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ABSTRACT 

 

 

 

DYNAMICS OF FLOW IN RIVER BENDS 

 

 

 
     Water is indispensable to life and the means by which it is conveyed is equally important. Natural rivers 

and manmade channels play a critical role in this respect because they are vital for water supply, 

navigation, transport of sediments, pollutants and nutrients. Most natural rivers typically have 

meandering (curved) geometries which make a direct study of their flow dynamics cumbersome. In order 

to reduce this complexity, natural rivers are usually idealized as open channel bends with rigid boundaries 

in order to gain insights into the flow dynamics. As such, this research examines the dynamics of flow in 

open channel bends with rigid boundaries, using computational fluid dynamics (CFD). The particular 

computational fluid dynamics code used in this research, discretizes the equations of fluid motion (i.e. the 

Navier-Stokes equations) using a finite volume scheme while tracking the free surface with the volume of 

fluid method. Turbulence was incorporated into the solution of the equations using large eddy simulation 

techniques.  

      Even though the general aim is to improve current understanding of natural river bend physics, the 

specific aims of this research are threefold. These are: (1) to study the effects of radius of curvature on 

the flow physics of an idealized river bend; (2) to study in detail the effect of a variation in curvature length 

on the flow structure and dynamics of an open channel bend; and (3) examine in detail the effect of inertial 

forces on the flow dynamics of an idealized river bend by varying the inflow Froude number. 

     While some of the findings in this research confirm some of the results that has already appeared in 

literature, a significant amount of results highlight new insights into dynamic events in an open channel 

bend. As a concrete example on the effect of curvature on the flow structure, simulation results show that 
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the maximum bed and wall shear stress are exerted on the inner wall at the entrance to the curve 

regardless of curvature. However, further into the bend, the maximum shear stress shifts to the outer 

bend and wall region. Furthermore, the angular distance into the bend at which this occurs is found to 

depend on the curvature of the channel. Thus, for a mild channel, the maximum shear stress shifts to the 

outer bend and wall region a short angular distance from the entrance. This distance increases with a 

decrease in radius of curvature (i.e. as the channel gets tighter) with the maximum shear stress in the 

tightest channel (that was simulated in this study) always occurring on the inner side of the bend for the 

entire channel length.      

     Another key finding comes from an investigation of the effect of the variation of curvature length on 

the flow structure and dynamics of open channel bends. It was found that the flow circulation pattern 

depends on the curvature length. Simulation results showed that shorter channel bends reached fully 

developed vortical states faster than similar channels with longer lengths. Furthermore, new results from 

this study provide a clear explanation for the emergence of a three-cell circulation structure in tight 

channel bends that occurs as a result of the splitting of the main cell circulation due to the enhanced 

vorticity in tight bends.  

      Finally, the study on the effects of Froude number on flow structure clearly shows that an increase in 

the inertia of the fluid does not affect the radial pressure gradient force (a very important force that plays 

a critical role in shaping the bend channel dynamics) in a mild channel. Remarkably in the tight channels, 

there seems to be a positive correlation between the magnitudes of the fluid inertia (as measured by the 

velocity) and the radial pressure gradient force. This finding has important implications for the modeling 

of river bends since geometric factors are not sufficient to adequately parameterize the flow structure 

under certain circumstances in reduced order models. 
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     These and more results not mentioned in this abstract are detailed in this dissertation. The overall 

aim of this research is to provide better insights into bend channel flow dynamics so as to enable 

engineers to carry out more accurate river modeling and training works.                
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Chapter 1 

 

Introduction  

 

1.1 Background 

         Rivers are an essential feature of the planet surface conveying water, sediments, and nutrients from 

one place to another. In addition rivers can be a source for food, navigational routes, and many other 

recreational benefits. In order to maintain these benefits and avoid catastrophes such as flooding, 

engineers and scientists must understand the character of river systems. Excluding the effects of 

confluences and junctions, there are two main factors that make the study of the dynamics of rivers from 

a fluid mechanics perspective difficult. On one hand there is the extremely complex winding geometry of 

rivers which makes their direct study cumbersome, while on the other hand the presence of many forms 

of sediments complicates the dynamics of flow. In order to bring the complexity of the study of river 

mechanics down to a tractable level, simplifying assumptions must be made. These assumptions however 

must be carefully chosen so that results obtained still remain of practical value. In dealing with the issue 

of complex geometry a perusal of available literature seems to suggest that the acceptable compromise 

between simplicity and practical relevance is to idealize river systems as a single channel bend (see figure 

1.1). As a first step, studies can then be carried out on the dynamics of bend to understand the character 

of river systems. In addition, single channel bends are assumed to have rigid boundaries without any 

sediments in order to further simplify the problem of understanding river dynamics.   
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(a)                                                                                                         (c) 

 

(b)                                                                                                                (d) 

 

Figure 1.1: A couple of examples of natural rivers are shown in (a) and (b). Schematic of a simple bend 
(c) and a schematic of the typical circulation structure in a bend (d).  Image Sources: (a): University of 
Oregon. (b): Van Balen 2009. (c): Van Balen 2009. (d): Blanckaert and Graf 2010 (note the diagram d 
alone is laterally inverted).  

      

 

         There exists a vast body of work in literature using the approach outlined in the preceding paragraph 

(with the exception of field measurement campaigns where river parameters are measured directly). This 

approach then requires selection of the right tool for the study of the single channel bend. One tool 
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available to scientist and engineers is laboratory scale modeling, where miniature replicas of river bends 

are reproduced with the right boundary and flow conditions to imitate parts of the natural river flows. 

This tool, however, has certain limitations one of which is the prohibitive cost (in time and money) of 

building physical models (to great detail). While it is possible to vary parameters to study cause and effect 

with laboratory scale modeling, the time required can be enormous and in some cases could mean 

rebuilding models from scratch.  Furthermore, ensuring geometric and dynamic similarity is rarely 

realizable in such modeling studies. This, coupled with the uncertainty in measurements obtained from 

scale models makes this a choice of last resort in many cases. Field measurements of river parameters is 

another option available for the study of the various aspects of river systems. However the complex 

nature of river systems (in terms of its geometry and dynamics) makes such an endeavor extremely 

expensive. This in addition to the lack of flexibility in varying parameters like with scale models makes 

field measurement campaign more suitable as tool for validation of other types of models. In recent 

decades, with the introduction of super-fast computers, the equations of fluid dynamics can now be 

solved for various idealized river geometries to gain more insight into the physics of fluid flow and 

sediment transport. This tool that includes solving the Navier Stokes equation (the equations of the 

dynamics of fluid) is called computational fluid dynamics (CFD). Similar to other tools available to 

engineers for the study of the physics of river systems, CFD has both strengths and weaknesses. Since the 

full Navier Stokes equations cannot be solved analytically, a numerical method must be chosen to obtain 

the flow field solution. These solution methods are prone to error depending on factors such as the type 

and size of mesh, the numerical scheme chosen to discretize the equations, and solution scheme in space 

and time. Furthermore, errors could be introduced in the post processing phase of analysis if care is not 

taken. However of the three tools enumerated above, CFD is the most flexible in studying cause and effect 

of various aspects of river system as it has the least cost, and various steps can be taken to minimize any 
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error in the solution schemes so that results obtained can be reasonably used to study the flow structure 

and dynamics of river systems.  

      It is for this reason that a combination of computational methods, dimensional analysis, and physical 

reasoning was chosen in this research to study the dynamics of flow in single river bends as a way to gain 

better insight into how river systems work. This combination aims to minimize the weaknesses which any 

one tool is prone to by combining the strengths outlined above. The specific objectives of this dissertation 

research are outlined in the next section.        

1.2 Objectives  

      In the preceding section reference was made to the vast body of work available in literature on river 

bend dynamics, some of these include Barthust et al (1977), Thorne (1985), De Vriend (1981), Odgaard & 

Bergs (1988), Whiting and Dietrich (1993a & b), Blanckaert & Graf (2001), Booij (2003), Blanckaert & De 

Vriend (2004), Blanckaert and Graf (2004), Blanckaert (2009). While these published works have provided 

good insight on the general patterns of flow behavior in a single bend, there are still some intricate details 

that are missing in current knowledge. For example, there has been no systematic study of the effect of 

curvature length on the evolution of flow structure and dynamics in a river bend. This and a couple of 

other unknown mechanisms that characterizes the physics of bend flow leaves a knowledge gap that this 

research partly hopes to fill. Thus the objectives of this research are: 

1. It is known that an important factor that determines the distribution of various flow parameters 

in a bend is the curvature (defined as the ratio of the radius of curvature to the top width). This 

research aims to investigate the effect of varying the curvature on the evolution of the flow 

structure and dynamics of a single channel bend. 

2. This research also seeks to study the effect of the variation of curvature length in determining the 

flow structure and physics of bend channel flow. 
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3. Finally this research investigates the effect of varying the Froude number (the ratio of the inertia 

to gravitational forces) on the evolution of the behavior of flow in a channel bend.  

     The three objectives outlined above would be achieved by using computational fluid dynamics to solve 

for the flow field in order to analyze fluid behavior under the various conditions consistent with the 

objectives of this research. It is hoped that this research would produce a better understanding of the 

details of bend channel flow than is currently available.               

1.3 Thesis Outline  

       This thesis has six more chapters. In the next chapter, existing literature in the field of river bend 

dynamics is reviewed. Chapter 3 deals with the numerical methodology used in this research with a 

thorough validation of the computational fluid dynamics code chosen. After confidence has been 

established in the set of tools chosen, Chapter 4 proceeds to study the effect of the variation of curvature 

on the dynamics and flow structure of a river bend. Chapter 5 discusses the effect of variation in curvature 

length on the physics of fluid flow in an open channel bend while Chapter 6 studies the effect of changing 

Froude number on the dynamics of flow in a river bend. Chapter 7 concludes with a summary of the main 

findings and contribution to knowledge. Each chapter in this thesis (except chapter one) would begin with 

a preamble (like an abstract) summarizing in more detail what that chapter hopes to achieve.  

1.4 Summary 

     In summary, this work seeks to re-examine the physics and flow structure in open channel bends using 

a combination of dimensional analysis, physical reasoning, and three dimensional computational fluid 

dynamics simulations. This combination of tools represents a holistic approach to deciphering the flow 

structure and dynamics in an open channel bend under various conditions. It is hoped that the findings in 

this research would provide better insights into the physics of bend flow and ultimately the workings of 

natural river systems. 
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Chapter 2 

 

Literature Review 

 

2.1 Preamble 

      This chapter reviews literature tracing the beginnings and the evolution of river dynamics research to 

the present day. The chapter reviews literature in four sections. Section 2.2 examines the contribution of 

field measurement campaigns to our current understanding of the physics of river bend flows, while 

section 2.3 goes on to analyze knowledge derived from laboratory scale experiments and how they 

improved knowledge of river flow dynamics. In section 2.4 the history and application of mathematical 

models to river dynamics research is examined with a particular emphasis on three-dimensional 

computational fluid dynamics simulations where the equations of fluid motions are solved numerically to 

analyze fluid behavior. Section 2.5 explains the current scientific consensus concerning the dynamics of 

bend channel flows. Finally, this chapter closes with a summary of all the major points in section 2.6.                        

2.2 Contribution of field measurement to current knowledge       

      Some of the earliest attempts at understanding the mechanics of river flows have been by means of 

field measurement campaigns (where flow parameters were obtained by means of direct collection of 

data). Researchers like Rozovkii reported natural channel measurements of two dimensional velocity 

components as early as 1957, while others like Barthust et al., (1977) and Thorne (1985), Dietrich and 

Smith (1983), Nelson and Smith (1989) reported measurements on various other aspects of natural river 

flows. Unfortunately, due to the crudeness of the flow measurement devices available at the time, insight 

into natural bend flow physics of rivers was hampered. For instance, the most common devices for field 

measurements at the time was the electromagnetic flow meter (Barthust et al (1977), Thorne (1985)) 

which could only measure the velocity in two mutually perpendicular directions and could not resolve the 

turbulent stresses. Since the flow in a natural river is three dimensional, the two dimensional 
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measurements offered by such instruments could not adequately reproduce the hydrodynamics of river 

flows. Some researchers (McLelland et al., 1996, DeSerres et al., 1999) tried to remedy this situation in 

two ways. One was combining more flow measuring instruments (with rather large sampling volumes) at 

the same point with axes mutually perpendicular to measure flow in its full dimensionality. While the 

other was taking measurements at the same point but changing the orientation of the instrument at 

different times. Neither of these methods were able to reproduce the true three dimensionality of the 

flow and the small scales as evidenced by the attribution of all phenomena observed to large scale 

parameters with little or no mention of the role of turbulent stresses in shaping river flow dynamics. As 

flow measurement devices improved such that flow measuring instruments could measure the three 

components of velocity and resolve some part of the turbulent stresses, it became clear that these 

stresses play a key role in the dynamics of river bend flows. Lane et al., (1998) seems to have been the 

first to measure rivers flow in its full 3 dimensions, while Sukhodolov et al., (2001) seems to be the first to 

include the measurement of turbulent stress in addition. Other detailed field campaigns were conducted 

by Frottingham and Rhode (2003) and Blanckaert et al., (2009). 

       While the crudeness of the flow measuring instruments in the early days of river dynamics research 

has been acknowledged, the insights gained from these early studies are remarkable given their limitation.  

As an example, a perusal of literature would reveal that as early as 1957 (Rozovkii 1957) the two cell 

circulation structure had already been observed with Barthust and Thorne (1985) showing similar results 

as seen in Figure 2.1 (Please note that this figure is laterally inverted and the outer bank is on the left 

side). While both authors attributed this phenomenon to the interaction between the mainstream 

velocity and the centrifugal acceleration, a fact that would change with improvements in measurements, 

the basic theory of the two cell circulation which they observed has stood relevant till the present day.    

 



8 

 

 

Figure 2.1: The two cell circulation structure in a river bend from Thorne et al., in 1985. The top diagram 

shows the mainstream isovels. The bottom diagram shows the depth profiles of the secondary velocities 

(Source Thorne et al 1985). 

      Even though field measurement campaigns have contributed greatly to knowledge of river bend flows 

(providing evidence of the three dimensional helical circulation), they are still plagued with various 

problems from the stand point of river mechanics research. Among the many problems is the fact that by 

virtue of its nature (especially its geometry) river parameters cannot be varied to ascertain cause and 

effect which is a very important point when the goal is a fundamental understanding of a field that is still 

largely plagued by high uncertainties. These uncertainties become even more problematic when we 

consider the complexity of the bed topography of a typical river. Because most rivers with sediments are 

shallow on the inner bank because of the formation of accumulated sediment (this structure is usually 
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called a point bar) and deep on the outside (usually referred to as a pool) the extra phenomena of 

topographic stirring sets in. This coupled with the sometimes random nature of the hydrodynamic 

behavior of sediment in suspension or as bed load makes the data obtained of less use than it would have 

been in a more deterministic system. There is also the issue of huge costs in time and finances which 

explains the relative scarcity of field measurement data compared to laboratory experimental data and 

computational data. Clearly there is the need for better methods to study river bend dynamics that avoids 

the problems enumerated above and that gives deeper insight into the fluid mechanics at all possible 

scales.        

2.3 Contribution of experiments to current knowledge      

      As explained in the previous chapter, the complexities of the problem of river dynamics compels 

scientists and engineers to make difficult choices. This means simplifying the usually complex meandering 

geometry of a typical river down to a single channel bend with or without rigid boundaries. Since this 

geometry is seen as an idealized river bend, the single channel bend can be studied experimentally to gain 

insight into the physics of river flows. Experimental works of this kind has been performed by De Vriend 

(1981), Odgaard & Bergs (1988), Whiting and Dietrich (1993), Blanckaert & Graf (2001), Booij (2003), 

Blanckaert & De Vriend (2004), Blanckaert (2009). While this list is not exhaustive, Table, 2.1 reproduced 

from Blanckaert & Graf (2001) gives more details of some of the experimental works that have been 

carried out in open channel bend flow. Essentially the contribution of laboratory scale studies to current 

knowledge improved with the evolution of instrumentation technology and analysis techniques as can be 

seen from literature. As a concrete example, Ippen and Drinker in 1962 focused experimental effort on 

the shear stress distribution in open channel bends with a trapezoidal cross section. However, at the time 

of this study the equipment used in collecting boundary shear stress and velocity data was the Preston 

tube (also known as the Pitot static tube). While it gave reasonable accuracy in measurement, the Preston 

tube had to be calibrated, thus the quality of data produced was only as good as the quality of data used 
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in its calibration. Some years later with improved instrumentation and technology, Odgaar and Bergs 

(1988) performed studies of open channel bend flow with erodible bed material. In obtaining the velocity 

measurements they used an electromagnetic flow meter which was less intrusive than the Preston tube 

but could only measure velocity in two mutually perpendicular directions without resolving the 

turbulence. Other instruments like the depth sonic sounder for bathymetry and flow depth measurement 

(as opposed to the use of the sometimes intrusive point gauge) helped produce better data that improved 

understanding of erodible bend dynamics. The introduction of more sophisticated laboratory data 

collection techniques like the Acoustics Doppler Velocimetry (ADV) and the Laser Doppler Velocimetry 

(LDV) brought a profound increase in insight for the physics of bend channel flows. This is due in part to 

the fact that velocity in 3 components as well as the turbulent components could be collected on a fine 

grid. While modern field campaigns using some of these data collection techniques indicated that 

turbulence played a general role in the formation of flow structures (as older field studies also showed) 

the particular details of the role of turbulence was not clearly known. This is because the cost of 

conducting field campaigns that measure river sections on a fine enough grid to ascertain events at the 

small scale is prohibitive. This cost however is reduced in a laboratory reproduction of river flows. Hence, 

it is not surprising that scientists and engineers only began to understand the role of turbulence structure 

with improvements in laboratory scale experiment. One of the facts that makes this obvious is that field 

data had shown the existence of the two cell circulation structure and even hinted that turbulence played 

a role. However only with detailed laboratory measurements and analysis by researchers like Blanckaert 

& De Vriend (2004), Blanckaert & Graf (2001), Booij (2003) did the understanding begin to emerge that 

the turbulent stresses play a very limited role in the formation of the main cell circulation (also known as 

the center cell circulation), but are a major factor in the formation of the counter rotating cell often 

observed close to the outer bend of a river. Furthermore prior to the detailed experimental analysis of 

Blanckaert & De Vriend (2004), the role of the Reynolds stresses in maintaining the stability of outer river 
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banks was underestimated. It is now clear after several experimental studies in literature that the 

turbulent stresses play a major role in the formation of the counter-rotating outer cell which in turn 

reduces the turbulence shear exerted on the outer wall. This means less shear stress is exerted on the 

outer wall of a bend compared to a straight channel of equivalent dynamics (Van Balen 2009). The relative 

stability of the outer bank of a river bend is thus dependent on the turbulence structure in the bend. Such 

a detailed understanding could not have come from field measurements alone for reasons already 

explained above.     

Table 2.1: showing some of the experimental works on bend channel dynamics (Source Blankert and Graf 

2001)   

   
        Profound as the contributions of laboratory scale experiments are to the understanding of bend 

channel dynamics, it is not in itself sufficient (as is every other tool in river dynamics research). While it is 

true that the relative cost of laboratory experiments compared to field measurements is less, conducting 

such experiments is still expensive. Also variation of parameters in order to determine cause and effect is 
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sometimes not easy in a laboratory setting. This is especially true with regards to varying geometric 

parameters where changing a parameter like the bend curvature could mean completely rebuilding the 

laboratory model several times. Modern measuring equipment has made measuring fluid data on a fine 

grid possible, however there are still limits to how fine such a grid can be. It is therefore clear that 

laboratory scale experiments alone cannot form the basis of a detailed study of river bend dynamics and 

as such there is the need for either a better study method or one that compliments experimental methods 

to produce better insight. Such a method is explored in the next section.    

