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Abstract

HIV-1 Gag Trafficking and Assembly: Mathematical Models and

Numerical Simulations

AIDS (acquired immune deficiency syndrome) is an infectious disease that takes away

many people’s lives each year. Group-specific antigen (Gag) polyprotein precursor is the

major structural component of HIV, the causing agent of AIDS. Gag is essential and sufficient

for the formation of new HIV virus-like particles. The late stages of the HIV-1 life cycle

include the transport of Gag proteins towards the cell membrane, the oligomerization of

Gag near the cell membrane during the budding process, and core assembly during virion

maturation. The mechanisms for Gag protein trafficking and assembly are not yet fully

understood. In order to gain further insight into the mechanisms of HIV-1 replication, we

develop and analyze mathematical models and numerical algorithms for intracellular Gag

protein trafficking, Gag trimerization near the cell membrane, and HIV-1 core assembly.

Our preliminary results indicate that active transport plays an important role for Gag

trafficking in the cytoplasm. This process can be mathematically modeled by convection-

diffusion equations, which can be solved efficiently using characteristic finite element meth-

ods. We employ differential dynamical systems to model Gag trimerization and HIV-1 core

assembly.

For the Gag trimerization model, we estimate relationships between the association and

dissociation parameters as well as the Gag arrival and multimerization parameters. We also

find expressions for the equilibrium concentrations of the monomer and trimer species, and

show that the equilibrium is asymptotically stable.
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For HIV-1 core assembly, we first consider a model developed by Zlonick and others, which

regards assembly as a polymerization reaction. We utilize theoretical and numerical tools

to confirm the stability of the equilibrium of CA intermediates. In addition, we propose

a cascaded dynamical system model for HIV-1 core assembly. The model consists of two

subsystems: one subsystem for nucleation and one for elongation. We perform simulations

on the nucleation model, which suggests the existence of an equilibrium of the CA species.

Keywords: capsid, convection, diffusion, equilibrium, finite elements, Gag, HIV, micro-

tubules, transport, trimerization, viral assembly
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CHAPTER 1

Biological Problems - HIV and Gag

1.1. AIDS and HIV

Human immunodeficiency virus type 1 (HIV-1), the causative agent of acquired immun-

odeficiency syndrome (AIDS), was discovered in early 1980’s [1]. More than three million

people die each year from AIDS, and roughly 40 million people are infected with HIV [1] .

It is believed that HIV descended from simian immunodeficiency virus (SIV). From the

evolutionary point of view, AIDS is a new disease and humans have not adapted to it yet.

HIV attacks T lymphocytes and macrophages. In particular, HIV infects and kills CD4+

T helper cells [1, 2] , which coordinate the immune response against invading pathogens.

Untreated infected individuals usually develop AIDS about 8-10 years after infection [1].

Most people with AIDS have very weak immune systems, and they eventually die due to the

body’s inability to fight off infections.

HIV is a retrovirus, which means that its genome is stored in RNA form instead of DNA.

The replication process of a retrovirus is error-prone, and therefore retroviruses have a high

mutation rate [1, 2]. On average, there is a one-point mutation in each replication cycle of

HIV. This is due to the fact that the enzyme reverse transcriptase, which transcribes the

virus’s RNA genome into DNA form, “cannot correct nucleotide misincorporation errors” [2]

(p. 1450). Only about one-third of HIV’s coding sequences in its genome remains invariant.

This presents a big dilemma. Not only is it very difficult for the immune system to fight off

HIV, but also it is extremely challenging to develop effective vaccines against this pathogen

[2] .
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Many different treatments for HIV have been developed, and there has been much

progress in this regard. On the other hand, there is still much to be learned about the

way the pathogen that causes AIDS replicates in the infected cell. We aim to better under-

stand the HIV’s life cycle in order to aid in determining more efficient ways to treat this

disease.

There are two main different types of HIV: HIV-1 and HIV-2, which seem to have evolved

separately from different strains of SIV. HIV-2 is less virulent and is not as widely spread

[1, 2]. In this work, unless otherwise specified, HIV refers to HIV-1.

1.2. HIV and Gag

In order to better comprehend HIV’s replication cycle, we need to understand the virus’s

composition and structure. Several main proteins, such as Env, Pol, Gag, and others com-

prise HIV[2, 3, 4]. Our focus in this study is on the main structural component of HIV

particles, the Gag protein [3, 5, 6].

Gag. Gag (group specific antigen) is essential in the formation of new HIV virions,

each of which is enveloped, of spherical shape [2, 3], and consists of approximately 5, 000 Gag

molecules. In vivo, Gag is sufficient for the formation of new HIV virus-like particles (VLP’s).

Uncleaved Gag surrounds the HIV RNA genome and spreads radially in the immature virion

[3, 5, 8, 9, 10].

The major domains of Gag are: matrix (MA), capsid (CA), nucleo-capsid (NC), and p6

(see Figure 1.1). Gag binds to the plasma membrane via its MA domain. The CA domain

forms the outer shell of the mature HIV virion’s core during the maturation stage. Gag

multimerizes via its CA and NC domains. The NC domain binds to viral RNA. Gag utilizes

its p6 domain and the host cell’s plasma membrane during budding [3, 10, 12, 13].
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Retroviral Lifecycle. HIV utilizes CD4 receptors to enter CD4 T cells and macro-

phages [2, 7]. The virus invades the host cell by fusing with the plasma membrane, and

releases its genomic RNA and other proteins into the cytoplasm [2] . The enzyme reverse

transcriptase converts the RNA into DNA, which is then integrated into the host cell’s DNA

by the enzyme integrase [2] . The host cell transcribes the viral DNA into viral mRNA,

which then travels to the cytoplasm. From mRNA, new Gag proteins are synthesized in the

cytoplasm on free polysomes (clusters of ribosomes) [14, 15]. Nermut et al. [15] found in

their study that the Gag precursor pr55Gag first appeared in the cytoplasm of an infected

cell at 28-30 hours post infection. (h.p.i.). The newly synthesized Gag proteins, associated

to viral RNA, travel to the plasma membrane via diffusion and active transport [16]. Gag

protein transport to the plasma membrane after synthesis takes about 5-10 minutes [7].

Transport mediated by motor proteins along microtubules has been proposed as a mechanism

Figure 1.1. HIV and Gag. The Gag domains MA, CA, NC, and p6 are the
main structural components of the HIV particle. The MA domain binds to the
interior side of the viral membrane. The CA domain forms the viral core shell.
The NC domain is attached to the RNA inside the core. p6 is involved in the
virion’s budding from the host cell. Source: [7] (with slight modification).
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for intracellular active transport of Gag proteins [14, 17]. Multimerization of Gag molecules

takes place at the plasma membrane, where new immature virions assemble right before or

during budding. This process starts at around 6-8 hours after the Gag proteins are first

synthesized in the cytoplasm [9, 15]. However, the speed at which the Gag proteins are

produced and transported seems to vary depending on the type of cell. Nermut et al. [15]

found in their experiments that the majority of Sf9 cells were in the budding stage at 40 to

44 h.p.i., while in T4 lymphocytes, budding took 2 or 3 days to begin. Assembly of the new

virions at the plasma membrane takes about 5-6 minutes [9]. The immature virions leave

the infected cell and begin the process of maturation. During this stage, each newly formed

Figure 1.2. Cell Structure. Human cells have various shapes and sizes, but
most of them have similar components, some of which are: the nucleus, where
the host’s genome is packaged as DNA strands; a cytoplasm, which contains
the cell’s organelles; a nuclear envelope, that separates the nucleus from the
cytoplasm; a plasma (cell) membrane, which gives the cell its shape and through
which materials are exported and imported; microtubules, which serve as the
cell’s scaffold and are involved in cell movement and trafficking of particles in
the cytoplasm. Source: [2].
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immature virion develops a core, which contains RNA and other proteins [3, 10] (see Figures

1.2, 1.3, and 1.4).

1.3. HIV Maturation

New HIV virions that form near the plasma membrane of a host cell escape the cell

during the process of budding. These immature virions are not yet infectious. They need to

undergo a maturation process in order to be able to invade and infect other cells. During

maturation, Gag proteins are cleaved by the enzyme protease. The MA domain remains

Figure 1.3. Retrovial Lifecycle. HIV fuses with the host cell’s plasma mem-
brane and releases its RNA and enzymes in the cytoplasm. HIV’s RNA is
translated to DNA by the enzyme reverse transcriptase. The viral DNA is
integrated into the host cell’s DNA by the enzyme integrase. The host cell
translates the viral DNA into viral mRNA. The mRNA produces Gag proteins
in the cytoplasm, which travel to the cell membrane, the site of assembly of new
immature virions. The virions leave the cell during the budding process, and
develop a core and become infective during maturation. Source: [11] (with
slight modification).
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attached to the virion’s membrane, while about 1, 500 of the CA proteins form the outer

shell or capsid of the mature virion’s core. NC is bound to two RNA strands, which are

packaged inside the core, along with other viral proteins [3, 8, 10, 19] (see Figure 1.5).

HIV Core Assembly. The outer shell of the mature HIV core or capsid (see Figure

1.6) is composed of about 1, 500 Gag capsid domain (CA) proteins [8, 20], bound together

by weak inter-subunit interactions. The HIV core is a globally stable lattice. The stability

of protein-protein interactions is required for assembly [3]. HIV core assembly consists of

two main stages: nucleation and elongation.

Nucleation and Elongation. Nucleation is the formation of a nucleus (polygon)

and is usually characterized by a lag phase [2, 21, 22]. For the HIV core, we assume the

nucleus size to be nnuc = 6, since CA hexamers are the main subunit in the process of HIV

core assembly [18]. Elongation is the addition of subunits to the already formed nucleus,

Figure 1.4. HIV Egress. New mRNA forms in the host cell’s nucleus and
travels to the cytoplasm, where it synthesizes new Gag proteins. Studies suggest
that these proteins can move through the cytoplasm via diffusion and active
transport along microtubules, while attached to the motor protein KIF4 and
carrying RNA, towards the cell membrane. Gag proteins accumulate near the
cell membrane and form new HIV virions, which then bud off the cell. Source:
[13].
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and it is usually characterized by a rapid growth phase and an equilibrium phase [2] . The

process of elongation is typically fast compared to nucleation, in terms of the rate at which

subunits are added to the growing structure [22].

1.4. Roles of Mathematical Modeling for HIV and Gag

Quantitative description of the aforementioned biological problems, in particular mathe-

matical models, will help us understand the mechanisms of the HIV life cycle. Well-developed

mathematical models shall provide quantitative characterization of detailed aspects of HIV

reproduction. Here, we highlight the efforts and contributions of this thesis.

Models for Gag Trafficking Inside Cytoplasm. We first consider a mathematical

model for Gag trafficking in the cytoplasm. We assume the cytoplasm is an annulus, where

Figure 1.5. Immature and Mature HIV Virions. About 5, 000 Gag proteins
are spread radially and uniformly inside the immature HIV virion (left). In the
mature HIV virion (right), Gag’s MA domain (yellow) is attached to the inner
layer of the virion’s membrane, while about 1, 500 of the available 5, 000 CA
proteins form the capsid (outer shell) of the virion’s core. The core packages
two strands of viral RNA and other proteins. Source: [10].
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Gag proteins are produced uniformly at a constant rate. The model consists of a partial

differential equation with a diffusion term and a convection term, accounting for the diffusion

and active transport of Gag proteins. Active transport may take place, for instance, along

microtubules via motor proteins. We also assume radial symmetry in the transport of Gag

proteins. Our Robin boundary conditions reflect the assumptions that Gag proteins do not

penetrate back into the nucleus and that no Gag proteins escape the cell through the plasma

membrane until a Gag concentration threshold has been reached. The initial condition

reflects the assumption that there are no Gag proteins in the cytoplasm at the start of the

process. We perform numerical simulations for various combinations of parameter values.

Our simulations agree principally with experimental results. We also comment on further

work on the trafficking model by considering stochasticity of the parameters, in particular

the active transport parameter.

Figure 1.6. HIV Core. The mature HIV core shell is composed of about
1, 500 CA proteins, mostly in the form of hexamers. The core also contains 12
CA pentamers, 5 of them in the narrow end, and the other 7 in the wide end
of the capsid. This arrangement gives the HIV core its conical shape. Source:
[18].
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Models for Gag Trimerization at Plasma Membrane. We also develop and

analyze a mathematical model for Gag trimerization at the plasma membrane. HIV Gag

accumulates near the plasma membrane at certain “Gag hotspots”, where HIV virion assem-

bly takes place. We assume that Gag proteins arrive at the site of assembly as monomers,

at a constant rate. Three monomers can come together to form a trimer, and one trimer

can decompose into three monomers. Trimers can come together to form higher order mul-

timers, which bind to each other and to the plasma membrane as a new immature HIV

virion assembles. Our trimerization model consists of a nonlinear dynamical system of two

ordinary differential equations. The equations represent the rates of change in the concen-

trations of Gag monomers and trimers at a Gag hotspot. We show analytically and verify

numerically the existence and stability of a unique equilibrium of the monomer and trimer

species, regardless of parameter values, as long as all parameters are positive.

In addition, we estimate the ratios of Gag association and dissociation parameters and

the ratio of Gag monomer arrival and Gag multimerization parameters based on values from

literature and from experimental data. We also derive a condition on the model parameters

that shift the Gag monomer-trimer equilibrium towards the trimer state. We verify the

condition numerically. We then calculate a lower bound for the equilibrium association

constant Ka for Gag monomers and trimers. Finally, we comment on further work on Gag

trimerization modeling in terms of possible improvements to the model.

Models for HIV Core Assembly. We paid out attention to HIV core assembly also.

We utilize nonlinear systems of ordinary differential equations for representing the rates of

change of the concentrations of CA intermediates in the assembly of a mature HIV virion

core.
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The first model, based on a model proposed by Zlotnick and others for virus capsid

assembly [23], considers hundreds of species of CA intermediates, from CA monomers up to

a full capsid (mature HIV core shell). We ran numerical simulations for a total of N = 1, 300

and N = 5, 000 CA intermediates, assuming higher association rates and lower dissociation

rates for larger CA multimer species. Our simulations provide verification of the existence of

a stable equilibrium. We showed analytically the existence of a unique equilibrium, and also

showed that the equilibrium is stable regardless of parameter values, as long as all parameters

are positive, for the case when there are only three CA intermediates.

Next, we consider a cascaded dynamical system for HIV core assembly. There are two

subsystems, the first one corresponding to the nucleation of a CA hexamer, and the second

one corresponding to the elongation of the mature virion capsid. The first system consists of

six nonlinear ordinary differential equations, representing the rates of change of the concen-

trations of CA intermediates 1 through 6, that is, monomers through hexamers. We consider

various paths of assembly of these intermediates. We verify numerically the existence of a

stable equilibrium for this six-species model. The elongation system of differential equations

is similar to the model proposed by Zlotnick’s group for capsid assembly, adapted to HIV

core assembly. In particular, there are about N = 250 differential equations (instead of

N = 1, 500 equations), corresponding to the concentrations of CA 6-mers, 12-mers, ..., and

capsid. That is, the basic subunit is now a CA hexamer instead of a monomer. We also

comment on further work on HIV core assembly.
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CHAPTER 2

Gag Trafficking Inside the Cytoplasm

2.1. Biological Background and Existing Work

Figure 2.1. Microtubule Structure. Microtubules are hollow cylinders, about
25nm in diameter, and are part of the cell’s cytoskeleton. Source: [24].

Figure 2.2. Motor Proteins. Dyneins move in retrograde fashion, towards the
minus-end of microtubules. Most kinesins exhibit anterograde motion, towards
the plus-end of microtubules. Source: [25].

Proteins and other particles may be transported inside the cell along microtubules (see

Figure 2.1). These structures made of tubulin are hollow tubes, about 25 nm in diameter and

11



between 50 and 100 µm long [28]. There are typically about 150 microtubules in a cell [28].

Microtubules radiate from the microtubule organization center (MOTC) near the nucleus

towards the plasma membrane. They serve as tracks for motor proteins, which attach to

cellular cargoes and move along microtubules either towards the minus-end (dyneins) or the

plus-end (kinesins) of the microtubules (see Figures 2.2 and 2.3). Studies have found that

motor proteins for movement towards the plus-end and the minus-end of microtubules are

present simultaneously on cellular cargo [29].

The mechanisms of intracellular HIV Gag trafficking and virus assembly are poorly un-

derstood [7, 30]. Gag proteins are present in the cytosol mostly as monomers and low order

oligomers [6, 9, 10]. In experiments, it has been found that kinesin KIF4 associates with

retroviral Gag protein [31]. Moreover, KIF4 disruption slows down HIV Gag trafficking in

the cytoplasm and inhibits production of new virus particles [14]. There is also evidence

that disrupting microtubules with the drug nocodazole reduces HIV infection twofold [32].

In addition, cells contain a stable pool of nocodazole-resistant microtubules [14]. Martinez

Figure 2.3. Structure of Kinesin. Kinesin uses its two heads to walk along
microtubules in 8nm steps [26]. Kinesin’s tail is attached to cargo, which is
transported along the microtubule towards the plasma membrane. Source:
[27].
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and co-workers propose that HIV Gag trafficking might depend mostly on this stable pool

of microtubules, whose selection could be enhanced by association with KIF4 [14].

In the following sections, we present and analyze a mathematical model for intracellular

HIV Gag trafficking. Our model will consider Gag transport towards the plasma membrane.

We aim to better understand the dynamics of Gag protein transport. Specifically, we look at

the relationships between diffusion and active transport parameters and the assembly time

of new virus particles at the plasma membrane. The numerical methods used in simulations

are based on finite elements and characteristic tracking [16, 33, 34, 35, 36, 37, 38, 39].

2.2. A Quasi-2D Model for Gag Trafficking

Figure 2.4. Annular Model of the Cytoplasm. Our Gag trafficking model
assumes that the host cell’s cytoplasm has annular form and that Gag proteins
are transported via diffusion and active transport. The transport is assumed
to be symmetric with respect to the angle. Thus, the model considers motion
in the radial direction. Here, ra and rb represent the radius of the nucleus and
of the cell, respectively. Source: [16].
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2.2.1. Assumptions. We list here the main assumptions of our mathematical model for

Gag trafficking (see Figure 2.4):

• The cell’s cytoplasm is an annulus.

• All Gag species are treated as quasi-monomers.

• There is no association or dissociation among Gag species during intracellular trans-

port.

• Gag transport happens via diffusion and active transport along microtubules.

• Gag monomers are produced uniformly and constantly from mRNA in the cyto-

plasm.

• Gag particles do not penetrate back into the nucleus.

• Gag particles cannot escape through the plasma membrane before virions form.

• Initial monomeric Gag concentration in the cytoplasm is zero.

2.2.2. Gag Active Transport. Variables and Parameters. We define here the

main quantities involved in our model for Gag trafficking:

• s = speed of Gag on microtubules in the radial direction (µm/sec)

• v = (s cos θ, s sin θ) = velocity vector (µm/sec, µm/sec)

• D = diffusion coefficient (µm2/sec)

• g = rate of production of new Gag protein (µM/sec)

• P (r, θ, t) = P (r, t) = concentration of Gag at distance r from the cell center at time

t (µM)

• Tv = time when new virion first appears on cell membrane, that is, the Gag con-

centration near plasma membrane reaches a certain threshold value (sec).

14



Mass Conservation. The mass conservation law asserts that temporal change in mass

concentration is balanced by spatial change (flux) plus production (source, sink). Mathe-

matically, this can be expressed as the following partial differential equation:

∂P

∂t
= ∇ · (D∇P − vP ) + g.

In polar coordinates, the total flux can be expressed as follows:

∇ · (vP −D∇P ) =
1

r

∂

∂r
(srP −Dr∂P

∂r
).

This leads to a mathematical model for active transport of quasi-monomers of Gag protein:

(1)



Pt = 1
r

∂
∂r

(Dr ∂P
∂r
− srP ) + g, r ∈ (ra, rb), t ∈ (0, Tv)

(Dr ∂P
∂r
− srP )|ra = (Dr ∂P

∂r
− srP )|rb = 0, t ∈ (0, Tv)

P (r, 0) = 0, r ∈ (ra, rb).

Robin boundary conditions with zero total flux at the two ends are proposed to reflect

the assumption of no penetration back into the nucleus and no escape through the plasma

membrane before new virions form. Numerical algorithms for the above initial boundary

value problem can be developed based on characteristic finite element methods.

15



2.2.3. Variational Formulation for the Quasi-2D Model. We rewrite equation

(1) in an equivalent form as follows:

(2) r
∂p

∂t
+

∂

∂r

(
srp−Dr∂p

∂r

)
= gr, r ∈ [ra, rb], t ∈ [0, Tv].

The development of the numerical method is divided into two stages. A weak formulation

based on a temporal discretization is first established. Then we apply a spatial finite element

discretization to obtain a discrete algebraic system.

Let 0 < t1 < . . . < tn−1 < tn < · · · < tN = Tv be a temporal partition of [0, Tv] that

is not necessarily uniform and ∆tn = tn − tn−1(n = 1, . . . , N). We consider test functions

defined on the space-time slab Σ = [ra, rb]× [tn−1, tn]. Multiplying both sides of equation (2)

by a typical test function ψ(r, t), and integrating with respect to space and time, we obtain

(3)

∫ tn

tn−1

∫ rb

ra

(
r
∂p

∂t
+

∂

∂r

(
srp−Dr∂p

∂r

))
ψdrdt =

∫ tn

tn−1

∫ rb

ra

grψdrdt

For the first term on the left-hand side of equation (3), Fubini’s theorem and integration

by parts in time yield

(4)

∫ tn

tn−1

∫ rb

ra

r
∂p

∂t
ψdrdt =

∫ rb

ra

(∫ tn

tn−1

∂p

∂t
ψdt
)
rdr

=

∫ rb

ra

p(r, tn)ψ(r, tn)rdr −
∫ rb

ra

p(r, tn−1)ψ(r, t+n−1)rdr

−
∫ tn

tn−1

∫ rb

ra

p
∂ψ

∂t
rdrdt.
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For the second term on the left-hand side of equation (3), we apply integration by parts in

space and the boundary condition in (1) to obtain

(5)

∫ tn

tn−1

∫ rb

ra

∂

∂r

(
srp−Dr∂p

∂r

)
ψdrdt

=

∫ tn

tn−1

[
srp−Dr∂p

∂r

]rb
ra

ψdrdt

−
∫ tn

tn−1

∫ rb

ra

(
srp−Dr∂p

∂r

)∂ψ
∂r
drdt

=

∫ tn

tn−1

∫ rb

ra

(
Dr

∂p

∂r
− srp

)∂ψ
∂r
drdt.

A combination of the above two equations leads to

(6)

∫ rb

ra

p(r, tn)ψ(r, tn)rdr −
∫ rb

ra

p(r, tn−1)ψ(r, t+n−1)rdr

−
∫ tn

tn−1

∫ rb

ra

p
∂ψ

∂t
rdrdt+

∫ tn

tn−1

∫ rb

ra

(
Dr

∂p

∂r
− srp

)∂ψ
∂r
drdt

=

∫ tn

tn−1

∫ rb

ra

gψrdrdt,

which is equivalent to

∫ rb

ra

p(r, tn)ψ(r, tn)rdr +

∫ tn

tn−1

∫ rb

ra

D
∂p

∂r

∂ψ

∂r
rdrdt

−
∫ tn

tn−1

∫ rb

ra

p
(∂ψ
∂t

+ s
∂ψ

∂r

)
rdrdt

=

∫ rb

ra

p(r, tn−1)ψ(r, t+n−1)rdr +

∫ tn

tn−1

∫ rb

ra

gψrdrdt.

