techniques were applied to a set of requirements data that was derived from a US DOD Request 

for Proposals (RFP),  for medium sized UAS [110].  The three alternative designs were from 

Predator, Pioneer/Shadow, and Hunter systems due to the availability of reliability and cost data. 

For performance data and procurement costs, information was used from Predator XP, Shadow 

RQ-7, and Hunter RQ5-B systems [111]–[115]. For reliability and operational costs, information 

was used from Predator MQ1, Pioneer RQ2, and Hunter RQ-5A systems [1], [116], [117].  

Reliability and operational cost data from legacy systems was used due to the availability of 
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several years of field data.  It was assumed that the newer UAS would have similar reliability 

and operational costs to legacy UAS due to continuous improvement programs, government 

demands, and market competition. Since there was no significant separation between disposal 

costs among UAS alternatives, disposal costs were excluded from the analysis.     

In order to demonstrate fuzzy system information using OCS-MCDA techniques, triangular 

fuzzy numbers were created based on collected UAS data with Method of Imprecision (MoI) 

applied to create a range of uncertainty.  For this example, it was assumed that designers would 

use MoI to estimate higher uncertainty for decreased performance and increased cost associated 

with unknown USCG operating conditions and historical cost over runs.   

To determine the criteria values for             and             alternatives, objective and 

threshold values were used from the UAS RFP for performance criteria 2 through 7.  Risk was 

evaluated using Technology Readiness Level (TRL) assessments on each system alternative.  

Milestone B entrance criteria of TRL 6 [103] was used for             with a maximum TRL of 9 

for           . For demonstration purposes, a TRL was assigned to each alternative based on 

when each UAS entered the market; the longer time in the UAS market resulted in a higher TRL 

rating.  According to this measure, Alternatives 2, 1, and 3 were assigned TRLs 8, 7, and 6, 

respectively.  For availability criteria 8 and reliability criteria 9, a minimum of 70 percent was 

used for             with             represented as a maximum of 100 percent.  Since cost 

objectives were not stated in the UAS RFP, minimum and maximum costs under each criterion 

were used as            and           , respectively. 

The performance threshold and objective values from the UAS RFP are listed in Table 8-1.  

The evaluation criteria and normalized weights for the decision matrix are listed in Table 8-2 in 

rank order of importance.  The criteria weights were calculated using the rank sum method using 
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the UAS RFP’s order of importance for evaluation criteria.  Criterion 1 represents the total 

technology risk of the system and is given the top priority since it has the largest affect on the 

most criteria.  Criteria 2 through 7 represent performance criteria.  Criteria 8 through 10 

represent reliability criteria and criteria 10 through 12 represent cost criteria, in $million.  

Criterion 7 is also a cost criterion where lower values are preferred to higher values, but 

measured in feet instead of dollars.  Criterion 10 represents Operations and Maintenance (O&M) 

costs over a ten year period.  In regards to the weights used for this case study, the government’s 

strong preference of performance over cost and reliability is particularly noteworthy.  

Table 8-1: UAS Performance Evaluation Criteria 

Criteria                           

C1=  Technical Readiness Level 6 
 

C2=  Maximum Payload Weight (pounds) 100 150 

C3=  Maximum Endurance (hours) 8 10 

C4=  Payload Power (kilowatts) 1 3 

C5=  Maximum Cruise Airspeed (knots) 80 100 

C6=  Maximum Altitude (thousand feet) 15 18 

C7=  Take-off Distance (hundred feet) 20 10 

 

Table 8-2: UAS Evaluation Criteria with Weights 

Criteria   Rank Weight Normalized 

C1=  Technology Readiness Level (TRL) 1 12 0.140 

C2=  Maximum Payload Weight (pounds) 2 11 0.128 

C3=  Maximum Endurance (hours) 3 10 0.116 

C4=  Payload Power (Kilowatts) 4 9 0.105 

C5=  Maximum Cruise Airspeed (knots) 5 8 0.093 

C6=  Maximum Altitude (thousand feet) 6 7 0.081 

C7=  Take-off Distance (hundred feet) 7 6 0.070 

C8=  Availability 8 5 0.058 

C9=  Reliability 8 5 0.058 

C10= Operations & Maintenance (O&M) Cost 8 5 0.058 

C11= Research & Development (R&D) Cost 9 4 0.047 

C12= Procurement Cost 9 4 0.047 

 

Technology risk must be accurately assessed during early system development since it has an 

impact on schedule, cost, and quality.  According to TRL definitions, TRL 6 represents a model 

or prototype system that has been tested in a relevant environment [102].  Since TRL 6 is 
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required at the end of the TM&RR phase (Milestone B), TRL 6 was used to establish the 

threshold criterion for this UAS case study (see Table 8-1).  The TRL definitions are listed in 

Table 7-1.   

Two decision matrices were created to evaluate fuzzy and crisp data sets.  Decision matrix  , 

shown in Table 8-3, was created after establishing risk, performance, reliability, and cost data for 

the three design alternatives along with objective and threshold criteria.  Decision matrix   will 

be used for the MF-WSM and OCS-TOPSIS methods.  The fuzzy decision matrix   , shown in 

Table 8-4, was created using the same data as decision matrix   with the addition of MoI as 

explained above and expounded below in section 8.1.2.1.   Fuzzy decision matrix    will be used 

with the OCS-FTOPSIS method. 

Table 8-3: Decision Matrix D and Weights    of Three Alternative Systems 

 
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

           9 150 10 3 100 18 10 1 1 167.3 50 16.25 

A1 7 325 35 4.8 120 25 20 0.93 0.89 345.7 209.9 67.5 

A2 8 130 12 2 110 18 10 0.78 0.91 167.3 50 16.3 

A3 6 258 20.8 3 109.1 17.9 9.9 0.97 0.81 387.5 138.2 30 

           6 100 8 1 80 15 20 0.70 0.70 387.5 209.9 67.5 

Weight 0.14 0.128 0.116 0.105 0.093 0.081 0.07 0.058 0.058 0.058 0.047 0.047 

 

Table 8-4: Fuzzy Decision Matrix    and Weights of Three Design Alternatives 

  C1 C2 C3 C4 C5 C6 

            (9, 9, 9) (150, 150, 150) (10, 10, 10) (3, 3, 3) (100, 100, 100) (18, 18, 18) 

A1 (6, 7, 8) (293, 325, 341.25) (32, 35, 36.75) (4.3, 4.8, 5) (108, 120, 126) (22.5, 25, 26.25) 

A2 (7, 8, 9) (117, 130, 136.5) (11, 12, 12.6) (1.8, 2, 2.1) (99, 110, 115.5) (16.2, 18, 18.9) 

A3 (5, 6, 7) (234, 260, 273) (19, 21, 22.05) (2.7, 3, 3.2) (99, 110, 115.5) (16.2, 18, 18.9) 

            (6, 6, 6) (100, 100, 100) (8, 8, 8) (1, 1, 1) (80, 80, 80) (15, 15, 15) 

Weight 0.14 0.128 0.116 0.105 0.093 0.081 

  C7 C8 C9 C10 C11 C12 

            (10, 10, 10) (1, 1, 1) (1, 1, 1) (158.9, 158.9, 158.9) (47.5, 47.5, 47.5) (15.4, 15.4, 15.4)  

A1 (19, 20, 22) (0.84, 0.93, 0.98) (0.8, 0.89, 0.93) (328.4, 345.7, 380.2) (199.4, 209.9, 230.9) (64.13, 67.5, 74.25) 

A2 (9.5, 10, 11) (0.70, 0.78, 0.82) (0.82, 0.91, 0.96) (158.9, 167.3, 184) (47.5, 50, 55) (15.44, 16.25, 17.88) 

A3 (9.5, 10, 11) (0.88, 0.98, 1) (0.74, 0.82, 0.86) (368.1, 387.5, 426.3) (131.3, 138.2, 152) (28.5, 30, 33) 

            (20, 20, 20) (0.7, 0.7, 0.7) (0.7, 0.7, 0.7) (426.3, 426.3, 426.3) (230.9, 230.9, 230.9) (74.3, 74.3, 74.3) 

Weight 0.07 0.058 0.058 0.058 0.047 0.047 
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8.1.2.1 Asymmetrical Data.  Since the Method of Imprecision (MoI) incorporates design 

engineer judgment, some design membership functions may exhibit a skew that captures a 

designer’s uncertainty for upper or lower performance and cost estimates.  To simplify and 

standardize the alternative design data, ten percent variance was used to model high designer 

uncertainty from UAS point estimates and five percent variance was used for lower uncertainty.  

The ten percent variance was applied to lower performance and higher costs from a point 

estimate. Five percent variance was applied to higher performance and lower costs. 

 

8.1.3 OCS-MCDA Methods (Y-Axis).  The MF-WSM is the only OCS technique that 

utilizes the dependent variables on the Y-Axis of each membership function.  By obtaining 

discrete preference information directly from each membership function, the MF-WSM 

technique provides the most uncomplicated, straight forward approach of the three OCS-MCDA 

techniques. 

8.1.3.1 MF-WSM Applications to Case Study #1.  The MF-WSM technique models fuzzy 

customer preference using fuzzy membership functions to determine user utility for a given 

design parameter. The MF-WSM method leverages both benefit and cost membership functions 

to determine user utility per criterion that enables the accurate calculation of conflicting 

requirements.  By incorporating fuzzy numbers that have a maximum value of one, the MF-

WSM method also restricts preferential scoring for alternatives that provide excess capabilities 

beyond ideal customer requirements resulting in a ranked list of alternatives that is more aligned 

with customer stated requirements.  This MF-WSM approach will be demonstrated using the 

UAS case study described above. 
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8.1.3.1.1 Initial Conditions.  The decision matrix D, represented in Table 8-3, was used for 

this MF-WSM application to case study #1.  The three alternatives being evaluated are listed in 

the table along with their crisp system criteria and weights. The fuzzy preference criteria 

           and              are also listed in the decision matrix. 

8.1.3.1.2 Case Study #1 Results.  The results of the MF-WSM analysis are shown in Tables 

8-5 through 8-7.  As stated above, the decision matrix D and weights w used for the analysis are 

displayed in Table 8-3.  Table 8-5 shows the transformed membership function matrix M and 

Table 8-6 displays the weighted membership function matrix V.  Table 8-7 displays the results of 

the analysis.  As indicated in bold font in Table 8-7, Alternative 2 was calculated to have best 

value according to government stated requirements that were reflected in Tables 8-1 and 8-2. 

Table 8-5: Transformed Membership Function Matrix M 

 
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

           1 1 1 1 1 1 1 1 1 1 1 1 

A1 0.33 1 1 1 1 1 0 0.72 0.56 0.19 0 0 

A2 0.67 0.6 1 .5 1 1 1 0.12 0.64 1 1 1 

A3 0 1 1 0.99 1 0.95 1 0.87 0.25 0 0.45 0.73 

           0 0 0 0 0 0 0 0 0 0 0 0 

Weight 0.14 0.128 0.116 0.105 0.093 0.081 0.07 0.058 0.058 0.058 0.047 0.047 

 

Table 8-6: Weighted Membership Function Matrix V 

 
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

A1 0.047 0.128 0.116 0.105 0.093 0.081 0 0.042 0.033 0.011 0 0 

A2 0.093 0.077 0.116 0.052 0.093 0.081 0.07 0.007 0.037 0.058 0.047 0.047 

A3 0 0.128 0.116 0.103 0.093 0.077 0.07 0.05 0.015 0 0.021 0.034 

Weight 0.14 0.128 0.116 0.105 0.093 0.081 0.07 0.058 0.058 0.058 0.047 0.047 

 

Table 8-7: MF-WSM Results & Comparison to TOPSIS 

 
LCC MF-WSM 

  
TOPSIS 

 

 
($mil) Total  Rank 

 
     Rank 

A1 343.2 0.65523 3 
 

0.627027 1 

A2 91.3 0.77791 1 
 

0.379463 3 

A3 227.6 0.70769 2 
 

0.506052 2 
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8.1.3.1.3 Discussion / Comparison to TOPSIS.  In order to evaluate the effectiveness of the 

MF-WSM method, the results of the study were compared against standard TOPSIS results.  At 

the conclusion of the UAS trade study, the results highlighted the benefit of MF-WSM over 

conventional TOPSIS.  Since standard WSM cannot accurately calculate data with conflicting 

requirements, it was excluded from this comparison.  As Table 8-7 indicates, the MF-WSM 

results were completely different than conventional TOPSIS.  As demonstrated in the table, the 

MF-WSM technique completely changed the ranking order by constraining the decision matrix 

through the use of membership functions.  While conventional TOPSIS ranked alternative 1 the 

highest, the MF-WSM technique ranked alternative 1 the lowest and selected alternative 2 as the 

best value for meeting government requirements.  This difference in outcome highlights the 

benefit of saturating objective requirements while constraining the decision matrix using 

threshold and objective requirements.   