2.4 Contribution of mathematical simulations to current knowledge     

      Another alternative to laboratory experiments and field measurements is the use of mathematical 

models in river dynamics research. This tool involves describing the dynamics of bend channel flows with 

mathematical equations (usually partial differential equations with the appropriate boundary and initial 

conditions imposed) which can then be solved (usually numerically) to better understand the dynamics of 

river bends. Mathematical model studies of river bend dynamics have been carried out by Booij (2003) 

and Stoesser et al. (2008), among others. These models have served as a complimentary tool to laboratory 

experiments and field studies. A perusal of literature reveals that mathematical models of river bends can 

be classified in terms of dimensionality. As such, there exist reduced order models like one- and two- 

dimensional bend models as well as full three-dimensional models. Reduced order models are so called 

because they use approximations of certain aspects of three dimensional flows in bends. For example, the 

two-dimensional model by Lien et al., (1999) approximates the vertical flow structure by averaging the 

velocity over the depth. Many one-dimensional river models are in existence today and can be categorized 

into linear models (Engelund, 1974, De Vriend 1977, Odgaard 1986), where the velocity strength is a linear 

function of the depth to radius ratio, and nonlinear models, where the velocity strength is a nonlinear 

function of the depth to radius ratio (Jin and Steffler 1993, Yeh and Kennedy 1993, Blanckaert and De 

Vriend 2004). In literature, the linear bend flow models give reasonably good results only in mild bend 
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channel since they fail to reproduce essential flow structures in even moderately tight bends. On the other 

hand, nonlinear river bend models reasonably reproduce essential flow features even in tight bends 

because they incorporate the feedback process between terms that models the dispersive forcing and the 

mainstream forcing. Despite these short comings, the linear models are still widely used in river 

management because of their reduced computational cost compared to nonlinear models.  

       The full three-dimensional bend flow models provide the closest approximation to reality. Since most 

natural river flows are turbulent with Reynolds numbers usually far exceeding 4000, solutions to these 

three dimensional river bend models must properly incorporate turbulence if they are to be of practical 

relevance. Based on turbulence resolution, mathematical river bend models can average the equations of 

fluid motion (known as the Navier-Stokes Equations) and model all of the turbulence. This approach is 

called Reynolds Averaging and it simulates the flow by solving for the average velocities while 

approximating the turbulent fluctuations via a model. A particularly popular turbulence model is the 𝑘 −𝜀  model (despite its short coming in river bend simulations, Booij 2003) where transport equations for 

the production of turbulent kinetic energy (𝑘) and its dissipation rate (𝜀) are solved. The solution to these 

are then used to calculate an eddy viscosity which can be used to compute the turbulent stresses. Other 

approaches to turbulence modelling in the Reynolds averaged framework include 𝑘 − 𝜔  and the Reynolds 

Stress Models (RSM) where six separate equations are solved (assuming symmetry of the Reynolds Stress 

Tensor) to get each of the six Reynolds stress terms. The Reynolds Averaged Navier Stokes (RANS) 

simulations are used widely in engineering design and planning because of their extremely low 

computational cost when compared to other approaches at incorporating turbulence into river bend 

models. 

       In situations where more flow details are required, river bend models can incorporate turbulence by 

resolving the eddy motions on the larger scales while modeling the smaller scale turbulence. This method 

is based on the philosophy that the large scales depend on the boundary conditions of flow and exhibit 
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anisotropy in turbulence behavior while the really small (dissipative) scales of turbulence are isotropic 

with little dependence on the large scale flow conditions. Such turbulence simulation techniques are 

referred to by the name Large Eddy Simulation (LES). LES provides a better picture of flow events in river 

bends but is computationally more expensive than the RANS approach described earlier. However 

because of recent advances in computer technology and speed, such that super-fast server computers are 

now cheaper, LES has become the preferred choice for research, with researchers like Booij (2003), Van 

Balen (2009) and Blanckaert (2009) carrying out extensive LES studies of bend channel dynamics. When 

even more detail than what a LES can provide is required, the Navier-Stokes equation can be solved by 

resolving the turbulence completely to the smallest scales called the Kolmogorov scales. This method is 

referred to as Direct Numerical Simulation (DNS) and is only possible in flows in simple geometries and 

limited Reynolds Numbers. For practical problems, the computational cost is extremely high and is thus 

almost never used in river mechanics. A review of literature shows that various mathematical modeling 

studies of all the types described so far has been carried out with varying degrees of success. Table 2.2 

reproduced from Shin (2014) summarizes some of the works in literature.     

2.5 Current scientific consensus concerning the dynamics of river bend flows 

      The progress made in understanding river bend dynamics has been remarkable, and culminates in 

what is today believed to be the scientific explanation of the various flow patterns observed in river bend 

flows. This explanation is summed up as follows. When a flowing fluid encounters a single channel bend 

it is subject to a centrifugal acceleration (
𝑣2𝑟  ). Since naturally the depth velocity profile for an open channel 

is such that velocity close to the surface is “free slip” (meaning that they are free to move and are hardly 

subject to boundary restraints) while those at the bed are “no slip “(meaning they are restrained by the 

presence of the boundary) the centrifugal acceleration has a variable effect on the depth profile of 

velocity. Thus the centrifugal acceleration pushes fluid close to the surface towards the outer bend while 

pushing fluid close to the bed towards the inner bend (Van Balen 2009). The fluid pushed outward 
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increases the flow depth towards the outer bend setting up the super-elevation of the free surface and 

introducing another factor: the radial pressure gradient. 

Table 2.2: showing some of the numerical simulation studies in bend channel dynamics (Source Shin 

2014).   
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     This interaction between the centrifugal acceleration and the radial pressure gradient sets up a force 

distribution (see figure 2.2) such that there is a main circulation cell in the plane perpendicular to the main 

stream direction of flow. This interacts dynamically with the mainstream flow to produce the three 

dimensional helical motion that has been observed in literature. Also observed in literature is the presence 

of a second counter rotating cell close to the top outer bank corner which cannot be explained by the 

interaction between the centrifugal acceleration and the radial pressure gradient alone. It has been shown 

in literature (Van Balen 2009, Blankert 2009) that this counter rotating cell (also known as the turbulence 

induced secondary cell) exists as a result of the complex interaction between the centrifugal acceleration 

and the turbulent stresses. It is therefore the consensus in the scientific community that bend channel 

dynamics can be described adequately by a main stream flow perpendicular to a plane with a two cell 

circulation structure where the bigger circulation is clockwise and the smaller cell at the top outer corner 

is counter-clockwise (see figure 2.3 for a schematic of the physics of an open bend channel flow). This 

creates the distribution of velocities and boundary shear stresses that has been observed extensively in 

literature. While this theory of bend channel flow has held for over 70 years and has so far allowed 

reasonably accurate modelling of river processes, can it really be true that all river bends with all the 

diverse boundary and flow conditions that can exist follow this simple three-dimensional helical flow 

model with a  two cell planer circulation structure ? This overarching question forms the basis of the 

research presented in this dissertation.                               

 

                                                      

 



17 

 

 

Figure 2.2: Schematic of the two cell circulation structure of flow in a bend (source Van Balen 2009). 

 

 

Figure 2.3: A schematic depicting the force distribution in a typical plain of a curved channel (source 

Julien 2002). 
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2.6 Summary  

      This chapter reviewed the literature in river bend dynamics from a historical perspective. Some of the 

earliest results in river dynamics were due to direct data collection. In the earlier sections of this chapter, 

the deficiencies of the various techniques used were detailed. Those sections also emphasized the 

contribution of field measurement campaigns to our current understanding of river bend flows. The 

chapter then goes on to detail the contribution of laboratory scale experiments to current knowledge. It 

is clear from a perusal of literature that significant contributions came because of improvements in 

laboratory instrumentation and data analysis techniques. The third section of this chapter detailed some 

of its short comings. Complementing laboratory scale experiments are mathematical models and the 

fourth section of this chapter discussed the details of such models with an emphasis on three-dimensional 

Computational Fluid Dynamics (including its deficiencies and advantages). Essentially Computational Fluid 

Dynamics (CFD) has become a viable tool in river dynamics research because of its flexibility, low cost and 

the availability today of affordable super-fast computers. The closing section of this chapter detailed the 

current scientific consensus concerning the physics of bend channel flows. The consensus is that any plain 

perpendicular to the mainstream flow in a curved channel has a two cell circulation structure with the 

bigger clock wise cell resulting from the interaction between the centrifugal acceleration and the radial 

pressure gradient while the smaller counter-rotating cell is a result of the complex interaction between 

the centrifugal acceleration and the Reynolds stresses. This combined with the mainstream flow forms 

the three-dimensional helical structure which has been observed extensively in literature.  In the next 

chapter, the numerical framework employed for this research is explained and its validation is presented.                               
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Chapter 3 

 

Numerical Methodology  

 

3.1 Preamble 

     This chapter introduces Computational Fluid Dynamics (CFD) as a tool and details the inner working of 

the particular CFD tools chosen for this research. Due to the relative scarcity of experimental data and the 

number of simulations carried out in this research, this chapter attempts to examine and validate the CFD 

tool chosen for this research once and for all. The essence is to prove that the code used is robust and 

accurate enough to capture the physics of fluid flow in a wide variety of river bends that this research 

would eventually examine. Thus after the validation in this chapter, results obtained from simulations in 

the coming chapters can be treated with some measure of confidence.  The next section of this chapter 

explains the mathematics of the Navier-Stokes equations which is the model used to simulate fluid flow. 

The discussion also includes the initial and boundary conditions (subsection 3.21), the turbulence 

modeling (subsection 3.22), and how the free surface is handled (subsection 3.23). In section 3.3 the 

computational code used is first validated by an examination of the hydraulics of the straight inlet 

(subsection 3.31), after which in subsection 3.32 the results of a simulation are compared with 

experimental data. A very important test of accuracy and robustness of any numerical tool (i.e. numerical 

tools that use meshing for discretization) is the invariance of results obtained with a change in mesh size. 

Therefore section 3.4 of this chapter presents findings from a grid sensitivity of the CFD tool used in this 

research and shows that the tool is accurate enough to reproduce the flow physics relevant to this 

research.  
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3.2 Background  

       The choice of Computational fluid dynamics as the primary tool for this research (in conjunction with 

physical reasoning and dimensional analysis) has been justified previously.  Computational fluid dynamics 

as a tool includes all steps taken to solve the equations of fluid motion in order to obtain a result. The 

equations of fluid motions are derived from Newton’s second law of motion which states that the rate of 

change of momentum of a moving body is proportional to the resultant of all the external forces acting 

on the body. However, because the law was formulated in a Lagrangian frame of reference (an 

inconvenient paradigm when dealing with many particles like is common in fluid dynamics), the equations 

are reformulated in an Eulerian framework. These equations together with the continuity equation are 

given in equations 3.1 to 3.4.  

1𝑟 𝜕𝜕𝑟 (𝑟𝑢𝑟) + 1𝑟 𝜕𝑢𝜃𝜕𝜃 + 𝜕𝑤𝜕𝑧 = 0 … … … … … … … … (3.1), 
 𝜕𝑢𝑟𝜕𝑡 + 𝑢𝑟 𝜕𝑢𝑟𝜕𝑟 + 𝑢𝜃𝑟 𝜕𝑢𝑟𝜕𝜃 + 𝑤 𝜕𝑢𝑟𝜕𝑧 − 𝑢𝜃2𝑟= − 1𝜌 𝜕𝑝𝜕𝑟 + 𝜗 (𝜕2𝑢𝑟𝜕𝑟2 + 1𝑟2 𝜕2𝑢𝑟𝜕𝜃2 + 𝜕2𝑢𝑟𝜕𝑧2 + 1𝑟 𝜕𝑢𝑟𝜕𝑟 − 2𝑟2 𝜕𝑢𝜃𝜕𝜃 − 𝑢𝑟𝑟2) … (3.2), 
 𝜕𝑢𝜃𝜕𝑡 + 𝑢𝑟 𝜕𝑢𝜃𝜕𝑟 + 𝑢𝜃𝑟 𝜕𝑢𝜃𝜕𝜃 + 𝑤 𝜕𝑢𝜃𝜕𝑧 + 𝑢𝑟𝑢𝜃𝑟= − 1𝜌𝑟 𝜕𝑝𝜕𝜃 + 𝜗 (𝜕2𝑢𝜃𝜕𝑟2 + 1𝑟2 𝜕2𝑢𝜃𝜕𝜃2 + 𝜕2𝑢𝜃𝜕𝑧2 + 1𝑟 𝜕𝑢𝜃𝜕𝑟 + 2𝑟2 𝜕𝑢𝑟𝜕𝜃 − 𝑢𝜃𝑟2 ) … (3.3), 
 𝜕𝑤𝜕𝑡 + 𝑢𝑟 𝜕𝑤𝜕𝑟 + 𝑢𝜃𝑟 𝜕𝑤𝜕𝜃 + 𝑤 𝜕𝑤𝜕𝑧= − 1𝜌 𝜕𝑝𝜕𝑧 + 𝜗 (𝜕2𝑤𝜕𝑟2 + 1𝑟2 𝜕2𝑤𝜕𝜃2 + 𝜕2𝑤𝜕𝑧2 + 1𝑟 𝜕𝑤𝜕𝑟 ) − 𝑔 … … … … … … … … (3.4), 
 

where 𝑢𝑟  is the velocity in the main stream direction. 

            𝑢𝜃  is the velocity in the cross stream direction, 
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            𝑤 is the velocity in the depth direction, 

            𝜌  is the density of the fluid, 

           𝑔  is the acceleration due to gravity, 

           𝑝  is the pressure. 

      These equations of motion known as the Navier Stokes equations (equation 3.2 to 3.4) are a complex 

mix of elliptical (the pressure term), parabolic (the viscous term) and hyperbolic (the nonlinear advection 

term and the local acceleration) terms. These terms are physically significant as they model the various 

aspects of fluid motion subject to the boundary conditions. Thus the advection term models the change 

in momentum, in the Eulerian frame this term consists of the local acceleration (the rate of change of 

velocity with time), and the convective acceleration (the rate of change of spatial components of velocity 

with the three spatial dimensions). This change in momentum must be balanced (according to Newton’s 

second law) by the resultant of all the external forces acting on a control volume.  The external forces can 

be broadly categorized into contact forces (which requires some form of contact to exert influence like 

the viscous force and pressure force), and the body forces which act throughout the control volume 

without a specific point of contact (like the gravitational force). These explains the structure of equations 

3.2 to 3.4. 

       In general, in order that the system of equations be determinate (having an equal number of 

equations and unknowns) the Navier Stokes equations are solved in conjunction with the continuity 

equation (equation 3.1). This equation (3.1) is derived from the principle that mass cannot be created or 

vanish during the flow process. The complexity in character of the Navier Stokes equations among other 

factors makes a closed form (analytical) solution impossible to find and hence, necessitate the use of a 

numerical approach. The numerical approach generally entails replacing a differential equation on a 

continuous domain with a set of algebraic equations on a discrete domain. This discrete domain is usually 

formed by (although there are other ways.) the intersection of lines at overlapping regular interval to 
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create a mesh. Meshes that are formed this way are called block or regular meshes and have the 

advantage of being easy to implement in a computer program. Then on these meshes, discrete equations 

approximating the nonlinear partial differential equations of motion are used to reformulate the problem 

in discrete space, this process is known as discretization.  

      There are several numerical solution schemes available but for this research the finite volume 

approach is used because of its wide use and its demonstrated ability to reasonably reproduce fluid 

physics under a wide range of conditions. Looking at the specific details, in the tool used in this thesis the 

equations of fluid motion are discretized with a first order forward in space finite volume scheme. The 

solution is formulated on a regular block mesh in such a way that the pressure coupling is implicit and is 

solved using the Generalized Minimal Residual Algorithm (GRMES) of Saad (1986). The solution is marched 

forward in time using an explicit first order scheme subject to the appropriate stability criterion. Since our 

scheme is first order accurate in time and space, extreme care has been taken to limit the size of the cells 

ensuring that the mesh used in every scenario is fine enough to produce reasonably accurate results. Also 

because of certain difficulties that may arise with the wide array of velocity and pressure distributions this 

research intends to examine, the dependent variable in the discrete equations are not all evaluated at the 

same set of discrete points, hence in the tool used the pressure is evaluated at the center of the respective 

control volumes while the velocities are evaluated at the faces of the control volumes. This formulation is 

called a staggered grid and has been found to be more robust in handling several types of velocity and 

pressure distributions.          

3.21 Boundary and Initial Conditions.   

        Boundary and initial conditions are an important part of the specification of the equations solved to 

obtain flow results. In this research a large number of simulations were carried out all with the same initial 

and boundary conditions. This was done so that cause and effect could be more easily isolated as different 

geometric and flow parameters are varied one at a time with every simulation. Thus at the inlet to the 
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various curved channels simulated, a volumetric flow rate is always imposed at the straight entrance, 

while the free surface and the outlet have atmospheric pressure boundary conditions imposed. All walls 

(including the bed) are hydraulically smooth so a no slip boundary condition without a roughness 

component was imposed. All channels are initialized with a stationary fluid at start time and allowed to 

run until steady state conditions are reached before results are extracted and processed.  

3.22 On the choice of LES 

        Most fluid flows of practical interest are turbulent, hence the process of incorporation of this 

phenomenon into the solution of the Navier Stokes equation is extremely important.  Of all the choices 

available, the statistical averaging technique has been used extensively to study flow in curved channels 

by many researchers including Demureen and Rodi (1986), Lenchester and Rodi (1979) and Shin (2014) to 

name a few. This method of representing the effect of turbulence (known as Reynolds Averaging) however 

suffers from a major short coming. Since Reynolds averaging is a type of statistical average, it is important 

to note that important detailed information such as the fluctuating turbulence is lost in the process and 

hence the turbulence has to be modeled. Thus, key information including fluctuating velocity patterns, 

vorticity and even intermittent turbulent burst structures that would have been useful in providing the 

much needed insight are lost. For this reason, other turbulence modeling techniques that provide more 

detailed information of the flow field would better serve the purpose of this research. Thus the large eddy 

simulation (LES) technique is adopted where the Navier-Stokes equations are solved directly on a 

computational grid. Scales that are smaller than the mesh resolution are modeled using a subgrid-scale 

(SGS) turbulence model. While modeling the subgrid scales might seem to defeat the aim of choosing LES 

over Reynolds Averaged Navier Stokes (RANS) simulations, it is worthy to note that this approach is better 

because the large scales are explicitly resolved, hence the flow can be simulated in much greater detail 

than with the RANS approach. Resolving the flow to the smallest possible scale (called the Kolmogorov 

scale) while appealing and definitely provides greater detail than LES, comes with the problem of extreme 
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computational cost. The number of grid points 𝑁 required for a direct numerical simulation (DNS) which 

also resolves the wall bounded areas in relation to the Reynolds number of the flow, scales as 𝑁𝛼𝑅𝑒9 4⁄  

(Pope 2000).  For a typical value of Reynolds number of about 10,000 which would be a common estimate 

for this study, more than 3 billion grid points would be required for a moderate sized domain at each time 

step. It is thus not feasible with the computational resources available today to perform a DNS for the 

problem at hand. Even though the computational cost reduces considerably for the LES study with grid 

point numbers that are about 2 orders of magnitude less than that required for DNS, the computational 

cost for LES that resolves the wall bounded regions is still prohibitively high. A more realistic 

computational cost is realized if instead flow close to the wall is modelled. In the specific tool used in this 

research the wall region is modelled using the standard law of the wall (equation 3.5).  

𝑢 =  𝑢∗ [1𝑘 𝑙𝑛 (𝜌𝑢∗𝑑𝜇 ) + 5.0] … … … … … … … … (3.5), 
     where 𝑢  is the parallel component of velocity computed adjacent to the wall. 

                 𝑢∗ is the shear velocity, 

                 𝜌  is the density of the fluid, 

                𝜇  is the coefficient of dynamics viscosity of the fluid, 

                𝑘  is the Von Karman’s constant, 

                𝑑  is the normal distance from the wall. 

      This implies that the treatment of turbulence eventually becomes a hybrid where the bulk of the flow 

is resolved using LES and the wall bounded region is treated using a RANS model of the k- 𝜀 flavor (Note 

that in this turbulence model k is the turbulent kinetic energy while 𝜀 is its dissipation rate). The usual way 

this is done is to assume local equilibrium between turbulent shear production and decay while k and 𝜀 are determined from equations (3.6a) and (3.6b). The reader is referred to Rodi (1980) and Demuren & 

Rodi (1986) for full details.  
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𝑘𝑇 = 𝑢∗2√𝐶𝜇  , (3.6𝑎) 

 𝜀𝑇 = 𝑢∗3𝑘𝑑 … … … … … ( 3.6𝑏), 
where 𝑘𝑇  is the production of turbulent kinetic energy, 

            𝜀𝑇  is the dissipation, 

            𝐶𝜇  is a model constant. All other terms have previously been defined. 

Concerning how the sub grid viscosity is handled, the tool used in this research uses the static sub gird 

model of Smagorinsky (1963) (equation (3.7)).     

 𝜗𝑠𝑔𝑠 = 𝐶𝑠2∆2|𝑆𝑖�̃�| … … … … … … … … (3.7), 
where 𝜗𝑠𝑔𝑠  is the sub grid viscosity, 

                 𝐶𝑠  Is the Smagorinsky’s constant,  

                 ∆ Is the filter length given by ∆= (∆𝑥∆𝑦∆𝑧)1 3⁄ ,     
                𝑆𝑖𝑗 Is the mean strain rate. 

 

3.23 The free surface  

         The free surface physics is an important part of the dynamics of open channel bend flow. However, 

simulating the free surface is not an easy task. In the past the vast majority of researchers including Van 

Balen (2009) and Shin (2014) have tried to circumvent this difficulty by assuming that the free surface 

behaves like a lid (or a slab) flowing passively with the fluid. This is called the rigid lid assumption. It has 

been argued in literature that even though this assumption introduces error into the simulation of open 

channel fluid flows, such errors are reasonably small as long as the Froude number is less than 0.5 

(Kashyap et al., 2012). However, such an approach to simulating the free surface would not serve this 

research well considering the wide array of flow regimes that would be explored. It is for this reason that 

the free surface solver known as the Volume of Fluid method is used in this research. The Volume of Fluid 
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algorithm consists of three steps: (1) Definition of a volume of fluid function that delineates the position 

of the fluid surface at some initial time (of course this function would change as the solution marches 

forward in time). (2) A method to solve the Volume of Fluid transport equation (equation 3.8).  

𝜕𝐹𝜕𝑡 + 1𝑉𝐹 [𝜕𝑢𝜕𝑥 (𝐹𝐴𝑥𝑢) + 𝜕𝑢𝜕𝑥 (𝐹𝐴𝑦𝑣) + 𝜕𝑢𝜕𝑥 (𝐹𝐴𝑧𝑤)] = 0 … … … … … … … … (3.8), 
where 𝐹  is the function that represents the free surface profile, 

                 𝑉𝐹  is the fluid volume fraction (fractional volume open to flow), 

                 𝐴𝑥  is the fractional area open to flow in the x direction, 

                 𝐴𝑦  is the fractional area open to flow in the y direction,  

                𝐴𝑧  is the fractional area open to flow in the z direction. 

All other terms have been previously defined.  

 

      This equation is formulated using the area and porosity function paradigm in a method known as 

F.A.V.O.R (Fractional Area/Volume Obstacle Representation Method) (Hirts and Sicilian 1985) which is 

especially suitable for the representation of complex geometry. It represents the volume of fluid per total 

unit volume. (3) Setting the boundary conditions at the free surface, since the density of the gas above 

the fluid is negligibly small compared to the density of the fluid, a uniform pressure is exerted at the 

surface boundary (see Hirts 1981 for full details of the Volume of Fluid free surface solver).          

       All the procedures described above are encapsulated in Flow 3D a commercial computational fluid 

dynamics code developed by Flow Science Inc. This is the CFD code that was used to perform all the 

simulations in this research.   

3.3 Validation   

       Computational fluid dynamics (CFD) is a tool, and like every other tool it has its strengths and 

weaknesses. Despite these weaknesses (which have extensively been discussed in previous sections), CFD 

as a tool comes with enormous advantages (which have also been extensively been discussed in previous 
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sections) which makes it indispensable in fluid mechanics research. The author of this thesis believes that 

the best way to use CFD is to minimize these weaknesses and build on its strengths. In building on the 

strengths of CFD, it must be shown that the particular code used can reasonably reproduce the relevant 

physics while minimizing error. This section is devoted to proving the validity of the CFD tool used in this 

research. First in validating the code, we examine the hydraulics of the straight portion of the channel. 

Because the fluid dynamics of straight channel flow is well established in literature and the goal is to 

isolate events in the bend, it must be shown that the fluid in the straight portion of the bend satisfies 

certain conditions given its length. This is done in the next section (section 3.31). The ultimate validation 

of a numerical code is perceived to be the ability of simulation results to reproduce and match 

experimental data. Hence section 3.32 provides results of a reproduction of experiments carried out on a 

bend section. The final section provides results from a grid sensitivity analysis of the CFD tool. Results 

from that analysis shows that the flow field solution is invariant with a change in mesh size. Essentially 

the aim of this section is to show once and for all that results produced by the CFD tool used in this 

research is reasonably accurate so that confidence can be established in its ability to reasonably describe 

the correct physics of what goes on in a bend.  

3.31 Hydraulics of the straight inlet  

        It is known from basic fluid mechanics that when a fluid enters a straight channel there is a region 

when the boundary layer is developing and hence the velocity profile is changing usually in the main 

stream direction. If the channel is long enough, then after some distance, the velocity profile should 

stabilize and become invariant with respect to spatial distance. In order to test the hydraulics of the 

straight inlet, two channels were selected (𝑅/𝑇𝑤 = 8.2  and 𝑅/𝑇𝑤 = 0.75) that represent both extremes 

of curvature. The straight inlet of both channels is 11 meters which is long enough to expect the velocity 

profile to be fully developed before encountering the bend. If our CFD code is indeed capturing the physics 

of the flow reasonably well, then at some point in the straight inlet the velocity profile must attain fully 
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developed status. Anything short of this would mean there is an undue mixing of changing velocity physics 

in the straight inlet with what should be non-uniform flow in the channel bend. This would make isolating 

events due to the curve difficult and would mean a violation of what we know from basics fluid dynamics 

of straight open channel flow.  Shown in Figures 3.1 and 3.2 are the streamwise velocity profiles for the 

two selected channels in the fully developed region. The velocity profiles are taken from 5 equidistant 

points in the traverse direction 0.05m from either side wall. Vertical velocity profiles along 10 longitudinal 

positions where taken. Figures 3.1 and 3.2 show that the flow gets fully developed as expected before the 

fluid enters the bend. This provides a measure of confidence that the tool can reasonably capture the 

complex flow physics in the channel.       

 

Figure 3.1: Fully developed stream wise velocity profiles in the straight inlet portion for the mild curve 

(𝑅/𝑇𝑤 = 8.2). (a) The velocity profile 0.05m from the left wall, (b) velocity profile 0.15m from the left 

wall, (c) velocity profile 0.25m from the left wall, (d) velocity profile 0.35m from the left wall (e) velocity 

profile 0.05m from the right wall.     



29 

 

 

Figure 3.2: Fully developed stream wise velocity profiles in the straight inlet portion for the tight curve 

(𝑅/𝑇𝑤 = 0.75). (a) The velocity profile 0.05m from the left wall, (b) velocity profile 0.15m from the left 

wall, (c) velocity profile 0.25m from the left wall, (d) velocity profile 0.35m from the left wall (e) velocity 

profile 0.05m from the right wall.     

 

3.3.2 Experimental validation  

       The most common form of CFD code validation in literature is to compare experimental data with 

simulation results. If the results of the simulation are reasonably close to that of the experiment, then the 

code is said to have been validated and a reasonable measure of confidence is established in the ability 

of the code to reproduce accurate results.   

    Our computational fluid dynamics code was validated using the experimental data of Booij (2003). A 

schematic of the experimental channel is shown in Figure 3.4. The experimental apparatus has an 11m 

straight inlet, to ensure that the flow was fully developed before encountering the bend (this was already 

validated in section 3.3.1), a 180 degree curve with a radius of 4.1 m and an outlet of 6.7 m. The channel 
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width is 0.5 m with hydraulically smooth walls and at uniform flow depth upstream maintained (for the 

initial condition only) at 0.052 m. All measurements were taken at steady state from 9 equidistant 

locations between two points 0.05 m from the side walls at the 135 degrees plane (see Figure 3.4). This 

experiment was repeated using CFD with a simulation time of 600 seconds which was more than enough 

time for the flow to be steady. While hydraulic details of the simulation are shown in Table 3.1, the 

validation results are shown in Figure 3.5 with panels 1, 2, and 3 showing the non-dimensional main 

stream, cross stream, and depth velocities respectively. It is clear from the results that there is excellent 

agreement between the mainstream velocities in the experiment and the simulation. This agreement is 

important as it shows that the simulation is capable of capturing enough of the relevant physics to 

establish confidence in results of other simulations. The velocity distribution across the width also shows 

good agreement. For much of the channel cross-section, especially in the central sections and the inner 

bank, the depth velocities show good agreement. However, at the outer banks, the depth velocities show 

big differences between experimental results and simulation. This discrepancy can be explained as by 

Booij (2003):  

‘’The LDV beam configuration used for measuring through the bottom yields the largest error in the 

already small measured value of the vertical velocity component W. Hence the reliability of the obtained 

depth velocity is relatively poor. ‘’    
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Figure 3.3: (a) Schematic of the curved open channel used to validate the CFD tool used in this research. 

Note all length measurements in the diagram are in meters. (b) The 135o section note the parts labelled 

1 and 9 show the progression of point where the velocity measurement are taken.   

 

       Another important aspect of the validation is the correct reproduction of the large scale vortical 

structures in the flow. Figure 3.6 shows the vortex structure at the 135 degree plain in the experiment 

performed by Booij (2003) while Figure 3.7 shows a reproduction of the results using the our CFD code. 

The correct reproduction of the vortex structure by our CFD code has two significant implications for the 

validity of our tool in this research. First concerning the correct reproduction of the main body cell, it has 

been stated in literature that the main body circulation is due to the interaction between the centrifugal 

forces and radial pressure gradient (both are large scale external forces). This means that the CFD tool 

chosen for this research is capable of reproducing the large scale physics of fluid flow correctly. Secondly 

concerning the correct reproduction of the counter rotating circulation cell close to the outer bend, 

literature attributes this phenomenon to the complex interaction between the anisotropy of the turbulent 

stresses and the centrifugal force (Van Balen 2009). Booij (2003) showed that computational models that 

do not reproduce the anisotropy of the turbulent stresses fail to produce the counter rotating cell in their 

results (compare Figure 3.8 (a) and (b)). Therefore, since our model reproduced the counter rotating cell, 
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the approach taken to the representation of turbulence (Large Eddy Simulation) is adequately capable of 

reproducing the small scales and adding this effects to the large scale physics.      

Table 3.1: Hydraulic details for the validation of experiment performed by Booij 2003.                                                        

R(m) B(m) H(m) Q(m^3/s) Uavg(m/s) Re Fr R/B R/H 

4.1 0.5 0.052 0.0052 0.2 10400 0.28 8.2 78.8 

 

Figure 3.4: Validation plot for the experiment carried by Booij 2003 the solid lines are the LES simulation 

while the dashed lines (--) are the experimental results. Top panel shows the non-dimensional mainstream 

velocity, second panel shows the non-dimensional traverse velocity, and the bottom panel shows the non-

dimensional depth velocity. All velocities are non-dimensionalized with the average velocity.              
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Figure 3.5: Results for the transverse velocity in the 135o cross section for the experiment by Booij 2003. 

 

Figure 3.6: A Computational Fluid Dynamics reproduction of the experiment shown in figure 3.5. 
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Figure 3.7: (a). The transverse velocity of a CFD simulation of the experiment by Booij using the k- 

turbulence model. (b). the same transverse velocity using a large eddy simulation model. 

 

 

3.4 Grid sensitivity analysis  

          In validating a computational code an important test of the robustness and accuracy is the invariance 

of simulation results with a change in mesh size. A drastic change in results due to mesh size variation 

could be an indication of error accumulation or some other deficiency with the tool and results obtained 

from such a tool should be treated with some suspicion. In this research a grid sensitivity analysis was 

performed. The open channel bend of Booij (2003) (used to validate the code in section 3.32) was chosen 

with grid sizes (in the horizontal plain) of 0.005m, 0.01m and 0.02m in an attempt to test variation of the 

results. Figure 3.8 shows the velocity plot at 9 equidistant positions at the 135 o plane taken at steady 

state. The plot shows that the results at various grid sizes are almost identical indicating that it is 

insensitive to variation in grid size. However, there is a large variation with grid size at the outer bank for 

the cell size 0.02 m as seen in Figure 3.8 for the main stream and traverse velocities. The reason for this 

large variation is that at such a low resolution (compared to the other simulations) the wall bounded 

region in the horizontal plain is poorly resolved leading to results with higher error. The vertical velocities 
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in all three panels remain identical because the grid size for all three simulations in the vertical dimension 

was maintained at the same value.                

 

Figure 3.8: Grid Sensitivity plot. Note the velocities in this figure was taken from the 135 o plain. The solid 

lines (-) are for the cell size 0.01 m, the dashed line (--) are for the cell size 0.02 m and the dotted lines 

(..) are for the cell size 0.005 m. Top panel shows the mainstream velocity, second panel shows the 

traverse velocity, and the bottom panel shows the depth velocity.  

 

3.5 Research framework  

      This section is used to set the context for the next three chapters of this dissertation (chapters 4, 5 and 

6) and a conclusion provides results that detail the contributions of this research to current scientific 

knowledge in open channel bend flows. These contributions come from a total of 22 computational fluid 

dynamics simulations studying various aspects of river bend flows. However, much like other scientific 

works, this thesis builds on previous attempts at understanding the physics of bend channel flow 

especially the work of Shin (2014). His research established the basic framework encapsulated in equation 
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(3.9) which form the foundation of our study. Nevertheless, there are big distinctions between this 

research work and that of Shin (2014).  

𝜏𝜌𝑈2 = 𝑓 (𝐿𝑐𝐷 , 𝑅𝑐𝐷 , 𝐹𝑟, 𝑅𝑒, 𝑆𝑜, 𝜀𝐷) … … … … … … … … (3.9), 
where 𝜏  is the shear stress, 

                 𝜌  is the fluid density, 

                 𝑈  is the fluid velocity, 

                 𝐿𝑐  is the length of the curve,  

                𝐹𝑟  is the Froude Number, 

                𝑅𝑐  is the Radius of curvature, 

               𝑅𝑒  is the Reynolds Number, 

               𝑆𝑜  is the slope of the channel, 

               𝜀  is the roughness height of the channel, 

              𝐷  is the flow depth. 

      One big distinction is that Shin (2014) was mainly interested in the distribution of boundary shear 

stresses (which is important for engineering design purposes) in an open channel bend with a view to 

parameterizing it in terms of a parameter called Kb (the ratio of the shear stress in the bend to the shear 

stress in the straight upstream channel) while this research focuses on examining the three-dimensional 

flow structure and dynamics of an open channel bend with a view to gaining better understanding of its 

physics. Moreover, equation (3.9) contains too many dimensionless groups and would greatly increase 

the time required for this study, therefore it would be desirable to make some more simplifying 

assumptions to reduce the number of dimensionless groups. In order to achieve this aim, it is assumed 

that the flow parameters are invariant with Reynolds number as long as the flow is turbulent. This is a 

reasonable assumption because in a turbulent flow the inertial forces are several orders larger than the 

viscous forces such that the counterbalancing effect of viscosity is virtually nonexistent. Another 

assumption is that the effects of changing the channel slope is negligible hence that dimensionless group 
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can be dropped from equation (3.9). While the slope plays an important role in natural rivers dynamics, 

the above assumption helps simplify our analysis while still maintaining the practical usability of our 

results since a slope typically just increases the inertia of the fluid. While roughness exists in natural rivers 

this research considers only smooth rigid boundaries with zero roughness. It is believed that future 

researchers can pick up from where this research stops and extend the results to boundaries with 

roughness. Applying the assumptions outlined above equation (3.9) becomes  

𝜏𝜌𝑈2 = 𝑓 ( 𝑅𝑇𝑤 , 𝐿𝑇𝑤 , 𝐹𝑟) … … … … … … … … (3.10) 

which defines the general framework this research would take (Note that the flow depth 𝐷 has been 

replaced by the top width 𝑇𝑤). Thus, Chapter 4 would study the effect of curvature variation on the three 

dimensional flow structure of an open channel bend. Chapter 5 would examine the effects of changing 

the curvature length on open channel bend flow physics, while Chapter 6 would study the effect of the 

variation of Froude’s number on the fluid dynamics of bend flows.  

       The bend geometries used in this numerical research are at a size scale of a laboratory replica of a 

natural river system. Nevertheless, this research is still applicable to river systems research for several 

reasons. One such reason is that even though natural rivers have larger flow depths than all of the 

numerical simulations carried out, the ratio in natural rivers of the main stream flow dimension to the 

depth is such that the general paradigm of the shallow water assumption still hold. This make our research 

relevant since the small flow depth used in our simulation is based on a shallow water assumption. 

Another reason why this research would be relevant is that despite the small Reynolds numbers of all our 

numerical models compared to natural river the basic assumption of turbulent flow is still realized. 

     To facilitate easier explanation in future chapters, this section of this thesis would be referred to as the 

Research framework section.                     
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3.6 Summary  

       This chapter discussed in general, computational fluid dynamics as a tool and in detail, the particular 

tool that would be used in this research. The numerical tool solves the three-dimensional Navier-Stokes 

equations on a regular grid using the finite volume approach. This tool which represents the dependent 

variables on a staggered grid resolves the free surface of the fluid by solving a transport equation for the 

fluid surface in a method known as the Volume of Fluid method (V.O.F). Turbulence is incorporated into 

the model by Large Eddy Simulation technique. Because of the high computational cost of resolving fully 

the near wall turbulence a wall function is used. This essentially means that the model is an LES-RANS 

hybrid where the main body turbulence is resolved with LES and the near wall turbulence is resolved using 

a RANS model of the k- 𝜀 flavor. Several rigorous tests including an examination of the hydraulics of the 

straight inlet and comparison with results of available experiments have been used to show that the code 

adopted can reproduce a wide range of flow physics anticipated in this research. Hence the conclusion is 

that the CFD code chosen in conjunction with physical reasoning and dimensional analysis constitute an 

adequate collection of tools with which better insight into the physics of river bend flows can be gained.              
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Chapter 4 

 

The effect of curvature on flow structure and dynamics of open channel bends  

 

4.1 Preamble 

       This chapter studies the effect of a change in curvature (defined as the ratio of the radius of curvature 

to the top width) on the three dimensional flow structure and dynamics of open channel bend flows. In 

order to study these effects, a large eddy simulation tool is utilized which incorporates the volume of fluid 

free surface solver (already detailed in Chapter 3) to obtain results for analysis. The results concerning the 

effects of curvature on the distribution of shear stress in open channel bend flows are analyzed in section 

4.3 after which section 4.4 looks at the evolution of velocity distribution with changes in channel 

curvature. Because of the importance of flow separation in fluid flows, section 4.5 examines in detail the 

boundary layer separation patterns in channels of different curvatures. In addition, since the rotational 

component of flow is crucial to a complete understanding of the flow physics in a bend, section 4.6 studies 

in detail the vorticity distribution and its evolution with channel curvature.  

4.2 Background   

       In the Research framework section of this dissertation (see Section 3.5) a framework for the study of 

curved open channel flow was established (equation (3.10)). In this section the first dimensionless group 

on the right hand side of equation (3.10) is studied. Specifically, the effects of a change in curvature 

(defined as the ratio of the radius of curvature 𝑅 to the top width 𝑇𝑤 ) on the three dimensional flow 

structure of an open channel bend. As has already been detailed in Chapter 2, several studies have been 

carried out on general bend channel flow dynamics by De Vriend (1981), Odgaard & Bergs (1988), Whiting 

and Dietrich (1993), Blanckaert & Graf (2001), Booij (2003), Blanckaert and De Vriend (2004), and  

Blanckaert (2009). In fact, there has been a couple of specific studies on the effects of curvature variation 

on bend channel flows (Kashyap 2012, Ottevanger 2011). Nevertheless, there are still a couple of factors 
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that leave room for improvements in the current understanding of the evolution of flow structure with 

changes in curvature. One such factor is the fact that the overwhelming majority of numerical studies 

carried out in this regard have used tools based on the Reynolds averaged Navier Stokes equations (see 

chapter 2). As has already been explained by Booij (2003), Van Balen (2009), and Blanckaert (2009), the 

Reynolds averaged equations with a turbulence model is incapable of reproducing some of the critical 

flow structures, hence a study of bend channel flows based on such an equation may not be the most 

appropriate in the present context. Even in bend channel studies that use LES, all the studies that have 

appeared in literature (to our knowledge) do not vary the geometry. While these studies provide valuable 

insight, it is known that a key parameter that affects the flow structure of a fluid in a bend is its curvature. 

