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ABSTRACT

PROBABILISTIC FOUNDATION OF NONLOCAL DIFFUSION AND FORMULATION AND

ANALYSIS FOR ELLIPTIC PROBLEMS ON UNCERTAIN DOMAINS

In the first part of this dissertation, we study the nonlocal diffusion equation with so-called

Lévy measureν as the master equation for a pure-jump Lévy process. In the caseν ∈ L1(R), a

relationship to fractional diffusion is established in a limit of vanishing nonlocality, which implies

the convergence of a compound Poisson process to a stable process. In the caseν /∈ L1, the

smoothing of the nonlocal operator is shown to correspond precisely to the activity of the underlying

Lévy process and the variation of its sample paths. We introduce volume-constrained nonlocal

diffusion equations and demonstrate that they are the master equations for Lévy processes restricted

to a bounded domain. The ensuing variational formulation and conforming finite element method

provide a powerful tool for studying both Lévy processes and fractional diffusion on bounded, non-

simple geometries with volume constraints.

In the second part of this dissertation, we consider the problem of estimating the distribution of

a quantity of interest computed from the solution of an elliptic partial differential equation posed on

a domainΩ(θ) ⊂ R
2 with a randomly perturbed boundary, whereθ is a random vector with given

probability structure. We construct a piecewise smooth transformation from a partition ofΩ(θ) to

a reference domainΩ in order to avoid the complications associated with solvingthe problems on

Ω(θ). The domain decomposition formulation is exploited by localizing the effect of the random-

ness to boundary elements in order to achieve a computationally efficient Monte Carlo sampling

procedure. An a posteriori error analysis for the approximate distribution, which includes a deter-

ministic error for each sample and a stochastic error from the effect of sampling, is also presented.

We thus provide an efficient means to estimate the distribution of a quantity of interest via a Monte

Carlo sampling procedure while also providing a posteriorierror estimates for each sample.
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1. INTRODUCTION

The field of applied mathematics concerns itself with the useof mathematical and statistical methods

and models in various science, engineering, and industrialapplications. Unfortunately, as famously

stated by George Box,

“All models are wrong, some are useful,”

so that a rigorous analysis of the validity of the model is in order. In other words, every practical ap-

plication of mathematical and statistical models is accompanied by uncertainty and this uncertainty

must be quantified and reduced wherever possible. Common instances where uncertainties arise

include the estimation of parameters from data, augmentingthe problem with simplifying assump-

tions, finite sampling of the input and parameter spaces, andobtaining outputs using a numerical

method. This dissertation concerns two parts, with each addressing an important problem in the

field of uncertainty quantification. Namely, in Part I, we study nonlocal diffusion as a model for

diffusion processes in which the classical diffusion modelis invalid and, in Part II, we investigate

the effect of uncertainty in the domain on which a partial differential equation (PDE) is posed on

a quantity of interest (QOFI) computed from the solution. Part I consists of Chapters 2-6, whereas

Part II consists of Chapters 7-9. The final chapter, Chapter 10, includes a brief conclusion.

1.1 Probabilistic Foundation of Nonlocal Diffusion

Historically, diffusion processes have been modeled by theclassical diffusion equation,

ut(x, t) = c∆u(x, t). (1.1.1)

The model (1.1.1) relies on the classical balance law,

∂u

∂t
+∇ · q = 0,

which states that the rate of change in the densityu(x, t) atx is due to a change in flux atx, and an

assumption that the fluxq satisfies Fick’s first law,

q = −c∇u.



However, it has been observed experimentally that many diffusion processes do not obey the classi-

cal model, e.g., contaminant flow in groundwater [28], sporadic movement of foraging spider mon-

keys [62], dynamic motions in proteins [51], turbulence in fluids [43], and dynamics of financial

markets [47]; see [42] for a review of other such applications. Consequently, when the underlying

assumption of Fick’s first law is questionable, alternate models for diffusion must be considered

[6, 53]. One alternative is the fractional diffusion equation

ut(x, t) = −c(−∆)α/2u(x, t), α ∈ (0, 2], (1.1.2)

which arises via a generalization of Fick’s first law; see [59]. Another viable alternative to the

classical diffusion model is the nonlocal diffusion equation,

ut(x, t) =

∫

R

(
u(y, t)− u(x, t)

)
ν(x− y) dy, (1.1.3)

whereν is positive and assumed to be symmetric. The integral operator on the right-hand side of

(1.1.3) represents nonlocal diffusion because the rate of diffusion associated withu(x, t) depends

upon pointsy 6= x.

The work of [3, 26, 36] allows for the consideration of volume-constrained nonlocal diffusion,

which are the nonlocal analogs of classical boundary value problems. The volume-constrained prob-

lems have been studied in various contexts; see [21, 22, 29].In [36], the authors provide variational

formulations, which then give rise to a conforming finite element method with discontinuous basis

functions. The relationship between (1.1.2) and (1.1.3) inthe limit of vanishing nonlocality estab-

lishes that numerical solutions of fractional diffusion onbounded domains can be approximated.

A useful perspective when studying diffusion processes is that of a stochastic process and its

master equation, i.e., the deterministic equation that governs the time evolution of the probability

density function describing the process. Each of the models(1.1.1)–(1.1.3) are the master equa-

tions for particular Lévy processes. A Lévy processLt is characterized by the Lévy-Khintchine

decomposition in terms of the characteristic function,

ϕLt(ξ) = exp

((
ibξ − cξ2

2
+

∫

R

(
eiξx − 1− iξxI{|x|<δ}

)
ν(x) dx

)
t

)
.

Specifically, (1.1.1) is the master equation for Brownian motion, (1.1.2) is the master equation

for a centered and symmetric stable process, and (1.1.3) is the master equation for a pure jump
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process. Whenν ∈ L1(R), the latter is a Markovian continuous time random walk (CTRW), that

is, a compound Poisson process. Non-Markovian CTRWs, also for ν ∈ L1(R), can be studied via

the appropriate master equation as well, e.g., the master equation for a particular renewal-reward

process is the Cattaneo-Vernotte equation

ut(x, t) +
τ

2
utt(x, t) =

∫

R

(
u(y, t)− u(x, t)

)
ν(x− y) dy. (1.1.4)

To understand sample paths and statistics of a given process, one often relies on many realiza-

tions of the process and then constructing a density estimate µN from the simulations. Unfortu-

nately, simulating the process can become expensive, or mayeven be impossible. Consequently,

there are many advantages to having both the corresponding master equation and the ability to find

numerical solutions. Most notable is that statistics of thegiven process are readily available once

the numerical approximationuh of the density is obtained and do not rely on costly simulations.

Part I is presented in Chapters 2-6 and is organized as follows. Chapter 2 gives an overview of

the diffusion equations (1.1.1)–(1.1.3) and introduces them as the master equations for stochastic

processes. In Chapter 3, which is published work of the author [21], we obtain numerical solutions

to the volume-constrained nonlocal diffusion equation andstudy the relationship to classical and

fractional diffusion as diffusion is localized. Chapter 4,which is a manuscript in preparation for

journal submission by the author, introduces the nonlocal Cattaneo-Vernotte equation and investi-

gates properties of solutions and the effect of relaxation time. In Chapter 5, which is published

work of the author [22], we present density estimates from simulations of the underlying stochastic

processes to (1.1.3) and (1.1.4) with volume constraints and compare them to the corresponding nu-

merical solutions of the master equation. Chapter 6, which is a manuscript in preparation for journal

submission by the author, considers exit-time distributions of a general class of Lévy processes with

volume constraints.

1.2 Formulation and Analysis for Elliptic Problems on Uncertain Domains

Many natural phenomena are modeled by PDE boundary value problems and, given a fixed set of

input data into the model, e.g., boundary conditions, parameters, and coefficients, much effort has

been expended to obtain efficient and accurate outputs. Traditionally, the input data are given in a

deterministic fashion. However, the inability to accurately measure parameters, inhomogeneities,

3



and deviations from a deterministic set of input data have deemed stochastic descriptions of the

model more appropriate in the presence of such uncertainties.

The case when uncertainties are present in the coefficients of a PDE model has received much

attention from numerous disciplines. A typical formulation of such a problem reads: findw(x;θ)

such that 



−∇ · (a(x;θ)∇w(x;θ)) = f(x;θ), x ∈ Ω,

w(x;θ) = 0, x ∈ ∂Ω,
(1.2.1)

whereθ is a random vector with some given probability structure. The ensuing demand for rigorous

mathematical and statistical theory to accommodate the applications has been met; see [8, 11, 12,

13, 20, 33, 34, 69]. Some commonly used tools include Karhunen-Loeve expansions, generalized

Polynomial Chaos, and stochastic collocation.

Much less attention, however, has been given to the case whenthe physical domain is uncertain,

though this problem is equally practical in its application. In fact, given a sufficiently fine spatial

resolution, the physical domain on which any model is posed is uncertain [67], e.g., due to manu-

facturing imperfections, the inability to obtain accuratemeasurements, or the approximation of the

geometry from a discrete set of data points. The model problem is: findw(x;θ) such that




−∇ · (a(x)∇w(x;θ)) = f(x), x ∈ Ω(θ),

w(x;θ) = 0, x ∈ ∂Ω(θ),
(1.2.2)

whereθ is a random variable with some given probability structure andΩ(θ) ⊂ R
2 is a stochastic

polygonal domain. Specific applications of such problems include transport in tubes with rough

boundaries [65], aerodynamic studies in the design of wind turbines [23], heat diffusion across

irregular and fractal-like surfaces [16, 19], structural analysis studies [55], acoustic scattering on

rough surfaces [56, 68], seismology and oil reservoir management [13], various civil and nuclear

engineering studies [11], chemical transport in rough domains [20], and understanding the effect of

geometric variability on the electromechanical behavior of nanostructures [7].

Often, only a few statistics on the output, rather than the entire solution, are desired. For in-

stance, one might consider estimating the distribution of aQOFI computed from the solution of

(1.2.2) via

Q(w;θ) =

∫

Ω(θ)
w(x;θ)ψ(x) dx,

4



whereψ is uniquely determined by the QOFI. To estimate the distribution of Q(w;θ), standard

Monte Carlo sampling techniques are employed, which necessitate understanding the numerical

error for every realization ofθ. Such sampling methods face several significant challenges: a naive

approach will require constructing a mesh of the domain for each realization ofθ; the variational

formulation requires a basis of test functions that depend on θ; and it is not clear how to perform

an error analysis for multiple problems across different domains and different meshes as the error

estimates will depend onθ in some unknown way. Consequently, new tools must be developed for

problems with stochastic domains. The most popular approach is to transform the problem from the

stochastic domain to a deterministic domain, which moves the dependence onθ from the domain to

the coefficients and data.

Motivated by the use of transformations to a deterministic reference domain in [70] and classi-

cal isoparametric finite element analysis, we transform theproblem (1.2.2) to a PDE with stochastic

coefficients posed onΩ, much like (1.2.1), via a piecewise smooth mapping on a partition of Ω.

Constructing this mapping takes little additional computational effort and, since all the resulting

problems are posed onΩ, allows for an intuitive comparison of results and errors across all real-

izations ofθ. Further, exploiting the domain decomposition formulation by localizing the effect of

randomness to the boundary subdomains and performing a Neumann expansion, an efficient Monte

Carlo sampling approach can be implemented that requires nore-meshing of the domain. Further,

an a posteriori error analysis for each realization ofθ is available, as is an a posteriori error analysis

for the approximate distribution of the QOFI.

Part II is presented in Chapters 7-9 and is organized as follows. In Chapter 7, we give an

overview of stochastic computations in PDE models with random coefficients. Chapter 8, which

is a manuscript in preparation for journal submission by theauthor, formulates elliptic problems

on a stochastic domain, describes the piecewise smooth transformation to a reference domain, and

presents well-posedness results of both the untransformedand transformed problems. Chapter 9,

which will be included in said manuscript, presents a Monte Carlo sampling procedure and a pos-

teriori error analysis in the estimation of the distribution of a QOFI computed from solutions of an

elliptic PDE posed on a stochastic polygonal domain.
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Part I

Probabilistic Foundation of Nonlocal Diffusion



2. A SURVEY OF THE UNDERLYING STOCHASTIC PROCESSES OF DIFFUSION
EQUATIONS

We introduce models for diffusion, e.g., classical, fractional, and nonlocal, as the master equa-

tions for different stochastic processes. The classical diffusion equation is the master equation,

i.e., Fokker-Planck equation, for a Wiener process, whereas the fractional and nonlocal diffusion

equations are the master equations for a centered and symmetric stable process and a Lévy jump

process, e.g., a Markovian CTRW. Non-Markovian CTRWs, e.g., renewal-reward processes, can

also be studied via the appropriate master equation, which is demonstrated by considering the non-

local Cattaneo-Vernotte equation.

2.1 Wiener Processes and Classical Diffusion

The first study of classical diffusion is often credited to Adolf Fick, who in 1855 introduced Fick’s

first law of diffusion. We begin with the mass balance law,

∂u

∂t
+
∂q

∂x
= 0,

which states that a time change in densityu(x, t) atx is due to a change in flux,q, atx. Determining

q in general, however, is nontrivial. Classically, it is assumed that density flows from regions of high

density to those of low density, with the magnitude of this flux proportional to the density gradient.

That is, we assume Fick’s first law

q = −c∂u
∂x
,

so that we arrive at the classical diffusion equation, Fick’s second law,

ut(x, t) = cuxx(x, t). (2.1.1)

It was later understood that the classical diffusion equation governs a particle undergoing Brownian

motion. Interestingly, Brownian motion was given its first detailed account long before Fick’s laws



of diffusion by Robert Brown in 1827. Brown witnessed pollengrains, and then later other inorganic

fine particles like glass and even dust from the Sphinx, exhibiting irregular motion when suspended

in water. In 1905, Einstein derived the classical diffusionequation in his investigations of Brownian

motion. The first stochastic differential equation describing Brownian motion, i.e., the Langevin

equation, is credited to Paul Langevin in 1908.

More specifically, Einstein presented the integrodifference equation [30],

u(x, t+ τ) =

∫

R

u(x− s, t)φ(s) ds, (2.1.2)

which has several aliases, e.g., Einstein’s master equation, the Chapman-Kolmogorov equation, and

the Smoluchowski equation. Subtractingu(x, t) from each side of (2.1.2) gives

u(x, t+ τ)− u(x, t) =

∫

R

(
u(x− s, t)− u(x, t)

)
φ(s) ds. (2.1.3)

We expand both the left hand and right hand sides of (2.1.3) toobtain

∂u

∂t
+
τ

2

∂2u

∂t2
+ · · · = E(S2)

2τ

∂2u

∂x2
+

E(S4)

4!τ

∂4u

∂x4
+ · · · , (2.1.4)

where

E(Sk) =

∫

R

skφ(s) ds.

We assume the hydrodynamic scaling of time and space, i.e.,

lim
τ→0

E(S2)

2τ
= c,

and that

E(S2k) = o(τ), k ≥ 2.

We then takeτ → 0 in (2.1.4) to obtain (2.1.1).

The Fourier transform of (2.1.1) gives

ût(ξ, t) = −cξ2û(ξ, t). (2.1.5)

Solving (2.1.5) with initial conditionu(x, 0) = δ(x),

û(ξ, t) = exp(−cξ2t),

8



which yields the fundamental solution of (2.1.1), denoted with g(x, t),

g(x, t) =
1√
4πct

exp

(
− x2

4ct

)
. (2.1.6)

We note that̂u(ξ, t) is the characteristic function of a scaled Wiener process,
√
2cWt. Further,

evident from (2.1.6), given that a particle begins at the origin, its position after timet is a zero-

mean Gaussian random variable with variance2ct. For (2.1.1) and an arbitrary initial condition

u(x, 0) = u0(x), u(x, t) is the convolution ofu0 with the fundamental solutiong, i.e.,

u(x, t) = (g ∗ u0)(x, t) =
1√
4πct

∫

R

exp

(
−(x− y)2

4ct

)
u0(y) dy. (2.1.7)

Rewriting (2.1.7),

u(x, t) =

∫

R

g(y, t)u0(x− y) dy,

gives thatu(x, t) is the expectation of the initial density of particles at position x − y that have

diffused to positionx during timet through Brownian motion.

The classical diffusion equation is a special case of a Fokker-Planck equation,

ut(x, t) =
∂2

∂x2

(
1

2
σ2(x, t)u(x, t)

)
, (2.1.8)

which describes the time evolution of the probability density function of the stateXt of an It ō

stochastic differential equation [57]

dXt = σ(Xt, t)dWt. (2.1.9)

In the special case of a constant diffusion coefficient, i.e., σ(x, t) =
√
2c, (2.1.9) reduces to

dXt =
√
2cdWt (2.1.10)

and (2.1.8) simplifies to the classical diffusion equation (2.1.1).

2.2 Centered and Symmetric Stable Processes and FractionalDiffusion

An alternate model for diffusion is of interest when the underlying assumption of classical mass

balance and Fick’s first law are questionable. See, for instance, the papers [6, 53] for discussions

and citations to the literature.
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One alternative is the anomalous diffusion model given by the fractional diffusion equation

ut(x, t) = −c(−∆)α/2u(x, t), α ∈ (0, 2]. (2.2.1)

with

F
{
(−∆)α/2 v

}
:= |ξ|αv̂. (2.2.2)

Anomalous diffusion represents a multiscale model for diffusion; see [63]. The fractional diffusion

(2.2.1) forα ∈ (1, 2] arises via a generalization of Fick’s first law using a fractional derivative oper-

ator; see [59]. Fractional gradient and divergence operators are discussed in [48] and the fractional

Laplacian can be obtained through composition of these operators. Fourier transforming (2.2.1)

gives

ût = −c|ξ|αû. (2.2.3)

Since the characteristic function of a centered and symmetric α-stable processSα
t is given by

ϕSα
t
(ξ) = exp (−c|ξ|αt) ,

the fundamental solution to (2.2.1) is the characteristic function of a centered and symmetricα-

stable processSα
t .

2.3 General Lévy Processes and Nonlocal Diffusion

The most general type of diffusion to satisfy the so-called positive maximum principle [18, pg. 9]

are of the form

ut(x, t) = qu(x, t) + b
∂u

∂x
(x, t) +

c

2

∂2u

∂x2
(x, t) +

∫

R

(
u(y, t)− u(x, t)

)
ν(y − x) dy. (2.3.1)

In this section, we show that (2.3.1) (minus the reaction term) is the master equation for a general

Lévy process. The main focus of our attention will be on the integral operator, which is the master

equation for a jump process.

The distributionF of a random variableX is said to be infinitely divisible if,∀n ∈ N, there

existsX̃i
iid∼ F̃i such that

∑n
i=1 X̃i

d
= X. Such random variables are prevalent and include those

with Gaussian, Cauchy, exponential, Poisson, and gamma distributions. The Lévy-Khintchine for-

mula provides a characterization of infinitely divisible random variables via a decomposition of the

10



characteristic function. That is, the distribution of a random variableL is infinitely divisible if and

only if there exists

b ∈ R, c ∈ R≥0, (2.3.2a)

and a measureν satisfying

ν({0}) = 0 and
∫

R

(
1 ∧ |x|2

)
ν(dx) <∞. (2.3.2b)

such that

ϕL(ξ) = exp

(
ibξ − cξ2

2
+

∫

R

(
eiξx − 1− iξxI{|x|<δ}

)
ν(dx)

)
, (2.3.3)

whereδ > 0 is arbitrary and often taken to be equal to one.

A processLt that has an infinitely divisible distribution for eacht is a Lévy process. Further,

the Lévy-It ō decomposition states that for any triplet(b, c, ν) satisfying (2.3.2) there is a probabil-

ity space on which a Lévy processLt composed of four independent processes (constant driftbt,

Brownian motion
√
cWt, compound Poisson processYt, and square integrable martingaleZt), i.e.,

Lt = bt+
√
cWt + Yt + Zt,

exists. Moreover, such a Lévy process has a characteristicfunction given by

ϕLt(ξ) = exp

((
ibξ − cξ2

2
+

∫

R

(
eiξx − 1− iξxI{|x|<δ}

)
ν(dx)

)
t

)
. (2.3.4)

For simplicity, we will consider triplets of the form(0, 0, ν), since the cases withb 6= 0 and

c 6= 0 have been well-studied. We also writeν(dx) = ν(x)dx, and consider two choices ofν:

1. ν is symmetric, i.e.,

ν(−x) = ν(x), ∀x 6= 0, (2.3.5a)

2. ν is not symmetric and admits a finite mean, i.e.,

∫

R

|x|ν(x) dx <∞. (2.3.5b)

In either of these cases, there is no need for the compensatoriξxI{|x|<δ} so that (2.3.4) withb =

c = 0 reduces to

ϕLt(ξ) = exp

((∫

R

(
eiξx − 1

)
ν(x) dx

)
t

)
. (2.3.6)

11



We introduce the notation̂u(ξ, t) = ϕLt(ξ) so that differentiating (2.3.6) gives

ût(ξ, t) =

(∫

R

(
eiξx − 1

)
ν(x) dx

)
û(ξ, t).

Inverse Fourier transforming yields the master equation for Lt = Yt + Zt,

ut(x, t) =

∫

R

(
u(y, t)− u(x, t)

)
ν(y − x) dy. (2.3.7)

We further split into cases by distinguishing the casesν ∈ L1(R) andν /∈ L1(R). In the former

case, we introduce theprobability density functionφ and the mean wait-timeλ such that

φ(z) =
1

λ
ν(z). (2.3.8)

In this case, the Lévy process is a compound Poisson process,

Yt =
Nt∑

k=1

Rk, (2.3.9)

whereRk
iid∼ φ and the Poisson processNt has intensity1/λ. Consequently, the master equation

for Yt reduces to

ut(x, t) =
1

λ

∫

R

(
u(y, t)− u(x, t)

)
φ(y − x) dy (2.3.10)

In the latter case, i.e.,ν /∈ L1(R), Lt is a square integrable jump martingale, but not a compound

Poisson process. Forν /∈ L1(R), we understand (2.3.7) as a distribution.

We now show that the master equation for nonlocal diffusion with ν ∈ L1(R) is a special case

of the master equation for an arbitrary CTRW,

ut(x, t) =

∫ t

0
Λ(t− t′)

∫

R

(
u(y, t′)− u(x, t′)

)
φ(x− y) dy dt′, (2.3.11)

where

Λ̂(s) =
sω̂(s)

1− ω̂(s)
, (2.3.12)

φ is the step density, andω is the wait-time density. Note that when wait-times are exponential,

Λ(t − t′) = 1
λδ(t − t′) and (2.3.11) reduces to (2.3.10), which implies that (2.3.10) is the master

equation for a Markovian CTRW, namely, a compound Poisson process.
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2.4 Renewal-Reward Process and Nonlocal Diffusion with Relaxation

Different choices ofΛ in (2.3.11) give rise to non-Markovian CTRWs. In practice,Λ will be deter-

mined from data. For the particular choice ofΛ such that

Λ(t− t′) =
1

β

2

τ
exp

(
− t− t′

τ/2

)
, (2.4.1)

we obtain the nonlocal Cattaneo-Vernotte equation

ut(x, t) +
τ

2
utt(x, t) =

1

β

∫

R

(
u(y, t)− u(x, t)

)
φ(x− y) dy, (2.4.2)

whereu is some field, e.g., temperature or probability,φ is a symmetric function, i.e.,φ(x − y) =

φ(y − x), andβ ≥ 2τ > 0. The assumption (2.4.1) is tantamount to

ω(t) =





t

τ2
exp

(
−1

τ
t

)
, β = 2τ,

2√
β(β − 2τ)

exp

(
− t

τ

)
sinh

(√
β(β − 2τ)

βτ
t

)
, β > 2τ.

(2.4.3)

We will show in Chapter 4 that (2.4.2) is the master equation for a non-Markovian CTRW,

namely a renewal-reward process

Yt =
Nt∑

k=1

Rk, (2.4.4)

where the wait-times arenot exponentially distributed andRk
iid∼ φ. The parameterβ represents the

mean wait-time between steps andτ/2 > 0 is a relaxation time. The nonlocal Cattaneo-Vernotte

equation (2.4.2) is also a model for nonlocal hyperbolic heat conduction.

We contrast (2.4.2) to the classical Cattaneo-Vernotte equation,

wt +
τ

2
wtt = awxx, (2.4.5)

whereτ/2 > 0 is again a relaxation time anda > 0 is the diffusion coefficient. The equation (2.4.5)

is a model for diffusion that admits finite speeds of propagation, specifically
√

2a/τ . Whenw is a

temperature field, (2.4.5) is a model of hyperbolic heat conduction [45].
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3. CLASSICAL, NONLOCAL, AND FRACTIONAL DIFFUSION EQUATIONS ON
BOUNDED DOMAINS

This chapter is taken directly from published work by the author found in [21]. We compare the

solutions of one-dimensional volume-constrained problems corresponding to classical, fractional

and nonlocal diffusion on bounded domains. The latter two diffusions are viable alternatives for

anomalous diffusion, when Fick’s first law is an inaccurate model. In the case of nonlocal diffusion,

a generalization of Fick’s first law in terms of a nonlocal fluxis demonstrated to hold. A relationship

between nonlocal and fractional diffusion is also reviewed, where the order of the fractional Lapla-

cian can lie in the interval(0, 2]. The contribution of this paper is to present volume-constrained

problems for nonlocal diffusion including a variational formulation that leads to a conforming finite

element method using piecewise discontinuous shape functions. Several examples are given where

the effect of nonlocality is studied. The relationship between nonlocal and fractional diffusion ex-

plains that the numerical solution of volume-constrained problems, where the order of the fractional

Laplacian can lie in the interval(0, 2], is possible.

3.1 Introduction

The one-dimensional form of Fick’s second law

wt = cwxx, c > 0, (3.1.1)

postulates the diffusion in time undergone by the scalar field w representing the particle density.

An alternate model for diffusion is of interest when the underlying assumption of classical mass

balance and Fick’s first law, e.g., 


wt = −qx,

q = −cwx,

respectively, are questionable. See, for instance, the papers [6, 53] for discussions and citations to

the literature. One alternative is the anomalous diffusionmodel given by the fractional diffusion

equation

vt = −c (−∆)α/2 v, 0 < α ≤ 2, (3.1.2)



with

(−∆)α/2 v := F−1(|ξ|αv̂ ), (3.1.3)

where

v̂(ξ) := F(v)(ξ) =

∫

R

v(s)e−iξs ds

denotes the Fourier transform of a functionv and F−1 denotes the inverse Fourier transform.

Anomalous diffusion represents a multiscale model for diffusion; see [63]. The fractional diffu-

sion (3.1.2) forα ∈ (1, 2] arises via a generalization of Fick’s first law using a fractional derivative

operator; see [59]. Fractional gradient and divergence operators are discussed in [48] and the frac-

tional Laplacian can be obtained through composition of these operators.

The paper [26] demonstrates that the asymptotic behavior for a solution of (3.1.2) is given by

the solution of the integrodifferential equation

ut(x, t) =
1

λ

∫

R

(
u(y, t)− u(x, t)

)
φ(y − x) dy, t ≥ 0, (3.1.4)

whereφ is a symmetric function, i.e.,φ(y − x) = φ(x − y), φ ≥ 0, λ > 0, and
∫
R
φ(s) ds = 1.

The integral operator on the right-hand side of (3.1.4) represents nonlocal diffusion because the

rate of diffusion associated withu(x, t) depends upon pointsy 6= x. The rate of diffusion is the

difference in the rate at whichu entersx at timet, or 1
λ

∫
R
u(y, t)φ(y − x) dy, and the rate at which

u departsx at timet, or 1
λu(x, t). This suggests that the asymptotic behavior for a solution of a

volume-constrained problem corresponding to the nonlocalequation (3.1.4) is also fractional, and

indeed, selectingφ as a Lévy stable density, demonstrates this relationship.The nonlocal equation

(3.1.4) also represents a model for peridynamic heat conduction [17] .

We now briefly establish a relationship of (3.1.4) to its underlying stochastic process. Consider

the compound Poisson process.

Yt =

Nt∑

k=1

Rk, (3.1.5)

whereRk
iid∼ φ and the Poisson processNt has intensity1/λ. Recalling that the characteristic

function of the compound Poisson process is given by

û(ξ, t) = ϕYt(ξ) = exp

(
1

λ

(
φ̂(ξ)− 1

)
t

)
(3.1.6)
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establishes said relationship.

The purpose of this paper is to compare the solutions of the initial value volume-constrained

problems corresponding to (3.1.1) and (3.1.4) using a conforming finite element method on sev-

eral nonlocal diffusion problems. The nonlocal volume-constrained problems augment (3.1.4) with

Dirichlet and Neumann volume constraints. The finite element method for (3.1.4) depends upon the

variational formulation presented in [36]. The relationship between nonlocal and fractional diffu-

sion explains that the numerical solution of volume-constrained problems, where the order of the

fractional Laplacian lies in the interval(0, 2], is possible; for example, the recent paper [61] only

considers the order1 < α ≤ 2. Convergence and stability analysis of a finite difference method

for (3.1.4) are investigated in [15]. The former paper investigates (3.1.4) on the real line, while

the analysis in the latter paper considers the nonlocalp-Laplacian diffusion equation with nonlocal

Neumann boundary conditions and compactly supportedφ.

This chapter is organized as follows. Section 3.2 discussesrelationships among classical, frac-

tional and nonlocal diffusion. In particular, the nonlocaldiffusion equation (3.1.4) leads to a gener-

alization of Fick’s first and second laws, and a relationshipbetween nonlocal and fractional diffusion

is reviewed. Section 3.3 reviews nonlocal volume-constrained problems and their variational coun-

terparts. The volume constraints given generalize the notion of Dirichlet and Neumann boundary

conditions. The finite element formulation, properties of nonlocal diffusion, and three numerical

examples are given in Section 3.4.

3.2 Nonlocal Flux, Fick’s First Law, and Fractional Diffusion

A relationship is now established between the classical andnonlocal diffusion equations (3.1.1) and

(3.1.4), respectively, by examining the nonlocal flux implied by the latter equation and Fick’s first

law. The key to this relationship are the two lemmas given in [46, 54] due to Noll. The first lemma

provides a formula for a flux,

p(x, t) = −1

2

∫

R

∫ 1

0

(
u(x+ (1− µ)z, t)− u(x− µz, t)

)
zφ(z) dµdz, (3.2.1)

such that

∂

∂x
p(x, t) =

1

2

∫

R

∫ 1

0

d

dµ

((
u(x+ (1− µ)z, t)− u(x− µz, t)

)
φ(z)

)
dµdz

= −1

2

∫

R

(
u(x+ z, t)− u(x, t) + u(x− z, t)− u(x, t)

)
φ(z) dz
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and, sinceφ(z) = φ(−z),

ut = − 1

λ
px.

The hypothesis for the application of the lemma is the antisymmetry of the integrand of (3.1.4). The

second lemma grants, witha < b, that

1

λ

∫ b

a

∫

R

(
u(y, t) − u(x, t)

)
φ(y − x) dy dx =

1

λ

∫ b

a

∫

R\(a,b)

(
u(y, t)− u(x, t)

)
φ(y − x) dy dx,

because
1

λ

∫ b

a

∫ b

a

(
u(y, t)− u(x, t)

)
φ(y − x) dy dx = 0,

a statement that there is no diffusion exchange within(a, b).

Evidently, the nonlocal diffusion equation (3.1.4) has replaced the classical fluxq = −cux with

the nonlocal fluxp. The fluxp is nonlocal because pointsz 6= x are involved, in contrast to the

classical, local, flux that would only require the pointx at timet, orux(x, t). Therefore,

1

λ

∫ b

a

∫

R\(a,b)

(
u(y, t)− u(x, t)

)
φ(y − x) dy dx =

d

dt

∫ b

a
u(x, t) dx

= −
∫ b

a

∂p(x, t)

∂x
dx

= −
(
p(b, t)− p(a, t)

)
.

In words, the time rate of change of diffusion over the interval (a, b) is not only equal to the fluxp

into (a, b) at pointsb anda, but also the rate at whichu diffuses from outside of(a, b) into (a, b) at

time t.

We now demonstrate how the nonlocal fluxp (3.2.1) can be approximated byux. Let ε > 0,

λ = ε2, define the radial symmetric densityφε by





φε(s) :=
1

ε
φ(s/ε),

∫

R

s2kφ(s) ds <∞, k = 0, 1, 2 . . .
(3.2.2)

and denote

0 < c :=
1

2

∫

R

s2φ(s) ds,
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given the symmetric densityφ.1 A formal expansion implies that

1

λ
p(x, t) = −1

2

∫

R

∫ 1

0

1

ε2

(
ux(x, t)z

2 +
∞∑

k=2

1

k!
zk+1∂

ku(x, t)

∂xk

)
φε(z) dµdz

= −cux(x, t) +
1

ε2

∞∑

k=2

∂2k−1u(x, t)

∂x2k−1

1

(2k − 1)!

∫

R

z2kφε(z) dz

= q(x, t) +

∞∑

k=2

∂2k−1u(x, t)

∂x2k−1

ε2(k−1)

(2k − 1)!

∫

R

z2kφ(z) dz.

Under the assumption that the above expansion is valid, andε is sufficiently small, classical mass

balance and Fick’s first law is generalized to



ut = −px,

p = −cux +O(ε2).

Note that the nonlocal diffusion equation (3.1.4) does not explicitly require continuity, let alone

differentiability, of u, in contrast to the two derivatives ofw needed for the classical diffusion

equation (3.1.1). The effect of the densityφε asε decreases is to “localize” the diffusion of (3.1.4).

Indeed, defining

ψ(y − x) := δ(y − x) + c
∂2

∂x2
δ(y − x), (3.2.3)

whereδ(·) denotes the Dirac delta distribution, or generalized function, implies, along with integra-

tion by parts, that ∫

R

(
u(y, t)− u(x, t)

)
ψ(y − x) dy = cuxx(x, t),

whenu(x, ·) andux(x, ·) decay sufficiently fast to zero at±∞.

A relationship between fractional (3.1.2) and nonlocal diffusion (3.1.4) is now reviewed. The

Fourier transform of (3.1.4) results in

ût(ξ, t) =
1

λ
(φ̂(ξ)− 1)û(ξ, t). (3.2.4)

The authors of [26] assume that asξ → 0

φ̂(ξ) = 1− a|ξ|α + o(|ξ|α), a > 0, (3.2.5)

with 0 < α ≤ 2, whereo(|ξ|α) → 0 faster thanξ. In particular, because

ψ̂(ξ) = 1− c|ξ|2,
1 The assumption on the densityφ implies that the odd moments must be zero.
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whereψ is given by (3.2.3), the assumption (3.2.5) recovers the classical diffusion equation when

α = 2 anda = cλ. When0 < α ≤ 2, then (3.2.4) and (3.2.5) give

ût(ξ, t) =
1

λ
(φ̂(ξ)− 1)û(ξ, t) (3.2.6)

= −a
λ
|ξ|αû(ξ, t) + o(|ξ|α) (3.2.7)

and application of the inverse Fourier transform with (3.1.3) grants

ut = −a
λ
(−∆)α/2 u+ F−1 (o(|ξ|α)) .

In words, the assumptions (3.2.5) demonstrate that nonlocal diffusion is approximately that given

by the fractional diffusion (3.1.2) asξ → 0. See Theorem 1 in [26] for further information. A

specific case demonstrating this relationship between fractional and nonlocal diffusion is drawn by

appealing to the theory of Lévy stable processes. For instance, a Lévy stable densityφ with stability

index satisfies (3.2.5). The nonlocal diffusion equation therefore represents a model for anomalous

diffusion.

3.3 Nonlocal Volume-Constrained Problems

The previous section discussed relationships among classical, fractional, and nonlocal diffusion

equations in absence of boundary conditions. While boundary conditions are well-understood for

classical diffusion, the same cannot be said for fractionaland nonlocal diffusion. For instance, the

paper [32] establishes an abstract variational formulation for the fractional advection dispersion

equation with homogeneous Dirichlet boundary conditions in terms of fractional derivatives. The

results of [32] immediately apply to the fractional Laplacian equation with homogeneous Dirichlet

boundary conditions, however, only the case1 < α ≤ 2 for the order of the fractional Laplacian

is considered. We now present classical and variational formulations for the nonlocal diffusion

volume-constrained problem on a bounded interval where0 < α ≤ 2.

The paper [26] also presents formulations for the nonlocal diffusion equation with homogeneous

Dirichlet or Neumann volume constraints. We study the time evolution of a fieldu on a bounded

domainΩ, thusx ∈ Ω. Note that (3.1.4) can be rewritten as

ut(x, t) =
1

λ

∫

Ω

(
u(y, t)− u(x, t)

)
φε(x− y) dy

+
1

λ

∫

R\Ω

(
u(y, t)− u(x, t)

)
φε(x− y) dy.

(3.3.1)
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The homogeneous nonlocal Dirichlet volume constraint constrains the fieldu via

u(y, t) = 0, y ∈ R \ Ω, (3.3.2a)

while, for the homogeneous nonlocal Neumann volume constraint,

1

λ

∫

R\Ω

(
u(y, t)− u(x, t)

)
φε(x− y) dy = 0, x ∈ Ω, (3.3.2b)

which is a statement that the rate of diffusion exchange betweenΩ andR \ Ω is zero. The anal-

ysis given at the end of Section 3.2 then implies that an approximation to the fractional Laplacian

equation with either homogeneous Dirichlet or Neumann volume constraints with0 < α ