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ABSTRACT

PROBABILISTIC FOUNDATION OF NONLOCAL DIFFUSION AND FORMUIATION AND
ANALYSIS FOR ELLIPTIC PROBLEMS ON UNCERTAIN DOMAINS

In the first part of this dissertation, we study the nonlod#ludion equation with so-called
Lévy measures as the master equation for a pure-jump Lévy process. Indkeicc L'(R), a
relationship to fractional diffusion is established inmili of vanishing nonlocality, which implies
the convergence of a compound Poisson process to a stalulesproin the case ¢ L!, the
smoothing of the nonlocal operator is shown to correspoedigely to the activity of the underlying
Lévy process and the variation of its sample paths. We doire volume-constrained nonlocal
diffusion equations and demonstrate that they are the magtrtions for Lévy processes restricted
to a bounded domain. The ensuing variational formulatiath @nforming finite element method
provide a powerful tool for studying both Lévy processed fractional diffusion on bounded, non-
simple geometries with volume constraints.

In the second part of this dissertation, we consider thelpnolof estimating the distribution of
a quantity of interest computed from the solution of an &tipartial differential equation posed on
a domainQ2(8) c R? with a randomly perturbed boundary, whetés a random vector with given
probability structure. We construct a piecewise smoothsfiamation from a partition of2(9) to
a reference domaif? in order to avoid the complications associated with solthgproblems on
Q(0). The domain decomposition formulation is exploited by lziag the effect of the random-
ness to boundary elements in order to achieve a computlyiaficient Monte Carlo sampling
procedure. An a posteriori error analysis for the approxenhistribution, which includes a deter-
ministic error for each sample and a stochastic error froereffect of sampling, is also presented.
We thus provide an efficient means to estimate the distdbutf a quantity of interest via a Monte

Carlo sampling procedure while also providing a posterordr estimates for each sample.
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1. INTRODUCTION

The field of applied mathematics concerns itself with theaiseathematical and statistical methods
and models in various science, engineering, and indusipalications. Unfortunately, as famously

stated by George Box,
“All models are wrong, some are useful,”

so that a rigorous analysis of the validity of the model isrither. In other words, every practical ap-
plication of mathematical and statistical models is accamigd by uncertainty and this uncertainty
must be quantified and reduced wherever possible. Commtanges where uncertainties arise
include the estimation of parameters from data, augmertiagroblem with simplifying assump-

tions, finite sampling of the input and parameter spaces,oataining outputs using a numerical
method. This dissertation concerns two parts, with eacheadihg an important problem in the
field of uncertainty quantification. Namely, in Part |, wedtunonlocal diffusion as a model for

diffusion processes in which the classical diffusion madehvalid and, in Part I, we investigate

the effect of uncertainty in the domain on which a partiafaténtial equation (PDE) is posed on
a quantity of interest (QOFI) computed from the solutionrt Paonsists of Chapters 2-6, whereas

Part Il consists of Chapters 7-9. The final chapter, Chaffieintludes a brief conclusion.

1.1 Probabilistic Foundation of Nonlocal Diffusion

Historically, diffusion processes have been modeled bykhssical diffusion equation,
ug(x,t) = cAu(x, t). (1.1.1)

The model[(1.1]1) relies on the classical balance law,

ou
—+V.-qg=0
o TV 1=

which states that the rate of change in the density; ¢) atx is due to a change in flux at and an

assumption that the fluxsatisfies Fick’s first law,

q=—cVu.



However, it has been observed experimentally that manysidh processes do not obey the classi-
cal model, e.g., contaminant flow in groundwater [28], sdimranovement of foraging spider mon-
keys [62], dynamic motions in proteins [51], turbulence uidbs [43], and dynamics of financial
markets[[47]; see [42] for a review of other such applicatioGonsequently, when the underlying
assumption of Fick’s first law is questionable, alternatedel® for diffusion must be considered

[6,53]. One alternative is the fractional diffusion eqoati
w(z,t) = —c(—A)Y?u(z,t), e (0,2, (1.1.2)

which arises via a generalization of Fick's first law; see][58nother viable alternative to the

classical diffusion model is the nonlocal diffusion eqaafi

u(x,t) = /]R (u(y,t) — u(z,t))v(z — y)dy, (1.1.3)

wherev is positive and assumed to be symmetric. The integral opecst the right-hand side of
(1.1.3) represents nonlocal diffusion because the ratéffostbn associated with(z, ) depends
upon pointsy # .

The work of [3/ 26| 36] allows for the consideration of volwr@nstrained nonlocal diffusion,
which are the nonlocal analogs of classical boundary valolelems. The volume-constrained prob-
lems have been studied in various contexts; see [21, 22|r2f36], the authors provide variational

formulations, which then give rise to a conforming finitereént method with discontinuous basis

functions. The relationship betwedn (1]1.2) dnd (1.1.3hélimit of vanishing nonlocality estab-
lishes that numerical solutions of fractional diffusionfmsunded domains can be approximated.
A useful perspective when studying diffusion processegas of a stochastic process and its
master equation, i.e., the deterministic equation thatgwsthe time evolution of the probability
density function describing the process. Each of the mofiels1)-{1.1.B) are the master equa-
tions for particular Lévy processes. A Lévy procdssis characterized by the Lévy-Khintchine

decomposition in terms of the characteristic function,

2 .
¢r,(§) = exp ((ib{ - % +/]R (em -1- iiﬂ{\x\d}) v(x) dx) t) )

Specifically, [1.1.11) is the master equation for Browniantiorg (1.1.2) is the master equation

for a centered and symmetric stable process, Bnd [1.1.Bgisnaster equation for a pure jump
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process. Whew € L!'(R), the latter is a Markovian continuous time random walk (CT)RWat
is, a compound Poisson process. Non-Markovian CTRWs, atse £ L' (R), can be studied via
the appropriate master equation as well, e.g., the mastetieq for a particular renewal-reward
process is the Cattaneo-Vernotte equation

u(x,t) + %utt(w,t) = /R (u(y,t) — u(z,t))v(z — y)dy. (1.1.4)

To understand sample paths and statistics of a given promesoften relies on many realiza-
tions of the process and then constructing a density egimatfrom the simulations. Unfortu-
nately, simulating the process can become expensive, orewvay be impossible. Consequently,
there are many advantages to having both the correspondistenequation and the ability to find
numerical solutions. Most notable is that statistics ofgh&n process are readily available once
the numerical approximatiom;, of the density is obtained and do not rely on costly simuretio

Part | is presented in Chapters 2-6 and is organized as fll@khapter 2 gives an overview of
the diffusion equationd (1.1.1)—(1.11.3) and introducesrttas the master equations for stochastic
processes. In Chapter 3, which is published work of the ai#tid, we obtain numerical solutions
to the volume-constrained nonlocal diffusion equation andly the relationship to classical and
fractional diffusion as diffusion is localized. Chapterwihich is a manuscript in preparation for
journal submission by the author, introduces the nonloedtaDeo-Vernotte equation and investi-
gates properties of solutions and the effect of relaxatioe.t In Chapter 5, which is published
work of the author([22], we present density estimates framugitions of the underlying stochastic
processes td (1.1.3) arid (1]1.4) with volume constraindscampare them to the corresponding nu-
merical solutions of the master equation. Chapter 6, wisiemmanuscript in preparation for journal
submission by the author, considers exit-time distrimgiof a general class of Lévy processes with

volume constraints.

1.2 Formulation and Analysis for Elliptic Problems on Urtaér Domains

Many natural phenomena are modeled by PDE boundary vallxepns and, given a fixed set of
input data into the model, e.g., boundary conditions, patars, and coefficients, much effort has
been expended to obtain efficient and accurate outputsitidraally, the input data are given in a

deterministic fashion. However, the inability to acculatmeasure parameters, inhomogeneities,



and deviations from a deterministic set of input data hawendsl stochastic descriptions of the
model more appropriate in the presence of such uncertgintie

The case when uncertainties are present in the coefficiéat$DE model has received much
attention from numerous disciplines. A typical formulatiof such a problem reads: find(z; )
such that

=V (a(z;0)Vuw(z;0)) = f(x;0), =z €,
(1.2.1)
w(z; 0) =0, x € 01,

wheref is a random vector with some given probability structuree €hsuing demand for rigorous
mathematical and statistical theory to accommodate thkcafipns has been met; see [8) 11] 12,
13,20/ 33[ 34, 69]. Some commonly used tools include Kanmmeve expansions, generalized
Polynomial Chaos, and stochastic collocation.

Much less attention, however, has been given to the case tivagaysical domain is uncertain,
though this problem is equally practical in its applicatidn fact, given a sufficiently fine spatial
resolution, the physical domain on which any model is posathcertain[[67], e.g., due to manu-

facturing imperfections, the inability to obtain accurateasurements, or the approximation of the

geometry from a discrete set of data points. The model proide findw(z; ) such that

=V (a(x)Vw(z;0)) = f(x), xe€ Q)
(1.2.2)
w(z; 0) =0, x € 00(0),

where# is a random variable with some given probability structurd @(0) c R? is a stochastic
polygonal domain. Specific applications of such problentduite transport in tubes with rough
boundaries[[65], aerodynamic studies in the design of wimbines [[23], heat diffusion across
irregular and fractal-like surfaces [16,/19], structurahlysis studies [55], acoustic scattering on
rough surfaced [56, 68], seismology and oil reservoir mamamt [13], various civil and nuclear
engineering studies [11], chemical transport in rough domZ0], and understanding the effect of
geometric variability on the electromechanical behaviaramostructures [7].

Often, only a few statistics on the output, rather than th@esolution, are desired. For in-

stance, one might consider estimating the distribution QG| computed from the solution of

(1.2.2) via

Q(w:0) = /Q IRCCDUCTE



where1) is uniquely determined by the QOFI. To estimate the distidlouof Q(w; @), standard
Monte Carlo sampling techniques are employed, which néagssinderstanding the numerical
error for every realization . Such sampling methods face several significant challersgeaive
approach will require constructing a mesh of the domain émherealization oP; the variational
formulation requires a basis of test functions that depan@;and it is not clear how to perform
an error analysis for multiple problems across differenhdms and different meshes as the error
estimates will depend oft in some unknown way. Consequently, new tools must be desdlop
problems with stochastic domains. The most popular apprito transform the problem from the
stochastic domain to a deterministic domain, which movesi#épendence dahfrom the domain to
the coefficients and data.

Motivated by the use of transformations to a determinigfenence domain in [70] and classi-
cal isoparametric finite element analysis, we transfornptbblem [1.2.P) to a PDE with stochastic
coefficients posed of, much like [1.2.11), via a piecewise smooth mapping on a tpartof Q.
Constructing this mapping takes little additional comgatzl effort and, since all the resulting
problems are posed dn, allows for an intuitive comparison of results and errorsoas all real-
izations of@. Further, exploiting the domain decomposition formulatity localizing the effect of
randomness to the boundary subdomains and performing a deuexpansion, an efficient Monte
Carlo sampling approach can be implemented that requires-nteshing of the domain. Further,
an a posteriori error analysis for each realizatio® ¢f available, as is an a posteriori error analysis
for the approximate distribution of the QOFI.

Part Il is presented in Chapters 7-9 and is organized aswislloln Chapter 7, we give an
overview of stochastic computations in PDE models with cendoefficients. Chapter 8, which
is a manuscript in preparation for journal submission bydbthor, formulates elliptic problems
on a stochastic domain, describes the piecewise smootfdramation to a reference domain, and
presents well-posedness results of both the untransfoemédransformed problems. Chapter 9,
which will be included in said manuscript, presents a Mondgl@sampling procedure and a pos-
teriori error analysis in the estimation of the distribatiof a QOFI computed from solutions of an

elliptic PDE posed on a stochastic polygonal domain.
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Probabilistic Foundation of Nonlocal Diffusion



2. ASURVEY OF THE UNDERLYING STOCHASTIC PROCESSES OF DIFHOS!
EQUATIONS

We introduce models for diffusion, e.g., classical, fracél, and nonlocal, as the master equa-
tions for different stochastic processes. The classidasibn equation is the master equation,
i.e., Fokker-Planck equation, for a Wiener process, wisetiea fractional and nonlocal diffusion
equations are the master equations for a centered and syimstable process and a Lévy jump
process, e.g., a Markovian CTRW. Non-Markovian CTRWSs,, agnewal-reward processes, can
also be studied via the appropriate master equation, whidbrnonstrated by considering the non-

local Cattaneo-Vernotte equation.

2.1 Wiener Processes and Classical Diffusion

The first study of classical diffusion is often credited too¥d-ick, who in 1855 introduced Fick's

first law of diffusion. We begin with the mass balance law,

ou @_

E—i_@x_o’

which states that a time change in density, ¢) atx is due to a change in fluy, atz. Determining
g in general, however, is nontrivial. Classically, it is ass&a that density flows from regions of high
density to those of low density, with the magnitude of thi fwoportional to the density gradient.

That is, we assume Fick’s first law
q= _Ca_xa
so that we arrive at the classical diffusion equation, Eigécond law,

up(z,t) = cugy(2,t). (2.1.1)

It was later understood that the classical diffusion egumagioverns a particle undergoing Brownian

motion. Interestingly, Brownian motion was given its firgtailed account long before Fick’s laws



of diffusion by Robert Brown in 1827. Brown witnessed poligains, and then later other inorganic
fine particles like glass and even dust from the Sphinx, éxhgbirregular motion when suspended
in water. In 1905, Einstein derived the classical diffustguation in his investigations of Brownian
motion. The first stochastic differential equation desogbBrownian motion, i.e., the Langevin

equation, is credited to Paul Langevin in 1908.

More specifically, Einstein presented the integrodiffeeerquation [30],

u(z, t+71) = / u(x — s,t)p(s)ds, (2.1.2)
R

which has several aliases, e.g., Einstein’s master equdlie Chapman-Kolmogorov equation, and

the Smoluchowski equation. Subtractiage, t) from each side of (2.112) gives

u(z,t +71) —u(z,t) = / (u(z — s,t) —u(z,t))¢(s) ds. (2.1.3)
R
We expand both the left hand and right hand sidek of (2.1.8ptain
2 2\ 52 4y o4
Ou 7O _E(E)0u  E(S)Ow (2.1.4)
ot 2 ot? 27 Ox2 A7 Oxt
where
E(S*) = / s*p(s) ds.
R
We assume the hydrodynamic scaling of time and space, i.e.,
2
lim E(57) =c,
=0 2T
and that
E(S%*) =o(r), k>2.
We then take- — 0in (2.1.4) to obtain[(2.1]1).
The Fourier transform of (2.1.1) gives
(&, 1) = —c&u(é, b). (2.1.5)

Solving [2.1.5) with initial conditionu(x,0) = d(z),

a(é,t) = exp(—ce?t),

8



which yields the fundamental solution 6f (2.1.1), denotéthwy(x, ¢),

1 x?
g(x,t) = mexp<—4—6t> . (2.1.6)

We note thatii(¢,t) is the characteristic function of a scaled Wiener proceé;1V;. Further,
evident from [(2.1.6), given that a particle begins at thgioriits position after time is a zero-
mean Gaussian random variable with variagee For (2.1.1) and an arbitrary initial condition

u(z,0) = up(z), u(z, t) is the convolution ofiy with the fundamental solutiog, i.e.,

_ _ 1 (z—y)?
u(m,t) - (g * uO)(wat) - /—47TCt /Rexp<_ Act ) UO(y) dy (217)
Rewriting (2.1.7),

ule,t) = /R o(y, yuo(z — v) dy,

gives thatu(z,t) is the expectation of the initial density of particles atipos = — y that have
diffused to positionz during timet through Brownian motion.
The classical diffusion equation is a special case of a FeRkanck equation,

2

ug(x,t) = % <%J2($,t)u(l’,t)>, (2.1.8)

which describes the time evolution of the probability dgnsiinction of the stateX; of an Ito

stochastic differential equation [57]
dX; = o( Xy, t)dW. (2.1.9)
In the special case of a constant diffusion coefficient, &:€x, t) = v/2¢, (Z.1.9) reduces to
dX; = V2cdW, (2.1.10)

and [2.1.8) simplifies to the classical diffusion equat@A().

2.2 Centered and Symmetric Stable Processes and Fradiidfuslion

An alternate model for diffusion is of interest when the uhdeg assumption of classical mass
balance and Fick’s first law are questionable. See, formestathe papers [6, 53] for discussions

and citations to the literature.



One alternative is the anomalous diffusion model given leyftactional diffusion equation
wp(z,t) = —c(—A)*?u(z,t), oe(0,2]. (2.2.1)

with

F{=a)y"v} = |gw. (2.2.2)

Anomalous diffusion represents a multiscale model fondifin; seel[63]. The fractional diffusion
(2.2.1) fora € (1, 2] arises via a generalization of Fick’s first law using a fracél derivative oper-
ator; seel[59]. Fractional gradient and divergence operai@ discussed in [48] and the fractional
Laplacian can be obtained through composition of theseabmes. Fourier transforming (2.2.1)

gives
up = —clé|u. (2.2.3)
Since the characteristic function of a centered and synitnetstable process;" is given by

pse(§) = exp (—cl€|*?),

the fundamental solution t@_(2.2.1) is the characteristiacfion of a centered and symmettie

stable procesS;*.

2.3 General Lévy Processes and Nonlocal Diffusion

The most general type of diffusion to satisfy the so-calledifove maximum principle [18, pg. 9]

are of the form

c 0%u

ug(x,t) = qu(x,t) + b% §W(m’ t) + /R (u(y,t) —u(z,t))v(y —z)dy. (2.3.1)

(1) +

In this section, we show thdt (2.8.1) (minus the reactiomjds the master equation for a general
Lévy process. The main focus of our attention will be on titegral operator, which is the master
equation for a jump process.

The distributionF' of a random variableX is said to be infinitely divisible ifyn € N, there
exists)?i ud E such thaty """ , 552- < X. Such random variables are prevalent and include those
with Gaussian, Cauchy, exponential, Poisson, and gamrtribdifons. The Lévy-Khintchine for-

mula provides a characterization of infinitely divisiblend@am variables via a decomposition of the

10



characteristic function. That is, the distribution of adam variableL is infinitely divisible if and

only if there exists

beR, ce RZO, (2.3.2a)
and a measure satisfying
v({0}) =0 and / (LA ]2)*) v(dz) < oco. (2.3.2b)
R
such that
c&? .
eu© =ewp (6= 54 [ (6 - 1-itolgen)vian)) . @233

whered > 0 is arbitrary and often taken to be equal to one.

A processL; that has an infinitely divisible distribution for ea¢hs a Lévy process. Further,
the Lévy-It o decomposition states that for any tripet, /) satisfying [(2.3.R) there is a probabil-
ity space on which a Lévy proceds composed of four independent processes (constantbdrift

Brownian motion,/cI¥;, compound Poisson proceBg and square integrable martingalg), i.e.,
Ly =bt + /Wy + Y, + Zy,

exists. Moreover, such a Lévy process has a characteiistition given by

o1, (€) = exp <<z‘b§ - § + /]R (eifl‘ - z'gxfﬂxm}) V(dx)> t> . (2.3.4)

For simplicity, we will consider triplets of the forrf0, 0, ), since the cases with # 0 and
¢ # 0 have been well-studied. We also writédx) = v(x)dz, and consider two choices of

1. v is symmetric, i.e.,
v(—z) =v(x), Vz#0, (2.3.5a)
2. vis notsymmetric and admits a finite mean, i.e.,
/R]w\u(x) dz < oo. (2.3.5b)

In either of these cases, there is no need for the compengathy,|.5) so that[(2.314) withh =

¢ = 0 reduces to

¢r,(§) = exp << /R (éﬁf — 1) v(z) da:) t) . (2.3.6)

11



We introduce the notatiofd(§,t) = ¢, (£) so that differentiating (2.316) gives

Q1) = ( / (eifzv - 1) v(x) dac) Qe ).
R
Inverse Fourier transforming yields the master equatiorifo= Y; + Z;,
w(ayt) = [ (ult) = u(w, )y - 2)dy. (2.3.7)
R

We further split into cases by distinguishing the cages L'(R) andv ¢ L!(R). In the former

case, we introduce thgrobability density functior and the mean wait-timg such that
o(z) = —v(2). (2.3.8)

In this case, the Lévy process is a compound Poisson process
Ny
Yi=> Ry, (2.3.9)
k=1

where Ry, i ¢ and the Poisson proced§ has intensityl /\. Consequently, the master equation

for Y; reduces to

ug(x,t) = %/R (u(y,t) — u(z,t)) oy — ) dy (2.3.10)

In the latter case, i.ey; ¢ L'(R), L; is a square integrable jump martingale, but not a compound
Poisson process. For¢ L'(R), we understand (2.3.7) as a distribution.
We now show that the master equation for nonlocal diffusiath w € L'(R) is a special case

of the master equation for an arbitrary CTRW,

t
where

A(s) = (2.3.12)

¢ is the step density, and is the wait-time density. Note that when wait-times are exquial,
At —1t) = %5(15 — ') and [2.31) reduces tb(2.3]10), which implies thai (BBi4 the master

equation for a Markovian CTRW, namely, a compound Poissongss.

12



2.4 Renewal-Reward Process and Nonlocal Diffusion wittakRaion

Different choices of\ in (2.3.11) give rise to non-Markovian CTRWSs. In practidewill be deter-

mined from data. For the particular choice/osuch that
o
At —t) = 12 <—u> , (2.4.1)
T T

we obtain the nonlocal Cattaneo-Vernotte equation

T

Ut(x7 t) + 2

welt) = 5 [ () = u(e.t) ole =), (2.4.2)

whereu is some field, e.g., temperature or probabilityis a symmetric function, i.e¢(x — y) =

¢(y —x),andf > 27 > 0. The assumptiori(2.4.1) is tantamount to

% €xp <_%t> ) ,8 = 27',
w(t) = — (2.4.3)
ﬁ exp <—;> sinh <%t> N ,8 > 27.
— 4T

We will show in Chapter 4 that (2.4.2) is the master equatimnaf non-Markovian CTRW,

namely a renewal-reward process
Ny
Y=Y Ry, (2.4.4)
k=1

where the wait-times aneot exponentially distributed anf;, ud ¢. The parametes represents the
mean wait-time between steps an(2 > 0 is a relaxation time. The nonlocal Cattaneo-Vernotte
equation[(2.412) is also a model for nonlocal hyperbolic lseaduction.

We contrast((Z2.4]2) to the classical Cattaneo-Vernottetbo
T
wy + iwtt = AWy, (2.4.5)

wherer /2 > 0 is again a relaxation time and> 0 is the diffusion coefficient. The equatidn (24.5)
is a model for diffusion that admits finite speeds of propagatspecifically,/2a/7. Whenw is a

temperature field[(2.4.5) is a model of hyperbolic heat catidn [45].
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3. CLASSICAL, NONLOCAL, AND FRACTIONAL DIFFUSION EQUATIONs ON
BOUNDED DOMAINS

This chapter is taken directly from published work by thehautfound in [21]. We compare the
solutions of one-dimensional volume-constrained proBl@orresponding to classical, fractional
and nonlocal diffusion on bounded domains. The latter twWiusions are viable alternatives for
anomalous diffusion, when Fick’s first law is an inaccuratedei. In the case of nonlocal diffusion,
a generalization of Fick’s first law in terms of a nonlocal filsxiemonstrated to hold. A relationship
between nonlocal and fractional diffusion is also revieyweldere the order of the fractional Lapla-
cian can lie in the interval0, 2]. The contribution of this paper is to present volume-caised
problems for nonlocal diffusion including a variationatftulation that leads to a conforming finite
element method using piecewise discontinuous shape @unsctSeveral examples are given where
the effect of nonlocality is studied. The relationship betw nonlocal and fractional diffusion ex-
plains that the numerical solution of volume-constrainesbfems, where the order of the fractional

Laplacian can lie in the interval, 2], is possible.

3.1 Introduction

The one-dimensional form of Fick’s second law
W¢ = CWgy, € >0, (3.1.2)

postulates the diffusion in time undergone by the scalad fierepresenting the particle density.
An alternate model for diffusion is of interest when the uhdeg assumption of classical mass

balance and Fick'’s first law, e.g.,
Wt = —(g,

q = —CWyg,
respectively, are questionable. See, for instance, therpdf,53] for discussions and citations to
the literature. One alternative is the anomalous diffusimrdel given by the fractional diffusion
equation

v = —c(=A)*%p, 0<a<?, (3.1.2)



with
(—A)*? = F(g|°D), (3.1.3)

where

06) == F)(©) = [ vlse e ds

R

denotes the Fourier transform of a functionand 7~! denotes the inverse Fourier transform.
Anomalous diffusion represents a multiscale model forudiffn; see([63]. The fractional diffu-
sion [3.1.2) fora € (1, 2] arises via a generalization of Fick’s first law using a fraiél derivative
operator; see [59]. Fractional gradient and divergenceabpes are discussed in [48] and the frac-
tional Laplacian can be obtained through composition aéelmperators.