We require each space-time test function to satisfy the adjoint equation

(7)
∂ψ

∂t
+ s

∂ψ

∂r
= 0.
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Clearly, this implies that any test function is a constant along each characteristic, i.e.,

(8) ψ(r, t) = ψ(r∗, t∗).

We have now a weak formulation

(9)

∫ rb

ra

p(r, tn)ψ(r, tn)rdr +

∫ tn

tn−1

∫ rb

ra

D
∂p

∂r

∂ψ

∂r
rdrdt

=

∫ rb

ra

p(r, tn−1)ψ(r, t+n−1)rdr +

∫ tn

tn−1

∫ rb

ra

gψrdrdt.

Σ

+ rb

r r−
b

r

3

2

tn−1

tn

1

a

a

Σ
Σ

Figure 2.5. The space-time slab Σ = [ra, rb] × [tn−1, tn] is divided into three
regions Σ1,Σ2,Σ3 by two special characteristics: the one connecting (ra, tn−1)
and (r+

a , tn), and the one connecting (r−b , tn−1) and (rb, tn).

As shown in Figure 2.5, the space-time slab [ra, rb] × [tn−1, tn] is divided into three re-

gions by two special characteristics: the one connecting (ra, tn−1) and (r+
a , tn), and the one

connecting (r−b , tn−1) and (rb, tn), where

(10) r+
a = ra + s∆tn, r−b = rb − s∆tn.

2.2.4. Finite Element Discretization. Next we consider spatial discretization and

approximate the diffusion term in the weak form (9). For time step tn, let ra = r0 < r1 <

· · · < rj−1 < rj < . . . < rM = rb with hj = rj − rj−1(j = 1, . . . ,M) be a nonuniform spatial
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mesh. We shall adopt local mesh refinements and Lagrangian P1 spatial elements at each

time step. Let φj(r)(j = 0, . . . ,M) be the nodal basis (hat) functions for a typical time

step. Note that φ0 has only the right half of the hat, whereas φM has only the left half. It

should be pointed out that the spatial partition, the number of spatial elements M , and the

nodal basis functions are generally different for different time steps. We shall assume this

difference is clear from context rather than introduce some awkward notations.

nt

tn−1
r* r

r rrrr

r* *

j j+1j−2 j−1

j−1 j j+1

Figure 2.6. An illustration of the test functions (except the last one)

nt

rrM−1 b

tn−1
r*

M−1 rb
_

Figure 2.7. An illustration of the last test function ψM(r, t)

Our finite element approximation is different from the traditional ones. The trial basis

functions are spatial hat functions as described above, whereas the test basis functions are
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space-time functions that satisfy the adjoint equation (7). To be precise, let us look at a

typical time stepping from tn−1 to tn. The unknown approximate solution P (n)(r) at time

step tn is a linear combination of the spatial hat functions φj(j = 0, . . . ,M) with unknown

coefficients {P (n)
j }Mj=0. There areM+1 space-time test functions ψ(r, t) that are defined in the

space-time slab Σ = [ra, rb]×[tn−1, tn] and satisfy the adjoint equation. Any test function is a

constant along each characteristic within its support. For 0 ≤ i ≤ (M −1), ψi(r, tn) = φi(r).

So the support of ψ0(r, t) is a region in Σ that is bounded by the boundary of Σ and the

backtracking characteristic starting from (r1, tn). The support of ψi(r, t)(i = 1, . . . ,M−1) is

a region in Σ that is bounded by the two backtracking characteristics starting from (ri−1, tn)

and (ri+1, tn), respectively. An illustration of these test functions is shown in Figure 2.6.

However, the last test function ψM(r, t) is special. Its support consists of two parts. The

first part is the region in Σ that is bounded by the two backtracking characteristics starting

from (rM−1, tn) and (rM , tn), respectively. Similarly, ψM(r, tn) = φM(r). The second part of

the support is Σ3 and ψM(r, t) ≡ 1 on Σ3.

For the diffusion term in the weak form (9), our treatment is similar to that in [38].

Because the diffusion is small, the test functions are constants along characteristics, and the

solution changes the least along characteristics, we approximate the diffusion term as

(11)

∫ tn

tn−1

∫ rb

ra

D
∂P

∂r

∂ψ

∂r
rdrdt ≈

∫ rb

ra

∆t(r, tn)D
∂P (n)(r)

∂r

∂ψ

∂r
(r, tn)rdr,

where ∆t(r, tn) = tn−t∗ and (r∗, t∗) is the foot of the characteristic starting from (r, tn). This

approximation holds for all test basis functions. Clearly, if ra ≤ r < r+
a , then t∗ ∈ (tn−1, tn]

and hence ∆t(r, tn) < ∆tn. But if r+
a ≤ r ≤ rb, then t∗ = tn−1 and hence ∆t(r, tn) = ∆tn.
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Substituting (9) into (11), we obtain a finite element scheme for equation (1). At each

time step tn(1 ≤ n ≤ N), seek

(12) P (n)(r) =
M∑
j=0

P
(n)
j φj(r)

such that for any test function ψ(r, t), the following holds

(13)

∫ rb

ra

P (n)(r)ψ(r, tn)rdr +

∫ rb

ra

∆t(r, tn)D
∂P (n)(r)

∂r

∂ψ

∂r
(r, tn)rdr

=

∫ rb

ra

P (n−1)(r)ψ(r, t+n−1)rdr +

∫ tn

tn−1

∫ rb

ra

gψrdrdt.

To start the time-stepping procedure, P (0)(r) can be taken as the piecewise linear nodal

interpolation of the initial condition p0(r).

Next we discuss how to evaluate the mass matrix, the stiffness matrix, and the right-hand

side in the discrete linear system. The mass matrix

(14) A = [Ai,j](M+1)×(M+1) =

[∫ rb

ra

φi(r)φj(r)rdr

]
i,j=0,...,M

is a symmetric tridiagonal matrix. In particular, we have

(15)

A0,0 =
1

12
(r1 − r0)(r1 + 3r0), A0,1 =

1

12
(r2

1 − r2
0),

Ai,i−1 =
1

12
(r2

i − r2
i−1), Ai,i+1 =

1

12
(r2

i+1 − r2
i ),

Ai,i =
1

12
(ri − ri−1)(3ri + ri−1) +

1

12
(ri+1 − ri)(ri+1 + 3ri),

AM,M−1 =
1

12
(r2

M − r2
M−1), AM,M =

1

12
(rM − rM−1)(3rM + rM−1),

where 1 ≤ i ≤ (M − 1).
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The stiffness matrix

(16) B = [Bi,j](M+1)×(M+1) =

[∫ rb

ra

∆tn(r, tn)D
∂φi

∂r

∂φj

∂r
rdr

]
i,j=0,...,M

is also a symmetric tridiagonal matrix, but its evaluation is a little bit more involved, since

∆tn(r, tn) relies on characteristic tracking. Suppose r+
a ∈ (rI−1, rI ] for some I ≥ 1 (but

I � M). It is known that ∆t(r, tn) = ∆tn for r ≥ r+
a . So explicit expressions are available

for the following entries:

(17)

Bi,i−1 = −∆tnD
1

2

ri + ri−1

ri − ri−1

, Bi,i+1 = −∆tnD
1

2

ri+1 + ri
ri+1 − ri

,

Bi,i = ∆tnD
1

2

(
ri + ri−1

ri − ri−1

+
ri+1 + ri
ri+1 − ri

)
, for (I + 1) ≤ i ≤ (M − 1),

−BM,M−1 = BM,M = ∆tnD
1

2

rM + rM−1

rM − rM−1

.

For the evaluation of B0,0, B0,1 = B1,0, B1,1, B1,2 until BI,I−1, BI,I , Gaussian quadratures

could be employed.

The evaluation of the right-hand side of (13) depends on the test functions and char-

acteristic tracking. For the first few test basis functions, their supports do not intersect

with [ra, rb] × {tn−1}, so ψ(r, t+n−1) = 0 and hence the corresponding entries are zero. For a

test function whose support intersects with [ra, rb]× {tn−1}, we apply change of variable to

evaluate the integral. For simplicity of presentation, we assume that both suppψ(r, tn) and

suppψ(r, t+n−1) are in [ra, rb]. We replace the dummy integral variable r by r∗ and rewrite

the integral as ∫ rb

ra

P (n−1)(r∗)ψ(r∗, t+n−1)r∗dr∗.
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Note that there is a one-to-one mapping between suppψ(r, tn) and suppψ(r, t+n−1), so we

have [35]

∫ rb

ra

P (n−1)(r∗)ψ(r∗, t+n−1)r∗dr∗ = e−2s∆tn

∫ rb

ra

P (n−1)(r∗)ψ(r, tn)rdr.

The above right-hand side could be evaluated by a Gaussian quadrature on suppψ(r, tn),

therein P (n−1)(r∗) is evaluated through linear interpolation after r∗ is located.

Once again the evaluation of the right-hand side involving the last test basis function

ψM(r, t) is divided into two parts due to the two-part structure of its support. The calculation

on the left part is similar to what is just described above. The right part is simply

∫ rb

r−b

P (n−1)(r)rdr,

because ψM(r, t) ≡ 1 on Σ3. An explicit formula is available for the above integral, since

P (n−1)(r) is piecewise linear on [r−b , rb].

Finally, we obtain a tridiagonal linear system with unknowns {P (n)
j }Mj=0 and the coeffi-

cient matrix (A + B). The linear system can be solved directly with spatial and temporal

complexities both O(M).

Mass Conservation. By construction,
M∑
i=0

ψi(r, t) ≡ 1 on the space-time slab [ra, rb]×

[tn−1, tn]. Combined with (13), this implies that

(18)

∫ rb

ra

P (n)(r)rdr =

∫ rb

ra

P (n−1)(r)rdr.

23



Therefore, our numerical scheme is mass-conservative by design. Since piecewise linear ap-

proximations to the unknown concentration are adopted in our numerical scheme, an explicit

formula for computing the total mass at a typical time step tn is available as follows

(19)

∫ rb

ra

P (n)(r)rdr =
M∑
j=1

[
1

2
(rj−1 + rj)(rjP

(n)
j−1 − rj−1P

(n)
j )

+
1

3
(r2

j−1 + rj−1rj + r2
j )(P

(n)
j − P (n)

j−1)

]
.

However, the evaluations of the coefficient matrix entries and the right-hand side of the linear

system involve quadrature errors and round-off errors, the actual total mass might fluctuate

slightly from time to time. The above formula can be used for checking mass conservation

in numerical experiments.

2.3. Simulation Results

Figure 2.8. Simulated Radial Distribution of Gag Concentration. Speed s =
2, Diffusion D = 0.04, ra = 5, rb = 10 [40, 41].

We estimate the threshold concentration Pv, that is, the Gag concentration at the plasma

membrane needed for a new HIV virion to form, as follows. We assume it takes 4,500 Gag
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Table 2.1. Simulated Time of Virion Assembly. Source: [16]

Speed s (µm/sec) Time Tv
2.00 09h 46m 41s
1.00 10h 14m 35s
0.40 10h 32m 57s
0.20 13h 31m 29s
0.10 21h 09m 08s
0.05 34h 20m 07s

proteins to form a new virion of radius 0.07 µm. These values are within the ranges reported

in literature for HIV virions [3, 5, 8, 9, 10, 42, 43]. We then convert 4,500 to moles by

Figure 2.9. Experimental Results. Gag was tagged with green-fluorescent
protein (GFP). A weak GFP signal begins to appear at about 35 h.p.i. on
Cos-7 cells, and at around 20 h.p.i. on HEK293T cells. Clearly visible puncti
(green dots), which may represent new HIV virions, appear at around 40 h.p.i.
on Cos-7 cells, and at around 25 h.p.i. on HEK293T cells. Source: [16].
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multiplying by
1

6.022× 1023
. To convert the resulting value into µM, we divide by the

volume of a virion, calculated as the volume of a sphere of radius 0.07 µm. The resulting

formula, after simplifying, is Pv =

45

6.022
4

3
π(0.07)3

≈ 5201 µM.