A visual comparison of the alternative system characteristics supports the conclusion of the 

MF-WSM analysis.  Figure 8-2 depicts the performance and cost characteristics of each 

alternative.  As can be seen in the figure, Alternative 1 provided excess capabilities beyond 

customer objectives at approximately three times the cost of Alternative 2.  Alternative 1 also 

failed to meet the objective requirement for the Takeoff (T/O) distance criterion.  For this 

criterion, both Alternatives 2 and 3 performed better than Alterative 1.  Although Alternative 3 

met or exceeded all performance objectives, Alternative 3 also had the highest technology risk, 

lowest reliability, and the highest O&M costs.  Alternative 2 was the lowest cost alternative but 

did not meet objective requirements for power or payload weight.  However, Alternative 2 met 

or exceeded all remaining performance criteria and had the best reliability and lowest Life Cycle 

Cost (LCC).  By possessing the lowest technology risk and highest reliability at less than half the 
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total cost of either alternative, Alternative 2 provided the best value choice in regards to risk, 

reliability, performance, and cost.  This figure highlights the benefits of MF-WSM over 

conventional TOPSIS for determining best value from conflicting requirements.  Since 

Alternative 1 had excess performance requirements, it was scored higher using conventional 

TOPSIS techniques.  By saturating alternative criteria scores at objective requirements, the MF-

WSM technique provided equal scoring for alternative capabilities that met or exceeded 

objective requirements.  Since MF-WSM prevented inflated scoring from excess capabilities, the 

technique provided a ranked list of alternatives that was more aligned with customer stated 

requirements.  

 
Figure 8-2: Alternative Comparison – Performance, Availability, Reliability & Cost 
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 Unfortunately, all models have limitations and levels of inaccuracy.  The MF-WSM 

method will only perform as well as the data provided.  Different data often produces different 

results.  For example, the MF-WSM method assumed that the government accurately stated its 

objective requirements and ranking of evaluation criteria.  If the government was uncertain or 

misinterpreted its requirements or prioritization, the results of MF-WSM may not align with 

government expectations.   

 

8.1.4 OCS-MCDA Methods (X-Axis).  The OCS-TOPSIS and OCS-FTOPSIS techniques 

utilize the independent variables on the X-Axis of the membership function.  Since these 

techniques are modified versions of TOPSIS and FTOPSIS, all calculations are performed on the 

real number line   of the membership function. 

8.1.4.1 OCS-TOPSIS Applications to Case Study #1.  The OCS-TOPSIS method 

incorporates minimum and maximum customer requirements to establish the Negative Ideal 

Solution (NIS) and Positive Ideal Solution (PIS) in order to define and constrain the trade space.  

By constraining the trade space, OCS-TOPSIS restricts preferential scoring for alternatives that 

provide excess capabilities beyond ideal customer requirements resulting in a ranked list of 

alternatives that is more aligned with customer stated requirements.  This OCS-TOPSIS 

approach will be demonstrated using the UAS case study described above. 

8.1.4.1.1 Initial Conditions.  The decision matrix D, represented in Table 8-3, was used for 

this OCS-TOPSIS application to case study #1.  The three alternatives being evaluated are listed 

in the table along with their crisp system criteria and weights. The fuzzy preference criteria 

           and              are also listed in the decision matrix. 
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According to TOPSIS definitions, cost criteria are defined as criteria where a minimum value 

is preferred over a maximum value. Benefit criteria is defined as criteria where a maximum value 

is preferred over a minimum value [51]. While preparing TOPSIS calculations, each criterion 

must be classified as either benefit or cost.  This step is addressed in step 5 of the OCS-TOPSIS 

method, listed in section 6.2.1.  Using TOPSIS terminology, criteria 7, 10, 11 and 12 are 

classified as cost criteria with the remaining classified as benefit criteria.  Examples of cost 

criteria are demonstrated in Table 8-3 and Tables 8-8 through 8-10 where             values are 

larger than           . Since the remaining criteria are classified as benefit criteria, 

           values are higher than           . After normalizing the constrained decision matrix  , 

all alternatives that meet or exceed             for benefit criteria will equal 1.  For cost criteria, 

the worst performing alternatives will equal 1 (see Table 8-9).  

To limit the rank reversal phenomenon in OCS-TOPSIS, a modified version of Garcia-

Cascales and Lamata’s solution to the rank reversal problem was implemented.  Rank reversal is 

an incident that can occur when the relative rank of alternatives becomes inverted when the 

original decision set is altered.  Garcia and Lamata’s solution to rank reversal was to select a 

different normalization method and introduce fictitious alternatives that represent the best and 

worst solution [56].  Although prior research concluded that the vector normalization technique 

worked best for TOPSIS [118], Garcia-Cascales and Lamata’s demonstrated how this 

normalization technique could lead to rank reversal.  Therefore, the aforementioned authors’ 

normalization technique was implemented in OCS-TOPSIS since it had an error rate less than 

one percent compared to the vector method [119], [120].  To implement the second rank reversal 

prevention measure, the fictitious alternatives of             and            were implemented into 

the decision set to represent PIS and NIS, respectively. To determine the criteria values for 
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            and             alternatives, objective and threshold values were used from the UAS 

RFP for performance criteria 2 through 7.  For availability criteria 8 and reliability criteria 9, a 

minimum alternative criteria value of 70 percent was used for             with             

represented as a maximum of 100 percent.  Since cost objectives were not stated in the UAS 

RFP, minimum and maximum costs under each criterion were used as            and           , 

respectively.  By incorporating the fictitious alternatives of             and             in the 

decision set, rank reversal was successfully mitigated while also constraining the decision matrix 

to a fuzzy customer requirement set of PIS and NIS. 

8.1.4.1.2 Case Study #1 Results.  The results of the case study are shown in Tables 8-8 

through 8-12.  As stated above, the decision matrix D and weights w used for the analysis are 

displayed in Table 8-3.  Table 8-8 shows the constrained decision matrix S using Equation 6-6.  

Since the RFP did not specify threshold or objective requirements for availability, reliability, 

procurement or O&M cost criteria, these criteria did not change in the constrained decision 

matrix.  Table 8-9 displays the normalized decision matrix R using Equation 6-7 and Table 8-10 

shows the weighted normalized decision matrix V using Equation 6-8.  The Positive Ideal 

Solutions (PIS) and Negative Ideal Solutions (NIS) are listed in Table 8-11 and the results of the 

OCS-TOPSIS analysis is shown in Table 8-12.  As indicated in bold font in Table 8-12, 

Alternative 2 was calculated to have best value according to government stated requirements that 

were reflected in Tables 8-1 and 8-2. 

Table 8-8: Constrained Decision Matrix S 

 
C1  C2 

 
C3 

 
C4 

 
C5 

 
C6 

 
C7 

 
C8 

 
C9 

 
C10  C11 

 
C12 

           9  150 
 

10 
 

3 
 

100 
 

18 
 

10 
 

1 
 

1 
 

167.3  50 
 

16.3 

A1 7  150 
 

10 
 

3 
 

100 
 

18 
 

20 
 

0.93 
 

0.89 
 

345.7  209.9 
 

67.5 

A2 8  130 
 

10 
 

2 
 

100 
 

18 
 

10 
 

0.78 
 

0.91 
 

167.3  50 
 

16.3 

A3 6  150 
 

10 
 

3 
 

100 
 

18 
 

10 
 

0.98 
 

0.82 
 

387.5  138.2 
 

30 

           6  100 
 

8 
 

1 
 

80 
 

15 
 

20 
 

0.75 
 

0.75 
 

387.5  209.9 
 

67.5 
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Table 8-9: Normalized Decision Matrix R 

 
C1  C2 

 
C3 

 
C4 

 
C5 

 
C6 

 
C7 

 
C8 

 
C9 

 
C10  C11 

 
C12 

           1  1 
 

1 
 

1 
 

1 
 

1 
 

0.5 
 

1 
 

1 
 

0.43  0.24 
 

0.24 

A1 0.78  1 
 

1 
 

1 
 

1 
 

1 
 

1 
 

0.93 
 

0.89 
 

0.89  1 
 

1 

A2 0.9  0.87 
 

1 
 

0.67 
 

1 
 

1 
 

0.5 
 

0.78 
 

0.91 
 

0.43  0.24 
 

0.24 

A3 0.67  1 
 

1 
 

1 
 

1 
 

1 
 

0.5 
 

0.98 
 

0.82 
 

1  0.66 
 

0.44 

           0.67  0.67 
 

0.8 
 

0.33 
 

0.8 
 

0.83 
 

1 
 

0.7 
 

0.7 
 

1  1 
 

1 

 

Table 8-10: Weighted Normalized Decision Matrix V 

 
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

           0.14 0.128 0.116 0.105 0.093 0.081 0.035 0.058 0.058 0.025 0.011 0.011 

A1 0.109 0.128 0.116 0.105 0.093 0.081 0.07 0.054 0.052 0.052 0.047 0.047 

A2 0.124 0.111 0.116 0.07 0.093 0.081 0.035 0.045 0.053 0.025 0.011 0.011 

A3 0.093 0.128 0.116 0.105 0.093 0.081 0.035 0.057 0.048 0.058 0.031 0.021 

           0.093 0.085 0.093 0.035 0.074 0.068 0.07 0.041 0.041 0.058 0.047 0.047 

 

Table 8-11:   
 ,   

   -  Positive Ideal Solutions (PIS) and Negative Ideal Solutions (NIS) 

   
  0.14 0.128 0.116 0.105 0.093 0.081 0.035 0.058 0.058 0.025 0.011 0.011 

   
  0.093 0.085 0.093 0.035 0.074 0.068 0.07 0.041 0.041 0.058 0.047 0.047 

 

Table 8-12: OCS-TOPSIS and Conventional TOPSIS 

 
OCS-TOPSIS 

 
Conventional TOPSIS 

 
   

     
         Rank 

 
   

     
         Rank 

A1 0.073855 0.091307 0.552832 3 
 

0.059044 0.099263 0.627027 1 

A2 0.044035 0.094262 0.681592 1 
 

0.099249 0.060691 0.379463 3 

A3 0.061947 0.10103 0.619903 2 
 

0.063356 0.064908 0.506052 2 

 

8.1.4.1.3 Discussion / Comparison to Standard TOPSIS.  In order to evaluate the 

effectiveness of the OCS-TOPSIS method, the results of the study were compared against 

standard TOPSIS results.  At the conclusion of the UAS trade study, the results highlighted the 

benefit of OCS-TOPSIS over conventional TOPSIS.  As Table 8-12 indicates, the OCS-TOPSIS 

results were completely different than the conventional TOPSIS method.  As demonstrated in the 

table, the OCS-TOPSIS technique completely changed the ranking order by constraining the 

decision matrix.  While conventional TOPSIS ranked alternative 1 the highest, the OCS-TOPSIS 

technique ranked alternative 1 the lowest and selected alternative 2 as the best value for meeting 

customer requirements.  This difference in TOPSIS outcome highlights the benefit of saturating 
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objective requirements while constraining the decision matrix using threshold and objective 

requirements as NIS and PIS, respectively.   

A visual comparison of the alternative system characteristics supports the conclusion of the 

OCS-TOPSIS analysis.  As demonstrated in MF-WSM example, Figure 8-2 highlights the 

benefits of OCS-TOPSIS over conventional TOPSIS for determining best value.  Since 

Alternative 1 had excess performance requirements, it was scored higher using conventional 

TOPSIS techniques.  By saturating alternative criterion scores at objective requirements, the 

OCS-TOPSIS technique provided equal scoring for alternative capabilities that met or exceeded 

objective requirements.  Since OCS-TOPSIS prevented inflated scoring from excess capabilities, 

the technique provided a ranked list of alternatives that was more aligned with customer stated 

requirements.  