The paper([26] demonstrates that the asymptotic behavica fmlution of [(3.1.R2) is given by

the solution of the integrodifferential equation

ug(z,t) = %/R (u(y,t) — u(x,t)) oy —x)dy, t>0, (3.1.4)

where¢ is a symmetric function, i.e¢(y — =) = ¢(z —y), ¢ > 0, A > 0, and [ ¢(s) ds = 1.
The integral operator on the right-hand side [of (3.1.4)esents nonlocal diffusion because the
rate of diffusion associated with(z,¢) depends upon pointg # x. The rate of diffusion is the
difference in the rate at whichentersy at timet, or% Jz u(y,t) #(y — x) dy, and the rate at which
u departse at timet, or %u(m,t). This suggests that the asymptotic behavior for a solutfoa o
volume-constrained problem corresponding to the nonlegaktion[(3.1]4) is also fractional, and
indeed, selecting as a Lévy stable density, demonstrates this relationdtip.nonlocal equation
(3.1.4) also represents a model for peridynamic heat cainatufd 7] .

We now briefly establish a relationship 6f (3]1.4) to its uhgdeg stochastic process. Consider

the compound Poisson process.
Ny
Yi=> Ry, (3.1.5)
k=1

where Ry, i ¢ and the Poisson proce$é has intensityl /\. Recalling that the characteristic

function of the compound Poisson process is given by
~ 1/~
u(€,t) = py, (§) = exp (X (cb(f) - 1) t> (3.1.6)
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establishes said relationship.

The purpose of this paper is to compare the solutions of tialinalue volume-constrained
problems corresponding tb (3.1..1) and (3.1.4) using a corifw finite element method on sev-
eral nonlocal diffusion problems. The nonlocal volumestoained problems augmeht (3]1.4) with
Dirichlet and Neumann volume constraints. The finite elemegthod for[(3.1.4) depends upon the
variational formulation presented in [36]. The relatioipshetween nonlocal and fractional diffu-
sion explains that the numerical solution of volume-caaistrd problems, where the order of the
fractional Laplacian lies in the intervél, 2], is possible; for example, the recent paper [61] only
considers the order < o < 2. Convergence and stability analysis of a finite differenethod
for (3.1.4) are investigated in [15]. The former paper itggges [(3.1.4) on the real line, while
the analysis in the latter paper considers the nonlpdadplacian diffusion equation with nonlocal
Neumann boundary conditions and compactly suppafted

This chapter is organized as follows. Secfiod 3.2 discusdationships among classical, frac-
tional and nonlocal diffusion. In particular, the nonlodéifusion equation[(3.114) leads to a gener-
alization of Fick’s first and second laws, and a relationflgween nonlocal and fractional diffusion
is reviewed. Sectiopn_3.3 reviews nonlocal volume-consé@iproblems and their variational coun-
terparts. The volume constraints given generalize thenaif Dirichlet and Neumann boundary
conditions. The finite element formulation, properties ohlocal diffusion, and three numerical

examples are given in Sectibn B.4.

3.2 Nonlocal Flux, Fick’s First Law, and Fractional Diffosi

A relationship is now established between the classicahantbcal diffusion equations (3.1.1) and
(3.1.4), respectively, by examining the nonlocal flux iredliby the latter equation and Fick’s first
law. The key to this relationship are the two lemmas giveidlth/b4] due to Noll. The first lemma

provides a formula for a flux,
1 1
p(x,t) = —5/ / (u(x+ (1 — p)z,t) — u(z — pz,t)2¢(z) dpdz, (3.2.1)
R JO
such that

(%p(x,t) -3 /R/Ol % <(u(:ﬂ (1= )2 t) — ule — ,uz,t))qﬁ(z)) dudz

1

=3 /]R (u(z + z,t) — u(z,t) + u(z — 2,t) — u(z,t))P(2) dz
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and, sinces(z) = ¢(—z),
Uy = _§pm-

The hypothesis for the application of the lemma is the antisgtry of the integrand of (3.1.4). The

second lemma grants, with< b, that

1 [ 1 b
X/a /R (uy, t) —u(,t)) (y — x) dyda = X/a /R\(a’b) (u(y, t) — u(z, 1)) $ly — ) dy da,

because

b b
. / / (u(y,t) — u(z, 1)) 6(y — x) dy da = 0,

a statement that there is no diffusion exchange withirb).
Evidently, the nonlocal diffusion equatidn (3.11.4) hadaepd the classical flux = —cu, with
the nonlocal fluxp. The fluxp is nonlocal because points=# x are involved, in contrast to the

classical, local, flux that would only require the painat timet, or u,(z, t). Therefore,

I 4
X/a /R\(a,b) (U(y,t) - u(:z:,t)) oy —x)dyde = & u(z,t) dz

/Z?pwt

(p(b,t) — p(a,1)).

In words, the time rate of change of diffusion over the int¢fw, b) is not only equal to the flux
into (a, b) at pointsb anda, but also the rate at which diffuses from outside ofa, b) into (a, b) at
timet.

We now demonstrate how the nonlocal fluX3.2.1) can be approximated hy.. Lete > 0,

\ = ¢2, define the radial symmetric density by

6e(s) = ~0(5/e)

(3.2.2)
/s%(b(s)ds <oo, k=0,1,2...
R

and denote

0<c:= l/52<;5(.5') ds,
2 Jr
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given the symmetric densityH A formal expansion implies that

p(z,t) ——// €2<uxwtz —i—zl k+18U$t)>¢g( )dudz
0

1 %= 1u(m,t) 1 i
= —cug(z,t) + 2 kz: a1 [2h 1)1 /Rz2 ¢e(2)dz
=2

o 82k—1u(ac,t) E2(k—1) ok
_q(x,t)—FkZ:z 921 (2]6_1)!/]1&2 o(z)dz

Under the assumption that the above expansion is validgasndufficiently small, classical mass

balance and Fick’s first law is generalized to

Ut = —Pu,
{ p = —cuy + O(e?).

Note that the nonlocal diffusion equatidn (311.4) does mptieitly require continuity, let alone
differentiability, of u, in contrast to the two derivatives af needed for the classical diffusion
equation[(3.1]1). The effect of the densityase decreases is to “localize” the diffusion 6f (3.1.4).
Indeed, defining

2
vy —x) =8y —x)+ c%é(y —x), (3.2.3)

whered(-) denotes the Dirac delta distribution, or generalized fionctimplies, along with integra-

tion by parts, that
/R (u(ys 1) — u(e, 1)y — 2) dy = cuga (2, 1),

whenu(z, -) andu,(z, -) decay sufficiently fast to zero atoo.
A relationship between fractiondl (3.1.2) and nonlocafudibn [3.1.4) is now reviewed. The

Fourier transform of (3.114) results in

Wle, 1) = 5(3() ~ VA ) (32.)
The authors of [26] assume that@s- 0
3(€) =1 —alg* +o(|¢]*), a>0, (3.2.5)

with 0 < o < 2, whereo(|¢|*) — 0 faster tharg. In particular, because

D(€) =1 - clef,

! The assumption on the densityimplies that the odd moments must be zero.
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whereq) is given by [3.2.8), the assumptidn (3]2.5) recovers thes@al diffusion equation when
a =2 anda = cA. When0 < o < 2, then [3.2.#) and(3.2.5) give

(e, 1) = 3 (3(€) — e, ) (3.2.6)
= —Slelae, 1) +o(l€]”) (3.2.7)

and application of the inverse Fourier transform with (3) brants

w =5 (=8P ut F o).

In words, the assumptions (3.2.5) demonstrate that nontbitfasion is approximately that given
by the fractional diffusion[(3.112) a& — 0. See Theorem 1 in_[26] for further information. A
specific case demonstrating this relationship betweetidraal and nonlocal diffusion is drawn by
appealing to the theory of Lévy stable processes. Fomuostaa Lévy stable densitywith stability
index satisfied (3.215). The nonlocal diffusion equaticeréfore represents a model for anomalous

diffusion.

3.3 Nonlocal Volume-Constrained Problems

The previous section discussed relationships among c#sdiactional, and nonlocal diffusion
equations in absence of boundary conditions. While boyndanditions are well-understood for
classical diffusion, the same cannot be said for fractiamal nonlocal diffusion. For instance, the
paper [32] establishes an abstract variational formulatar the fractional advection dispersion
equation with homogeneous Dirichlet boundary conditionterms of fractional derivatives. The
results of [32] immediately apply to the fractional Lapkatiequation with homogeneous Dirichlet
boundary conditions, however, only the cdse: « < 2 for the order of the fractional Laplacian
is considered. We now present classical and variationahdtations for the nonlocal diffusion
volume-constrained problem on a bounded interval whetea < 2.

The paperi[26] also presents formulations for the nonlodfision equation with homogeneous
Dirichlet or Neumann volume constraints. We study the timalgion of a fieldu on a bounded

domaing?, thusz € Q. Note that[(3.1}4) can be rewritten as
1
wlat) =3 [ (ulyt) =~ ule,0)ox(e ) dy
91 (3.3.1)
5 [ (0~ )0t~ y)dy.
R\Q
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The homogeneous nonlocal Dirichlet volume constraint caims the fieldu via
u(y,t) =0, yeR\Q, (3.3.2a)

while, for the homogeneous nonlocal Neumann volume canstra

l/ (u(y,t) —u(z,t))¢-(x —y)dy =0, z€Q, (3.3.2b)
A Jr\Q

which is a statement that the rate of diffusion exchange &etM2 andR \ 2 is zero. The anal-
ysis given at the end of Sectibn B.2 then implies that an aqption to the fractional Laplacian
equation with either homogeneous Dirichlet or Neumannmaconstraints witl) < o < 2is
available.

Our numerical experiments consider= (0, 1) and both the nonlocal homogeneous Dirichlet

volume-constrained problem, whele (313.1) dnd (313. 2adoe to give
1
wie.t) =5 [ () e 0)éxlo — 9)dy, € (0.1),
u(a,t) =0, z € R\ (0,1), (3.3.3a)

U(:L',O) :’LL(](QL’), T e (07 1)7
and the nonlocal homogeneous Neumann volume-constranoédem, where[(3.3]11) and (3.312b)

combine to give

(2.1) A/ u(y, ) — u(w, £)) ¢l — y)dy, = € (0,1),
u(z,0) = ug(z), xz e (0,1).

Here, ¢ is a positive number representing the nonlocalkty= ce®, and the symmetric density

(3.3.3h)

function ¢, is defined
1
be(s) = S 0(s/2), (3.3.4)
whereg is a specified symmetric probability density function thatiies
$(€) =1 —cle|* +ol¢]*, >0

If ¢ is zero outside a closed and bounded interval centered @twhich impliesa = 2 in (3.3.4),
then solutions of((3.3.3a) and (3.313b) approximate thddbenclassical homogeneous Dirichlet
and Neumann volume-constrained problems

ve(x,t) = vgp(z,t), € (0,1),
v(0,t) = v(1,t) =0, (3.3.5a)
v(z,0) = up(x), z € (0,1)
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and

ve(x,t) = Vgp(2, 1), x € (0,1),
v2(0,1) = v,(1,t) =0, (3.3.5b)
v(x,0) = up(x), xz € (0,1),

respectively, as — 0 for smoothu(z, t); see[1] 2] for details.
The results in[[36] provide the variational formulation @gated with [(3.3.3a) and (3.313b).

Define the bilinear form

Bi(u,v) = %/[/[ (u(y,t) — u(x,t)) (v(y) — v(:n)) ¢e(x — y) dy dz, (3.3.6)

wherel is an open interval such thatC R. Then, the nonlocal Green’s first identity [36, Sectiﬁx 4]

leads to
Bi(u.0) == [ [ (ulot) = uta) o(@) 0o — ) dy (3.3.7)
Multiplying (8.3.3d) and[(3.3.3b) by(x, t) and integrating shows
d 1

u?dx = —gB (u,u) and i/1u2dw— —gB (u,u)
Y R\, dt 0 D (0,1)\ %, W),

dt Jo

respectively. In either case, the assumptionspomre sufficient forfo1 u? dz to be decreasing in
time.

Let V; C L?(I) denote subspaces of test and trial functions defined bverR, as discussed

in [36]. The variational formulation for the nonlocal honsgeous Dirichlet volume-constrained

problem is: Findu € Vg x (0, 00), i.e.,u(x,t) for x € R andt > 0, such that

1

1

/ wv do + XBR(u,fu) =0, Vo e Vg,
0

u(z,t) =0, r€R\(0,1), t>0, (3.3.8a)
u(z,0) = uo(z), x€(0,1)
and the variational formulation for the nonlocal homogearseNeumann volume-constrained prob-

lem is: Findu € V(g 1y x (0, 00) such that

1
1 _
/0 wv dx + XB(OJ)(U,’U) =0, Vv e Vi),

(3.3.8b)
U(:L',O) = UO(aj)v T e (07 1)7

2 See also the “integration by parts” formula given[inl[37, lrean2.1].
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whereV(q 1) := {v] folv = fol uo} C Vo). BecauseB g 1y(u, 1) = 0, the compatibility relation

necessary fof(3.3.8b) (dr(3.313b)) to possess a solugion i
1 1
/ u(z,t)de =1y := / ug(z)dz, t>0. (3.3.9)
0 0

The compatibility relation is a statement that the integglajuantityu is conserved for all time.
The use of Green’s identity (3.3.7) demonstrates that tbgeatwo variational problems imply

their respective strong formis (3.313a)—(3.3.3b). Forinst,

! 1
0= /0 UtV dz + XB(O’D (u,v)
1 11
- [ e tp@yar =5 [ ] @)~ u@) o) oo - ayao
1 1
= /o <ut(x,t) — %/0 (u(y,t) — u(z,t)) ¢pe(z — y) dy)v(m) dz

must hold for allv € 17(071). Therefore
1 1
wlot) = 5 [ ()~ ule) 6o - ) dy =0, w € (0,1)
0

and so[(3.3.8b) implie$ (3.3.8b).

The variational formulation[(3.3.8a) extends the one preskin [32] for a homogeneous
Dirichlet volume constraint problgrwhere only the casé < o < 2, the order of the fractional
Laplacian, is considered. The formulatidn (3.3.8a) exteté attainable order © < « < 2 by

imposing nonlocal volume constraints over intervals of-aero length.

3.4 Numerical Experiments

Three one-dimensional examples are presented in dimdessoform. The first example examines
a nonlocal Neumann problem admitting closed-form soltifam any initial condition. Example 2,
which examines numerical solutions of both nonlocal Digttand nonlocal Neumann problems,
and Example 3, which examines numerical solutions to théocahDirichlet problem, both use the
discontinuous initial condition

0, 0<x<0.5
—{ ’ 3.4.1
uo(@) L,05§x<L (34.1)

% The Neumann problerfi{3.318b) is not considered.

22



The first two examples use the density

o(s) = x(~1,1)(8),

wherey 4 is the indicator function for the sef, and the third example uses Lévy stable densities
¢ = ¢~ with stability indicesae = 2,1,1/2. These last choices, and their relationship to frac-
tional diffusion where the order of the fractional Laplactia «, are discussed in Example 3. In all
casesy. is normalized vial(3.3]4) and we investigate the effects, @ parameter describing the

nonlocality, upon the solutions at various times.

Finite element method

Partition the interval0, 1) into n subintervals?; of lengthh, recall thatyq, is the indicator function

for Q;, and letV?

0,1) denote the space of piecewise constant functions on thatemals ;. Given

the approximationu, € Vif; ;) x (0, c0),
up(z,t) = ZWj(t)XQj (),
j=1
the discrete variational problem is: Fing < V(g 1y X (0, 00) such that
. 1
/ Fit) dz = < Br(un, xe)
Q;
1
=5 | [ ) = s, )60~ ), (2) dyda
1
=5 [ [ o) = @) éxta — ) dyao
o, Jne

= Z%(t) (% /QZ /Qj o (x —y)dydx)

J#i

1 .
_’Yl(t) (X/ ¢€(x_y)dydx>7 Z:17"'777‘7
Q JI\Q
wherel = R andI = (0,1) for the nonlocal Dirichlet[(3.3.8a) and Neumafn (3.3.8mhems,

(3.4.2)

respectively. A forward Euler integrator in time evolves thiscrete solution.
Wheng. for the nonlocal Dirichlet problem is positive oVt the last double integral df (3.4.2)

is computed as

%/Q R\Qi@@—y)dydx:%/gi (1—/Qi¢a<x—y>dy>dw
:§<1—/Qi/ﬂi¢a(x—y)dydx>.
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In the case of the nonlocal Neumann problem, the solutipre V, (0 1 x (0,00) is extracted by

enforcing that

h Z Y5 (t) = Ug.
j=1

Properties of the numerical solutions

Theorems 2-3iri[26] provide important properties for thiesons of (3.3.3h) and (3.3.Bb). Namely,
the numerical solutiom, (z, t) given by the finite element method satisfies, for the caseeohth

mogeneous Dirichlet problem,
1 1
/ ul (z,t) de < e_clt/ ud(z)dz, ¢t >0 (3.4.3a)
0 0
and, for the case of the homogeneous Neumann problem,
1
/ up(x,t)de =1y, t>0, (3.4.3b)
0
! 2 L 2
/ (uh(ac,t) — ﬂo) dr < e_c2t/ (uo(ac) — ﬂo) dz, c¢o,t >0, (3.4.3¢)
0 0

where the positive constants andc, do not depend upon the discretization.

Examples

Example 3.4.1.Consider the nonlocal Neumann probldm (3.B.3b) whetrec<2,

1 1
¢€(8) = %X(—E,E)(S)7 c= 67 €2 17
so that, defining := 6%

1

)= [ (0.0) = )Xo~ ) dy

1

77(/ u(y,t)dy — u(z, t))
0

77 up — u(x, t))

The solution for this ordinary differential equation yigld convex combination ef,(z) andwy,

u(z,t) = up(z)e " +up(1 — e ). (3.4.4)
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Thus, the solutionu(x, t) will lie between the initial condition:(z) and the constari, for all
t, and the difference:(x,t) — uy decays exponentially in time. The rate of decay decreasts wi
increasing nonlocality, and for largez the solution is well approximated by the initial condition
uo(z). Therefore, increasing nonlocalityimplies that the magnitude of the jump discontinuity
present in the initial condition remains large for incregsiinite time.

Increasing nonlocality is also an indication that the higbreler moments may not be small. To

see this, consider the formal Taylor's expansion
1 =1 [ (=DFOFu(z,t)
X/R(u(yvt)_u(x>t))¢€($_y)d3_ZX/ X Wﬁ’ ¢<(s)ds

aZk
:kzl ax% A/ 2k)!

where the odd moments disappear due to the symmety, @nd then

22(k=1)

1 8%
X/R(“(%t)— 7,)) ¢ (2 —y) 3—62 8:1:2k 21<:+1)!'

Truncating this expansion after one term yields the classiiffusion equation — a poor approxi-

mation when higher order moments cannot be neglected. infacause

o2k £2 £2(k=1)

(2k+3)!  (2k+3)(2k +2) (2k + 1)

for anye satisfyinge? > (2K + 1)(2K) for the smallest possible integéf > 1, the firstK even

moments form an increasing sequence since

g2 £2(i-1)

2i+3) @+

Example 3.4.2. Consider the nonlocal Dirichlef (3.313a) and Neumdnn 8BBproblems where
A\ = ce?,

1
P=(s) = 2_EX(—£,€)(8)7 c=

é, e>1,

with n = g% and the initial condition[(3.411) is used. Because cldseah solutions are not avail-
able as in Example_3.4.1, Fig. B.1 and Fig.] 3.2 plot the apprate solutions given by the finite
element method with mesh spacihg= 5 - 10~% andt¢ € [0,0.25]. The numerical solutions,

computed satisfy the corresponding properties (B.4.3g rake of decay of the magnitude of the

jump discontinuity in the initial condition increases witbcreasing.
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Fig. 3.1:Panels (a)-(e) show solutions to the nonlocal homogeneaich®t problem in Exampl& 3.4.2.
Panel (f) shows solutions to the corresponding classioaldgeneous Dirichlet problem. The verti-
cal axis in each panel is the valuewf(z, t) and the horizontal axis i8. The ten different solution
profiles in each panel correspond to the solutions at teareifft times, fot € [0, 0.25].
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Fig. 3.2:Panels (a)—(e) show solutions to the nonlocal homogeneeusisdnn problem in Example 3.4.2.
Panel (f) shows solutions to the corresponding classicaidgeneous Neumann problem. The
vertical axis in each panel is the valuewf(z,t) and the horizontal axis is. The ten different
solution profiles in each panel correspond to the solutioteredifferent times, fot € [0, 0.25].
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Fig.[3:3 plots the.>>12(0, 1) norms of the differencey;, — vj,, between numerical solutions of

(3.3.34) and.(3.3.3b) and numerical solutiond of (3]13.5d)(8.3.5b), e.g.,
llun — vl Lo (0,) = max max lup(z,t) — vp (2, 1),

o= onllron) = 3 [ (o) = on(ant)

o= ey = 3 [ untant) = onla )P

Each norm tends to zero as— oo, reflecting agreement with steady-state solutions. Howeve
transient solutions can differ substantially, which isnggsed by some norms increasing during
small values ot. This is due to both the discontinuity in the initial conditilingering for all finite
time in the solutions to the nonlocal problems and the efféd¢he nonlocal volume constraints,
i.e., nonlocal volume constraints do not requigg0™,¢) = 0 or (uy),.(0%,¢) = 0, for instance.
Further, for a fixed, the norms tend to zero asdecreases demonstrating agreement of solutions
in the absence of nonlocality. The plots in Hig.]3.3 empteabiath the nonlocal nature of volume
constraints for nonlocal diffusion and that jump discouitiies in the initial data remain for all finite
time.

Fig.[3.4 plots four bar graphs for the normalized moments

% f]R %Qe(@ ds _ g2(k—1)

_ . k=2,3,4,5,6,7,
5 e Z—f%(s) ds (2k +1)!

i.e., the moments are normalized so that the second momewmfu to one. The higher-order
moments become negligible relative to the second momeriteandnlocalitys decreases leading
to better agreement between the solutions to the nonlodatlassical diffusion equations. A side-

by-side comparison of Fig. 3.4 to Flg. B.1 and [Fig] 3.2 illatsts this point.

Example 3.4.3. The fractional diffusion behavior of (3.3]3a) is examingddhoosingy = ¢ to
be a centered and symmetric stable density with stabildgxre = 2,1,1/2. As explained in
Section 3.2 represents the fraction of the Laplacian in the equafioA. 3. Such centered and

symmetric stable densities are characterized through Foeirier transforms, i.e.,

¢ (s) = F " (exp (= [€]%)) (),
see [[4,§§ 1.2.5] for relevant definitions and theorems. We use the abization [3.3.4) to define
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in ¢. considered.

0.006
0.02
0.004
0.03 0.002
0 4 6 8 10 12 14 0 4 6

(€) e =0.25

10 12 14

(d)e=0.125

Fig. 3.4: The normalized moments described in Exaniple 8.4.2.
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¢2 and for the special cases= 2, 1 we have closed-form expressions fg:

1 2 52 9
62 (s) = <4mf> exp<‘4_s2>’ ‘=S

- - -1
w(s2 +e2)’ “=h

which are scaled Gaussian and Cauchy densities, respectivee casex = 1/2, however, does
not admit a closed-form fapd' (s). These three densities have similarities, e.g., they argrsstric
and unimodal, but differ significantly in other aspects. Fstance, the second momentd@ is
finite, whereas the two second moments associated¢v§/1ﬂ42 are infinite. Moreover, the two first
moments Ofgb;’l/ % are undefined and infinite, respectively.

Fig.[3.5 plots the time-evolutions of the approximate sohs to [3.3.38) forx = 2,1,1/2,
respectively, and variousgiven by the finite element method with mesh spading 5 - 10~* and
t € [0,0.25]. The numerical solutions;, computed satisfy the corresponding properties (8.4.3).
The solutions of[(3.3.3a) with? behave asymptotically, with respectdpas solutions to the clas-
sical diffusion equation. However, the asymptotic behawaiosolutions of [(3.3.3a) Witlabi’l/ %is
given by a fractional Laplace parabolic equation. Consetliyehe magnitude of the jump discon-

tinuity in the initial data decays more slowly in these Iattgo cases.

3.5 Summary

The contribution of this paper was to present volume-canstd problems for nonlocal diffusion on

bounded domains. This included a variational formulattoat tead to a conforming finite element

method using piecewise discontinuous shape functionsladdabhdiffusion was demonstrated to be
a model for anomalous diffusion applicable when Fick’s fiest represents an inaccurate model.
A generalization of Fick’s first law in terms of a nonlocal flwas demonstrated to hold, and a
relationship between nonlocal and fractional diffusiorsvadso reviewed, where the order of the
fractional Laplacian can lie in the intervé, 2]. The nonlocal Dirichlet and Neumann volume
constraints used represent generalizations of the ciddsizindary conditions. Several examples
are given where the effect of nonlocality is studied. Thatiehship between nonlocal and fractional
diffusion explained that the numerical solution of volueanstrained problems, where the order of

the fractional Laplacian can lie in the intenv@l, 2], is possible.
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4. THE NONLOCAL CATTANEO-VERNOTTE EQUATION ON BOUNDED
DOMAINS

This chapter is concerned with studying the nonlocal Catiaviernotte equation on bounded do-
mains. The work in this chapter is currently in preparationjburnal submission by the author.
We demonstrate that the nonlocal Cattaneo-Vernotte emuigtiobtained by including a relaxation
effect in the nonlocal diffusion equation and, in fact, asifrom a generalization of Fick’s first law
in terms of a nonlocal flux. In a certain limit of vanishing mocality and relaxation time, we find
a relationship between the nonlocal Cattaneo-Vernottatemquand the classical and fractional dif-
fusion equations. The contribution of this paper is to idtroe volume constraints for the nonlocal
Cattaneo-Vernotte equation, which induce boundary cmmgitfor the underlying CTRWSs. Fur-
ther, the variational and finite element formulations fasé nonlocal volume-constrained problems
are reviewed and demonstrated to be powerful tools. Wewewiell-posedness of these nonlocal
boundary value problems and provide properties of thewmtmrls. We investigate the effect of

relaxation time, i.e., non-Markovian effects, and nonlibza

4.1 Introduction

This chapter focuses on the nonlocal Cattaneo-Vernottatieoqu

ug(z,t) + %utt(x, t) = % /R (u(y,t) — ulz,t)) (z — y) dy, (4.1.1)

whereu is some field, e.g., temperature or probabilityis a symmetric function, i.e¢(x — y) =
¢(y — x), andr, 8 > 0. The integral operator in(4.1.1) is nonlocal because tlaaga at time of
the fieldu at z depends on aty # x via the convolution of. and¢. The equation[(4.111) is the

generalized master equation for a non-Markovian CTRW, hamesnewal-reward process
Ny
Y=Y R, (4.1.2)
k=1

where the wait-times amot exponentially distributed angy, u ¢. In this settingg is a probability

density function so thad(z — y) represents the step density framto y of the random walker.