Similarly, we estimate the value of the parameter g, the rate of production of new Gag

proteins in the cytoplasm, as follows. We assume that 1,500 Gag molecules are produced

inside the cytoplasm of a cell each second [40]. We also assume that the cytoplasm is an

annulus as depicted in Figure 2.4, with ra = 5µm and rb = 10µm. To convert to volume, we

assume that the cell is a cylinder, with height equal to 5µm [40]. We then convert this value

to µM/s by using the formula g =

15

6.022
π(102 − 52)(5)

≈ 0.002114 µM/s.

In addition, we set the value of the diffusion coefficient D = 0.04 µm2/s [16, 28]. The

value of the active transport coefficient s is varied within an acceptable range for transport

of cargo via motor proteins along microtubules [2, 32, 41, 44, 45].

Our simulation results agree principally with experimental results (see Figures 2.8 and

2.9, and Table 2.1). If HIV entry into the host cell takes roughly the same time as the HIV

egress, then the time post infection for the first virions to appear is about twice the time

of egress [16]. In experiments, Nermut et al. found that some cells produced VLPs after 36

h.p.i. and the majority reached VLP budding and release at about 40-44 h.p.i. [15].

2.4. Parallelization of Numerical Simulations

Motivation. In order to better understand distribution of parameter values, numerical

simulations are needed for a very large collection of parameter values s,D. This is a case of

Single Instruction Multiple Data (SIMD) [16].
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Overview. There are 4 major parameters: s,D,∆t, g. There are also many for-loops

in C++ code. We use MPI (message passing interface) for coarse-grain parallelism (runs

with different sets of parameters) and OpenMP for fine-grain parallelism (for-loops inside

each run).

Figure 2.10. Parallelization: Master-Worker. Source: [16].

MPI and OpenMP. For MPI parallelization, we use a master-worker approach. An

input file contains a collection of sets of parameter values. The master rank reads the file

and distributes the jobs among the worker ranks. Each worker sends its output, i.e., the

calculated virion time Tv, to the master rank, which then writes the output onto another file

for later analysis (see Figure 2.10).

We use OpenMP for parallelization within each worker rank. We first run gprof [47] for

parallelability analysis. gprof creates a code profile that helps us determine the parts of the

code (for-loops) that take longest to run. Then we use parallel sections to parallelize such

loops. Our parallel code was implemented and run on the Colorado State University (CSU)

Cray supercomputer (see Figure 2.11).
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Parallelization Speedup and Efficiency. Basic definitions:

• Speedup Si = T1/Ti

• Efficiency Ei = T1/(iTi)

• i = number of allocated cores

• Ti = time that it takes i cores to run a program

Parallel Simulations. Parameter values:

• s ∈ {1, 1.2, 1.4, ..., 3.0} µm/s

• D ∈ {0.02, 0.04, 0.06} µm2/s

• ∆t ∈ {0.125, 0.25, 0.5, 1.0} s

We fix g = 0.002114 µM/s. The simulations take longer to finish for smaller values of

s,D, and ∆t.

OpenMP parallelization had the most impact when fewer ranks were used. Execution

time was reduced by about 44% when 1 worker and 5 threads were used. We also observe

that there is no need to run the code with 133 ranks (132 workers). The parallel efficiency

was high with 5 threads and between 20 and 40 ranks (see Tables 2.2 and 2.3).

Figure 2.11. Cray Architecture. Source: [46].
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Table 2.2. Effects of the number of threads (OpenMP). Source: [16].

n (# of ranks) d (# of threads) Runtime (seconds) Speedup

2 1 929.67
2 5 521.33 1.78

133 1 21.00
133 2 17.33 1.23

Table 2.3. Effects of the number of ranks. Source: [16].

n (# of ranks) d (# of threads) Runtime (seconds) Efficiency

2 5 521.33
20 5 31.33 0.81
30 5 23.33 0.71
40 5 19.00 0.65
50 4 22.00 0.45
133 2 17.33 0.21

Table 2.4. Job Unevenness. Source: [16].

n (# of ranks) d (# of threads) Runtime (seconds) Efficiency

100 2 21.33 0.23
110 2 24.00 0.18
120 2 22.33 0.18
130 2 17.33 0.21
140 2 17.67 0.20

Executing the code with 110 and 120 workers took longer than with 100 ranks! (See

Table 2.4). Possible reasons are:

• There is additional overhead costs for additional allocated cores.

• There is unevenness of jobs: some cores finish their jobs quickly while others take

longer.

2.5. Stochastic Aspects of Gag Trafficking

Intracellular HIV Gag trafficking is dependent on microtubules and motor proteins, such

as kinesin. This protein exhibits predominantly anterograde (plus-ended) movement along

29



microtubules. Kinesin moves either one or two steps at a time in a rather erratic manner.

The protein obtains energy by hydrolizing ATP in order to move along a microtubule. For

each ATP molecule hydrolized, conventional kinesin takes one 8nm step forward [44]. At

times, the protein stops and even detaches from the microtubule. The kinesin may re-attach

and continue its movement toward the cell periphery. Conventional kinesin may travel for

hundreds of ATPase cycles before dettaching from a microtubule [2, 44, 48].

Cargo attaches to kinesin based on protein binding affinity. The cargo may be membrane-

enclosed or free. In the absence of cargo, kinesin proteins tend to exhibit decreased binding to

microtubules and inhibited motility [49]. Comformational changes in kinesin might explain

this difference in binding and motility. Friedman and Vale [49] observe that cargo-free

kinesin is folded in such a way that the head and tail are in close proximity. Removal of

the kinesin tail promotes attachment to microtubules and increases microtubule-stimulated

ATPase activity. Thus, they conclude that the kinesin tail represses ATPase and the motility

of this protein along microtubules [49].

It has been observed that organelles move bidirectionally inside cells. Evidence suggests

that both types of motor proteins, kinesins and dyneins, attach to cargo simultaneously, and

directionality of movement is determined by a complex mechanism which ensures that when

one type of motor is active, the other one is inactive [29, 41]. In addition, the cell type, the

pH value, the type of cargo, and other factors can affect intracellular transport speed.

2.5.1. Stochastic Transport of Gag on Microtubules. The speed at which

cargoes move along microtubules is still an active area of research. According to Sodeik and

others [32], GFP-tagged HIV particles have a peak velocity of 1 µm/s as they travel through

the cytoplasm.
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Kinesins move along microtubules at a wide range of velocities [45]. Kinesin velocity can

be regarded as a random variable with a probability distribution. In experiments, Setz and

Surrey [45] estimated the average kinesin velocity to be about 0.56 µm/s (see figure 2.13).

In contrast, as observed by Gazzola and co-workers [41] in in vitro experiments, intracellular

Figure 2.12. Kinesin Walking and ATP Cycles. Source: [50].

Figure 2.13. Distribution of Kinesin Speeds. v = mean, w = standard
deviation. Source: [45].
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cargo, such as vesicles and intracellular viruses, have exhibited greater velocities than the

maximum speeds measured for motor proteins without load. Such maximum velocities listed

in [41] are:

• 3 µm/s for dynein

• 0.4 µm/s for kinesin-1

• 3 µm/s for kinesin-1

• 0.8 µm/s for kinesin-1

• 0.5 µm/s kinesin-2.

Similar motor protein velocities have been reported by Alberts, Coy, Seitz, and others [2,

44, 45].

2.5.2. Stochastic Aspect of Gag Transport at the Cell Level. For stochastic

analysis of Gag trafficking, one can focus on transport at the cell level instead of considering

transport at the molecular level. In other words, the emphasis can be on the overall variability

of transport velocities, Gag production rates, and nuclear and cell radii among cells, without

taking into consideration the specific mechanisms involved in the intracellular transport of

proteins.

We then can consider equation (1), where we have, over the space of all cells:

• Random input: speed (s), diffusion (D), production rate (g), nuclear radius (ra),

cell radius (rb)

• Random output: the time needed for puncta appearence (Tv)

• Parameter space: tensor grids vs sparse grids

There are several facts that should be taken into consideration for research on stochastic

aspects of HIV Gag trafficking, particularly relating to the speed at which particles are being
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transported and the amount of time it takes for Gag particles to assemble at the plasma

membrane. Here we list some of the most important data obtained from literature about

HIV Gag trafficking.

Some known facts regarding Gag transport and assembly time:

• The first Gag proteins appear in the cytoplasm at 28-30 h.p.i. [15].

• Budding starts 6-8 hours later, that is, 34-38 h.p.i. [15].

• Some cells produce VLPs after 36 h.p.i., while the majority of cells reach the VLP

budding and release state at about 40-44 h.p.i. [15].

• A subpopulation of Gag protein reaches the plasma membrane within 5-10 min

(after Gag synthesis begins) [7, 15].

Some known facts about the shape and size of VLPs:

• HIV Gag protein assembles into 100 to 120 nm diameter particles in mammalian

cells [51].

• Recombinant HIV Gag assembles in vitro into particles only 25-30 nm in diameter

if inositol phosphates not added [51].

• VLPs are about 100-150 nm in diameter, and contain several thousand Gag molecules

[42, 43].

• Gag proteins in immature HIV virions are highly extended rods: length about 20

nm, width of only 2 to 3 nm [43].

Some known facts about diffusion of particles in the cytoplasm are:

• The cell’s cytoskeleton (actin microfilaments, microtubules, and others) contribute 3000

µm2 of surface area in a typical mammalian tissue culture cell [28]

• Some typical diffusion coefficients for various cargoes in the cytoplasm are [28]:
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– 2.6 × 10−3 µm2/s for beads in SW3T3 fibroblasts

– 4.0 × 10−3 µm2/s for CV1 fibroblasts

– 2.5 × 10−2 µm2/s for endogenous vesicles

– 3.0 × 10−3 µm2/s for fluorescently stained stained chromatin granules

– 3.9 × 10−4 µm2/s to 7.4 × 10−3 µm2/s for secretory vesicles tagged with

GFP.

2.6. Remarks: Biological Implications

As noted above, our numerical results agree principally with experimental results. There-

fore, for appropriate combinations of parameter values it is possible to obtain virion assembly

times Tv that make sense according to the literature and experiments performed. This indi-

cates that the assumptions regarding diffusion and active transport are valid in the case of

HIV Gag trafficking:

• Diffusion alone is not enough to form a new HIV virion in a realistic time-frame.

• Gag particles move through the cytoplasm via diffusion and active transport.

• In addition, our simplifying assumptions, such as the annular model of the cyto-

plasm, linear transport in the radial direction and angular symmetry of transport

do not seem to have significant effect on the final results and might be feasible

assumptions for most cell types.

The importance of active transport could motivate some new clues for HIV. This means

that we could look for ways to suppress or disrupt active transport inside the cytoplasm, for

example, disrupting KIF4 or disrupting microtubules.
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2.7. Remarks on Further Work

Modeling Gag trafficking in the cytoplasm is a new research area in mathematical biology.

Presented in this dissertation is some preliminary work. Further work can be done in this

new area by developing further mathematical models that have assumptions better reflecting

the biological process and/or considering further complexity in the process.

Here we list some ideas for further work:

(1) Geometric domain other than the annulus could be used to better reflect the shape

of cells.

(2) Solving the stochastic transport equation to better characterize the randomness in

the trafficking process. The stochastic system can be formulated as follows:

(20)



Pt = 1
r

∂
∂r

(D(ω)r ∂P
∂r
− s(ω)rP ) + g(ω),

r ∈ (ra(ω), rb(ω)), t ∈ (0, Tv), ω ∈ Ω

(D(ω)r ∂P
∂r
− s(ω)rP )|ra(ω) = (D(ω)r ∂P

∂r
− s(ω)rP )|rb(ω) = 0,

t ∈ (0, Tv), ω ∈ Ω

P (r, 0) = 0, r ∈ (ra(ω), rb(ω)), ω ∈ Ω.