The results in Figure 8-3 and Table 8-12 highlight the benefit of saturating scores at ideal 

customer requirements through OCS-TOPSIS.  As illustrated in Figure 8-3, there is a distinct 

difference between the constrained OCS-TOPSIS technique (left graphic) and the unconstrained, 

TOPSIS technique (right graphic).  By not constraining the decision space, the excess 

capabilities of Alternative 1 greatly expanded the Euclidean distances of PIS and NIS.  As a 

result, Alternative 1 is pulled farther from NIS while pushing Alternatives 2 farther from PIS.  

Due to these unconstrained capabilities, Alternative 1 received the best score using conventional 

TOPSIS.  By applying the OCS-TOPSIS technique, Alternative 1’s excessive capabilities are 

constrained resulting in Euclidean distances from PIS and NIS that are more reflective of 

customer defined value.  As shown in Figure 8-3, the Euclidean distances from PIS and NIS are 

adjusted to the constrained decision space after applying OCS-TOPSIS. This difference in 



76 
 

TOPSIS outcome highlights the benefit of saturating customer requirements while constraining 

the decision matrix using threshold and objective requirements as NIS and PIS, respectively.   

 
Figure 8-3: TOPSIS Technique Comparison – Alternative Distance to PIS/NIS 

 

Unfortunately, all models have limitations and levels of inaccuracy.  The OCS-TOPSIS 

method will only perform as well as the data provided.  Different data often produces different 

results.  For example, the OCS-TOPSIS method assumed that the government accurately stated 

its objective requirements and ranking of evaluation criteria.  If the government was uncertain or 

misinterpreted its requirements or prioritization, the results of OCS-TOPSIS may not align with 

government expectations.  If the government shifted its priorities, a change in weights may have 

changed the ranked outcome.  Additionally, one of the biggest limitations of any TOPSIS 

technique is the problem of rank reversal.  By incorporating the fictitious alternatives of 

            and            as well as an alternate normalization technique in OCS-TOPSIS, the 

risk of rank reversal was mitigated to an acceptable level. 

8.1.4.2 OCS-FTOPSIS Applications to Case Study #1.  In the OCS-FTOPSIS method, 

minimum and maximum customer requirements are used to establish the Fuzzy Negative Ideal 

Solution (FNIS) and Fuzzy Positive Ideal Solution (FPIS) in order to define and constrain the 

trade space.  Instead of using linguistic variables to evaluate each criterion, like most FTOPSIS 

techniques, fuzzy design estimates are used to calculate Euclidean distances from FNIS and 

     PIS 
     NIS 
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FPIS.  Similar to the previous two techniques, the OCS-FTOPSIS method also restricts 

preferential scoring for alternatives that provide excess capabilities beyond ideal customer 

requirements. This OCS-FTOPSIS approach will be demonstrated using the UAS case study 

described above. 

8.1.4.2.1 Initial Conditions.  The decision matrix   , represented in Table 8-3, was used for 

this OCS-FTOPSIS application to case study #1.  The three alternatives being evaluated are 

listed in the table along with their fuzzy system criteria and weights. The fuzzy preference 

criteria            and              are also listed in the decision matrix. 

Similar to TOPSIS definitions, FTOPSIS cost criteria are defined as criteria where a 

minimum value is preferred over a maximum value. Benefit criteria is defined as criteria where a 

maximum value is preferred over a minimum value. While preparing FTOPSIS calculations, 

each criterion must be classified as either benefit or cost.  This step is addressed in step 5 of the 

OCS-FTOPSIS method, listed in section 6.2.2.  Using FTOPSIS definitions, criteria 7, 10, 11, 

and 12 are classified as cost criteria.  This is demonstrated in Table 8-3 and Tables 8-13 through 

8-15 where             values are larger than           . Since the remaining criteria are classified 

as benefit criteria,            values are higher than           . After normalizing the constrained 

fuzzy decision matrix   , all alternatives that met or exceeded             will equal 1. For cost 

criteria, the worst performing alternatives will equal 1 or have the highest numerical value (see 

Table 8-14). 

The rank reversal phenomenon was mitigated using a modified version of Garcia-Cascales 

and Lamata’s TOPSIS solution, similar to OCS-TOPSIS.  In order to minimize the risk of rank 

reversal in OCS-FTOPSIS, the fictitious alternatives of             and            were 

implemented into the decision set to represent FPIS and FNIS, respectively. By incorporating the 
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fictitious alternatives of             and             in the decision set, rank reversal was 

successfully mitigated while also constraining the decision matrix to a fuzzy customer 

requirement set of FPIS and FNIS. 

8.1.4.2.2 Case Study #1 Results.  The results of the UAS case study are shown in Tables 8-13 

through 8-17.  As stated above, the decision matrix    and weights w used for the analysis are 

displayed in Table 8-3.  Table 8-13 shows the fuzzy constrained decision matrix    using 

Equation 6-16 to demonstrate calculating a fuzzy set that partly meets threshold criteria.  Since 

the RFP did not specify threshold or objective requirements for availability, reliability, or cost 

criteria, these criteria did not change in the constrained decision matrix.  Table 8-14 displays the 

fuzzy normalized decision matrix      using Equation 6-17 and Table 8-15 shows the fuzzy 

weighted normalized decision matrix    using Equation 6-21.  The Fuzzy Positive Ideal Solutions 

(FPIS) and Fuzzy Negative Ideal Solutions (FNIS) are indicated in Table 8-16 using Equations 

6-22 and 6-23, respectively.  The results of the OCS-FTOPSIS analysis along with conventional 

FTOPSIS distance calculations are shown in Table 8-17.  The conventional FTOPSIS calculation 

is a straight fuzzy calculation, without Subject Matter Expert (SME) input or constraints, using 

the same UAS alternative and requirements data as the other two techniques. For the initial 

FTOPSIS comparison in this section, the focus is on evaluating the calculation outcomes for both 

FTOPSIS and OCS-FTOPSIS methods using the same, standardized data.  FTOPSIS analysis 

using SME data will be analyzed in the subsequent section.  As indicated in bold font in Table 8-

17, Alternative 2 was calculated to have best value according to government stated requirements 

that were reflected in Tables 8-1 and 8-2. 
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Table 8-13: Constrained Fuzzy Decision Matrix    and Weights of Three Design Alternatives 

  C1 C2 C3 C4 C5 C6 

            (9, 9, 9) (150, 150, 150) (10, 10, 10) (3, 3, 3) (100, 100, 100) (18, 18, 18) 

A1 (6, 7, 8) (150, 150, 150) (10, 10, 10) (3, 3, 3) (100, 100, 100) (18, 18, 18) 

A2 (7, 8, 9) (117, 130, 136.5) (10, 10, 10) (1.8, 2, 2.1) (99, 100, 100) (16.2, 18, 18) 

A3 (6, 6, 7) (150, 150, 150) (10, 10, 10) (2.7, 3, 3) (99, 100, 100) (16.2, 18, 18) 

            (6, 6, 6) (100, 100, 100) (8, 8, 8) (1, 1, 1) (80, 80, 80) (15, 15, 15) 

Weight 0.14 0.128 0.116 0.105 0.093 0.081 

  C7 C8 C9 C10 C11 C12 

           (10, 10, 10) (1, 1, 1) (1, 1, 1) (15.89, 15.89, 15.89) (47.5, 47.5, 47.5) (74.25, 74.25, 74.25) 

A1 (19, 20, 20) (0.84, 0.93, 0.98) (0.8, 0.89, 0.93) (32.84, 34.57, 38.02) (199.41, 209.9, 230.89) (64.13, 67.5, 74.25) 

A2 (10, 10, 11) (0.70, 0.78, 0.82) (0.82, 0.91, 0.96) (15.89, 16.73, 18.4) (47.5, 50, 55) (15.44, 16.25, 17.88) 

A3 (10, 10, 11) (0.88, 0.98, 1) (0.74, 0.82, 0.86) (36.81, 38.75, 42.63) (131.29, 138.2, 152.02) (28.5, 30, 33) 

            (20, 20, 20) (0.7, 0.7, 0.7) (0.74, 0.74, 0.74) (42.63, 42.63, 42.63) (230.89, 230.89, 230.89) (15.44, 15.44, 15.44) 

Weight 0.07 0.058 0.058 0.058 0.047 0.047 

 

 

Table 8-14: Fuzzy Normalized Decision Matrix    

  C1 C2 C3 C4 C5 C6 

             (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) 

A1 (0.67, 0.78, 0.89) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) 

A2 (0.78, 0.89, 1) (0.78, 0.87, 0.91) (1, 1, 1) (0.6, 0.67, 0.7) (0.99, 1, 1) (0.9, 1, 1) 

A3 (0.67, 0.67, 0.78) (1, 1, 1) (1, 1, 1) (0.9, 1, 1) (0.99, 1, 1) (0.9, 1, 1) 

            (0.67, 0.67, 0.67) (0.67, 0.67, 0.67) (0.8, 0.8, 0.8) (0.33, 0.33, 0.33)  (0.8, 0.8, 0.8) (0.83, 0.83, 0.83) 

  C7 C8 C9 C10 C11 C12 

             (0.5, 0.5, 0.5) (1, 1, 1) (1, 1, 1) (0.37, 0.37, 0.37) (0.21, 0.21, 0.21) (0.21, 0.21, 0.21) 

A1 (0.95, 1, 1) (0.84, 0.93, 0.98) (0.8, 0.89, 0.94) (0.77, 0.81, 0.82) (0.86, 0.91, 1) (0.86, 0.91, 1) 

A2 (0.5, 0.5, 0.55) (0.7, 0.78, 0.82) (0.82, 0.91, 0.96) (0.37, 0.39, 0.43) (0.21, 0.22, 0.24) (0.21, 0.22, 0.24) 

A3 (0.5, 0.5, 0.55) (0.89, 0.98,  (0.74, 0.82, 0.86) (0.86, 0.91, 1) (0.57, 0.6, 0.7) (0.38, 0.4, 0.44) 

            (1, 1, 1) (0.7, 0.7, 0.7) (0.7, 0.7, 0.7) (1, 1, 1) (1, 1, 1) (1, 1, 1) 
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Table 8-15: Fuzzy Weighted Normalized Decision Matrix    

  C1 C2 C3 C4 C5 C6 

            (0.14, 0.14, 0.14) (0.13, 0.13, 0.13) (0.12, 0.12, 0.12) (0.1, 0.1, 0.1) (0.09, 0.09, 0.09)  (0.08,0.08, 0.08) 

A1 (0.09, 0.11, 0.12) (0.13, 0.13, 0.13) (0.12, 0.12, 0.12) (0.1, 0.1, 0.1) (0.09, 0.09, 0.09) (0.08,0.08, 0.08) 

A2 (0.11, 0.12, 0.14) (0.1, 0.11, 0.12) (0.12, 0.12, 0.12) (0.06, 0.07, 0.07) (0.09, 0.09, 0.09) (0.07, 0.08, 0.08) 

A3 (0.09, 0.09,  0.11) (0.13, 0.13, 0.13) (0.12, 0.12, 0.12) (0.09, 0.1, 0.1) (0.09, 0.09, 0.09) (0.07, 0.08, 0.08) 

            (0.09, 0.09, 0.09) (0.09, 0.09, 0.09) (0.09, 0.09, 0.09) (0.04, 0.04, 0.04) (0.07, 0.07, 0.07) (0.07, 0.07, 0.07) 

  C7 C8 C9 C10 C11 C12 

           (0.04, 0.04, 0.04) (0.06, 0.06, 0.06) (0.06, 0.06, 0.06) (0.02, 0.02, 0.02) (0.01, 0.01, 0.01) (0.01, 0.01, 0.01) 

A1 (0.07, 0.07, 0.07) (0.05, 0.05, 0.06) (0.05, 0.05, 0.05) (0.05, 0.05, 0.05) (0.04, 0.04, 0.05) (0.04, 0.04, 0.05) 

A2 (0.04, 0.04, 0.04) (0.05, 0.05, 0.05) (0.05, 0.05, 0.06) (0.02, 0.02, 0.03) (0.01, 0.01, 0.01) (0.01, 0.01, 0.01) 