Moreover, 5 is the mean wait-time between steps an@ > 0 is a relaxation time. We note the
nonlocal Cattaneo-Vernotte equatién (411.1) is also a ifodeonlocal hyperbolic heat conduction.

It is revealing to contraskt (4.1.1) to the classical Catbtaxernotte equation

wy + %wtt = QWgy, (4.1.3)

wherer /2 > 0 is again a relaxation time and> 0 is the diffusion coefficient. The equatidn (4]1.3)
is a model for diffusion that admits finite speeds of propi@galspecifically\/m. Whenw is a

temperature field[(4.1.3) is a model of hyperbolic heat cotidn [45]. Further,[(4.1]13) arises from
the classical balance law;; = —gq,, and a generalization of Fick’s first law in which the flux is

given by a convolution of the gradient of the fieldand a relaxation kernel [39],

(xt)——a/tgex =t wy(x, t') dt’ (4.1.4)
q\z,1) = )T P 7_/2 2\ L . L
The assumptiori (4.1.4) also takes the more familiar formaifabeo’s equation [25],
T
g+ 5q = —awy. (4.1.5)
Equation [(4.1.3) overcomes limitations of the classictudion equation
Wy = AQWgyg, (4.1.6)

which arises from the classical balance law,= —¢,, and Fick’s first law

— —aw,. 4.1.7
q ( )

One such limitation is thaf (4.1.6) implies an infinite speégropagation since its fundamental

solution is given by

1 z?
w(z,t) = mexp <_4_at> , (4.1.8)

which is positive for allz, for any arbitrarily smalt. This is referred to in the literature as “unphys-
ical” since disturbances are instantaneously propagMedeover, [4.1.6) is incapable of capturing
transient dynamics of the field in situations involving giones, high frequencies, and short wave
lengths [45]. One approach to remedy these issues is talinteoa relaxation time _[39] and a

special case of this is the classical Cattaneo-Vernottataqu(4.1.8). A criticism of the classical
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Cattaneo-Vernotte equation as a model for heat condudtawever, is that it can violate the second
law of thermodynamics.

It is also revealing to contrast (4.1.1) with the nonloc#fudion equation

ug(x,t) = %/R (u(y,t) — u(m,t))¢(x —y)dy, (4.1.9

which has been used in various applications, séé [bl 17, 34,aBd is well-understood as the

generalized master equation for a Markovian CTRW, namebnapound Poisson process
Ny
Yi=> Ry, (4.1.10)
k=1

where, againfy i ¢, but the wait-timesre exponentially distributed. As in_(4.1.1), the second-
order spatial derivative irfi_(4.1.9) has been replaced wi¢hrtonlocal integral operator and, con-
sequently, is a model for anomalous diffusion. Models fooraalous diffusion include[(4.7.1),

(4.1.9), and the fractional diffusion equation
v = —c(=A)*%y, 0<a<?, (4.1.11)

which includes[(4.1]6) as the special case= 2 andc = a. The fundamental solution to the

fractional diffusion equatior (4.1.111) satisfies

(&, t) = exp (—c[¢]*?),

which is the density of a centered and symmetric stable psy¢*, with index of stability «.
Again, the casex = 2 andc = aq yields [4.1.8), the probability density function of Browani
motion.

Volume constraints on the solution play the role of boundamyditions and have been studied
for the integral operator i (4.1.1) and (4]1.9), se€ [36] apecifically for the nonlocal diffu-
sion equation, see [21, 26]. As expected, the resultingawahlvolume-constrained value prob-
lems for [4.1.11) and (4.1.9) were demonstrated_in [22] toHeedgeneralized master equations for
non-Markovian and Markovian CTRW, respectively, on bouhdemains. Thus, the variational
formulations of such nonlocal volume-constrained prolleand ensuing finite element method
provide a powerful tool for studying CTRW on bounded domaiFise contribution of this chapter

is to investigate the effect of a nonzero relaxation time,, idifferences between Markovian and
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non-Markovian random walks, by comparing solutions of tbhalacal boundary value problems
corresponding td (4.11.9) to those corresponding to (4.1.1)

The rest of this chapter is organized as follows. Sedtiohdéronstrates how (4.1.1) arises
from a generalization of Fick’s first law in which the flux isvgh by a convolution of a memory
kernel and a nonlocal spatial operator acting as the gradfahe field, in contrast td (4.1.4). The
relationships betweei (4.1.1), (4.1.11), and (4.1.9) &e eeviewed. Further, we show that the
nonlocal Cattaneo-Vernotte equation is the master equédica renewal-reward process and that it
admits infinite speeds of propagation. Volume constraimtg4.1.1) are reviewed in Sectibn 4.3 as
are the variational formulation and ensuing finite elemeethnd. Sectiofi 414 provides numerical
examples to illustrate the effects of nonzero relaxatioretand nonlocality. In these examples, we
investigate the effect of relaxation time and study thectfté nonlocality and the relationship to

fractional diffusion.

4.2 The Nonlocal Cattaneo-Vernotte Equation in Free Space

In this section, we study the nonlocal Cattaneo-Vernotteaggn in free space. Namely, we demon-
strate how[(4.1]1) arises from a generalization of Fick'stfiaw in which the flux is given by a

convolution of a memory kernel and a nonlocal spatial operatting as the gradient of the field,
in contrast to[(4.1]4). The relationships between (#.1AY.11), and[(4.1]9) are also reviewed.
Further, we show that the nonlocal Cattaneo-Vernotte émuét the master equation for a renewal-

reward process and that it admits infinite speeds of projmagat

Generalization of Fick’s first law and a nonlocal flux

We demonstrate thdi (4.1.1) arises via the classical bal@wgu; = —o,, and a generalization of

t o
o(x,t) = /0 %exp <—%> (%p(m,ﬂ)) dt’, (4.2.1)

p(x,t) = —% /R/Q (u(@ + (1 — p)z,t) — u(z — pz,t))2¢(z) dudz.

Fick’s first law,

where

Differentiating [4.2.11) with respect toand rearranging reveals

T 1
0+ 50t = (4.2.2)

9 pr
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and so

1 T T
Ut = — =Py + =0zt Pz — —Utt-

3 2%t = 73 2

Noll's Lemma | [46/54] implies that

—%P:v(x» t') = % /R (u(x + 2,t') — u(z,t')) ¢(2) dz, (4.2.3)

and so[(4.1]1) is established.

A relationship to fractional and classical diffusion eqoas

A formal relationship betweem (4.1.1) arid (4]1.3) in thespree of vanishing nonlocality is now

established. Fix > 0, let 3 = 2, wheres > 0, and define the symmetric probability density
1
0=(s) = Z6(s/2), (4.2.4)
where the given symmetric densifysatisfies
/s%qﬁ(s)ds <oo, k=0,1,2....
R

Ase — 0, ¢-(z — y) weights points nearby more heavily, relative to points further away. Speci-

fying the second moment appropriately, the Fourier tramsfof ¢ has an expansion of the form

S(€) =1—ale)? +o(I€]%), a>o0.

With ¢. in place of¢ and assuming a formal Taylor expansion is valid for suffitjesmall €,

p(z,t) ———//962< (z,t)2 —I—Zl k“M)qbg( )dudz

1 o 1u(m,t) 1 ok
= —aug(x,t) + 2 Z 51 Ok =1 /Rz ¢e(2)dz
k=2

®, 92%k~1y(z, 1) £2(k=1)
= —aug(x,t) —i—Z ax%(_l )(%_ ] /Rzquﬁ(z) dz
k=2

and, utilizing [4.2.R), we obtain an approximation [of (&)].

o+ th = —au, + O(c?). (4.2.5)

Thus, in the absence of nonlocality, the nonlocal Cattaverootte equatior (4.1.1) reduces to the

classical Cattaneo-Vernotte equatibn (4.1.3). The efftitte densityp. with 5 = 2 ase decreases
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is to “localize” the diffusion of[(4.1]1). Indeed, takingz — y) = 6(x — y) + ad”(z — y) in (A1)
recovers[(4.1]3). Moreover, if = O(£?), (4.2.5) reduces to

0= —au, + O(e?), (4.2.6)

approximating[(4.117). Thus, in the absence of both relamatme and nonlocality, the nonlocal
Cattaneo-Vernotte equatidn (4.1.1) reduces to the chgdiifusion equation(4.116).
Finally, we establish a relationship to the fractional usfbn equation (4.1.11). Suppogés a

symmetric probability density function with the expansion
0(€) =1—clée|” +o(lg]*), 0<a<2, (4.2.7)
for ¢ > 0, so that, defining). via (4.2.4),
9e(6) = 1 — ce|€|" + o(e*[€]°).
Assumings = &%, the Fourier transform of (4.1.1) gives

Wlet) + 2l ) = — (3.9 1) ale.
= (P el + o€, 1)

_E_Oé

= —cl¢|*u(&, t) + O(*[¢]%),
implying thatu, formally, is approximately given by the fractional CatanVernotte equation
v(z,t) + %vtt(x,t) = —c(=A)*?u(x,t). (4.2.8)

Further, ifr = O(¢®), u is approximately given by the fractional diffusion equati@.1.11).

Master equation for a renewal-reward process

We now show that{(4.112) is the master equation for a reneswaand process. First, recall the

master equation for an arbitrary CTRW,

t
wy(z, 1) = /0 At — 1) /R (uly, ') — uz, ') d(z — y) dydt’. (4.2.9)
Choosing
At —t) = %% exp <—t7_;/2t,> ) (4.2.10)



where¢ is a symmetric function, i.e¢(x — y) = ¢(y — ), ands > 27 > 0, gives the nonlocal

Cattaneo-Vernotte equation. The assumption (412.10phtat@ount to

% exp <—%t> ) B =2r,
w(t) = 9 NS 306 —27) (4.2.11)
W exp (—;) sinh <Tt> , B >2T.

The special casg = 27 impliesW ~ Gammd2, 7), wherelV is the wait-time random vari-
able. The restrictiort > 27 has appealing consequences as well, e.g., positivity afisok and

conservation of mass. We note

~

= k
w(s) = 5732+2ﬁs+2 kZ:O k:' E(Wk)sk =1 — Bs + o(s),

which shows that the mean wait-time is indegd

We focus on the special cage= 27. By independence,

> Wy, ~ Gamma(2n, 7),
k=1

so that

$2n—1 t
Inll) = S g —1y1 P <‘¥> ’

wheref,(t) denotes the density of;'_, W}. Notice

P(N; >n) = (ZWk<t> /fn

and thus

e [ oo () S5 25
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The characteristic function is then found directly,

Py, (6) = E(e)

( )
Sl

= [E(exp (i£R1))]" P(N; = n)

n=0
s () e [“éifi" : iz/ii"f;]
o) [E (U ) somior o5 (oG
= exp ( {) {cosh ( (¢, (5))”2) + (R, (§)7/2 sinh (;(ml (5))“2)] - (421

Speed of propagation

From [4.2.1R), we note that the Fourier transform of thetsmiuto (4.1.1) for the casé = 27 = £

with u(z,0) = §(z) andu(x,0) = 0is
a0 = exp (2 ) [eosh (£} + 2 (r(Gut)2) sinn (LG ).

The Fourier transform of the solution {0 (4.11.3) wittiz, 0) = §(x) andw;(x,0) = 0 is

T T

t 1
w(E,t) = exp (——) {cosh (nt) + - sinh (nt)} , (4.2.13)
T T
where
1 2ae?
n=1y 5 - =g,
T T

see [40]. As we know[(4.1l.3) admits a finite speed of propagahamely,/2a/7. As expected,
if p-(¢) = 1 — 2a7£2€2, ie., ¢ (x — y) = 0(x — y) + 2a728" (z — y), then [E.2Z.1R) reduces to
(4.2.13). An effect of replacing the Laplacian with the ramal operator in[(4.111) is that distur-

bances propagate with an infinite speed.

Theorem 4.2.1.For the equationf4.1.1) disturbances propagate with an infinite speed.
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Proof. A disturbance at: and timet will propagate at least tax — 4,z + §), where supfp) 2
(—4,6), at timet + ¢ for any¢ > 0. An inductive argument demonstrates that a disturbanae at
and timet will be felt at least within(z — ko, = + k6) at timet + ¢ for = S°%__ #;, wheret; > 0.

Takingk — oo such that remains finite demonstrates an infinite speed of propagation [

4.3 The Nonlocal Cattaneo-Vernotte Equation with Volumesimints

The results in[[36] provide a variational formulation forlmme-constrained problems fdr (4.11.1).

This follows closely to that presented for the nonlocaludifon equation (4.119) in [21].

\olume constraints and variational formulation

We consider the bounded domdrand the bilinear form

1
2 /1 /1 (u(y,t) = u(@, 1)) (v(y) — v(2)) $=(z — y) dy da, (4.3.1)

wherel € {R,Q}. LetV; denote the possible choices for the subspaces of test ahtutrctions,

/vdx:/uodw},
Q Q

whereu(z,0) = uo(x) is a given initial density satisfyingo > 0 and [, uo(z) dz = 1 and

Vi = {1} /\v\2dw<oo}.
I

The nonlocal homogeneous Dirichlet & R) and Neumann( = €2) volume-constrained

VR = {’UGVR

v \R\Q: O} and Vg := {v eV

problems for[(4.1]1) are presented together: find V; x (0, c0) such that

T 1
uil, )+ Gunle,t) = [ (wlw.t) ~ a0 oula - ) dy, ze 9
I
u(z,0) = up(x), x € Q, (4.3.2)
uy(r,0) =0, x €.
We recall the nonlocal homogeneous Dirichlet and Neumanam-constrained problems for

4.1.9),
(1) A/ w(y,t) — u(z,8)) de(z —y) dy, €D,
(x O) = UO ) S Q7
studied in[[21 26, 36]. Both (4.3.2) arld (4.3.3) were stddie[22] in the context of CTRW. Well-

(4.3.3)

posedness of (4.3.3) has been treated_in [26] and we nownpraseseful result from [31] on the

well-posedness of (4.3.2).
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Theorem 4.3.1(Emmrich and Weckner (2006) 5uppose
Ko = esssup,¢s [Ko(z)| < oo and k:= /Q /Q |K (x,y)* dy da < oo.
Then, for a givenyy € V;, there is a unique mild solution € C2([0, T]; V) to
%Ut(%t) + ug(2,t) = /QK(x,y)u(y,t) dy — Ko(x)u(x,t).
Existence and uniqueness of solutiond o (4.3.2) follownfitheorent 4.3]1 with

K(a) = —0.c—y) and Kofa / 2 el —y)dy.

The variational formulations td (4.3.2) aid (413.3) aredfinc V; x (0, o) such that

1
/utvdw—kz/uttvdx—i-—BI(u,v) =0, Yo eV,
Q 2 Jo B
u(z,0) = up(z), z€€Q, (4.3.4)
ug(x,0) =0, r e

and findu € V; x (0, 00) such that

1
/utvdw+—B[(u,v) =0, Yo eV,
Q A (4.3.5)
u(z,0) =up(z), x€.
We refer the reader t0 [2[1, B36] for more details concernimgvtiriational formulations.
The nonlocal Dirichlet volume constraint constrains th&lfieon the volumeR \ €2, whereas
the nonlocal Neumann volume constraint restricts diffagio occur only inside?, i.e., density

neither enters nor exitQ. Further, sinceBq(u, 1) = 0, the compatibility condition necessary for

the Neumann problems in both (4.3.2) and (4.3.3) to possdstsans is
Uy 1= / uo(x)de = / u(z,t)de, V>0, (4.3.6)
Q Q

which is a statement that the integrated quantity conserved for all time.

Properties of solutions

The following theorem and its corollary demonstrate thastsans of (4.3.2) necessarily converge

to a stationary solution d&s— ooc.
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Theorem 4.3.2.Letu € C?([0,T]; V) be the unique solution t¢1.3.2) Then,u;(z,t) — 0, as

t — oo, for almost every: € 1.

Proof. Multiply (B.3.2) byu,(z,t), integrate over: € I, and then integrate ihto obtain

t
i/lutz(:n,t) de = %(B[(UO,UO)—B[(U,U)) —/0 /Iu?(x,s) dzds

and thus
t t
Bi(up,ug) > Br(u,u) + 25/ /uf(m,s) dzds > 25/ /u?(x,s) dzds.
0o Jr1 0o Jr1
SinceB; (ug, ug) < 0o, us(z,t) € L*(I) for all t and
ey = [ wdant)do 0.

The completeness df*(I) implies thatu; — g with ||g||;2(;) = 0, i.e.,g = 0 almost everywhere

and, thusy; — 0 for almost everyr € I. O

A stationary solution td(4.312);, € V7, solves

[ )~ w@)ota - yyay =0, veeo.

I
The results in[[26, 36] demonstrate that the unique statyosalution,x € I, of the homogeneous
Dirichlet problem isus; = 0 and that of the homogeneous Neumann problemy is- uy. Conse-

guently, a simple corollary to Theordm 4.13.2 exists.
Corollary 4.3.3. For almost everyr € Q, u(x,t) — us(z) ast — oo .

We have thus supplied the following properties for the sohg of [4.3.2): for the case of the

homogeneous Dirichlet problem,

/ u(z,t)de — 0, ast — oo, (4.3.7a)
Q

/ u?(z,t)dz — 0, ast — oo, (4.3.7b)
Q
and, for the case of the homogeneous Neumann problem,

/ u(z,t)de =1, t>0, (4.3.7¢)
Q

/ (u(w,t) — ﬂo)z dz — 0, ast— oo. (4.3.7d)
Q
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The results of([26] provide properties for the solutions[@B(3): for the homogeneous Dirichlet

problem,

/ u(z,t)de < e 2! / ud(z)dz, c1,t>0 (4.3.8a)
Q Q

/ u?(x,t) de < e_clt/ ud(z)dz, ¢t >0 (4.3.8b)
Q Q

and, for the homogeneous Neumann problem,

/ u(z,t)de =1, t>0, (4.3.8¢)
Q

/ (u(z,t) — ﬂ0)2 dz < e_CQt/ (uo(z) — ﬂ0)2 dz, co,t>0. (4.3.8d)
Q Q

A semi-discrete finite element formulation

To formulate the finite element method, we partitidmnto » subintervals?; and letxq, (z) be the
indicator function forQ2;. We denote the space of piecewise constant functions orutiietervals

Q; by V. Note anyu;, € V& x (0,00) can be written

up(z,t) = Z v (t)xa, ().
i

The discrete variational problems fo (413.4) dnd (4.3.6)ken: findu,, Vé‘ x (0,00) such that

1
8

1

.
M~ + ~M#~ = —
Y+ oMYy 5

Ay and M7 = A~,

respectively, wherdI and A are the mass and stiffness matrices defined by

_/Qi/ﬂj(ba(x—y)dydw, i #j,

M;;, = |Qz| and Aij =
/ / ¢e(x —y)dydx, i=7j.
Q; J 1\

For the Neumann problems, in light 6f(48.6), € V! x (0, 00) is extracted by enforcing that
> ()11 = To.
j=1

The numerical solutions satisfy the appropriate propeitid4.3.T) and (4.3]18).
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4.4 Numerical Experiments

In this section, we present examples demonstrating vapgoyserties of numerical solutions of the
nonlocal Cattaneo-Vernotte equation on bounded domaireadh example). is defined in[(4.2.14)

and we use the scaling
B = 2’7’ = CEQ7 (441)

wherea andc are given in[(4.2]7). In Example_4.4.1, we take= § and investigate the effect
of relaxation time by comparing solutions of the nonlocalt@aeo-Vernotte equation (4.1.1) to
the nonlocal diffusion equatioh (4.1.9). Example 4.4.2Bstigates the relationship of solutions of
the nonlocal Cattaneo-Vernotte equation to those of fsaati diffusion in the limit of vanishing

nonlocality and relaxation time. The analysis in Exaniple3Istudies the effect of relaxation time
and nonlocality on solutions by comparing solutions of tlessical Cattaneo-Vernotte, nonlocal

Cattaneo-Vernotte, classical diffusion, and nonlocdlidibn equations.

Example 4.4.1. This example examines a nonlocal Cattaneo-Vernotte emuatith homogeneous
Neumann volume constraints that admits an analytic seldtio any initial condition. We demon-
strate that solutions can be viewed as perturbations ofisnkito the corresponding nonlocal dif-
fusion equation[(4.1]19) and we investigate the effects afrearo relaxation time.

Consider the nonlocal homogeneous Neumann Cattaneofteeguation

g2 6
ut(mvt) + ﬂutt(x>t) = 6_2 /Q (u(yvt) - U(l’,t))qbg(ﬂj‘ - y) dya YIS Qa

U(l’, 0) = u0($)7 T € Q, (442)
ug(r,0) =0, x €,
where

1
P=(s) = %X(—a,a)(s)a e>1,

so thate = 2, ¢ = 1/6, and, consequentlyi = £2/6 andr = £2/12.
In this example, since > 1 and supp¢(xz — y)) contains for all z € €, (4.4.2) reduces to an

ordinary differential equation

g2 3 _
ut(wat) _utt(x7t) =3 (UO - u(m,t)), T €,

+ 24 g3
U(:L',O) = u0($)7 T €,
’LLt(ZU,O) = 07 T € Q,
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whose solution can be given as a convex combination of thialicbnditionu, () anday,

ue(z,t) =To(1 — ((t)) + Ce(t)uo(x), (4.4.3)

where

12 1 . 12/ 1 12 1

The function(.(¢) € (0, 1] is a strictly decreasing function that tends to zero as co. If uy(z) =
uo for somer € Q, thenz is afixed point, i.e.u(z, t) = ug(z), forallt > 0. Also, the monotonicity
of (. impliesu(x,t) 7 ug if up(z) < up and, likewiseu(x,t) N\, wo if ug(x) > wy ast — oo.
Ase — 00, ((t) — 1 for any fixedt < co. Thus,u.(x,t) can be well-approximated by (x) for
arbitrarily large finite time by choosingsufficiently large.

To investigate the effects of a relaxation time, we cons{det.9) with homogeneous Neumann

volume constraints as well,

wie.t) = 5 [ (ulot) = u(e0)ola— ) dy. w e

u(z,0) = up(z), x €Q,

(4.4.4)

for the samep. as in [4.4.2). As shown ir [21][(4.4.4) also reduces to annarg differential

equation whose solution is given by a convex combinationy¢f) andwy,

ug(z,t) = To(1 — Ca(t)) + Calt)uo(z), (4.4.5)

where

Ca(t) = exp <_§3t> :

Thus, solutions of(4.412) may be written

ue(z,t) = ua(z,t) + (C(t) — Ca(t)) (uo(x) — o),

the sum of the solution t¢_(4.4.4) and a perturbatios(t) — (4(t))(uo(x) — up) due to a nonzero
relaxation time. Sincey(z) andwu are fixed for a given initial condition, we study the diffecen
ue(z,t) — ug(x,t) simply by investigating.(¢) — (4(t).

In Fig.[21, we plot.(t) — ¢4(t) for t € [0, 3] ande € [1,3]. Ast — oo, (c(t) — Cq(t) — 0, but

more slowly for increasing. This reflects agreement of stationary solutions for the pivailems.
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For small values of, (.(t) > (4(t), which is an effect of the nonzero relaxation time. Aftessthi
short time frameg,.(¢) — (4(t) = 0, i.e., the solutions agree exactly at some point in ime0, and
then(.(t) < (q4(t) for the duration of time. These observations hold forabut are less dramatic

ase increases.

0.5 1 15 2 25 3 - t : 0.5 1 15 2 25 3

(@) e =1andt € [0, 3] (b) € € [1,3] andt € [0, 3] (c) e =5/4andt € [0, 3]

Fig. 4.1:The vertical axes ar€.(t) — (4(¢t) and in panels (a) and (c) the horizontal axis & [0, 3].

Example 4.4.2. The fractional diffusion behavior of the boundary valuelems for [4.1.1) is
examined by choosing = ¢® to be a centered and symmetric stable density with staliildgx

a € {2,3/2,1,1/2}. As explained in Section 2y represents the fraction of the Laplacian in the
equations[(4.1.11) an@ (4.2.8). Such centered and synurstéible densities, normalized so that
¢ = 1, are characterized through their Fourier transforms wéalivy-Khintchine representation,

ie.,
¢*(s) = F " (exp (—=1¢]*)) (s), (4.4.6)

see([4,85 1.2.5]. We usel(4.214) to defing and the cases = 2, 1 yield closed-form expressions

for ¢2:
3 2
T G
¢g(s) = § \4mE 4e (4.4.7)
(22 a=1

which are Gaussian and Cauchy densities, respectivelyotRer values ofy, ¢¢ is symmetric and
unimodal though closed-forms f@t& typically do not exist. Fonw < 2, the second moment is
infinite and fora: < 1, all moments are infinite. We consider the discontinuousaintondition

0, 0<x<0.5,

up(z) = (4.4.8)
1, 0.5<2z<1
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and investigate the effects of vanishing relaxation time aanlocality, i.e., lettingg — 0, on the
solutions to a nonlocal Dirichlet boundary value problem.

