Investigations of the Temperature and Spectral Emissivity Characteristics of Cloud Tops and of the Earth's Surface

First Semiannual Progress Report

By
William E. Marlatt

A progress report conducted under Contract NASr-147 between the National Aeronautics and Space Administration and

Colorado State University

Technical Paper No. 51
Department of Atmospheric Science
Colorado State University
Fort Collins, Colorado

February 1964

\section*{| Colorado |
| :---: |
| $\substack{\text { Late }}$ |}

> Department of Atmospheric Science

INVESTIGATIONS OF THE TEMPERATURE AND SPECTRAL EMISSIVITY CHARACTERISTICS OF CLOUD TOPS AND OF THE EARTH'S SURFACE

First Semiannual Progress Report
by
William E. Marlatt

A progress report conducted under Contract NASr-147 between the National Aeronautics and Space Administration and Colorado State University.

Technical Paper No. 51
Department of Atmospheric Science
Colorado State University
Fort Collins, Colorado

TABLE OF CONTENTS

Summary. 1
Objective I 1
Objective II 49
Objective III 57
Objective IV 57
Bibliography 59
Acknowledgment 60
Appendix A. A. 1-8
Appendix B. B. 1-20

SUMMARY

In May, 1963, the Department of Atmospheric Science of Colorado State University began an investigation of certain aspects of infrared radiation transfer through the earth's atmosphere.under NASA contract number NASr-147. The basic objectives of the study were: (1) to investigate the relationship between actual earth surface temperature and the temperature of cloud tops and the observed temperatures of these surfaces as measured by radiometers aboard aircraft and meteorological satellites, (2) to provide ground and low level aircraft support for field studies conducted by the National Aeronautics and Space Administration, (3) to investigate the relationship between cloud top radiation and the air temperature outside the cloud at cloud top height, (4) to investigate the spectral emissivity characteristics of (a) various cloud types and (b) the surface of the earth in desert, grassland, and forested regions.

During the period covered by this progress report (May 1963February 1964) primary emphasis has been placed on objectives one and two.

OBJECTIVE I

Introduction
The initial emphasis of this objective has been an investigation of the relationship between actual temperatures of the surface of the earth and the black body temperature as measured by a radiometer mounted on the underside of a Cessna 180 aircraft, and by channel 2 ($8-13$ micron band) of TIROS VII. Basically this objective stems from the need for a better understanding of the transmission losses in the "window" region of the spectrum of the terrestrial radiation passing through the earth's atmosphere.

Several researchers (Bandeen, et. al., 1961; Fritz and Winston, 1962; Hanel and Stroud, 1961) have used Ghannel 2 measurements from TIROS satellites to estimate surface temberatures of the earth under
clear skies. These estimated surface temperatures were invariably several degrees too low. Wark, et. al. (1962) has shown that, even though the absorption coefficients of water vapor and ozone are relatively small in the window region, certain corrections in the satellite measurement of outgoing terrestrial radiation intensity are necessary to account for the influence of these two atmospheric consitutents. In each of the studies reported, however, no exact vaiues of the earth's surface temperature were known.

In the investigation discussed in this report, an attempt was made to obtain accurate measurements of actual earth surface temperatures in an area of nearly uniform vegetation and terrain. Surface temperature measurements were made during different seasons and at various times of the day and night, each observation time corresponding to the time of an overpass of TIROS VII. Concurrent with each overpass, a profile of outgoing radiation measurements were recorded from the earth surface to airplane ceiling height, (approximately 17, 000 19,000 feet m.s.1.). The radiometer used for these measurements was the infrared radiometer, model IT-2, manufactured by the Barnes Instrument Co.

Radiation data from channel 2 of TIROS VII meteorological satellite are currently being analyzed by Dr. Fujita of the University of Chicago. This report will discuss only the measurements made at the earth surface and from the airpiane.

Site Requirements and Method of Measurements
Measurement of the earth surface temperatures: Emphasis to date has been placed on collection of accurate temperature measurements over a region of reiaiively uniform vegetation within the Pawnee National Grassland of Northeastern Colorado. Vegetation within the grassland region consists, for the most part, of short native buffalo and grama grasses. A few, smali scattered acreages within the national grassland are under cultivation, mostiy to winter wheat. Only small differences in outgoing radiation are noted between the wheat fields and adjacent pasturelands during most seasons. Fig. 1 shows the location of the Pawnee Nationai Grassland. Fig. 2 shows a general view of the research site.

Fig. 1 I/ap of grassland region used in NASA. radiation field study. Fawnee National Grassland area is double hatched; regional grassland area is hatched.
-

Fig. 2 General view looking north across suriace temperature measurement site. Pawnee National Grassland, Colorado.

Instrumentation for measurement of surface temperatures has been installed near the geographical center of the national rassland approximately fifteen miles west of Grover, Colorado. Twenty-eight sensors were used in the first installation network. The sensors consisted of small electronic stabistors spread over a circle of 100 foot radius. Changes in the temperature of the stabistor produced a linear change in its resistance and was recorded by a wheatstone bridge circuit. Due to daiage by rodents, this unit was replaced in November 1963 by a second model which employed forty thermistor sensors spread over an area of 1,000 foot radius. Siinıultaneous measurements using both units indicated midday temperature differences of less than $0.3^{\circ} \mathrm{C}$.

The true temperature of the surface of the earth is, at best, an extremely nebulou:: value. This is cue primarily to the extremely steep gradients of temperature(both in the horizontal and in the vertical) that frequently exist in this zone. A perfect sensor for measuring
the true surface tercperature would have to be infinitely thin and possess therial and moisture properties identical to those of the soil particles themselves. The presence of grass or other vegetation is a further conpounding factor in the measurement of earth surface temperatures. Fis. 3 shows the distribution of temperatures in and around a small clump of buffalo grass at 0900 on January 21, 1934. The temperature distribution shown in this figure are given as an example of the steepness of the temperature gradients in the microlayer and indicate the difficulty of positioning sensors for determining true averages of surface temperature. Temperatures shown in this figure were obtained by using a portable thermistor probe.

Fig. 3 Distribution of surface temperature in and around a buttalo rass clunp 0900 MST, January 21, 1934.

To overcone, at least in part, the above described difficulties, the sensors used were: (1) physically as sanall as practical, (2) painted
the same color as the soil surface (light grey), and (3) coated while the paint was still wet with one layer of dust. Fig. 4 shows a comperison of size of the two sensors usec.

Fig. 4. Comparison of size of bead thermistor and stabistor units
used for suriace temperature measurements.

The sensors were placed randomly over the site area. Some were located inside grass clumps, others on the bare ground between clumps. The stabistor sensors which were placed on the bare ground were pressed halifway into the soil so that they measured the integrated temperature across the zone from $1 \frac{1}{2} \mathrm{~mm}$ above to $1 \frac{1}{2} \mathrm{~mm}$ below the soil suriace. The bead thermistors which replaced the stabistors are less than 1 mm thick and were installed flush with the soil suríace. Fositioning of the sensors is checked prior to each measurement.

Fiş. 5 "Tent" shields useci to elis inate radiation heating of the stabistor units.

To prevent erroneous temperature measurements due to radiation heating of the sensors during observation periods with strong sunshine, "tent" shields (fig. 5), made fros louvered aluminuin screen were placed over the stabistor units a few minutes before observation tine. Measurements with and without the shields indicated insignificant temperature differences for the thermistor beads. ITo shields are used over the thermistor bead units.

Recording of surface temperature neasurements from the network of sensors required approxinately fifteen ninutes for the stabistor unit and five ininutes for the therristor unit. Two sets of measurements are averages for each TIROS VII satellite overpass flight.

Chances in earth surface temperature within the recording period are always much sinaller than the difierence between measurement points. Table 1 shows a sample of averaje surface temperatures with their
standard deviations for different times of the day and night. Table 1 also shows a comparison of averaje temperatures as measured jy the thernistor units to average black body temperature measured by the 3° view, 8-13 تicicron filter radioiieter held approximately twelve inches above the thermistor units.

The effect of emissivity on the comparicon of actual tenperature to black body radiation temperature needs much further investijation. E pilot, laboratory study on the emissivity of grassland soils is given in fppencix f. .

Air temperatures and relative humidities are measured by a sling psychrometer.

TABLE 1. Fctual and Black Body Temperatures. Fawnee National Grassland, February 10 and 11, 1934.