Here, the set Ω is an abstract space whose elements are all possible outcomes ω. The

input parameters D, s, g, ra and rb are independent random variables. The solution

P is now a random quantity [52].
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(3) In addition, instead of employing characteristic finite element methods to numer-

ically solve the model, one could use Crank-Nicolson or other numerical methods

and evaluate the advantages and disadvantages of using these methods.
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CHAPTER 3

HIV Gag Trimerization at the Plasma Membrane

3.1. Gag Trimerization and Multimerization

Figure 3.1. Gag Hotspots. The sites of Gag multimerization and HIV as-
sembly comprise about 10% of the plasma membrane [40].

Gag proteins are transported inside the cell via diffusion and active transport towards

the plasma membrane (see Chapter 2). These proteins exist mostly as monomers and low

order multimers in the cytoplasm [6, 10, 12, 53]. In particular, Gag monomers and trimers

have significant relevance in the process of Gag multimerization and HIV assembly. Gag

trimers could be regarded as the basic building blocks or subunits for the immature HIV

virion capsid. HIV virus-like particles (VLPs) do not seem to form significantly inside the

host cell [9, 10]. Thus, trimers and higher order multimers form mainly at “Gag hotspots”

near or on the plasma membrane (see Figure 3.1). They attach to the membrane during the
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early stages of HIV assembly and budding. Gag proteins are recruited to the site of assembly

either directly from the cytosol [10] or via lipid rafts [6, 54]. As the local Gag concentration

at the plasma membrane increases, Gag multimerization is enhanced, which speeds up virion

assembly [6, 9, 30, 55, 56]. The stable binding of Gag proteins to the plasma membrane is

then crucial for successful virion formation, and it is achieved through a myristoyl switch

[6, 30, 55, 56].

Figure 3.2. HIV-1 Gag Domains and Myristoyl Switch. The main HIV-1
Gag domains are: matrix (MA), capsid (CA), nucleocapsid (NC), and p6.
Myristate is bound to the MA domain. It can exist in either sequestered
state (myr(s)), in Gag monomers, or exposed state (myr(e)), in Gag trimers.
Source: [6].

3.1.1. Myristoyl Switch. The main HIV-1 Gag precursor Pr55gag domains are: ma-

trix (MA), capsid (CA), nucleocapsid (NC), and p6 (see Section 1.2 and Figure 3.2). In

addition, myristate, a 14-carbon saturated fatty acid, covalently modifies the membrane-

binding (M) domain of MA at its N-terminal region. This process is called myristoylation.

A “myristoyl switch”, which promotes tight anchoring of Gag proteins to the plasma mem-

brane, consists of myristate plus a cluster of basic residues within the M domain that syner-

gizes with myristate [6, 56]. This myritoyl switch is, thus, essential in the assembly of new

HIV virions.
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3.1.2. Gag Status Near the Plasma Membrane. The myristate moiety in HIV-1

MA exists in two different states: monomeric sequestered (myr(s)) and trimeric exposed

(myr(e)) (see Figures 3.2 and 3.3). These two states of myristate in myr-MA exist in equi-

librium in the cytosol.

The exposure of myristate is coupled with trimerization [6, 54, 55, 56]. In particular,

binding of the MA domain to PI(4, 5)P2 helps localize Gag proteins on virion assembly

sites at the plasma membrane, which promotes Gag trimerization and triggers myristate

Figure 3.3. Molecular Model for myr(e)-MA Trimer. This model was pro-
posed by Tang et al. for myr(s)-MA monomer and myr(e)-MA trimer at equi-
librium, based on observations made in experiments that examined myristoy-
lated MA proteins. Binding of the myr(e)-MA trimer to the plasma mem-
brane may disrupt myr-myr interactions. The myristate is shown here in red.
Source: [56].

Figure 3.4. Trimerization and Membrane Binding of Gag. myr(e) Gag
trimers either bind or are bound to the plasma membrane, and they form
higher-order multimers as the new HIV virion assembles. Source: [6].
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exposure [30, 54] (see Figure 3.4). According to Jouvenet and coworkers, “Gag concentration

influences both the interaction between Gag molecules and the interaction between Gag and

the plasma membrane and is very probably a key determinant of assembly kinetics” [9]. Thus,

the increase in Gag concentration at the plasma membrane enhances multimerization and

myristate exposure, which in turn ensure tight anchoring of Gag to the plasma membrane.

In addition, myristate exposure is also enhanced by the CA and NC subdomains and the

binding of Gag to RNA [6, 56], and is modulated by pH [55]. Interestingly, the myristate

group remains sequestered in HIV-2 MA in the presence of PI(4, 5)P2 [54, 55]. Thus, the

assembly mechanisms for two closely related viruses may be quite different.

Based on the above findings from previous studies, we develop and analyze a mathemat-

ical model for HIV-1 Gag trimerization near the plasma membrane. The model considers

two main species: Gag monomers, corresponding to the myr(s) state, and Gag trimers, cor-

responding to the myr(e) state. We aim to better understand the relationships among the

variables and parameters involved in the dynamics of Gag trimerization and multimerization

at the site of virion assembly. We also analyze the model to show the existence of a stable

equilibrium between the monomeric myr(s) and trimeric myr(e) states of Gag protein.

3.2. Kinetic and Equilibrium Constants

Table 3.1 defines the general kinetic association and dissociation constants in a chemical

reaction. The chemical reaction can be respresented with the equation

A + A + A
k13−−⇀↽−−
k31

AAA.
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In the context of our model of Gag trimerization, ka = k13 and kd = k31 correspond to the

rates of Gag trimerization and monomerization, respectively. The reaction towards the right

corresponds to trimerization, with k13 measured in 1mol−2s−1, and the reaction towards the

left corresponds to monomerization, with k31 measured in 1s−1.

Table 3.1. Relevant Kinetic Constants. Source: [57].

Association rate constant, ka Dissociation rate constant, kd
Definition A+B → AB AB → A+B
Description Reaction rate of AB formation: Dissociation rate of AB:

number of AB complexes formed number of AB complexes
per unit time at unit dissociating per unit time
concentration of A and B

Units 1mol−1s−1 1s−1

Table 3.2 defines the equilibrium association constant Ka. In the context of our mathe-

matical model, Ka is measured in 1mol−2 and is defined as [40]

(21) Ka =
concentration of Gag trimers

(concentration of Gag monomers)3
=

[AAA]

[A]3
.

Table 3.2. Relevant Equilibrium Constant. Source: [57].

Equilibrium association constant Ka

Definition [AB]
[A][B]

= ka
kd

Description Affinity to association:
high Ka means high affinity to associate

Units 1mol−1
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3.3. Mathematical Model for Two-species Gag Trimerization

3.3.1. Assumptions, Variables, and Parameters. Listed below are the main as-

sumptions for our model of HIV-1 Gag trimerization near the plasma membrane:

• Gag molecules arrive in monomeric form at the plasma membrane at a constant

rate.

• Trimerization is enhanced by increased Gag monomer concentration.

• Multimerization is enhanced by increased Gag trimer concentration.

• Molecules do not leave the area near the plasma membrane after they arrive.

• Once trimers attach and multimerize at the plasma membrane, they do not break

down into smaller molecules.

The variables and parameters utilized in our model are described below:

• P1 = concentration of Gag monomers

• P3 = concentration of Gag trimers

• g = arrival rate of new Gag monomers to the assembly site at the plasma membrane

• k13, k31 = Gag association (trimerization) and dissociation (monomerization) rates,

respectively

• γ = multimerization rate of trimers at the plasma membrane

3.3.2. Two-Species Model: Equations. We assume that Gag monomers arrive at

the site of Gag multimerization and virion assembly (“Gag hotspot”) at a constant rate.

Three Gag monomers can associate and give rise to a Gag trimer. A trimer can also dissociate

into three monomers. Gag trimers that multimerize and are tightly bound to the plasma

membrane are “harvested out” and do not break down into smaller molecules.
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The resulting model is:

(22)


dP1

dt
= g − 3k13(P1)3 + 3k31P3,

dP3

dt
= k13(P1)3 − k31P3 − γP3.

3.3.3. Matlab Implementation of the Two-Species Model. We describe here

our Matlab code, consisting of three files:

• setMonTriParams.m: This function sets values for the model parameters g, k13, k31,

and γ. We later calculate estimates for
k13

k31

and
g

γ
, which can be used to set the

parameters values.

• MonTri.m: This function implements the model equations for the rates of change

of the concentrations of Gag monomers and trimers. MonTri first calls the function

setMonTriParams to get model parameters values, and then it uses these values to

implement the equations of the model. MonTri returns a vector with the differential

equations.

• simuMonTri.m: This script solves the differential equations numerically. It first sets

the initial and final times and initial values. Next, Matlab built-in solver ode45 is

called to solve the differential equation model implemented with the MonTri func-

tion. Then, the script produces a plot of the concentrations of Gag monomers and

trimers vs time.
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3.3.4. Two-Species Model: Equilibrium and Analysis. The equilibrium expres-

sions for the concentrations of myr(s) monomers and myr(e) trimers are:

(23)


P ∗

1 = [
g

3k13

(
k31

γ
+ 1)]1/3,

P ∗
3 =

g

3γ
.

Notice that the equilibrium concentration for myr(e)-Gag trimers does not depend on

the association and dissociation parameters k13 and k31, but it only depends on the Gag

monomer arrival and Gag trimer harvesting parameters. In particular, an increase in the

monomer arrival rate or a decrease in the trimer harvesting rate will increase the equilibrium

concentration of myr(e)-Gag trimers. Additionally, the equilibrium concentrations are posi-

tive, assuming that all parameter values and either P1(0) or P3(0) are positive. If P ∗
1 = 0 or

P ∗
3 = 0, then g = 0, which implies that P ∗

1 = 0 = P ∗
3 .

The Jacobian matrix for system (22) is:

J =

 −9k13P
2
1 3k31

3k13P
2
1 −k31 − γ

 .
The eigenvalues of matrix J are:

λ± =
−(9k13P

2
1 + k31 + γ)±

√
(9k13P 2

1 + k31 + γ)2 − 36k13γP 2
1

2
.

Let B = 9k13P
2
1 + k31 + γ. Then

λ± =
−B ±

√
(B2 − 36k13γP

2
1 )

2
.
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If B2 − 36k13γP
2
1 ≤ 0, then Re(λ±) < 0. Otherwise, λ− < 0 and

−36k13γP
2
1 < 0

⇒ B2 − 36k13γP
2
1 < B2

⇒
√

(B2 − 36k13γP
2
1 ) < B

⇒ −B +
√

(B2 − 36k13γP
2
1 ) < 0.

Hence, λ+ < 0.
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Figure 3.5. Gag Trimerization Model Simulations. Matlab simulations con-
firm our theoretical results. There is a stable equilibrium.

Therefore, the equilibrium is (locally) asymptotically stable, regardless of parameter val-

ues. Numerical simulations, utilizing Matlab’s ode45 subroutine and pplane8 [58], confirm

our result (see Figures 3.5 and 3.6). This result agrees with the literature, since it is known

that myr-Gag monomers and trimers approach an equilibrium state [6, 56]. Notice that the

two nullclines are the same when g = 0 = γ (see Figure 3.6). In that case, when there is no
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monomer arrival to the Gag hotspots and no higher-order multimerization, all points on the

curve P3 =
k13(P1)3

k31

are equilibrium points.

3.3.5. Estimates for
k13

k31

and
g

γ
. For this trimerization process, the ranges of biolog-

ical quantities are hard to measure, so in this subsection we provide estimates for
k13

k31

and

Figure 3.6. Gag Trimerization Phase Portrait. The equilibrium point is lo-

cated at about (0.52, 3.3). The P1 nullcline is P3 =
k13(P1)3 − g/3

k31

. The P3

nullcline is P3 =
k13(P1)3

k31 + γ
.