Fig.[4.2 plots the time-evolutions of the approximate sohg to the nonlocal homogeneous
Dirichlet boundary value problem ifi(4.8.2) given by thetéreélement method with mesh spacing
h =5-10"* andt € [0,0.25]. We considelx € {2,3/2,1,1/2} and variouss. The solutions
of (4.3.2) with¢? behave asymptotically, with respectdpas solutions to the classical diffusion
equation[(4.1)6). However, the asymptotic behavior oftsmhs of [4.3.2) witms?#? is given by a
fractional Laplace parabolic equatidn (4.1.11). Consetiuethe magnitude of the jump disconti-

nuity in the initial data decays more slowly in these lattesas.

Example 4.4.3.In this example, we study the effect of relaxation time fooanegeneous nonlocal

Dirichlet boundary value problem with an initial condition

- 1 oo [ (x —0.5)2 .
up(x) = 7/74“0.02)2 p < 74(0.02)2 ) , € Q,

which, to numerical precision, integrates to one. We usk bbthe densitieg? in (4.4.7) in this
example.

In Fig.[4.3, we plot the approximate solutions for the noaladiffusion, nonlocal Cattaneo-
Vernotte, classical diffusion, and classical Cattanembte equations. The relatively large nonlo-
cality, i.e.,e = 0.10, explains the differences between the solutions of theauahland classical
equations. The effect of the relaxation time in the nonl@zplations is slight in the transient time
and the asymptotic behavior of the two solutions is the samdhe classical equations, though
the asymptotic behavior of the solutions are the same, feeteadf relaxation time is dramatic in
transient time. In fact, the solution of the classical GataVernotte equation becomes bimodal, a
characteristic not shared by the other solutions. For tiéogal equations|, u, (x, t) dz decreases
faster initially than for the classical equations. The agigtic behavior of botr]fQ up(z,t) dz and
fQ u%(x, t) dz, however, are the same for the nonlocal and classical emsati

In Fig.[4.4, the nonlocality is small so that little diffe@nbetween the nonlocal and classical
equations is present. Moreover, the relaxation time is stisall and there is little effect due to the
relaxation time. This corroborates the notion that thetsmis to the four equations all behave like
the classical diffusion equation in the limit of vanishingnfocality and relaxation time.

The results in Fid._4]5 show that even in the limit vanishioglocality and relaxation time the

solutions to the nonlocal equations with# 2 behave very differently than those to the classical
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

@a=2e=1/4 (b)) a=2,e=1/8 () a=2,6=1/16

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

(da=3/2,e=1/4 (&) a=3/2,e=1/8 f a=3/2,e=1/16

0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
@ a=1le=1/4 (h)ya=1,e=1/8 () a=1,e=1/16
1 1 — 1
=
05 05 05
e
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
() a=1/2,e=1/4 K)ya=1/2,e=1/8 ) a=1/2,e=1/16

Fig. 4.2:Each panel shows solutions to the nonlocal homogeneoushtiproblem for differenty ande.
The densityp? is used, wherg® is a Lévy stable density with index of stability. Sincec = 1,
we take2T = . The vertical axis in each panel is the valueugfx, t) and the horizontal axis is
x. The ten different solution profiles in each panel corresitorthe solutions at ten different times,
t € [0,0.25].
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1 02 04 06 08 1 ~ 02 04 06 08 1 02 04 06 08 1

(a) nonlocal diffusion (b) nonlocal C-V (c) classical diffusion (d) classical C-V

0.7 0.01 002 0.03 0.04 0.05 GO 0.01 002 0.03 0.04 0.05

(e) fQ up(z,t)de vs. ¢ U} fQ uf (x,t) dz vs. t

Fig. 4.3:Top: Panels (a)—(d) show approximate solutiomgiz,t), for ¢ € [0,0.05] to the nonlocal and
classical diffusion and Cattaneo-Vernotte (C-V) equatjaespectively. The vertical axis in each
panel isuy (x,t) and the horizontal axis is € . Bottom: Panels (e) and (f) show solutions of the
nonlocal (marked) and classical (unmarked) diffusion li@a$ and C-V (solid) equations. In this
experimenty = 2 ande = 0.10.

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

(a) nonlocal diffusion (b) nonlocal C-V (c) classical diffusion (d) classical C-V
1.0 10
X
8
0.95
6
0.9
0.85 4
0.8 2
0.7 Q
001 002 003 004 005 0 001 002 003 004 005
(€) [, un(x,t)dz vs.t () [, un(z,t)dzvs.t

Fig. 4.4:Top: Panels (a)—(d) show approximate solutiomg(zx, t), for ¢t € [0,0.05] to the nonlocal and
classical diffusion and Cattaneo-Vernotte (C-V) equatjaespectively. The vertical axis in each
panel isuy (x,t) and the horizontal axis i8 € 2. Bottom: Panels (e) and (f) show solutions of the

nonlocal (marked) and classical (unmarked) diffusion li@a$ and C-V (solid) equations. In this
experimento = 2 ande = 0.02.
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equations. This is because the asymptotic behavior of thiwcal equations is given by a fractional

diffusion equation.

%oz o4 o6 08 1

(a) nonlocal diffusion (b) nonlocal C-V (c) classical diffusion (d) classical C-V

1.0

1
1o

0.95

0.9

0.85

0.8

0.7 0.01 002 0.03 0.04 0.05 OO 0.01 002 0.03 0.04 0.05

(e) fQ up(z,t)dx vs. ¢ U} fQ uf (x,t) dz vs. t

Fig. 4.5:Top: Panels (a)-(d) show approximate solutiomg(zx, t), for ¢ € [0,0.05] to the nonlocal and
classical diffusion and Cattaneo-Vernotte (C-V) equatjaespectively. The vertical axis in each
panel isuy (x,t) and the horizontal axis is € ). Bottom: Panels (e) and (f) show solutions of the

nonlocal (marked) and classical (unmarked) diffusion li@a$ and C-V (solid) equations. In this
experimenty = 1 ande = 0.02.

4.5 Summary

We demonstrate that the nonlocal Cattaneo-Vernotte emuetiobtained by including a relaxation
effect in the nonlocal diffusion equation and, in fact, asisrom a generalization of Fick’s first
law in terms of a nonlocal flux. In a certain limit of vanishimgnlocality and relaxation time,
we find a relationship between the nonlocal Cattaneo-Vegrerjuation and the classical and frac-
tional diffusion equations. The contribution of this pajeto introduce volume constraints, in
the form of volume constraints, for the nonlocal Cattaneordtte equation, which induce volume
constraints for the underlying CTRWSs. Further, the vaoiadi and finite element formulations for
these nonlocal boundary value problems are reviewed andm&nated to be powerful tools. We
review well-posedness of these nonlocal boundary valublgmus and provide properties of their

solutions. We investigate the effect of relaxation time.,,inon-Markovian effects, and nonlocality.
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5. CONTINUOUS TIME RANDOM WALKS ON BOUNDED DOMAINS

A useful perspective when studying anomalous diffusiorcesses is that of a continuous time

random walk and its associated master equation. In paatidor ¢ < L'(R), the nonlocal diffusion

equation,
u(z,t) = %/R (u(y,t) —u(z,t))d(z —y) dy, (5.0.1)
and the nonlocal Cattaneo-Vernotte equation,
u(z, t) + %utt(w,t) = %/}R (u(y,t) — u(z,t))d(z — y) dy, (5.0.2)

are the master equations for Markovian and non-MarkoviaRW$, respectively. We restrict the
random walker to a bounded domain where two types of intersctetween the random walker
and the boundary are considered. We derive the master ensidtir CTRWS that are restricted to
a bounded domain and compare numerical solutions to dezstityjates of the probability density
function computed from simulations. The numerical solutid the master equation represents a
powerful tool in the study of CTRWSs on bounded domains. Mutthis chapter has been taken

directly from published work of the author in [22].

5.1 Introduction

Anomalous diffusion processes have been observed in mafigaiions, for example, contaminant
flow in groundwateri[28], dynamic motions in proteifs|[51ikdulence in fluids[43], and dynamics
of financial markets [47] have all been verified experiménta exhibit characteristics of anoma-
lous diffusion; se€ [42] for a review of such applicationsdiffusion process is termed anomalous

when the mean square displacement has a nonlinear depermietime, i.e.,

(X2) = /szfu(w,t) de ~t7, v #1, (5.1.1)

unlike normal diffusion, where = 1. In (5.1.1),v is the probability density function of the random

variable X (), which is the displacement of a diffusing particle at timéNhen0 < ~ < 1 such



a process is subdiffusive, white > 1 indicates a superdiffusive process. A thorough survey of
theoretical considerations for anomalous diffusion psses can be found in [49].

One common perspective to take when studying anomaloussitifi processes is that of a
CTRW and its associated master equation [49, 52]. As is dgsliin([49, 50, 64], this perspective
is especially useful when the diffusion process lacks fiditaracteristic scales, e.g., mean square
displacement of a particle or the mean wait-time betweelismmis. Though the relationship be-
tween CTRWs in free space and anomalous diffusion procésse$®een well-studied, the same
cannot be said for the subsequent relationship on boundedids. Of the existing research, much
is concerned with graphs and lattices and there exists c@atiyely little work into the master equa-
tions for CTRWSs on general bounded domains. Recent effoaisiely [50], however, have made
advances to remedy this by investigating certain Marko@amiRWs with absorbing and reflecting
boundary conditions. The analysis [n [50] is limited in ialy on special cases so that explicit,
closed-form, solutions to the master equations can be féamsimple one-dimensional domains.
This analysis becomes difficult when the Markovian assumngé removed, the domains in two and
three dimensions are not simple, and the step density isuitably chosen, e.qg., it is approximated
from data.

There is a well-known relationship between the master émpsmtfor CTRWSs in free space
and fractional diffusion equations. Considerably moreaesh exists for fractional diffusion than
for integro-differential equations, such as the aforemo@ed master equations, on bounded do-
mains. For instance, the paper[71] gives a probabilisterpretation of the Lévy-Feller fractional
diffusion equation with absorbing boundaries, where tlagtion of the Laplacian is restricted to
a € (1,2), i.e., the cases > 2 in equation[(5.1]1) are not considered. Other work, €.dl], gbn-
siders fractional diffusion equations on bounded domaitts reflecting boundaries. However, even
for fractional diffusion, there is little notion of generdabundary conditions outside of specialized
domains, e.g., rectangles and parallelepipeds in two aeé tlimensions, respectively.

In this paper, we derive the master equations for both Maskoand non-Markovian CTRWSs on
bounded domains with either absorbing or insulated boueslafn insulated boundary restricts the
random walker from taking a step past the boundary, e.g.eaapcase of insulated boundaries is
the reflective behavior described n [50]. Boundary condsi such as these appear naturally when

a diffusion process is restricted to a bounded domain, eaptaminant flow in an underground
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aquifer. The boundary conditions for a random walker indealeme constraints on the solution of
the master equation and the resulting equations are thdiedtuia a variational formulation and
conforming finite element method describedlinl[21, 36]. Tdomputational approach allows for
the study of a wide-class of problems on nontrivial boundewhains in two and three dimensions,
a capability currently unavailable.

We demonstrate the numerical solutions to the master emsatigree with density estimates
of the solution from CTRW simulations. This renders the afioentioned finite element formula-
tion a powerful tool in studying CTRW as models of anomaloiffsision because computationally

intensive simulations may be avoided.

5.2 Continuous Time Random Walks in Free Space

We consider separable CTRWs, i.e., wait-times are indep#nof the choice of step. The wait-
time density is denoted with and the step density with(y, ). Thatis,J(y, x) is the probability
density of taking a step from to 2 and, consequentlyf, J(y,z)dz = 1. Note, however, that
Jg J(y,z)dy # 1in general. It is well-known, see for instance [14] 47, 4Bpttthe probability

density function of the CTRWs(z, t), satisfies the master equation
t
ug(z,t) = / A(t —t") Lju(z, t') dt’, (5.2.1)
0

where the Laplace transform of the memory kerhés

and we have introduced the operator

Lfula.t) = [ (u<y,t>f<y,x>—u(x,wf(x,y)) dy.

The analogous operator Idu(x, t) for a CTRW on a lattice has been studied previously [41].

We consider two choices df in (5.2.1):

At —t) = %5(:5 —t) (5.2.2a)
At —t) = % exp (—ZZ) , (5.2.2b)
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which are tantamount to specifying that wait-times arerithsted as

Exp(27), i.e., w(t) = —21 exp (——; > (5.2.3a)
T T
Gamma2, 1), i.e, w(t) = _t2 exp <—£> ) (5.2.3b)
T T

respectively, both of which imply finite mean wait-times. fact, (5.2.3h) and (5.2.8b) imply the
underlying CTRWs are compound Poisson and renewal rewaoggses, respectively. With (5.2.2),

(5.2.1) reduces to

1
u(z,t) = 2—Lﬂ§u(m,t) (5.2.4a)
T
1
e, ) + gutt(:c,t) = o Lfu(a, 1) (5.2.4b)

Since the mean wait-time is finitd, (5.2.4a) ahd (5.2.4b)racelels for either normal diffusion
or anomalous superdiffusion, depending on Whegf]}{e(rx —y)2J(y, z) dz is finite or infinite, re-
spectively. By selecting a heavy-tailed wait-time densitg may obtain models for subdiffusion,
normal diffusion, or superdiffusion, depending now upoa ifiterplay between the characteristic
step-length variance and characteristic mean wait-tiroetHe discussion in this section, we assume
J is a radial step density, i.el(y,z) = J(y — ) = J(z — y). Moreover, we assumé is a Lévy
stable density with stability index. Such densities are characterized via their Lévy-Khinieh

representatiori [4§ 1.2.5], i.e.,

J(s) = F " {exp (—e[€]*)} (s).

Relationship to fractional diffusion

We now establish a relationship between the nonlocal cxpxe(mf)—lLHé and the fractional Lapla-

cian—(—A)a/z. The fractional Laplacian may be defined in Fourier spaee, i.

F{=(0)"u(@,n} (&) = —lela(e. 1),
and we refer the reader 0 [4,]60, 73] for more details. Spftin= &2,
F{en " Liu, 0} €1
~F {A | () = )5 = )y}
= e7(J(©) — Ve, 1)

= —¢[*u(&, t) + O(®),
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demonstrating the nonlocal operator is well-approximdtedhe fractional Laplacian for smadl
A distinction between the two operators is that the nonlagarator encapsulates the fractional

derivative within the step density. The cases: = 2,1 yield closed-form expressions fdr.

1 2 s? 5

m(s2 +¢2)’

which are Gaussian and Cauchy densities, respectively.

Anomalous diffusion

Fora € (0,2), the mean square displacement diverges for the CTRWs Hedcm [5.2.4a) and
(G.2.4b),i.e.,
(X?) = / 22u(z,t)dz = o0, Vt > 0.
R
We instead consider a pseudo mean square displacement,
B2tl/a
(X2)p :/ z?u(z,t) de, (5.2.5)
Bltl/a

for appropriately chose; and B,. This so-called pseudo mean square displacement was intro-

duced in[[38], see also [49], and we find
(X2)p ~ 2. (5.2.6)

We now demonstrate numerically that bdth (5.2.4a) and4B)2are models for anomalous dif-
fusion, in the sense df (5.2.6). As an example, we consider1.2, e = 0.25, B; = 10, By = 20,
and start 100,000 random walkers at the origin. We compeieudo mean square displace-
ment of the random walkers on the time intervat [1,10]. A log-log plot of the simulations and
least-squares fit to the data is shown in Eigl 5.1. The slop#®deast-squares fits are 1.6658 and
1.6722, respectively, which approximate the slope 1.66@&dipted from[(5.2)6). This confirms
that the diffusion processes underlying the equations.lh4bare indeed anomalous. We refer the
reader to[[49] for further information.

To understand this analytically, we recall (5]2.1) for syetric ./,
t
wlant) = [ A1) [ (ulynt) —ute, )@ - ) dya
0 R
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Fig. 5.1:Left: (X?)p for the CTRW of [5.2.4a). Right{X?)z for the CTRW of [5.2.4b). The horizontal
axis is time and the vertical axis {S{?) 5, in log scales. The solid line denotes the pseudo mean
square displacement from the simulations and the dashedslihe least-squares fit.

and apply both Fourier and Laplace transforms to obtain:

si(€,s) — (€, 0) = R(s) (9(6) = 1) (&, s) = i, s).

Rearranging,

0(6,0) = =5 &)
so that
fe,s) = =20

where, for convenience, we have takeyiz) = d(x), i.e.,u(£,0) = 1.
We assumé& and$ have expansions of the form

W(s)=1—-cys"+o(s”), ~e€(0,1],
R (5.2.7)
d(&) =1—co&* +0(£%), ae(0,2].

Then, seel[3€, 49], we find (5.2.6). There are then three dasesnsider. First, whefy < «,
long wait-times dominate the behavior, resulting in suiogdibn. On the other hand, whér > «,
long step-lengths dominate the behavior, resulting in siiff@esion. When2y = «, wait-times and
step-lengths appropriately balance each other, resuhirffgormal) diffusion, which is not to be

confused with classical diffusion.

5.3 Continuous Time Random Walks with Volume Constraints

Boundary conditions for CTRWSs, which manifest themselvethe definition of the step density
J(y,x), are now formulated. We let be a symmetric probability density that should be integatet

as the step density in the absence of boundary conditions.
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We first describe the behavior of fully absorbing boundari@sce a random walker reaches, or
steps beyond, the bounda®¥?, it is banned front2 for all future time. This description gives the

step density

- Q
oz—y), yg
It is convenient then to set(x, t) = 0 for = ¢ 2 and insertion of((5.3]1) intd (5.2.1) yields
t(z,t) /A L]ﬁu:nt)dt/, x € €,
u(z,t) = z¢Q
and, thus,
1o
ug(x,t) = ELRu(aj,t), x €, (5.3.2a)
u(z, t) + %utt(ac,t) = %Lﬁ%u(m,t), x € Q. (5.3.2b)
T

The equation[(5.3.2a) was studied in the context of Marko @@ RWs in [50], while [(5.3.2b)
belongs to a non-Markovian CTRW.
Next, in the case of fully insulated boundaries, a randonkevrak restricted from reaching, or

stepping beyond){2 and this description gives rise to

J(y,z) = xa(z)d(z —y) + 0(z —y) o P(z —y)dz, yeQ, (5.3.3)

The step densityl (5.3.3) states that a random walker mayfistepy € Q to xz € Q via the radial
density¢(x — y). Further, there is a nonzero probabiliné\Q ¢(z —y) dz, of the walker aty € Q2

not taking a step. Together, these guarantee that the randdker remains irf2 for all time and,

consequently, definind(y, x) for y ¢ Q in (6.3.3) is not required. Insertion ¢f (5.8.3) info (52.1
gives

t
u(z, t) = / At — t')Lgu(x,t') dt’, z€Q
0

and, thus,

1
ug(z,t) = ELgu(m,t), x €, (5.3.4a)

1
ug,t) + %utt(x,t) = o-Lju(et), zeQ (5.3.4b)
T

Now, we relate the equatioris (5.8.2) ahd (5.3.4) to nonleckime-constrained problems that

have been postulated and studied in various differeninggsttisee [3, 21, 26, 36, 50]. A nonlocal
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volume-constrained problem augmeriis (8.2.4) by congtigithe solution on a nonzero volume,
generalizing the notion of classical boundary conditianhat of a volume constraint. Such volume
constraints need not be relegated to the exteridR.ofWe specify an initial density,o(x) on €,
satisfyinguo > 0 and [, uo(z) dz = 1.

The nonlocal Dirichlet boundary value problems are

1
u(z,t) = ELﬁu(x,t), x € Q,

u(z,t) =0, x ¢ Q, (5.3.59)
u(z,0) = up(z), x el
and
T 1 1)

ug(x,t) + §utt($,t) = ;LRu(ac,t), x €,

u(x,t) =0, T & Q,
(@%) # (5.3.5b)

u(z,0) = up(z), x € Q,

L u(z,0) =0, x € Q.

The nonlocal Dirichlet boundary condition constrainfer = ¢ 2, analogous to the classical Dirich-
let boundary condition that does so at the points on the bamynd

The nonlocal Neumann boundary value problems are

1
ug(z,t) = ELgu(x,t), x €,

(5.3.6a)
U(IL',O) = uo(x)a X G Q
and )
.
ug(w,t) + §utt($7t) = ELgu(w,t), x € 9,
u(w,0) = up(w), z€Q, (5.3.6h)

u(x,0) =0, x €.
The integrals in[(5.3]6), in contrast to those[in (5.3.5¢, @rer() rather than all ofR. This implies

a constraint on diffusion so that it occurs strictly insidei.e., density neither enters nor exits
which is analogous to the classical Neumann boundary dondit

In summary, the descriptions of the boundary conditiongHerCTRWs determind in (5.2.1)
so that[(5.2.11) reduces to an appropriate nonlocal voluomstcained problem in(5.3.5) dr (5.8.6).
Evidently, these nonlocal volume-constrained problenseidee the time-evolution of the probabil-
ity density of the state of the corresponding CTRWSs. Theyaisin [21]36] allows us to analyze
(5.3.3) and[(5.3]6) via a variational formulation and cenfing finite element method so extending

the class of problems computationally tractable.
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5.4 Finite Element Method and Density Estimation from Sitiohs

Data from the CTRW simulations are used to estimate the tyenéi, ¢t). Letp;(¢) denote the-th
random walker’s position at timeand partition2 = (0, 1) into n subinterval<?;. Then, define the

density estimate

n

N
pn (T, t) = xo, () (ﬁ > xau (m(ﬂ)) : (5.4.1)
=1

k=1
Though results exist that give the “optimal” bandwidth,.,i/, so not to over-smooth or under-

smooth the data, it is convenient in this case to gicto be the mesh size induced by the finite
element discretization. We denote the numerical solutior{5.3.%) and[(5.316) with,.

For each of the homogeneous Dirichlet problems,
1
/ u(z,t)de — 0, ast — oo, (5.4.2a)
0
1
/ u?(z,t)dz — 0, ast — oo, (5.4.2b)
0
and, for each of the homogeneous Neumann problems,
1
/ u(z,t)de =1, t>0, (5.4.2¢)
0
! 2
/ (u(x,t) —up) dz — 0, ast— oo. (5.4.2d)
0
With (5.4.1), we compute density estimate analog§ to (h.4@r absorbing boundaries,

/ un(z,t)dz = ZXQ (pi(t (5.4.3a)

2
/Q/ﬁv(w,t) dz = ﬁ ; (; XQk(pi(t))> : (5.4.3b)

and, for the case of insulated boundaries,

N

/Q pn(z,t)d Z (pi(t (5.4.3c)
= -

(ka pil ))) “ar (5.4.3d)

We simulateV random walkers and a density estimate af various points in time is computed.

/Q(,uN(w t)—uo) dz = N%Z

k=1

This density estimate is compared to the finite elementisolaif the associated nonlocal boundary

value problem.
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A walker begins at a random locatian € (0,1) according to the initial density(z). For
eachk, a wait-timet,, is generated frorwv and the arrival-timey, = a;_1 + t is recorded. A step
sk Is generated fromp, the new location:;, = x_1 + s is recorded, and then boundary conditions
are imposed. For instanceif ¢ (0, 1) for the case of absorbing boundary conditions, the random
walk is stopped. In the case of insulated boundary conditidne;, ¢ (0,1), we setry, = xx_1,
i.e., the walker waits at the current position. Again, tiksatment of an insulated boundary differs
from the reflective behavior in_[50] and is merely one apphofar treating insulated boundaries.
Deciding on the appropriate treatment is application speamnd depends largely on the mechanism
driving the CTRWSs. This algorithm is summarized in Algonitfb.1. Note that the position of

the random walker is known for all time, e.g., the walker igasition z;, for the time interval

[ag, ag41)-
Algorithm 5.1: Pseudo code for simulating a CTRW on a bounded domain
ayg = 0
simulatezy ~ ug(x)
for k from 1 toT do
simulatet;, ~ w(t)
ap = ap_1 +tg
simulatesy ~ ¢(s)
T = Th—1 + Sk
if x ¢ (0,1) then
| apply appropriate BC
end
end

We now demonstrate that the nonlocal volume-constrainedlgms govern the joint probability
densities of the corresponding CTRWSs on bounded domaitmsapipropriate boundary conditions.
We select) to be a Lévy stable density with = 3/2 ande = 0.25. The results we present simulate
N random walkers witle = 0.25, a = 3/2, h = 0.01, andt € [0,0.5]. Unless stated otherwise,
assumeN = 8- 10%. To compare the difference betweep and 1y, we compute the.2-norm,

denoted simply witH| - ||, of their difference,

lun — w2 = 3 /Q (un(a,t) — (o)) da
k=1 k

n N 2
=h)y (%(t) - ﬁ > xa, <pz-<t)>> : (5.4.4)
k=1 i=1

The density estimate is plotted as a piecewise linear fondily plotting the height of. at the
midpoint of the subinterval); and then connecting the points. This gives a more pleassugali

comparison ofi, and .
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Fig.[5.2 shows results of the CTRW simulations (@n1) with absorbing boundaries and the

solutions of the appropriate Dirichlet volume-constraipeoblems withuy(z) = 2z. The L?-norm

decays ofu;, andy, corresponding td (5.4.2b) ard (5.4.3b), are shown in p@jel

0.012 1.
0.0%1
0.008 1
0.006
0.004 0.5
0-00;”\’\/%%
el
00 0.2 0.4 0.6 0.8 1 0 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
(@) un(x,t) andpn (2,t),t € [0,0.5] (b) [lun — pn ||, varying N (©) [Jur|/* and||pn||?
0.012 1.
0.01;
0.008 1
0.006
0.004 0.5
o.oozw
0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
(d) un(z,t) andun (2, t),t € [0,0.5] (€) [lun — un|?, varying N (®) [lun|* and||pn||®

Fig. 5.2:Results of CTRW simulations of0, 1) with absorbing boundaries and solution of the nonlocal
Dirichlet problem. The horizontal axis isand the vertical axis is the value of the norm.

