

THESIS

GPU ACCELERATED CONE BASED SHOOTING BOUNCING RAY TRACING

Submitted by

Blake A. Troksa

Department of Electrical and Computer Engineering

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Summer 2019

Master’s Committee:

Advisor: Branislav Notaros

Co-Advisor: Sudeep Pasricha

Hamidreza Chitsaz

Copyright by Blake Adam Troksa 2019

All Rights Reserved

 ii

ABSTRACT

GPU ACCELERATED CONE BASED SHOOTING BOUNCING RAY TRACING

Ray tracing can be used as an alternative method to solve complex Computational

Electromagnetics (CEM) problems that would require significant time using traditional full-wave

CEM solvers. Ray tracing is considered a high frequency asymptotic solver, sacrificing accuracy

for speed via approximation. Two prominent categories for ray tracing exist today: image theory

techniques and ray launching techniques. Image theory involves the calculation of image points

for each continuous plane within a structure. Ray launching ray tracing is comprised of spawning

rays in numerous directions and tracking the intersections these rays have with the environment.

While image theory ray tracing typically provides more accurate solutions compared to ray

launching techniques, due to more exact computations, image theory is much slower than ray

launching techniques due to exponential time complexity of the algorithm.

This paper discusses a ray launching technique called shooting bouncing rays (SBR) ray

tracing that applies NVIDIA graphics processing units (GPU) to achieve significant performance

benefits for solving CEM problems. The GPUs are used as a tool to parallelize the core ray tracing

algorithm and also to provide access to the NVIDIA OptiX ray tracing application programming

interface (API) that efficiently traces rays within complex structures. The algorithm presented

enables quick and efficient simulations to optimize the placement of communication nodes within

complex structures. The processes and techniques used in the development of the solver and

demonstrations of the validation and the application of the solver on various structures and its

comparison to commercially available ray tracing software are presented.

 iii

ACKNOWLEDGEMENTS

I am thankful for the love and support of my family who have always been there for me

throughout my academic career. I want to thank my advisor, Dr. Branislav Notaros, who convinced

me to further my education and who guided and supported me during my time working in his lab.

I would also like to thank the members of my committee for their contribution to my academic

development. Finally, I would like to thank all fellow students who helped me become who I am

today including: Cam, Stephen, Jake, Pranav, Forest, and Sanja.

 iv

TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGEMENTS ... iii

CHAPTER 1: INTRODUCTION ... 1

1.1 Shooting Bouncing Rays .. 1

1.2 Goal of Thesis ... 3

1.3 Overview ... 4

CHAPTER 2: GEOMETRIC CALCULATIONS .. 6

2.1 Ray Generation ... 6

2.2 Mesh Creation ... 9

2.3 Ray Facet Intersection Computations ... 10

CHAPTER 3: POST PROCESSING .. 12

3.1 Electric Field Calculations .. 12

3.2 Sphere Intersection .. 14

3.3 Double Count Removal ... 17

CHAPTER 4: GPU CALCULATIONS ... 20

4.1 Overview of GPU Parallel Programming ... 20

4.2 GPU Optimization of RT .. 23

CHAPTER 5: RESULTS .. 27

5.1 Ray Tracing Application Validation ... 27

5.2 Results from Measurements .. 32

CHAPTER 6: CONCLUSION ... 34

6.1 Conclusions and Future Work .. 34

REFERENCES ... 36

APPENDIX A: PUBLICATIONS OF THE AUTHOR ... 38

APPENDIX B: CUDA C++ CODE FOR POST PROCESSING ... 39

 1

CHAPTER 1: INTRODUCTION

1.1 Shooting Bouncing Rays

In the field of computational physics, the necessity for high performance computing (HPC)

techniques to solve large scale and computationally demanding problems is becoming ever more

apparent. In Computational Electromagnetics (CEM) specifically, where numerical

approximations are common, these techniques are essential. One such acceleration technique

involves the parallelization of the underlying algorithms. Today, the development and abundance

of graphics processing units (GPU) has created the technology to achieve massive parallelization.

In contrast to traditional CEM full-wave solvers such as method of moments or the finite element

method (FEM), the shooting bouncing rays (SBR) ray tracing (RT) solver can be applied to quickly

analyze electrically large structures such as mine tunnels[1]. This is because full-wave solvers

require the construction and solving of large systems of equations which requires significant

amounts of memory and time. The full-wave technique Method of Moments (MoM) for example,

has a time complexity of O(N3) and RT has a time complexity of O(Nlog2N) due to the balanced

construction of the binary space partition tree where N is the number of facets in the structure. In

addition, the SBR RT application requires a simple mesh composed of triangular facets to describe

the scene in question whereas full-wave solvers can often demand complex higher-order meshes.

The RT solver requires much less memory and computation time in order to analyze large

structures at a cost of accuracy. In addition, RT solvers can benefit immensely from acceleration

with GPUs.

Ray tracing uses the convenience of Maxwell’s equations offered as a linear set of partial

differential equations within linear, homogenous, and anisotropic propagation domains. This

 2

allows ray tracing to solve high frequency electromagnetics problems. The SBR approach to RT

involves launching a set of test rays in all directions that originate from some centralized

transmitting point. These rays are then traced through the scene, and their intersections with objects

in the scene are recorded as displayed in Figure 1. The SBR method is described in further detail

in [2]. The electric field at a desired location in the scene is then found by summing the contribution

of ideal spherical wavefronts of the electric field for each ray that intersects the reception point at

the desired location. Using reflection coefficients based on surface parameters for each reflection,

the final electric field at the desired observation point can be approximated from the combination

of every path segment for a ray from the source to the observation point [3]. This process may be

repeated for several observation points to produce a field profile at desired locations.

Figure 1. Shooting Bouncing Rays: Depiction of the SBR ray tracing technique with transmitting

and receiving antenna and boundary obstacles.

The SBR RT application presented here is split into two execution subsections. The first

subsection involves the geometric and physical path calculation of rays as they propagate through

a given structure. The second subsection involves the post-processing, or field calculation, of each

ray. The geometric path calculation begins by creating a mesh of the structure/environment that is

under examination. Once the mesh has been constructed a collection of rays are generated that will

traverse the structure. After these rays have been generated, the NVIDIA OptiX ray tracing

application programming interface (API) is used to calculate the nearest intersection points

 3

between the rays and the facets that they hit. After these intersection points are computed, the

information is copied to the GPU where post processing occurs. The post processing consists of

the calculation of intersections between ray cones and observation points, the removal of any

double counting between adjacent ray cones, and the updating or the electric field propagated by

each ray.

1.2 Goal of Thesis

The Electromagnetics Laboratory in the Electrical and Computer Engineering department

at Colorado State University (CSU) is interested in expanding the types of solvers in their CEM

repertoire to handle ever larger propagation problems. The main codes used at the electromagnetics

laboratory include MoM and the finite element method (FEM). These computational codes provide

very accurate numerical solutions to small scale electromagnetic problems. While these

applications work very well for solving certain electromagnetic problems, there is not a program

that solves large scale electromagnetics problems such as the path loss from an antenna within a

1km tunnel due to poor scaling to larger input sizes i.e. the O(N3) time complexity for MoM. The

creation of a ray tracing solver would enable the ability to solve CEM problems within these

electrically large structures. In addition, the development of a high frequency asymptotic solver

provides the ability to create hybrid solvers that combine the accuracy of full-wave solvers like

FEM and MoM with the speed of ray-based solvers.

 The focus of this thesis is on the development of an SBR ray tracing algorithm that can

solve these large-scale electromagnetics problems. While a general ray tracing algorithm will

enable this computation, the ray tracing algorithm presented here focuses on accelerating and

optimizing the code with high performance computing techniques. The primary source of

 4

acceleration for this code will be achieved through general purpose graphics processing unit

(GPGPU) programming. GPUs are useful for solving problems that perform sequential operations

tens of thousands of times because they can perform this execution in blocks concurrently. In order

to maximize the efficiency of GPUs, the structure of the algorithm as well as the management of

memory within the algorithm need to be optimized. The primary focus of this thesis is to develop

a shooting bouncing rays ray tracing algorithm with a high degree of parallelism, optimized code

execution structure, and modularity for expanding and applying the algorithm to different

problems.

1.3 Overview

 Chapter 2 of this thesis discusses the approach to the geometric calculations of the ray

tracing algorithm. In particular, this includes the different techniques available for the generation

of the rays, consideration in the mesh necessary to preform ray tracing, as well as the approach to

computing the intersection points each ray makes with the mesh.

 In Chapter 3, an overview of the procedures for the post processing section of the algorithm

are described in detail including the variations in computation that are common in ray tracing.