A3 (0.04, 0.04, 0.04) (0.05, 0.06, 0.06) (0.04, 0.05, 0.05) (0.05, 0.05, 0.06) (0.03, 0.03, 0.03) (0.2, 0.2, 0.2) 

            (0.07, 0.07, 0.07) (0.4, 0.4, 0.4) (0.4, 0.4, 0.4) (0.06, 0.06, 0.06) (0.05, 0.05, 0.05) (0.05, 0.05, 0.05) 

 

Table 8-16:   
 ,   

   -  Fuzzy Positive Ideal Solutions (FPIS)  

and Fuzzy Negative Ideal Solutions (FNIS) 

  C1 C2 C3 C4 C5 C6 

   
  0.14 0.128 0.116 0.105 0.093 0.081 

   
  0.093 0.085 0.093 0.035 0.074 0.068 

  C7 C8 C9 C10 C11 C12 

   
  0.035 0.058 0.058 0.022 0.01 0.01 

   
  0.07 0.041 0.041 0.058 0.047 0.047 

 

 

Table 8-17: FTOPSIS Technique Comparison - Alternative Distance to FPIS/FNIS 

 
Max 

LCC  
OCS-FTOPSIS     

  
 FTOPSIS (no SME data)   

 
($mil)    

     
       Rank 

  
   

     
       Rank 

A1 343.2 0.062227 0.091753 0.595711 3 
  

11.20936 0.792368 0.066021 1 

A2 91.3 0.04507 0.088334 0.662154 1 
  

11.302353 0.699109 0.058252 2 

A3 227.6 0.059027 0.094284 0.614984 2 
  

11.312016 0.689409 0.057444 3 

 

8.1.4.2.3 Discussion / Comparison to Standard FTOPSIS (no SME data).  In order to 

evaluate the effectiveness of the OCS-FTOPSIS method, the results of the study were compared 

against standard FTOPSIS results without SME input.  At the conclusion of the UAS trade study, 

the results highlighted the benefit of the OCS-FTOPSIS method over the unconstrained, 

conventional FTOPSIS calculations.  The results of the UAS case study using OCS-FTOPSIS 

and FTOPSIS methods is shown in Table 8-17 along with maximum Life Cycle Costs (LCC).  
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The results in Table 8-17 highlight the benefit of saturating scores at ideal customer requirements 

through OCS-FTOPSIS.  This difference in FTOPSIS outcome highlights the benefit of 

saturating customer requirements while constraining the decision matrix using threshold and 

objective requirements as FNIS and FPIS, respectively.   

A visual comparison of the alternative system characteristics supports the conclusion of the 

OCS-FTOPSIS and FTOPSIS analysis.  As demonstrated in the MF-WSM and OCS-TOPSIS 

examples, Figure 8-2 highlights the benefits of OCS-FTOPSIS for determining best value.  Since 

Alternative 1 had excess performance requirements, it was scored higher using an unconstrained, 

direct calculation technique.  By saturating alternative criterion scores at objective requirements, 

the OCS-FTOPSIS technique provided equal scoring for alternative capabilities that met or 

exceeded objective requirements.  Since OCS-FTOPSIS prevented inflated scoring from excess 

capabilities, the technique provided a ranked list of alternatives that was more aligned with the 

government stated requirements.  

 Unfortunately, all models have limitations and levels of inaccuracy.  Despite attempts to 

reduce uncertainty with the OCS-FTOPSIS method, the model will only perform as well as the 

data provided.  Different data often produces different results.  For example, the OCS-FTOPSIS 

technique assumed that customer requirements were accurately described and prioritized, albeit 

not precise.  If a customer was unsure or misinterpreted its requirements or prioritization, the 

results of the OCS-FTOPSIS may not have aligned with customer expectations.  If a customer 

shifted his or her priorities, a change in weights may have changed the ranked outcome.  

Additionally, one of the biggest limitations of the TOPSIS and FTOPSIS technique is the 

problem of rank reversal.  By incorporating rank reversal prevention measures, the OCS-

FTOPSIS method mitigated this risk to an acceptable level.  
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8.1.4.2.4 Discussion / Comparison to Standard FTOPSIS (SME data).  In order to evaluate 

the reasonableness of the OCS-FTOPSIS results, expert opinion was elicited using the 

conventional FTOPSIS method.  Since a US DOD UAS example was used for the analysis, three 

volunteers were selected with 89 years of combined government experience, 75 years of aviation 

experience, and 27 years of acquisition experience.  The SMEs were provided with the same 

UAS alternative and requirements data that was used in the UAS case study, except for no 

system TRL data.  The SMEs were instructed to rate the importance of each criterion using the 

linguistic variables in Table 8-18 followed by rating each UAS alternative against each criterion 

using the linguistic variables in Table 8-19.  The results of the SME criteria ratings are in Table 

8-20 and their UAS alternative ratings are in Table 8-21. 
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Table 8-18: Linguistic Variable – Criterion Weights Table 8-19: Linguistic Variables – Ratings 
 

Very Low (VL)   (0, 0, 0.1) 

Low (L) 

 

(0, 0.1, 0.3) 

Medium Low (ML) 

 

(0.1, 0.3, 0.5) 

Medium (M) 

 

(0.3, 0.5, 0.7) 

Medium High (MH) 

 

(0.5, 0.7, 0.9) 

High (H) 

 

(0.7, 0.9, 1) 

Very High (VH)   (0.9, 1, 1) 

Very Poor (VP) (0, 0, 1) 

Poor (P) (0, 1, 3) 

Medium Poor (MP) (1, 3, 5) 

Fair (F) (3, 5, 7) 

Medium Good (MG) (5, 7, 9) 

Good (G) (7, 9, 10) 

Very Good (VG) (9, 10, 10) 
 

 

 
Table 8-20: Decision Maker(DM) Ratings – Criteria 

  DM1 DM2 DM3 

C1 ML VH VH 

C2 MH H VH 

C3 MH H H 

C4 M VH H 

C5 ML VH MH 

C6 VH VH M 

C7 H H H 

C8 MH H H 

C9 M MH MH 

C10 L MH L 

C11 MH MH ML 

 

Table 8-21: Decision Maker(DM) Ratings – Alternatives against Criteria 

Criteria Alternatives Decision Makers     Criteria Alternatives Decision Makers   

    DM1 DM2 DM3       DM1 DM2 DM3 

C1 A1 VG VG VG   C7 A1 G VG G 

 

A2 G G F   

 

A2 VG F F 

 

A3 G VG VG   

 

A3 G VG VG 

C2 A1 VG VG VG   C8 A1 G VG G 

 

A2 G VG MG   

 

A2 VG VG G 

 

A3 VG VG G   

 

A3 MG G MG 

C3 A1 VG VG VG   C9 A1 MG G F 

 

A2 G F F   

 

A2 G VG VG 

 

A3 G VG G   

 

A3 F G F 

C4 A1 G VG VG   C10 A1 MP F F 

 

A2 G VG G   

 

A2 G VG VG 

 

A3 G VG G   

 

A3 F G MG 

C5 A1 VG F VG   C11 A1 MP F P 

 

A2 G G F   

 

A2 G VG VG 

 

A3 G G F   
 

A3 F G G 

C6 A1 F P P   
     

 
A2 G VG VG   

     

 
A3 G VG VG   
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The results of the UAS trade study using OCS-FTOPSIS and SME elicited FTOPSIS 

methods are shown in Table 8-22. Also included in the analysis is a straight fuzzy calculation of 

FTOPSIS, without SME input or constraints, using the same UAS alternative and requirements 

data as the other two techniques. The result of this calculation is also in Table 8-22. Figure 8-4 

graphically displays the Euclidian distances from FPIS and FNIS for all UAS alternatives using 

the three different FTOPSIS techniques. As indicated in bold font in Table 8-22, Alternative 3 

was calculated to have best value according to government stated requirements that were 

reflected in Tables 8-1 and 8-2.  This change is rank position between Alternatives 1 and 2 was 

caused by the omission of the TRL criteria.  Since the TRL criterion was the highest weighted in 

the previous examples, the change in criteria weighting resulted in a rank reversal. 

 

Table 8-22: FTOPSIS Technique Comparison (Without Risk) - Alternative Distance to FPIS/FNIS 

 

 
Figure 8-4: FTOPSIS Technique Comparison – Alternative Distance to FPIS/FNIS 

An evaluation of the Euclidean distances between FTOPSIS methods in Figure 8-4 provides 

insight into the results of each technique. The group FTOPSIS technique (middle graphic) 

presented results relatively consistent with OCS-FTOPSIS (left graphic).  Using the group 

decision FTOPSIS technique, the SMEs also selected Alternative 3 as the best value.  

Conversely, the FTOPSIS method without SME input (right graphic) diverged from the other 
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two results and was more consistent with the conventional TOPSIS results evaluated in section 

8.1.4.1.3. Since the SME results using FTOPSIS matched the OCS-FTOPSIS results, the SME 

analysis reinforced the alternative ranking provided by OCS-FTOPSIS.    

 

8.1.5 Comparison of MF-WSM, OCS-TOPSIS, & OCS-FTOPSIS Results.  Since each 

OCS-MCDA method uses different calculations, there will be some variation in OCS output 

data.  For the OCS-TOPSIS and OCS-FTOPSIS methods, fuzzy Euclidean distance calculations 

will vary from crisp Euclidean distance calculations due to the spread and skew of the fuzzy 

membership functions in OCS-FTOPSIS.  Figure 8-7 displays the total aggregated Euclidean 

distance calculations for OCS-TOPSIS and OCS-FTOPSIS methods for each UAS alternative.  

These distance calculations used symmetric fuzzy data for the OCS-FTOPSIS calculations, as 

opposed to the asymmetrical calculations used in the previous case study.  Although the variation 

between OCS-TOPSIS and OCS-FTOPSIS calculations is slight, future practitioners should be 

aware of this disparity to ensure consistent results.  This variation is particularly noteworthy 

whenever the top alternative candidates are very close in final ranking.  Caution should also be 

applied to the MF-WSM method.  The OCS-TOPSIS and OCS-FTOPSIS methods both perform 

distance calculations from a single point to two ideal points.  The MF-WSM method only 

performs one calculation based on a single point.  This difference in calculation creates variation 

in output results where future practitioners should exercise caution whenever final rankings are 

close. 
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Figure 8-5: Variation in Total Aggregated Euclidean Distance 

 

A sensitivity analysis was conducted to determine if OCS-MCDA results were sensitive to 

moderate changes in the weighting of TRL risk. Although the importance of risk was 

emphasized in the UAS RFP used in the case study, the RFP did not specifically quantify the 

importance of risk over performance, reliability, and cost.  Since OCS-MCDA techniques use 

customer order of importance to rank criteria weights, the sensitivity analysis did not focus on 

performance, reliability, and cost criteria because the importance of these criteria were specified 

in the RFP.  Due to these reasons, TRL risk was the primary focus for the sensitivity analysis.  

At the conclusion of the sensitivity analysis, the OCS-MCDA methods proved fairly robust 

against moderate changes to the weighting of TRL risk.  To conduct the sensitivity analysis, the 

TRL weight was changed three times: less than the performance criteria; less than performance 

and reliability criteria, and less than all criteria.  All three OCS methods did not experience rank 

reversal until TRL risk was weighted last.  When TRL risk was weighted less than all other 

criteria, all three OCS-MCDA methods experienced a rank reversal where Alternative 3 became 

the best candidate.  This result is consistent with SME study where TRL risk was completely 

removed from the analysis and Alternative 3 was selected as the best candidate for both OCS-

FTOPSIS and the SME FTOPSIS. 
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To ensure confidence in results, a Decision Analysis tool should be reliable and valid.  

Reliability means that results from a technique are stable and consistent. Validity relates to sound 

evidence to demonstrate that the test interpretation matches its proposed use. [121] Methods for 

evaluating the validity of a model are to compare the results to actual decision results, expert 

opinion, or another model [122].  As demonstrated in the UAS case study, the result of each 

OCS-MCDA method was consistent with all OCS methods.  When compared against expert 

opinion, the OCS-FTOPSIS results were the same as the Subject Matter Experts (SME).  In fact, 

all the results from the OCS-MCDA techniques were the same after removing the risk criterion 

and recalculating weights (see Table 8-23).  The UAS case study provided a means to 

demonstrate the reliability and validity of the OCS-MCDA methods through model comparisons 

and expert onion.  In the subsequent case study, a larger data set will be explored where OCS 

results can be compared against a different acquisition decision. 