Fig.[5.3 shows results of the CTRW simulations (@n1) with insulated boundaries and the
solution of the appropriate Neumann volume-constrain@lpms withug(z) = 7 sin(rz). The
L?-norm decays ofi;, — iy anduy — @, corresponding td (5.4.2b) arid (5.4.3b), are shown in panel
(c).

5.5 Summary

The results in Sectioh 5.2 corroborate that the nonlocahbaty value problems i (5.3.5) and
(5.3.8) are indeed the master equations for CTRWSs with gjate boundary conditions. The
recently developed variational formulation and numericethods employed in obtaining these
results are thus a powerful tool in studying CTRWSs resttidtebounded domains. Consequently,
a rapid means of investigating statistics of the CTRWSs,, exjt-times, exists via approximating
solutions to master equations. Without this capabilitiinesting such statistics requires simulations

of the CTRW, a computationally demanding task.
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Fig. 5.3:Results of CTRW simulations ai, 1) with insulated boundaries and solution of the nonlocal Neu-
mann problem. The horizontal axistisind the vertical axis is the value of the norm.

61



6. VOLUME CONSTRAINTS AND EXIT-TIMES FOR IEVY PROCESSES

This chapter studies pure jump Lévy processes on boundadids via the corresponding master
equation, i.e., a nonlocal diffusion equation with volunomsgtraints. Volume constraints allow for
the study of exit-times of the process from a bounded domiais®ution of the master equation.
We describe how the activity of the process, variation ofshmple paths, exit-time distribution
of the process, and smoothing of the nonlocal operator amelated. In particular, the type of
diffusion can be identified from these statistics. Geneddlime constraints allow for the study
of exit-times from nontrivial domains as well. The contfilbm of this chapter is to present the
master equations for pure jump Lévy processes restrictacbbunded domain and then numerical
techniques to approximate probability densities of thelsistic process. With this, an efficient

means for computing important statistics of the procesgagable.

6.1 Introduction

Lévy processes, se€l [4], are a general class of stochagtiegses that arise in several applications,
e.g., seel[14, 38, 43, 42,149,158, 62| 64], and include Brawniation, compound Poisson pro-
cesses, interlacing processes, and stable processesicaippls involving Brownian motion and
compound Poisson processes are abundant in many fieldg stable processes and more general
Lévy processes. The increments of a Lévy process havet@fjirdivisible distributions, which
include Gaussian, Cauchy, exponential, Poisson, and gatistndutions as special cases.

Several statistics of a Lévy process, e.g., moments, tliiamgeor exit-times, that characterize
the process are necessary in any given application. Thaughssatistics are easily computed given
the density of the process(z, t), often the density is unavailable. Instead, it is commorratiice
to simulate the random process multiple times and producestimate of the density which can
then be used to estimate such desired statistics. The neagtation for a Lévy process, i.e., the
deterministic equation that governs the time evolutionhef densityu(z,t), provides a powerful

alternative to simulation-based approaches.



The contribution of this chapter is to present the masteagos for pure jump Lévy processes
restricted to a bounded domain. The resulting master emsatire so-called nonlocal diffusion
equations with general volume constraints. We present ricat¢echniques for finding approxi-
mate densities and compare to density estimates computedsimulations of the process. With
this, an efficient means for computing exit-times of the psscis available. Exit-times are not
traditionally studied via the master equation because roasgs do not lead to a well-posed prob-
lem, e.g., fractional diffusion with the order of the Lap@ta < (0,1) on a bounded domain.
The emerging work in [3, 29] have presented well-posed masfaations for a large class of Lévy
processes restricted to a bounded domain. An equivalernteeée the smoothing of the nonlocal
operator and the activity of the stochastic process anatiami of the sample paths is established.
Numerically solving the master equation also provides amadar dealing with processes of infi-
nite activity, where simulation is impossible and diffictdteven approximate such processes. Also,
the general volume constraints allow for considerationasf-simple domains, e.g., not connected,
which appear naturally in many applications but traditlynare not easily handled.

A Lévy processes is characterized by a so-called Léviet(ip ¢, v), whereb is the drift,c is the
diffusion coefficient, and’ is a measure. This characterization is a consequence oélblerated
Lévy-Khintchine decomposition and is reviewed in Sedgh Depending on the triple, the master

equation takes very different forms, e.g.,

1. the transport equation,

ug(x,t) = —bug(z,t), (6.1.1)

arises from the tripletb, 0,0) and is the master equation for a deterministic drift process
2. the classical diffusion equation,
up(w,t) = gum(w,t), (6.1.2)
arises from the triplet0, ¢, 0) and is the master equation for Brownian motion
3. the nonlocal diffusion equation,
u(z, t) = /R (u(y,t) — u(z,t))v(y —z) dy, (6.1.3)

arises from the triple0, 0, ) and is the master equation for a jump process.
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As many of the applications mentioned in [14] 38,/43,42| 8962, 64] are posed on bounded
domains, a restriction of the stochastic process to a balddmain is in order and we study statis-
tics that are specific to this restriction, e.g., exit-tinteg of the bounded domain. Simulating
stochastic processes on bounded domains has been studatbus settings, but often little atten-
tion is given to the corresponding master equations. Thdanasguations for triples of the form
(b,¢,0), e.g.,[(6.1.11) and(6.1.2), restricted to a bounded dormeam been well-studied in classical
PDE literature. However, master equations for processtsw 0 restricted to a bounded domain
have received far less attention. In the papers [3] 36, 29,reflocal diffusion equations with
general volume constraints are formulated and we demaoadtrat they are the master equations
for such processes. Forc L!(R), [50] presents analytic solution techniques for such masfea-
tions, whereas a variational and finite element formulaiogiven in [21.[ 22] and used to compute
numerical solutions.

The caser ¢ L'(R) has been studied in [29,72] in terms of the smoothing of thdaual
operator. The underlying stochastic process in this casetia compound Poisson process and,
instead, is a square integrable pure jump martingale. Tétindiion betweens ¢ L'(R) and
v ¢ L'(R) is tantamount to distinguishing the cases when the stdchasicess has finite activity
and infinite activity, respectively. Evidently, the activdf the process implies the smoothing of the
operator in the corresponding master equation.

The rest of the chapter is organized as follows. In Seétidh\8e review the Lévy-Khintchine
formula and describe how a Lévy process can be split infi, diiffusion, and jump components.
We then discuss in detail the jump component of the processligtinguish between cases of finite
and infinite activity. Volume-constrained problems arenthroduced as the master equations for a
Lévy process restricted to a bounded domain. Variatiaorah@ilations, a conforming finite element
method, and simulation procedures are reviewed in SectBnS®veral numerical experiments are

given in Sectiof 6]4 and we summarized our findings in SeffiBn

6.2 Understanding Particle Motion via the Lévy-KhintadiRormula

We now give a brief introduction to Lévy processes. A LévpqessL; is a stochastic process
beginning at the origin, i.ely = 0, that has independent and stationary increments and whose

sample paths are almost surely right continuous with lefiti. A Lévy process can be decomposed
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into four independent processes (constant driftBrownian motion,/cW;, compound Poisson

processy;, and square integrable martingag, i.e.,
L; =bt+ \/EWt + Y+ Z;. (6.2.1)

We note thaft; and Z; comprise the jump components of the process. The decorigpo@E2.1)
is a consequence of the Lévy-Khintchine decompositionickvicharacterizes an arbitrary Lévy

process by its characteristic function
. ng €x ;
oL, (§) =exp | | b€ — > + ; (e —1- zgxf{|m|<5}) v(de) |t ), (6.2.2)
whereb € R, ¢ € R>¢, and the so-called Lévy measureatisfies

v({0}) =0 and /]R (LA |z?) v(dz) < oo. (6.2.3)

Consequently, a Lévy process is associated with a Lépletrib, ¢, v). The paramete§ distin-
guishes between small jumps, i.d.; — L;—| < d, and large jumps, i.e|L; — L;_| > § and is an
arbitrary positive number.

We assume that the Lévy measuelz) can be written/(z)dz, wherev is a function. In this

chapter, we focus only on triplets of the forith 0, ~), wherev is symmetric, i.e.,
v(—z) =v(x), VYa#0, (6.2.4)

since the cas@, ¢, 0) has been well-studied. The symmetryvafemoves the need for the compen-

satoriéz I, <sy SO that[(6.2.R) reduces to

¢r,(§) = exp << /]R (éfl‘ — 1) v(z) da:) t> . (6.2.5)

We introduce the Fourier transform of the densit{€, ¢), which, by definition, is the characteristic

functionr, (). Then, differentiating[(6.2]15) with respectt#gives

Q& t) = ( /R (eiﬁx - 1) V() dw) (e, ).

Inverse Fourier transforming yields the master equatiorfo= Y; + Z;,
w(ayt) = [ (ult) = u(w, )y - 2)dy. (6.2.6)
R

65



Processes with finite activity

We first consider the case € L!(R) so that the stochastic process has finite activity, i.e.patm
surely the particle motion exhibits a finite number of jumpsewery compact time interval. In this

case, the Lévy process is a compound Poisson process, i.e.,
Ny
Li=)Y R (6.2.7)
k=1

In (6.2.7),]V, is a Poisson process with intensity ! that is independent a&), i ¢, where we have

defined the probability density functiehand mean wait-time. so that
1
o(z2) = XV(Z)' (6.2.8)
Consequently, the master equation fgrin this case reduces to
1
wlent) = 5 [ (unt) = e 0) oty ) dy. (6.2.9)

To understand the smoothing effect of the nonlocal opeiat@.1.3), we introduce the frac-

tional diffusion equation
up(z,t) = —c(=A)*?u(z,t), 0<a<?2, (6.2.10)

which arises from the triplef0, 0, v), with v(z) = mﬁ and is the master equation for a centered
and symmetric stable proces$. The analysis in[3, 26, 29, 2] demonstrates that the nahloc
operator in[(6.2]9) does not smooth the data, i.e, the soligino smoother than the initial condition.
In particular, a discontinuity in the initial data will renmafor all finite time. This result is given in

Theoreni 6.2]1.

Theorem 6.2.1(Chasseigne et al. [26]))f ¢ € L'(R) and (;AS € LY(R), then the fundamental

solution, i.e., the solution with(z,0) = 6(z), whered(z) is the Dirac measure, of6.2.9)is given

by
gulx,t) = exp(=A\"1)d(z) + w(z, t), (6.2.11)

wherew is smooth.
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Relationships between fractional and nonlocal diffusiamehbeen studied in several fashions,
e.g., the asymptotic behaviors were shown to convergé ih 488 an equivalence between the
appropriate solution spaces was demonstrated in_[29, 72]noklocality vanishes, per the inter-
pretation in[[21], the nonlocal diffusion well-approxireatfractional diffusion for special choices
of v € L'(R). We now show under suitable conditions that the processasrlying the fractional
diffusion equation[(6.2.10) can be well-approximated byeauence of processes underlying the

nonlocal diffusion equation, which is summarized in Theol&2.2.

Theorem 6.2.2.Assumep(¢) = exp(—ce®[¢|*), o € (0,2], and\ = &®, whereg and ) are defined
in (6.2.8) Letu® € C([0,00), L!(R)) denote the solution to
1
wi@t) = 5 | (000 = (e, 0) ol — ). 6212
u*(x,0) = 6(x)
andv € C([0, 00), H*/?(R)) denote the solution to
’Ut(l’,t) = —C(—A)a/2’l}(x7t)7
(6.2.13)
v(z,0) = 0(z).

Denote the compound Poisson process corresponding with Y,° and the stable process corre-

sponding tav with S¢*. Then, for allt > 0, ase — 0,

i.e.,Y;® converges in distribution tS7*.

Proof. The characteristic function far;® is

(6.0 = A(@) ewp (5 (36~ 1) ) =A@ exp (55 (xp(-elel) - D).
Clearly,

lim ©* (€, 1) = o (&) exp (—cl¢[*?),
e—0
which is continuous & = 0, so that the Lévy Continuity Theorem gives the result. O

Corollary 6.2.3. Let Fys and Fse denote the distribution functions Bf and Si*. Then, sincefs»

/ ua(z,t)dz—>/ v(z,t)dz
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We remark that = “ specifies a scaling of time and spacejdscomes localized. In the case
of a = 2, the scaling\ = £? is is typical of classical diffusion processes. Formallge®reni 6.2,2
can be interpreted as stating that the distinction betwieertdémpound Poisson and centered and
symmetric stable processes is negligible as 0 because the size of the jumps becomes so small

that the error made in approximating the former with theslat small.

Processes with infinite activity

In the caser ¢ L'(R), the stochastic process has infinite activity, i.e., alnsosely the particle
motion exhibits an infinite number of jumps on every compauitinterval. To condense the
presentation, we only consider choices #oof the formv(x) = le% a € (0,2),C > 0. Inthis
case, the Lévy process is comprised of a compound PoissmegsY; of the large jumps and a

square integrable martingalg of the small jumps, i.el; = Y; + Z; and

YL, (6) = Py, (5) “PZ (6)

— exp <</x25 (eism _ 1) v(z) dx) t) - exp <</x<5 (eism _ 1) v(z) dx) t) :

-1
The compound Poisson procégscan be understood readily by defining= <f|m|>5 v(z) d;p)
and¢(z) = Av(z) so that

Py, (§) = exp (% </|m|>5 (ei&” - 1) o(z) d:n) t) .

The master equation fdf; is then
w(ayt) = [ (ut) = (e, 0)o(y - 2)dy, (6.2.14)
R

wherev(z) = ‘x‘%x(_(w) ().

For the choice/(z) = %X(—M) (x), a € (0,2), the analysis in[29, 72] gives that solu-
tions to [6.2.14) converge to the solution of the classidflision (6.1.2) a$y — 0. The following
theorem corroborates this result from the viewpoint of thdearlying stochastic processes.

Theorem 6.2.4. Let Z! denote the jump process 6.2.13)with v(z) = %X(—é,é)@)'
a € (0,2). Then,
75 % \aw,

aséd — 0.
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Proof. The characteristic function df{ is given by

Pz5(§) = exp (t /_i (eiﬁm -~ 1> % dx> .

Expandinge’® in a Taylor series about the origin and noticing the odd teramsh, we have

€x — a)§2
goza Hexp( /_5( 2]@))' (2 |$|11a dw)

i€x — )62
= exp (t/_5 ( 52) 2 |x|13-5a d:p) -exp (0(9))

= exp (&%) - exp (0(9)),

which, takingé — 0 and an application of the Lévy Continuity Theorem, congsehe proof. [

The analysis of[[29, 72] demonstrates that the nonlocalatpein [6.2.14) has a fractional
smoothing effect, i.e., the nonlocal operator maps 2 (R), o € (0,2). We contrast this with
the lack of smoothing in the casec L'(R). Specifically, the Lévy process has finite activity«
L'(R)) if and only if the spatial operator in the corresponding t@asquation has no smoothing.
That is, the Lévy process has infinite activity ¢ L'(R)) if and only if the spatial operator in the
corresponding master equation has smoothing. Furthegrtoint of smoothing is related to the
variation of the sample paths. For instance, in the ease (0,1), the sample paths have finite
variation (less smoothing). On the other handy i [1,2), the sample paths have infinite variation

(more smoothing).

\olume constraints

In this section we present volume constraints ffor (6.1.3)ictvhave been studied inl[3,]121,/22] 29,
36]. We consider the bounded domdinand assume the initial densityx,0) = wuy(x) satisfies

ug >0 ande uo(x) dx = 1. We impose homogeneous Dirichlet volume constraints omer the

v ‘F: 0}

Thus, the Dirichlet problem reads: finde V' x (0, c0) such that

nonzero volumé' = R \ Q. Let

V= {v c L'(R)

be the subspaces of test and trial functions.

.I' t /\/ y> ))QS(y—l')dy, er?
u(z,0) = up(z x € Q.

(6.2.15)

69



Well-posedness of (6.2.115) has been treated in [29]. Sualilgms when is a connected domain
have been studied inl[3, 21,122,/ 26,) 36]. Such a volume consteses by imposing absorbing
behaviors of the stochastic process on the volumes| seéde&h example.

In the paperi[29], the smoothing of the nonlocal diffusionatipn with volume constraints was
considered. The smoothing of the operator with volume caimgs corresponds again to the activity

and variation of sample paths of the Lévy process on a baliddmain.

6.3 Finite Element Method and Density Estimation from Satiohs

We present the variational and finite element formulatidrien we discuss simulations and density

estimation. Properties of the analytic solutions are atesgnted.

Variational and finite element method

Define the bilinear fornB : V xV = R

Bluo) =5 [ [ () = @) (00) ~ o(@) by - o) dyde. (63)
The variational formulation td (6.2.115) is: finde V x (0, o) such that

1
/utvdx—l——B(u,v) =0, VwvelL'(Q),
Q A (6.3.2)

u=ug, €.
To formulate the finite element method, we partitidrinto n subinterval«};, of width A, and
let xo, () be the indicator function fof2;,. We denote the space of piecewise constant functions

on the subinterval§€, by V. Note anyu, € V§ x (0, 00) can be written
up(z,t) = Z’Yk(t)XQk (). (6.3.3)
k=1
The discrete variational problem {0 (63.2) is then: finde Vi x (0, c0) such that
. 1
M7y = <Ay,

A

respectively, wherdI and A are the mass and stiffness matrices defined by

[ [ oty-aayde, ki

Q, J9;

/ oy —x)dydx, k=j.
Qr JR\Q,

We note that this is a conforming finite element method and@gence studies and error analysis

My, = Q| and Ay, =

has been studied [27].

70



Density estimation

We considerN realizations of the stochastic process, which might regredata from an experi-

ment. Letp;(¢) denote the-th particle’s position at time. We construct the density estimate

n N
IR SIVNEY (U Ny 634
k=1 =1

and note that the bins are defined precisely by the finite eledigcretization. In general, one seeks
an optimalh, so not to over-smooth or under-smooth the data. This chdiackeisity estimate
allows for discontinuous solutions and an easy specificaifdhe support of the density estimate,

which is known from the volume constraints. Standard kedealsity estimation techniques, e.g.,

D (1) = diN iV:K (“Tpi(t)) ,

i=1
where K is a Gaussian kernel antlis the bandwidth, do not share these properties. Also, the
choice of kernel has a dramatic impact on the resulting eséirand requires a priori knowledge of
the densityu, which is unavailable.

There are several nice consequences of the cHoicel(6.3marized in the following theorem.

For conciseness of the presentation, we assiyme h throughout the duration of the chapter.
Theorem 6.3.1. The density estimaiey (z,t) is

(a) unbiased in the sense that
11_)IH E(/‘N(l‘> t)) = ’LL(Z‘, t)
(b) the variance is given by

Var(un (2,t)) = E (v (2, ) — Elun(@,1)))?)

= ﬁgxgk(@ </Qk u(z,t)dz — (/Qk u(z,t)dz>2> ;

which tends to zero a& — oo
(c) almost surely,

n 1 2
lim ||y — ul|? = / <—/ u(z,t) dz—u(ac,t)) dz,
N—o00 L2() 192::1 Q h Qe

which then tends to zero as— oo.
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Proof. To prove (a), we first note

E(un(z,t)) ngk / u(z,t)dz.

Then,

1
lim E(uy(x,t)) = lim —/ u(z,t) dz,
n— 0o ( ( )) n—oo h ) ( )

where(2;,,, is the subdomain that containgor a givenn. Takingn — oo shows (a). Showing (b)

is a straightforward computation. Now, to show (c), firstenot

2
||,UN—UH%2 Z/ ( ngk (pi(t —u(m,t)) dz.

Then, by the Strong Law of Large Numbers, almost surely,

A}gnoolluw—uuig Z/Q < / u(z,t) dz — u(z, t)>2d:1:.

The mean value theorem for integrals gives

n

LG et —ules)) = 3 (ulenst) (k)

k=1

wherecy, di € Q. Takingn — oo shows (c). O

Properties of solutions

The results of [26] provide properties for the solutiond@P(1%), namely

lull iy < € Ftluollzz), 1.t >0, (6.3.5a)
[ull720) < e lluollay,  c1,t >0, (6.3.5b)
where
1/p
anQz(/wm)
Q
and

B(u,u)

2w (6.3.6)
ueL?(Q) HUH%;(Q)

c1 =
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We note that[(6.3.5a) follows from an application of the GauE&chwarz inequality td (6.3.bb).
The equation[(6.3.5a) implies the probability of the pé&tiemaining inQ2 decreases. We compute

estimates of (6.315) using the density estimate from sitiula, namely

/ pn(z,t)d ZXQ (pi(1)), t>0, (6.3.7a)
1 — ?
/Q,ﬁv(x,t) dz = ; (; XQk(pi(t))> . t>0. (6.3.7b)

We now consider the exit-timé of the process from the bounded dom&inNotice the distri-

bution function ofT’ is given by

F(t)=1- /Qu(:n,t) dz. (6.3.8)

SinceT > 0, the expected exit-time can be computed via

E(T) = /000 (1-F(t)dt = /OOO/Qu(w,t) da dt (6.3.9)

and is always finite since, by (6.315a),

& 2
/ /u(az,t) dedt < — /ug(aj) dz.
o Jo c1\ Ja

The bound on the mean exit-time is inversely proportional i@.g., decreases as the eigenvalue

increases. All of the moments,

E(Xk):/gxku(:n,t) dz,

also decay to zero.

The exit-time distribution is approximated from the nuroatisolutions via

Fp(t) =1— /Quh(x,t) de=1-hY () (6.3.10)

k=1
and from the density estimates via

Fn(t)=1- / pn(z,t)de =1— — ZXQ pi(t (6.3.11)
Notice thatFy (t) is an unbiased estimator 6f(¢) and also

Var(Fy (£)) = % ( /Q u(z, ) dac) (1 _ /Q (@, ) dw),

which tends to zero a& — oo.
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6.4 Numerical Experiments

Forv € L'(R), L, is acompound Poisson process. Simulating such a processamded domain

is simple and is presented in Algorithm 1; se€l[22] also: ¢ L'(R), we recall

pr.(§) = ¢v.(§) -z (§)

— exp (% (/p(; (eifsc _ 1) é(z) dac) t) . exp ((/Kd (eifsc _ 1) v(z) dx) t> :

where\ = (f|x|25 v(x) dx) : and¢(xz) = Av(x). The process of large jumpg;, is a compound
Poisson process, which is easily treated and thus remowed this discussion. The process of
small jumps,Z;, however, is not a compound process. Unfortunately, suntegses are impossible
to simulate since, for example, an infinite number of jumEs @esent on every arbitrarily small
compact time interval. Thus, we instead approxingtevith a compound Poisson process with

characteristic function given by

¢z7(§) = exp <</T<|m|<5 (eif:” - 1) v(r) dac) t) .

Again, in the more familiar notation,

@77 (§) = exp (% (/T<|;c|<6 (eiﬁx - 1) o7 (x) dac) t) ,

1
where\™ = (f7<|x|<5 v(x) dw) and ¢ (z) = Nv(z). The processZ] approximatesZ; in
the sense that as — 0, Z] L\ Zy, which can be shown with an application of Lévy Continuity

Theorem. This approximation is the so-called Poisson aqipiation.

Algorithm 6.1: Simulating a com- Algorithm 6.2: Simulating a pure
pound Poisson process jump martingale
ag =10 chooser sufficiently small
simulateLy ~ ug(x) define\™ and¢™
for k from 1 toT do follow Algorithm[6.7 to simulate
simulatet;, ~ Exp(\) VA

ap = ap_1 + tx
simulatesy, ~ ¢(s)
Ly, = Ly, , + sk
if L, ¢ Qthen

| break
end

end
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Example 6.4.1(Comparison of numerical solutions to density estimatesmfsimulations) We
now demonstrate the capability of simulating processeddtny ¢ L'(R) andv ¢ L'(R), with
the latter being the Poisson approximation, obtaining itleestimates from the simulations, and
numerically solving the corresponding master equatioagha finite element method. In both, we
let Q2 = (0,1), uo(w) = 6xx(0,1/2)(z), andh = 0.005

We first consider € L!(R) with

2
o= e (-22), o

e = 0.25, A = £2. We plot the numerical solutions and density estimatesedtintest = 0, 0.05, 0.1
in Fig.[6.1. Two different numbers of realizations are cdaseéd,N = 1-10* andN = 5-10%, and

three different bin widths are considerdd,5h, and10h. Fig.[6.1 demonstrates the capability of

0.5 1 0.5
(d) bin widthh, N =5 - 10* (e) bin width5h, N = 5 - 10* () bin width 10h, N =5 - 10*

Fig. 6.1:Numerical solutions:; (x,t) and density estimatesy (z, t) from simulations. For computingy,
we consider two different values éf and three different bin widths. The three profiles in each
panel correspond to times= 0, 0.05, 0.1.

approximating the density(x, t) by solving the master equation rather than relying on sitiana.
The effect the bin width has on smoothing the data is evident, a bin width ofh seems to
under-smooth the data, whereas a bin width@f seems to over-smooth the data.

We next consider ¢ L'(R),

v(zr) = —=. (6.4.2)



We plot the numerical solutions and density estimates atitiest = 0,0.025,0.05 in Fig.[6.2.
We simulateN = 5 - 10* realizations and we selektas the bin width. The Poisson approximation

of Z; is used with three different values of Notice the disagreement between the density estimate

0 0.5 1 0 0.5 1

(a) bin widthh, = 0.25 (b) bin width, T = 0.05 (c) bin widthh, 7 = 0.01

Fig. 6.2:Numerical solutions:, (x, t) and density estimatesy (x,t) from the Poisson approximation of
simulations for three different values of

from the simulations and the numerical solution for larg€ehis is corrected by decreasingi.e.,
improving the approximation af; Also notice the lack of smoothing for € L' compared to the
smoothing effect in the other case.

We finally compare the exit-times distributions for the twwices [(6.4.1) and (6.4.2), shown
in Fig.[6.3. Moreover, the mean exit-times are approxinya®e2484 and 0.1527, respectively. The
time required for 90% (95%, 99%) of the density to ledveare approximately 0.5610 (0.7250,
1.1060) and 0.3460 (0.4490, 0.6850), respectively.

1 e 1 o
o L ]
0.4 0.4
0.4 0.4
0.2 0.2
0.5 1 0.5 1
(@ velL(R) (b) v ¢ L'(R)

Fig. 6.3: Approximate exit-time distributions}, (¢) (solid) andFy (¢) (dashed) fot € [0,1] and N = 1000.

Example 6.4.2(Identifying different types of diffusion)We present density estimates and numeri-

cal solutions of the master equation foe L!(R) with A = el and

B(€) = exp (—£2[¢]*).
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We plot the time-evolutions of the approximate solutionsdo= 2 anda = 1/2 and variouss
given by the finite element method with mesh spading 0.0005 andt € [0, 0.25] in Fig.[6.4. For
a = 2, the solutions behave asymptotically, with respect, tas solutions to the classical diffusion
equation. Forx = 1/2, however, the asymptotic behavior of solutions is given Hyaational

Laplace parabolic equation.

15 15 15

0.5 0.5

)

0-5%
0
0 02 04 06 08 1 0 02 04 06 038 1 0 02 04 06 08 1

(8 e=0.100,a =2 (b) e =0.025, a =2 (c) classical

15 15 15

OE%
0
0 02 04 06 08 1

(d) e =0.100, a = 1/2 (€) e = 0.025, a = 1/2 ) v=|z|3?

0.5 0.5

|
J
%

0 0
0 02 04 06 08 0 02 04 06 08

=
=

Fig. 6.4:Solutions to the nonlocal homogeneous Dirichlet problem wi* in Example[6.42. The vertical
axis in each panel is the value of (z, t) and the horizontal axis i8. The ten different solution
profiles in each panel correspond to the solutions at teerdifit times, fot € [0,0.25]. In panels
(c) and (f), the solutions t@ (6.1.2) arid (6.2.10) are givespectively.

Example 6.4.3. This example demonstrates one advantage of consideringrajerolume con-
straints. In particular, we show exit-times from non-simypt.g., not connected, domains can be
studied via the appropriate master equation. Moreovemdmocal nature of the equation allows
for the process to jump between non-connected parts of timaitho For this discussion, we assume

2
v(z) = \/4;? exp <—f?).
In general, we consider a bounded dom@ithat is given by

D D+1
0= U Qk and T = U Fk.
k=1 k=1

We are interested in the density exchanges between voluvtas. specifically, define

t
MO = [ [ ot -2 avayas

e



l -
0.4 0.6
0g 04\
0.4 / "

0.2
0.2/

b 01 02 03 04 05 % o1 02 03 04 05 b 01 02 03 04 05
(@) Fr(t),a=2 (b) first momentp = 2 (c) second momenty = 2
1
0.4 0.8
0.§ od
04
04 0.2
b 01 02 03 04 05 % 01 02 03 04 05 5 01 02 03 04 05
d) Fr(t),a=1/2 (e) firstmomenty = 1/2 (f) second momenty = 1/2

Fig. 6.5:In each panel, we plot the appropriate statistic computenh fthe numerical solution with =
0.100, e = 0.025, and the classical (top) and fractional (bottom) diffusion

which represents the density that has moved ffonto I';, by timet. Integrating[(6.2.19),

%(/ﬂu(m,t) da:) == | | w00ty ) deay
/Qu(x,t)dw—/ﬂuo(x)dx:—%/Ot/F/Qu(w,s)qﬁ(y—x)dxdyds.

The quantity on the left is the negative of the density thatdndated(2 and we thus have

_ T
/Quo(aj) d:z:—/gu(a:,t) dzr = XR:XJ:MQJ (t).

To illustrate this, we consider a specific example. Qet (0,1/2) U (3/5,1) andl’ = R \ Q.

so that

We impose Dirichlet volume constraints ®h We compute the density that exits the constrained
regionsl'; = (—o0,0), 'y = (0.5,0.6), andT's = (1, c0). The results are plotted in Fig. 6.6.

We study the effect of varying on these quantities. As— 0, half of the density leaveQ to
I"y and the other half td'>. For nonzera, however, the nonlocal nature allows density that starts

in ©; to leavef) to I'3. The results are plotted in Fig. 6.7.

6.5 Summary

This chapter studies pure jump Lévy processes on boundeaids via the master equation, i.e.,

a nonlocal diffusion equation with volume constraints. Wak constraints allows for the study of
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N

0 0.5

(@)e=0.25¢t=0

w

N

0.5

(d) e =0.05¢t=0

T e

(b) e = 0.25,t = 0.1

0 0.5 1

(c) e =0.25,¢t=0.2

2 2

15 15
1 1

0.5 O.SW
) 05 1 0 05 1

(€) e = 0.05,t = 0.025

(f) e = 0.05, t = 0.05

Fig. 6.6:The numerical solutiom;, and density estimatey with » = 0.005, N = 5 - 104, and bin widthh.
Three different times and two different values=cdre considered.

0.4
0.3
0.2
0.1

0.05 01 015 0.2

(@) € = 0.25, My, (t)

o)

0.05 0.1 0.15 02

(d) e = 0.05, M, (t)

0. 0.

0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1

0 005 01 015 0.2

(b) e = 0.25, M? (1)

005 01 015 0.2

() e = 0.25, M3 (1)

OO 0.05 0.1 0.15 0.2
(e) e = 0.05, M2 (t)

© © o o o
P = N T R N

005 0.1 0.5 0.2
(f) e = 0.05, M3 (t)

Fig. 6.7:The quantities\/(,’ for ¢ € [0,0.25] and two different values of.
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exit-times of the process from a bounded domain. Such nahf@tifusion equations with volume
constraints have received much attention lately and weritbesbow the activity of the process,
variation of the sample paths, exit-time distribution of gfrocess, and smoothing of the nonlocal
operator are all related. We show how the exit-times vary wétspect to the type of diffusion.

Moreover, the general volume constraints allow for the tftexit-times from nontrivial domains.
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Part Il

Formulation and Analysis for Elliptic Problems on Uncemt&iomains



7. ASURVEY OF COMPUTATIONS FOR ELLIPTIC PROBLEMS WITH
STOCHASTIC COEFFICIENTS AND DATA

Many natural phenomena are modeled by boundary value pnsbier PDEs. Given a fixed set of
input data into the model, e.g., boundary conditions, patars, and coefficients, much effort has
been exhausted to give efficient and accurate solutionseahtbdel. However, these input data are
often accompanied by various sources of uncertainty, &gus in estimating parameters from data,
and, consequently, effectively using the solutions of tleeleh requires an analysis of the effects of
the uncertainty. The important issue is understanding @uncertainty propagates through the
mathematical model, which results in a description of theeutainty for all outputs of the model,
e.g., for all time and all space. In this chapter, we consildereffects of uncertainty in the coeffi-
cients of the differential equation and in the geometry otictvithe differential equation is posed.
We begin by reviewing some of the standard tools for solvinchsproblems, e.g., Monte Carlo
methods, parametric and nonparametric density estimatiarnunen-Loeve expansions, general-

ized polynomial chaos, and stochastic Galerkin methods.
7.1 Introduction
We introduce the PDE posed on the dom@iic R?,

{ -V - (a(x;0)Vw(z;0)) = f(x;0), x €,

w(z) =0, x € 08,

(7.1.1)

where@ is a random variable or field with some given probability stiwe. In the case of a ran-
dom field, the limitations of experiment and computation inatés replacing the field by a finite

collection of independent random variables,

ola 027 037 707“

We might assume these quantities provide a better apprtisimasn increases. However, it is

desirable to find an approximation that is valid for small



We discuss studyind (7.1.1) via sampling methods, e.g.,t®¥@arlo, and by the stochastic
Galerkin method. In general, sampling methods are verylsitgpimplement and require solving
a deterministic problem for each sample. If an efficient nsdan solving the original problem for
a fixed sample is available, sampling methods are appealihg.stochastic Galerkin method, on
the other hand, requires formulating a more difficult prablevhich is often a system of coupled
PDEs. Not only can the task of deriving this problem be diffidout subsequent study of it often
requires the development of new solvers and methods. Iétissses can be overcome, the stochas-
tic Galerkin method eliminates the need to sample and yidsoptimal accuracy by the same
account of the standard Galerkin method.

The authors of [33, 34] consider the nonparametric densitynation problem of a QOFI via
standard Monte Carlo methods in conjunction with Lions diontiecomposition and a Neumann
expansion in order to provide an efficient computationalreggh. A posteriori error analysis and
adaptive error control algorithms are also presented| 2h fhe authors present a stochastic col-
location method to solve PDEs with stochastic coefficients data under the assumption that the
input data depends on a finite number of random variables pfidizability density of the state of a
system is studied in [20], where the authors seek to quathtéfyuncertainty in chemical properties
during the transport of a reactive solute in a heterogenporaus media.

In [8], the authors assume that the coefficients are desthipan appropriate Karhunen-Loeve
expansion and then give well-posedness results and ethoraéss in Sobolev spaces. The stochas-
tic Galerkin method is used in_[13] to obtain statistical nemts of the solution. The so-called

“worst case scenario” for elliptic PDEs with uncertaintypresented in [11].

7.2 Sample-Based Methods

A sample-based method for examining uncertainty involeas@ing from the input spaces and then
processing the results to compute various statistical tijiemn In this section, we briefly describe
a Monte Carlo sampling method for PDE with stochastic caeffits. Other sampling approaches

exist, e.g., collocation and importance sampling, but anéted for brevity.

Sampling from a known distribution

We first describe how to generate realizations of a randonatarwith a known distribution?’

via the Inverse CDF Method [66]. Assume we have a pseudomsramilimber generator that draws
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numbers from Unif0, 1). The approach for generating realizatiansf a random variableX is to

simply generate a realizatianfrom Unif(0, 1) and then define
z = F ' (u),
where

Fl(u) = nf {F(2) [ F(2) = u}.

LettingU ~ Unif(0, 1), we then have", }(U) ~ X. Further, sincé/ ~ 1 - U, F,1(1-U) ~ X.

Monte Carlo methods simulate a random variable repeatedbbtain information about the
distribution of the variable. Using the realizations, wa campute the probability distribution of
the output. Alternatively, we may be satisfied with someistias, e.g. the mean. We explore
the relationship between the number of realizations anétcaracy of the statistical information
obtained.

We now review some basic modes of convergence.

Definition 7.2.1. Let X, be a sequence of random variables, ancldte a random variable. Then,

X,, converges toX

1. indistribution, X, 4 X, if, for all points z whereF'(z) is continuous,

lim F,(z) = F(z),

n—oo
2. in probability, X,, > X, if

lim Pr(|X, —X|<e)=1, Ve>0
n—o0

3. almost surelyX,, “3 X, if

Pr(lim Xn:X)zl

n—oo

4. in mean-square if

lim E (|X, — X[*) =0.

n—oo
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If X,, converges toX almost surely, the set of values such thgt does not converge t& is a
set of measure zero. Convergence in probability is a weak@mof convergence and convergence
in distribution is weaker still.

The Central Limit Theorem states that the sum of a large nurabei.d. random variable
behaves like a single normal random variable. To analyzgelaets of random variables, we need

the Central Limit Theorem, as well as the Law of Large Numbers

Theorem 7.2.1(Central Limit Theorem) Let X; be i.i.d. random variables witl(X;) = x and

Var(X) = o2, with0 < 02 < co. Then

LS X — 1fh e
mnm-agiZEL——ﬁ<b :M®—®m%:——/0f2dm
n—oo O’/\/ﬁ vV 271' a
In particular,

1N\ X; —
pim X4 ).
o/vn

Theorem 7.2.2(Strong Law of Large Numbers) et X; be i.i.d. random variables witR(X;) = u

andVar(X) = o2, with0 < 02 < cc. Then,

n
X: Xla_s>u
1

S
5

Theorem 7.2.3(Weak Law of Large Numbers) et X; be i.i.d. random variables witf(X;) = u

andVar(X) = 2, with0 < 02 < co. Then,

n

S|
Il

Monte Carlo method
The Monte Carlo method gives a way for obtaining samples @biltput space by taking random

samples of the input space and solving the resulting detéstiti PDES. The general description of

Monte Carlo methods is simple. For fixéd we

1. generatéV realizations of the input parameters
2. solve each of théV deterministic problems

3. use the output values to compute a cumulative probalii#lyibution or desired statistics.
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The hope is that computed statistical quantities converdleet true statistic. a — oo.

Monte Carlo methods are specifically useful for approxinmatntegral-based quantities, i.e.,

I:/Qh(O)dF(O):/Qh(O)f(O) a0,

where the probability density functiofi(@) is typically unknown. We selecV realizations ofg

independently and consider the estimate

1 N
IN:N;h(O

By the Strong Law of Large Numbers, 85 — oo, Iy — I almost surely. Moreover, the error in

the estimate is related to the variance of the functiand the number of samplég. In fact,

V h 2(h
Var (Iy) = sz\/ar a]ré ) = U]E[)

so that the error in the estimate scales wiftv. To see this more clearly, note
. o(h) a(h)>
lim Pr| —a—== <Iy—-I<b— ) =®(b) — P(—a).
NW( ~ < In =1 <b—— ) = (b) — &(—a)

We are particularly interested in computing the distrimtand various moments of solutions
to partial differential equations with stochastic coeffittis. Suppose we are interested in statistics

of a QOFI computed fronw(z; ), which solves[(7.1]1). Namely, let

Q(w;@)z/ﬂw(m;@)¢(ac) dx

denote such a QOFI. Various moments, e.g. itle moment, ofQ(w; ) can be approximated via

The Strong Law of Large Numbers gives that

ii(@(wﬂ )k %/ (Q(w; 0))* dP(Q(9))
N &~ o e 7 '

Moreover, we can estimate the distribution(®fw; €) by using the empirical distribution function

In=Fn(y Zx(_ so) (Q(w; 6,)).
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Parametric and nonparametric density estimation

Supposery, ..., z, are data fromn observations of a random variabke with an unknown distri-
bution. We assume that the probability density functfdmelongs to a parameterized family, but the
parametersf), are unknown. For example, one might assu¥he- N (u, 02), whered = (u, 02) is

unknown. We define the likelihood
L(x1,...,2|0) = f(z1,...,2,]0).

Assuming the observations are independent,

L(z1,...,2,]|0)= ﬁf(ac, | ).

=1

The goal of maximum likelihood estimation is to find the paedens@ that maximizel, i.e.,

EMLE = arg@maxﬁ(xl, cey Tn | 0).
Often, we instead equivalently maximize the log-likeliddo= In(£), i.e.,

Orpp = argmax(zy, ...,z | ) = argmax(Z In(f (x| 0))) .
0 0

i=1

The maximum likelihood estimator has the desired propedrtoansistency, that is,
Orre >0,

asn — oo. Unfortunately, such estimators are in general biased. stimator® for 6 is unbiased

~ -~

if £(0) = 6. We refer toE(#) — 0 as the bias.

We recall the likelihood
£(l‘1,... y Tn | 0)

and suppose a prior distribution on the parametéfy. An application of Bayes’ theorem demon-

strates that the posterior distribution is proportionati® product of the likelihood and priors, i.e,
(@] x1,...,2n) X L(x1,..., 25| O)7(0).

In the special case that the prior is conjugate to the likelih closed forms for the posterior are
easily found. A conjugate priar(0) to the likelihoodr (- | @) is such that the posterior distribution

lies in the same parameterized family as the prior.
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In many applications, experience suggests that the posté#nsity is rarely described in para-
metric form. To this effect, one can consider a nonparantegstimation of the density. We first
consider the density histogram. Consider the mgshwheret;; — ¢t = h and, consequently,
the histogram is said to have bin width The density histogram is constructed by using blocks of
width » and heightnh)~! and is defined

) | Koo
flz) = nh Z Z X[tk,tk+1)(wi)X[tk,tk+1)(x)a

k=1 1i=1

wherey 4(x) is the indicator function of the set. Notice

/Rf(x) dz =1.

We also consider the kernel density estimator, where a keraenon-negative and symmetric
function K such that[, K (z)dz = 1. Let K’ be some kernel function and be data samples from

a densityf. The basic kernel estimator is
f _ i zn: K T — x;
" nh — h ’

whereh is a parameter, often called the bandwidth, that contrassthoothing of the data. The

kernel estimatorf is an approximation of the densitfyand inherits smoothness properties of the

kernel K. Again, sincekK integrates td, we have

/Rf(ac) dz =1,

A common choice foi is the Gaussian kerné{ (z) = \/%7 exp (—%) so that

5 1 " (v — ;)2
f_nh\/%;exp<_ 2h2 >7

which is the average of different Gaussian densities that are each centeredaatd have variance

h. Inthis example, itis clear that varyirtgwill affect the smoothness of the kernel density estimator.

The empirical distribution function is defined

1
i=1

Applying a simple divided difference to approximate thesignf, we find

- F,(z)— F,(x —h) 1 &
f - h = E ;X(:vi,mi+h} (.Z') )

which can be referred to as an empirical density function.
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7.3 Stochastic Galerkin Methods

The stochastic Galerkin methdd [67] uses Karhunen-Loedeganeralized polynomial chaos ex-
pansions to represent the solution to and inputs for a dffittal equation with stochastic coef-
ficients. Typically, a coupled system of equations must theegloto obtain the coefficients in the
polynomial chaos expansion and is often done with the stdr@alerkin finite element method. We
first review the Karhunen-Loeve expansion and generalinéghpmial chaos. Then, we present a

short introduction of the stochastic Galerkin method.

Karhunen-Loeve expansion

The Karhunen-Loeve expansion represents a stochastieggas an infinite sum of orthogonal

basis functions multiplied by uncorrelated random vagablLetu(z; 8) be a random process with
W(z) =E(w(z;0)) and C,(z,y) = Cov(w(x;0),w(y;a)).
Then, the Karhunen-Loeve expansions allows us to write
w(z;0) = w(x) + i VAL fe(1)€1(6),
k=1

wheref;. (Ax) are the orthogonal eigenfunctions (eigenvalues), i.e.,

| e dy=rfiio). aen
The random variable& (@)} are zero-mean, unit-variance, and uncorrelated. In fact,

6(0) = <= | (wla:60) ~5()) (o) do (7:3.2)

We typically truncate the Karhunen-Loeve expansion toinkddinite dimensional approxima-

tion of w(z; 0),

K
w(z;0) =w(x) + Z VSR ()€ (8).
k=1

The decay rate of the eigenvalugg determines when to truncate the series to obtain the desired
accuracy. In general, the decay rate of the eigenvaluesidspeversely on the correlation length.

We now present an outline of the proof of the Karhunen-Loeysasion.
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Lemma 7.3.1. The covariance functioty,, is bounded, symmetric, and positive definite.
Proof. We first illustrate boundedness. Choase < 2 and notice, using Holder’s inequality,
|Co(2, )| = |E [w(z; 0)w(y; 8)] — ©(x)w(y)]
< |E [w(z; 0)w(y; 0)]] + W(z)w(y)
1/2 1/2 _ _
< (E[(w(:0)))) " (E [(w(y:0))*]) " + D(@)m(y).

From the uniform boundedness of the second momenis(eff), we have thaC,, is bounded.

Showing symmetry is trivial as
Cu(z,y) =E [w(z;0)w(y; )] —w(z)w(y) = Cu(y, z).

To demonstrate positive definite, let € N be given andrq,...,z, € Q. We recall that the

covariance matrix is positive semidefinite. Thus, by dabnitC,, is positive definite. O

Theorem 7.3.2(Mercer’s theorem) Suppose&’,, is a continuous symmetric positive definite kernel
on ). Then there is an orthonormal basfs consisting of eigenfunctions such that the sequence
of corresponding eigenvalues, is nonnegative. The eigenfunctions corresponding to ®on-z

eigenvalues are continuous éhand

Cuol,y) = > Mefr(@) frw), (7.3.2)
n=1
where the convergence is absolute and unifornflon

Thus,C,, admits the decompositioh (7.8.2), whevgand f;, are the eigenvalues and orthonor-

mal eigenfunctions, i.e., they satisfy

/Q Cole, ) fi(y) dy = Mefilz), =€, (7.3.3)

and
/an(w)fm(ac) dr = 6pm, €8, (7.3.4)
We decompose(z; 8) into its meand(z) and a zero mean random process; 6),
w(z;0) =w(z) + a(z;0).
Note that the covariance functidr, is also given by
Ca(z,y) = Culz,y).
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Theorem 7.3.3(Karhunen-Loeve Decomposition l).eta(z; 0) = w(x; 0) —w(z). Then there are

random variableg&, },, such thatk [£;(0),(0)] = d;x, E[£;(0)] = 0, and
7;0) = &u(0)V A fu(2), (7.3.5)
n=1
where the sum converges in mean square uniformly in

Proof. From previous discussion§, is bounded, symmetric, and positive definite. Mercer’s The-

orem gives us the orthonormal eigenfunctighs For non-zero eigenvalug,, define

1
)= o= /Q a(210) fo(z) do

Sincef, is continuous o, &, is integrable and

&n(6

Further,

E[£;(0)£,(0)] =

/x@fy \/—/ (y; 0) fr( )dy]

\/)\—)\k// ;0)fi(x )fk(y)dmdy]
= \/)\_)%/Q/QE a(z;0)a(y; 0)] fi(x) fr(y) dz dy
J

_ wl—xk / < [ Catean i@ dx) fily) dy
- % /Q £3() () dy

= ]k"

Then, one can show

E!(ﬁ%gn 0)\/ A fn () ax0)>2]

N N
=Y Mafal@)? = 2) EEn(0)a(x;0)] VAnful@) + Calw, ).

Notice

E [£.(0 =V Anfalz
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Thus,

N 2 N
E {(Zl 0 (0)v/ A fu(@) — (x5 0)) = Co(x,z) — Z:l Anfn ()2

The above term converges@ainiformly in z, completing the proof. O

Corollary 7.3.4 (Karhunen-Loeve Decomposition IIFor the random process(z; ) described

earlier, we can find the Karhunen-Loeve expansion

w(x;0) =(;0) + > &n(0)V A ful), (7.3.6)

n=1
whereE [£,(0)] = 0 andE [£,,(0)£,(0)] = Snm-
Generalized polynomial chaos

Let Z be a random variable with distributiof and all finite moments. To keep the presentation
concise, we assume that is absolutely continuous so that we can associat& @ probability

density functiony. Thus,
E(|1Z|™) = / |z|™(z) dz < 00, m € N.
R

Definition 7.3.1. The generalized polynomial chaos basis functions are thegonal polynomials

that satisfy

E(¢m(2)¢n(z)) = ’Ynémna m,n € N7
wherery, = E(4;(2)).

Since

B0n(2)60(2)) = | 6m(2)0n(:)0() 2
the functions{¢, } are a set of orthogonal polynomials with respect to the wejghrhe choice of
Z, i.e., the distribution o7, thus determines the class of orthogonal polynomials, &.4. has a
uniform distribution thenyp,, is thek-th Legendre polynomials.
Consequently, theév-th order orthogonal projection of a mean square integrabietion f is
given by
N
wf =Y Fuon(2). wheref, = —E(f(Z)0x(2))

k=0
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Such an approximation is said to be a strong approximatiofy efg.,
E((f —nnf)?) — 0, asN — oo.

In fact, the N-th order orthogonal projection is the best approximatiorPj;, the space of all

polynomials of degreév, i.e.,
E((f —7nf)?) = inf E((f —9)*).
gePN
Since convergence in mean square implies weaker types eégmnce, e.g., in probability and in
distribution. We also have the following theorem involviwgak convergence.