Details on the approach to computing, storing, and updating the electric field for each ray are

described in order to develop an understanding of the flow of data and processing on the GPU.

The advantages to using ray cones as opposed to ray tubes from a computation standpoint are

presented to contrast the tradeoffs made to improve the SBR RT algorithm.

Chapter 4 introduces the important optimization strategies used for writing efficient

executable code on NVIDIA GPUs. This includes the importance of structured global memory

accesses that limit the total number of reads and writes to memory necessary and the inevitability

 5

of synchronization. Configuration optimization of the GPU kernels for the ray tracing program is

compared with changes in performance from different configurations. Specific implementations

of the ray tracing algorithm to incorporate these strategies is discussed.

 Chapter 5 shows validation of the ray tracing algorithm by comparing the simulated results

with those available in literature. Tunnels with uniform cross section are the main subject for

validation of the ray tracing algorithm. Furthermore, simulation results compared to physically

measured data is contrasted to demonstrate the usefulness of this approach as a replacement to

manually generating signal strength maps. The application of the algorithm to mapping 2-

dimensinal regions is presented as an additional feature.

Finally, Chapter 6 provides conclusions about the success of the algorithm, the comparison

with commercially available software, and the ability to expand upon the base algorithm

developed. This algorithm leaves the possibility of adding features such as edge diffraction,

transmission calculations, and adaptive ray spawning to the algorithm’s main functionality.

Additionally, the ray tracing algorithm can be combined with other solvers to create a

multifunctional and adaptive solver.

 6

CHAPTER 2: GEOMETRIC CALCULATIONS

2.1 Ray Generation

The generation of rays is an important consideration to ensure a minimum number of rays

needed for convergence to guarantee complete coverage of the structure under consideration and

to easily determine the neighboring rays of each ray. Since ray tracing is a high frequency

asymptotic solver, an infinite number of rays at infinite frequency is necessary to reach an exact

solution. The SBR RT algorithm assumes that the reflection boundaries are infinite planes, but at

frequencies in the GHz range this condition is well satisfied. Launching an infinite number of rays

is infeasible but, in general, the more rays that can be launched the better the results will be. The

number of rays necessary is determined by analyzing the accuracy of the solution as the number

of rays grow and by looking at how much the solution changes by adding more rays [4]. As an

example, a 5-minute run of the ray tracing application of one hundred million rays with 1 percent

error could be more beneficial than a run of the application with one billion rays that leads to a

solution with .5 percent error but takes an hour.

The spawning techniques for the ray tracing application involve sampling points on

surfaces that surround some ray origin point. Once these sampled points are determined, each ray

for the ray tracing algorithm is launched from the origin to one of the sampled points. Different

spawning techniques such as uniform grid sampling and Fibonacci spiral sampling have been

tested and provide different advantages in regard to sampling spacing and ease of formation [5].

The best balance for the SBR RT application it to discretize the twenty faces of an icosahedron

into a grid like structure. The total number of points on one of the faces is therefore represented

by the triangle number calculated using
!∗(!$%)

'
. This spawning enables near-uniform spacing for

 7

complete coverage but also, due to the nature of the discretization, it provides an efficient way to

determine which rays are neighbors to other rays. This is important for tracking which rays can

overlap with other rays since the overlap is exclusive to direct neighbors. Another advantage to

the icosahedron structure of ray spawning is the convenience for batching the ray tracing

algorithm. The more rays that are launched for a given SBR RT simulation, the more the simulation

needs to be divided into batches to ensure memory limits are not exceeded and since the RT

algorithm is only considering Maxwell’s equations in linear media, this decomposition of the

solution is possible. The icosahedron provides a simple solution to split up a simulation into twenty

batches due to the twenty different faces. Additionally, each face of the icosahedron can also be

divided into smaller regions however, it was discovered that twenty batches from the icosahedron

were enough for over 250 million rays which was ample density for the structures tested.

Another important feature of the icosahedron ray spawning is the ability to easily compute

the separation angle, alpha, between a ray and its neighbors in order to preform double count

removal. In some cases, alpha has been chosen as a constant value but the distribution of alpha

across a face of the icosahedron varies significantly as depicted in Figure 2.

(a)

(b)

Figure 2. Icosahedron Ray Spawning: (a) Icosahedron used for ray spacing in the initial radiation

pattern of the antenna. More subdivisions can be added for more rays to be spawned. (b) Separation

angle distribution for one of the faces of the icosahedron.

The reason the icosahedron is beneficial in this scenario can be explained by considering one of

the other spawning techniques. In the case of the Fibonacci spiral spawning technique, while the

 8

sampling is distributed ideally over a sphere, the ability to determine which points are closest to

other points is not trivial. All the points would need to be checked with all other points to determine

the closest neighbor or the points would need to be sorted in some way to help with the complexity

of finding the closest points for all points in the spiral. The icosahedron however, solves this

problem since the neighbor rays are already recorded and tracked for use in double count removal.

This adjacency map that tracks a ray’s neighbors makes determining the angle between a ray and

its neighbors as simple as calculating the max separation angle between a ray and its, at most, 6

other neighbors. The difference in accuracy from choosing a static alpha is shown in Figure 3(a)

compared to the ray-based alpha shown in Figure 3(b). In order to ensure complete coverage of a

given structure, the separation angle is chosen as the max separation angle between a ray and its

neighbors Figure 3(b). If the angle is chosen as the minimum distance between a ray and its

neighbors, then the entire scene is not covered and there can be observation points that do not

receive any rays which is evident in the noise towards the end of the signal in Figure 3(c).

(a)

(b)

(c)

Figure 3. Effect of Separation Angle: Different alpha approximations on the path loss

calculations of a dielectric waveguide for alpha as (a) constant (b) max angle between neighbors

(c) min angle between neighbors. These results were obtained on a lossy waveguide of dimensions

4m x 4m of εr =5 with the receivers and a transmitter located 2.1m from the floor and 1.1m from

the wall [8]. The frequency is 1GHz.

Lastly, since the faces of the icosahedron are all the same and the spacing between all the rays is

the same, the adjacency map for the entire ray spawning procedure only needs to be computed for

 9

the first face. This is beneficial since it reduces the execution time for the ray generation portion

of the code. Once the rays are created the rays can then be traced through given structures that are

converted into meshes.

2.2 Mesh Creation

The input to the OptiX Prime API is a wavefront (OBJ) file that contains the information

regarding the location and orientation of triangles constituting a certain structure. Figure 4 displays

an example of the meshing for portions of the Colorado School of Mines Edgar research mine in

Idaho Springs, Colorado.

Figure 4. Creation of Meshes: Illustration of the meshing algorithm applied to LiDAR data

collected in the Colorado School of Mines Edgar research mine.

The quality and approximations in the mesh given to the ray tracing algorithm is a factor in the

accuracy of the solution. In environments that have surfaces with high curvature, more triangles

are needed to accurately represent these boundaries. In SBR RT, the facets need to be electrically

large, around 10 wavelengths in order to ensure the plane wave approximation is as accurate as

possible. Typically, the creation of meshes involves the collecting of point cloud data, then the

creation of a triangle mesh from this point cloud data. Considerations in the density of the point

cloud data and subsequently the size of the triangles is very important especially in rough structures

 10

such as tunnels or mines because, at high frequencies, the surface roughness can be electrically

large and if the point cloud data is not dense then certain features in the structure would be ignored.

Additionally, a mesh can be created without point cloud data for example in smooth environments

such as building hallways where the walls are uniform and have an easily measurable shape.

2.3 Ray Facet Intersection Computations

Once the rays have been generated, the adjacency map has been created, and the separation

angle (alpha) has been computed for each ray the rays are used to populate a buffer of ray type

objects. This buffer is one of the main programming components available in the NVIDIA OptiX

Prime ray tracing API. This buffer is passed off to the OptiX ray intersection program that runs on

the GPU and determines the path of a ray from an origin point to a destination point along the

direction specified in the spawning. The OptiX API is used since NVIDIA has spent many years

developing OptiX to be used as a general-purpose ray tracing engine [6]. An essential feature and

a primary reason for using OptiX is the efficient construction of the binary space partition (BSP)

tree. The binary space partition tree is a tree type data structure that stores subdivisions of an

environment and allows for efficient ray triangle intersection tests by pruning out sections of the

space that are not physically reachable from other sections of the space. An efficient binary space

partition tree reduces the total number of facets that a ray has to check in order to find which one

it hits first [7]. Since this software is available free under non-commercial use, the OptiX API was

chosen to eliminate the need to develop a new binary space partitioning scheme that would

potentially be inferior to the OptiX BSP-tree. In order to construct the BSP-tree and perform these

ray-facet intersection tests, the OptiX ray tracing API needs a geometry description file to build a

mesh. The OptiX API then loads the mesh and executes a closest hit query for every ray in the ray

 11

buffer and calculates the nearest intersection with a triangle for that ray. After these intersections

are computed, the rays are reflected along the facet that they have intersected using the law of

reflection. This translation involves converting the barycentric coordinate system of the ray’s

intersection on the triangle to the Cartesian coordinate system.

Certain anomalous scenarios can occur while a ray is in the geometric portion of the SBR RT

algorithm. The first scenario is if the ray escapes the mesh that it is propagating in. This happens

rarely and is a product of numerical precision error that allows rays that hit directly on the boundary

of two facets to escape the mesh structure. This is mitigated in the ray tracing application by

removing these rays from the buffer meaning the information the ray contained is no longer

considered in the simulation. The frequency of this scenario is very low and therefore this removal

technique allows for a simple solution to escaped rays. The second scenario a ray can encounter is

if it leaves the region of interest, or the section where the observation points are located, without

leaving the actual mesh. In order to limit this region of interest, a bounding box consisting of

multiple kill planes is created to terminate any ray that intersects the box. After the rays are

reflected, the information regarding the previous path segment the ray has travelled is used in post

processing to determine any intersections the ray may have had with an observation point.

 12

CHAPTER 3: POST PROCESSING

3.1 Electric Field Calculations

Post processing begins by copying all data pertinent to each ray necessary to perform ray

sphere intersection tests, compute the electric field at the observation points, and update the electric

field associated with each ray. Each ray object in the SBR RT application tracks information

relating to its interaction with the environment it is propagating in. Every ray computes the distance

it has travelled up to the current reflection point in order to calculate the phase change imparted

by the medium the ray propagates in given by

 ()*+,

-

(1)

 - = -/0	2345/67(5-/8(9(2; 	; = </8(6=>?(-	(@=6753A6	A@	@-(B=(670)

In most scenarios the medium of propagation is assumed to be air. Once the ray has reflected, the

triangles or facets that have been intersected are recorded in order to determine the attenuation of

the electric field based on the material composition of the facet. This attenuation is described using

the Fresnel coefficients for normal polarization (2) and parallel polarization (3) which are

dependent on the properties of the material that the environment is comprised of.

 -C =
6D cos(HD) − 6Jcos	(HJ)
6D cos(HD) + 6Jcos	(HJ)

(2)

 -∥ =
6D cos(HJ) − 6Jcos	(HD)
6D cos(HJ) + 6Jcos	(HD)

(3)

As stated above, ray tracing is designed based on the linearity of Maxwell’s equations.

Given this notion, we propagate the plane waves directly along the path the ray takes. This

 13

approximation reduces the complexity of the computations needed to find the resulting electric

field. The first computational step in post processing is the calculation of the initial radiation

pattern of each ray based on a source antenna. The radiation pattern of the transmitting antenna is

discretized and sampled at points corresponding to the points located on the face of the

icosahedron. A Hertzian dipole antenna is used for most simulations in the basic version of the ray

tracing algorithm due to simplicity of this radiation pattern. The radiation pattern of the Hertzian

dipole is symmetric in the azimuthal direction and depends only on the polar angle making the

calculation of the initial field a simple trigonometry calculation. The incorporation of a new

antenna is as simple as defining a function to map each point on the icosahedron to a point on the

radiation pattern created by the antenna. If a function to map the points is not feasible then a dataset

of electric field points created by sampling a radiation pattern equal to the number of rays can be

created and mapped accordingly.

After the initial electric field is computed, the electric field for each subsequent ray-facet

intersection can be computed. In order to handle the change in magnitude and phase of the electric

field for each reflection, the normal and parallel polarization must be calculated for the incident

and reflected rays. The decomposition of an intersection into these two components can be seen

in Figure 5 below where (a) depicts the parallel polarization and (b) depicts the perpendicular

polarization of a uniform plane time-harmonic electromagnetic wave incident on a surface. After

the initial field is calculated but before the electric field from a reflection is updated for a ray, an

intersection test needs to be performed in order to determine if a ray has contributed to one of the

observation points along its current ray segment from the previous reflection to the current

reflection.

 14

(a)

(b)

Figure 5. Reflecting Plane Wave: The reflection of a plane wave along the surface boundary

shows the electric and magnetic field vectors for (a) parallel and (b) perpendicular polarizations of

a uniform time-harmonic plane wave.

3.2 Sphere Intersection

Two differing techniques have emerged to handle the gap that exists between rays due to

physical limits on the number of rays that can be launched. Subsequently, these two techniques

dictate the type of intersection tests that need to occur between a ray and an observation point. One

technique uses ray tubes or convex geometric shapes that fit in a grid like structure with

neighboring tubes. The ray tube technique works by tracing a polygonal shape consisting of

bounding rays representing the edges of the tube, and the central ray, representing the field of the

ray tube. The second, alternative, technique uses cones to surround each ray in which neighboring

cones overlap in order to cover the entire space. Figure 6 displays the difference between these

two techniques. Ray tubes are advantageous because there is no overlap between adjacent ray

tubes. This reduces the amount of processing needed in the post processing calculations because

it eliminates the need for double count removal. Also, when using ray tubes, the test for

determining if a reception or observation point is contained within a tube is a very efficient test. A

drawback to using ray tubes occurs if the structure under consideration has curved boundaries

because two possibilities can arise when ray tubes reflect off the curved surface. The first

possibility is to reflect the entire ray tube on the plane that is tangent to the central ray of the ray

 15

tube. When using this approach, the ray tubes will either disperse, in the case of convex structures,

meaning there will be gaps between the tubes or the ray tubes will overlap, in the case of concave

structures, meaning the distinction between individual ray tubes is lost. The second possibility is

to reflect each vertex of the ray tube on its own tangent plane, but this means the tubes lose the

rigid polygonal shape that they originated with [8]. In order to solve the issue with curved

boundaries, we use a cone-based ray discretization technique. In the cone-based ray tracing

technique, the reception points for the rays are modelled as spheres and the overlap between

different spheres can be eliminated by tracking which rays have intersected the spheres thus

eliminating any overlap or double counting that may occur.

Figure 6. Ray Cones vs. Ray Tubes: Visualization of the different space fillers between rays

constructed as triangles and ray cones.

The intersection tests performed determine how many rays have hit a sphere or spheres

representing the observation points. This number is then used to allocate the corresponding space

in memory to store information about these hits. This chunk of memory stores a specific trio of

intersection information including the ray that hit the sphere, which sphere was hit, and at what

distance along the segment did the ray hit the sphere. Once the information trio is collected, the

field contribution from each ray is factored into the current total field of the sphere. The reason for

computing the number of intersections before adding the field is to be able to perform double count

 16

removal. As the rays move further from the transmitting origin point, the radius of the ray cones

expand as shown in Figure 7(a). Subsequently, the size the reception spheres grow is determined

by the equation below where distance is the total distance a ray has travelled and a is the separation

angle between a ray and its neighbors.

 M/23=4NOPQ,Q = R345/67(∗ S √3⁄ (4)

It is important that the spacing between observation points is large enough compared to the number

of rays launched and therefore the separation angle as well as the distance the rays can travel,

otherwise the reception spheres can begin to overlap with each other as shown in Figure 7(b)

causing numerical error in the Electric Field.

(a)

(b)

Figure 7. Reception Sphere Growth: (a)The expansion of the reception spheres is a function of

the ray propagation distance. (b) The reception spheres have potential to grow too large and

overlap with adjacent reception spheres inducing error.

Since the ray cone is growing continuously as it approaches the observation point, the distance to

the reception sphere is determined by projecting the ray’s current direction vector, between the

current and previous reflection, onto the vector between the observation point and the previous

reflection. An illustration of this scene is displayed in Figure 8. Once the radius of the sphere has

been computed, the test to determine if a ray will intersect the sphere is performed by projecting

the sphere onto the plane normal to the ray’s direction thereby creating a disc of the same radius

as the sphere. Next, the algorithm tests to see if any point along the ray’s path intersects with a

 17

point on the disc. These points are recorded in the information trio and then refined using double

count removal to remove any trio that correspond to overlapping rays.

Figure 8. Ray Sphere Intersection: Graphical representation for the scene of a ray approaching

a sphere and the corresponding components used in the calculation of the reception sphere radius.

3.3 Double Count Removal

Since the entire environment of interest needs to be covered with cones, it is necessary to

ensure no gaps in the computation domain by having the cones overlap. Due to this overlap, not

all intersections between a cone and an observation point are valid intersections. In order to know

which are valid and which are not the intersections need to be tracked and added in a certain order

and this process is called double count removal [9-10]. Figure 9(a-b) illustrates what this overlap

can look like by taking a cross section of the wavefront of cones at a distance from the ray origin

point.