Therefore, a proper understanding of the bend flow physics needs to include a component that studies 

the evolution of velocity distribution, vorticity structure, and shear stress distribution in a bend as the 

curvature changes.  

       Furthermore, choices of methods for resolving the free surface can introduce uncertainty. This is 

exemplified from the most popular method for resolving the free surface which assumes that the free 

surface is a rigid lid that flows with the fluid (Van Balen 2009). It has been argued in literature that as long 

as the longitudinal and traverse free surface slopes are small the errors introduced by this are not 

significant. Some studies have put the limit for the applicability of the rigid lid assumption at Froude 

Number <0.5 (Kashyap 2012) above which the errors can be expected to grow beyond acceptability. It 

should be noted however that while this limit was determined based on a sampling of curved channels of 

various curvatures, studies have shown (Ramamurthy et al., 2013) that there can be several instances 

where Froude’s number stays below this limit but numerical tools based on this assumption fail to capture 

the relevant free surface dynamics correctly. This is especially true in sharp curved open channels where 

large regions of extreme free surface gradients exist. Despite this, and the fact that majority of eddy 

resolving flow studies use the rigid lid assumptions, results from such studies have provided valuable 
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insight such that some understanding of the physics of open channel bend flows is known today. However, 

since this research strives for more than just a general understanding, especially in a field like river 

dynamics that is still plagued by uncomfortable uncertainties, this study eliminates the possibility of such 

free surface errors occurring by using the volume of fluid method (Hirts 1981). It is for these reasons that 

this chapter investigates the effect of curvature variation on the flow structure and dynamics using large 

eddy simulation. 

      In studying the effects of curvature, four simulations with 180 degree curved channels were 

performed. The inlet to each of the channel is 11m long to allow for the flow to become fully developed 

before encountering the bend, while the outlet is 6.7m long. This study varies the geometry of the curve 

by examining flow in four curvatures ranging from mild at 
𝑅𝑇𝑤 = 8.2   to tight at 

𝑅𝑇𝑤 = 0.75 (see Tables 4.1 

and 4.2 for details), Note that channels with curvature 
𝑅𝑇𝑤 < 3  are considered tight. This effectively means 

that the radius of curvature is varied since the top width remains constant for all channels. In order to 

enhance the isolation of the relevant physics the same initial and boundary conditions were imposed on 

all four simulations. At the upstream inlet a volume flow rate of 0.0052m3/s was imposed while the wall 

being hydraulically smooth has the no slip boundary condition. An atmospheric boundary condition was 

imposed on the outlet and the free surface. The fluid was initialized as stationary with a flow depth of 

0.052m and allowed to run up to steady state at which point all measurements in this chapter were 

collected. The hydraulic details are shown in Table 4.1 while the discretization details are shown in Table 

4.2. 
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Table 4.1: Hydraulic details for the four simulations conducted. 

 R(m) R/Tw R/H 

Simulation  1 4.1 8.2 78.80 

Simulation 2 2.0 4.0 38.46 

Simulation 3 1.0 2.0 19.23 

Simulation 4 0.375 0.75 7.212 

* Note that the width B(m), uniform depth upstream H(m), volume flow rate Q(m3/s), average velocity 

Uavg, Reynolds number Re and Froude’s number Fr remained constant at values given in table 1 above 

for all 4 simulations.     

 

         Table 4.2: Meshing details for the four simulations conducted. 

 Mesh Numbers Total Number Cells 

Simulation 1 3088 x 50 x 27 4168800 

Simulation 2 2428 x 50 x 27 3277800 

Simulation 3 2114 x 50 x 27 2853900 

Simulation 4 1918 x 50 x 27 2589300 

       

       In order to facilitate better understanding, each of the four simulations used in this chapter are given 

aliases. These would be denoted in capital letters with quotes to distinguish them from single letters in a 

sentence. All reference to simulation number should be cross checked with Tables 4.1 and 4.2 for details. 

The mildest curve with a curvature  
𝑅𝑇𝑤 = 8.2  associated with simulation 1 in the relevant tables is denoted 

as  ′𝐸𝑀′  which stands for extremely mild. The second channel with the curvature  
𝑅𝑇𝑤 = 4  associated with 

simulation 2 is denoted as  ′𝑀′  for mild. The channel with curvature 
𝑅𝑇𝑤 = 2 associated with simulation 3 

is denoted as  ′𝑇′ for tight. Finally the channel with curvature 
𝑅𝑇𝑤 = 0.75  associated with simulation 4 is 
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denoted as ′𝐸𝑇′ for extremely tight. These aliases would be used inter-changeably with the details of the 

various simulation runs for the remainder of this chapter.         

4.3 Shear stress distribution.  

      The distribution of the boundary shear stress reveals part of the dynamics of bend flows and is 

important from an engineering design perspective. This is because when designing curved channels or 

preparing a river training program, engineers need to know the distribution of forces exerted over the 

boundary area so that erosion, sediment movement, and other processes can be accounted for. A general 

exploration of the four channel runs in this study immediately reveal three distinct shear stress 

distributions. In the mild bends ‘EM’ and ‘M’, the maximum bed shear stress as the fluid moves into the 

curve is situated close to the outer wall and remains so till the exit (Figures 4.3 and 4.4). However in the 

tighter curves ′𝑇′ and ′𝐸𝑇′ there seems to be two different bed shear stress distributions. The tightest 

curve ′𝐸𝑇′ shows a shear stress distribution that never has its maximum close to the outer bend for the 

entirety of the bend length (Figure 4.1). The curve ′𝑇′ has a complex bed shear distribution such that 

initially the maximum bed shear is located close to the inner wall for more than three quarters of the 

curve length (this is different from the distribution in the mild channel were the maximum initially close 

to the inner bed at the inlet quickly shifts close to the outer bend a short angular distance from the inlet 

to the curve) after which the maximum moves close to the outer bend for the reminder of the curve length 

(see Figure 4.2). 
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Figure 4.1: Bed Shear Stress distribution for the tight curve (𝑅/𝑇𝑤 = 0.75). All radius are defined from 

the channel center line.       

 

        Figures 4.1 to 4.4 only provide the general trend of the bed shear stress distribution. In order to see 

the details of the shear force dynamics, various line plots in different dimensions have to be examined. 

The detailed exploration of the four channels begins at the inlet to the curve with Figure 4.5 showing the 

shear stress distribution. It is clear from this diagram that the maximum shear stress at the inlet to the 

curve is located close to the inner bend regardless of the curvature. This shear stress distribution at the 

inlet (for all the four channels) is indicative of the fact that the largest velocity gradients are situated close 

to the inner wall. The physical reasons why this is so will be explored in the next chapter of this thesis. The 

wall shear stress distribution follows the same patterns with the maximum wall shear stress exerted on 

the inner wall at the inlet.        
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Figure 4.2: Bed Shear Stress distribution for the tight curve (𝑅/𝑇𝑤 = 2.0). 

 

 

Figure 4.3: Bed Shear Stress distribution for the mild curve (𝑅/𝑇𝑤 = 4.0).   
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Figure 4.4: Bed Shear Stress distribution for the mild curve (𝑅/𝑇𝑤 = 8.2). 

       

       Moving away from the inlet into the bend, the bed shear stresses begin to exhibit different 

characteristics. The mild bends ′𝐸𝑀′ and ′𝑀′ (recall that a mild bend is one where 𝑅/𝑇𝑤 > 3) have their 

maximum bed shear stress shift quickly to the outer bend regions (see Figure 4.6). This is indicative of a 

shift in the region of high velocity gradients to the outer bend due to the effect of centrifugal acceleration 

and other forces as predicted by the standard theory of bend channel circulation (Blanckaert and De 

Vriend 2004). The tight bends ′𝐸𝑇′ and ′𝑇′ however, exhibit a different shear stress distribution as already 

hinted above with both (initially close to the inlet) having their maximum far away from the outer bend. 

For the bend ′𝑇′ what the general trend (Figure 4.2) does not reveal is that the channel has its maximum 



47 

 

shift gradually from the inner bend at the zero degrees plane to the middle of the channel at about the 

30o plane (see Figure 4.6a) after which the maximum begins to migrate again back to the inner wall and 

is at the inner wall by the 60o plane (Figure 4.6b). The bed shear stress then begins to adjust toward that 

of a zero shear gradient profile with the maximum shear stress values on the inner bend reducing and the 

values at all other positions increasing to form an almost horizontal shear stress distribution by about the 

95o plane . Afterwards the outer shear stress begins to grow and becomes the maximum till the bend exit 

(see Figure 4.6c and d). In essence the tight channel ‘T’ has the same stress distribution as the mild channel 

beyond about the 120o plane. 

 

Figure 4.5: Bed Shear Stress distribution at the inlet to the bend. Note H is the flow depth. 
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Figure 4.6: Bed Shear Stress distribution. Panel (a) shows the bed shear stress at the 30o plane , panel (b) 

show the bed shear stress at 60o plane , panel (c) show the bed shear stress at 120o plane , while panel 

(d) show the bed shear stress at 160o plane. 

 

       The tightest channel on the other hand starts with a maximum close to the inner bend and begins to 

develop an area of local maximum. This region of local maximum grows such that by the 30o plane a ‘bi-

modal’ bed shear stress profile emerges (see Figure 4.6a). This region of local maximum keeps growing 

such that by the 60o plane it has become the global maximum as shown in Figure 4.6b. This new maximum 

starts moving toward the inner wall and stays there till the bend exit. Therefore for the tightest channel ′𝐸𝑇′, at no position in the bend is the maximum bed shear stress ever at the outer bend, a peculiar shear 

stress distribution when compared to the other channels. The various wall shear stresses follow closely 

the distributions of their respective bed shear stress (see Figure 4.7). It is clear that for the most part in 
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the mild channels ′𝐸𝑀′ and ′𝑀′, the maximum wall shear stresses are exerted on the outer wall while for 

the tight channel ′𝑇′  its maximum is exerted on the inner wall for about 75% of the curve length and then 

shifts to the outer wall for the remainder of the channel length. The tightest channel  ′𝐸𝑇′ has its maximum 

exerted on the inner wall (Figure 4.7).     

 

Figure 4.7: Wall Shear Stress distribution. Panels (a), (c), (e), (g) show the inner wall velocities for 

30,60,90 and 120 degrees while panels (b), (d), (f), (h) show the outer wall shear stresses for 30,60,90 

and 120 degrees.     

 

      Despite the fact that this section has described fully the evolution of the boundary shear stress from 

curve entry to outlet, the details of the dynamics that drive this behavior has yet not been detailed. This 

is because more information is required to make sense of the various shear stress patterns that has been 

observed from our simulation results. Since the shear stress is a direct consequence of the velocity 
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gradient distribution, better insight can come from an examination of the velocity distribution. Therefore, 

in our journey towards understanding the physics of bend channel dynamics the velocity distribution will 

be examined in the next section.      

4.4 Velocity distribution  

        An examination of the distribution of velocity can help explain the pattern of boundary shear stress 

observed in the previous section in the respective channels. Figures 4.8 to 4.11 show the distribution of 

velocity on vertical planes spaced at 5 degree intervals. It is clear from these results that the distribution 

of velocity is dependent on the curvature of the channel. Thus, in the mild channels ′𝐸𝑀′ and ′𝑀′ (Figures 

4.8 and 4.9) the velocity distribution is such that at a short distance from the inlet, the streamlines (or 

regions) of higher velocities are skewed towards the outer bend regions while streamlines of lower 

velocities are packed close to the inner bend region. This is due to differential advection of the velocity by 

the effect of the centrifugal acceleration and the radial pressure gradient which, close to the free surface, 

pushes more energetic fluid towards the outer bend leaving less energetic fluid close to the inner bend. 

The tighter channels however seem to have different velocity distributions. For instance, the tight channel ′𝑇′ (Figure 4.10) seems to have its streamlines of higher velocity start close to the inner wall at the 

entrance to the curve, this distribution then shifts with the streamlines of higher velocities moving to the 

middle of the channel (occurring between about the 40 degree and the 90 degree plane). Finally, in the 

fully developed region of the flow (beyond 90 degrees) the streamlines of maximum velocities shifts to 

the outer bend for the remainder of the channel. The curve ′𝐸𝑇′ has a similar velocity distribution with 

the other curves only in the developing region (0 to 90 degrees). However, beyond 90 degrees the region 

of maximum velocity stays close to the middle or inner wall region (Figure 4.11). Hence, in the curve ′𝐸𝑇′ 
at no point is the region of higher velocity (and hence velocity gradients) ever close to the outer walls.  
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  Figure 4.8: Velocity distribution in the mild channel R/Tw = 8.2. 

 

       While Figures 4.8 to 4.11 shows the velocity distribution, these results also reveal clear signs of flow 

separation in certain parts of the bend in all the channels (both mild and tight). Since understanding the 

pattern of flow separation is critical to gaining better insight into the fluid mechanics of bend channel 

flows the next section is devoted to a detailed study of the flow separation patterns both in the convex 

inner bank region and the concave outer bank region and its implication for the flow physics in a river 

bend.     
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Figure 4.9: Velocity distribution in the mild channel R/Tw = 4.0. 
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Figure 4.10: Velocity distribution in the mild channel R/Tw = 2.0. 
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Figure 4.11: Velocity distribution in the mild channel R/Tw = 0.75. Note the dark blue colors are at the 

surface. 

 

4.5 Flow separation in an open channel bend  

       An abrupt change in curvature due to the geometry of a bend channel with a straight entrance can 

induce a boundary layer separation that could significantly shape the physics of an open channel bend. 

Understanding the effects of these boundary layer separation patterns could provide further insight 

concerning the events that occur when a fluid encounters a bend. It is for this reason that this section 

looks at flow separation in the four open channel bends in this section.  
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        Flow separation in natural meandering channels has been studied by Ferguson et al (2003), 

Frothingham and Rhodes (2003), Nanson (2010), Schnauder and Sukhodolov (2012) and in laboratory 

scale models of a tight bend by Blanckaert (2015). Despite the many studies that have appeared in 

literature, there is still no consensus as to the definition of what flow separation is. One popular definition 

is that proposed by Simpson (1989, 1996) which defines flow separation as a region in a fluid with a 

significant increase in the normal (away from) to the boundary component of velocity, which causes a 

shear layer and a thickening of the region of rotational flow between the boundary and the free stream. 

Using this definition, Simpson (1989,1996) identified two stages of flow separation in a bend channel flow 

based on a two-dimensional depth averaged analysis as shown in Figure 4.12. The first stage (or type) of 

flow separation occurs when there is a region of retarded flow in between the channel boundaries and 

the region of high speed velocity (this region of high velocity is referred to as the free stream velocity for 

the purpose of our discussion in this section). This is characterized by an inflection point in the velocity 

profile and the presence of a visible shear layer (see Figure 4.12a). Further downstream from the position 

of the flow separation, this shear layer diffuses such that there is a blurring of the line between the slow 

moving fluid and the free stream velocity (Figure 4.12c). In the second stage (or type) of flow separation 

the velocity profile drops below zero (Figure 4.12b) and a region of re-circulating flow emerges in the 

space between the channel boundaries and the free stream velocity (Figure 4.12d).  

       Blanckaert (2015) extended the definitions of flow separation to a three-dimensional paradigm, in 

which he described flow separation as a region of significant velocity gradients perpendicular to the main 

stream velocity. This region is characterized by slow moving fluid sandwiched between the boundaries 

and the free stream velocity. Despite the apparent consensus in literature (Bagnolds 1960 and Blanckaert 

2015) that no flow separation or development of an internal shear layer occurs in a mild bend (R/B > 3.5 

in Blanckaert 2015), the numerical results discussed in this section reveals that this might not necessarily 

be true. This consensus on flow separation being an exclusive property of tight channels may be the 
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reason why there has been no systematic study of the effect of curvature on flow separation patterns in 

a bend. This section aims to fill that knowledge gap.   

 

Figure 4.12: Definition sketch of flow separation. Panels (a) and (c) depicts flow separation of the first 

stage (or type) while panels (b) and (d) shows flow separation of the second stage (or type). Reproduced 

from Blanckaert (2015).     

 

        In channels ′𝐸𝑀′, ′𝑀′ ,and ′𝑇′ when a fluid coming from a straight channel encounters the bend, the 

momentum of the fluid tends to continue in its straight trajectory until it encounters the outer (concave) 

curve boundary. This continuous straight trajectory combined with the centrifugal acceleration ensures 

that there is differential advection of fluid towards the outer bank causing a tilting of the traverse free 

surface and hence a radial pressure gradient. Such a free surface configuration guarantees that fluids 

coming into the bend on the outer wall side experience an adverse mainstream pressure gradient while 

fluids entering the curve on the side of the inner (convex) wall accelerate as they are subject to a favorable 
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pressure gradient. Hence there is a transport of momentum towards the inner wall region at all parts of 

the water column close to the curve entrance except at the free surface. This guarantees that there cannot 

be a flow separation at the inner wall close to the entrance since the radial pressure gradient and the 

momentum transport towards the inner wall oppose it. As the fluid moves deeper into the bend it begins 

to feel the effect of the centrifugal force and develops enough inertia to overcome the radial pressure 

gradient. This means the fluid breaks away from the inner wall as it is advected towards the outer wall 

causing a boundary layer separation. As shown in Figure 4.13, as this detached flow moves further into 

the bend, it merges with the ‘free stream’ flow in what is clearly a first stage flow separation. An 

examination of the details of the flow separation from these results show clearly that it starts with a 

distortion of the vertical plane velocity and formation of a region of extremely slow fluid near the inner 

wall (see figure 4.15 b, c and d). 

 

Figure 4.13: Showing the surface velocity distribution and flow separation in a typical channel.  
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Figure 4.14: Showing the surface velocity distribution and flow separation in the tight curve R/Tw = 0.75.  

 

Figure 4.15: Transverse velocity distribution at the 30o plane . Panel (a) channel with curvature 0.75, 

panel (b) channel with curvature 2.0, panel (c) channel with curvature 4.0 and panel (d) channel with 

curvature 8.2   



59 

 

     While there is also a visible region of retarded flow close to the channel bed forming a visible shear 

layer, this does not qualify as flow separation because there is no significant component of normal to 

boundary velocity perpendicular to the bed. The flow separation on the inner wall region then continues 

to develop until it becomes invariant with space beyond the 90 degrees plane. It should be noted that the 

region of flow separation (seen close to the inner bank in all three channels) does not extend from the 

surface to the bed (see Figures 4.15 b, c, d and 4.16 b, c, d). This separation pattern creates a peculiar 

velocity distribution in the depth plane that is not present in other parts. Hence in the separation region, 

the velocity close to the surface is slow while the region beneath the flow separation close to the bed is 

fast in contrast with what is known for a channel without a flow separation. These results have been 

confirmed by other researchers including Blanckaert (2015). However, the story is quite different for the 

tightest curve ′𝐸𝑇’. When the flow encounters the tightest channel, there is mass transport due to the 

adverse outer wall pressure gradient as explained earlier. This, unlike the other channels, causes a visible 

boundary layer separation on the outer wall shown in figure 4.15a, as opposed to the boundary layer 

separation on the inner wall observed in the other bends. This outer boundary layer develops into a 

peculiar double region pattern previously unreported in literature (see the interior of the curve in Figure 

4.14). This boundary layer separation pattern creates two regions of high velocity, one extending from 

the inner wall to about half the width of the flow channel while the other is close to the bed almost 

completely surrounded by slow moving fluid (Figure 4.15a). These two regions of high velocity fluid 

eventually merge as the region of outer bank flow separation grows taking up more than half of the 

channel width by the 60 degree plain.  
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Figure 4.16: Transverse velocity distribution at the 145o plane . Panel (a) channel with curvature 0.75, 

panel (b) channel with curvature 2.0, panel (c) channel with curvature 4.0 and panel (d) channel with 

curvature 8.2   

 

      Eventually (very close to the channel outlet) the boundary layer pattern collapses to that of a v shape 

close to the inner wall similar to what is observed in the developing stages of the mild bends (see Figure 

4.16a). The flow separation patterns observed have significant consequences for mixing and the 

distribution of suspended sediments in the fluid.  

       Nevertheless, while it is clear that the three-dimensional velocity distribution plays a critical role in 

these observed patterns, it is still not clear why the more energetic fluid stays close to the inner bank for 

the most part in the tightest bend. Perhaps an examination of the vorticity distribution and the three-

dimensional vortex pattern may lead to unravelling this mystery.      
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4.6 Vorticity pattern in an open channel bend             

        An examination of fluid rotation can help illuminate unresolved knowledge gaps in the dynamics of 

open channel bend flows. All studies of angular motion in fluids begin with looking at the velocity gradient. 

The velocity gradient which is a second order tensor can be decomposed into a symmetric part 𝑆𝑖𝑗 known 

as the strain rate tensor and a skew symmetric part known as the vorticity tensor 𝜔𝑖𝑗. Aside from 

decomposing the velocity gradient tensor, a characteristic equation can be written for this tensor 

(equation 4.1).   

                                           𝜑3 + 𝑃𝜑2 + 𝑄𝜑 + 𝑅 = 0 … … … … … … … … (4.1), 
where 𝑃, 𝑄 and 𝑅 are invariants of the velocity tensor.  

While the vorticity which is defined as the curl of the velocity vector is a very popular measure of flow 

rotation in fluid dynamics, this section begins its inquisition into rotation patterns by looking at the Q 

criterion.  The second invariant of the characteristic equation (4.1) forms the basis of this Q criterion 

method and can be expressed as  

                        𝑄 = 12 (𝑡𝑟(�̅�)2 − 𝑡𝑟(�̅�2)) = 12 ‖�̅�‖2 − ‖𝑆̅‖2 … … … … … … … … (4.2), 

where 𝑄  is the Q criterion, 

            �̅�  is the velocity gradient tensor, 

            𝑡𝑟(�̅�) is the trace of the velocity gradient tensor. 

All other terms are as previously defined. 

 

     The Q criterion identifies a connected fluid region with a positive second invariant of the velocity 

gradient tensor (Holmen 2012). This criterion also requires that the local pressure be lower than the 

ambient pressure in the vortex. Thus the Q criterion essentially seeks regions in the fluid where the 

vorticity (or rotation) tensor is greater than the mean strain rate defining such a region as a vortex.    
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      Our results show that there are two distinct patterns of fluid rotation depending on the curvature and 

position in the channel. The mildest channel for instance has a relatively weak vorticity distribution as 

shown in Figure 4.17.  In Figure 4.17, the mild channel vorticity is so weak that only little traces of the 

mainstream and counter rotating circulations close to the outer bank are visible which suggests that the 

strongest vortices are in the outer bend regions in the channel (at an iso-surface value for Q criterion of 

250). However, as the channel tightness increases, the Q criterion shows that the vorticity in the main 

channel increases and is skewed towards the outer bank except in the tightest channel where it is skewed 

towards the inner and middle regions of the channel and is never at the outer bank (see Figures 4.18 to 

4.20).  

 

Figure 4.17: A plot of the Q criterion iso-surface colored with velocity magnitude for the mild channel 

R/Tw = 8.2  
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Figure 4.18: A plot of the Q criterion iso-surface colored with velocity magnitude for the tight channel 

R/Tw = 0.75  

 

Figure 4.19: A plot of the Q criterion iso-surface colored with velocity magnitude for the mild channel 

R/Tw = 4.0 
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Figure 4.20: A plot of the Q criterion iso-surface colored with velocity magnitude for the tight channel 

R/Tw = 2.0  

 

      Even greater details can be obtained from looking at a two dimensional planar circulation plots. Based 

on these circulation plots (as shown in Figures 4.21 and 4.22), there seem to also be two distinct regions 

of circulation in the channel. The first region is a region of developing flow where the fluid velocity changes 

with position (the range of angles for this region depends on the curvature). The second is the fully 

developed region beyond the 90o plane (this criterion was chosen based on the results of many 

simulations and literature) where the flow patterns are spatially invariant.  Therefore, after a thorough 

examination of both sets of plots, it is now clear that in a mild channel, when a flow encounters a bend, it 

is subjected to a centrifugal acceleration (in addition to a radial pressure gradient). Because of the sudden 

change in direction, the parcel of fluid reacts to the new external forces (centrifugal force and the radial 

pressure gradient force) slowly so that the inertia of the fluid begins to change gradually to a circular 

pattern and the full centrifugal acceleration is not felt in the entrance regions. Further downstream into 
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the bend this creates the main cell circulation which from the plots of traverse velocity (Figure 4.21) is the 

only circulation cell present in the developing region (approximately 0 to 90 degrees) of the mild curves. 

Further in the curve, after the full magnitude of the centrifugal acceleration is felt, a combination of the 

Q criterion and the two dimensional plot shows that its value is still weak relative to those of the tight 

channel so that the single cell circulation occupies the bulk of the fluid cross section throughout the 

channel in the developing and the fully developed regions of the bend. In addition to this main cell, a 

counter rotating cell close to the outer bank surface is also observed. It should be noted that our results 

show that this outer rotating cell occurs only in the ‘’fully developed’’ region of the channel. This outer 

cell has been studied in literature and has been attributed to the complex interaction between the 

centrifugal acceleration and the Reynolds stresses. Taken together, the results shows that in mild 

channels, a single cell circulation develops with a mild vorticity close to the bend entrance and spins up 

to its full value. However, because of the small value of the centrifugal acceleration at mild curvatures, 

this single clock wise cell is the only circulation cell present in the developing region. In the fully developed 

region, a second counter clockwise rotating cell develops close to the outer wall near the surface in 

addition to the main cell circulation forming the famous two cell circulation that has appeared in literature 

and is the basis for many reduced order models in river simulations.   
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Figure 4.21: Transverse velocity vector plots at the 30o plane. Panel (a) is for channel with curvature R/Tw = 0.75, panel (b) is for channel with 

curvature R/Tw = 2.0, panel (c) is for channel with curvature R/Tw = 4.0 and panel (d) is for channel with curvature R/Tw = 8.2        
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Figure 4.22: Transverse velocity vector plots at the 145o plane. Panel (a) is for channel with curvature R/Tw = 0.75, panel (b) is for channel with 

curvature R/Tw = 2.0, panel (c) is for channel with curvature R/Tw = 4.0 and panel (d) is for channel with curvature R/Tw = 8.2.
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Figure 4.23: Vorticity distribution contours at the 30o plane. Panel (a) channel with curvature 0.75, panel 

(b) channel with curvature 2.0, panel (c) channel with curvature 4.0 and panel (d) channel with 

curvature 8.2   

 

Figure 4.24: Vorticity distribution contours at the 145o plane. Panel (a) channel with curvature 0.75, 

panel (b) channel with curvature 2.0, panel (c) channel with curvature 4.0 and panel (d) channel with 

curvature 8.2. 
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         The case of the circulation pattern for the tight channel is different when compared with that of the 

mild channel. In order to understand the physics, a plot of the contours of vorticity in the developing and 

fully developed regions is shown in figure 4.23 and 4.24. These diagrams show that at the initial stages, 

the vorticity is developing with relatively low values for both the mild and tight channels (compared with 

the developed regions). Note that unlike the tight channels, the mild channels have their vortex contours 

confined closer to the boundaries leaving the bulk of the mid-section of the flow with no vorticity. 

Essentially the relatively small vortex magnitude (compared to the fully developed regions) creates the 

single cell circulation similar to that in the developing region of the mild channels. Notice however that 

the highest vortex strength in the developing region (while still relatively small compared to the fully 

developed region) in the tightest channel is more than three times that of the mildest channel. As the flow 

proceeds to its fully developed state, the vortex strength has almost doubled for all channels (as shown 

in figure 4.24). However, with the vorticity in the tightest channel still about 3 times greater than other 

channels, a single cell circulation in the tightest channel is no longer feasible. In addition to the magnitude, 

the distribution of the contours of high vorticity also contributes to the three cell circulation structure 

seen in the tightest bend. This is evident by comparing vorticity plots for ‘T’ and ‘M’. Hence, it is clear that 

in the tight curve when the fluid encounters the bend, it is subject to a centrifugal acceleration and a radial 

pressure gradient. This force imbalance between the centrifugal acceleration and the radial pressure 

gradient creates a single cell circulation in the regions from the entrance to about the 60o plane. Initially 

because of the sudden change in direction, the fluid parcel adjusts slowly so that it takes some time for 

the centrifugal acceleration to fully impact the inertia of the fluid. However, unlike the case of the mild 

channel the magnitude of the centrifugal acceleration is far greater for a tighter bend such that when the 

fluid parcel is subject to the full effect of its magnitude, the initial single cell circulation developed at the 

initial stages of the flow between the entrance and the 60o plane (part of the developing region) cannot 

be sustained. The single cell circulation therefore breaks into two clockwise circulation cells and is 
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maintained throughout the developed region of the flow. A counter rotating cell just like the one 

encountered in the mild channel develops for the same reasons explained earlier in the fully developed 

flow region of the tight bend. Together these results paint a picture of a single cell circulation in the 

developing regions of a tight channel and a three cell circulation in the developed region of the bend. 

While this has been hinted at in literature, there has been no explanation provided for the existence of 

this circulation structure. Our results show (especially in the tightest curve) that it is the magnitude of the 

centrifugal acceleration that is responsible for the intensity of the vorticity such that the single main cell 

clockwise circulation splits into two clockwise circulation cells in the developed region of the channel.        

4.7 A new type of flow regime  

       A recurring theme in this study is the distinct character of flow in the curve ′𝐸𝑇′ from the other three 

curves. A couple of examples include the shear stress where all other channels have their maximum move 

towards the outer bend as the fluid moves into the curve except the curve ′𝐸𝑇′  where the maximum 

shear stress stays on the inner bend the entirety of the curve. Another example is the velocity distribution 

where the region of flow separation is on the inner (convex) wall except in the curve′𝐸𝑇. Several more 

examples exist of the peculiar character of the curve ′𝐸𝑇′ which curvature effects alone cannot explain. 

This raises more questions concerning the dynamics of the flow in this particular curve and further 

examination aimed at revealing the details of the flow physics revealed a new type of flow regime. This 

regime is characterized by an unsteady type of periodic motion even after the simulation has run long 

enough for the flow to have reached steady state. A thorough study of our results showed that this flow 

character emerged (at a turbulent Reynolds number) due to the tightness of the bend and its complex 

interaction with a strong centrifugal acceleration. These complex interactions result in a unique flow 

separation pattern where two adverse pressure regions exists on different sides of the curve (see Figure 

4.14). Therefore, there is a region of flow separation in the near field region close to the outer bend and 

a second large region of flow separation close to the inner bend in the far field. These two regions 
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represent a space of extreme shear at which the flow configuration breaks down to instability. Eventually 

the flow finds a new equilibrium downstream in the form of a periodic motion similar to that of a Von 

Karman vortex street in the immersed two dimensional cylinder problem. Further visualizations (not 

shown here) of the results indicate that (because the flow is sub-critical) information is propagated back 

upstream thereby modifying the flow conditions in a periodic fashion. This creates a very complex flow 

that is varying in time which (to the knowledge of this author) has never been reported in literature. One 

immediate implication of this result is that below certain curvatures the flow is never strictly steady as the 

flow structure and dynamics of such bends is a function of time.  

4.8 Summary   

        In this chapter the effect of curvature on the three-dimensional flow structure and dynamics of open 

channel bend flow was investigated. The investigation was carried out with large eddy simulations of four 

open channel bends with curvatures ranging from mild 
𝑅𝑇𝑤 = 8.2  to tight  

𝑅𝑇𝑤 = 0.75 . Care was taken to 

resolve the free surface with the volume of fluid method to improve accuracy of simulation results. The 

results obtained from this chapter confirm some of the results that are already known from literature but 

more importantly, provide new insights into the dynamics of bend flows previously unreported in 

literature. 

        The simulation results confirm, among other things, the two cell circulation structure that has 

previously appeared in literature (Van Balen 2009, Blanckaert, and de Vriend 2004) and lend credence to 

the fact that indeed the main circulation cell is caused by the complex interaction between the centrifugal 

acceleration and the radial pressure gradient. Also, results from the simulations in this chapter confirm 

that differential advection caused by the imbalance of forces acting on the bend channel control volume 

plays a crucial role in the distribution of the bed and wall shear stresses. In addition, a couple of new 

insights emerged. One such new insight is that regardless of the curvature of a bend, the maximum bed 
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and wall shear stresses at the channel inlet and regions close to the inlet, (0 to about 15o) are exerted on 

the inner bed and wall region respectively. It should be noted that past isolated studies had shown larger 

inner bend shear stress at the inlet to the curve but did not cover a sufficiently broad range of curvatures 

to show that this shear stress behavior was independent of curvature. While the two cell circulation 

structure has appeared in literature and is known to researchers in the hydraulics community, findings in 

this chapter provides new understanding on the two cell circulation structure. The present results show 

that in the developing region of a bend channel (regardless of curvature), the flow structure is that of a 

single cell circulation (and not the two cell circulation). In the fully developed region of the bend flows, 

the circulation structure depends on the curvature with the mild channel exhibiting the standard two cell 

circulation structure and the tight channel exhibiting a three cell circulation structure. Even though the 

study Koken et al., 2013 (the only study to our knowledge) hinted at the possibility of a three cell 

circulation, the physics behind this circulation structure was previously unclear. It is now clear from a 

thorough examination of the transverse velocity distribution and the magnitude of the vorticity contours 

at various planes for all the channel that in a tight bend the centrifugal acceleration is far greater than for 

corresponding positions in a mild bend. This high magnitude of the centrifugal acceleration impacts a 

vorticity of high magnitude on the fluid in the given control volume such that a single main cell circulation 

(as was observed in the mild channel) is unsustainable. The dynamics therefore responds to this high 

vorticity by splitting the main cell circulation into two clockwise circulations. This combined with the outer 

wall counter rotating cell that has been attributed in literature to an-isotropy of the turbulent stresses 

gives rise to a three cell circulation structure in a tight bend. 

      In all the channels simulated, the Q criterion suggest that the highest vorticity is skewed towards the 

outer bend except in the tightest curve  ′𝐸𝑇′ where it is either on the inner bend or in mid cross section 

of the flow. Similarly the bed shear stress distribution of all the curves are “uni-modal” with the maximum 

shear stress shifting to the outer bend region at some point in the curve except the tightest curve ′𝐸𝑇′ 
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where the maximum shear stays on the inside. This consistent peculiar behavior of the tightest curve ′𝐸𝑇′ 
led to a separate examination of its dynamics. This separate examination revealed a unique flow 

separation pattern at both wall boundaries of the tightest curve. This flow separation pattern causes 

extreme perturbation of the fluid flowing through the bend such that the flow breaks down to instability. 

This instability leads the whole flow system to settle into a new equilibrium which is of a periodic motion 

in the outlet channel similar to that of a Von Karman vortex street in the two dimensional immersed 

cylinder problem. Because the flow is subcritical, information can propagate back upstream hence the 

periodic equilibrium flow in the outlet periodically modifies the hydraulics conditions upstream leading to 

a complex time varying flow regime which to the knowledge of this author has never been reported in 

literature. Finally, while it is widely accepted in literature (Blankert 2015) that convex (inner) bank flow 

separation occurs exclusively in tight bend channels, the simulation results in this chapter combined with 

physical reasoning has shown that this cannot be true as flow separation of various kinds (including from 

the concave bank) occurs at every curvature. 

      Several questions still exist that this chapter has not yet answered. One such question is why the region 

of high velocity gradients and shear stresses stay close to the inner bend only in the tightest curve ′𝐸𝑇′  
for the entirety of the channel length. Perhaps more information and insight needed to answer this and 

more questions concerning bend channel flows can be obtained examining the effect of curvature length 

(which is the second dimensionless group in equation (3.10) in the research framework section) on the 

dynamics and flow structure of bend channel flows.  This is the subject of the next chapter of this 

dissertation. 
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Chapter 5 

 

The effect of curvature length on the flow structure and dynamics of open channel bends.   

 

5.1 Preamble   

        This chapter examines the effect of variation in curvature length on the three dimensional flow 

structure and dynamics of bend channel flows. In order to accomplish this task 12 simulations of various 

channel lengths were carried out using the computational fluid dynamics code already detailed in Chapter 

3. After a brief description of the various geometric and dynamics conditions in Section 5.2, Section 5.3 

examines the evolution of the shear stress distribution as the curvature length changes. Section 5.4 

studies the characteristics of the velocity distribution as the curvature length varies while Section 5.5 

explores the free surface dynamics in an attempt to explain distribution of shear stress and velocity 

observed in Sections 5.3 and 5.4. In Section 5.6 the evolution of the circulation structure as channel length 

changes is thoroughly examined. This chapter aims to provide a better understanding of the effect of 

curvature length on the dynamics of bend channel flows.                           

5.2 Background   

       The study of the curvature effects in the previous chapter (chapter 4) provided new insights into the 

dynamics of bend channel flows. It also raised a couple of questions that cannot be answered by just 

varying the curvature. For instance, varying the channel curvature did not immediately reveal why the 

maximum shear stress in the tightest channel stayed close to the inner bend for virtually the entirety of 

the bend length. A particularly interesting question pertains to the vortical structure in a bend. In the 

mildest channel, there is a developing flow region (from the 0O entrance plane to the 85O plane) where a 

single cell circulation exists. However, as the fluid moves through the channel, it gets fully developed 

reaching a spatially invariant two cell circulation at about the 90O plane (see chapter 4 for details). What 

happens if the channel length is shortened (keeping the radius unchanged) such that there is no 90O 
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plane?  For example, what would the flow structure look like if the curve (bend) length is shortened to say 

a 30O mild bend? Does the flow still have a developing region with a single cell circulation and a fully 

developed region with a spatially invariant circulation structure as seen in the 180O bends studied in 

chapter 4?  If so, is that fully developed vortical state a two cell circulation that exists in a 180O mild bend? 

In order to answer these and other related questions, the effect of a variation in curvature length on the 

three dimensional flow structure and dynamics of open channel bend flows is investigated using numerical 

simulations. 

       As has already been detailed in Chapter 2, several bend channel studies exist in literature. Some were 

experimental studies of mild channel with rigid beds (Booij 2003) while others were experimental studies 

of mild channels with erodible beds (Odgaard & Bergs 1988). There have also been experimental studies 

of tight bends with erodible beds, (Blanckaert & Graf 2001, Blanckaert & De Vriend 2004). Complimenting 

experimental studies are various types of numerical studies looking at various aspects of bend channel 

dynamics such as those by Engelund (1974), De Vriend (1977), Odgaard (1986) Jin and Steffler (1993), Yeh 

and Kennedy (1993), Booij (2003), Stoesser et al. (2008), Van Balen (2009) and Blankert (2009). Despite 

the large body of work on bend channel dynamics in literature there has been no systematic study on the 

effect of variation of curvature length on the three dimensional flow structure and dynamics of open 

channel bend flows. It is therefore the aim of this chapter to fill in this knowledge gap. In an attempt to 

close the knowledge gap enumerated above, large eddy simulation of bend channel flows of various 

curvature lengths using a volume of fluid free surface solver as already detailed in Chapter 3 were carried 

out. Based on equation (3.10) in Section 3.5, and the fact that the curvature length is a function of two 

parameters as shown in equation 5.1, two curvature radii were chosen to constrain the number of 

simulations required for this study. 

                                                                𝐿 = 𝑅𝜃, … … … … … … … … (5.1)          

where 𝐿  is the curvature length, 
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            𝑅  is the radius of curvature, 

            𝜃 is the curvature  angle. 

Hence one set of simulations were run with a mild curvature of  
𝑅𝑇𝑤 = 8.2   and another set with a tight 

curvature of  
𝑅𝑇𝑤 = 0.75. Effectively, constraining the curvature radius means the length of curvature can 

be varied by just changing the bend channel angle (as can be seen from equation 5.1). Therefore for each 

curvature radius, 6 simulations were run at  0𝑜, 30𝑜, 60𝑜, 90𝑜, 120𝑜, 150𝑜  and 180𝑜 for a total of 12 

simulations, to study the effect of variations in curvature length on the flow structure of bend channel 

flows.  

      To make our discussion easier, in this chapter each channel would have an alias just like in the previous 

chapter, with MB for mild bend and TB for tight bend. Attached to this two letter code would be the 

channel length in degrees, thus the 180 degrees mild channel in this chapter would be referred to as 

MB180 while the 30 degrees tight channel would be referred to as TB30.      

       To facilitate the isolation of cause and effect in this study similar upstream and downstream 

geometries were used for all the 12 channel simulations carried out. For each channel there is an upstream 

straight inlet of 11 m chosen to make sure that the fluid reached a fully developed state before 

encountering the bend. Downstream of each curve is a straight outlet of length 6.7 m. For both inlet and 

outlet straight channel the flow cross section is that of a rectangle with a width of 0.5 m (see Figure 5.1 

for the details of a typical channel used). In all the simulation runs carried out, the same initial and 

boundary conditions were imposed for reasons already highlighted above. Thus at the entrance to the 

straight inlet channel a volume flow rate boundary condition of 0.0052 m3/s was imposed while 

atmospheric boundary condition was imposed at the downstream outlet and the free surface of the fluid. 

Because the side wall and bed were assumed smooth, a no slip boundary condition without a roughness 

component was imposed on the walls and bed. All simulations were initialized as stationary with a flow 
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depth of 0.052m and allowed to run up to steady state before simulation results were collected. Hydraulic 

details of all the simulations carried out in this chapter are provided in Tables 5.1, 5.2 and 5.3.  Using these 

numerical simulations, physical and dimensional reasoning, this chapter would attempt to provide some 

insights into the effects of varying curvature length on open channel bend flow dynamics.    

 

Figure 5.1: Schematic diagram of the typical mild channel used in this chapter. The bend angle (60O in 

this particular case) is varied from 30O  to 180O to  analyze the effect on bend flow structure. Note all 

linear length measurements in the diagram are in meters and all angular length measurements are in 

degrees.     

 

Table 5.1: General hydraulic details for all 12 simulations conducted in this chapter. 

B(m) H(m) Q(m3/s) Uavg(m/s) Re Fr 

0.5 0.052 0.0052 0.2 10400 0.28 

Note B (m) is the channel width, H (m) is the flow depth, Q (m3/s) is the volume flow rate, Uavg (m/s) is 

the average velocity, Re is the Reynolds number and Fr is the Froude number.      
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Table 5.2: Geometric parameters for varying the length at the mild curvature (R/Tw = 8.2). 

 L(m) L/Tw(degrees) Mesh Dimensions Total cell count 

Simulation 1 2.15 30 2015 x 50 x 27 2720250 

Simulation 2 4.30 60 2230 x 50 x 27 3010500 

Simulation 3 6.44 90 2444 x 50 x 27 3299400 

Simulation 4 8.59 120 2659 x 50 x 27 3589650 

Simulation 5 10.73 150 2873 x 50 x 27 3878550 

Simulation 6 12.88 180 3088 x 50 x 27 4168872 

Note L (m) is the arc length and L/Tw is the dimensionless arc length in degrees.    

 

Table 5.3: Geometric parameters for varying the length at the tight curvature (R/Tw = 0.75). 

 L(m) L/Tw (degrees) Mesh Dimensions Total cell count 

Simulation 1 0.20 30 1820 x 50 x 27 2457000 

Simulation 2 0.39 60 1839 x 50 x 27 2482650 

Simulation 3 0.60 90 1860 x 50 x 27 2511000 

Simulation 4 0.79 120 1879 x 50 x 27 2536650 

Simulation 5 0.98 150 1898 x 50 x 27 2562300 

Simulation 6 1.18 180 1918 x 50 x 27 2589300 

 

5.3 Shear Stress  

      The distribution of shear stress plays a critical role in the dynamics of bend channel flows, especially 

in revealing the forces the flowing fluid exerts on its boundaries (the bed and side walls). While this study 

is strictly about bend channel flows in rigid boundaries, shear stress results obtained from this study can 

reveal potential erosion and deposition patterns in erodible channels of similar geometry. Thus the shear 

stress results would be useful from an engineering design perspective and in revealing the physics behind 

the flow structure that would be observed as this chapter proceeds.  

        A specific examination of the series of numerical experiments carried out in this chapter reveals two 

distinct shear stress distribution patterns in the bend channel at various curvature lengths. In the mild 

bend (recall that the mild bend has  
𝑅𝑇𝑤 = 8.2 ) regardless of curvature length the pattern of maximum 

shear stress distribution is towards the inner bend in the region close to the entrance to the curve and 

towards the outer bend as the fluid moves further into the channel (see figures 5.2 to figure 5.4). A 
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thorough review of all results shows that when the fluid coming from the straight inlet channel encounters 

a bend, it experiences an adverse pressure gradient on the outer wall side and a favorable pressure 

gradient on the inner wall side. This is due to the slow speed of the fluid inertia adjusting to the curved 

geometry and the influence of the centrifugal acceleration which causes fluid in the bend to accumulate 

at the outer wall causing a tilting of the traverse free surface. Thus, the momentum coming from the 

straight inlet encountering the bend is pushed towards the inner wall at the entrance region as that region 

experiences an acceleration because of a favorable pressure gradient. This results in situating the 

streamlines of higher velocity close to the inner wall at the entrance region. Because the velocity must 

vanish at the wall (no slip boundary condition) this implies that the regions of higher velocity gradients 

are close to the inner wall. Since shear stress is a function of the velocity gradient, the maximum bed and 

wall shear stresses are therefore exerted on the inner bed and wall regions respectively at the entrance 

region to the curve (see Figure 5.2 (a), (b) and 5.4 (a), (b)). However, as the fluid moves into the bend the 

effect of the centrifugal acceleration becomes more pronounced and the fluid of higher velocity is 

advected towards the outer wall region (especially those close to the surface). This sets up an extreme 

velocity gradient (no slip condition at the bed) in the horizontal plane causing the maximum shear stress 

to shift towards the outer bend. Similarly, the combination of fluids of higher velocities on the outer bend 

coupled with the no slip boundary condition at the outer wall is responsible for the position of the 

maximum wall shear stress being at the outer wall. This shear stress distribution pattern holds for the 

remainder of the channel as shown in Figures 5.3 and 5.4. 
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Figure 5.2: Bed shear stress plot of the mild channel R/Tw = 8.2. Note the angles in the legend denote the 

various channel lengths. Panel (a) shows the bed shear stress at the 0O  plane (or curve entrance) while 

panel (b) shows the bed shear stress at the 5O  plane . Panel (c) shows the bed shear at the 10O  plane  

while panel (d) shows the bed shear stress at the 15O  plane .       
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Figure 5.3: Bed shear stress plot of the mild channel R/Tw = 8.2. Note the angles in the legend denote the 

various channel lengths. Panel (a) shows the bed shear stress at the 20O plane while panel (b) shows the 

bed shear stress at the 25O  plane . Panel (c) shows the bed shear at the 30O plane while panel (d) shows 

the bed shear stress at the 35O  plane. Note the trend of maximum shear stress at the outer bend and 

minimum shear stress at the inner bend continues till the channel exit.      
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Figure 5.4: Wall shear stress plots for the mild channels R/Tw = 8.2 . Note the angles in the legend denote the channle length. Panel (a) shows the 

inner wall shear stress at the 0O plane, panel (b) shows the outer wall shear stress at the 0O plane. Panel (c), (e), (g), (i), (k), (m) show the inner 

wall shear streses at the 5, 10, 15, 20, 25, 30 degree planes. Panels (d, (f), (h), (j), (l), (n) show the outer wall shear streses at the 5, 10, 15, 20, 25, 

30 degree planes, respectively.
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        The shear stress distribution for the tight channel (  
𝑅𝑇𝑤 = 0.75) showed a different pattern regardless 

of the curvature length. While the mild channel length exhibited a uni-modal pattern of cross stream shear 

with a single maximum, the shear stress pattern for the tight channel at all curvature lengths initially 

exhibited a bi-modal cross sectional shear stress distribution as shown in Figures 5.5 and 5.6. Also, from 

Figures 5.5 to 5.8, it can be seen that (unlike in the mild channels) at no curvature length was the maximum 

shear stress close to the outer wall. The maximum stress was always closer to the inner wall. While the 

results from Chapter 4 hinted at the possibility of this shear stress pattern, neither the plots here or in the 

previous chapter reveals the physics of this peculiar shear stress distribution. In order to explain why this 

occurs, an examination of the velocity distribution is done in next section to provide some physical 

meaning to the shear stress patterns observed in the tight bends at various curvature lengths.      
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 Figure 5.5: Bed shear stress plots for the tight channels R/Tw = 0.75 from 0O to the 35O  planes. Note the angles in the legend denote the channel 

length. Panel (a) shows the bed shear stress at the 0O  plane, panel (b) shows the bed shear stress at the 5O plane, panel (c) at the 10O plane  

while panel (d) at the 15O plane. Panels  (e), (f), (g), (h) show the bed shear stress at the  20, 25 ,30 ,and 35 degree planes, respectively. 
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Figure 5.6: Bed shear stress plots for the tight channels R/Tw = 0.75 from 40O  to the 75O planes. Note the angles in the legend denote the 

channle length. Panel (a) shows the bed shear stress at the 40O plane, panel (b) shows the bed shear stress at the 45O plane, panel (c) at the 50O 

plane while panel (d) is at the 55O plane . Panels  (e), (f), (g), (h) show the bed shear stress at the  60, 65 ,70 ,and 75 degree planes. 
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Figure 5.7: Bed shear stress plots for the tight channels R/Tw = 0.75 from 80O to the 115O planes. Note the angles in the legend denote the 

channle length. Panel (a) shows the bed shear stress at the 80O plane, panel (b) shows the bed shear stress at the 85O plane, panel (c) at the 90O 

plane while panel (d) at the 95O plane. Panels  (e), (f), (g), (h) show the bed shear stress at the  100, 105 ,110 ,and 115 degree planes. 
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Figure 5.8: Bed shear stress plots for the tight channels R/Tw = 0.75 from 120O to the 155O planes. Note the angles in the legend denote the 

channle length. Panel (a) shows the bed shear stress at the 120O plane, panel (b) shows the bed shear stress at the 125O plane, panel (c) at the 

130O plane while panel (d) at the 135O plane. Panels  (e), (f), (g), (h) show the bed shear stress at the  140, 145 ,150 ,and 155 degree planes.
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5.4 Velocity Distribution  

        The velocity distribution determines not only the distribution of velocity gradients, but also the 

distribution of shear stresses in an open channel bend. Therefore, more insight may be gained into events 

responsible for the various shear stress distributions encountered in the previous section, especially of 

that in the tight channel.  

        Figures 5.9 and 5.11 shows the velocity distribution in the mild channels MB30 and MB150. These 

two channels show velocity distributions that are typical of the mild bends regardless of the curvature 

length. The velocity distribution shown in these figures is as expected given the known result of the 

interaction between the centrifugal acceleration and the radial pressure gradient. Hence at the inlet to 

the curve, an adverse pressure gradient at the outer wall and a favorable pressure gradient at the inner 

wall ensures that the bulk of the fluids momentum is pushed toward the inner wall (explained in Chapter 

4 and in the previous section of this chapter). The streamline plots shown in figures 5.10 and 5.12 help 

visualize this better. As the fluid moves deeper into the bend, fluid closer to the surface begin to feel the 

full impact of the centrifugal acceleration and move towards the outer wall while fluid close to the bed 

move closer to the inner wall because of the reversal of the direction of the centrifugal force at depths 

close to the channel bed. This creates the distribution of velocity shown in Figures 5.9 and 5.11. 

 

Figure 5.9: Velocity distribution in the mild channel with length 30 degrees MB30. 
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Figure 5.10: Streamlines in the mild channel with length 30 degrees MB30. 

 

 

Figure 5.11: Velocity distribution in the mild channel with length 150 degrees MB150. 
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Figure 5.12: Streamlines in the mild channel with length 150 degrees MB150. 
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       In the tight bends, a different velocity distribution is encountered. Surprisingly our results show that 

two distinct velocity distributions occur depending on the curvature length of the tight channel. In the 

short channels TB30, TB60 and TB90, the region of maximum velocity streamlines is situated closer to the 

inner wall for reasons similar to that of the mild channel bends (see Figures 5.13 and 5.14). But unlike in 

the mild channel as the fluid proceeds into the bend in the short channels (TB30, TB60 and TB90) the 

streamline of maximum velocity do not shift to the outer wall, this pattern holds for the entirety of the 

length of the short tight channels. In the longer tight channels, the entrance regions exhibit similar velocity 

patterns to that of the short channels for reasons similar to the physics of the entrance region of the mild 

channels. However, unlike the short tight channels the region of maximum velocity streamlines shifts to 

the middle regions in the channel interior (see Figures 5.15 and 5.16) and then to the outer bend region 

outside the channel in the outlet. It is speculated that in the short channel there is not enough space for 

the centrifugal force to develop to such a magnitude that the high velocity fluid region is pushed towards 

the outer bend while the longer channel manages to provide a little space close to the outlet where the 

centrifugal acceleration develops enough for the region of high fluid velocity to shift towards the outer 

bend.    

      Important as these velocity distribution plots are and the hypothesis they helped create there is still 

doubt as to how the dynamics can sustain such high velocity gradient on the inner bend for the entirety 

of the channel in some of the tight curves. In a last ditch attempt to uncover why this is the case the next 

section examines the free surface profiles and how these may provide some insights into why the flow 

dynamics of the bend channels are as observed.            
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Figure 5.13: Velocity distribution in the tight channel with length 60 degrees TB60. 

 

 

Figure 5.14: Streamlines in the tight channel with length 60 degrees TB60. 
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Figure 5.15: Velocity distribution in the tight channel with length 150 degrees TB150. 
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Figure 5.16: Streamlines in the tight channel with length 150 degrees TB150. 

 

5.5 Free Surface Dynamics 

      The free surface is critical to understanding the dynamics in our present context. Even though all 

simulations were conducted using the full three dimensional Navier-Stokes equations, the hydrostatic 

assumption is used to compute the radial pressure gradient. This assumption means that the acceleration 

in the vertical dimension is negligibly small so that the derivative of the pressure field with respect to 

depth is a constant (implying that the pressure is a function of depth). This assumption simplifies 

enormously the calculation procedure for the pressure gradient force per unit mass  
1𝜌𝑔 𝜕𝑃𝜕𝑟  as in a 

hydrostatic channel, this force simply reduces to the radial free surface gradient 
𝜕𝐻𝜕𝑟   . 
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       In any transverse cross-section (or control volume) in the channel bend, the two main external forces 

are the centrifugal force (per unit mass) and the radial pressure gradient (per unit mass). A critical look at 

the interaction between these two forces may finally bring some closure to the question of the tight bend 

dynamics especially concerning the questions that remain unanswered from Chapter 4. In comparing 

these two forces, attention is paid to the fully developed region only. This is done since according to 

knowledge gathered so far from this research the flow parameters are invariant with changes in position 

in this developed regions making it ideal for this analysis. Also care has been taken to select velocities near 

the surface with the highest magnitude in order to analyze the extreme scenarios. All these were done so 

that values representative of extreme conditions is captured in our analysis to enhance the quality of the 

final deductions made. 

      An examination of the centrifugal forces per unit mass in both the mild and tight channel show that 

they follow the same trend even though magnitudes may differ. However, the radial pressure gradients 

for both channels are different with that of the mild channel bend essentially almost constant and that 

for the tight channel rising almost sharply from the inner wall. The moment of clarity comes when the 

centrifugal acceleration and the radial pressure gradient are compared for each curvature. It becomes 

clear from Figure 5.17 that in the mild bend when the flow is developing (beyond the 35 degree plane) 

the centrifugal force is greater than the radial pressure gradient. The resultant in a mild channel is a 

dynamic force that pushes fluid above a certain depth towards the outer bend. On the other hand, in a 

tight bend, the extreme geometry ensures that the free surface gradient is large such that the radial 

pressure gradient force (which has an inward direction) is always greater than the outward directed 

centrifugal force (see Figure 5.18). This results in a force strong enough to pin the fluid of higher velocity 

close to the inner wall for the entirety of the channel. Hence the peculiar dynamics in the tightest channels 

is due to the extremely high magnitude of the radial pressure gradient forces.  
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Figure 5.17: Plots of the maximum non- dimensional centrifugal acceleration (unbroken lines) and the 

non-dimensional radial pressure gradient (broken lines --) at various channel lengths for the mild 

curvature. Note the centrifugal acceleration was non-dimensionalized as 
𝐻𝑈2 𝑣2𝑟   where H is the flow 

depth and U2 is the average velocity squared. The radial pressure gradient is calculated as  
𝜕𝐻𝜕𝑟  . Panel (a) 

shows the plots at the 60O plane while (b), (c), and (d) show the plots at the 65, 70 and 75 degree planes, 

respectively.          
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Figure 5.18: Plot of the maximum non- dimensional centrifugal acceleration (unbroken lines) and the 

non-dimensional radial pressure gradient (broken lines --) at various channel lengths for the tight 

curvature. Note the centrifugal acceleration was non-dimensionalized as 
𝐻𝑈2 𝑣2𝑟   where H is the flow 

depth and U2 is the average velocity squared. The radial pressure gradient is calculated as  
𝜕𝐻𝜕𝑟  . Panel (a) 

shows the plots at the 60O plane while (b), (c), and (d) show the plots at the 65, 70 and 75 degree planes, 

respectively.                     

 

       Even though the previous paragraph presents a plausible explanation for a long standing question 

(that was first posed in chapter 4), there still remains the question pertaining to the different vortical 

(circulation) structures. In order to answer this, an examination of the circulation structure and vorticity 

distribution in bends of various curvature length is carried in the next section.  
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5.6 Vorticity Dynamics 

      It is known from the study of curvature effects in an open channel bend that there is a spatially 

developing region (which depends on the curvature  
𝑅𝑇𝑤)  and a fully developed region in the bend where 

flow properties are spatially invariant. A specific example is that of the mild channel 𝑀𝐵180. In the 

previous chapter, it was observed that for mild curvature (
𝑅𝑇𝑤 = 8.2), there was a spatially developing 

region from the 0𝑜 plane to about the 85𝑜 plane, and a fully developed region beyond the 90𝑜 plane. The 

question posed at the beginning of this chapter was: how does the circulation structure develop for a 

bend with similar curvature but with significantly shorter length? Since there is no 85𝑜 plane in a 

significantly shorter channel, does the flow still evolve to reach a spatially invariant state like in the 

channel 𝑇𝐵180𝑜 ?. If so, is that spatially developed state still characterized by the two cell circulation 

structure? In order to answer these questions, the circulation structure for the mild channels (MB30 to 

MB180) are compared to those of the tight channels (TB30 to TB180).           