Theorem 7.3.5.Let Y be a random variable with distributiody and E(Y?) < co. LetZ be
a random variable with distributiorf’z, and finite moments such that the generalized polynomial
chaos basis functions exist. Then, defining

N
Vv =Y axon(2), where aj — %E (F7A (P (2))60(2)) .
k=0

Yy &Y asN — cc.

Stochastic Galerkin finite element method

The Karhunen-Loeve expansion and generalized polynorhads methods play a large role in the

stochastic Galerkin finite element method. We present theoagh for the two-dimensional PDE

(7.3.7)

=V (a(x; 2)Vuw(r; Z)) = f(2:Z), x€Q,
w(x; Z) =0, x € 0N.

The idea is to insert an approximationof

N
wy(z;Z) = Z wi(x)pk(Z), where wy(z) = iIE(w(gn; Z)pk(2)),
Ik|=0 Tk

that is based on generalized polynomial chaos expansidmse @ is unknown, we cannot actually
compute the coefficien®y (x). This motivates the stochastic Galerkin finite element wethe.,

we introduce the problem: fing in

N
un(x; Z) = Z Uk (7)dK(2)
k=0
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such that
{E(V'(a(w;Z)WN(:c;Z))%( ) =E(f(z;2)9;(2)), z€Q,

E (vn(z; 2)9i(Z)) = 0, x € oS

(7.3.8)
We next assume has an Karhunen-Loeve expansion,

a(z; Z) = Z?:Z,-(ac)Zi,

whereZ, = 1, and we use the orthogonal projectionfof

wnf(; Z) = Zfz

|€]=0

Insertion of these intd (7.3.8), we find for each

E(—V-( ga( )Z; | Vo (x; Z)) >: ([gfj ne: ] (Z))

=7 J(‘T)

Utilizing vy (z; Z) in the above and then ordering thé vectors appropriately,

E (v- (lim Ikzowk D ¢5(Z ))

Na
=3 3" E(Zion2)85(2)) (-7 - @s(x) Viilx))

i=0 |k|=0
M
=> (- z)Vig())),
k=1
where
Na
Cjr = ZE(Zi¢k(Z)¢j(Z))ai($)-
i=0
Thus, foreaclj = 1,..., M, we solve
M ~
(=V - (Cjr(2) VU (2))) = 7, fi(2),
k=1

which is now just a system of coupled PDEs that can be solvpdoapnately via the standard

(deterministic) Galerkin finite element procedure.
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8. FORMULATION OF ELLIPTIC PROBLEMS ON UNCERTAIN DOMAINS

In several applications of boundary value problems for PIbDEggeometry on which the equations
are posed are uncertain. To model this uncertainty, we flatea class of elliptic problems that

are posed on stochastic domains. We demonstrate well4pesedf such problems and introduce a
piecewise transformation of the domain to a determinigtienence domain. The resulting problems

have stochastic coefficients, which we study via Monte Canld standard finite element methods.

8.1 Introduction

In many applications of boundary value problems for PDEsgdm@metry on which the equations
are posed are uncertain. Though much work has been done stuithg of PDESs with stochastic
coefficients, comparatively little work exists for PDEs lwitochastic domains. In fact, given a
sufficiently fine spatial resolution, the physical domainvamrich the model is posed is almost in-
variably uncertain[[70], e.g., due to manufacturing impetibns, the inability to obtain accurate
measurements, or the approximation of the geometry frors@etie set of data points.

Early attempts investigated the effects of “rough” bouietawith a deterministic framework,
e.g., using fractal boundaries. For instancel_in [16, 168&tltonduction and transport across irreg-
ular boundaries in semi-infinite domains is considered. f@omal maps are used to transform the
domain with an irregular boundary to that with a simple bamgdso that existing tools can then
be used to understand what effect such perturbations haweeommansport across the boundary.
In, [9,[10] the authors consider both Dirichlet and Neumaroblems on a monotone sequence of
domains converging to an uncertain, but fixed, domain.

The inability to accurately measure parameters, inhomeitjes, and deviations from a deter-
ministic set of input data have deemed stochastic desanptof the model more appropriate in
many circumstances. The ensuing analysis requires bofhistipted mathematical tools, e.g.,
numerical approximation via finite element methods, antis$izs, e.g., parameter estimation, data

assimilation, and the modeling of uncertainty. In genevalconsider the PDE posed on the domain



Q(0) C R?,
=V (a(x)Vw(z;0)) = f(z), ze€ Q)
(8.1.1)
w(z) =0, x € 00(0),
where@ is a random variable with some given probability structure.

The case when uncertainties are present in the coefficiéat$BDE model has received much
attention from numerous disciplines, e.g., biology, chetmj and fluid dynamics. The ensuing
demand for rigorous mathematical and statistical theogctmmmodate the applications has been
met; see([B| 11, 12, 138, 20,133,134,/ 69]. Some commonly usdd todude Karhunen-Loeve
expansions, generalized polynomial chaos, and stoctastacation.

Much less attention, however, has been given to PDE modaelghich the boundary of the
physical domain is uncertain, though this problem is eguadhctical in its application. Specific
applications of such problems are found in transport in guligh rough boundarie$ [65], aerody-
namic studies in the design of wind turbinés|[23], heat difin across irregular and fractal-like
surfaces[[16], 19], structural analysis studies [55], aowattering on rough surfaces [56, 68],
seismology and oil reservoir management [13], varioud aiv@l nuclear engineering studiés[11],
chemical transport in rough domains [20], and understanttie effect of geometric variability on
the electromechanical behavior of nanostructures [7].

One challenge for problems with stochastic domains is tiestandard numerical techniques
used for problems with stochastic coefficients, e.g., KaemdLoeve, stochastic Galerkin, and
Monte Carlo, do not readily apply. For instance, standardgiag methods, e.g., Monte Carlo,
face several significant challenges: a naive approacheyjllire constructing a mesh of the domain
for each realization of; the variational formulation requires a basis of test fiord that depend
on @; and it is not clear how to perform an error analysis for npldtiproblems across different
domains and different meshes as the error estimates widrdepné in some unknown way. These
issues make standard Monte Carlo approaches impractictdisgproblem. Other techniques, e.g.,
Karhunen-Loeve expansions, generalized polynomial ¢heas the stochastic Galerkin method,
fail for similar reasons due to the dependence of the orthalgoasis functions ofl. Consequently,
new tools must be developed for problems with stochasticaiiosn The most popular approach is
to transform the problem from the stochastic domain to argeigstic domain, which moves the

dependence oft from the domain to the coefficients and data.
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The work of [70] provides a novel approach for transformingrablem posed on a domain
whose boundary is parameterized by a stochastic procespimbiem posed on a deterministic
domain with stochastic coefficients. The parameterizatibthe boundary is assumed to be well-
approximated by a Karhunen-Loeve expansion, which is aii@ttand used to construct a stochastic
transformation by solving Laplace’s equation. Applying transformation gives rise to a PDE with
stochastic coefficients, which can be studied via Monte dCaréthods and stochastic Galerkin
methods.

The approach described in [70] has been largely successfoainy applications. For instance,
the paperl[[65] studies flow and transport in tubes with rougfiases. The effect of geometric
variability, due to, e.g., the manufacturing process, andhectromechanical behavior of nanos-
tructures is considered inl[7]. At this scale, seeminglyignicant uncertainties, due to, e.g.,
etching imperfections can drastically affect the perfamo@of the nanostructure. In[56,168], the
acoustic scattering on rough surfaces is studied. Dedpiticcesses, however, there are several
concerns and unanswered questions pertaining to this agiproPrecise conditions to guarantee
well-posedness of the original and transformed problerasuaknown. An error analysis is not
available for the effect of truncating the Karhunen-Loexpasnsion, approximating the stochastic
transformation, among other sources of error. Furtherdéseription of the boundary in terms of
a stochastic process requires detailed information thabme cases is not available and cannot
be obtained or verified through experimentation. Insteaglpften only have measurements of the
domain at a finite set of points on the boundary.

We present an alternate formulation of elliptic problemsstwchastic domains to the model
of stochastic domains considered [in|[70] that describedbtiumdary as a stochastic process. We
consider a definition of stochastic domains driven by meamants and tolerances that one might
obtain in an actual experiment. Given the significant differes in the models considered in this
approach and that in [70], we do not intend to argue one apprisabetter than the other. Instead,
we note that these are two different models of a stochasticaifoand each appeals to different
applications.

We assume a finite number of points vary on the boundary, whitteant to represent, e.g., im-
posed manufacturing tolerances or actual measuremerttg dbimain. Using a piecewise smooth
transformation on a partition of the domain, we transformpghoblem to one posed on a determin-

istic domain with stochastic coefficients. The transfoiorats available at minimal additional cost.
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We demonstrate well-posedness of both the untransfornetramsformed problems. A numerical
method that employs Lion’s domain decomposition to deah Wit non-smooth transformed coef-
ficients and the standard finite element method is formulaiée large number of parameters and
unavailability of the distributions of the stochastic daménts make Monte Carlo and other sample-
based methods appealing. Exploiting the piecewise smoatisformation allows for an efficient
implementation of such Monte Carlo methods. Moreover, ansaguiori error analysis is readily
available and is presented in the following chapter.

We present a simple stochastic transformation to a det@ticirdomain(2 that is motivated
from both the work of [[70] and the theory of isoparametricténelement methods in classical
finite element theory. Constructing this mapping takekelatdditional computational effort and the
resulting problem is no more complicated. All of the probdeare thus transformed to PDEs on
Q with stochastic coefficients, which allows for easy comguami of results and errors across all
realizations ob.

The rest of the chapter is organized as follows. In Se¢tidhv@e describe a class of stochastic
domains and formulate elliptic problems on them. We dematestwell-posedness and describe
how to transform the problem to one posed on a determinisference domain. In Sectign 8.3,
we briefly present the finite element method and the iterattwmain decomposition. We show
how Monte Carlo methods will be used to approximate staisiind the distribution of a QOFI in

Sectiorf 8.4.

8.2 Problem Formulation

We give a precise description of the types of stochastic dusrthat we consider. Then, we for-
mulate elliptic PDEs on these domains, present well-passginesults, and then describe how to

transform to a reference domain.

Description of a stochastic domain

We divide stochastic domain problems into three classesribesl in Fig[8.l. We concern our-
selves with the study of the first two problems only. The thulass of problems can be studied by
employing isoparametric finite element method techniquekstlae analysis found hereafter. This is

left as a topic of future research.
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Fig. 8.1: Panel (a): The boundary of the domain is polygonal and iredual finite and small number of
points whose position are given by a random veétofhe perturbations may be quite large, but we
require that important characteristics of the geometryatachange, e.g., convexity is preserved.
Panel (b): The boundary of the domain is polygonal and iretutiany points whose position are
given by a random vectdt. These points are relatively close together and sufficiesttictions on
the perturbations are required to guarantee well-possdiresregularity of the solutions.

Panel (c): The boundary of the domain is known to be smoother@a finite number of measure-
ments of the domain, a smooth boundary is fit, e.g., a leasireg fit or a cubic spline.

The first class of problems allows perturbations that do igmifscantly alter the geometry, e.g.,
convexity. For instance, a square is very robust to pertiis at the corners, whereas pertur-
bations along the edges easily make the domain non-conuesth &mains can be thought of in
a manufacturing setting as being stamped out of a sheet afl.mEhe second class of problems
allows many smaller perturbations that fundamentally geathe original geometry. This class of
problems models indents and small imperfections alongdhedary. To guarantee well-posedness,
non-degenerate domains, and sufficient regularity of theisas, we impose strict restrictions on
the perturbations. The third class of problems requiresdditianal assumption that the boundary
is smooth. One can also consider this class of problems astafithe second class as the number
of perturbed points increases. Since the boundary of theaoioim smooth, well-posedness and

regularity are not concerns.

Modeling assumptions

We restrict ourselves to the class of problems whose domairdefined by perturbations of a
convex polygonal domain. We require that the perturbatisasounded and such that the perturbed

domain remains polygonal. We assufhés such that there exist a bounded polygonal doniiin
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and a domainf2,. with nonzero volume such that
2, CQ0) CQ", VOco.

Moreover, we assum@ € O and note that as a sequeréte— 0 the sequence of domaiy ;)
converge td2(0). Thus, if the perturbations are small, we exp@¢t~ Q*. Since the locations of
the perturbed points are fixe@, andQ2* limit the non-convexity that may occur.

The matrixa is defined orf2* and is assumed to be bounded, symmetric, and positive d@efinit
Moreover, the entries of are assumed to be smooth and the formulation of the coeffécismot
dependent o, e.g., the physical characteristics of the material areafteted a®) changes. We

then have that the bilinear form
By (u,v) = (aVu,Vv)y = / a(x)Vu - Vodz
v
satisfies

| Bae) (u, v)| < C1(0)|ull ooy vl a2 a0)) Yu,v € Hy(€2(6)), (8.2.1a)
Bog) (u, u) > Ca(0) [ul31 (o0 Yu € Hy(Q(0)), (8.2.1b)
for all @ € ©. We assume a uniform boundedness and coercivity in the seatsdor allé,
Ci1(0) <Cip <oo and C2(0) > Cy > 0.

Considerf € L?(Q2*) that is defined of2* and does not depend @ghand note that the linear

functional
Folo) = [ f@p@ o

satisfies

Fow) = [ @) de < CO)lvlgao 8.2.2)
Again, we assume uniform boundedness of the linear furaltiorthe sense that, for af,

C3(0) < C3 < 0.
The variational formulation fof(8.1.1) is: find € H{(Q(8)) such that
Baoey(w,v) = Foge)(v), Vv € Hy(92(8)). (8.2.3)

With the uniform boundedness and coercivity of the bilinfemm on the left hand side of (8.2.3)
and the uniform boundedness of the linear form on the rightilsde, the Lax-Milgram lemma

guarantees a unique weak solution[to (8.2.3) fofall ©.
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Transformation to a reference domain

We now describe how to transform the dom&if®) to a reference domai. The reference domain
Q) ¢ R?is assumed to be a convex polygonal domain. Choosing suchmaidaan be somewhat
arbitrary, but it is natural to take = ©(0). There are several ways to transform the donfxié) to
Q, e.g., conformal maps such as Schwarz-Christoffel tramsftions provide a global and smooth
map. We use a piecewise transformation ©(8) — € on a partition of2(0) into subdomains
Q4(8),d=1,...,D,such that2(8) = -, 04(8), i.e.,04 : Q(0) = Q.

This partitioning of2(0) into D subdomains is not unique, though some choices have apgpealin
benefits, which are discussed later. We thus replace thalgfwbblem [[(8.1.1) with an abstract
domain decomposition on a partition @f6). Let n,; denote the outward pointing normal vector to

24(0) andw, denote the solution of2;(€). Then, [8.1.1) is equivalent to

=V - (aq(z)Vwa(z; 0)) = fa(x), z € Q(0),
wq(z;0) =0, z € 00(6) N 8904(6),
wq(z;0) = wi(x;0), x € 9904(0) N90H0), Vded,
ng - (ag(r)Vwy(z;0)) = —ng- (ag(x)Vwz(z:0)), = € I(0) NINHO), Vded,

(8.2.4)
whered’ is the set of{ 1, ..., D}\{d} such that2,4(#) and25(@) share a boundary. The last two
lines in [8.2.4) are interface conditions guaranteeingioaity of the solution and a matching flux
across the boundaries.

We take(2;(0) and(2, to be triangular subdomains, so that we can sefgdb be a linear map.
Lety € Q4 denote the image of € ,4(0) under the map,; and letJ; denote the Jacobian of
the transformatiorp,. Denote the three vertices 6f;(6) with ry ;, r42, andr, 3. and the three

vertices ofQ2; with s4 1, s4.2, ands, 3. We note that

pa(x) = Ja(z —r41) + 84,1, (8.2.5)
wherelJ, is given by
—1 _
Ji= (842 —Sa1 —(843 —8a41)) (taz —ra1 —(ras—ra1)) =S.R;".

Both S; andR, are invertible sincé2,;(0) and(2,; are each non-degenerate triangles.
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(@) (b) (c)
Fig. 8.2:A realization of the random domalfi(0) (solid) and the reference domdih(dashed) for different

numbers of perturbed points. Two different partitions ftentical domains are considered in panels
(b) and (c), respectively.

Then, using[(8.2]5) in(8.2.4),

—V - (Aa(y)Vua(y; 8)) = Fa(y), y € Qq,
uq(y; 0) =0, y € 00NN,
N (8.2.6)
uq(y; 0) = uz(y; 9), Yy € 0NN, Vde d,
ng - (Aq(y)Vua(y;0)) = —ng- (Az(y)Vuz(y;0)), y €Ny Vded,
whereu,(y; 0) = wa(y, ' (v); 0),
Ag(y) =T jaa(eg W) Ta, and Fy(y) = faleg'(y))-
We require the partition to be such that
0 < M, < inf inf |det(J4)| < supsup|det(Jy)| < M* < 0. (8.2.7)
0co d 0co d

In practice, one might specify/, and A* a priori, which thus limits the possible mapping grids

and resulting maps. It is appealing to select mapping gtidk thatM * is small and), is large.

Lemma 8.2.1(Ciarlet) LetQ,; and4(0) be such thatp; : Q24(0) — 4 is a linear map, e.g.,
va(z) = Jgx + ¢, wherec € R2. Letky = diam(Qy) and k4(0) = diam(24(0)). Further, define
pa = sup{diam(S) | S C Q4} and p;(0) = sup{diam(S) | S C ©4(0)}. Then,

0
M and HJ;luém‘

pa(6) pd
Letw : Q4(0) — R and defineu = w o ;'. Then, ifw € W™?2(Q(0)) for integerm > 0, then

u € W™2(Q) and

1 Jall <

lulwmago,y < CITZH™ - [det(T)[M? - [wlwmeye))-
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Theorem 8.2.2.For eachd, the matrixA 4 is symmetric and positive definite. Further,

D
Ba(u,v) = | Aa(y)Vu-Vody
— d

is bounded and coercive and

D
Fov) = d221 /Q Faly)oly) dy

is boundedc. Consequently, the Lax-Milgram Lemma graatsa iven®, (8.2.6)is well-posed.

Moreover, the set of problems is uniformly well-posed insiese that
i%fBQ(%U) > ClullF o
sup Ba(u,v) < Collullgr 1ol 51 ()

and

Sup Fa(v) < Csllull gy lvll @)
whereC; > 0 andCs, C3 < oo.
Proof. We see thatA ; is symmetric and positive definite since
x"Agx = (Jax) "aa(py ' (y)(Jax) > 0,

with equality only whenJ;x = 0, i.e.,x = 0. SinceA 4 is positive definite,

D

Ba(u,u) =Y | Ag(y)Vu-Vudy
d=1"%%

5]

> CHO)lullF o,
d=1
2 Cl(@”“”%{l(g)a

which shows coercivity. We demonstrate boundedness, we hav

A, (y)Vu-Vody

< DAl lullasay - ol o,
d=

D
<> 30wl oy - vl o)
< Ca(0)ull g (o) - vl ()
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2
whereCs(0) = <p:(d0)> maxgzeQ*

a(x)|. Similarly,

/fd@d (y) dy
D

Z ||U||H1 (Qq)

a1
< C3(0)[[v]| (o)

|FQd

The Lax-Milgram Lemma gives well-posedness of the tramsém problem for a fixed. The
assumption[(8.2]7) gives the existencelgfand Cs, whereasC's = max,cq- | f(x)|, completing

the proof. O

Effect of the transformation

As mentioned previously, the choice of partition and thiesttansformations, is somewhat arbitrary.
We now discuss the effect of the choice made and its imptinatin the numerical method. The
following example illustrates this fact by considering ggahosen mapping grids. We show how
the functionf(x,y) = 2 + sin(37x) sin(37y) is transformed from a randomly perturbed domain
to the unit square. We consider a mapping grid similar to ith&ig.[8.2, but where the center of
the “X” is placed at three different points. We show how th&sformation affects the transformed
function. As the center of the “X” approaches the corner efdbhmain, the functiorf is conpressed
non-uniformly. The total variation of increases dramatically, which will then require finite etgmh

refinement or better quadrature.

v #iiii

(@) (b) ()

Fig. 8.3:Center of the “X” at(0.5,0.5) (a), at(0.75, 0.75) (b), and(0.9, 0.9) (c).

Although it is not immediately clear how to find an optimal mayy grid, certain characteristics

are desired. For instance, choosing restrictive bountisand M/* on det(.J;) guarantees that
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a subdomain will not undergo a non-proportionate amountretching and shrinking under the
transformation, see Fif. 8.3(c). More importantly, we iegjthat the transformation increases
the total variation of the coefficients and data as little assjble, see Fid. 8.3(a) as opposed to
Fig.[8.3(b,c). With these motivations, we introduce théofwing constrained optimization problem

to find the desired mapping grid: findsuch that

supm ([ [Vt ()| + Vi )]y

06
is minimized subject to the constraints aet(.J;). In general, this is a difficult optimization prob-
lem, but an approximation will suffice. For instance, we carf¥{@) = Q* and pose the problem:

find ¢ such that

ax ( /Q V(s )] + 19T ) dy)

is minimized subject to constraints on thet(.J;). Further yet, for a mesh such as that found in
Fig.[8.2(a,b), we need only to locate to the center of the m&amilarly, for a mesh such as that
found in Fig[8.2(c), we need only to determine the scalefaattthe boundary of the domain. Both

of these problems are one-dimensional optimization problthat are much more tractable.

8.3 Finite Element Method and Domain Decomposition

LetU denote the finite element approximationua$o that the finite element formulation reads: find

U e VO(}B such that

| Ay VU:0)- Vody = [ Fily(o) du vo € V)
Ua(y; 0) = 0, y € 00 NNy,
Ua(y; 0) = Us(y; 0), y €00 NN Vded,
ng- (Aa(y)VUa(y:0) = —ng- (A(y)VU;(y:0)), y €Ny, Vded.

(8.3.1)
To approximatd/, we employ! iterations of Lion’s domain decomposition algorithm, réigg in
Ul. Thatis, given a set of initial guessé§?, d = 1,..., D}, we solve fori = 1,2,...,1,

(Auly >VUd,wd+Z( (Ui >dmg—<ng'Ad(y)VU§,U>dnJ>
ded’

— (F, wd+z( Uiy, - <J'Ad(y)VUé_1aU>dmg>,
ded’

(8.3.2)
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where

(£.9)a= | [f@)g(x)de and (f,g)y = f(z)9()

dmi‘
The parametek can be chosen to improve convergence of the iterative method

The matrix form of [(8.3.2) reads, on each subdontain
M,Us = bl !,
where

(Ma)e = (Ag(y)VEE, VEDa+ D ( (€5, €) o7 — (ng Ad<y>w§,£§>dﬂg>

ded’

(b = (Fu, 5)a + Z < U g — (n J'Ad(y)VUé_17§§>de> :

ded’

The numerical method is described in Algorithm]8.1.

Algorithm 8.1: Finite element method and domain decomposition for a siregézation of
0
for i = 1,...,I (number of iterationsylo
for d =1,..., D (number of subdomainslo
| solveU: = (My)~'b}!
end
end

8.4 Monte Carlo Methods

Monte Carlo methods are specifically useful in computinggnal-based quantities, i.e.,

I= /Q h(6) dF () — /Q h(0)£(8) d6,

where the probability density functiofi(@) is typically unknown. We selecV realizations ofo

independently and consider the estimate

LN
= 2 1(6n)
n=1
By the Strong Law of Large Numbers, 85 — oo, Iy — I almost surely. Moreover, the error in

the estimate is related to the variance of the functiand the number of samplég. In fact,

V h 2(h
Var (Iy) = NQZVar a]ré ) = U]E[)
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so that the error in the estimate scales wiftv. To see this more clearly, note

: a(h) oMY _ a6 — d(—a
lim Pr (—aﬁ <Iy-I< bﬁ> = 3(b) — O(—a).

We are particularly interested in computing the distrimitand statistics of solutions to partial
differential equations with stochastic coefficients. Sagmpwe are interested in statistics of a QOFI

computed fromw(z; €), which solves[(7.1]1). Namely, let

Q(w:0) = /Q w(z; O)b(z) d

denote such a QOFI. Various moments, e.g. ittle moment, oiQ(w; @) can be approximated via

The Strong Law of Large Numbers gives that

ig:(@(wé’ ) “—"9/ (Q(w; 0))F AP(Q(6)).
N £ . ;

Moreover, we can estimate the distribution(®fw; €) by using the empirical distribution function

N

1
In = N Z X(—oo,y)(Q(w§ On))
n=1
8.5 Summary

In several applications of boundary value problems for PIhEggeometry on which the equations
are posed are uncertain. To model this uncertainty, we flat@a class of elliptic problems that

are posed on stochastic domains. We demonstrate well-peseof such problems and introduce a
piecewise transformation of the domain to a determinigtienence domain. The resulting problems
have stochastic coefficients, which we study via Monte Canld standard finite element methods.

In the next chapter, we consider the nonparametric denstiijation problem for a QOFI.
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9. APOSTERIORI ERROR ANALYSIS FOR ELLIPTIC PROBLEMS ON
UNCERTAIN DOMAINS

In this chapter, we consider the nonparametric densitynasion problem for a QOFI computed
from solutions of the elliptic PDEs with stochastic domaihat were formulated in the previous
chapter. We use a simple Monte Carlo sampling procedurditoas statistics and the distribution
of the QOFI. Several aspects of the problem formulation apéoéed, e.g., localizing the effect of
the stochastic domain to the boundary subdomains, to inepitee efficiency of the Monte Carlo
sampling method so that many samples can be obtained toxipiatte the distribution at a reason-
able cost. We present an a posteriori error analysis for satiple and for the empirical distribution
function obtained from the samples. The a posteriori erstimate for the computed probability
distribution reflects both deterministic and statisticalirges of error including the effects of the

transformation.