(a)

(b)

Figure 9. Cone Double Count Wavefront: (a) Illustration of the cone representing the overlap

between cones and their neighboring cones. (b) The black star represents an observation point and

shows how multiple adjacent cones intersect the same observation point due to the overlap.

 18

The observation point lies in a region in the wavefront within multiple cones meaning all those

cones will contribute to the electric field of that observation point and lead to inaccurate electric

field calculations. In order to remove the inaccuracies with double count removal, the adjacency

map created during ray generation is used to determine if a cone and its neighbors have intersected

the same sphere. The procedure for this begins by looping through the stored sphere intersection

trio data created during the ray sphere intersection tests and finding which adjacent rays have been

received by the same sphere by looking up their ray IDs in the adjacency map. If the rays are

adjacent rays, then only one of the rays is counted and the other is ignored for that specific sphere

intersection test. Removing double counted cones from the observation points provides for a more

accurate solution as displayed in figure 10.

(a)

 (b)

Figure 10. Effects of Double Count Removal: (a) Simulation of the dielectric waveguide with

the removal of double counted ray cones. (b) The same dielectric waveguide is simulated without

the removal of overlapping rays. These results were obtained on a lossy waveguide of dimensions

4m x 4m of εr =5 with the receivers and a transmitter located 2.1m from the floor and 1.1m from

the wall [8]. The frequency is 1GHz.

After the double counted cones are removed from the observation point calculations, the

electric field from each ray is added to the total electric field for each observation point. The

observation points start with 0+0j initial electric field and the electric field is altered via the x, y,

and z complex field components carried by the ray. Once the electric field at the observation

 19

points have been modified, the electric field for each ray is updated and the ray tracing algorithm

returns to the geometric subsection in order to calculate the next reflection point for each ray.

The post processing subsection of the RT application is the most time intensive part and

therefore requires the highest level of GPU acceleration to reduce the computation time.

 20

CHAPTER 4: GPU CALCULATIONS

4.1 Overview of GPU Parallel Programming

The shooting bouncing ray tracing program involves the spawning, propagation, electric

field computation, and electric field summation of millions of rays. The ability to launch millions

of rays is highly dependent on the structure and efficiency of the code as well as the level of

parallelization achieved. SBR ray tracing is a highly parallel procedure because each ray

propagates independently and any computation involving a ray can be performed without

interference from other rays. In order to achieve very quick and efficient computation time GPUs

are used. The reason GPUs are effective with this type of highly parallel programming is because

each basic work unit, or thread, on the GPU can compute, track, and update an individual ray's

information. In contrast to Computer Processing Units (CPU), GPUs are optimized for data parallel

throughput computations and CPUs are optimized for low latency access to cached data sets. CPUs

are designed to control logic for out of order and abstract execution whereas GPUs perform best

on organized instruction sets with limited logical branching. GPUs are also architecturally more

tolerant of memory latency and have physically more transistors that can be dedicated to arithmetic

computation [11]. GPUs are used in the RT application to enable large scale and efficient

parallelization.

The compute unified device architecture parallel computing platform, or CUDA for short,

is the primary language used to program on NVIDIA GPUs. The CUDA programming platform

permits the creation of parallel computational instructions to get maximum efficiency and

minimize computation time. The device code for NVIDIA GPUs is written in CUDA C/C++ and

the executable code on the GPU runs kernels which are synchronous computation batches

 21

containing sequential instruction sets. The sequential code located inside the kernels is executed

by the threads that are spawned at the start of the kernel execution.

Understanding the structure of NVIDIA GPUs is important for efficient parallelization of

the SBR RT application. GPUs are inherently parallel devices that contain many arithmetic

compute units and many different memory storage units to handle copious amounts of numerical

operations. Execution procedure on GPUs is broken down into the following sub-elements. The

finest execution unit on the GPU is the thread. GPU Threads are similar to threads on a CPU and

execute instructions sequentially. Multiple threads however, can execute in parallel on the different

hardware housed on the GPU. The threads on the GPU are grouped into thread blocks and all

thread blocks used in the execution of the kernel compose the grid. When a kernel is executed on

the GPU, the thread blocks are distributed to the available streaming multiprocessors (SM) located

on the GPU. Thread blocks do not begin execution until a SM has enough resources for all of the

threads inside the thread block to execute. These multiprocessors have their own set of shared

memory for all the threads inside that block. The threads located in the block running on the SM

cannot all run at one time and the streaming multiprocessor typically, in the case of the NVIDIA

GTX 1060 GPU used for the SBR RT application, can execute a group of 32 threads, known as a

warp, at one time.

Race Conditions are extremely prevalent in parallel programs and especially in the RT

application. Namely, the main race condition occurs when the electric field at an observation point

is modified by adding the electric field from all the rays that have intersected the same observation

point. Since many threads on the GPU are all executing concurrently, many of the threads would

be modifying the memory containing the electric field for the observation point simultaneously.

This means that the electric field for each observation point may not be updated properly by the

 22

threads doing the post processing calculations. In order to eliminate this race condition, the threads

need to have some synchronization to ensure mutual exclusion when reading or writing to the

memory where the electric field for the observation points is stored. The downfall with this

synchronization is a loss in computation time due to threads having to wait for other threads to

update the electric field.

Effective GPU programing ensures work is given to all the pipelines available on the GPU

and increases computation throughput by hiding latency of the memory pipelines. In order to

maximize efficiency on the GPU, ideally all the SMs should be running code continuously with

other computations running asynchronously and memory constantly being transferred to the GPU.

The amount of memory available on the GPU and on the host computer are the limiting factors of

the SBR RT application. The memory requirements of the GPU only allow a set number of rays

to be computed at a time. Because of this constraint, for some larger structures, the rays need to be

split into batches before being sent to the GPU as mentioned in Chapter 2. The first type of batching

mentioned involves the subdivision of the faces of the icosahedron that are used to launch the rays

initially. The other type of batching used in the SBR RT application is the batching of the reflection

calculations for each of the rays. If the ray’s reflection calculations were not batched, then storing

all of the path information for a ray over hundreds of reflections would overflow the memory. This

is because each ray reflection consists of the ray’s previous intersection point represented as three

floating point numbers, current intersection point also represented as three floating point numbers,

and the ID of the triangle that was hit represented by an integer type. All of this stored information

equates to 28 bytes of memory for each reflection. For 100 million rays, this would be 2.8 gigabytes

of storage per reflection. As the number of reflections increases, the available memory would

decrease so only information about a ray’s current reflection segment is tracked to limit this

 23

memory strain. After all paths in a batch of rays have been computed the next batch is processed

and this procedure is repeated until no remaining rays need to be traced for intersections with the

observation spheres or the limit on the number of reflections has been reached.

4.2 GPU Optimization of RT

Maximum efficiency with any kind of parallelization especially on GPUs, requires the

optimization of the program to get the best performance possible. The first type of optimization

prevalent with all NVIDIA CUDA GPU programs is the launch configurations of the kernel. The

launch configurations refer to the number of blocks and number of threads per block that are

created to run the code within the kernel. The downside of having too many spawned threads is

that some threads will be idle while the other threads are doing all the work. Conversely, if there

are too few threads then there could be resources on the GPU such as CUDA cores and SMs that

are not being utilized for computation. In order to get best efficiency, all compute unites on the

GPU should remain occupied with computation. The ray tracing application is memory bound and

therefore requires higher occupancy in order to achieve better efficiency. Various kernel launch

configurations were tested beginning with a thread block size of 128 threads and adjusted to the

number of threads per block in increments of 32. The results are depicted below in the Figure 11.

Figure 11. Launch Configuration: The change in execution time given different numbers of rays

per thread. The similar execution times indicate each thread is preforming many tasks and that the

data locality for each thread may not be optimal.

 24

The number of blocks is also an important consideration and typically 1,000 or more thread blocks

are sufficient because this number of thread blocks enables the code to be evenly distributed among

the GPU hardware, but also highly modular since additional GPUs can execute the thread blocks

that would be waiting for an SM.

The next optimization to consider when GPU programming is the global memory

throughput. Global memory is the memory allocated on the GPU device from the host.

Transferring information from host memory to device memory is very slow and the number of

copies needs to be minimized. In the ray tracing application, the data for each ray is transferred to

the GPU only once before the post-processing after each reflection. The largest memory storage

on the GPU is global memory which is up to 6 GB in the case of NVIDIA GTX 1060 GPU. Global

memory is accessible by all threads running across all thread blocks in the grid, but it has very

high latency [11]. All memory operations performed in the execution of the kernel are issued per

warp meaning the warp accesses memory in 32 word chunks. If the 32 threads access continuous

addresses in memory, then the amount of accesses for that group of threads is reduced. These types

of accesses to global memory are called coalesced accesses and they ensure all threads access a

continuous chuck in memory and therefore reduce the total number of bytes that are accessed. In

order to achieve the coalesced memory accesses, the SBR RT application avoids scattered address

patterns and global memory storage with large strides between accesses.