		F.ctual		Inadiation	
Date	$\begin{aligned} & \text { MST } \\ & \text { Time } \end{aligned}$	$\begin{gathered} \text { Jurface } \\ \text { Temp. }{ }^{\circ} \mathrm{C} \\ \hline \end{gathered}$	Stendarc Eeviation ${ }^{\circ} \mathrm{C}$	Black Body Temp. ${ }^{\circ} \mathrm{C}$	Standard Deviation ${ }^{\circ} \mathrm{C}$
2/10/ 24.	1100	17.2	3.5	17.0	3.2
	1300	23.4	3.2	21. 4	3.2
	1500	13.6	3.3	17.1	3.4
	1935	-4.3	1.5	- 2.0	1.3
	2130	- 3.5	1.1	- 3.2	1.3
:	2330	-7.5	1.3	- 5.3	U. 9
!			-		
/2/11/34	0130	- 7.1	1.0	-5.3	2.5
/11/34	0330	-7.5	0.3	- 5.1	0.8
!	0540	-4.4	0.7	- 3.3	1.0
	0735	- 2.4	1.0	- 3.2	0.7
	0945	3.4	1.7	7.2	1.'?
,	1150	12.0	1.3	11.9	0.3

Aircraft radiation measurements: Airborne measurements of terrestrial radiation are obtained using the IT-2 infrared radioneter (Barnes Instrument Co.) Eiounted on a Cessna 130 airplane. The IT-2 radioneter employs an indiu:i antimonide A.R coated filter system which is transparent across the 8 to 13 nicron region of the electromagnetic spectrun. Transinission curves supplied by the Barnes Instrunent Co. indicate that the transrission of this filter may extend well beyond 13 microns. Independent spectral calibration of the total instru ...ent is planned.

The view angle of the radiometers used in the satellite overpass flighto is approximately 30°. Table 2 shows the relation between view area anc: height. Figs. 3 through 11, taken at increasing altitudes above the grassland site show the area viewed by the radioneter.

TABLE 2. E-rea Viewed by the IT-2, 30° Eadiometer at Various Heights

Eeight above surface	Diaineter of area viewed
1,000	268
2,000	53Ξ
3,000	303
2,000	1072
3,000	130%
3,000	$21 \Delta 3$
10,003	2379
12,000	3215
14,000	3751
13,000	5237

Response time of the radioneter is adjustable for either 50 or 500 . illiseconcis, the later being used on most flights to conform to tine response ti :e of the recorder used and also to reduce backrround "noise" caused by small areas of non-representative surîace teriperatuiles.

Fig. 6 Area viewed by 30° radiometer from 6, 000 feet above the surface. Pawnee National Grassland.

Fig. 7 Area viewed by 30° radiometer from 7, 000 feet above the surface. Pawnee National Grassland.

Fig. 8 Area viewed by 30° radiometer from 8, 000 feet above the surface. Pawnee National Grassland.

Fig. 9 Area viewed by 30° radiometer from 9, 000 feet above the surface. Pawnee National Grassland.

Fig. 10 Area viewed by 30° radiometer from 10,000 feet above the surface. Pawnee National Grassland.

Fig. 11 Area viewed by 30° radiometer from 11,000 feet above the surface. Pawnee National Grassland.

ERRATA

Afier printing of this report, it was discovered that the wrong filter was installed in the 9-11 micron radiometer. Fig. 12 and associated text are therefore probably in gross error.

Fig. 12 Comparison of 8-13 and 9-11 micron filter radiometer for orbit 3245.

A second radiometer, identical to the first except for a narrower band filter system centered on 10.6 microns with a half-power band of 1.1 microns has been flown alongside the $3-13$ micron radic neter on several flights. Fig. 12 shows a comparison of the radiation temperature froci the two instruments over the Fawnee National Grassland.

A third radiometer, identical to the first except for a 3° view angle rather than the 30° view is used for special studies over grassland, desert, mountain and water areas.

Supplemental aircraft measurements: An aerograph was carried aboard the aircraft on each overpass flisht. Vith this instrument a .complete record of air temperature, relative hurnidity and pressure was obtained. Clock failure resulted in loss of these data for a number of flights between October 20 and November 20, 1933. Precipitable water
for use in the computations of radiation transfer were obtained for this period from radiosonde soundings from the U. S. V eather Bureau office in Eenver, Colorado.

An Ippley pyrhelioneter was mounted on the top of the plane and was flown on a number of flights during the autumn of 1933. Data recorded fron this instrument was compared with a pyrheliometer at ground level as part of a study to quantitatively evaluate the role of atmospheric haze on radiation attenuation. A discussion of the results of these measurements is found in fippendix B.

Analysis and Discussion of Data
Figs. 13 through 43 show one-minute averages of terrestrial radiation measured by the aircraft radiometer for the TIFOS VII overpasses between July, 1963 and February, 1954. Radiation in these graphs is expressed as equivalent black body teinperature (${ }^{\circ} \mathrm{C}$) for comparison with surface and air temperature.

During the first fifteen to twenty minutes of the first leg of each flight, the plane flew over many types of surfaces -- farmland vegetation, small lakes, trees, etc., before reaching the grassland region. After clinibing to ceiling height, the airplane flew a crisscross pattern over a thirty mile dianeter circle (corresponding to the view area of the TIRCW satellite radioneter) for a short period spanning the satellite overpass tine. From the third leg of each flight, a profile of radiation was measured directly above the soil teriperature site from ceiling altitude down to ten feet above the earth surface.

$\stackrel{1}{\sim}$

Location	Pawnee Grassland
Orbit	833
Date	$8-14-63$
Spectrum	$8-13 \mu$
Temp. Rad.	$16.2^{\circ} \mathrm{C}$
Temp. Soll	$26.5^{\circ} \mathrm{C}$
Temp. Alr	$25.6^{\circ} \mathrm{C}$
R.H.	Missing
Cloud Cover	Clear^{\prime}

Fig. 13 IVinute averages of black body radiation temperatures measured over grassland from the airborne radiometers.

-6 I-

Locatlon	Pawnee Grassland
Orbit	1548
Date	$10-1-63$
Spectrum	$8-13 \mu$
Temp. Rad.	$6.1^{\circ} \mathrm{C}$
Temp. Soil	$12.78^{\circ} \mathrm{C}$
Temp. Air	$11.6^{\circ} \mathrm{C}$
R.H.	61%
Cloud Cover	Dense Haze

Fig. 14 I.inute averages of blackbody radiation temperatures measured over grassland from the airtorne radioneters.

Fig. 15 IFinute averages of black body radiation temperatures measured over grassland from the airborne radioneters.

Fig. 10 . Ninute averajes of black body radiation tariperatures .-sasured over grassland from the airborne radioneters.

Fig. 13 I. inute averages of black body radiation temperatures
neasured over grasslend froin the airborne radioneters.

Fig. 19 Inute averajes of black body radiation temperatures
reasured over grassland from the airborne radioneters.

Fir. 21 Tinute averages of black body radiation temperatures measured over grassland iron the airborne radiometers.

Fiz. 22 innte averages of black bocy radiation temperatures weasured over srasslandifo.... the airborne radioweters.

Fij. 23 Minute averaçes of black bociy radiation temperatures measured over grassland ifom the airborne radiometers.

Fis. 25 Ninute averages of black body radiation temperatures measured over frassland from the airborne radioneters.

Location	Pawnee Grassland
Orbit	1971
Date	$10-30-63$
Spectrum	$8-13 \mu$
Temp. Rad.	$16.7^{\circ} \mathrm{C}$
Temp. Soil	$24.8^{\circ} \mathrm{C}$
Temp. Air	$12.4^{\circ} \mathrm{C}$
R.H.	66%
Cloud Cover	SIGHT HARE IN GENERAL
Wind	$4-5 \mathrm{Kts}$

Fig. 27 linute averajes of black body raciation temperatures
measured over crasslancifrom the airborne radioneters.

Location	Pawnee Grassland
Orbit	$\# 2005$
Date	$11-1.63$
Spectrum	$8-13 \mu$
Temp. Rad.	$-2.47^{\circ} \mathrm{C}$
Temp. Soll	$-0.39^{\circ} \mathrm{C}$
Temp. Air	$-6.7^{\circ} \mathrm{C}$
R.H.	$98.5^{\circ} \%$
Cloud Cover	THIN HIGH SCATEREE CIRRUS

Fig. 23 rinute averages of black body raciation temperatures measured over srassland from the airborne radiometers.

Location	Pawnee Grassland
Orbit	$\# 2151$
Date	$11-11-63$
Spectrum	$8-13 \mu$
Temp. Rad.	$5.4^{\circ} \mathrm{C}$
Temp. Soil	$77^{\circ} \mathrm{C}$
Temp. Air	$8.6^{\circ} \mathrm{C}$
R.H.	96%
Cloud Coven	
Wind	70 mphratus OVER SITE AREA

Fis. $\because 4$ l:inúte averages of black body radiation temperatures measured over grassland from the airborne radiometers.

Fig. 30 Vinute averages of black body raciation temperatures measured over grassland from the airborne radiometers.

Location	Pawnee Grassland
Orbit	$\# 2190$
Date	$11-14-63$
Spectrum	$8-13 \mu$
Temp. Rad.	$-2.7^{\circ} \mathrm{C}$
Temp. Soil	$-2.8^{\circ} \mathrm{C}$
Temp. Air	$-3.7^{\circ} \mathrm{C}$
R. H.	89%
Cloud Cover	Thin Cirrus

Fig. 31 Minute averacea of biack body raciation temperatures measured over grassland from the airborne raciometers.

Fis. 32 Vinuta averajes of black body radiation temperatures measured over grassland from the airborne radioneters.

Fig. 3c TGinute averages of black body radiation temperatures measured over grassland from the airborne radiometers.