Figure 3.7. myr-MA and myr-MA-CA Equilibria. Ka = (2.5±0.6)×108M−2

for myr-MA, and Ka = (4.6±1.1)×109M−2 for myr-MA-CA at 20◦C. Source:
[56].
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g

γ
. From equation (21) and equations (23), it is known that

(24) Ka =
P ∗

3

P ∗
1

3 =
k13

k31 + γ
.

Then, Ka =
k13

k31

is a good approximation for small values of γ, that is, when there is little

multimerization.

Tang and co-workers [56] estimated the equilibrium association constants for myr-MA and

myr-MA-CA at 20◦C (see Figure 3.7). In particular, the estimated equilibrium association

constant for myr-MA-CA is

Ka = (4.6± 1.1)× 109M−2,

which is about 20 times larger than the Ka value for myr-MA. We expect the corresponding

value of the equilibrium association constant Ka for myr-Gag to be larger than that for myr-

MA-CA, since the inclusion of the NC domain and association to RNA promote Gag-Gag

interactions and, thus, trimerization [6, 56].

From experimental data, it is known that at the site of virion assembly near the cell

membrane, the total Gag protein concentration at equilibrium

(25) c = P ∗
1 + 3P ∗

3

is close to 10 µM, but could be as large as 1,000 µM [40], taking into account that the

threshold concentration of Gag for the formation of a new HIV virion with 1,500 Gag proteins

is about 1,409 µM. Based on the estimate from Tang et al. [56], we let Ka = 4.6 × 109 M−2

and use Mathematica to solve equations (24) and (25). We calculate that the concentration
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of Gag trimers P ∗
3 is somewhere between 1.20218 µM and 319.63 µM. Since P ∗

3 =
g

3γ
, we

conclude that
g

γ
is between 3.60653 µM and 958.89 µM.

3.3.6. Condition For Equilibrium Shift to Gag Trimers. Here we determine

conditions on Ka and the model parameters that will ensure an equilibrium shift towards

the trimeric myr(e)-Gag state. When 50% of the Gag protein concentration at equilibrium

is monomeric, we have P ∗
1 = 3P ∗

3 . Hence, by equation (21),

Ka =
P ∗

3

(3P ∗
3 )3

=
1

27(P ∗
3 )2

.

Thus, the equilibrium is shifted towards the trimeric state when

(26) Ka >
1

27(P ∗
3 )2

.

If we use equations (23) and (24) to write condition (26) in terms of the model parameters,

we obtain the equivalent condition

(27)
g

γ
>

√
k31 + γ

3k13

.

Notice that for the example illustrated in Figure 3.5, with the concentration of trimers

higher than the concentration of monomers at equilibrium, condition (27) is satisfied, since

we have

g

γ
= 10 > 0.12 ≈

√
k31 + γ

3k13

.
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According to Tang et al. [56], at equilibrium, the myr-MA concentration is 50% mono-

meric when the total concentration is 73 µM, and the myr-MA-CA concentration is 50%

monomeric when the total concentration is 17 µM1 at 20◦C. Now, suppose that the myr-

Gag equilibrium concentration is 50% monomeric when the total concentration is 10 µM

[40]. Then, the concentration of trimers P ∗
3 ≈ 1.67 µM, and condition (26) implies that

Ka > 1.33× 1010M−2.

The lower bound for Ka found here is about 3 times larger than the estimate for myr-

MA-CA Ka by Tang et al. [56]. Comparing the Ka values given by Tang et al. for myr-CA

and myr-CA-MA [56] (see Figure 3.7), this estimate seems reasonable for myr-Gag.

3.4. Remarks: Biological Implications and Further Work

Our results show that there is a stable equilibrium between the myr-Gag monomer and

trimer species. Even though our model could potentially be enhanced, we can see that our

assumptions here are sufficient for capturing this important feature of the dynamics of Gag

trimerization at the plasma membrane, which has been observed in experiments on myr-

MA and myr-MA-CA. Thus, our assumptions of the dynamics of Gag trimerization and

multimerization at the plasma membrane, such as:

• Gag proteins arrive to the Gag hotspots as monomers at a constant rate;

• Gag multimers, which are formed from associations of trimers and attach tightly to

the plasma membrane, do not break down into smaller structures;

1This is a recent correction on Tang et al., PNAS (2004) [59].
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• the relationships between the variables and the monomerization, trimerization, and

multimerization parameters, as given by the model equations

seem to be reasonable.

Following, we comment on possible further work avenues on Gag trimerization modeling.

(1) Literature research and simulations may be performed to approximate the values of

the parameters for the rate of Gag monomer arrival g and/or Gag multimerization

γ. Only one of the two is necesssary, if the approximation for the ratio of these

parameters calculated here is used. Similarly, more research may allow one to ob-

tain approximations for the association and dissociation rates k13 and k31. These

parameter estimates can also help to determine a more accurate estimate for the

value of myr-Gag Ka, the equilibrium association constant.

(2) There are two timescales in the Gag trimerization model that we proposed and

analyzed here (see 22). In the first (fast) phase, near time t = 0, the concentrations

of monomers and trimers change very rapidly. In the second (slow) phase, the

concentrations of monomers and trimers approach equilibrium. Multiple timescale

analysis via perturbation methods may be performed on the trimerization model in

order to further investigate the behavior of the solution near t = 0.

(3) The mathematical model for Gag trimerization proposed here could be further im-

proved to better reflect the dynamics of Gag localization and HIV virion assembly

at the plasma membrane. For instance, instead of assuming that the arrival rate of

Gag monomers g is constant, one could consider g = g(c). That is, g might depend

on the total concentration c of Gag protein at the plasma membrane. As a Gag

hotspot becomes saturated, fewer Gag proteins may be transported to the area. A
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more accurate model might include a carrying capacity term for the arrival rate of

Gag monomers at the plasma membrane, thus, requiring g to depend on the value

of the concentration c.

Moreover, we should point out that one might consider a three-species model for Gag

trimerization. Such a model could include the concentrations of Gag monomers in myr(s)

state, Gag monomers in myr(e) state, and Gag trimers. On the other hand, according to

Tang and co-workers, myristate exposure and trimerization are coupled together [6, 56],

which then eliminates the need for the intermediate species of Gag monomers in myr(e)

state.
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CHAPTER 4

HIV Core Assembly

4.1. Introduction

When enough Gag proteins have accumulated near the cell membrane, a new immature

HIV virion forms and buds off the host cell. In order for this new virion to become infective,

the virion needs to go through the maturation process. During maturation, an enzyme called

protease (PR) cleaves the Gag proteins inside the virion into their main domains: matrix

(MA), capsid (CA), and nucleo-capsid (NC). Approximately 1,200-5,000 MA molecules re-

main attached to the inner layer surrounding the virion [9, 10, 19], while roughly 1,200-1,500

CA molecules assemble to form the outer shell or capsid of the mature HIV virion’s core

[10, 18, 19] (see Table 4.1). The interior of the core contains two single strands of RNA asso-

ciated to thousands of NC proteins, as well as a few hundred copies of reverse transcriptase

and integrase enzymes [18, 19].

Figure 4.1. In Vitro and Reconstructed Images of HIV-1 CA Helical Tubes,
2D Hexagonal Crystals, and RSV Icosahedral Particles. Source: [60].
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We investigate mathematical models for the assembly of the CA proteins into the mature

virion’s capsid. In particular, the model, proposed by Zlonick’s group and studied also

by Hagan’s group (see, for instance, [22, 23]), consists of a system of ordinary differential

equations for the rates of change of the concentrations of CA subunit, intermediates, and

capsid. We apply this model to HIV by looking at two stages of the assembly process:

nucleation and elongation. Since a mature HIV capsid contains only 12 CA pentamers,

Figure 4.2. Disulfide Crosslinking Strategy Used to Obtain Soluble HIV-1
CA Hexamers for 3D Crystalization. Source: [60].

Figure 4.3. (a)(b) EM images of CA tubes for two different constructs; (c)(d)
profiles of cross-linked soluble hexamers, and expected positions of cross-linked
n-mers. The scale band represents 500nm. Source: [60].
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we assume that a nucleus is a hexagon of CA molecules (see Figures 1.6, 4.1, 4.2, 4.3,

and 4.4). Hence, nucleation for a single mature HIV capsid ends when the hexagon of

CA proteins is formed. Also, the forward rates for the reaction are smaller compared to

elongation. We perform numerical simulations of the model by using the Matlab subroutine

ode45 and plotting the concentration profiles for several intermediates, subunit, and capsid.

Our simulation results imply that the concentrations of all species approach an equilibrium.

We verify our results analytically. In particular, we show the existence of a unique and stable

equilibrium for the case N = 3.

4.2. Existing Work

Compared to mathematical models for Gag trafficking and multimerization, there is more

work on modeling HIV core assembly or broadly viral assembly [61, 62, 63, 64, 65, 66, 67,

68, 69, 70, 71, 72, 73, 74, 75, 76, 77].

Figure 4.4. (a) Spherical particles detected via EM, indicating the insertion
of pentamers. (b) Profile of cross-linked soluble pentamers with expected posi-
tions of cross-linked n-mers. Source: [60].
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4.2.1. Ganser’s Group. Ganser and co-workers studied the structure of the core shell

for HIV virus-like particles (VLPs) via electron cryotomography [19]. They observed a

consistent tendency of the CA proteins to arrange in fullerene-like conical shapes. Cylindrical

and irregularly-shaped capsids were also observed (see Figure 4.5).

Figure 4.5. HIV-1 Virus-Like Particles (VLPs). Conical (red), cylindrical
(orange), and irreguarly-shaped (yellow) capsids were observed via electron
cryotomography of a cell culture. Source: [19].

4.2.2. Zlotnick’s Group. Reference [23] is one of Zlotnick’s earliest works on virus

capsid assembly. A system of differential equations for the rates of change of the concen-

trations of capsid subunits and intermediates is developed. These equations model capsid

assembly as a polymerization reaction. It is assumed that only one subunit (which could be

an oligomer) at a time associates to or dissociates from the growing structure. Association

of intermediates is not considered, as their concentration, in general, is low. For the most

part, in their simulations, only one forward rate constant kf is used, and the backward rate
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Table 4.1. HIV-1 VLPs Statistics. Source: [19].

Calculated numbers of molecules
VLP MA CA
10a* 4700 1600
10c 3600 1100
1b 3500 1000
1c 4000 1000
1d 3700 1000
1e 4200 1200
1g* 5100 3600
1k 4300 1300
1m 3400 900
2a 3900 1100
3f 4300 1000

3g* 4200 2000
3i 3900 1000
4a 2800 900
4e 3400 900
6c 4500 1200
6e 3400 1000
6b 4900 1400
1n 4400 1200
2b 3700 1200
2f 4000 1300
3j 4000 1200
4k 3600 1000
7g 4200 1400
9e 3300 1100

Mean 4000 1300
Stddev 530 540

Asterisks (*) mark VLPs with multiple capsids.

constants kbn are calculated from the forward rate constant kf and an association constant

Kan with the equation: kbn = kf/Kan. The equations used are

(28)
d[polymern]

dt
= kf ([polymern−1]− [polymern])[freesubunit]− kb[polymern].

In simulations, these equations were used to model the formation of a dodecahedron, where

each subunit is a pentagon. Numerical solutions of these equations were found using a fourth-

order Runge-Kutta method with STELLA. Two types of assembly models were considered:
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equilibrium assembly (EQ), where intermediates form and break apart in a way that there

are enough subunits available for the reaction to continue, and kinetically limited (KL), in

which the early reaction is slow in order to avoid kinetic trapping. Both models feature

sigmoidal growth of capsid, with an initial lag phase followed by rapid growth. The EQ

model is more susceptible to kinetic traps but does not require nucleation, as opposed to the

KL model. The EQ model is more appropriate for assembly processes where the association

energies are weak. The rate of formation of a nucleus can be approximated by the equation

(29)
d[nucleus]

dt
≈ kfn[subunit]n

where n is the number of subunits in the nucleus and kfn represents the net rate for nucleus

assembly.

In [78], rate equations are used to model assembly of dodecahedral (formed by twelve

pentamers) and icosahedral capsids (formed by 30 tetramers). Expressions are provided for

association constants for subunits and capsids as well as the equilibrium concentrations of

all species in terms of subunit. A typical equation from the system of rate equations A2 in

[78] has the form

(30)
d[m]

dt
= fmsm[u][m− 1]− fm+1sm+1[u][m] + bm+1[m+ 1]− bm[m]

where sm is a degeneracy statistical factor, and fm and bm are forward and backward rates,

respectively, for the mth species. The backward rates are calculated from the forward rate

fm.

In [20], Katen and Zlotnick reiterate that virus capsid subunits interact through weak

contact energies, which leads to a globally stable, and yet dynamic, structure. Assembly
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is modeled, as before, as polymerization. First, there is a nucleation event. Then the

structure elongates “through a series of faster and/or more stable additions of subunit, until

an equilibrium between the polymer and the free subunits is reached” [20]. These steps

correspond to the lag phase, which ends when the nucleus is formed, the rapid growth

phase, and the saturation phase. On the other hand, in vitro, many capsids are assembled

simultaneously. The lag phase, in this case, ends with the formation of an “assembly line”

of intermediates and the first capsids begin to accumulate. During the elongation phase,

concurrent nucleation and elongation events happen, giving rise to more capsids. The system

used to described this reaction is similar to the equations (30):

(31)

d[nuc+ n]

dt
= kelong,n−1[nuc+ n− 1][subunit]+

kdissoc,n+1[nuc+ n+ 1][subunit]

−kelong,n[nuc+ n][subunit] + (other terms).

Katen and Zlotnick also discuss conditions for kinetic trapping: 1) if the association ener-

gies (and, hence, forward rates) are too high, which causes the formation of intermediates too

rapidly, using up all of the subunits without forming complete capsids; 2) if nucleation hap-

pens too quickly, compared to elongation, which produces many metastable intermediates;

3) if there is “off-path assembly”, giving rise to metastable intermediates, as before.

4.2.3. Hagan’s Group. Hagan and Elrad consider in [22] a model of rate equations

developed by Zlotnick’s group (see eqn. (33) below). The model disregards malformed

capsids. It also assumes that only individual subunits associate and dissociate, and that

there is only one forward and one backward coefficient for each intermediate. Two types of
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simulations are considered: canonical (NVT) simulations, corresponding to in vitro empty-

capsid experiments; and steady-state ensemble simulations, where the concentration of free

subunits is independent of time, in order to measure the mean elongation times of growing

capsids. They also consider the nucleation-growth (NG) model and a classical nucleation

(CNT) model. As opposed to Zlotnick and co-workers, who use two forward rates, fnuc and

felong, for the NG model, Hagan and Elrad distinguish between nucleation and elongation

by using different intersubunit association free energies. Sigmoidal growth of capsids, as

previously described, was observed. Their results show good agreement with experimental

median assembly times. The main conclusions of this study are the following: 1) Lag times

correspond to the initial mean elongation times. 2) Mean elongation times vary inversely

with free subunit concentration. 3) If there is a critical nucleus size, it can be identified from

the concentration dependence of the median assembly time.

In [79], Kivenson and Hagan study capsid assembly around a polymer, such as RNA.

They model capsid as a cubic lattice and use Monte Carlo (MC) simulations. They observe

that, under optimal conditions, capsid assembly and incorporation of the polymer proceed

simultaneously and, in fact, the polymer helps stabilize the addition of subunits to the

growing capsids. The process is similar to capsid assembly described before. In general, there

is a nucleation stage, where a small partial capsid is formed attached to a polymer. Then,

the capsid grows by adding subunits to the partial capsid. A final phase follows, where the

capsid is completed. This last stage can be delayed until the polymer is completely encased

inside the capsid. In addition, there can be polymer-related kinetic traps, for instance, if

the polymer is too long and does not fit inside the capsid. Thus, successful capsid assembly

around a polymer is dependent on the polymer length. In particular, there is an optimal
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polymer length for maximum efficiency of capsid assembly. Another important observation

in Kivenson and Hagan’s work [79] is that the rates of nucleation and growth increase with

polymer length and with polymer-subunit interaction strength.

4.3. Dynamical System Model

Our approach is to model HIV core assembly using dynamical systems. Capsid assembly

is a complicated process and its mechanism has only begun to unravel. Several computational

and mathematical models for capsid assembly of viruses have been developed and analyzed

in recent years. The assembly model that we consider here, based on Zlotnick’s group’s

model [23], is a differential dynamical system, similar to a population model for interacting

species. Each species in this case represents a particular capsid intermediate or n-mer. Each

equation in the model describes the rate of change of the concentration of a particular n-mer

with respect to time. Several simplifications of the assembly process are used in building

this model.

Assumptions. Listed below are important assumptions for our models:

• Malformed capsids are not considered. All capsids have the same number of CA

subunits, and there are no lattices larger than a capsid.

• Only single subunits bind or unbind. Thus, partial capsids do not bind with each

other.

• There is only one association and dissociation coefficient for each intermediate size.

Both coefficients are, then, average rates of association and dissociation for a par-

ticular n-mer.

The above assumptions are based on those described in [22]. We adopt the model to

describe the dynamics of HIV capsid assembly by choosing parameter values appropriately.
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Variables and Parameters. Shown below is a list of the variables and parameters

in the dynamical system model and a brief description of each one:

• cn = concentration of the nth capsid intermediate (n-mer),

• fn = forward (association) rate,

• bn = backward (dissociation) rate,

• N = number of subunits that form the capsid.

In the case of the mature HIV capsid (core shell), N ≈ 1200 − 1500 [10, 18, 19]. This

implies that there are about 1200-1500 n-mers in the pathway between subunit and capsid.

Hence, we have between 1200 and 1500 species in the model. Each species has its own

rate equation, with its own forward and backward rates. Assuming that the capsid is the

most stable of the species (based on the work by Zlotnick, Hagan, and others as described

previously), we assume that the values of the forward coefficients fn tend to increase with

n. Similarly, we assume that the backward coefficients bn tend to decrease with n.

Intermediates: Association and Dissociation. The diagram below describes the

assembly reaction in two phases: nucleation and elongation.

(32) 1

f1




b2

2

f2




b3

· · ·

fnnuc−1




bnnuc

nnuc

fnnuc




bnnuc+1

· · ·

fN−1




bN

N

Based on Equation (1) in [22]
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The path to a capsid starts with one CA subunit (a monomer). One CA protein at a

time is added to the growing capsid. The process is slow at first, until the first nucleus with

nnuc subunits, which we assume is a hexagon (nnuc = 6) in the case of HIV, forms. The

process then continues at a faster pace as more and more CA units are added to the growing

lattice until the capsid, composed of N CA proteins, is complete.

Full Equations. The assembly model that we consider is a dynamical system of first-

order, autonomous, nonlinear ordinary differential equations. We emphasize the fact that

the model is based on concentrations of subunits, intermediates, and capsids. Each equation

describes the rate of change of the concentration of a particular n-mer with respect to time.

The size of the system, i.e., the number of equations and variables, is determined by the

number of subunits in a capsid, N . The equations for the capsid assembly model are (see

[20, 22, 23])

(33)

dc1

dt
= −2f1c

2
1 + b2c2 +

∑N
n=2(−fncnc1 + bncn)

dcn
dt

= fn−1c1cn−1 − fnc1cn − bncn + bn+1cn+1

n = 2, ..., N

fN = bN+1 = 0.

The equation fN = 0 represents the fact that the last n-mer, the capsid, does not associate

with any subunits. The largest n-mer possible is the capsid. For this reason, we also have

bN+1 = 0. Since there is no (N + 1)st n-mer, there is no dissociation rate for such n-mer.

Additionally, notice that the equations do not include a dissociation rate b1, as it is impossible

for subunits to dissociate.
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4.4. Matlab Implementation

Our Matlab code consists of three files, which we describe below:

• setAssemParams.m: This function sets the forward and backward parameter values

fn and bn. The parameters are chosen so that fn increases monotonically and bn

decreases monotonically with respect to n. The function receives the number of

subunits in a capsid (capsid size) and returns the vectors of fn and bn values.

• CapAssem.m: This function implements the model equations (concentrations of n-

mers). The function receives the number of subunits in a capsid and vector variables

for time and concentrations. It first calls setAssemParams to get the forward and

backward parameters values, and then it uses these values to implement the equa-

tions of the model. CapAssem returns a vector with the differential equations.

• simuCapAssem.m: This script solves the differential equations numerically. It first

sets the initial and final times, the capsid size, and initial values. Next, it calls ode45

to solve the differential equation model implemented with the CapAssem function.

Then, the script produces a plot of concentration profiles for some of the capsid

intermediates, as well as a plot of the subunit and the capsid concentrations versus

time.

4.5. In Silico

In this section, we describe our analysis of the model through numerical simulations per-

formed in Matlab.
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Parameters. As mentioned in the previous section, we chose arbitrary functions for

the forward and backward coeffiecients fn and bn. More specifically, fn increases and bn

decreases as n increases. This condition guarantees that the most stable of the species is

the capsid, while all other species, aside from the subunit, will tend to exist in very low

concentrations.

Initial Values. The initial concentrations of n-mers and capsids were set to 0. We

ran the code for two different concentrations (numbers) of subunits (CA): 1300 and 5000.

In silico for c1(0) = 1300: See Figures 4.6 and 4.7.

0 200 400
0

1

2

3

time

c
1

0 200 400
0

0.05

0.1

0.15

0.2

time

c
2

0 200 400
0

0.05

0.1

0.15

0.2

time

c
3

0 200 400
0

0.05

0.1

0.15

0.2

time

c
4

0 200 400
0

0.05

0.1

0.15

0.2

time

c
5

0 200 400
0

0.02

0.04

0.06

0.08

0.1

time

c
6

Figure 4.6. Concentration Profiles for Intermediates.

In silico for c1(0) = 5000: See Figures 4.8 and 4.9.

Observations. The concentrations of subunit and intermediates decrease rapidly and

reach equilibrium at values close to zero. Capsid concentration increases in sigmoidal fashion

and reaches equilibrium at values that correspond closely to the total number of subunits

divided by 250 (see Figures 4.6, 4.7, 4.8, and 4.9).
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Figure 4.7. Concentration for Subunit and Capsid.
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Figure 4.8. Concentration Profiles for Intermediates.
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4.6. Interpreting Results

In vivo and in vitro, we expect the formation of a single core, although multiple cores

may form [18, 19].

In silico, capsids are more stable than intermediates [16, 22].

The results agree with the literature, as it is known that the CA intermediates reach

an equilibrium [22]. It is interesting to notice that, under our assumptions for the forward

and backward parameters, the most important intermediates in the reaction seem to be

the subunits and the full capsid. At equilibrium, all other intermediates exist at very low

concentrations.
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Figure 4.9. Concentration Profiles for Subunit and Capsid.
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4.7. Existence and Stability of Equilibrium

Dynamical System for N=3. For simplicity, we show that there exists a unique,

stable equilibrium for N = 3. The equations for the system are

(34)



dc1
dt

= −2f1c
2
1 + 2b2c2 + b3c3 − f2c1c2

dc2
dt

= f1c
2
1 − f2c1c2 − b2c2 + b3c3

dc3
dt

= f2c1c2 − b3c3

The Jacobian determinant is

(35)

∣∣∣∣∣∣∣∣∣∣∣
−4f1c1 − f2c2 2b2 − f2c1 b3

2c1f1 −b2 − f2c1 b3

f2c2 f2c1 −b3

∣∣∣∣∣∣∣∣∣∣∣
= 0.