 Efficient parallelization of the double count removal procedure is a very important aspect

of the GPU optimization for the SBR code. In order to parallelize this portion of the code, adjacent

rays need to be split into different classes. The convenience of the icosahedron spawning pattern

means with three distinct classes, all adjacent rays can be a member of a different class. Figure 12

 25

shows an example of the different classes displayed as three colors plotted over the faces of the

icosahedron.

Figure 12. Adjacent Classes of Icosahedron: The three distinct classes displayed as red, green,

and blue dots plotted over the icosahedron display how adjacent rays are members of different

classed.

The reason the adjacent rays need to be split into separate classes is to ensure that no two adjacent

rays that double count on the same observation point are processed at the same time. If the rays

were processed at the same time, for example, then there is a race condition between the threads

to see which thread will update the field first. The threads can also execute the code at the same

instance in time meaning the rays that should have been flagged as duplicates are not.

The speedup from these acceleration modifications to the code can be seen in Figure 13 below.

The timing information for the sequential code was obtained during an early version of the SBR

RT algorithm that did not include double count removal. The double count removal should slow

the algorithm down even further as this is one of the slowest portions of the RT algorithm. This

is because the algorithm was migrated to a GPU version early on to help with the development

process by lessening the execution time needed for a single run. The sequential code was run

 26

exclusively on the CPU using only a single thread. The table shows how the GPU can dramatically

reduce the execution time of the SBR RT algorithm making it an even more effective tool for

solving larger structures. While the number of rays used in an execution of the SBR algorithm is

important for convergence, it is usually not necessary to launch hundreds of millions of rays or

hundreds of reflections. The results displayed in Chapter 5 demonstrate the accurate solutions

obtained using only millions of rays.

Figure 13. GPU Speedup: Speedup from the modifications to the SBR RT algorithm when

compared to the original serial code.

 27

CHAPTER 5: RESULTS

5.1 Ray Tracing Application Validation

Validation of the SBR RT application is presented here using several tunnels of various

uniform cross sections. Tunnels are a challenging environment for RT solvers due to the large

distances covered, the curvature of the backs of the tunnels, and the roughness present along the

walls. Tunnel environments do provide the benefit of only considering the reflected rays and not

the transmitted rays since any transmitted ray would immediately leave the region of interest where

the observation points are. The reason this environment was chosen for validation is because it is

a corner case for the RT algorithm and enables a rigorous test for the algorithms ability to work

well in these difficult environments. The simulations in these tests were performed by creating a

line of reception points directed down the long axis of the tunnels at evenly separated intervals.

The solutions obtained using the SBR RT algorithm are compared with computed results of other

CEM solvers, physically measured data, as well as state of the art commercial ray launching

software.

The first tunnels tested are compared to another SBR ray tracing algorithm found here [12].

The reason these tunnels were used initially was to test how our RT algorithm compared to existing

algorithms. The two tunnels are meant to simulate the application of the RT algorithm in real world

traffic tunnel environments with real world parameters. The frequency used in these tests is 1 GHz

since this is around the carrying frequencies of cell phones [12]. The first tunnel simulated is a

rectangular tunnel that covers a distance of 150 meters with a cross section of 8 meters by 5 meters.

The second tunnel has a rectangular base but a curved ceiling and also stretches a distance of 150

meters. Figure 14(a) and Figure 14(b) both show the application of the SBR RT algorithm to these

 28

two tunnels. The figure above demonstrates that the SBR RT algorithm agrees closely with

published results of a different SBR method. Figure 14(a) shows very close agreement from 40m

to 140m down the length of the tunnel. The discrepancy between our SBR solution and the results

in Figure 14(b) is a product of the different number of discretized segments on the ceiling of the

curved tunnel. These two simulations demonstrate the accuracy and validity of our algorithm

compared to another SBR algorithm.

(a)

(b)

Figure 14. SBR and SBR: Received/transmitted powers in two tunnels: comparisons of solutions

using our SBR RT method with previously verified results obtained by a different version of SBR

modeling [12]. (a) 5m x 8m rectangular tunnel (b) arched tunnel. The frequency used in these

simulations is 1GHz.

Next, the SBR RT algorithm was tested for a much longer tunnel against an image-theory

based ray tracing algorithm presented here [8]. The results from this simulation are displayed in

Figure 15 below. Image-theory based ray tracing is a computationally slower but more accurate

solver when compared to SBR RT solvers. The image-theory model uses an exact ray path

computation, i.e., the image positions of every reflection for every receiver position across every

facet within a scene are computed. This means image theory has an exponential asymptotic

complexity of O(Nk) scaling by the number of observation points (N) and the number of reflections

(k). However, due to the exact path calculations from the image point reflections, the phase error

 29

caused by slight variation in ray paths is eliminated. There is exceptional agreement between the

two results as far as 900 m down the tunnel, which demonstrates the ability of the SBR algorithm

to correctly compute transmission path lengths at very large distances from the transmitter, a

feature traditionally reserved for the dramatically less efficient image-theory ray tracing, and a

necessary capability for this proposed research.

Figure 15. SBR and Image Theory: Received/transmitted power using our method compared

published image theory RT results [8]. These results were obtained on a lossy waveguide of

dimensions 4m x 4m of εr =5 with the receivers and a transmitter located 2.1m from the floor and

1.1m from the wall. The frequency is 1GHz.

The next tunnel tested is an empty arched tunnel presented here [13] with the SBR solution

compared to results obtained from a simulation using Fast Multipole Method (FMM) combined

with the fast Fourier transform (FFT) [13]. The results for this simulation are displayed in Figure

16. The SBR RT solver shows close agreement to the results from the FMM-FFT solver, an

accurate full-wave CEM technique. The reason for the disagreement further down the tunnel is

from the lack of including edge diffraction in the SBR algorithm.

 30

Figure 16. SBR and FMM-FFT. Comparison of commercial software with the SBR RT algorithm

presented here and results from an FMM-FFT solver. These results were obtained on an arched

traffic tunnel found here [13]. The frequency used in the simulation is 915 MHz.

The SBR RT algorithm is also compared with a commercial SBR RT program called

REMCOM’s Wireless InSite on the same tunnels used in Figure 14 and the results from this

comparison are shown below in Figure 17.

(a)

(b)

Figure 17. SBR and REMCOM: The comparison of REMCOM Wireless InSite with the SBR

RT algorithm. (a) The rectangular 5m x 8m tunnel and (b) the arched tunnel. The frequency used

in these two tests is 1GHz.

Additionally, ray tracing can be used to construct received signal strength (RSS) maps via

simulation of the SBR RT algorithm with a 2D grid of observation points. Traditionally, RSS maps

are constructed by placing a transmitting dipole antenna inside some structure and measuring a

 31

grid of observation points manually [14]. This manual collection of data to create these maps is

expensive, time-consuming, and causes any inaccuracies if the environment changes. The SBR RT

algorithm can create maps as accurately as physical measurements since the error in the

measurements is exchanged with numerical error in the solver. Furthermore, the SBR RT

algorithm reduces cost and time for creating the maps since the data for the map can be simulated

without hiring people to physically walk through a structure collecting data. The SBR RT

algorithm is applied to compute the RSS map within one of the tunnels in the Colorado School of

Mines Edgar Research Mine. The results from this simulation are displayed in Figure 18.

Figure 18. Received Signal Strength: Mapping of the received signal strength for a section of a

tunnel in the Colorado School of Mines Edgar Mine demonstrates the ability of the SBR RT

algorithm to map the received signal strength with only LiDAR data. The frequency used in the

simulation is 2.45 GHz.

The path loss from the transmitting antenna is computed using our SBR RT method and

demonstrates how the structure of the tunnel affects signal strength in different areas. For instance,

the sharp spike along the surface at around 90 m is a result of the tunnel jutting out and blocking

the line of sight view to the antenna thereby decreasing the RSS.

 32

Convergence of the SBR RT algorithm is computed using a PEC waveguide by calculating the

electric field at a cross-sectional plane at a distance of 10 wavelengths from the transmitting

antenna. The size of the waveguide is constructed such that the TE10 mode is the only excited

mode. The analytical solution for the TE10 mode is a cosine and the comparison between the

analytical cosine and the SBR RT algorithm is displayed in Figure 19. The results from this

convergence test show that the number of rays and reflections for the rectangular waveguide does

not need to be very high in order to reach convergence.