9.1 Introduction

We consider the PDE oi(0)
~V - (a(2)Vu(z;0)) = f(x), = €QO),
w(z;0) =0, x € 092(0),

where# is a random variable with some given probability structurd @(8) c R? is a polygonal

(9.1.1)

domain whose boundary nodes depend on the random vaflabliée use the formulation of the
problem presented in the previous chapter, which we briefiyrearize at this time.
A piecewise transformatiop : Q(0) — € on a partition ofQ2(8) into subdomain€2,(6),

d =1,...,D, such that2(8) = U, Q(0), i.e., 04 : Q(0) — Qg is used to transform the

problem [9.1.11) to
=V (Aa(y)Vua(y; 0)) = Fa(y), y € Qq,
uq(y; 0) =0, y € 00NN,
- 9.1.2)
uq(y; 0) = uz(y), y €N, Vded,
ng - (Ad(y)Vua(y; 0)) = —ng- (Az(y)Vug(y;0)), y € 02Ny, Vded,



whereuy(y; 0) = wa(p; ' (y); 0),
Aa(y) = Tjaa(e; () Ia, and Fy(v) = fa(e; ).

In Fig.[9.1, we present three such partitions of both the diofleand realizations of the stochastic

domain2(8). We seek to compute the distribution of a QOFI computed a®eatifunctional of the

(@) (b) ()

Fig. 9.1:A realization of the random domafn(0) (solid) and the reference domdin(dashed) for different
numbers of perturbed points. Three different partitiorsamsidered.

solution of [9.1.1), i.e.,
Qi) = (w.¥)oje) = [ wlwi8)ila)d.
Q(6)
where defines the QOFI. Using the transformation, we define the Q@kdrms of the trans-

formed variables via

D
Qu;0) = / waly: 0)a(o7 () det (34)~ dy.
d=1"

We then employ Monte Carlo sampling methods to sample theub@OFI and then construct
estimates of various statistics and of the distributiorhefQOFI.

We show how to localize the effects of randomness to the kmyrslibdomains and utilize a
Neumann series to make several of the necessary deteimicushputations independent of the
number of samples. We further demonstrate that a singles fel@ment mesh can be used for
all realizations and, consequently, Monte Carlo samplirghmds can be performed with reduced
computational expense. We then present an a posteriori @amedysis for each sample and for the
estimated distribution of the QOFI, which includes erroug do the finite element discretization,

the domain decomposition iteration, quadrature, and faatapling.
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9.2 A Posteriori Error Analysis for a Single Realization

We present the finite element method and domain decomposilimrithm for a single realization.
Then, we give an a posteriori error analysis for a singlezatbn. The error analysis includes the

effects of the finite element discretization, quadratunel the domain decomposition algorithm.

Finite element method and domain decomposition

LetU denote the finite element approximationua$o that the finite element formulation reads: find

Ue VO(jL) such that

[ AUz 0) Ve = /| i)t ay Vo € Vi)
Ua(y; 0) = 0, y € 00NN,
Ua(y; 0) = Us(y; 0), y €00 NN Vded,
ng- (Ag(y)VUa(y:0)) = —ng- (Az(y)VUz(y;0)), y€ 0Ny Vded.

(9.2.1)
To approximatd/, we employ! iterations of Lion’s domain decomposition algorithm, riésg in
Ul. Thatis, given a set of initial guess€§?, d = 1,..., D}, we solve fori = 1,2,....1,

(Auly )VUd,wd+Z( (Ui >dﬂg—<ng-Ad<y>VU;,v>dmg)
ded’

= (Fy VUd"‘Z( Ull dmd <£['Ad( )VUZl >dmd>

ded’

(9.2.2)

where

(f:9)a= | [f(x)g(x)de and (f:9)gng = [(2)9(x)

dnd
The parametek can be chosen to improve convergence of the iterative method

The matrix form of[(9.2.2) reads, on each subdon{ain
MqUj = b},
where

(Ma),e = (Aa(y)VES, VEDa + Z( (€5, €5) g — ¢ g'Ad(y)V§§>f§>dmg>

ded’

i— | i—
(b k= Fa.&a+ > <X<Ud L& i — (g Ag(y) VU, 1,§§>dng> :
ded’
We refer the reader to Algorithm 8.1.
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A posteriori error analysis ignoring quadrature

We now introduce the dual problems for the problém (9.1.8)bdgin, we let) define a QOFI, i.e.,

Q(w:0) = /Q o) i

= Z/Q a(@;0)hg(z) da (9.2.3)

There is a little ambiguity in defining an appropriate QOFKu®). It is most intuitive to consider
QOFIs that are either specific to a reference domain or arelsow independent of the domain,
e.g.,v = o(z), wherex € ., is reasonable, but = §(x) for x ¢ Q. is not. Moreover, several
choices ofy will not only measure the effect of the domain on the QOFI,wilitalso measure the
size of the domain, e.gy; = 1.

We rewrite [9.2.B) using,; and define

Q(u; 0) Z/Q ua(y; 0)va(o;  (y)) det (J4) ™" dy. (9.2.4)

We use the same patrtition 9fand pose the dual problem as an abstract domain decompasitio

the partition, i.e.,

[ As)Vnu(0:0)- Vody = [ Walwu(w) . vo e V)
d d
n4(y; 0) = 0, y € 00NNy,
na(y: 8) = 17(y: ), y €NV, Vded,
ng - (Ag(y)Vna(y;0)) = —ng- (Az(y)Vig(y:0)), ye€dNdy; Vded,
(9.2.5)
where
Ua(y) = (g (y)) det (Jg) "
Standard technigues show
D
Qu6) =3 [ Falynatv) . (9.2.6)
d=17%%
The numerical method gives an approximatiortXgis; 8), namely
D
QU™ 60) =) (Ui, ¥a)a.
d=1
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For a given realization of, we are thus interested in the error

Mm

Q(u; 0) — —Ug, Wa)a+ (Ug — U, Wy)g] .

d:l

To understand the error due to the finite element method, wpote

SEN NS

Ei=) (ug—Uq, ¥a)q

&.

=1
= / ud—Ud\I’d )d
Qq

—Z[ y)mady — ; Ad(y)Vnd-VUddy],
d

which, by Galerkin orthogonality, is equal to

D
=> [/ Fa(y)(na — mnna) dy — | Aq(y)VUa - V(na — Thna) dy] :
d=1 /<%

Qq

Then, Iettingﬂg,j =1,..., Ny, be thej-th element in the subdomain,;, we have

D Ny

Bi=>2.

d=1 j=1

/Fd (g — 7hna) dy — /Ad VU - (nd—ﬂhnd)dy] (9.2.7)

In practice, we approximatg (9.2.7) by replaciiigvith U7, i.e.,

/j Fy(y)(ng — mpna) dy — /Qj Ay(y)VU; - V(04 — Tna) dy] . (9.2.8)

d

To understand the error due to Lion’s domain decompositiencompute

D

By => (Us—Uj, Ug)a. (9.2.9)
d=1

Again, we must approximaté (9.2.9) and a reasonable cheice i

J;

d

(U”N Uj) Uy(y) dy] , (9.2.10)

whereAT € N is chosen to be sufficiently large.
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A posteriori error analysis of the effect of quadrature

When quadrature is used, we obtain the solutioto

Ay VTa(y:0) - Vody = /Q Faly)v(y) dy, v e V)
d

Ua(y; ) = 0, y € 00N 0y,

Qq

Ua(y; 0) = U(y; 6), y €N NN Vded,

ng - (Aq(y)VUa(y:0)) = —nz (Afy)VU5(y:0)), yedQNQy;, Vded,
(9.2.11)

where the notatiol represents the appropriate projectioryao that

/T@dy

gives the desired quadrature obn the triangular elemerit.
We note
Q(u;8) — QU 0) = (Q(u;6) — Q(U;0))
+(QU;0) - Q(U'; )
+(QU';0) - Q(U';0)

and, mimicking earlier work,

D ~
— ; [/Qd Fa(y)(ng — mpna) dy — s Ag()VUy - V(g — 700a) dy]

+3 [, Ad) (0a=UF) - Viady

+Z {/ ( — Fu(y )> ThNa dy —/ (Ad(y) —W) VU - Vﬂhnddy] :

Qq
Then, IettlngQ” .7 =1,..., Ny be thej-th element in the subdomain,, we have
Q(u;0) — Q(U;6)

D Ny

=22

d=1 j=1

+3°3 | Auw)V (0a—Tf) - Fnady

/ Fa(y)(na — mpna) dy — /Qj Aq(y)VUy - V(na — mna) dy]
d

(Faly) = Fay)) mpmady — | (Aaly) — Aaly)) VUs - Vapnady| -
[, (0 Fe) s [ ) |

d d
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The first two terms in[(9.2.12) are the finite element and dand@icomposition errors we have
already treated. The third term {n (9.2.12),

D Ny -
E3 = ZZ [/J (Fd(y) — m) ThNg dy — /QJ_ (Ad(y) - m> VU, - Vrnag dy] ,

d

(9.2.12)

is the error due to quadrature. In practice, we approxinfa212) via

[, (Fat) - Fat)) mmady — [ (Autw) ~Kalw)) VUE - Ty dy] :
2 Q

(9.2.13)
If the error E5 is large, it suggests we need to improve the quadrature,hahight be better to
improve the quadrature instead of refining the finite elemeatth (which can also be used to reduce

quadrature error). For clarity, we ignore the effect of qatute for the duration of the chapter.

9.3 An Efficient Monte Carlo Algorithm for Many Realizations

In order to obtain estimates of statistics and the distidoubf the QOFI, we must obtaifv inde-
pendent realizations @p(u; @). We describe ways to exploit the finite element and domaiomiec
position formulations in order to make the Monte Carlo effiiti The results are binned according
to the empirical distribution function and we perform an ateaori error analysis on the resulting

estimate of the distribution.

A global finite element mesh and initialization

Monte Carlo methods are computationally tractable for phablem largely because of the ability
to use a single finite element mesh for all realizatiéfisi.e., the need to mesh and perform mesh
refinement for each realization has been eliminated. Thasallows for an intuitive and straightfor-
ward approach for comparing numerical methods and the ia$sdcrrors for each realizatid@?'.
For an illustration, we refer to Fifg. 9.2. Take= 1d, f(z,y) = 2000z(1 — x) 4+ 2000y (1 — y), and
Y(z,y) = Wexp (—50(z — 0.8)% — 50(y — 0.75)?). We then refine the mesh if the element error
contribution is larger tha0.005. Notice that the element-wise error contributions varywssn
2(6) and(2 in some complicated way that does not depends solely arthe number of elements.
The problem at hand is to determine whether such a globat fadtment mesh exists and then

to find it. The global bounds on the boundedness and cosrdivilTheorem 8.2)2 suggest the
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Center: we fixh = 0.05 so that there are 780 elements. Léft= 0.05, but there are 705 elements.
Right: h = 0.0488, which gives 780 elements.

existence of such a mesh, but we also must be able to congtn take a very simple approach
to constructing such a mesh, described in Algorifhm 9.1.sThain be done in the initialization of
the code and is thus independent of the number of samplesndhie Monte Carlo sampling, if a
realization is encountered that does not satisfy the esterance, we refine adaptively and continue

using the new mesh.

Algorithm 9.1: Finding the global finite element mesh

start with initial (uniform) mesh
adaptively refine mesh to solve a set of test problems suftlgiaccurately
use the resulting mesh

Algorithm[9.] is demonstrated in the following example. Hus illustration, we takes = Id,

f(z,y) = 200z(1 — z) +200y(1 —y), andy(z, y) = 12 exp (—50(z — 0.75)* — 50(y — 0.75)?).
In Fig.[9.3, we show the required meshes to solve the problerf2,0 Q2(0), Q*, and all three
simultaneously.

We also use the numerical solution faf@) = Q(0) to initialize the Lion’s domain decompo-
sition algorithm. Further, for al, especiallyg small, this initialization will reduce the number of
iterations in the domain decomposition algorithm and, theed to gains in efficiency and reduction

of numerical errors.
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Monte Carlo simulation

We now describe the Monte Carlo sampling and numerical isolaf the PDESs in detail, which is
presented in Algorithrhi 812. We use a superscriph the established notation to denote th¢h

realization off. The matrix form of[(9.2.2) reads, on each subdon§ain
MLUY" = bl
where

1
Ms = (A5 0)VE T+ 3 (565 €ang — (07 AT VEE €
ded’

i—1ln n 1 i—1n n i—1n
(by " >k=<Fd,s§>d+Z(;<Udl &) ang — (ng AGW)VU ,s§>dmg>-
ded’

Algorithm 9.2: Finite element method and domain decomposition for a MostdoGimula-
tion
forn =1,..., N (number of samplegjo
for i =1,...,I (number of iterationsylo
for d =1,..., D (number of subdomainslo
| solveU’" = (MZ)~ b}, "
end
end
end

Localizing the effect of uncertainty to the boundary subdora

Motivation for localizing the effect of the perturbations the boundary subdomains is found in
comparing Figl 9J1(b,c). The shape and size of the subdeniaiRig.[9.1(c) are more appealing,
which has implications in the efficiency of the domain decosifion method. Since the effect of
the perturbations is localized to the boundary elementsare@lso able to choosein such a way
thatoy = Id; onmanyd € {1,...,D}. Such a choice implieA!; = a4, for all n. This allows
us to precompute several of the matrix inverses and, in tnake them independent af Further,

F}' = fqsothat we can precompute

(F7, &80 = (fa,€8)
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as well. This is illustrated in Fig. 9.1 and described in Altgon[9.3.

Algorithm 9.3: Monte Carlo simulation with localized randomness to theratauy subdo-
mains

ford=1,...,Ddo
if ©Yd = Id, then

| precomputéM,)~! and(F, &%)y

end

end

forn =1,..., N (number of samplegjo
for i =1,...,I (number of iterationsylo

for d =1,..., D (number of subdomainslo
| solveU}™ = (My)~'bl, "
end
end
end

Neumann series

We now write

Ai(y) = aq(y) + Aa(y),

where

Aq(y) = Tgaa(e; (¥)Ta — aa(y)

= aq(py ' (y)) — aaly) + I ] aa(og (y¥)Ia — aa(o;(y)) .-

A () AP )

H A

In the case thad ;(y) is a polynomial, the work of [33, 34] readily applies. It isefisl to interpret
A,4(y) as the perturbation in the diffusion coefficient fraim Further,Ag)(y) can be interpreted
as describing how,,(y) contributes to the perturbation, where&ag) (y) describes how,(y) con-
tributes the perturbation. In theoryf; ~ Id; and the entries aof vary sufficiently much in space,

thenAél)(y) will dominateAf) (y).
Remark 9.3.1. There are a two important cases to consider:
1. if ©Yd = Id,, thenA; = 0 and Ad(y) = ad(y)

2. if a(y) is a piecewise constant matrix, i.eq(y) = aq, thenAél)(y) = 0 and Af)(y) =

J;ade —ayg
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We again consider the matrix form ¢f (9.2.2). That is, on eadidomair(2,
a n 2,M i—1n
(Kg+KjU;" =b; ",
where

1
(Ko = (aa(y)VEG, VEDa + D (X@s,sﬁw— (ng- ad<y>vss,s§>dmg)

ded’
(Kike = (AF(9)VEL, VEDa — > (ng AJ(y)VEL, ) g
ded
i—1ln n 1 i—1n n 1—1n
(b ™)k = (Ff.€Da+ Y <;<Ud 66 gng — (g AG)VUL ,s§>dng) :
ded’

The ability to separate the elliptic coefficient into a datiistic piece and a perturbation can

be exploited by the Neumann series. We first assume
1K) Kl < 1,
so that
(K§+K§) ™' = (Idg + (K§) 'K (K~

p=0

(KD~

We definel’;}, to be

P
Ui = [Z (<K3>1K3>”] (K5 bl

p=0
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Note in Algorithm[9.4 that the number of inverses is indeericf V.
Algorithm 9.4: Monte Carlo simulation with Neumann series
ford=1,...,Ddo
precomputeKy
if ©d = Id, then
| precomputed K%)=t and(Fy, £5),

end

end

forn =1,..., N (number of samplesjo
for i =1,...,I (number of iterationsylo

for d =1,..., D (number of subdomainslo
if ©q = Iddl then '
‘ solveU", = (K%)~ b}, "

else
‘ solvelUy’, = [Zf;o (—(Kz)‘lKﬁ)”} (Kg) by "
end
end
end
end

We are now concerned with the error associated with the Nearagpansion,

D
By =) (U;" = Uyp Ya)a, (9.3.1)
d=1
which may be approximated
D Ny
Bi= 35S [ (Vs - ) v 032
d=1 j=1 d

for sufficiently largeAP.

9.4 Estimating the Distribution of a Quantity of Interest

We now treat the approximation of the probability distribatfunction and the associated error.

The probability distribution function of)(u; 0) is given by
P(t) = PQ(u; 8) < 1).

We only have the approximatiorig’" (or U}{,’") so that, givenV realizations o, {6"}Y_,, we

n=1

use theesstimatecempirical distribution function
N 1 Y
Py(t) = 5 D X(-oo) (QU"™:6)),
n=1
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which approximates the true empirical distribution fuonti
N;X(—oo,t)(Q(u ;0)).
We are then interested in the error

|P(t) — Pn(t)] < |P(t) — P (t)| + | Py(t) — Px(t), (9.4.1)

sampling numerical

where the first term on the right df (9.4.1) is the samplingerr

The empirical distributionPy is an unbiased estimator &f since

P(t)(1 - P(t)

Var(Py(t)) = I

The Strong Law of Large Numbers gives
Pn(t) % P(t), Wt,
i.e., the estimatoPy (t) is consistent. Further, the Central Limit Theorem gives
VN(Py(t) = P(1)) 5 N(0, P(t)(1 — P(1)).

Thus, takingN sufficiently large will make the first term on the right &f (3% arbitrarily small
with arbitrarily high probability.
The second term on the right ¢f (9.4.1) is

2|~

|Px(t) — Py ()] =

N
> (X(—oo,t)(Q(un)) - X(—oo,t)(Q(UIIa’n)))‘

n

Il
—

==
WE

(X(—oo,t) (Q(un)) - X(—oo,t—l—e”)(Q(un)))' )

3
Il
,_.

where we have defined" = Q(u") — Q(U}™), and then,

L X
NZ_: (t=]em | t+]en]) (Q(U")))‘

1 N
an:: (t— et—i—e n)))'

= |Pn(t+e) — Pn(t—e)|,

|Pn(t) —
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wheree = max |e"*|. Consequently, by makingsufficiently small, we can make the second term on
n

the right of [9.4.11) arbitrarily small. We note that the gtigne, and eack™, involves contributions

due to the finite element discretization, the domain decaitipa algorithm, Neumann expansion,

and quadrature.

9.5 Numerical Experiments

We now consider a numerical example that demonstrates blegbtige mesh refinement via an a
posteriori error analysis and the approximation of stagfrom Monte Carlo simulations. We con-
sider the domaif2 = (0,1) x (0, 1) and perturbation; = Unif(—0.02,0.02) x Unif (—0.02,0.02)

at each corner of the square. We assumedhatl and f(x,y) = 2000z(1 — x) + 2000y(1 — y).
The QOFl is defined by (z, y) = 12 exp (—50(z — 0.9)% — 50(y — 0.75)?), which approximates
a weighted average in a neighborhood of the pgirf}, 0.75). In Fig.[9.4, the transformed problem
is solved for one realization @ via the domain decomposition and finite element formulation

described previously. The QOFI is approximated to be 32.Wrefine the mesh at elements such
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SRR AVAVAVAVAVAVAS SKISRANBANANNINNNNN

TAVAYA
[ VAvAvrS TAAVAVAVAV. 0.03
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0.005
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5
A\

(a) (b)

Fig. 9.4:Solution (left) and element-wise finite element error (tjgin a uniform mesh.

that the error contributions is larger than 0.004. The smiuis then found on the refined mesh and
is shown in FigC9b. The QOFI is approximated to be 32.265herr¢fined mesh. Notice that the
element-wise error contributions have been reduced byhtgugfactor of three.

To approximate the distribution of the QOFI and various sgbent statistics, we employ the
Monte Carlo simulation algorithm for 10,000 realizations Fig.[9.6, we plot the approximate
empirical distribution function and the density histograrhat latter is compared to a normal

distribution with mean 31.362 and variance 3.491, whicheamth computed from the simulations.
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Fig. 9.5:Solution (left) and element-wise finite element error (tjgin a refinement of the mesh.

The purpose of such a comparison is not to argue that thébditstn of the QOFI is normal, which
is clearly not the case because the density is known to hawpact support. Fid. 9.6 demonstrates

that the density of the QOFI is right-skewed, e.g., the medias approximated to be 31.339.

1 0.2
0.8 ] 0.2 i
0.6 1 2015 ,
: B ;
S5 S
& 04 ] = ol
02 ] 0.05
28 320 22 24 36 0 28 20 32 24 36
Q(u:0) Qu:0)

(a) (b)

Fig. 9.6:Approximate empirical distribution function and density the QOFI defined by)(z,y) =
199 exp (=50(x — 0.9)* — 50(y — 0.75)%). The results of 10,000 realizations in a Monte Carlo
algorithm were used.

We now investigate the dependence of the QOFI on the uneirtai different corners of the
domain. Since the QOFI is localized near the corfien), hereafter referred to as corner 3, we
expect the sensitivity of) to be large relative to the other corners, e.g., corner 1,(0e0). In
Fig.[9.7, we plotQ against the: andy components of the perturbations at corners 1 and 3. There is
no statistically significant relationship between the twodorner 1, whereas a strong relationship
exists for corner 3. A¢; increases, the QOFI increases, which is expected becag<@Ql| is

located farther from the homogeneous Dirichlet conditimnificreasing?d; .
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Fig. 9.7:The QOFI defined by (z, y) = 1% exp (—50(z — 0.9)? — 50(y — 0.75)?) plotted against the per-
turbations at corners 1 and 3.
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We now consider a different QOFI defined byz,y) = 1 and, again, employ the Monte
Carlo simulation algorithm for 10,000 realizations. In F&8, we plot the approximate empirical
distribution function and the density histogram. Thatdais compared to a normal distribution
with mean 27.351 and variance 0.599, which were both cordputen the simulations. As with

the other QOFI, the density of the QOFI has compact suppartsaright-skewed.

0.5

0.4

0.3

f(Qu:0))

0.2

0.1+

28 29 30 25 26 28 29 30

25 26
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Fig. 9.8:Approximate empirical distribution function and densifitioe QOFI defined by)(z,y) = 1. The
results of 10,000 realizations in a Monte Carlo algorithrmengsed.

We now investigate the dependence of the QOFI on the unesrtai different corners. Since
the QOFI is the average of the solution over the entire donvaénexpect the sensitivity @ to be
similar across the four corners, which is verified in Eigl 9f%he perturbations are such that the

resulting domain is larger in size, the QOFI tends to in@eeswell.

9.6 Summary

We consider the nonparametric density estimation problemafQOFI computed from solutions
of the elliptic PDEs with stochastic domains that were fdiated in the previous chapter. We
consider several measures to improve the efficiency of thettM@arlo sampling method so that
many samples can be obtained to approximate the distribatia reasonable cost. An a posteriori
error analysis is presented for each sample and for the malpiistribution function obtained from
the samples. The a posteriori error estimate for the condguigbability distribution reflects both

deterministic and statistical sources of error including ¢ffects of the transformation.
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Fig. 9.9:The QOFI defined by (x, y) = 1 plotted against the perturbations at corners 1 and 3.
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10. CONCLUSION

In the first part of this dissertation, we study the nonlogélision equation with so-called Lévy
measure as the master equation for a pure-jump Lévy process. Inakeiwc<c L!(R), a rela-
tionship to fractional diffusion is established in a limftv@nishing nonlocality, which implies the
convergence of a compound Poisson process to a stable grdeethe cases ¢ L', an equiva-
lence with fractional diffusion is reviewed and the smooghof the nonlocal operator is shown to
correspond precisely to the activity of the underlying ¥.@vocess and the variation of its sample
paths. We introduce volume-constrained nonlocal diffugiquations and demonstrate that they are
the master equations for Lévy processes restricted to adeaslidomain. The ensuing variational
formulation and conforming finite element method provideowerful tool for studying both Lévy
processes and fractional diffusion on bounded, non-simgtenetries with volume constraints.

In the second part of this dissertation, we consider thelpnolof estimating the distribution of
a quantity of interest computed from the solution of an @dipartial differential equation posed on
a domainQ2(8) c R? with a randomly perturbed boundary, whetés a random vector with given
probability structure. We construct a piecewise smoothsfiamation from a partition of2(0) to
a reference domaif? in order to avoid the complications associated with solthgyproblems on
Q(0). The domain decomposition formulation is exploited by laag the effect of the random-
ness to boundary elements in order to achieve a computhlyicaficient Monte Carlo sampling
procedure. An a posteriori error analysis for the approxgnhstribution, which includes a deter-
ministic error for each sample and a stochastic error froereffect of sampling, is also presented.
We thus provide an efficient means to estimate the distabutf a quantity of interest via a Monte

Carlo sampling procedure while also providing a posterordr estimates for each sample.
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