This implies that our equations are not independent. We reduce the system by imposing

the mass conservation condition that the total concentration of subunit is constant (see A4

in [78]):

c1(t) + 2c2(t) + 3c3(t) = c1(0) for all t⇒ c3(t) =
c1(0)− c1(t)− 2c2(t)

3
.
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The reduced system is then:

(36)


dc1

dt
= −2f1c

2
1 + 2b2c2 + b3

c1(0)− c1 − 2c2

3
− f2c2c1

dc2

dt
= f1c

2
1 − f2c2c1 − b2c2 + b3

c1(0)− c1 − 2c2

3

The Jacobian determinant for the reduced system is

(37)

∣∣∣∣∣∣∣∣∣
−b3

3
− 4f1c1 − f2c2 2b2 − 2 b3

3
− f2c1

−b3

3
− 2f1c1 − f2c2 b2 − 2 b3

3
− f2c1

∣∣∣∣∣∣∣∣∣
= b2b3 + 4b3f1c1 + 3b2f2c2 + 6f2f1c

2
1 6= 0.

By the Implicit Function Theorem, we conclude that a unique equilibrium exists.

Equilibrium for a System of Size N. We can find an expression for the equilibrium

of the full system (33) by setting the left hand side of the equations to zero and solving for

all variables in terms of c∗1, the concentration of subunits at equilibrium [78].

The equilibrium concentration for an intermediate of size n is

(38) c∗n =
fn−1fn−2 · · · f2f1

bnbn−1 · · · b3b2

c∗1
n, n = 2, 3, ..., N.

Assuming that all of the forward and backward coefficients are positive, this equilibrium

is well defined. Moreover, equation (38) implies that, at equilibrium, all of the intermediates

have positive concentration values. If c∗m = 0 for some m, then c∗1 = 0, which implies

that c∗n = 0 for all n. We know that this is not possible, since we assume that the initial

concentration of subunits is nonzero.
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Stability Analysis for N=3. Let

B = b2 + b3 + 4f1c1 + f2(c1 + c2),

C = 2f1c1(2b3 + 3f2c1) + b2(b3 + 3f2c2),

D = B2 − 4C.

The eigenvalues of the Jacobian matrix are

λ± =
1

2
(−B ±

√
D).

Assume that the equilibrium concentrations c1 and c2 are both nonnegative and that the

forward and backward parameters are all positive. With these assumptions, we have B > 0,

which implies that the equilibrium is asymptotically stable if D ≤ 0. Suppose that D > 0.

Then, the equilibrium is unstable if D > B2. But D = B2 − 4C < B2, since C > 0 by the

assumptions on the equilibrium and parameters. Therefore, the equilibrium is asymptoti-

cally stable.

Kinetic Trapping. Kinetic trapping can happen, for instance, if association rates for

nucleation are too large compared to the association rates for elongation [22]. In this case,

nuclei would form too quickly, depleting the subunit pool and halting the reaction before

capsids form.
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4.8. Cascaded Dynamical System Model

The capsid assembly process can be considered in two phases: nucleation and elongation.

While these two stages are not completely separate from one another, we can reasonably

assume that most of the significant nucleation occurs during the initial stage of the reaction,

that is, the lag phase. After the lag phase, most of the formed nuclei elongate (grow)

quickly to form larger intermediates and capsids. We can assume that this second phase,

characterized by rapid growth and accumulation, is dominated by elongation events.

We consider two separate systems of equations, one for each phase of capsid assembly.

Figure 4.10. HIV-CA N-mer Profiles During Nucleation. On most ex-
periments depicted here, CA subunits and 6-mers were the most prevalent.
Source: [60].
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Nucleation Model. The first system models nucleation. For HIV, we assume that a

nucleus is comprised of six CA subunits, a hexagon or hexamer. As evidenced in [60] (see

Figure 4.10), most intermediates during nucleation are present in the form of subunits and

hexamers. Our model for this phase of capsid assembly consists of six differential equations,

one for each of the first six species cn, where n = 1, 2, 3, 4, 5, 6. As before, c1 corresponds to

CA subunits, and c6 corresponds to hexamers (nuclei).

Figure 4.11. Assembly Paths for Nucleation Phase. CA hexamers can form
through various combinations of CA species: one monomer and one pentamer
(blue), three dimers (green), a dimer and a tetramer (yellow), two trimers
(red). Pentamers and smaller CA intermediates dissociate by the removal of
one CA monomer at a time.

Figure 4.11 describes the different pathways considered in the nucleation model. Two

subunits come together to form a dimer, a subunit and a dimer form a trimer, and so forth.

Also, a pentamer dissociates into a subunit and a tetramer, a tetramer dissociates into a

subunit and a trimer, and so on. The largest intermediate in this case is the nucleus or

hexamer. We consider four different pathways for the formation of hexamers. A hexamer
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forms from the association of: a subunit and a pentamer (blue), three dimers (green), a

dimer and a tetramer (yellow), and two trimers (red). We assume that hexamers are much

more stable structures than the dimers, trimers, tetramers, and pentamers, and therefore we

neglect their dissociation into smaller intermediates.

The equations for the nucleation phase are the following:

(39)

dc1
dt

= −2f11c
2
1 − f12c1c2 − f13c1c3 − f14c1c4 − f15c1c5 + b2c2 +

∑i=5
i=2 bici

dc2
dt

= f11c
2
1 + b3c3 − 3f22c

3
2 − f24c2c4 − f12c1c2 − b2c2

dc3
dt

= f12c1c2 + b4c4 − f13c1c3 − 2f33c
2
3 − b3c3

dc4
dt

= f13c1c3 + b5c5 − f24c2c4 − f14c1c4 − b4c4

dc5
dt

= f14c1c4 − f15c1c5 − b5c5

dc6
dt

= f15c1c5 + f22c
3
2 + f24c2c4 + f33c

2
3

where fij is the coefficient for the association of an i-mer and a j-mer, and bi is the dissociation

coefficient for an i-mer.

We implemented these equations in Matlab, in a similar manner to model (33) (see

Figures 4.12 and 4.13). The concentration of hexamers increases and approaches the initial

concentration of CA subunits, while the concentrations of all other intermediates approach

zero.

Elongation Model. The elongation model equations are similar to equations (33).

In this case, each subunit is now a hexamer. N is the number of hexamers in a HIV-1 capsid.

The model can be written as
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Figure 4.12. Concentration Profiles for CA Intermediates of Sizes 1 through
6: Nucleation.
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(40)

dh1

dt
= −2f1h

2
1 + b2h2 +

∑N
n=2(−fnhnh1 + bnhn)

dhn
dt

= fn−1h1hn−1 − fnh1hn − bnhn + bn+1hn+1

n = 2, ..., N

fN = bN+1 = 0.

Here, hn represents the concentration of an intermediate formed by n hexamers.

4.9. Remarks: Biological Implications and Further Work

Our analytical and numerical results show the existence of a stable equilibrium of CA

intermediates, which agrees with experimental results. Even though the dynamics of HIV

core assembly are not well understood, the assumptions of the models described here, such

as:

• modeling capsid assembly as a polymerization event

• the forward coefficient values increase and backward coefficient values decrease with

the size of CA intermediates

seem reasonable enough to capture this feature.

Possible avenues for further research on HIV core assembly are identified as follows:

(1) Further investigate the relationships between the forward and backward coefficients,

and the concentrations of intermediates via numerical simulations.

(2) Additional numerical simulations of the nucleation model for several combinations

of parameter values would produce various values for the concentration of hexamers.
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These values can be used as the initial concentrations of subunit for the elongation

model, which would then lead to different equilibrium concentrations of capsid and

intermediates. This would aid in understanding the effects of the various assembly

pathways considered in the nucleation process in terms of the cascaded dynamical

system model.

(3) The models may be modified by considering other assembly pathways in the nucle-

ation and elongation stages, to gain further insight into the significance of multiple

pathways in HIV core assembly.
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CHAPTER 5

Summary

In this chapter we summarize the major contributions of this dissertation.

5.1. Gag Trafficking

We proposed a partial differential equation model for Gag trafficking that includes both

diffusion and active transport. We developed a characteristic finite element scheme to solve

the model numerically. In addition, we implemented the numerical scheme in parallel, uti-

lizing a master-worker approach that combines MPI and OpenMP. We ran simulations for

various parameter values and calculated the time Tv of virion assembly for each parameter

combination. In particular, we focused on the active transport parameter s. We varied this

parameter within an acceptable range of values, according to motor protein speeds reported

in literature. Our numerical simulations agree principally with biological experiments. The

times Tv obtained are within a reasonable range for Gag transport and virion assembly. Our

results indicate that diffusion is not enough for Gag trafficking. We deduce that at least one

active transport mechanism, e.g., via motor proteins along microtubules, is involved.

We also identified randomness in Gag trafficking. At the molecular level, motor proteins

such as the kinesin KIF4, which have been shown to play an important role in HIV Gag

trafficking, move erratically along microtubules. Cellular cargoes have also been observed to

be attached to more than one type of motor protein at a time. At the cell level, we observed

that kinesin speeds may vary widely within a cell. Also, diffusion and Gag production rates

vary from one type of cell to another. In order to study the randomness in Gag trafficking

at the cell level, one could study the relationships between the distributions of the diffusion,

active transport, and Gag production parameters and the time of virion assembly.
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5.2. Gag Trimerization

We developed and studied a two-species model for Gag trimerization near the plasma

membrane. The model is a system of two ordinary differential equations, corresponding to

the rates of change of concentrations of Gag monomers and trimers. Parameters considered in

the model are the rates of: Gag arrival, trimerization, monomerization, and multimerization.

We found the equilibrium solution, and showed that the equilibrium is stable regardless of

parameter values. We verified our results via numerical simulations. Our conclusions agree

with the literature, as an equilibrium between monomeric and trimeric particles in myr-MA

and myr-MA-CA experiments has been observed. In addition, we estimated the ratios of

model parameters based on information obtained from experiments and from literature. We

also determined a condition for equilibrium shift toward the trimeric Gag state and used

this condition to estimate a lower bound for the equilibrium association constant Ka for

myr-Gag.

Additionally, we identified avenues for further research on Gag trimerization modeling,

such as: utilizing the parameter ratios and the Ka estimates found here to find estimates

for all model parameters, refining the model by considering carrying capacity based on Gag

saturation at the Gag hotspot near the plasma membrane, and considering a three-species

model that includes Gag monomers in both myr(s) and myr(e) states.

5.3. HIV Core Assembly

We considered models for HIV core assembly. We first adapted a dynamical system

model for capsid assembly, proposed by Zlotnick and others, to HIV core assembly. The

system consists of ordinary differential equations that represent the rates of change of the

concentrations of CA intermediates. As part of our analysis, we showed the existence of a
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unique, stable equilibrium of the concentration of CA intermediates for the case when there

are three species. We also found an expression for the equilibrium concentrations in terms

of the equilibrium value of the CA subunit for model with N CA species. We examined the

theoretical analysis against numerical simulations, including the existence and stability of

the equilibrium and the sigmoidal growth of capsid concentration.

Next, we proposed a cascaded dynamical system model for HIV core assembly. This new

model consists of two subsystems, representing nucleation and elongation. The nucleation

model consists of six CA species, subunit through nucleus (hexamers), and considers various

assembly pathways that lead to the formation of the more stable species, i.e., the hexamers.

The model disregards dissociation of hexamers. Numerical simulations suggest that an equi-

librium exists, with all CA species approaching zero concentration, except for the hexamers.

The elongation model is similar to Zlotnick’s model, with each subunit representing now a

CA hexamer.

Suggestions for further work on HIV core assembly models include: investigating the

relationships between the forward (association) and backward (dissociation) coefficients, and

studying the significance of various assembly pathways in the nucleation and elongation

processes.
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