(a)

 (b)

Figure 19. Convergence: Convergence for the SBR RT algorithm for a PEC electric waveguide

by changing the number of (a) rays and (b) reflections. The frequency is 375 MHz.

5.2 Results from Measurements

 In addition to comparing the RT solver with published results, the solver is compared to

data collected from RF measurements. The equipment used in the measurements consisted of a

transmitting antenna, a receiving antenna, a software defined radio (SDR), and a spectrum

analyzer. The SDR was used to drive the signal of the transmitting antenna and the spectrum

analyzer was used to read out a time-averaged signal at the frequency of the transmitting signal.

The environment used for this test was an open field with no buildings and limited obstacles that

would affect the signal. Once the measured results were obtained on an open field the analytical

 33

solution was computed using Friis formulas for a single ground plane reflection. Results from this

simulation are displayed in Figure 20.

Figure 20. Measured and SBR: Comparison of analytical and measured received power for open

domain, ground reflection. The frequency used is 1GHz.

In particular, the validation with measured data demonstrates that our simulated solution closely

agrees with real-world signal behavior. As shown in Figure 20, the agreement between the

collected data from the RF measurement system, the analytically calculated data, and the SBR RT

data is excellent. This agreement demonstrates empirically that the RF measurement system is

valid and the SBR RT algorithm approximates the solution very well.

 34

CHAPTER 6: CONCLUSION

6.1 Conclusions and Future Work

 The developed cone-based shooting bouncing rays ray tracing solver is an effective and

accurate computational electromagnetics solver for large environments. The SBR RT algorithm is

organized in a way to enable ease of modification for the addition of any new technique that could

improve the accuracy or speed of the code. The algorithm incorporates techniques such as ray

batching and double count removal to improve the accuracy of the solution. The use of graphics

processing units and the optimization of the code has created a solver that is efficient in launching

millions of rays and converging to solutions quickly.

 The numerical results support the conclusion that SBR RT can be applied to electrically

large structures quickly at only a modest accuracy cost. The results demonstrate that this loss in

accuracy is little and an acceptable tradeoff for the time saved when compared to full-wave solvers.

The speed gained from the acceleration, achieved from the high level of parallelism, has created

an algorithm that competes with and exceeds, from both a speed and accuracy standpoint, current

state of the art commercial software. The capability of the SBR RT algorithm to contend with

commercial software means that the algorithm developed has achieved the original goals of

computational efficiency and solution correctness.

 This work describes only partially the types of problems to which the SBR RT algorithm

can be applied. In addition to the application of tunnel environments, the solver can be used to

further analyze indoor environments with techniques such as RSS mapping. Furthermore, the base

algorithm can be expanded to include transmission through surfaces, the edge diffraction of rays,

 35

and exact ray path correction by hybridizing the method with image-theory solvers while

maintaining the superior time complexity of SBR.

 This algorithm is the first step in enabling the Computational Electromagnetics Laboratory

at CSU to solve problems that would not be possible using FEM and MoM. The algorithm is also

a key component to creating more advance hybridized CEM solvers by combining the

computational speed of high frequency asymptotic solvers with the accuracy of full-wave solvers.

Further development of the algorithm will hopefully enable more accurate solutions in very

challenging environments and open the door for complex analysis in environments that

traditionally have not been solvable.

 36

REFERENCES

[1] B. M. Notaroš, C. Key, S. B. Manić, B. Troksa, M. M. Ilić and S. Savić, "Efficient

electromagnetic modeling of wireless signal propagation in underground mine tunnels," 2018

International Conference on Electromagnetics in Advanced Applications (ICEAA), Cartagena

des Indias, 2018, pp. 625-625.

[2] M.F.Cátedra and J.Perez, Cell Planning for Wireless Communications. Norwood, MA,

USA: Artech House, 1999.

[3] B. M. Notaros, Electromagnetics, New Jersey : PEARSON Prentice Hall; 2010.

[4] B. Troksa, C. Key, F. Kunkel, S. V. Savić, M. M. Ilić and B. M. Notaroš, "Ray tracing

using shooting-bouncing technique to model mine tunnels: Theory and verification for a PEC

waveguide," 2018 International Applied Computational Electromagnetics Society Symposium

(ACES), Denver, CO, 2018, pp. 1-2.

[5] C. Key, B. Troksa, F. Kunkel, S. V. Savić, M. M. Ilic and B. M. Notaroš, "Comparison of

Three Sampling Methods for Shooting-Bouncing Ray Tracing Using a simple Waveguide

Model," 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI

National Radio Science Meeting, Boston, MA, 2018, pp. 2273-2274.

[6] Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock, David

Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin Robison, and Martin Stich.

2010. OptiX: a general purpose ray tracing engine. ACM Trans. Graph. 29, 4, Article 66 (July

2010), 13 pages.

[7] A. Santos, J. M. Teixeira, T. Farias, V. Teichrieb, and J. Kelner, “Understanding the

Efficiency of kD-tree Ray-Traversal Techniques over a GPGPU Architecture,” International

Journal of Parallel Programming, vol. 40, no. 3, pp. 331–352, 2011.

[8] D. Didascalou, Ray-optical wave propagation modeling in arbitrarily shaped tunnels,

2000.

[9] V. Mohtashami and A. A. Shishegar, "A new double—counting cancellation technique for

ray tracing using separation angle distribution," 2008 IEEE International RF and Microwave

Conference, Kuala Lumpur, 2008, pp. 306-310.

[10] N. Noori, A. A. Shishegar and E. Jedari, "A New Double Counting Cancellation Technique

for Three-Dimensional Ray Launching Method," 2006 IEEE Antennas and Propagation Society

International Symposium, Albuquerque, NM, 2006, pp. 2185-2188.

 37

[11] C Woolley, "GPU optimization fundamentals", 2013.

[12] Shin-Hon Chen and Shyh-Kang Jeng, "SBR image approach for radio wave propagation

in tunnels with and without traffic," in IEEE Transactions on Vehicular Technology, vol. 45, no.

3, pp. 570-578, Aug. 1996.

[13] A. C. Yucel, W. Sheng, C. Zhou, Y. Liu, H. Bagci and E. Michielssen, "An FMM-FFT

Accelerated SIE Simulator for Analyzing EM Wave Propagation in Mine Environments Loaded

With Conductors," in IEEE Journal on Multiscale and Multiphysics Computational Techniques,

vol. 3, pp. 3-15, 2018.

[14] J. Zhang, G. Han, N. Sun and L. Shu, "Path-Loss-Based Fingerprint Localization Approach

for Location-Based Services in Indoor Environments," in IEEE Access, vol. 5, pp. 13756-13769,

2017.

 38

APPENDIX A: PUBLICATIONS OF THE AUTHOR

Conference Papers

[1] B. Troksa, C. Key, F. Kunkel, S. V. Savić, M. M. Ilić and B. M. Notaroš, "Ray tracing

using shooting-bouncing technique to model mine tunnels: Theory and verification for a PEC

waveguide," 2018 International Applied Computational Electromagnetics Society Symposium

(ACES), Denver, CO, 2018, pp. 1-2.

[2] C. Key, B. Troksa, F. Kunkel, S. V. Savić, M. M. Ilic and B. M. Notaroš, "Comparison of

Three Sampling Methods for Shooting-Bouncing Ray Tracing Using a simple Waveguide

Model," 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI

National Radio Science Meeting, Boston, MA, 2018, pp. 2273-2274.

[3] B. M. Notaroš, C. Key, S. B. Manić, B. Troksa, M. M. Ilić and S. Savić, "Efficient

electromagnetic modeling of wireless signal propagation in underground mine tunnels," 2018

International Conference on Electromagnetics in Advanced Applications (ICEAA), Cartagena

des Indias, 2018, pp. 625-625.

 39

APPENDIX B: CUDA C++ CODE FOR POST PROCESSING

#include <cuda.h>

#include <cuda_runtime.h>

#include <optixu/optixu_math_namespace.h>

#include <stdio.h>

#include <thrust/device_vector.h>

#include "commonStructs.h"

#include "primeCommon.h"

//Constants

#define pi 3.14159265358979323846

#define eps_0 8.85418782e-12;

#define mu_0 1.25663706e-6;

#define RPT 1 //rays per

thread

#define SPT 1 //spheres per

thread

//---

// Operations preformed with the electric field

__host__ __device__ complex3 operator*(const float3 &x, const

thrust::complex<double> &a) {

 return complex3((double)x.x*a, (double)x.y*a, (double)x.z*a);

}

__host__ __device__ complex3 operator*(const thrust::complex<double> &a,

const float3 &x) {

 return complex3((double)x.x*a, (double)x.y*a, (double)x.z*a);

}

__host__ __device__ complex3 operator*(const complex3 &a, const float3 &x) {

 return complex3((double)x.x*a.x, (double)x.y*a.y, (double)x.z*a.z);

}

__host__ __device__ thrust::complex<double> operator*(const

thrust::complex<double> &a, const float &x) {

 return thrust::complex<double>(a * (double)x);

}

 40

__host__ __device__ thrust::complex<double> operator/(const

thrust::complex<double> &a, const float &x) {

 return thrust::complex<double>(a / (double)x);

}

__host__ __device__ complex3 operator*(const complex3 &x, const

thrust::complex<double> &a) {

 complex3 c(a*x.x, a*x.y, a*x.z);

 return c;

}

__host__ __device__ complex3 operator*(const complex3 &x, const complex3 &y)

{

 complex3 c(y.x*x.x, y.y*x.y, y.z*x.z);

 return c;

}

__host__ __device__ complex3 operator+(const complex3 &a, const complex3 &b)

{

 complex3 c(a.x + b.x, a.y + b.y, a.z + b.z);

 return c;

}

__host__ __device__ complex3 operator-(const complex3 &a, const complex3 &b)

{

 complex3 c(a.x - b.x, a.y - b.y, a.z - b.z);

 return c;

}

__device__ void printFloat3(float3 a) {

 printf("x:%f, y:%f, z:%f\n", a.x, a.y, a.z);

}

__host__ __device__ void printComplex3(complex3 a) {

 printf("x: %f, %f\ty: %f, %f\t z:%f, %f\n", a.x.real(), a.x.imag(),

a.y.real(),

 a.y.imag(), a.z.real(), a.z.imag());

}

__device__ void printComplex(thrust::complex<double> a) {

 printf("x: %f, %f\n", a.real(), a.imag());

}

 41

__device__ thrust::complex<double> dot(const complex3 &a, const float3 &b) {

 return ((a.x * (double)b.x) + (a.y * (double)b.y)) + (a.z *

(double)b.z);

}

//---

//Computes the initial field of a ray based on a radiation pattern

__device__ void get_initial_field(float3 ray_dir, int index, complex3*

efields_d, constants* constants_d) {

 double sphere_theta = acos((double)optix::normalize(ray_dir).z);

 double sphere_phi = pi / 2;

 sphere_phi = atan2(ray_dir.y, ray_dir.x);

 double lambda = 2.99e8 / constants_d->frequency;

 double coefficient = sqrt(120 * pi*1.64*1e-3 / 2 / pi);

 //Hertzian Dipole Radiation Pattern

 efields_d[index].x = cos(sphere_theta) * cos(sphere_phi) *

sin(sphere_theta) * lambda / 2.0;

 efields_d[index].y = cos(sphere_theta) * sin(sphere_phi) *

sin(sphere_theta) * lambda / 2.0;

 efields_d[index].z = -sin(sphere_theta) * sin(sphere_theta) * lambda /

2.0;

}

// Update Electric Field with Fresnel Coeffecients

__device__ void get_unit_vectors(int triId, float3 ray_dir, float3*

normals_d, complex3* efields_d,

 constants* constants_d, int k) {

 ray_dir = optix::normalize(ray_dir);

 float3 surf_norm = normals_d[triId];

 surf_norm = optix::normalize(surf_norm);

 if (optix::dot(surf_norm, ray_dir) > 0) {

 surf_norm *= -1;

 }

 float3 reflection_dir = ray_dir - ((2 * optix::dot(ray_dir,

surf_norm))*(surf_norm));

 reflection_dir = optix::normalize(reflection_dir);

 // Calculate cross products

 complex3 Ei = efields_d[k];

 float3 E_in = optix::cross(ray_dir, surf_norm);

 E_in = optix::normalize(E_in);

 42

 float3 E_ip = optix::cross(E_in, ray_dir);

 E_ip = optix::normalize(E_ip);

 float3 E_rp = 2 * optix::dot(surf_norm, E_ip)*surf_norm - E_ip;

 E_rp = optix::normalize(E_rp);

 // Volume/rock constants

 double lambda = 2.9979e8 / constants_d->frequency;

 double theta_i = acos(optix::dot(reflection_dir, surf_norm));

 thrust::complex<double> epsComplex = constants_d->eps_f - constants_d-

>imaginary_j * 60 * constants_d->sigma_f * lambda;

 //Fresnel Coeffecients

 thrust::complex<double> gamma_n = (cos(theta_i) -

thrust::sqrt(epsComplex - sin(theta_i)*sin(theta_i))) /

 (cos(theta_i) + thrust::sqrt(epsComplex - sin(theta_i)*sin(theta_i)));

 thrust::complex<double> gamma_p = (epsComplex * cos(theta_i) -

thrust::sqrt(epsComplex - sin(theta_i)*sin(theta_i))) /

 (epsComplex * cos(theta_i) + thrust::sqrt(epsComplex -

sin(theta_i)*sin(theta_i)));

 complex3 Ern, Erp;

 Erp.x = E_ip.x*E_rp.x + E_ip.y*E_rp.x + E_ip.z*E_rp.x;

 Erp.y = E_ip.x*E_rp.y + E_ip.y*E_rp.y + E_ip.z*E_rp.y;

 Erp.z = E_ip.x*E_rp.z + E_ip.y*E_rp.z + E_ip.z*E_rp.z;

 Ern.x = E_in.x*E_in.x + E_in.x*E_in.y + E_in.x*E_in.z;

 Ern.y = E_in.y*E_in.x + E_in.y*E_in.y + E_in.y*E_in.z;

 Ern.z = E_in.z*E_in.x + E_in.z*E_in.y + E_in.z*E_in.z;

 complex3 Er = (Ern*gamma_n + Erp*gamma_p) * Ei;

 efields_d[k] = Er;

}

//Change Sphere Radius

__device__ double updateRadius(float3 sorigin, float3 rayOrigin, float3

rayDirection, double rayDistance, double alpha) {

 double distance = abs(optix::dot(sorigin - rayOrigin, rayDirection));

 return (distance + rayDistance) * alpha / sqrt(3.0);

}

// Calculates intersection between a ray/vector (previous - current) and a

sphere located a sorigin

 43

__device__ float checkSphere(float3 previous, float3 current, float3 sorigin,

double distance, double alpha) {

 float3 rayDirection = optix::normalize(current - previous);

 double radius = updateRadius(sorigin, previous, rayDirection,

distance, alpha);

 //radius = fmin(.05, radius);

 //radius *= 10;

 //printf("radius: %f\n", radius);

 if (radius <= 0) return -1;

 float3 O = previous - sorigin;

 float rsquared = radius * radius;

 float b = optix::dot(O, rayDirection);

 float c = optix::dot(O, O) - rsquared;

 // The sphere is behind or surrounding the start point.

 if (b > 0){

 //return -1;

 }

 // Flatten p into the plane passing through c perpendicular to the

ray.

 // This gives the closest approach of the ray to the center.

 float disc = b*b - c;

 // Closest approach is outside the sphere.

 if (disc < 0) {

 return -2;

 }

 // Calculate distance from plane where ray enters/exits the sphere.

 float t = -b - sqrt(disc);

 if (t < 0.0f) t = 0;

 float3 i = t * rayDirection + previous;

 bool canHit = optix::length(i - previous) < optix::length(current -

previous);

 if (canHit) {

 return(optix::dot(sorigin - previous, rayDirection));

 }

 return(-4);

}

// Sychronize the update to the field at the observation points

 44

__device__ void updateSphereField(complex3& sphereFields_d, complex3 efield){

 thrust::complex<double>* temp = &sphereFields_d.x;

 double* real = (double*)temp;

 double* imag = real + 1;

 atomicAdd(real, efield.x.real());

 atomicAdd(imag, efield.x.imag());

 temp = &sphereFields_d.y;

 real = (double*)temp;

 imag = real + 1;

 atomicAdd(real, efield.y.real());

 atomicAdd(imag, efield.y.imag());

 temp = &sphereFields_d.z;

 real = (double*)temp;

 imag = real + 1;

 atomicAdd(real, efield.z.real());

 atomicAdd(imag, efield.z.imag());

}

//Remove the double counted rays

__device__ void doubleCountFast(RayData* rayData_d, AdjacencyMap* adjMap_d,

int k, SphereData* sphereData_d,

 PostProccessData ppbd){

 int r1 = ppbd.sphereTrio_d[k].rayId;

 constants* constants_d = ppbd.constants_d;

 //check for adjacent rays

 if (!adjMap_d->beenUsed[k]) {

 double distance = ppbd.sphereTrio_d[k].pathLength;

 thrust::complex<double> impedance(73.0, 42.5);

 impedance = 1.0/(impedance * 4.0);

 thrust::complex<double> coefficient = impedance*(constants_d-

>imaginary_j * constants_d->omega * -4e-7 / 16.0);

 thrust::complex<double> pshift = thrust::exp(-constants_d-

>imaginary_j * constants_d->beta_v * (distance)) / distance;

 updateSphereField(sphereData_d[ppbd.sphereTrio_d[k].sphereId].field,

ppbd.sphereTrio_d[k].field*pshift*coefficient);

 //Update All Adjacent Rays

 for (int j = 0; j<ppbd.size; j++) {

 int r2 = ppbd.sphereTrio_d[j].rayId;

 if (ppbd.sphereTrio_d[k].sphereId ==

ppbd.sphereTrio_d[j].sphereId) {

 if (adjMap_d->check(r1,r2)) {

 adjMap_d->beenUsed[j] = true;

 45

 }

 }

 }

 }

}

//Kernel for double count removal

__global__ void updateFieldGPU(RayData* rayData_d, AdjacencyMap* adjMap_d,

SphereData* sphereData_d, int labelNum,

 PostProccessData ppbd){

 int tid = threadIdx.x; //Thread index within a thread block

 int blockid = blockIdx.x; //Block index within the grid

 int B = blockDim.x;

 int startIndex = B*blockid*SPT + tid;

 for (int k = startIndex; k < startIndex + B*SPT; k += B) {

 if(k < ppbd.size &&

rayData_d[ppbd.sphereTrio_d[k].rayId].label == labelNum){

 doubleCountFast(rayData_d,adjMap_d,k,sphereData_d,ppbd);

 }

 }

}

//Initialize boolean array for double count removal

__global__ void prepUsedArray(int sphereHits, AdjacencyMap* adjMap_d){

 int tid = threadIdx.x; //Thread index within a thread block

 int blockid = blockIdx.x; //Block index within the grid

 int B = blockDim.x;

 int startIndex = B*blockid*SPT + tid;

 for (int k = startIndex; k < startIndex + B*SPT; k += B) {

 if(k < sphereHits){

 adjMap_d->beenUsed[k] = false;

 }

 }

}

//Update electric field for each ray based on Fresnel coeffecients

__global__ void updateFieldKernelGPU(RayData* rayData_d, SphereData*

sphereData_d, float3* normals_d, PostProccessData ppbd)

{

 46

 int tid = threadIdx.x; //Thread index within a thread block

 int blockid = blockIdx.x; //Block index within the grid

 int B = blockDim.x;

 int startIndex = B*blockid*RPT + tid;

 for (int k = startIndex; k < startIndex + B*RPT; k += B) {

 if (k >= ppbd.constants_d->nRaysPerBatch) break;

 if (!rayData_d[k].done) {

 float3 previous = rayData_d[k].previous;

 float3 current = rayData_d[k].current;

 float3 ray_dir = current - previous;

 get_unit_vectors(rayData_d[k].triId, ray_dir,

normals_d, ppbd.efields_d, ppbd.constants_d, k);

 ppbd.efields_d[k].distance += optix::length(ray_dir);

 }

 }

 __syncthreads();

}

//Fill ray hit data array

__device__ void populateIntersections(SphereData* sphereData_d, float3

previous, float3 current,

 double alpha, int rayID, PostProccessData ppbd) {

 double hit = -9;

 for (int k = 0; k<ppbd.constants_d->nSpheres; ++k) {

 hit = checkSphere(previous, current, sphereData_d[k].position,

ppbd.efields_d[rayID].distance, alpha);

 if (hit >= 0) {

 int index = atomicAdd(ppbd.globalIndex_d, 1);

 Trio t(rayID, k, ppbd.efields_d[rayID].distance + hit);

//add hit here

 t.field = ppbd.efields_d[rayID];

 ppbd.sphereTrio_d[index] = t;

 atomicAdd(&sphereData_d[k].count, 1);

 }

 }

}

//Fill ray hit data array

__global__ void populateSphereTrio(int reflection, RayData* rayData_d,

PostProccessData ppbd, SphereData* sphereData_d){

 int tid = threadIdx.x; //Thread index within a thread block

 int blockid = blockIdx.x; //Block index within the grid

 int B = blockDim.x;

 int startIndex = B*blockid*RPT + tid;

 47

 for (int k = startIndex; k < startIndex + B*RPT; k += B) {

 if (k >= ppbd.constants_d->nRaysPerBatch) break;

 if (!rayData_d[k].done) {

 float3 previous = rayData_d[k].previous;

 float3 current = rayData_d[k].current;

 float3 ray_dir = current - previous;

 //Find sphere that are hit and add them to array

 populateIntersections(sphereData_d, previous, current,

rayData_d[k].alpha, k, ppbd);

 }

 }

 __syncthreads();

}

//Compute all the intersections of a ray and an observation point(sphere)

__device__ void findAllIntersectionCounts(SphereData* sphereData_d, float3

previous, float3 current, complex3 &efield

 , double alpha, PostProccessData ppbd) {

 double hit = -1;

 for (int k = 0; k<ppbd.constants_d->nSpheres; ++k) {

 hit = checkSphere(previous, current, sphereData_d[k].position,

efield.distance, alpha);

 if (hit >= 0) {

 atomicAdd(ppbd.count_d, 1);

 }

 }

}

//Compute number of ray-sphere itersections that occur during the current

reflection

__global__ void getCounts(int reflection, RayData* rayData_d, SphereData*

sphereData_d, PostProccessData ppbd)

{

 int tid = threadIdx.x; //Thread index within a thread block

 int blockid = blockIdx.x; //Block index within the grid

 int B = blockDim.x;

 int startIndex = B*blockid*RPT + tid;

 for (int k = startIndex; k < startIndex + B*RPT; k += B) {

 if (k >= ppbd.constants_d->nRaysPerBatch) break;

 if (!rayData_d[k].done) {

 float3 previous = rayData_d[k].previous;

 float3 current = rayData_d[k].current;

 float3 ray_dir = current - previous;

 if (reflection == 0) {

 48

 get_initial_field(ray_dir, k, ppbd.efields_d,

ppbd.constants_d);

 }

 findAllIntersectionCounts(sphereData_d, previous,

current, ppbd.efields_d[k], rayData_d[k].alpha, ppbd);

 }

 }

 __syncthreads();

}

//Main function of the post processing

extern "C" void calculateField(int reflection, RayData* rayData,

PostProccessData* ppbdPTR,

 SphereData* sphereData_d, float3* normals_d, constants* constant,

AdjacencyMap* adjMap_d) {

 bool* beenUsed_d;

 int threadsPerBlock = 128;

 int block = ceil(((double)constant->nRaysPerBatch) /

((double)threadsPerBlock*RPT));

 PostProccessData ppbd = *ppbdPTR;

 //Copy Ray information from Host

 RayData* rayData_d;

 cudaMalloc((void**)&rayData_d, constant->nRaysPerBatch *

sizeof(RayData));

 cudaMemcpy(rayData_d, rayData, constant->nRaysPerBatch *

sizeof(RayData), cudaMemcpyHostToDevice);

 ppbd.cudaInit();

 //Determine how many spheres have been hit

 getCounts << <block, threadsPerBlock >> >(reflection,

rayData_d,sphereData_d, ppbd);

 cudaDeviceSynchronize();

 //Create an array of information containing the hits and populate it

 ppbd.doubleCountInit();

 populateSphereTrio << <block, threadsPerBlock >> >(reflection,

rayData_d, ppbd, sphereData_d);

 cudaDeviceSynchronize();

 //Create a boolean array for double count removal

 cudaMalloc((void **) &beenUsed_d, sizeof(int)*ppbd.size);

 cudaMemcpy(&(adjMap_d->beenUsed), &beenUsed_d, sizeof(bool*),

cudaMemcpyHostToDevice);

 49

 block = ceil(((double) ppbd.size) / ((double)threadsPerBlock*SPT));

 prepUsedArray<< <block, threadsPerBlock >> >(ppbd.size, adjMap_d);

 cudaDeviceSynchronize();

 //Preform post processing on the three classes of rays

 for(int labelNum = 0; labelNum < 3; labelNum++){

 updateFieldGPU<< <block, threadsPerBlock >> >(rayData_d,

adjMap_d, sphereData_d, labelNum, ppbd);

 cudaDeviceSynchronize();

 }

 //Update each rays electric field

 block = ceil(((double)constant->nRaysPerBatch) /

((double)threadsPerBlock*RPT));

 updateFieldKernelGPU << <block, threadsPerBlock >> >(rayData_d,

sphereData_d, normals_d, ppbd);

 //free any memory

 ppbd.cudaDestruct();

 cudaFree(rayData_d);

 cudaFree(beenUsed_d);

}