Table 8-23: OCS-MCDA Technique Comparison (Without Risk) 

 
OCS-FTOPSIS     

 
 OCS-TOPSIS   

 
 MF-WSM 

 
   

     
       Rank 

 
   

     
       Rank 

 
 Total Rank 

A1 0.073991 0.105107 0.586871 3 
 

0.0647651 0.1139858 0.6376797 3 
 

0.70742 3 

A2 0.049183 0.104194 0.679333 2 
 

0.052156 0.0976668 0.6518822 2 
 

0.79595 2 

A3 0.045824 0.116677 0.718008 1 
 

0.041044 0.124396 0.751911 1 
 

0.82245 1 
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8.2 Case Study #2 – Space Launch Systems 

The three Objective Criteria Saturation (OCS) Multiple Criteria Decision Analysis (MCDA) 

techniques will be demonstrated using a United States Air Force (USAF) rocket acquisition case 

study. The case study will apply the OCS-MCDA methods to evaluate rocket alternatives against 

primary and sub criteria.  This second case study was conducted to further test the reliability of 

the OCS methods. 

 

 
Figure 8-6: Rocket Alternatives 

A1-Atlas II (left), A2-Delta II (middle), A3-Ariane 4 (right) [123]–[125] 

8.2.1 Scenario Background.  The US Air Force (USAF) began the Evolved Expendable 

Launch Vehicle (EELV) program in 1995 to develop a new generation of launch vehicles to 

provide affordable access to space for government satellites [126].  Program requirements for the 

EELV program include reliability, accuracy, and standard interface [127].  In October 2017, the 

USAF released a Request for Proposal (RFP) to leverage commercial launch solutions for 

placing a payload in geosynchronous (GEO) orbit.  Prior to releasing the RFP, the USAF 

acquisition strategy began with technology maturation to raise the technology readiness level and 

increase the knowledge base for the entire U.S. rocket propulsion industrial base. [128]   
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This case study will focus on evaluating the risk, performance, reliability, and cost of three 

commercial rocket manufacturers.  Since the RFP requires mature and currently operational 

systems, Technology Readiness Levels (TRL) will not be used in this case study.  Alternatively, 

overall risk assessments will be used in accordance with the EELV RFP [128]. In addition to the 

risk assessment, other qualitative assessments will be used in this case study to demonstrate the 

use of fuzzy linguistic variables. 

 

8.2.2 Data used in Study.  To provide an second example of the OCS-MCDA methods, all 

three techniques were applied to a set of requirements data that was derived from a USAF 

Request for Proposals (RFP) for rocket acquisitions [128].  The three alternative systems were 

from Atlas, Delta, and Ariane rocket families [129]–[131].  The Atlas, Delta, and Ariane rockets 

were selected because they are currently the only rockets that are capable of reaching GEO orbit.  

Although Space X recently tested a rocket that can reach GEO, the rocket has not reached TRL 9 

at the time of this dissertation and will not be considered in the analysis [128], [132]. In order to 

ensure data consistency for evaluation purposes, historical performance, reliability, and cost 

information was used from Space Mission Analysis and Design, 3
rd

 Ed. [133]. 

To determine the criteria values for             and             alternatives, objective and 

threshold values were used from the EELV RFP for performance criteria 1 through 4 along with 

their respective sub criteria.  For reliability criterion 5, a minimum of 75 percent was used for 

            with             represented as a maximum of 100 percent.  Criteria 6 through 9 

represent qualitative ratings on each rocket manufacturer pertaining to technical approach, risk, 

past performance relevancy and past performance competency.  Since a cost objective was not 



90 
 

stated in the EELV RFP, minimum and maximum costs were used as            and           , 

respectively. 

The performance threshold and objective values from the EELV RFP are listed in Table 8-

24.  The evaluation criteria and normalized weights for the decision matrix are listed in Table 8-

25 in rank order of importance.  The criteria weights were calculated using the rank sum method 

using the EELV RFP’s order of importance for evaluation criteria.  Criterion 1 represents orbital 

accuracy to GEO orbit and criteria 2 and 3 represent rocket loads and dynamics.  Criterion 4 

represents the total payload mass that a rocket is capable of transporting to GEO transfer orbit.  

Criteria 1 through 3 are given the top priority with criterion 4 given the second highest priority.  

Criteria 1 through 4 represent performance criteria.  Criterion 5 represents reliability by 

displaying the percentage of successful launches per rocket manufacturer.  Criteria 6 through 9 

represent qualitative risk assessments from four different viewpoints using linguistic variables 

that were derived from the EELV RFP.  Criterion 10 represents the total cost of the rocket 

system, in $million.  In regards to OCS-MCDA definitions of cost and benefit criteria described 

in Chapter 2, criteria 1 through 3 and 10 are considered cost criteria where lower values are 

preferred to higher values.  Criteria 4 through 9 are considered benefit criteria where higher 

values are preferred to lower values.   

Table 8-24: Performance Evaluation Criteria 

Criteria                           

C1= Orbital Accuracy to GEO Transfer Orbit    

   C1A =    Apogee (kilometers) 350 50 

   C1B =    Perigee (kilometers) 2 0.5 

   C1C =    Inclination (degrees) 0.5 0.05 

C2= Loads & Dynamics - Load Factors  (g's)   

   C2A =    Axial Load - Steady State 3 1 

   C2B =    Axial Load – Dynamic 3 1 

   C2C =    Lateral Load – Dynamic 5 1 

C3= Loads & Dynamics - Fundamental Frequency (Hz)   

   C3A =    Axial Fundamental Frequency 50 10 

   C3B =    Lateral Fundamental Frequency 50 10 

C4= Payload Mass to Geo Transfer Orbit (pounds) 1250 2500 



91 
 

Table 8-25: Launch System Evaluation Criteria with Weights 

Criteria   Rank Weight Normalized 

C1= Orbital Accuracy to GEO Transfer Orbit  1 10 0.12 

   C1A =    Apogee (km)      0.04 

   C1B =    Perigee (km)      0.04 

   C1C =    Inclination (deg)      0.04 

C2= Loads & Dynamics - Load Factors (g's) 1 10 0.12 

   C2A =    Axial Load - Steady State      0.04 

   C2B =    Axial Load – Dynamic      0.04 

   C2C =    Lateral Load – Dynamic      0.04 

C3= Loads & Dynamics - Fundamental Frequency (Hz) 1 10 0.12 

   C3A =    Axial Fundamental Frequency      0.06 

   C3B =    Lateral Fundamental Frequency      0.06 

C4= Payload Mass to GEO Transfer Orbit 2 9 0.108 

C5= Launch Reliability 3 8 0.096 

C6= Technical Rating 3 8 0.096 
C7= Technical Risk Rating 3 8 0.096 
C8= Past Performance Relevancy 4 7 0.084 

C9= Past Performance Confidence Assessment 4 7 0.084 

C10= Launch Vehicle Cost 5 6 0.072 

 

Four qualitative assessments were employed to assess risk from various viewpoints.  These 

qualitative assessments focused on the manufacturer’s technical approach, overall risk, past 

performance relevancy, and past performance competency.  The rating and description for each 

qualitative assessment are listed in Tables 8-26 though 8-29.  Due to the unavailability of the 

actual proposal, all rocket alternatives were rated as acceptable for the technical approach rating.  

For the technical risk rating, alternative 2 was rated as moderate risk with the other two 

alternatives rated as high risk.  Alternative 1 was rated as high risk due to the rocket’s use of 

Russian RD-180 rocket engines and the United States turbulent relationship with Russia [134], 

[135].  Alternative 3 was rated as high risk since it is a foreign manufacturer with European 

manufacturing standards and a different system of measurement.  Since Alternatives 1 and 2 

have had ongoing launch services with EELV, they were both rated as “very relevant” for the 

past performance relevancy rating.  Alternative 3 was rated as “relevant” since it has government 

launch experience in Europe but doesn’t have sufficient launch history with the USAF.  For the 

past performance competency rating, Alternative 2 was rated the highest with “substantial 
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confidence” because it had the longest work history with the USAF along with the highest 

reliability.  Alternative 1 received the second highest rating with “satisfactory confidence” due to 

a shorter work history than Alternative 2 coupled with the worst reliability rating of the three 

alternatives.  Alternative 3 received a “neutral confidence” since the company does not have a 

relevant performance record with the EELV program.  

This rocket case study provides an opportunity to demonstrate the use of fuzzy linguistic 

variables.  The linguistic ratings in Tables 8-26 through 8-29 were all converted to fuzzy 

triangular numbers using the membership functions displayed in Figure 8-7.  The color rating 

used in Table 8-26 are displayed in the figure along with the linguistic ratings for Tables 8-27 

and 8-28.  Although the linguistic ratings for Table 8-29 are not specified in the figure, the colors 

represented by blue through red can represent the linguistic ratings in Table 8-29 for “substantial 

confidence” through “no confidence”, respectively.  By conducting this fuzzy transformation, the 

uncertainties of the linguistic variables in each table were captured mathematically for further 

analysis and comparison. 

Table 8-26: Technical Ratings[128] 
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Table 8-27: Technical Risk Ratings[128] 

 

Table 8-28: Past Performance Relevancy Ratings[128] 

 

 
Table 8-29: Past Performance Confidence Assessment Rating[128] 
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Figure 8-7: Linguistic Fuzzy Numbers 

 

Two decision matrices were created to evaluate fuzzy and crisp data sets.  Decision matrix  , 

shown in Table 8-30, was created after establishing risk, performance, reliability, and cost data 

for the three design alternatives along with objective and threshold criteria.  For criteria 6 though 

9, the fuzzy linguistic variables were transformed to crisp numbers using Equation 4-19.  

Decision matrix   will be used for the MF-WSM and OCS-TOPSIS methods.  The fuzzy 

decision matrix   , shown in Table 8-31, was created using the same data as decision matrix   

with the addition of MoI and fuzzy linguistic variables.  Fuzzy decision matrix    will be used 

with the OCS-FTOPSIS method.  In order to demonstrate fuzzy system information using OCS-

MCDA techniques, triangular fuzzy numbers were created based on collected rocket data with 

Method of Imprecision (MoI) applied to create a range of uncertainty.  The MoI technique used 

in the case study will be expounded below in section 8.2.4.2.    
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Table 8-30: Decision Matrix D and Weights    of Three Alternative Systems 

 
C1A C1B C1C C2A C2B C2C C3A C3B C4 C5 C6 C7 C8 C9 C10 

           100 0.50 0.05 1 1 1 10 10 2000 1 1.00 1.00 1.000 1.000 52.50 

A1 82 1.7 0.01 1.3 1.5 1 15 10 2810 0.92 0.5 0.2 0.8 0.8 85.0 

A2 337 0.25 0.12 2.4 1 2.5 35 15 1840 0.95 0.5 0.5 0.8 1 52.5 

A3 102 0.91 0.03 1.5 1.5 5 18 10 2050 0.94 0.5 0.2 0.5 0.5 57.5 

           400 2 0.15 5 5 5 50 25 1000 0.75 0.00 0.00 0.00 0.00 85.00 

Weight 0.04 0.04 0.04 0.04 0.04 0.04 0.06 0.06 0.108 0.096 0.096 0.096 0.084 0.084 0.072 

 

 
Table 8-31: Fuzzy Decision Matrix    and Weights of Three Design Alternatives 

  C1A C1B C1C C2A C2B 

             (100, 100, 100) (0.5, 0.5, 0.5) (0.05, 0.05, 0.05) (1, 1, 1) (1, 1, 1) 

A1 (77.9, 82, 86.1) (1.6, 1.7, 1.8) (0, 0.01, 0.01) (1.2, 1.3, 1.4) (1.4, 1.5, 1.6) 

A2 (320.2, 337, 353.8) (0.2, 0.25, 0.27) (0.1, 0.12, 0.13) (2.3, 2.4, 2.5) (1, 1, 1.1) 

A3 (96.9, 102, 107.1) (0.9, 0.91, 0.95) (0, 0.03, 0.03) (1.4, 1.5, 1.6) (1.4, 1.5, 1.6) 