Location	Pawnee Grassland
Orblt	$\# 3080$
Date	$1-13-64$
Spectrum	$8-13 \mu$
Temp. Rad	$6.3^{\circ} \mathrm{C}$
Temp. Soil	$8.3^{\circ} \mathrm{C}$
Temp. Air	$0.6^{\circ} \mathrm{C}$
R.H.	Missing
Cloud Cover	Clear

Location	Pawnee Grassland
Orbit	$\# 3124$
Date	$1-16-64$
Spectrum	$8-13 \mu$
Temp. Rad.	$10.5^{\circ} \mathrm{C}$
Temp. Soil	$8.9^{\circ} \mathrm{C}$
Temp. Air	$5.3^{\circ} \mathrm{C}$
R.H.	$53^{\circ} \%$
Cloud Cover	LIGHT SITE AREA

Fig. 37 rinute averages of̂ black boay raulation temperatures measured over grassland from the airborne radiometers.

Fig. 39 Ifinute averages of black body radiation temperatures measured over grassland fron the airborne radioneters.

Location Pawnee Grassland Orbit $* 3245$ Date $1-24-64$ Spectrum $8-13 \mu$ Temp. Rad. $-3.5^{\circ} \mathrm{C}$ Temp. Soil $-3.1^{\circ} \mathrm{C}$ Temp. Air $-2.8^{\circ} \mathrm{C}$ R.H. 38% Cloud Cover 1.10 SC. AD

Location	Pawnee Grassland
Orbit	*3464
Date	2-8-64
Spectrum	8-13 μ
Temp. Rad	$1.3{ }^{\circ} \mathrm{C}$
Temp. Soll	$10.4{ }^{\circ} \mathrm{C}$
Temp. Alr	$5.0^{\circ} \mathrm{C}$
R.H.	58%
Cloud Cover	
Wind	Est. $50 \mathrm{M} . \mathrm{PH} .-$ NW

Location	Pawnee Grassland
Orbit	＊ 3493
Date	2－10－64
Spectrum	$8-13 \mu$
Temp．Rad．	$8.9{ }^{\circ} \mathrm{C}$
Temp．Soil	$16.1^{\circ} \mathrm{C}$
Temp．Air	$12.7{ }^{\circ} \mathrm{C}$
R．H．	86%
Cloud Cover	S

$\stackrel{1}{\stackrel{1}{4}}$

Location	Pawnee Grassland
Orbit	3537
Date	$2-13-64$
Spectrum	$8-13 \mu$
Temp. Rad.	$1.7^{\circ} \mathrm{C}$
Temp. Soil	$6.5^{\circ} \mathrm{C}$
Temp. Air	$0.6^{\circ} \mathrm{C}$
R.H.	$65 \% \%$
Cloud Cover	Clear

Fig. $\& 3$ Minute averages of black body radiation teanperatures neasured over grassland froza the airborne radioneters.

OBJECTIVE II

Introduction

Under the field study of objective 2, aircraft and surface measurements were made by the Colorado State University research group in conjunction with a balloon program carried out by the Department of Astronautics and Aeronautical Engineering, University of Michigan.

The South Dakota field study was conducted to obtain measurements of terrestrial radiation at different heights in the atmosphere using various instruments carried by a small airplane and a skyhook type balloon. It was planned that measurements using these instruments would be compared to radiation measurements from TIROS VII on its first orbits across the region. TIROS VII was launched into orbit on June 16, 1963. Due to instrument failures followed by adverse weather, the balloon borne radiometer package was not launched until June 26 .

Nearly continuous aircraft measurements of terrestrial radiation ($8-13$ micron band) were made at various altitudes under the balloon. Earth surface temperature measurements were obtained at two locations along the flight path of the balloon.

Instrumentation
The airplane used in this study was the Colorado State University Cessna 180. Two infrared radiometers (Barnes Instrument Co., Models IT-1 and IT-2) were mounted in a camera port on the underside of the fuselage of the airplane to measure the outgoing terrestrial radiation. The IT- 2 radiometer was used as the primary sensor with the older, less reliable, IT-1 used as a back-up instrument. Filters in these radiometers restricted measurements to the atmospheric window region between 8 and 13 microns. View angle of each radiometer was a 30° cone. An aerial camera (Model K-24) was also mounted in the planes fuselage to take pictures of the earth's surface. Fig. 44 shows the Cessna aircraft used. An aerograph mounted under one wing was used to record pressure, temperature and relative humidity.

Fig. \&id fircraft used for infrared radiation .easurenents.

Trieasurenents of eartis duffce te.., e ature's were ontained by a 23 point network oî stajistor sensors. I ceuracy of the stabistors was better than 2°. (f more cetailed deseription of the surface temperature equip._ent : ajy founci elsewhere in this report). In addition to temperature ...easure..entg, surace soil sa, ples were obtained for moisture content.

Site Location

The first set of suriace tenseature easurensints were obtained approxi ately five iles soutieast of ritciell, South Dakota in shortfrass pasture ($2-6$ inches toll). Sther varetation in the area consisted oî bare ground, corn fields (ostly bare), whect anci other grain.

Measurements were made at this site between 0840 and 0930 CST. During the period that these surface temperatures were being recorded, a profile of outgoing radiation was obtained from the surface to an altitude of 17, 000 feet m.s.l. over the general area. The balloon, travelling almost due west at an altitude of 110,000 feet m.s.l., appeared to pass directly over the Mitchell site between 0900 and 0930.

Skies over eastern South Dakota between 0800 and 0930 CST were clear. Surface wind was southeast five knots (estimated).

The second surface temperature observation site was located approximately 7 miles south of White River, South Dakota. This site was also a grassland pasture; however, the grass was generally much taller than that at the Mitchell site. Average grass height here ranged from six to twenty-four inches. Nearly all of the vegetation in the region around White River consisted of grass pastureland. The stabistors were placed within the grass cover near the ground surface.

The surface temperature units at each location were shieided from the direct rays of the sun.

Results and Discussion
Fig. 45 shows the terrestrial radiation measurements obtained by the IT-2 radiometer aboard the aircraft. Tables 3 and 4 list the surface and radiation temperature measurements at the two sites. Table 5 summarizes the measurements made at the two sites.

A layer of broken cumulus clouds moved over the White River site during the period of measurement. Bases of these clouds were approximately 10,000 feet with tops near 13,000 feet m.s.l. The effect of cooler areas of the earth surface in the cloud shadows is noted in the comparison of radiation temperatures to surface temperatures. When the plane was above 13,000 feet m.s.l., the radiometers integrated the radiation from the cloud tops as well as the earth surface.

Fig. 45 Radiation temperature measurements,
8-13 micron. June 26, 1963.

TABLE 3. Surface and Radiometer Temperature Measurements. Mitchell, South Dakota Site.

Time	Surface	Temp. ${ }^{\circ} \mathrm{C}$)	Altitude (ms.l.)	Sensor
0823	Small lake	19.8	1,600	IT-2
0820	Corn field (mostly bare)	26.9	1,850	IT-2
0828	Wheat-corn complex	26.9	1,900	IT-2
0830	Pasture (over site)	28.2	1,950	IT-2
0835	Pasture (over site)	22.7	3,500	IT-2
0840	Crop-pasture complex	23.8	5,500	IT-2
0845	Crop-pasture complex	22.7	7,500	IT-2
0850	Crop-pasture complex	22.5	10,800	IT-2
0852	Crop-pasture complex	23.2	13,000	IT-2
0903	Crop-pasture complex	20.8	14,000	IT-2
0906	Crop-pasture complex	22.7	15,000	IT-2
0913	Crop-pasture complex	22.5	16,000	IT-2
0920	Crop-pasture complex	24.3	14,000	IT-2
0925	Crop-pasture complex	21.5	11,000	IT-2
0930	Crop-pasture complex	22.7	7,000	IT-2
$0840-0930$	Pasture	29.4	surface	Stabistor

TABLE 4. Surface and Radiometer Temperature Measurements. White River, South Dakota Site.

Time	Surface	Temp. ${ }^{\circ} \mathrm{C}$;	Altitude (m.s.l.)	Sensor
1322	Pasture	28. 2	6, 000	IT-2
1326	Pasture	28.7	8,000	[T-2
1330	Pasture	25.2	10,000	IT-2
1333	Pasture	25.4	11,000	[T-2
1335	Pasture	26.1	12,000	IT-2
1338	Pasture	22.2	13,000	IT -2
1341	Pasture	24.8	14,000	IT-2
1330‥1340	Pasture	41.0	surface	stabistor
1344	Pasture	28.7	15,000	IT. 2
1345	Pasture	23.5	15,000	IT-2
1348	Pasture	24.8	16,000	[T-2
1350	Pasture	18.8	16,000	[T-2
1340-1350	Pasture	39.6	surface	stabistor
1354	Pasture	23.8	16,000	IT-2
1358	Pasture	23.0	16, 000	1T-2
1400	Pasture	15.6	16,000	1.T-2
1404	Pasture	24.8	15,000	iT.. 2
1409	Pasture	25.7	14,000	IT-2

TABLE 5. Surface and Aircraft Measurements. South Dakota Balloon and Satellite Field Study, June 26, 1963.

Site I
Site II

Location	5 mi . SE Mitchell	7 mi . S. White River
Time	0840-0830 C. S. T.	1330-1350 C.S.T.
Radiometer temp. (${ }^{\circ} \mathrm{C}$), IT-1	20.3	18.6
Radiometer temp. $\left(^{\circ} \mathrm{C}\right.$), IT-2	23.0	24.9
Number observations, IT-1	23	16
Number observations, IT-2	23	13
Soil surface temp. $\left({ }^{\circ} \mathrm{C}\right)$	29.4	$40 \quad 40.3$
Number observations	52	52
Air temp. (${ }^{\circ} \mathrm{C}$)	26.4	30.6
Relative humidity (\%)	58	62
Precipitation table, $\mathrm{H}_{2} \mathrm{O}$ (in.)	. 76	1.00
Cloud cover	clear	40\%
Remarks	excellent conditions	balloon above clouds

Fig. 46 shows the $8-13$ micron radiation temperature measured by the TIROS channel 2 radiometer aboard the balloon gondola. Fig. 46 supplied by Dr. Bartman of the University of Michigan.

The second objective of this phase of the study will be to obtain the measurements of earth surface temperatures and radiation in the 8-13 and 9-11 micron band of the spectrum over a vegetationless desert region, a dry lake bed near Edwards Air Force Base, California. Measurements at approximately 20,000 and 45,000 feet will be compared to actual surface temperatures and to TIROS VII measurements if available.

OBJECTIVE III

Introduction

This objective is a study of the black body radiation temperature of cloud tops as compared to the air temperature outside the cloud at the same altitude. The optical depth of the cloud i. e. the distance into the cloud that the radiometer "sees", is dependent upon both the density and the nature of the cloud droplets. Cirriform and other thin cloud layers do not absorb all the incoming radiation. Satellite radiometers tend to overestimate the temperature of these cloud tops.

From the small amount of data collected thus far, (Table 6) it appears that the water droplets of cumulus cloud tops are several degrees colder than the air at the same altitude. The difference in temperature is probably due to the fact that the droplets at the top of the cloud are being cooled by evaporation. Measurements over an alto-cumulus cloud deck, however, showed cloud droplet temperatures somewhat warmer than the free air temperature at cloud top height.

The lack of suitable clouds, in particular, clouds with tops below 18, 000 feet over the high plains of northern Colorado have limited this phase of the study. A field trip to the Gulf of Mexico region is planned for early April to study cloud radiation character istics.

OB.JECTIVE IV

The investigation of spectral emissivity characteristics of clouds and earth surfaces has been delayed until the University of Michigan personnel have completed their studies with the Perkins-Elmer spectrometer.

TABLE 6. Comparison of Cloud Radiation Temperatures to Air Temperatures (8-13 micron)

Date	Time	Altitude	Cloud Type	Black Body Temp. ${ }^{\circ} \mathrm{C}$	Air Temp. ${ }^{\circ} \mathrm{C}$
Location:	Over site at Briggsdale, Colorado				
$11 / 11 / 63$	1522	18,000	Thin cirrus top	-6.0	-12.5
	1540	18,000	Between layers at clouds	-5.0	-13.0
	1549	15,000	Alto-cumulus top	-10.0	-6.6
	1550	14,500	Alto-cumulus top	-9.0	-6.6
Location:	Colorado Springs,				
$12 / 31 / 63$	1114	17,500	Colorado	Alto-cumulus top	-10.5
	1116	18,000	Alto-cumulus and alto-	-15.5	-18.8
	1125	18,000	Alto-cumulus top	-19.4	
	1134	18,000	Alto-cumulus top	-17.0	-20.5
			-17.0	-21.1	

BIBLIOGRAPHY

Bandeen, W. R., R. A. Hanel, J. Licht, R. A. Stompfl, and W. G. Stroud, 1961: Infrared flux and surface temperature from the TIROS II meteorological sateilite. J. Geophys. Res., 65, 3169-3185.

Brooks, F. A., 1959: Physical microclimatology. University of California, Davis, Calif. , 253 pp.

Fritz, S. and J. S. Winston, 1962: Synoptic use of radiation measurements from satellite TIROS II. Mon. Wea. Rev., 90, 1-9.

Gates, David M., 1962: Energy exchange in the biosphere. Harper and Row, New York, 151 pp.

Hanel, R. A., and W. G. Stroud, 1961: The TIROS II radiation experiment. Tellus, 13, 486-488.

List, Robert J., 1951: Smithsonian Meteorological Tables. Vol. 114, Sixth Edition, Smithsonian Inst., Washington, D. C.

Moon, Parry, 1940: Proposed standard solar radiation curves for engineering use. Journal Franklin Inst., 230 (5), 583-617.

Wark, D. Q., G. Yamamoto, and J. H. Lienesch, 1962: Methods of estimating infrared flux and surface temperature from meteorological satellites. J. Atmos. Sci., 19, 369-384.
-60-

ACKNOWLEDGMENT

I wish to thank each member of the research team who have so diligently helped in the collection and analysis of the data summarized in this report.

APPENDIX A

Laboratory Investigation of Infrared Radiation and Soil Emissivity

> by

Alan Anderson

Radiometer Sensitivity

A series of tests were conducted in an environmental chamber to determine the sensitivity of the Barnes Infrared Radiometer instruments.

In these tests a radiometer with a 9-11 micron filter was located in the chamber above a seven foot square area covered with about three inches of grassland topsoil. The soil used was typical of that found in Northeastern Colorado where aircraft and ground measurements are being conducted to determine surface temperatures. The sensing head of the radiometer was positioned such that its field of view included only area covered by the topsoil. Conditions in the chamber were stabilized near $25^{\circ} \mathrm{C}$. and 20% relative humidity.

The actual tests involved the use of two smaller areas of the same topsoil which were superimposed upon the larger base area. One of these had an area equal to about 6% of the total area viewed by the radiometer, the other 24%.

These smaller areas were then heated or cooled so that a stabilized temperature differential $\left(T_{a}-T_{b}\right)$ existed between them and the base area. (T_{a} is the temperature of the small area and T_{b} that of the base).

After this temperature differential was established, the smaller areas were moved to various positions with respect to the center of the viewing area of the radiometer and the following measurements were recorded:

The distance from the center of the smaller area to the center of the viewing area in terms of percentage of viewing area radius was plotted as an abscissa (D).

The temperatures measured by the radiometer with the smaller areas in these various positions were recorded and converted to equivalent black body radiation values (R). The radiometer measured temperature of the uniform base area was also converted to an equivalent black body radiation value (R_{o}). The difference ($R_{o}-R^{\prime}$) was then converted to a percent change in $R_{o} ;\left(R_{o}-R^{\prime}\right) / R_{o} \times 100 \%$ and plotted as the ordinate $\left(\Delta R_{o}\right)$.

The temperature differentials were created and maintained by an electrically powered nichrome wire grid for heating and dry ice under an aluminum plate for cooling.

The change in radiation due to an area of temperature differential is proportional to the magnitude and area of the differential and inversely proportion to its distance from the center of the area being viewed. Thus the area near the center of the viewing field is the most important in determining the mean temperature of the field as measured by this radiometer.

As can be seen from the accompanying figures (Figs. A. 1-9) even when a temperature differential of $13.3^{\circ} \mathrm{C}$. exists over 24% of the view area, the maximum radiation change is only about 11% (Fig. A.1).

The amount of this maximum change is, of course, still lower when the area and/or magnitude of the differential is decreased. The maximum change in radiation when a temperature differential of $13.9^{\circ} \mathrm{C}$. covers 6% of the view area is only about 2% (Fig. A.8).

The values of temperature differentials used are thought to approximate those actually occurring in the field.

Soil Emissivity
The emissivity of the grassland soil was estimated in the following way:

A portable infrared source (Model 11-140, Extended Area Infrared Radiation Source manufactured by the Barnes Engineering Company) with an emissivity of $0.92 \pm 2 \%$ was put into the environmental chamber and left there so that its temperature became equal to that of the soil.

The 9-11 micron radiometer was then used to measure the emitted radiation from each surface separately. At the time of the test, the
temperatures of the emitting surfaces were $26.2^{\circ} \mathrm{C}$. and $26.3^{\circ} \mathrm{C}$. for the reference source and soil respectively. The outgoing radiation as measured by the 9-11 micron radiometer was the same for both surfaces.

If one allows for the error introduced by the instruments, the temperatures of the two surfaces are also equal. Thus one can conclude that the emissivity of the soil used was approximately equal to that of the reference source $(e=0.92)$.

Further emissivity tests are planned, both in the environmental chamber and in the field using an "emissivity box" similar to the one designed by the Department of Meteorology, University of Washington.

Fig. A. 1 Relationship between radiometer reasurenent and the position of a temperature differential of given magnitude and area. $\quad \wedge T=13.3^{\circ} \mathrm{C} . \quad A=24 \%$.

Fig. A. 2 Same as Fig. A.1. $\quad \Delta T=11.7^{\circ} \mathrm{C} . \quad f_{2}=24 \%$ 。

Fis. A. 3 Sane as Fǐ. A.1. $A T=-12.5^{\circ} \mathrm{C} . \quad A=24 \%$.

Fig. F. $\leq \quad$ Same as Fig. A.1. $\quad \triangle T=5.5^{\circ} \mathrm{C} . \quad \mathrm{A}=24 \%$.

Fig. A. $5 \quad$ Same as Fig. A.1. $\quad \Delta T=-6.1^{\circ} \mathrm{C} . \quad A=24 \%$.

Fig. A. $6 \quad$ Sane as Fig. A. 1. $\quad \Delta T=5.3^{\circ} \mathrm{C} . \quad \mathrm{A}=6 \%$.

Fig. A. $7 \quad$ Same as Fig. A.1. $\Delta T=-7.8^{\circ} \mathrm{C} . \Delta \mathrm{T}=-5.2^{\circ} \mathrm{C}$. $A=6 \%$.

Fig. A. $8 \quad$ Same as Fig. A.1. $\quad \Delta T=13.9^{\circ} \mathrm{C} . \quad \mathrm{A}=6 \%$.

Fig. A. $9 \quad$ Same as Fig. A.1. $\quad \Delta T=-15.1^{\circ} \mathrm{C} \quad f=6 \%$.

$\angle P F A N D I X E$

E n Indirect E pproacin for the Evaluation of the Concentration of Particulate I/iaterial in Atmospheric Haze

by
E. D. Tabler

Introduction

Vhen aircraft measurements of outroing terrestrial radiation in the 3-13 micron waveband were compared to actual earth surface temperatures for various synoptic conditions it was observed that the a.bsorption of radiation by the atinosphere is related to the turbidity of the lowest layers of the atmosphere. Absorption of long wave radiation by the atmosphere for six cases when the aircraft observer reported light to dense haze averaged 11.1% greater than for an equal number of "clean" atmosphere cases.

The effect of atinospheric haze on incoming solar radiation was also measurec. f nu...ber oî flights were made with an Eppley pyrhelioneter mounted on the top of the aimplane (Fig. B.1). Measurements with this instrunent were recorded sirnultaneously with another Eppley pyrhelioneter at the surface. Fron comparison of these measurements (Figs. 3.2, 3, 4) one can get an estima te of the absorption of solar radiation by haze layers.

Objective

To test the feasibility of this approach to the quentitative evaluation of the density of atmospheric haze, an experiment was conducted to determine the dust content of the lower air over Fort Sollins, Colorado using the Brooks(1959) equation for transwittance of whole spectrun direct bean solar radiation.

Fig. B. I Spley pyrheliometer mounted on top of the aircraft for measurement of incoming solar radiation.

M. S. TIME

Fig. B. 2 Simultaneous measurements of incoming solar radiation from Ippley pyrheliometers on the ground and on the top of the Sessna 180. November 1, 1964.

Fig. B. 3 Simultaneous measurements of incoming sol radiation from $\exists \mathrm{Bp}$ pley pyrheliometers on the ground and on the top of the Cessna 180. January 21, 1964.

Fig. 3. 4 Same as Fig. B. 3. February 10, 1964.

On Nove ber 13, 1903 between about 1500 and 1800 NiST; simul:aneous solar radiation measurements were made with an Eppley pyrhe lioneter on the ground and another mounted on a Cessna aircraft. These measurements were repeated with the aircraft at 500 feet elevation levels starting at an elevation of 5,500 feet and continuing to 8,000 feet $\mathrm{m} . \mathrm{s} .1$. Jlevation angles of the sun were recorded for each ineasurement. Fressure and air temperature measurements also were taken from the aircraft. A Denver radiosonde sounding (1700 IIST) was oljtained from which precipitable water was computed for the levels of interest after verifying the similarity of the Denver observations with the ai:ncraft temperature and pressure data.

The basic Brooks' equation (1959) as modified by Gates (1962) is as :ollows:

$$
Q_{p}=\frac{2.0}{r^{2}} \exp \left[-0.035(P N / 1013)^{0.75}-0.174(\mathrm{WN} / 20)^{0.6}-0.33(\mathrm{dNi})^{0.9}\right]
$$

where $G_{p}=\begin{array}{r}\text { flux of direct sunlight on a surface perpendicular to the sun's } \\ \text { rays in ly/ inin. }\end{array}$ $p=$ air pressure in nb. $\mathrm{w}=$ total precipitable water vapor in the atmosphere in the zenith direction (in min.)
$d=$ concentration of dust particles in number/cc $\mathrm{m}=$ air mass
$r=$ radius vector of the earth

The aloove equation was modified to allow computations based on differences between ground and air measurements to be used rather than the absolute values of ground and aircraft incident radiation. This adaptation seemed desirable for several reasons. First, recorded values of radiation were higher than should have been obtained due principally to the small elevation angle of the sun (Fig. B. 5). Conversion of horizontal radiation measurements to values of sunlight received on a surface normal to the sun's rays is acc implished by nultiplying the recorded readings by the cosecant of of the sun's elevation angle. Since $\csc ^{\prime} \alpha \rightarrow \infty \quad \alpha \rightarrow 0^{\circ}$ elevation angles must be zeasured very precisely if errors are to be kept within acceptable limits. This source of error could be ninimized by working with dififerences between ground and aircraît aeasurements. A second reason for modifying the equation was to obviate the need for precipitable water neasureants throughout the total atmosphere. Thirdly, since the basic

Fig. B. 5 Graphical correction of pyrheliometer measurements of incoming radiation for changes in sun angle.
equation has been derived for direct sunlight radiation, the influence of scattered and diffuse radiation on the final results is kept to a minimum. It should be einphasized that the modification of the equation for layer analysis is required only when the error effects noted above are of such a magnitude as to result in negative values of the exponential term when applied individually to ground or aircraft readings. If positive values of the exponent were obtained, subtracting the calculated dust concentration based on the ground reading from that based on the aircraft observation would eliminate the error sources noted above as well as the modified differential layer form of the equation. In this experiment preliminary analysis indicated that development of the following equations was essential.

The theory of the modification is that the nature of the depletion function is the same for a small differential layer of air as it is for the total atmosphere. Since the original Brooks equation is empirical, the validity of the foregoing assumption would have to be tested experimentally. The utility of this approach should justify future research with this intent.

Derivation of equation:
Let $I_{n a}=$ normal incident direct beam radiation at the top of the layer
L in question. This value is analogous to and replaces $\mathrm{T}_{2} / \mathrm{r}^{2}$ of the original equation (ly/min).
$\mathrm{L}=$ the thickness of the air layer of interest, whose lower boundary coincides with the ground surface at some elevation E above m.s.l. (ft.).
$P=$ total pressure at the ground at the bottom of L. This is the same term as in Brooks ${ }^{\prime}$ equation (mb).
$Q_{p}=$ normal incident direct-beam solar radiation at ground level at the botton of L. This is the same term as in Brooks' equation ($1 \mathrm{y} / \mathrm{min}$).
$\Delta P_{m}=$ the differential pressure of the air layer L, as measured by
$\Delta P_{S}=$ the theoretical differential pressure of the air layer L for the standard atmosphere (mb).
$\Delta \mathrm{W}_{\mathrm{m}}=$ measured precipitable water content of the layer L (in mm).
$\begin{aligned} \Delta W_{S}= & \text { theoretical precipitable water content of the layer } L \text { for the } \\ & \text { standard at inosphere (in mm). }\end{aligned}$

The air depletion term of the Brooks equation, $0.089(\mathrm{FiP} / 1013)^{0 .}$ relates athospheric pressure to the number of air molecules which are available for absorption and scattering of solar radiation in the total atmosphere above the point where Q_{p} is measured. The term P/1013 includes two corrections, one of which is for air mass characteristics at the time of observation. For the air layer L, by analogy, $\Delta P_{m} / \Delta P_{S}$ corrects for air mass characteristics, and elevational differences are not involved due to the differential treatment. The number of air molecules involved in depletion must now be reduced for the layer by the ratio L/A. This can be accomplished utilizing the pressure terms $\Delta \mathrm{P}_{\mathrm{m}} / \mathrm{P}$ so as to obviate the need for density correction. The modified air molecule depletion term now becomes

$$
0.080\left[\left(\frac{\mathrm{M} \Delta \mathrm{P}_{\mathrm{m}}}{\Delta \mathrm{P}_{\mathrm{s}}}\right)\left(\frac{\left.\Delta \mathrm{P}_{\mathrm{m}}\right)}{\mathrm{P}}\right)\right]^{.75}=0.039\left[\frac{\mathrm{M} \overline{\Delta \mathrm{P}_{\mathrm{m}}}{ }^{2}}{\mathrm{P} \mathrm{\Delta P}_{\mathrm{s}}}\right] .75
$$

The air mass term M is unchanged due to its definition.
Directly analogous reasoning results in the differential water molecule depletion teria
$0.174\left[\left(\frac{\mathrm{M} \Delta \mathrm{W}_{\mathrm{m}}}{\Delta \mathrm{W}_{\mathrm{s}}}\right)\left(\frac{\Delta \mathrm{P}_{\mathrm{m}}}{\mathrm{P}}\right)\right]^{0.6}$
The portion of this expression $\frac{\Delta P_{m}}{P}$ reducing the effective depth of the atmosphere assumes that the water vapor is distributed in the atmosphere in the same fashion as are the air molecules. It must be emphasized that this is only an approximation and coulc i.se in error under certain conditions.

The resultant differential layer form of the transmittance equation may now be written.
$\left.Q_{p}=I_{n a} \exp \left[-0.039\left(\frac{M \overline{\Delta P}_{m}^{2}}{P \Delta P_{s}}\right)^{0.75}-0.174\left(\frac{M \Delta W_{m} \Delta P_{m}}{P \Delta W_{s}}\right)^{0.6}-0.083(d M)\right)^{0.9}\right]$
$\left.\begin{array}{l}\text { solving in terms of } d, \quad M \overline{\Delta P}_{m}^{2} \\ d=\frac{1}{m}\left[\frac{\ln I_{n a}-0.089}{\left(\frac{P \Delta P_{s}}{P}\right)^{0.75}-0.174}\left(\frac{M \Delta W_{m} \Delta P_{m}}{P \Delta W_{s}}\right)^{0.6}-\ln Q_{p}\right. \\ 0.083\end{array}\right]$

The susceptibility of the results to errors in calculating M is still present in the final equation, and is the largest potential source of
error at low sun angles. To minimize this error, a more refined form of estimating Hi was used in this experiment rather than assuming $M=\csc \beta$ (where $\beta=$ elevation angle of the sun). For the purposes of this experiment, $\quad r_{1}=\csc (\beta+\mathcal{C})$ where $\mathbf{C}=$ correction factor denoting the departure of $\csc \beta$ from the optical air mass. Values of C were calculated from Table 137 of the Smithsonian IIeteorological Tables (1951).

Results

1. Observations corresponding to aircraft elevations of 6,500 feet were discarded because the G_{p} observations at the ground were larger than those at the plane. Remaining data yielded the following results:

Layer ft.	Ave. dust conc. particles/cc	Relative dust conc. particles/cc/ft.
sfc. -5500	0	0
$5500-6000$	0.346	0.001694
$6000-7000$	1.737	0.001787
$7000-7500$	0	0
$7500-8000$	0	0

Elev. level ft.	Cumulative dust concentration particles/cc
$\mathrm{sfc}-5500$	0
$\mathrm{sfc}-5000$	0.510
$\mathrm{sfc}-7000$	1.21
$\mathrm{sfc}-7500$	0.942
$\mathrm{sfc}-8000$	0.777

Figs. B. 3 and B. 7 sinow the results graphically.
2. The orders of magnitude of the results are reasonable.

Fig. B. E. Ferage dust anc haze content of the lower atnosphere above Fort Collins, Colorado, 1800 N/ST, November 13, 1933.

Fig. B. 7 Change in relative cust concentration with elevation at Fort Collins, Colorado, 1250 I/iST, November 13, 1933.
3. The calculated upper linit of the dust concentration ($\mathcal{O} 000-7000 \mathrm{ft}$.) corresponds well to the visual top of the haze layer observed cluring the experininent (350 f it.)
4. The c'iange in calculated cumulative dust concentration with height above 7000 feet agrees almost perfectly with the theoretical values assui.ing negligible dust content above 7000 feet.
5. The principal discrepancy in the results appears to be the absence of dust in the surface - 5500 foot layer.

Sources of error: The prinary source of error using the wodified equation is that introduced in the calculation of the optical air mass \mathbb{V}; the low sun angles prevailing during the experinent probably account for a major part of the discrepancies in the results.

Standard Atmosphere Constants

$\begin{gathered} \text { Dlev. } \\ \text { ft. } \end{gathered}$	Elev. m.	$\begin{aligned} & \Delta P_{\mathrm{B}} \\ & \mathrm{mb} . \end{aligned}$	$\begin{gathered} \overline{\mathrm{w}} \\ \mathrm{~g} / \mathrm{kg} \end{gathered}$	$\begin{aligned} & \overline{P_{\mathrm{W}}} \\ & \mathrm{~mm} \end{aligned}$	$\begin{gathered} \mathrm{P} \\ \mathrm{mb} \end{gathered}$	$\begin{gathered} \mathrm{w} \\ \mathrm{~g} / \mathrm{kg} \end{gathered}$	Accum. $\Delta P_{S} \mathrm{mb}$	Accum. $\mathrm{P}_{\mathrm{W}} \mathrm{mm}$.
51?0(9io)	1580	10.1	ง 25	0.644	337.4	3.3	0	0
5500	1330	15.	3. 25	0.644	327.3	6.2	- 10.1	0.344
3300	1830	15.2	8. 7	0.930	312:1	5. 8	25:3	1. 574
6500	1930	15.5	5. 42	0.353	792. 9	5.3	40.5	2. 458
7000	2140	13.5	5.12	0.705	781.4	5.25	53.0	3.316
'7500	2230	15.3	4.9	0.765	757.9	5.0	69.5	4.021
3000	2440	14.0	4. 35	0.384	752.3	4.8	84.8	4. 736
3500	2590	14.0	4.35 4.33	0.304 0.315	738.3	4. 5	97.8	5. 450
9000	2740	13.3	-. 38	0.315	724.8	4.25	. 112.5	3. 066

Tabulation of Data and Calculated Values

Elev. ft.	$\begin{gathered} \text { Sun } L \\ \operatorname{deg} . \end{gathered}$	$\begin{gathered} \text { CSC } \\ \text { Sun } L \end{gathered}$	Ground Data			Aircraft Data			Aircraft Air temp. ${ }^{\circ} \mathrm{F}$	Aircraft		Denver Raob pressure mb.
			M. V.	$\mathrm{Ly} / \mathrm{min}$.	I_{n}	M. V.	Ly/min	I_{n}		$\begin{gathered} \text { Pressure } \\ \text { in. } \end{gathered}$	$\begin{gathered} \text { Pressure } \\ \mathrm{mb} . \end{gathered}$	
5170									47.2	24. 71	837	844.5
5500	13.5	4.284	0.87	0.348	1.49	3.4	0.354	1. 52	46.2	24.43	828	835.1
6000	13.0	4.445	0.79	0.316	1.40	3.8	0.396	1. 76	45.2	23.98	810	820.8
6500	12.3	4.694	0.90	0.360	1. 69	3.72	0.357	1.67	45.0	23.53	796	806.5
7000	11.8	4.890	0.51	0.204	1.00	3.15	0.328	1.60	53.5	23.09	782	792.2
7500	11.3	5.103	0.31	0.124	0.633	1.87	0.195	0.995	54.0	27.65	767	777.9
8000	10.7	5.386	0.27	0.108	0.581	1.58	0.1645	0.891	53.8	22.22	754	763.6
8500	10.3	5.595	0.36	0.144	0.805	1.50	0.1561	0.873	52.3	21.80	738	749.3
9000	9.7	5.935	0.43	0.172	1.02	1.46	0.152	0.900	51.2	21.385	690	735.0

Elev. ft.	$\begin{gathered} \text { Denver Raob } \\ \text { R.H. }(\%) \\ \hline \end{gathered}$	Raob mixing ratio g / kg	Raob precipitable water (in)	$\begin{aligned} & " \mathrm{a} \mathrm{a}_{1} \\ & \text { min. } \end{aligned}$	$\begin{gathered} \alpha+a \\ \text { deg. }+\min . \end{gathered}$	$\begin{gathered} m= \\ \csc (\alpha+a) \end{gathered}$	Raob precipitable water (mm)	$\begin{gathered} \text { Aircraft } \Delta \mathrm{P} \\ \text { accum. mb. } \end{gathered}$
5170		4.0					0.350	9
5500	46	3.3		12	13-42	4. 222	0.467	27
6000	42	3.1	0.0189	13	13-13	4.374	0.470	
6500	46	3.5	0.0186	14	12-32	4. 608	0.472	
7000	32	3.0	0.0140	14	12-2	4. 797	0.357	
7500	17	1.9	0.0107	15	11-33	4. 994	0.274	
8000	17	1.85	0.0103	16	10-58	5.257	0.262	99
8500	16	1.75	0.0099	17	10-35	5. 445	0.252	
9000	16	1. 70	0.0099	17	9-59	5. 768		

Calculations

1. Calculations of precipitable water from Denver Raob:

$$
P_{w}=1 / 980 \int_{P_{1}}^{P_{2}} W d p
$$

where $P_{w}=$ precipitable water in cm .
$\mathrm{W}=$ mixing ratio in g / kg.
$\mathrm{dp}=$ pressure change in millibars.
a. 5170-5500 ft.

$$
\begin{aligned}
\mathrm{P}_{\mathrm{w}} & =1 / 980(3.65)(844.5-835.1) \\
& =3.65 / 980(9.4)=3.50 \times 10^{-2} \mathrm{~cm} \\
& =0.350 \mathrm{~mm} \quad\left(0.0138 \mathrm{in}_{\mathrm{o}}\right)
\end{aligned}
$$

b. 5500-6000 ft.

$$
\begin{aligned}
\mathrm{P}_{\mathrm{w}} & =3.2 / 980(835.1-820.8) \\
& =3.2 / 980(14.3)=4.67 \times 10^{-2} \mathrm{~cm} \\
& =0.467 \mathrm{~mm} \quad(.0184 \mathrm{in} .)
\end{aligned}
$$

c. 6000-6500 ft.

$$
\begin{aligned}
\mathrm{P}_{\mathrm{w}} & =3.3 / 980(820.8-806.5) \\
& =3.3 / 980(14.3)=4.81 \times 10^{-2} \mathrm{~cm} \\
& =0.481 \mathrm{~mm} \quad(0.189 \text { in. })
\end{aligned}
$$

d. 6500-7000 ft.

$$
\begin{aligned}
P_{\mathrm{w}} & =3.25 / 980(806.5-792.2) \\
& =3.25 / 980(14.3)=4.75 \times 10^{-2} \mathrm{~cm} \\
& =0.475 \mathrm{~mm}
\end{aligned}
$$

e. 7000-7500 ft.

$$
\begin{aligned}
\mathrm{P}_{\mathrm{w}} & =2.45 / 980(792.2-777.9) \\
& =2.45 / 980(14.3)=3.58 \times 10^{-2} \mathrm{~cm} \\
& =0.358 \mathrm{~mm}
\end{aligned}
$$

f. $7500-8000 \mathrm{ft}$.

$$
\begin{aligned}
\mathrm{P}_{\mathrm{w}} & =1.875 / 980(777.9-763.6) \\
& =1.875 / 980(14.3)=2.74 \times 10^{-2} \mathrm{~cm} \\
& =0.274 \mathrm{~mm}
\end{aligned}
$$

g. $8000-8500 \mathrm{ft}$.

$$
\begin{aligned}
\mathrm{P}_{\mathrm{w}} & =1.80 / 980(763.6-749.3) \\
& =1.80 / 980(14.3)=2.63 \times 10^{-2} \mathrm{~cm} \\
& =0.263 \mathrm{~mm}
\end{aligned}
$$

h. $8500-9000 \mathrm{ft}$.

$$
\begin{aligned}
\mathrm{P}_{\mathrm{w}} & =1.725 / 980(749.3-735.0) \\
& =1.725 / 980(14.3)=2.52 \times 10^{-2} \mathrm{~cm} \\
& =0.252 \mathrm{~mm}
\end{aligned}
$$

2. Calculation of dust concentrations surface to 5500 .

$$
\begin{array}{ll}
\mathrm{I}_{\mathrm{na}} & =1.52 \mathrm{ly} / \mathrm{min} \\
\Delta \mathrm{P}_{\mathrm{m}} & =9.0 \mathrm{mb} \\
\Delta \mathrm{P}_{\mathrm{S}} & =10.1 \mathrm{mb} \\
\mathrm{M} & =4.222 \\
\Delta \mathrm{~W}_{\mathrm{M}} & =0.35 \mathrm{~mm} \\
\Delta \mathrm{~W}_{\mathrm{S}} & =0.644 \mathrm{~mm} \\
\mathrm{Q}_{\mathrm{p}} & =1.491 \mathrm{y} / \mathrm{min}
\end{array}
$$

Calculation of factors:

1. $\ln I_{n a}=l_{n} 1.52=0.41871$
2. $\left(\frac{\Delta \mathrm{P}_{\mathrm{m}} \mathrm{M}}{\Delta \mathrm{P}_{\mathrm{S}}}\right)\left(\frac{\Delta \mathrm{P}_{\mathrm{m}}}{\mathrm{P}_{\mathrm{B}}}\right)=\frac{(9)(4.222)(9.0)}{(10.1)(837)}=0.0405$
3. $(0.0405)^{.75}=0.0905$
4. $\left(\frac{\Delta \mathrm{W}_{\mathrm{m}} \mathrm{M}}{\Delta \mathrm{W}_{\mathrm{s}}}\right)\left(\frac{\Delta \mathrm{P}_{\mathrm{m}}}{\mathrm{P}_{\mathrm{B}}}\right)=\frac{(0.35)(4.222)(9.0)}{(0.644)(837)}=0.0247$
5. $(0.0247)^{0.6}=0.1088$
6. $\ln Q_{p}=\ln 1.49=0.3988$
substitute in equation:

$$
\begin{aligned}
\mathrm{d} & =\frac{1}{4.222}\left[\frac{0.41871-0.089(0.0905)-0.174(0.1088)-0.3988}{0.083}\right]^{1.11} \\
& =\frac{1}{4.222}\left[\frac{0.41871-0.00805-0.01891-0.3988}{0.083}\right]^{1.11} \\
& =\frac{1}{4.222}\left(\frac{-.00705}{0.083}\right)^{1.11}=\frac{1}{4.22}(-0.085)^{1.11}
\end{aligned}
$$

$\therefore \mathrm{d}=0 \quad \mathrm{w} / \mathrm{in}$. limits of experiment error

Surface to 6000 ft .

$$
\begin{aligned}
\mathrm{I}_{\mathrm{na}} & =1.76 \mathrm{ly} / \mathrm{min} \\
\Delta \mathrm{P}_{\mathrm{m}} & =27 \mathrm{mb} \\
\Delta \mathrm{P}_{\mathrm{S}} & =25.3 \mathrm{mb} \\
\mathrm{~m} & =4.374 \\
\Delta \mathrm{~W}_{\mathrm{m}} & =0.817 \\
\Delta \mathrm{~W}_{\mathrm{S}} & =1.574 \\
\mathrm{Q}_{\mathrm{p}} & =1.40 \mathrm{ly} / \mathrm{min}
\end{aligned}
$$

Calculation of factors:

1. $\ln I_{\text {na }}=\ln 1.76=0.56531$
2. $\left(\frac{\Delta \mathrm{P}_{\mathrm{m}} \mathrm{M}}{\Delta \mathrm{P}_{\mathrm{s}}}\right)\left(\frac{\Delta \mathrm{P}_{\mathrm{m}}}{\mathrm{P}_{\mathrm{B}}}\right)=\frac{(27)(4.374)(27)}{(25.3)(837)}=0.1504$
3. $(0.1504)^{0.75}=0.242$
4. $\left(\frac{\Delta \mathrm{W}_{\mathrm{m}}^{\mathrm{M}}}{\Delta \mathrm{W}_{\mathrm{s}}}\right)\left(\frac{\Delta \mathrm{P}_{\mathrm{m}}}{\mathrm{P}_{\mathrm{R}}}\right)=\frac{(0.817)(4.374)(27)}{(1.574)(837)}=0.0731$
5. $(.0731)^{.6}=0.208$
6. $\ln Q_{p}=\ln 1.40=0.33647$
substitute in equation:

$$
\begin{aligned}
\mathrm{d} & =\frac{1}{\mathrm{~m}}\left[\frac{0.56531-0.089(.242)-0.174(0.208)-0.33647}{0.083}\right]^{1.11} \\
& =\frac{1}{\mathrm{~m}}\left[\frac{0.56531-0.02153-0.0362-0.33647}{0.083}\right]^{1.11} \\
& =\frac{1}{4.374}\left(\frac{0.17111}{0.083}\right)^{1.11}=\frac{1}{4.374}(2.06)^{1.11} \\
& =\frac{1}{4.374}(2.23)=0.51 \\
\therefore \mathrm{~d} & =0.510 \text { particles/cc } \quad<\quad \text { surface to } 6000 \mathrm{ft} .
\end{aligned}
$$

Surface to 7000 ft .

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{na}}=1.60 \mathrm{ly} / \mathrm{min} \\
& \Delta \mathrm{P}_{\mathrm{m}}=55 \mathrm{mb} \\
& \Delta \mathrm{P}_{\mathrm{s}}=56 \mathrm{mb} \\
& \mathrm{~m} \\
& \mathrm{~m}_{\mathrm{m}}=4.797 \\
& \Delta \mathrm{~W}_{\mathrm{m}}=1.759 \\
& \Delta \mathrm{~W}_{\mathrm{S}}=3.316 \\
& \mathrm{Q}_{\mathrm{p}}=1.00 \mathrm{ly} / \mathrm{min} .
\end{aligned}
$$

Calculation of factors:

$$
\text { 1. }\left(\frac{\Delta \mathrm{P}_{\mathrm{m}} \mathrm{M}}{\Delta \mathrm{P}_{\mathrm{s}}}\right)\left(\frac{\Delta \mathrm{P}_{\mathrm{m}}}{\mathrm{P}_{\mathrm{B}}}\right): \frac{(55)(4.797)(55)}{(56)(837)}=0.309
$$

2. $(0.309)^{0.75}=0.415$
3. $\operatorname{lnI}_{n a}=\ln 1.60=0.47000$
4. $\left(\frac{\Delta \mathrm{W}_{\mathrm{m}} \mathrm{M}}{\Delta \mathrm{W}_{\mathrm{S}}}\right)\left(\frac{\Delta \mathrm{P}_{\mathrm{m}}}{\mathrm{P}_{\mathrm{B}}}\right)=\frac{(1.759)(4.797)(55)}{(3.316)}=0.167$
5. $(0.167)^{0.6}=0.342$
6. $\ln Q_{p}=\ln 1.00=0$
substitute in equation:

$$
\begin{aligned}
\mathrm{d} & =\frac{1}{4.797}\left[\frac{0.47000-0.089(0.415)-0.174(0.1672)}{0.083}\right]^{1.11} \\
& =\frac{1}{4.797}\left[\frac{0.47000-0.0369-0.0291}{0.083}\right]^{1.11} \\
& =\frac{1}{4.797}\left(\frac{0.404}{0.083}\right)^{1.11}=\frac{1}{4.797}(4.87)^{1.11}=\frac{5.79}{4.797} \\
\therefore \mathrm{~d} & =1.21 \text { particles } / \mathrm{cc} \quad \text { surface to } 7000 \mathrm{ft} .
\end{aligned}
$$

Surface to 7500 ft .

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{na}}=0.995 \mathrm{ly} / \mathrm{min} \\
& \Delta \mathrm{P}_{\mathrm{m}}=70 \mathrm{mb} \\
& \Delta \mathrm{P}_{\mathrm{s}}=69.5 \mathrm{mb} \\
& \mathrm{~m} \\
& \Delta \mathrm{~W}_{\mathrm{m}}=4.994 \\
& \Delta \mathrm{~W}_{\mathrm{s}}=4.116 \mathrm{~mm} \\
& \mathrm{Q}_{\mathrm{p}}=0.021 \mathrm{~mm}
\end{aligned}
$$

Calculation of factors:

$$
\text { 1. } \ln I_{n a}=\ln 0.995=-0.005
$$

2. $\left(\frac{\Delta \mathrm{P}_{\mathrm{m}} \mathrm{M}}{\Delta \mathrm{P}_{\mathrm{s}}}\right)\left(\frac{\Delta \mathrm{P}_{\mathrm{m}}}{\mathrm{P}_{\mathrm{B}}}\right)=\frac{(70)(4.994)(70)}{(69.5)(837}=0.420$
3. $(0.42)^{0.75}=0.524$
4. $\left(\frac{\Delta W M}{\Delta W_{S}}\right)\left(\frac{\Delta \mathrm{P}_{\mathrm{m}}}{\mathrm{P}_{\mathrm{B}}}\right)=\frac{(2.116)(4.994)(70)}{(4.021)(837)}=0.219$
5. $(0.219)^{0.6}=0.402$
6. $\ln Q_{p}=\ln 0.633=-0.457$
substitute in equation:

$$
\begin{aligned}
\mathrm{d} & =\frac{1}{4.994}\left[\frac{-0.005-0.089(0.524)-0.174(0.402)+0.457}{0.083}\right]^{1.11} \\
& =\frac{1}{4.994}\left[\frac{-0.005-0.0465-0.0700+0.457}{0.083}\right]^{1.11} \\
& =\frac{1}{4.994}\left(\frac{0.3355}{0.083}\right)^{1.11}=\frac{1}{4.994}(4.04)^{1.11}=\frac{4.70}{4.994} \\
\therefore \mathrm{~d} & =0.942 \text { particles } / \mathrm{cc} \quad \leftarrow \text { surface to } 7500 \mathrm{ft.}
\end{aligned}
$$

Surface to 8000 ft .

$$
\begin{aligned}
& I_{n a}=0.891 \mathrm{ly} / \mathrm{min} \\
& \Delta \mathrm{P}_{\mathrm{m}}=83 \mathrm{mb} \\
& \Delta \mathrm{P}_{\mathrm{s}}=83.8 \mathrm{mb} \\
& \mathrm{~m}=5.257 \\
& \Delta W_{M}=2.390 \mathrm{~mm} \\
& \Delta W_{S}=4.786 \mathrm{~mm} \\
& Q_{p}=0.581 \mathrm{ly} / \mathrm{min} \text {. }
\end{aligned}
$$

Calculation of factors:

$$
\text { 1. } \ln I_{n a}=\ln 0.891=-0.11541
$$

2. $\left(\frac{\Delta \mathrm{P}_{\mathrm{m}} \mathrm{M}}{\Delta \mathrm{P}_{\mathrm{s}}}\right)\left(\frac{\Delta \mathrm{P}_{\mathrm{m}}}{\mathrm{P}_{\mathrm{B}}}\right)=\frac{(8.3)(5.257)(83)}{(83.8)(837)}=0.516$
3. $(0.516)^{0.75}=0.611$
4. $\left(\frac{\Delta \mathrm{W}_{\mathrm{m}} \mathrm{M}}{\Delta \mathrm{W}_{\mathrm{s}}}\right)\left(\frac{\Delta \mathrm{P}_{\mathrm{m}}}{\mathrm{P}_{\mathrm{B}}}\right)=\frac{(2.39)(5.257)(83)}{(4.786)(837)}=0.261$
5. $(0.261)^{0.6}=0.446$
6. $\ln Q_{p}=\ln 0.581=-0.543$
substitute in equation:

$$
\begin{aligned}
d & =\frac{1}{5.257}\left[\frac{-0.11541-0.089(0.611)-0.174(0.446)+0.543}{0.083}\right]^{1.11} \\
& =\frac{1}{5.257}\left[\frac{-0.11541-0.0544-0.0775+0.543}{0.083}\right]^{1.11} \\
& =\frac{1}{5.257}\left(\frac{0.2957}{0.083}\right)^{1.11}=\frac{1}{5.257}(3.56)^{1.11}=\frac{4.09}{5.257} \\
\therefore d & =0.777 \text { particles } / \mathrm{cc} \quad \leftarrow \text { surface to } 8000 \mathrm{ft} .
\end{aligned}
$$

3. Conversion of concentrations in layers from ground to aircraft to concentrations in elevational zones.
4. Concentration in layer surface to 5500 ft . ($5170-5500 \mathrm{ft}$.)

$$
\mathrm{C}=0 \text { particles } / \mathrm{cc}
$$

\lessdot surface to 5500 ft .
2. $5500-6000 \mathrm{ft}$.

$$
\begin{aligned}
\frac{(330)(0)+(500)(\mathrm{X})}{830} & =0.51 \text { particles } / \mathrm{cc} \\
\therefore \frac{500 \mathrm{X}}{830} & =0.51 \\
\mathrm{X} & =\frac{(0.51)(830)}{500}=0.846 \text { particles } / \mathrm{cc} \\
\therefore \mathrm{C} & =0.846 \text { particles } / \mathrm{cc} \quad \longleftrightarrow 5500-6000 \mathrm{ft} .
\end{aligned}
$$

3. $6000-7000 \mathrm{ft}$.

$$
\begin{aligned}
& \frac{(330)(0)+(500)(0.846)+(1000)(\mathrm{X})}{1830}=1.21 \text { particles } / \mathrm{cc} \\
& \therefore 423+1000 \mathrm{X}=2210 \\
& \therefore \mathrm{X}=\frac{2210-423}{1000}=\frac{1787}{1000}=1.787 \text { particles } / \mathrm{cc} \\
& \therefore \mathrm{C}=1.787 \text { particles } / \mathrm{cc} \longleftarrow 6000-7000 \mathrm{ft} .
\end{aligned}
$$

4. $7000-7500 \mathrm{ft}$.

$$
\begin{aligned}
& \frac{(330)(0)+(500)(0.846)+(1000)(1.787)+(500)(\mathrm{X})}{2330}=0.942 \mathrm{part} . / \mathrm{cc} \\
& 423=1787+500 X=2195 \\
& \therefore X=\frac{2195-423-1787}{500}=\frac{-15}{500}=0.0 \\
& \therefore C=0 \text { particles } / \mathrm{cc} \quad \leftarrow 7000-7500 \mathrm{ft} .
\end{aligned}
$$

5. $7500-8000 \mathrm{ft}$.

$$
\left.\begin{array}{l}
\frac{(330)(0)+(500)(.846)+(1000)(1.787)+(500)(0)+(500)(\mathrm{X})}{2830}=0.777 \\
\therefore 423+1787+500 X=(2830)(0.777) \\
\therefore X=\frac{2200-2210}{500}=\frac{-10}{500} \\
\therefore C
\end{array}\right)=0.0 \text { particles } / \mathrm{cc} \longleftarrow 7500-8000 \mathrm{ft} .
$$

Conclusions

This experiment shows that it is possible to obtain a quantitative evaluation of the concentration of particles in atmospheric hazes. There are, however, several criticisms of this method. First, the basic equation by Brooks, based on observations and calculations by Moon (1940) is empirical. It is difficult or impossible to evaluate the accuracy of the constants used in the equation. Second, haze density may not have the same effect on terrestrial radiation that it has on solar radiation. Third, the density of haze layers varies with the wind speed and temperature lapse rates in the atmosphere. Measurements made at one time of the day may not be meaningful a few hours later.

Further investigation of this approach to evaluation of haze density is planned.