      The transverse velocity plots which shows the circulation structure for the mild channels are shown in 

figures 5.19 to 5.22 for four of the six lengths (MB30, MB60, MB90, and MB120) at transverse planes 

ranging from the channel entrance to 30 degrees. These plots show that in regions close to the bend 

entrance, there is interaction between the centrifugal acceleration and the radial pressure gradient 

creating a single cell circulation (refer to Chapter 4). This single cell circulation continues to increase in 

vortex strength (as explained in the vorticity section of chapter 4) as the flow proceeds further into the 

bend. In addition, as the flow moves deeper into the bend, it seems that the shorter channels have a 

shorter development length and reach the spatially invariant two cell circulation structure at an earlier 

stage in the flow than their longer counterparts. A good example of this phenomena is the circulation 

structure of the shortest ( 30𝑜) mild channel (see Figure 5.19 to 5.22 panel (a)). For this case, the spatially 

invariant two cell circulation structure is fully formed by the 20𝑜 plane (compare figure 5.20 panel (a) with 
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panels (b) to (d)) as opposed to the 80𝑜 plane in the longer 180𝑜 channel. Hence, this indicates (a 

somewhat surprising result) that the longer channels develop spatial invariance at later stages compared 

to the shorter channels.  
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Figure 5.19: Transverse velocity plots at the 0O plane for the mild channel (
𝑅𝑇𝑤 = 8.2) of length 30O (panel a), length 60O (panel b), length 90O 

(panel c) and length 120O (panel d). 
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Figure 5.20: Transverse velocity plots at the 10O plane for the mild channel (
𝑅𝑇𝑤 = 8.2) of length 30O (panel a), length 60O (panel b), length 90O 

(panel c) and length 120O (panel d). 
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Figure 5.21: Transverse velocity plots at the 20O plane for the mild channel (
𝑅𝑇𝑤 = 8.2) of length 30O (panel a), length 60O (panel b), length 90O 

(panel c) and length 120O (panel d). 
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Figure 5.22: Transverse velocity plots at the 30O plane for the mild channel (
𝑅𝑇𝑤 = 8.2) of length 30O (panel a), length 60O (panel b), length 90O 

(panel c) and length 120O (panel d). 
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       The tight channels on the other hand exhibit two distinct vortical patterns depending on the length of 

curvature. In the shorter channels (TB30 and TB60), the circulation structure is that of a single cell for the 

entirety of the channel length (see Figures 5.23 and 5.24). The complex interaction between the 

centrifugal acceleration and the radial pressure gradient is also responsible for this circulation. However, 

given the relatively shorter lengths, the vorticity contours show that the vorticity magnitude never 

develops to values seen in the longer channels so that the condition for the existence of two clockwise 

main body cell established in Chapter 4 is never reached. In addition, in the short channels, the outer bank 

counter rotating cell is missing for the entirety of the channel length (Figure 5.23 and 5.24 panel (a)). In 

the longer channels (i.e. TB90, TB120, TB150, TB180) there is an initial development region with a single 

cell circulation structure. As the flow moves deeper into the bend, a second counter rotating outer wall 

cell develops forming the two cell circulation structure similar to that already observed in a full 180𝑜 mild 

channel (figure 5.25 panel (c) and (d)). Finally, as the flow reaches its fully developed stage, the main 

clockwise circulation cell splits into two (due to the extreme values of vorticity magnitude as explained in 

chapter 4) resulting in the 3 cell circulation structure for a tight bend (Figure 5.26 panels (c) and (d)). This 

three cell structure however only occurs in the fully developed region of the longer bends (bends of 90𝑜 

and above). Unfortunately, the reason why the counter clockwise outer wall circulation develops quicker 

than expected in the short mild channels and not at all in the short tight channels is beyond the grasp of 

this research.        
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Figure 5.23: Transverse velocity plots at the 0O plane for the tight channel (
𝑅𝑇𝑤 = 0.75) of length 30O (panel a), length 60O (panel b), length 90O 

(panel c) and length 120O (panel d). 
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Figure 5.24: Transverse velocity plots at the 30O plane for the tight channel (
𝑅𝑇𝑤 = 0.75) of length 30O (panel a), length 60O (panel b), length 90O 

(panel c) and length 120O (panel d). 
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Figure 5.25: Transverse velocity plots at the 60O plane for the tight channel (
𝑅𝑇𝑤 = 0.75) of length 30O (panel a), length 60O (panel b), length 90O 

(panel c) and length 120O (panel d).



111 

 

 

 

Figure 5.26: Transverse velocity plots at the 85O plane for the tight channel (
𝑅𝑇𝑤 = 0.75) of length 30O (panel a), length 60O (panel b), length 90O 

(panel c) and length 120O (panel d).
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5.7 Summary   

       This chapter studied the effects of curvature length variation on the 3 dimensional flow structure and 

dynamics of open channel bend flows. This was accomplished using 12 different geometries of curvature 

length (30𝑜, 60𝑜, 90𝑜, 120𝑜, 150𝑜, 180𝑜) at two radii of curvature (
𝑅𝑇𝑤 = 0.75, 𝑅𝑇𝑤 = 8.2). In conclusion, we 

can now better articulate the circulation events in a curved open channel. In mild channels, the circulation 

starts in the developing region with a single cell circulation and then develops into a two cell circulation 

structure in the later parts of the channel consisting of a main body circulation cell and an outer wall 

counter rotating cell. The position where this two cell circulation develops depends on the length of the 

mild channel as shorter channels attain fully developed conditions at shorter angular distances from the 

entrance than longer channels. The circulation structure for the tighter channels depend on the channels 

length with the shorter channels having a single cell circulation only. In tight channels with angular length 

of 90o and beyond, the circulation structure starts at the entrance region with a single cell circulation 

which is followed closely by the formation of the outer wall counter rotating cell and the eventual 

emergence of the three cell structure in the fully developed part of the tight channel. 

        It has been known that variations in geometry alone cannot explain the full range of flow phenomena 

observed in bend channel flows. A second look at equation (3.10) in the research framework section of 

this dissertation (section 3.5) shows that there is still one more dimensionless group (the Froude number) 

left to study ,which does not involve a variation in geometric parameters but includes dynamic parameters 

(velocity, wave celerity etc.). Hence, the next chapter of this dissertation studies the effect of varying the 

Froude’s number on the flow structure and dynamics of 3D bend channel flows.                     
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Chapter 6 

 

The effect of Froude number variation on the flow structure and dynamics of open channel bends.   

 

6.1 Preamble 

        There is a vast body of literature on general aspects of bend channel flows (Chapter 2). There has 

also been a few studies that vary geometric parameters in order to see their effect on flow structure 

(refer to the first section of chapter four of this thesis). However, existing research literature only 

addresses the issue of flow structure and dynamics from a geometric perspective. To the knowledge of 

this author, there has been no systematic study of the effect of varying Froude number (or other 

dynamic parameters like velocity or celerity) on the flow structure of open channel bends. It is for this 

reason that this chapter attempts this study.  In order to accomplish this task, 6 large eddy simulations 

with non-dimensional curvature radii 8.2 and 0.75 were run at Froude numbers of 0.28, 0.5 and 0.8. The 

Froude number Fr is defined as 

𝐹𝑟 = 𝑉√𝑔𝑦 … … … … … … … … (6.1), 
where 𝑉  is the velocity, 

            𝑔  is the acceleration due to gravity, 

            𝑦  is the flow depth. 

 

      All six simulations had the same upstream and downstream geometries. Thus upstream of each bend 

there is a straight inlet with a length of 11 m, chosen to ensure that the fluid reached its fully developed 

state before encountering the bend. Also all the curves have a straight downstream outlet of 6.7 m. The 

same initial and boundary condition was imposed on all six simulations except at the inlet. Since the aim 

is to examine the effect of the Froude number (equation 6.1) on flow structure, various flow rates 

corresponding to the various Froude numbers to be studied were imposed on the appropriate channel 
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(see table 6.1 for details). Because the walls and the bed are assumed to be smooth the no-slip boundary 

condition was imposed. The outlet and the free surface have atmospheric boundary conditions imposed. 

The fluid in all six simulations were initialized at a flow depth of 0.052 meters and allowed to run up to 

steady state before measurements were taken. All simulation details are given in Table 6.1.  

Table 6.1: Geometric and hydraulic parameters for all the simulations in this chapter.  

 R/Tw Q(m3/s) Uavg(m/s) Re Fr 

Simulation 1 8.2 0.0052 0.2 10400 0.28 

Simulation 2 8.2 0.0093 0.36 18570 0.5 

Simulation 3 8.2 0.0149 0.57 29712 0.8 

Simulation 4 0.75 0.0052 0.2 10400 0.28 

Simulation 5 0.75 0.0093 0.36 18570 0.5 

Simulation 6 0.75 0.0149 0.57 29712 0.8 

 

       Section 6.2 examines the effect of Froude number variation on the shear stress distribution. This 

naturally leads to Section 6.3 which examines the velocity distribution and how it changes with variation 

in Froude number. Section 6.4 examines how the free surface evolves with a change in Froude number. 

Finally, a critical examination of the vortex structure in section 6.5 is presented. 

6.2 Shear Stress 

      Figure 6 shows the bed shear stresses for a mild channel (
𝑅𝑇𝑤 = 8.2) for the three different Froude 

numbers from the 0o plane to the 35o plane in increments of 5o. The maximum shear stress in the mild 

bend entrance region is located close to the inner bend (see figure 6.1 panel (a)). This happens in the mild 

bend regardless of the Froude number. As the flow moves further into the channel, the maximum shear 

stress shifts towards the outer bend (see Figures 6.1 (b),(c),(d)). This trend remains until the channel exit 

regardless of the Froude number. The wall shear stresses follow the same trend as the bed shear stresses 

with the maximum shear stress exerted on the inner wall at the entrance of the bed and on the outer wall 

as the flow moves deeper into the bend. This pattern also persists regardless of the Froude number.     
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       In the tight bend ( 
𝑅𝑇𝑤 = 0.75), the position of the maximum shear stress is exerted close to the inner 

bend and wall at the entrance to the bend (for reasons similar to those of the mild channel). However, 

unlike in the mild bend, as the flow moves further into the bend, the maximum shear stress never shifts 

towards the outer bend region throughout the channel length (see Figure 6.2). From new results in 

chapter 5 (see section 5.4 for details), it is now known that this is due to the extremely high magnitude of 

the radial pressure gradient because of the extreme curvature of the bend. This pattern is maintained for 

the whole of the channel length regardless of the Froude number. The only visible effect of a Froude 

number change on the shear stress pattern is an increase in the magnitude of the shear stress exerted at 

each point as the Froude number increases.   
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Figure 6.1: Bed shear stress plots for the mild channels R/Tw = 8.2 from 0O plane to the 35O plane, in increments of 5O. Note the numbers in the 

legend denote the Froude numbers. Panel (a) shows the bed shear stress at the 0O plane, panel (b) shows the bed shear stress at the 5O plane, 

panels (c) at the 10O plane while panel (d) at the 15O plane. Panels  (e), (f), (g), (h) show the bed shear stress at the  20, 25 ,30 ,and 35 degree 

planes.  
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Figure 6.2: Bed shear stress plots for the tight channels R/Tw = 0.75 from 0O plane to the 35O plane, in increments of 5O. Note the numbers in the 

legend denote the Froude numbers. Panel (a) shows the bed shear stress at the 0O plane, panel (b) shows the bed shear stress at the 5O plane, 

panels (c) at the 10O plane while panel (d) at the 15O plane. Panels  (e), (f), (g), (h) show the bed shear stress at the  20, 25 ,30 ,and 35 degree 

planes.  
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6.3 Velocity Distribution   

     In the mild channel at the entrance the flow physics of the bend entrance pushes energetic fluids 

towards the inner wall (refer in chapter 4). This means at the entrance region the highest velocities are 

closer to the inner wall, since at the wall the velocity must vanish due to the no slip boundary condition 

the region of higher velocity gradient is set up close to the inner wall at the entrance region. However, as 

the fluid moves deeper into the bend the fluid’s inertia is imparted more and more by the centrifugal 

acceleration such that the fluid in the bend is pushed towards the outer wall for most of the water column 

(see details in Chapter 4). These velocity patterns appear in the mild channel regardless of the Froude 

number (see Figures 6.3 to 6.5). The only visible effect of a change in Froude number is the increased 

magnitude of the velocities at different parts of the curve. However even with these increase in velocity 

magnitudes the pattern described for the mild channel is maintained. 

       In the tight channel the flow physics of the entrance region is similar to that of the mild channel. 

However, unlike in the mild channel, the streamlines of higher velocity stay closer to the inner wall for 

almost the entire length of the channel. Only close to the outlet of the tight channel do the higher velocity 

streamlines shift to the outer bend. This pattern is maintained regardless of the Froude number. Again 

the only discernable effect of the Froude number variation on the tight channel is the increase in the 

magnitude of the velocity at corresponding parts of the channel (see Figures 6.6 to 6.8). Hence, there is a 

positive correlation between an increase in the Froude number and an increase in the velocity magnitude 

while the above described pattern is maintained.    
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Figure 6.3: Velocity distribution at the surface for mild channel R/Tw = 8.2  at Froude number 0.28. 
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Figure 6.4: Velocity distribution at the surface for mild channel R/Tw = 8.2  at Froude number 0.5. 
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Figure 6.5: Velocity distribution at the surface for mild channel R/Tw = 8.2  at Froude number 0.8. 
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Figure 6.6: Velocity distribution at the surface for tight channel R/Tw = 0.75  at Froude number 0.28. 

 

Figure 6.7: Velocity distribution at the surface for tight channel R/Tw = 0.75  at Froude number 0.5. 
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Figure 6.8: Velocity distribution at the surface for tight channel R/Tw = 0.75  at Froude number 0.8. 

 

6.4 Free Surface Dynamics                                                        

      Aside from the velocity structure, the tilting of the transverse free surface in the channel bend induces 

one of the major forces that is critical to shaping the dynamics of bend channel flows. Therefore, an 

examination of the evolution of the free surface with a variation in Froude number can provide more 

insight into the dynamics of bend flows.  
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     Results from the simulations in this chapter show that there are two distinct free surface evolution 

patterns with variation in Froude number depending on whether the channel is mild or tight. In the mild 

channel when the fluid coming from a straight inlet encounters the bend, it experiences a centrifugal 

acceleration which pushes the fluid volume towards the outer wall. The accumulation of more volume 

closer to the outer wall causes a tilting of the free surface such that the transverse elevation of the free 

surface at the outer wall is greater than that at the inner wall inducing a transverse pressure gradient. 

Hence the pattern of the free surface is always that of a positive slope towards the outer bend. The only 

visible effect of the variation of Froude on the transverse free surface slope in the mild bend is an increase 

in the flow depth (see Figure 6.9). The free surface slope in the mild bend however remains constant as 

the Froude number increases. This behavior has some implications for the dynamics of bend flows one of 

which is that, as long as the curvature is mild, an increase in the Froude number does not result in an 

increase in the radial pressure gradient force.   

      In the tight channel however an increase in the Froude number results in something truly remarkable. 

As shown in Figure 6.10 as the Froude number increases not only does the flow depth increase, (and the 

pattern of positive free surface slope towards the outer bend is maintained), the free surface slope 

increases as well. The immediate implication of this observation in a tight channel is that just by increasing 

the Froude number of the flow, the radial pressure gradient force increases significantly. This is drastically 

different from the case of the mild channel where the radial pressure gradient force remains constant 

regardless of the Froude number. It appears that the combined effect of the tight curvature and increased 

inertial lead to a highly complex flow pattern.    
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Figure 6.9: Free surface plots for the mild channels R/Tw = 8.2 from from 0O plane to the 35O plane, in increments of 5O. Note the numbers in the 

legend denote the Froude numbers. Panel (a) shows free surface elevation at 0O plane, panel (b) shows the free surface elevation at the 5O 

plane, panels (c) at the 10O plane while panel (d) at the 15O plane. Panels  (e), (f), (g), (h) show the free surface elevation at the  20, 25 ,30 ,and 

35 degree planes. These plots are typical of what goes on in the whole channel.
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Figure 6.10: Free surface plots for the tight channels R/Tw = 0.75 from from 0O plane to the 35O plane, in increments of 5O. Note the numbers in 

the legend denote the Froude numbers. Panel (a) shows free surface elevation at 0O plane, panel (b) shows the free surface elevation at the 5O 

plane, panels (c) at the 10O plane while panel (d) at the 15O plane. Panels  (e), (f), (g), (h) show the free surface elevation at the  20, 25 ,30 ,and 

35 degree planes. These plots are typical of what goes on in the whole channel.
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6.5 Vorticity Distribution  

     The magnitude and distribution of vorticity contributes to the overall dynamics of bend channel flows 

in ways that have already been explained in previous chapters. However, it is worth investigating what 

the effect of the Froude number is on the vorticity structure.   

    At the channel entrance in the mild curve, the circulation structure is that of a single cell due to the 

interaction between the centrifugal acceleration and the radial pressure gradient (refer to Chapters 4 and 

5). As the flow moves further into the bend, a second counter rotating cell close to the outer bank surface 

develops. This outer bank counter rotating cell has been attributed in literature to the complex interaction 

between the centrifugal acceleration and the Reynolds stresses. This pattern is maintained in the fully 

developed region of the bend till the channel exit regardless of the Froude number. 

     In the tight channel, the vortex structure begins with a single cell circulation due also to the interaction 

between the centrifugal acceleration and the radial pressure gradient. As the fluid moves deeper into the 

bend an outer bank counter rotating cell develops as described in the previous chapter. Finally, the main 

cell circulation in the tight channel breaks into two clockwise rotating cells because of the enormous 

magnitude of the vorticity. This gives the three cell circulation in the fully developed region of the tight 

bend regardless of the Froude number. The only discernable effect of a change in Froude number is the 

increase in vorticity magnitude as Froude number increases as can be seen from an analysis of the vorticity 

magnitude plots (see Figures 6.11 to 6.16).
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Figure 6.11: Vortex patterns at Froude number 0.28 for the mild channle R/Tw = 8.2  . Panel (a) shows 

the  60O plane, panel (b) shows the 65O plane, panel (c) shows the  70 O plane and panel (d) shows the 

75O plane. 

 

Figure 6.12: Vortex patterns at Froude number 0.5 for the mild channle R/Tw = 8.2  Panel (a) shows the  

60O plane, panel (b) shows the 65O plane, panel (c) shows the  70 O plane and panel (d) shows the 75O 

plane. 
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Figure 6.13: Vortex patterns at Froude number 0.8 for the mild channle R/Tw = 8.2  . Panel (a) shows the  

60O plane, panel (b) shows the 65O plane, panel (c) shows the  70 O plane and panel (d) shows the 75O 

plane. 

 

Figure 6.14: Vortex patterns at Froude number 0.28 for the mild channle R/Tw = 0.75  . Panel (a) shows 

the  60O plane, panel (b) shows the 65O plane, panel (c) shows the  70 O plane and panel (d) shows the 

75O plane. 



130 

 

 

Figure 6.15: Vortex patterns at Froude number 0.5 for the mild channle R/Tw = 0.75  . Panel (a) shows 

the  60O plane, panel (b) shows the 65O plane, panel (c) shows the  70 O plane and panel (d) shows the 

75O plane. 

 

Figure 6.16: Vortex patterns at Froude number 0.5 for the mild channle R/Tw = 0.75  . Panel (a) shows 

the  60O plane, panel (b) shows the 65O plane, panel (c) shows the  70 O plane and panel (d) shows the 

75O plane. 
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6.6 Summary   

      This chapter studied the effect of Froude number variation on the flow structure and dynamics of bend 

channel flows. To accomplish this task, 6 simulations with two non-dimensional curvature radii of 
𝑅𝑇𝑤 =

8.2  (mild) and 
𝑅𝑇𝑤 = 0.75 (tight) were chosen.  

      Results in this section show that the shear stress distribution for a mild channel is that of the maximum 

close to the inner bend at the entrance region. This maximum subsequently shifts to the outer bend as 

the flow moves deeper into the bend. The tight bend experiences the maximum shear close to the inner 

wall for the whole bend length. These results hold irrespective of the Froude number.  The increase in 

Froude number results in an increase in the magnitudes of the shear stresses while maintaining these 

respective patterns. The mild channel initially has its streamlines of highest velocities close to the inner 

wall at the entrance region. These streamlines of higher velocity subsequently shift to the outer wall as 

the flow proceeds into the bend. In contrast to the mild channel, the tight channel has it higher velocity 

streamlines close to the inner bend for the entire channel length. The effect of the increase in the Froude 

number is to increase the velocity magnitude while maintaining the same pattern. The results from 

simulations in this chapter also show that the free surface experiences a similar evolution with a variation 

in Froude number. When flow coming from a straight inlet encounters a bend, it is subjected to a 

centrifugal acceleration which deflects much of the fluid volume towards the outer wall. This creates an 

accumulation of volume on the outer bend region and a depletion of volume from the inner bend region 

causing a free surface super elevation towards the outer wall. Results from the simulations in this chapter 

show clearly that the effect of increasing the Froude number on the free surface is to increase the flow 

depth in the mild channel while the free surface slope remains constant. In the tight bends however the 

effects of increasing the Froude number is an increase in both the flow depth and slope. Finally, this study 

shows that the vortex structure in the bend is as expected with the two cell circulation structure in the 
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fully developed region of the mild channel and the three cell circulation structure in the fully developed 

region of the tight channel. Again the effect of an increase in the Froude number is to increase the 

magnitude of the vorticity as can be seen from an analysis of the vorticity contours. 

      Many of these results have important implication for manmade bend channel design, natural river 

management and even river modelling. The next (closing) chapter summarizes all the findings from this 

research, their relevance to river dynamics and management, and suggests possible direction for future 

research.                                                                                       
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Chapter 7 

 

Conclusion  

 

7.1 Summary of Investigation 

     This research was carried out to gain fundamental insights into the fluid dynamics of river flows. 

However, because of the difficulties that the complex geometries of natural rivers introduce and the 

complications the mechanics of sediment transport adds to fluid flows in rivers, simplifying assumptions 

had to be made. Hence in this research, as a first step, rivers were idealized as a single open channel bend 

with rigid boundaries and without sediment transport. This single channel bend was then studied using 

computational fluid dynamics simulations with the Volume of Fluid method to resolve the free surface 

and large eddy simulation technique to incorporate turbulence. Understanding the dynamics and three 

dimensional flow structure in open channel bends was carried out in three stages. 

     In chapter 4 the effect of a variation in curvature on the three dimensional flow structure and dynamics 

was examined. In that chapter, four 180 degree open channel bends with curvature ranging from mild 

𝑅𝑇𝑤 = 8.2 to tight 
𝑅𝑇𝑤 = 0.75 were studied in detail. In order to isolate cause and effect, identical upstream 

and downstream geometries were used for all channels. Hence in each channel the upstream straight 

inlet had a rectangular cross-section of 0.5 meter width, a length of 11m and the downstream outlet was 

6.7 m long. All channel simulations were carried out with the same inlet boundary conditions; a volume 

flow rate of 0.0052 m3/s, while all channel outlets and free surfaces were set at the atmospheric pressure 

boundary condition. All walls and beds were imposed with the no-slip boundary condition and an initial 

condition with the flow depth of 0.052 m was used. All simulations were also initialized as stationary and 

allowed to run up to steady state before measurements were taken. 
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     In chapter 5, the effect of a variation in curvature length on the three dimensional flow structure and 

dynamics of open channel bend flows was studied. In that study, 12 large eddy simulations with two non-

dimensional radii of curvature were run with the computational code already described in detail in 

Chapter 3. Channel lengths of 0𝑜, 30𝑜, 60𝑜, 90𝑜, 120𝑜, 150𝑜  and 180𝑜  respectively, were simulated with 

the same upstream and downstream conditions described in the previous paragraph. The same initial 

conditions previously described were also used with all simulation initialized as stationary and allowed to 

run up to steady state before measurements were taken. 

     Chapter 6 examined the effect of variation in dynamics factors on open channel bend mechanics by 

studying the effect of Froude number variation on the three dimensional flow structure and dynamics of 

an open channel bend. Six large eddy simulations of a 180 degrees channel at non dimensional curvature 

radii of 8.2 (mild) and 0.75 (tight) were performed. The same upstream and downstream geometries as 

detailed in the second paragraph of this section were used in the study. At the inlet to the various 

channels, various volume flow rates corresponding to the three Froude numbers of 0.28, 0.5 and 0.8 were 

imposed. Other boundary conditions used are similar to those previously described. 

A summary of the key finding in this research is given in the next section. 

 

7.2 Key Findings in this Research   

     Results from the first part of the research (chapter 4) show clearly that further into the channel bend, 

the shear stress distribution depends on the curvature (
𝑅𝑇𝑤) of the channel. Hence from an analysis of 

simulation data, the maximum shear stress is exerted on the inner bend region at the entrance to the 

curve regardless of the channel curvature. As the flow evolves further into the bend, this maximum shifts 

to the outer bend region depending on the curvature. Thus, in the mild channel, the maximum shear stress 

initially exerted on the inner bend at the entrance region shifts quickly to the outer bend at only a short 
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angular distance from the entrance. As the curvature decreases (gets tighter) the maximum shear stress 

stays on the inner bend for longer angular distances from the entrance such that in the tightest bend the 

maximum shear stress is never on the outer bend region or the outer wall. One main implication of this 

finding especially in natural and manmade curved channels is that the apparent bias towards reinforcing 

the outer bend and wall in curved channel design and bank protection works may not be effective in 

preventing channel failure. Even in mild channels where for the most part the maximum shear stress is 

exerted on the outer wall and bed, there is still the initial 0 to 20 degrees (depending on the radius of 

curvature) where the maximum shear stress is still exerted on the inner wall and bed and thus could cause 

the onset of failure.        

       The reason for the shear stress evolution described in the previous paragraph was found to be due to 

the velocity distribution and the changes it undergoes as curvature varies. In the mildest channel, the flow 

coming from the straight upstream inlet on the outer wall side experiences an adverse pressure gradient 

while fluid encountering the bend from the upstream straight inlet on the inner wall side experiences a 

favorable pressure gradient. Therefore, fluid momentum entering the bend is forced towards the inner 

wall such that the higher velocity gradients are located in the inner bend region. However, as the flow 

moves deeper into the channel the effect of the centrifugal acceleration takes hold and pushes the 

streamlines of higher velocity towards the outer bend. How much angular distance into the bend before 

the high velocity streamlines shift to the outer wall depends on the curvature of the channel. Thus, in the 

mild channel (with large curvature), the region of maximum velocity gradients shifts to the outer wall a 

short angular distance from the entrance while in the tightest channels (with extremely small curvatures) 

the region of maximum velocity gradients is never on the outer bend or wall. 

      While the vortical structure in mild channels has been extensively studied and some of the results in 

this dissertation serve to confirm their authenticity, new results from this research now help to put some 

of those old findings in the proper context. It is clear from results in this research that regardless of the 
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channel curvature, flow in the spatially developing regions of any curved channel is characterized by a 

single cell circulation. However, when the flow reaches its spatially invariant state, the circulation 

structure depends on the channel curvature. In the mild channel, the fully developed flow state is 

characterized by a two cell circulation structure with a main body clockwise rotation and a counter 

rotating outer cell (as seen in literature). Contrary to this, the tight channel has a three cell circulation 

structure with two clockwise circulation cells and one counter clockwise circulation cell. While this three 

cell circulation has been hinted at in literature, the reason for such a circulation structure was previously 

unknown. New results from this research now show that the tight channel initially develops the two cell 

circulation structure, but the main cell circulation splits into two clockwise circulation cells due to the 

enormous magnitude of the vorticity in the tight channel. This result has serious significance in river 

modeling since the hydraulics community usually makes extensive use of reduced order river models to 

plan river training works and even man made channel designs. These reduced order models work by 

reducing the (three) dimensions of the relevant equations of fluid motion and parameterizing what is lost 

in the reduction process. A critical loss is the circulation structure which is usually parameterized and 

added to the reduced order model. A good number of these reduced order models are based on a 

parameterization that assumes the two cell circulation structure. As results from this research has shown, 

these models cannot reproduce correctly critical flow structures in bends with tight curvatures and in the 

developing regions of open channel bends. 

      The study on effects of curvature length on the vortex structure also led to some new and interesting 

results. In the mild channel, results show that development length (the length of the channel for which 

the flow is spatially changing) depends on curvature length. As a concrete example, in the mild 180 degree 

channel, the flow development region spanned from the curve entrance at the 0 degrees planes to about 

the 85 degrees plane with the fully developed two cell circulation structure occurring coherently at about 

the 90 degree plane. A similar channel of the same curvature but of shorter length (i.e. 30 degrees) 
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reached the fully developed two cell structure at only the 20 degree plane. Even more remarkable is the 

evolution of vortex structure in the tight bend with curvature length. Results from simulations showed 

that for the shorter tight channels (the 30 and 60 degrees channel lengths) a single cell circulation exists 

for the entirety of the channel length. Only in the longer channels (90, 120, 150 and 180 degree lengths) 

did the outer wall counter rotating cell and the two main body clockwise rotating cells develop. Analysis 

of the vorticity plots show clearly that the shorter channel only develops a single cell circulation in the 

main body of the flow (and not the two clockwise main body cells) because the vorticity developed in 

these channels are low compared to their longer counterparts. These results also have serious 

implications for river systems modelling especially in the formulation of reduced order river models as 

explained in the previous paragraph. 

      The finding in Chapter 4 that the maximum shear stress for the tight bend stayed on the inner bend 

region for the entirety of the channel length was interesting. However, no physical explanation was 

presented in chapter 4 (or even in current literature). New results in chapter 5 now show that this shear 

stress distribution is caused by the value of the radial pressure gradient force exceeding the value of the 

centrifugal force for the full channel. This means that the radial pressure gradient force is forcing the 

streamlines of high velocity towards the inner wall region throughout the channel length because it far 

exceeds the centrifugal force magnitude whose direction is opposite. This sets up the region of higher 

velocity gradients and thus shear stress on the inner wall in the tight channel for the entirety of its length. 

Another finding is that of a new type of flow regime in the tightest bend. This flow regime characterized 

by extreme shear instability in the bend and a break down to periodic motions in the straight outlet was 

first discovered in Chapter 4. 

       In Chapter 6, it was shown that for a mild channel, increasing the Froude number only increased the 

flow depth but did not increase the free surface slope. This essentially means in a mild channel an increase 

in the inertia of the fluid does not change the magnitude of the radial pressure gradient force. However, 
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when the bend is very tight new results show that the radial pressure gradient forces increases as the 

Froude number increases. This shows that a variation in inertial forces changes both the centrifugal and 

the radial pressure forces. 

    All these key findings significantly improve insight into the physics of open channel bend flows. 

However, there are still questions that remain unanswered which future researchers may attempt to work 

on. The next section highlights these questions.   

7.3 Suggestions for Further Research   

      This research set out to provide new fundamental insights into bend channel flow physics to better 

understand the fluid mechanics of natural river systems. While new results from this work provides 

valuable insight not yet found in current literature, more questions have come up in the course of this 

research work that still remain to be answered.  

      For instance, it would be interesting to study the effect of bottom and wall roughness on the fluid 

dynamics of open channel bends. This would better mimic the flows of natural rivers with an immovable 

bed as can be found in various parts of nature. In the simulation studies conducted in Chapters 4 and 5, 

wall roughness was excluded to make the problem less complex and to provide a basis for comparison 

should any future researcher attempt to carry out such a study. Insights into the effect of roughness on 

bend channel dynamics would also improve parameterization of this aspect of river flows so that river 

models can better capture the physics of flow.  

     Another interesting question would be the flow structure and dynamics in a river meander. Even 

though results from idealizing rivers as a single channel bend has provided valuable insights, more can be 

learnt from a detailed study of a single river meander first and then a couple of meanders joined to mimic 

the geometry of a natural river. Again results from this research can serve as a good spring board for such 

a study as a meander is simply two or more curves joined in the appropriate way. 
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     All natural rivers at some point in their existence transport sediment either in suspension or as bed 

load. Since sediment modifies the flow structure in ways that are still being understood, it would be 

interesting to study the flow physics of fluid with sediment transport moving through a river bend. Even 

more interesting would be such a study including the effects of an erodible bed just like the case in most 

natural rivers.                                                                                                                                                                                                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



140 

 

References 

 

Bagnold, R. A. 1960. Some aspects of the shape of river meanders. US Geological Survey Professional 

Paper 282-E, US Geological Survey, Washington, DC. 

 

Bathurst, J. C., Thorne, C. R. & Hey, R. D. 1977. Direct measurement of secondary currents in river bends.  

Nature 269, 504-506. 

 

Blanckaert, K. & Graf, W. H. 2001. Mean flow and turbulence in open-channel bend. Journal of hydraulic 

Engineering ASCE 127, 835–847 

 

Blanckaert, K. & Graf, W. H. 2004. Momentum transport in sharp open-channel bends. Journal of Hydraulic 

Engineering ASCE. 

 

Blanckaert, K. & de Vriend, H. J. 2004. Non-linear modeling of mean flow redistribution in curved open 

channels. Water Resources Research. 

 

Blanckaert, K. 2009. Saturation of curvature induced secondary flow, energy losses and turbulence in 

sharp open channel bends, laboratory experiments, analysis and modeling. Journal of Geophysical 

Research 114. 

 

Blanckaert K. 2015. Flow separation at convex banks in open channels. Journal of Fluid Mechanics 

779,432–467. 

 



141 

 

Booij, R. 2003. Measurements and large eddy simulations of the flows in some curved flumes. Journal of 

Turbulence 4, 1–17 

 

Demuren, A. O., and Rodi, W. 1986. Calculation of flow and pollutant dispersion in meandering channels. 

Journal of Fluid Mechanics, Cambridge, U.K., 172, 63–92. 

 

DeSerres, B., A. G. Roy, P.M. Biron, and Best, J. L. 1999. Three dimensional structure of flow at a confluence 

of river channels with discordant beds. Geomorphology, 26, 313 - 335.       

 

Dietrich, W. E., and Smith, J. D. 1983. Influence of the point bar on flow through curved channels. Water 

Resources Research, 19(5), 1173– 1192. 

 

De Vriend, H. J. 1981. Flow measurements in a curved rectangular channel. II: Rough bottom. Rep. No. 5-

81, Lab. Fluid Mech., Dept. of Civ. Engrg., Delft University of Technology, the Netherlands. 

 

DeVriend, H, J. 1977. A mathematical model of steady flow in curved shallow channel. Journal of hydraulic 

research, 15(1), 37-54. 

 

Engelund, F. 1974. Flow and bed topography in channel bends. Journal of the hydraulic division, ASCE, vol. 

100, No. HY 11. 

 

Ferguson, R. I., Parsons, D. R., Lane, S. N. & Hardy, R. J. 2003. Flow in meander bends with recirculation at 

the inner bank. Water Resources Research, 39 (11), 1322–1333. 



142 

 

Frothingham, K.M. and Rhoads, B.L. 2003. Three dimensional flow structure and channel change in an 

asymmetrical compound meander loop, Embarras River, Illinois. Earth Surface Processes and Landforms, 

28(6), 625-644. 

 

Hirt, C. W. and Sicilian, J. M. 1985. A porosity technique for the definition of obstacles in rectangular cell 

meshes. International Conference on Numerical Ship Hydrodynamics, Washington D.C.  

 

Hirt, C.W. and Nichols, B. D. 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. 

Journal of Computational Physics, 39(1):201–225, 1981. 

 

Holmén V. Methods for vortex identification. PhD Thesis, Lund University, Sweden, 2012. 

 

Ippen, A.T., Drinker, P.A., Jobin, W.R and Shemdin, O.H. 1962a. Stream Dynamics and Boundary Shear 

Distributions for Curved Trapezoidal Channels” Report No 47. Massachusetts Institute of Technology 

January, 1962. 

 

Jin, Y. C., and Steffler, P. M. 1993. Predicting flow in curved open channels by depth-averaged method. 

Journal of hydraulic engineering, ASCE, 119(1), 109–124. 

 

Kashyap, S., G. Constantinescu, C. D. Rennie, G. Post, and R. Townsend. 2012. Influence of channel aspect 

ratio and curvature on flow, secondary circulation and bed shear stress in a rectangular bend, Journal of 

hydraulic engineering, 138, 294. 

Koken, M and Constantinescu, G. 2009. An investigation of the dynamics of coherent structures in a 

turbulent channel flow with a vertical sidewall obstruction. Physics of fluids 21, 085104 (2009).  



143 

 

Lane, S.N., Biron P.M., Bradbrook K.F., Butler J.B., Chandler J.H., Crowell M.D., McLelland S.J., Richards 

K.S., Roy A.G. 1998. Three-dimensional measurement of river channel flow processes using acoustic 

Doppler velocimetry. Earth Surface Processes and Landforms 23: 1247–1267. 

 

Leschziner, M. A. and W. Rodi. 1979. Calculation of strongly curved open channel flow, Journal of the 

hydraulic division ASCE. 105, 1297-1314 (1979). 

 

 Rodi, W. 1980. Turbulence models and their application in hydraulics: a state of the art review. 

International Association for Hydraulic Research (IAHR), Delft, the Netherlands, 1980. 

 

McLelland, S. J., P. J. Ashworth, and J. L. Best. 1996. The origin and downstream development of coherent 

flow structures at channel junctions, in Coherent flow structures in open channels edited by P. J. 

Ashworth, S. J. Bennett, J. L. Best and S. J. McLelland, 459 – 490, John Wiley, New York, 1996. 

 

Nanson, R. A. 2010. Flow fields in tightly curving meander bends of low width-depth ratio. Earth Surf. 

Process. Landf. 35 (2), 119–135. 

 

Nelson, J. M., and J. D. Smith 1989. Evolution and stability of erodible channel beds, in River Meandering, 

Water Resour. Monogr. Ser., vol. 12, edited by S. Ikeda and G. Parker, pp. 321-378, AGU, Washington, D.C. 

 

Odgaard, A. J., and Bergs, M. A. 1988. ‘‘Flow processes in a curved alluvial channel.’’ Water Resources 

Research, 24, 1, 45–56. 

 



144 

 

Odgaard, A. J. 1986. ‘‘Meander flow model. I: Development.’’ J. Hydr. Engrg., ASCE, 112(12), 1117–1136. 

 

Ottevanger, W., Blanckaert, K., and Uijttewaal, W. 2011. A parameter study on bank shear stresses in 

curved open channel flow by means of large-eddy simulation. Proc., 7th IAHR Symp. on River, Coastal and 

Estuarine Morphodynamics, International Association for Hydro-Environment Engineering and Research, 

Madrid, Spain, 1917–1927. 

 

Pope, S. B. 2000 Turbulent flows. Cambridge University Press. 

 

Ramamurthy A, Han S, Biron P. 2013. Three-Dimensional simulation parameters for 90° open channel 

bend flows. Journal of Computing in Civil Engineering 27(3):282- 291. 

 

Rozovskii, I. L. 1957. Flow of water in bends of open channels, Academy of Sciences of the Ukrainian SSR, 

Kiev, 1957; Israel Program for Scientific Translations, Jerusalem, 1961. 

 

Saad Y., Schultz M.H. 1986. GMRES: A generalized minimal residual algorithm for solving non-symmetric 

linear systems SIAM J. Sci. Stat. Comput., pp. 856-869 

 

Schnauder, I. & Sukhodolov, A. N. 2012. Flow in a tightly curving meander bend: effects of seasonal 

changes in aquatic macrophyte cover. Earth Surf. Process. Landf. 37 (11), 1142–1157. 

 

Simpson, R. L. 1989. Turbulent boundary-layer separation. Annu. Rev. Fluid Mech. 21, 205–234. 

 

Simpson, R. L. 1996. Aspects of turbulent boundary-layer separation. Prog. Aerosp. Sci. 32, 457–521. 



145 

 

Sin, K.S. 2016. Three dimensional computational modelling of meandering channel flow. PhD thesis 

Colorado State University. 

 

Stoesser, T., C. Braun, M. Garcia-Villalba, and W. Rodi. 2008. Turbulence structures in flow over two-

dimensional dunes, J. Hydraul. Eng., 134(1), 42–55. 

 

Sukhodolov, A. N., and B. L. Rhoads. 2001. Field investigation of three-dimensional flow structure at 

stream confluences: 2. Turbulence, Water Resour. Res., 37, 2411 – 2424, 2001. 

 

Sukhodolov, A. N. 2012. Structure of turbulent flow in a meander bend of a lowland river. Water Resour. 

Res. 48, W01516. 

 

Thorne, C. R., L. W. Zevenbergen, J. C. Pitlick, S. Rais, J. B. Bradley, and P. Y.  Julien. 1985. Direct 

measurements of secondary currents in a meandering sand-bed river, Nature, 315, 746-747, 1985. 

 

Van Balen, W., W. S. J. Uijttewaal, and Blanckaert, K. 2009. Large‐eddy simulation of a mildly curved open 

channel flow, J. Fluid Mech., 630, 413–442. 

Whiting, P. J., and W. E. Dietrich. 1993a. Experimental studies of bed topography and flow patterns in 

large amplitude meanders, 1, Observations, Water Resour. Res., 29, 3605 – 3622, 1993a. 

 

Whiting, P. J., and W. E. Dietrich. 1993b. Experimental constraints on bar migration through bends: 

Implications for meander wavelength selection, Water Resour. Res., 29, 1091 – 1102, 1993b. 

Yeh, K. C., and Kennedy, J. F. 1993. ‘‘Moment model of non-uniform channel-bend flow. I: Fixed beds.’’ J. 

Hydr. Engrg., ASCE, 119(7), 776–795. 