            (400, 400, 400) (2, 2, 2) (0.15, 0.15, 0.15) (5, 5, 5)  (5, 5, 5) 

  C2C C3A C3B C4 C5 

             (1, 1, 1) (10, 10, 10) (10, 10, 10) (2000, 2000, 2000) (1, 1, 1) 

A1 (1, 1, 1.1) (14.3, 15, 15.8) (9.5, 10, 10.5) (2670, 2810, 2951) (0.87, 0.92, 0.96) 

A2 (2.4, 2.5, 2.6) (33.3, 35, 36.8) (14.3, 15, 15.8) (1748, 1840, 1932) (0.9, 0.95, 1) 

A3 (4.8, 5, 5.25) 17.1, 18, 18.9) (9.5, 10, 10.5) (1948, 2050, 2153) (0.89, 0.94, 0.99) 

            (5, 5, 5) (50, 50, 50) (25, 25, 25) (1000, 1000, 1000) (0.75, 0.75, 0.75) 

  C6 C7 C8 C9 C10  

             (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (49.9, 52.5, 57.8)  

A1 (0, 0.2, 0.4) (0, 0.2, 0.4) (0.6, 0.8, 1) (0.6, 0.8, 1) (80.8, 85, 93.5)  

A2 (0.3, 0.5, 0.7) (0.3, 0.5, 0.7) (0.6, 0.8, 1) (0.8, 1, 1) (49.9, 52.5, 57.8)  

A3 (0, 0.2, 0.4) (0, 0.2, 0.4) (0.3, 0.5, 0.7) (0.3, 0.5, 0.7) (54.6, 57.5, 63.3)  

            (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (80.8, 85, 93.5)   

 

8.2.2.1 Symmetrical Data.  Since the previous case study used asymmetrical data, this case 

study will use symmetrical data for Method of Imprecision (MoI) estimates. To simplify and 

standardize the alternative design data, five percent variance was used to model designer 

uncertainty from a point estimate across all but criteria 6 through 9.  For these criteria, fuzzy 

linguistic variables were used that were derived from the membership functions displayed in 

Figure 8-7.   
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8.2.3 OCS-MCDA Methods (Y-Axis).  The MF-WSM is the only OCS-MCDA technique 

that utilizes the dependent variables on the Y-Axis of each membership function.  By obtaining 

discrete preference information directly from each membership function, the MF-WSM 

technique provides the most uncomplicated, straight forward approach of the three OCS 

techniques. 

8.2.3.1 MF-WSM Applications to Case Study #2.  The MF-WSM technique models fuzzy 

customer preference using fuzzy membership functions to determine user utility for a given 

design parameter.  The MF-WSM method leverages both benefit and cost membership functions 

to determine user utility per criterion that enables the accurate calculation of conflicting 

requirements.  By incorporating fuzzy numbers that have a maximum value of one, the MF-

WSM method also restricts preferential scoring for alternatives that provide excess capabilities 

beyond ideal customer requirements resulting in a ranked list of alternatives that is more aligned 

with customer stated requirements.  This MF-WSM approach will be demonstrated using the 

rocket case study described above. 

8.2.3.1.1 Initial Conditions.  The decision matrix D, represented in Table 8-30, was used for 

this MF-WSM application to case study #2.  The three alternatives being evaluated are listed in 

the table along with their crisp system criteria and weights. The fuzzy preference criteria 

           and              are also listed in the decision matrix. 

8.2.3.1.2 Case Study #2 Results.  The results of the MF-WSM analysis are shown in Tables 

8-32 through 8-34.  As stated above, the decision matrix D and weights w used for the analysis 

are displayed in Table 8-30.  Table 8-32 shows the transformed membership function matrix M 

and Table 8-33 displays the weighted membership function matrix V.  Table 8-34 displays the 

results of the analysis.  As indicated in bold font in Table 8-32, Alternative 2 was calculated to 



97 
 

have best value according to government stated requirements that were reflected in Tables 8-24 

and 8-25. 

Table 8-32: Transformed Membership Function Matrix M 

 
C1A C1B C1C C2A C2B C2C C3A C3B C4 C5 C6 C7 C8 C9 C10 

           1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

A1 1 0.2 1 0.93 0.88 1 0.88 1 1 0.66 0.5 0.2 0.8 0.8 0 

A2 0.21 1 0.3 0.65 1 0.63 0.38 0.67 0.84 0.8 0.5 0.5 0.8 1 1 

A3 0.99 0.73 1 0.88 0.88 0 0.8 1 1 0.76 0.5 0.2 0.5 0.5 0.85 

           0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Weight 0.04 0.04 0.04 0.04 0.04 0.04 0.06 0.06 0.108 0.096 0.096 0.096 0.084 0.084 0.072 

 
Table 8-33: Weighted Membership Function Matrix V 

 
C1A C1B C1C C2A C2B C2C C3A C3B C4 C5 C6 C7 C8 C9 C10 

A1 0.04 0.008 0.04 0.037 0.035 0.04 0.053 0.06 0.108 0.064 0.048 0.019 0.067 0.067 0 

A2 0.008 0.04 0.012 0.026 0.04 0.025 0.023 0.04 0.091 0.077 0.048 0.048 0.067 0.084 0.072 

A3 0.04 0.029 0.04 0.035 0.035 0 0.048 0.06 0.108 0.073 0.048 0.019 0.042 0.042 0.061 

Weight 0.04 0.04 0.04 0.04 0.04 0.04 0.06 0.06 0.108 0.096 0.096 0.096 0.084 0.084 0.072 

  

Table 8-34: MF-WSM Results & Comparison to TOPSIS 

 Cost 
 MF-WSM 

  
TOPSIS 

 

 
$ Mil R Total  Rank 

 
     Rank 

A1 85 0.92 0.6886 2 
 

0.552444 1 

A2 52.5 0.95 0.70343 1 
 

0.528294 2 

A3 57.5 0.94 0.68223 3 
 

0.415944 3 

 

8.2.3.1.3 Discussion / Comparison to TOPSIS.  In order to evaluate the effectiveness of the 

MF-WSM method, the results of the study were compared against standard TOPSIS results.  As 

Table 8-34 indicates, the MF-WSM results were different than conventional TOPSIS.  Since 

standard WSM cannot accurately calculate data with conflicting requirements, it was excluded 

from this comparison.  Although both techniques selected Alternative 3 last, the MF-WSM and 

standard TOPSIS selected different Alternatives as the best value candidate.  As demonstrated in 

Table 8-34, the MF-WSM technique changed the ranking order by constraining the decision 

matrix through the use of membership functions.  While TOPSIS ranked alternative 1 the 

highest, the MF-WSM technique ranked alternative 2 as the best value for meeting government 

requirements.  This difference in decision outcome highlights the affect that saturating objective 
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requirements has on a decision outcome.  By constraining values at ideal customer requirements, 

the MF-WSM method selected the alternative with the highest reliability and lowest cost with a 

compromise of acceptable performance standards.  To evaluate the consistency of this MF-WSM 

outcome, the case study #2 results will be compared to the other OCS-MCDA techniques. 

 

8.2.4 OCS-MCDA Methods (X-Axis).  The OCS-TOPSIS and OCS-FTOPSIS techniques 

utilize the independent variables on the X-Axis of the membership function.  Since these 

techniques are modified versions of TOPSIS and FTOPSIS, all calculations are performed on the 

real number line   of the membership function. 

8.2.4.1 OCS-TOPSIS Applications to Case Study #2.  The OCS-TOPSIS method 

incorporates minimum and maximum customer requirements to establish the Negative Ideal 

Solution (NIS) and Positive Ideal Solution (PIS) in order to define and constrain the trade space.  

By constraining the trade space, OCS-TOPSIS restricts preferential scoring for alternatives that 

provide excess capabilities beyond ideal customer requirements resulting in a ranked list of 

alternatives that is more aligned with customer stated requirements.  This OCS-TOPSIS 

approach will be demonstrated using the rocket case study described above. 

8.2.4.1.1 Initial Conditions.  The decision matrix D, represented in Table 8-30, was used for 

this OCS-TOPSIS application to case study #2.  The three alternatives being evaluated are listed 

in the table along with their crisp system criteria and weights. The fuzzy preference criteria 

           and              are also listed in the decision matrix. 

According to TOPSIS definitions, cost criteria are defined as criteria where a minimum value 

is preferred over a maximum value. Benefit criteria is defined as criteria where a maximum value 

is preferred over a minimum value [51]. While preparing TOPSIS calculations, each criterion 
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must be classified as either benefit or cost.  This step is addressed in step 5 of the OCS-TOPSIS 

method, listed in section 6.2.1.  Using TOPSIS terminology, criteria 1 through 3 and 10 are 

classified as cost criteria with the remaining classified as benefit criteria.  As noted in Table 8-30 

and Tables 8-35 through 8-37, the             values for criteria 1 through 3 and 10 are larger 

than the criteria             values. Since the remaining criteria are classified as benefit criteria, 

the other criteria            values are higher than           . After normalizing the constrained 

decision matrix  , all alternatives that meet or exceed             for benefit criteria will equal 1.  

For cost criteria, the worst performing alternatives will equal 1 or have the highest numerical 

value (see Table 8-36).  

To limit the rank reversal phenomenon in OCS-TOPSIS, a modified version of Garcia-

Cascales and Lamata’s solution to the rank reversal problem was implemented.  Rank reversal 

and prevention measures were discussed in section 8.1.4.1.  As in the previous case study, the 

alternative normalization technique and the fictitious alternatives of             and            

were implemented into the decision set to represent PIS and NIS, respectively.  To determine the 

criteria values for             and             alternatives, objective and threshold values were used 

from the rocket RFP for performance criteria 1 through 4, including all sub criteria.  Since cost 

objectives were not stated in the UAS RFP, minimum and maximum costs under the cost 

criterion were used as            and           , respectively.  By incorporating the fictitious 

alternatives of             and             in the decision set, rank reversal was successfully 

mitigated while also constraining the decision matrix to a fuzzy customer requirement set of PIS 

and NIS. 
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8.2.4.1.2 Case Study #2 Results.  The results of the rocket case study are shown in Tables 8-

35 through 8-39.  As stated above, the decision matrix D and weights w used for the analysis are 

displayed in Table 8-30.  Table 8-35 shows the constrained decision matrix S using Equation 6-6.  

Since the RFP did not specify threshold or objective requirements for cost criterion 10, this 

criterion did not change in the constrained decision matrix.  Table 8-36 displays the normalized 

decision matrix R using Equation 6-7 and Table 8-37 shows the weighted normalized decision 

matrix V using Equation 6-8.  The Positive Ideal Solutions (PIS) and Negative Ideal Solutions 

(NIS) are listed in Table 8-38 and the results of the OCS-TOPSIS analysis is shown in Table 8-

39.  As indicated in bold font in Table 8-39, Alternative 2 was calculated to have best value 

according to government stated requirements that were reflected in Tables 8-24 and 8-25. 

 

Table 8-35: Constrained Decision Matrix S 

 
C1A C1B C1C C2A C2B C2C C3A C3B C4 C5 C6 C7 C8 C9 C10 

           100 1 0.05 1 1 1 10 10 2000 1 1 1 1 1 52.5 

A1 100 1.7 0.05 1.3 1.5 1 15 10 2000 0.916 0.5 0.2 0.8 0.8 85 

A2 337 0.5 0.12 2.4 1 2.5 35 15 1840 0.95 0.5 0.5 0.8 1 52.5 

A3 102 0.91 0.05 1.5 1.5 5 18 10 2000 0.939 0.5 0.2 0.5 0.5 57.5 

           400 2 0.15 5 5 5 50 25 1000 0.75 0 0 0 0 85 

 
 

Table 8-36: Normalized Decision Matrix R 

 
C1A C1B C1C C2A C2B C2C C3A C3B C4 C5 C6 C7 C8 C9 C10 

           0.25 0.25 0.333 0.2 0.2 0.2 0.2 0.4 1 1 1 1 1 1 0.618 

A1 0.25 0.85 0.333 0.26 0.3 0.2 0.3 0.4 1 0.916 0.5 0.2 0.8 0.8 1 

A2 0.843 0.25 0.8 0.48 0.2 0.5 0.7 0.6 0.92 0.95 0.5 0.5 0.8 1 0.618 

A3 0.255 0.455 0.333 0.3 0.3 1 0.36 0.4 1 0.939 0.5 0.2 0.5 0.5 0.676 

           1 1 1 1 1 1 1 1 0.5 0.75 0 0 0 0 1 

 
 

Table 8-37: Weighted Normalized Decision Matrix V 

 
C1A C1B C1C C2A C2B C2C C3A C3B C4 C5 C6  C7 C8 C9 

           0.010 0.01 0.013 0.008 0.008 0.008 0.012 0.024 0.108 0.096 0.096 0.096 0.084 0.084 0.045 

A1 0.010 0.034 0.013 0.010 0.012 0.008 0.018 0.024 0.108 0.088 0.048 0.019 0.067 0.067 0.072 

A2 0.034 0.01 0.032 0.019 0.008 0.020 0.042 0.036 0.100 0.092 0.048 0.048 0.067 0.084 0.045 

A3 0.010 0.018 0.013 0.012 0.012 0.040 0.022 0.024 0.108 0.091 0.048 0.019 0.042 0.042 0.049 

           0.040 0.040 0.040 0.040 0.040 0.040 0.060 0.060 0.054 0.072 0 0 0 0 0.072 
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Table 8-38:   
 ,   

   -  Positive Ideal Solutions (PIS) and Negative Ideal Solutions (NIS) 

  
  0.010 0.010 0.013 0.008 0.008 0.008 0.012 0.024 0.108 0.096 0.096 0.096 0.084 0.084 0.045 

  
  0.040 0.040 0.040 0.040 0.040 0.040 0.060 0.060 0.054 0.072 0.000 0.000 0.000 0.000 0.072 

 
 

Table 8-39: OCS-TOPSIS and Conventional TOPSIS Results 

 Cost  OCS-TOPSIS 
 

Conventional TOPSIS 

 
$ Mil R    

     
         Rank 

 
   

     
         Rank 

A1 85 0.92 0.101517 0.149816 0.596086 2 
 

0.060486 0.074662 0.552444 1 

A2 52.5 0.95 0.085262 0.152677 0.641666 1 
 

0.064262 0.071971 0.528294 2 

A3 57.5 0.94 0.114466 0.128582 0.52904 3 
 

0.073913 0.052638 0.415944 3 

 

8.2.4.1.3 Discussion / Comparison to Standard TOPSIS.  In order to evaluate the 

effectiveness of the OCS-TOPSIS method, the results of the study were compared against 

standard TOPSIS results.  As Table 8-39 indicates, the OCS-TOPSIS results were different than 

the conventional TOPSIS method.  As demonstrated in the table, the OCS-TOPSIS technique 

changed the ranking order by constraining the decision matrix.  While conventional TOPSIS 

ranked alternative 1 the highest, the OCS-TOPSIS technique ranked alternative 2 as the best 

value for meeting customer requirements.  Since these OCS-TOPSIS results were consistent with 

the MF-WSM results, the similarities and differences between OCS-TOPSIS and TOPSIS were 

the same as the MF-WSM technique.  These consistent results between OCS-TOPSIS and MF-

WSM methods reinforce the reliability and validity of both techniques.   

8.2.4.2 OCS-FTOPSIS Applications to Case Study #2.  In the OCS-FTOPSIS method, 

minimum and maximum customer requirements are used to establish the Fuzzy Negative Ideal 

Solution (FNIS) and Fuzzy Positive Ideal Solution (FPIS) in order to define and constrain the 

trade space.  Instead of using linguistic variables to evaluate each criterion, like most FTOPSIS 

techniques, fuzzy design estimates are used to calculate Euclidean distances from FNIS and 

FPIS.  Similar to the previous two techniques, the OCS-FTOPSIS method also restricts 

preferential scoring for alternatives that provide excess capabilities beyond ideal customer 
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requirements. This OCS-FTOPSIS approach will be demonstrated using the rocket case study 

described above. 

8.2.4.2.1 Initial Conditions.  The decision matrix   , represented in Table 8-31, was used for 

this OCS-FTOPSIS application to case study #2.  The three alternatives being evaluated are 

listed in the table along with their fuzzy system criteria and weights. The fuzzy preference 

criteria            and              are also listed in the decision matrix. 

Similar to TOPSIS definitions, FTOPSIS cost criteria are defined as criteria where a 

minimum value is preferred over a maximum value. Benefit criteria is defined as criteria where a 

maximum value is preferred over a minimum value. While preparing FTOPSIS calculations, 

each criterion must be classified as either benefit or cost.  This step is addressed in step 5 of the 

OCS-FTOPSIS method, listed in section 6.2.2.  Using FTOPSIS definitions, criteria 1 through 3 

and 10 are classified as cost criteria.  As noted in Table 8-31 and Tables 8-40 through 8-42, the 

            values for criteria 1 through 3 and 10 are larger than criteria             values. Since 

the remaining criteria are classified as benefit criteria, the other criteria            values are 

higher than           .  After normalizing the constrained fuzzy decision matrix   , all 

alternatives that meet or exceed             will equal 1. For cost criteria, the worst performing 

alternatives will equal 1 or have the highest numerical value (see Table 8-41). 

The rank reversal phenomenon was mitigated using a modified version of Garcia-Cascales 

and Lamata’s TOPSIS solution, similar to OCS-TOPSIS.  In order to minimize the risk of rank 

reversal in OCS-FTOPSIS, the fictitious alternatives of             and            were 

implemented into the decision set to represent FPIS and FNIS, respectively. By incorporating the 

fictitious alternatives of             and             in the decision set, rank reversal was  
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successfully mitigated while also constraining the decision matrix to a fuzzy customer 

requirement set of FPIS and FNIS. 

8.2.4.2.2 Case Study #2 Results.  The results of the rocket case study are shown in Tables 8-

40 through 8-44.  As stated above, the decision matrix D and weights w used for the analysis are 

displayed in Table 8-31.  Table 8-40 shows the fuzzy constrained decision matrix    using 

Equation 6-15 to demonstrate calculating a fuzzy set that completely meets threshold criteria.  

Since the RFP did not specify threshold or objective requirements for cost criterion 9, this 

criterion did not change in the constrained decision matrix.  Table 8-41 displays the fuzzy 

normalized decision matrix      using Equation 6-17 and Table 8-42 shows the fuzzy weighted 

normalized decision matrix    using Equation 6-21.  The Fuzzy Positive Ideal Solutions (FPIS) 

and Fuzzy Negative Ideal Solutions (FNIS) are indicated in Table 8-43 using Equations 6-22 and 

6-23, respectively.  The results of the OCS-FTOPSIS analysis along with conventional FTOPSIS 

distance calculations are shown in Table 8-44.  The conventional FTOPSIS calculations used in 

this case study are straight fuzzy calculations, without Subject Matter Expert (SME) input or 

constraints, using the same rocket alternative and requirements data as the other two techniques. 

As indicated in bold font in Table 8-44, Alternative 2 was calculated to have best value 

according to government stated requirements that were reflected in Tables 8-24 and 8-25. 
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Table 8-40: Constrained Fuzzy Decision Matrix    and Weights of Three Design Alternatives 

  C1A C1B C1C C2A C2B 

             (50, 50, 50) (0.5, 0.5, 0.5) (0.05, 0.05, 0.05) (1, 1, 1) (1, 1, 1) 

A1 (77.9, 82, 86.1) (1.6, 1.7, 1.8) (0.05, 0.05, 0.05) (1.2, 1.3, 1.4) (1.4, 1.5, 1.6) 

A2 (320.2, 337, 353.8) (0.5, 0.5, 0.5) (0.1, 0.12, 0.13) (2.3, 2.4, 2.5) (1, 1, 1.1) 

A3 (96.9, 102, 107.1) (0.9, 0.91, 0.95) (0.05, 0.05, 0.05) (1.4, 1.5, 1.6) (1.4, 1.5, 1.6) 

            (400, 400, 400) (2, 2, 2) (0.15, 0.15, 0.15) (5, 5, 5) (5, 5, 5) 

  C2C C3A C3B C4 C5 

             (1, 1, 1) (10, 10, 10) (10, 10, 10) (2000, 2000, 2000) (1, 1, 1) 

A1 (1, 1, 1.1) (14.3, 15, 15.8) (10, 10, 10.5) (2000, 2000, 2000) (0.87, 0.916, 0.962) 

A2 (2.4, 2.5, 2.6) (33.3, 35, 36.8) (14.3, 15, 15.8) (1748, 1840, 1932) (0.903, 0.95, 0.998) 

A3 (4.8, 5, 5) 17.1, 18, 18.9) (10, 10, 10.5) (1948, 2000, 2000) (0.892, 0.939, 0.986) 

            (5, 5, 5) (50, 50, 50) (25, 25, 25) (1000, 1000, 1000) (0, 0, 0) 

  C6 C7 C8 C9 C10 

             (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (49.9, 52.5, 57.8) 

A1 (0.3, 0.5, 0.7) (0, 0.2, 0.4) (0.6, 0.8, 1) (0.6, 0.8, 1)  (80.8, 85, 93.5) 

A2 (0.3, 0.5, 0.7) (0.3, 0.5, 0.7) (0.6, 0.8, 1) (0.8, 1, 1) (49.9, 52.5, 57.8) 

A3 (0.3, 0.5, 0.7) (0, 0.2, 0.4) (0.3, 0.5, 0.7) (0.3, 0.5, 0.7) (54.6, 57.5, 63.3) 

            (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (80.8, 85, 93.5)   

 
 
 

Table 8-41: Fuzzy Normalized Decision Matrix    

  C1A C1B C1C C2A C2B 

             (0.25,0.25, 0.25) (0.2,0.2, 0.2) (0.07, 0.07, 0.07) (0.4, 0.4, 0.4) (0.5, 0.5, 0.5) 

A1 (0.25,0.25, 0.25) (0.32, 0.34, 0.36) (0.07, 0.07, 0.07) (0.49, 0.52, 0.55) (0.71, 0.75, 0.79) 

A2 (0.8, 0.84, 0,89) (0.2,0.2, 0.2) (0.76, 0.8, 0.84) (0.91, 0.96, 1) (0.5, 0.5, 0.53) 

A3 (0.25,0.25, 0.27) (0.2,0.2, 0.2) (0.19, 0.2, 0.21) (0.57, 0.6, 0.63) (0.71, 0.75, 0.79) 

            (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) 

  C2C C3A C3B C4 C5 

             (0.2, 0.2, 0.2) (0.29, 0.29, 0.29) (0.5, 0.5, 0.5) (1, 1, 1) (1, 1, 1) 

A1 (0.2, 0.2, 0.2) (0.41, 0.43, 0.45) (0.5, 0.5, 0.53) (1, 1, 1) (0.87, 0.92, 0.96) 

A2 (0.48, 0.5, 0.53) (0.95, 1, 1) (0.71, 0.75, 0.79) (0.7, 0.74, 0.77) (0.9, 0.95, 1) 

A3 (0.95, 1, 1) (0.49, 0.51, 0.54) (0.5, 0.5, 0.53) (0.78, 0.82, 0.86) (0.89, 0.94, 0.99) 

            (1, 1, 1) (1, 1, 1) (1, 1, 1) (0.6, 0.6, 0.6) (0, 0, 0) 

  C6 C7 C8 C9 C10 

             (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (0.56, 0.59, 0.62) 

A1 (0.3, 0.5, 0.7) (0, 0.2, 0.4) (0.6, 0.8, 1) (0.6, 0.8, 1) (0.91, 0.95, 1) 

A2 (0.3, 0.5, 0.7) (0.3, 0.5, 0.7) (0.6, 0.8, 1) (0.8, 1, 1) (0.56, 0.59, 0.62) 

A3 (0.3, 0.5, 0.7) (0, 0.2, 0.4) (0.3, 0.5, 0.7) (0.3, 0.5, 0.7) (0.61, 0.65, 0.68) 

            (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.91, 0.95, 1) 
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Table 8-42: Fuzzy Weighted Normalized Decision Matrix    

  C1A C1B C1C C2A C2B 

             (0.01, 0.01, 0.01) (0.008, 0.008, 0.008) (0.03, 0.03, 0.03) (0.016, 0.016, 0.016) (0.03, 0.03, 0.03) 

A1 (0.01, 0.01, 0.01) (0.013, 0.014, 0.014) (0.03, 0.03, 0.03) (0.02, 0.021, 0.022) (0.043, 0.045, 0.047) 

A2 (0.032, 0.034, 0.036) (0.008, 0.008, 0.008) (0.031 0.032, 0.034) (0.037, 0.039, 0.04) (0.03, 0.03, 0.032) 

A3 (0.01, 0.01, 0.011) (0.008, 0.008, 0.008) (0.008, 0.008, 0.008) (0.23, 0.24, 0.25) (0.043, 0.045, 0.047) 

            (0.04, 0.04, 0.04) (0.04, 0.04, 0.04) (0.04, 0.04, 0.04) (0.045, 0.045, 0.045 (0.06, 0.06, 0.06) 

  C2C C3A C3B C4 C5 

             (0.012, 0.012, 0.012) (0.017, 0.017, 0.017) (0.03, 0.03, 0.03) (0.108, 0.108, 0.108) (0.108, 0.108, 0.108) 

A1 (0.012, 0.012, 0.012) (0.025, 0.026, 0.027) (0.03, 0.03, 0.032) (0.108, 0.108, 0.108) (0.094, 0.099, 0.104) 

A2 (0.029, 0.03, 0.032) (0.057, 0.06, 0.06) (0.043, 0.045, 0.047) (0.076, 0.08, 0.084) (0.098, 0.103, 0.108) 

A3 (0.057, 0.06, 0.06) (0.029, 0.031, 0.033) (0.03, 0.03, 0.032) (0.094, 0.089, 0.093) (0.097, 0.102, 0.107) 

            (0.06, 0.06, 0.06) (0.06, 0.06, 0.06) (0.06, 0.06, 0.06) (0.065, 0.065, 0.065) (0, 0, 0) 

  C6 C7 C8 C9 C10 

             (0.108, 0.108, 0.108) (0.108, 0.108, 0.108) (0.108, 0.108, 0.108) (0.108, 0.108, 0.108) (0.04, 0.043, 0.045) 

A1 (0.033, 0.054, 0.076) (0, 0.022, 0.043) (0.065, 0.087, 0.108) (0.065, 0.087, 0.108) (0.065, 0.069, 0.072) 

A2 (0.033, 0.054, 0.076) (0.033, 0.054, 0.076) (0.065, 0.087, 0.108) (0.087, 0.108, 0.108) (0.04, 0.043, 0.045) 

A3 (0.033, 0.054, 0.076) (0, 0.022, 0.043) (0.033, 0.054, 0.076) (0.033, 0.054, 0.076) (0.044, 0.047, 0.049) 

            (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.065, 0.069, 0.076) (0.065, 0.069, 0.072) 

 
 

Table 8-43:   
 ,   

   -  Fuzzy Positive Ideal Solutions (FPIS) and Fuzzy Negative Ideal Solutions (FNIS) 

   C1A  C1B  C1C  C2A  C2B  C2C  C3A    

   
   0.01  0.008  0.003  0.016  0.03  0.012  0.017    

   
   0.04  0.04  0.04  0.04  0.06  0.06  0.06    

   C3B  C4  C5  C6  C7  C8  C9  C10  

   
   0.03  0.108  0.108  0.108  0.108  0.108  0.108  0.4  

   
   0.06  0.065  0.000  0.000  0.000  0.000  0.076  0.072  

 
 
 

Table 8-44: FTOPSIS Technique Comparison - Alternative Distance to FPIS/FNIS 

 
Cost  OCS-FTOPSIS     

  
 FTOPSIS (no SME data)   

 
$ Mil R    

     
       Rank 

  
   

     
       Rank 

A1 85 0.92 0.1125 0.1955 0.6347 2 
  

14.2323 0.7637 0.0509 1 

A2 52.5 0.95 0.1073 0.1982 0.6487 1 
  

14.2822 0.7070 0.0472 2 

A3 57.5 0.94 0.1400 0.1615 0.5357 3 
  

14.3816 0.6161 0.0411 3 
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8.2.4.2.3 Discussion / Comparison to Standard FTOPSIS (no SME data).  In order to 

evaluate the effectiveness of the OCS-FTOPSIS method, the results of the study were compared 

against standard FTOPSIS results without SME input.  The results of the rocket case study using 

OCS-FTOPSIS and FTOPSIS methods are shown in Table 8-44.  As indicated in bold font in the 

table, Alternative 2 was calculated to have best value according to government stated 

requirements that were reflected in Tables 8-24 and 8-25.  The standard FTOPSIS method 

without SME data selected Alternative 1 as the best candidate.  This difference in FTOPSIS 

outcome further reinforces the benefit of saturating customer requirements while constraining the 

decision matrix using threshold and objective requirements as FNIS and FPIS, respectively.  By 

saturating values at ideal customer requirements, the OCS-FTOPSIS approach selected the 

alternative with the highest reliability and lowest cost with a compromise of acceptable 

performance standards.   

 

8.2.5 Comparison of MF-WSM, OCS-TOPSIS, & OCS-FTOPSIS Results.  At the 

conclusion of Case Study #2, all OCS-MCDA techniques obtained the same ranking of 

alternatives.  Table 8-45 summarizes the results of each OCS method.  As can be seen in the 

table, all OCS-MCDA techniques achieved similar outcomes.  The results of the second case 

study reinforce the reliability and consistency of the OCS methods. 

Table 8-45: OCS-MCDA Technique Comparison 

 
OCS-FTOPSIS     

 
 OCS-TOPSIS   

 
 MF-WSM 

 
   

     
       Rank 

 
   

     
       Rank 

 
 Total Rank 

A1 0.1125 0.1955 0.6347 2 
 

0.101517 0.149816 0.596086 2 
 

0.6886 2 

A2 0.1073 0.1982 0.6487 1 
 

0.085262 0.152677 0.641666 1 
 

0.70343 1 

A3 0.1400 0.1615 0.5357 3 
 

0.114466 0.128582 0.52904 3 
 

0.68223 3 
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A sensitivity analysis was conducted to determine if OCS-MCDA results were sensitive to 

moderate changes in the criteria weighting. After conducting the sensitivity analysis, the OCS 

methods proved fairly robust against moderate changes to criteria weighting.  Since OCS-MCDA 

techniques use customer order of importance to rank criteria weights, the sensitivity analysis 

focused on rank intensity instead of rank order.  For example, Table 8-46 displays the revised 

criteria weights used for the sensitivity analysis with the changed parameters indicated in red.  

For the criteria weights used in the case study, the ranking used numbers 1 through 6 in 

sequential order.  For the criteria weights used in the sensitivity analysis, the rank number was 

changed to 5 after the performance criteria since rank 1 was used repeatedly.  This change in 

ranking increased the emphasis for performance criteria and deemphasized the remaining 

criteria.  After changing the rank intensity, only the MF-WSM method experienced a rank 

reversal where Alternative 1 became the best candidate.  Both the OCS-TOPSIS and OCS-

FTOPSIS alternatives did not experience a rank reversal and maintained Alternative 2 as the best 

alternative. 

Table 8-46: Revised Launch System Evaluation Criteria with Weights 

Criteria   Rank Weight Normalized 

C1= Orbital Accuracy to GEO Transfer Orbit  1 10 0.152 

   C1A =    Apogee (km)   0.051 

   C1B =    Perigee (km)   0.051 

   C1C =    Inclination (deg)   0.051 

C2= Loads & Dynamics - Load Factors (g's) 1 10 0.152 

   C2A =    Axial Load - Steady State   0.051 

   C2B =    Axial Load – Dynamic   0.051 

   C2C =    Lateral Load – Dynamic   0.051 

C3= Loads & Dynamics - Fundamental Frequency (Hz) 1 10 0.152 

   C3A =    Axial Fundamental Frequency   0.076 

   C3B =    Lateral Fundamental Frequency   0.076 

C4= Payload Mass to GEO Transfer Orbit 2 9 0.136 

C5= Launch Reliability 5 6 0.091 

C6= Technical Rating 6 5 0.076 

C7= Technical Risk Rating 6 5 0.076 

C8= Past Performance Relevancy 7 4 0.061 

C9= Past Performance Confidence Assessment 7 4 0.061 

C10= Launch Vehicle Cost 8 3 0.045 
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At the conclusion of both case studies, the OCS-MCDA techniques demonstrated consistent 

reliability and validity.  The OCS results were compared against each other as well as the WSM, 

TOPSIS, and FTOPSIS methods.  Throughout both case studies, the OCS-MCDA methods 

produced consistent results where the best value alternative was selected.  In all cases, the OCS 

techniques provided a rank order of alternatives that provided the best compromise between risk, 

performance, reliability and cost.  The OCS-MCDA methods even reached the same conclusion 

as subject matter experts who conducted independent system evaluations. The prior UAS case 

study provided a means to demonstrate the reliability and validity of the OCS methods through 

model comparisons and expert onion. The following rocket case study reinforced those results by 

providing continued consistent results amongst the OCS techniques.   
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9. CONCLUSION AND FUTURE WORK 

9.1 Summary  

This research introduced an original, pioneering approach to optimize decisions at the point 

of diminished marginal utility.  Prior to this study, there was a lack of Decision Analysis (DA) 

research in ideal customer requirements.  The research presented in this dissertation addressed 

this void in the literature and presented techniques to solve this problem. In addition to this 

dissertation, portions of this research were published and presented at the 2017 Annual 

Reliability and Maintainability Symposium (RAMS) and the 12th Annual IEEE Systems 

Conference  [136], [137]. 

The purpose of this research was to explore modeling fuzzy criteria preference to evaluate 

tradespace of system alternatives for determining a best value system.  The primary research 

objective was to develop a straightforward technique for modeling customer criteria preference 

to select a best value alternative with an optimal mix of performance, reliability, and cost.  The 

goal was also to prevent decision maker bias when faced with superfluous capabilities that may 

distract decision makers (DM) and lead to anchoring on specific alternatives.  The Objective 

Criteria Saturation (OCS) Multiple Criteria Decision Analysis (MCDA) techniques presented in 

this paper restrict decision scoring beyond diminished marginal utility by applying preference 

constraints.  This research contributes to the educational literature by applying fuzzy customer 

preference and fuzzy system data to MCDA while saturating evaluation criteria at ideal customer 

requirements.   

This research focused on exploring three OCS-MCDA techniques: The Weighted Sum 

Model (WSM), the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), 

and Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (FTOPSIS). Since 
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most conventional WSM and TOPSIS models use minimum and maximum values under a 

specific criterion to evaluate each alternative, a best value alternative may not be selected due to 

another alternative possessing excess capability in a heavily weighted criterion. This problem 

can become pronounced whenever evaluation criteria and priorities are published, such as 

government systems acquisition.  Under these circumstances, system providers may be 

compelled to focus on the highest weighted criteria while providing less focus to lower weighted 

criteria.  The OCS-MCDA techniques presented in this paper addressed this problem by 

restricting preferential scoring for alternatives that provided excess capabilities beyond ideal 

customer requirements.  By restricting scoring beyond diminished marginal utility, the OCS-

MCDA methods produced a ranked list of alternatives that was more aligned with customer 

stated requirements. 

 

9.2 Future Work  

The potential applications for Objective Criteria Saturation (OCS) Multiple Criteria Decision 

Analysis (MCDA) techniques are numerous.  Since decision makers (DM) often prefer to 

employ more than one decision analysis technique, an OCS-MCDA method could be 

implemented as a best value baseline to compare against other decision techniques.  Another 

application may be to make quick acquisition decisions when there is not enough time to go 

through a more time consuming decision technique.  Other applications of OCS-MCDA 

techniques may include data mining or machine learning where best fit data needs to be extracted 

from large data sets using a defined range.  Regardless of the application, the OCS decision 

methods offer a viable technique for selecting best value alternatives with an optimal mix of 

performance, cost, and reliability.     
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Further research is suggested in objective criteria saturation.  New research can focus on 

applying Objective Criteria Saturation (OCS) techniques to other decision analysis methods 

beyond those covered in this dissertation.  Additionally, further empirical studies are 

recommended to further test and evaluate the OCS-MCDA techniques against other decision 

analysis methods. 
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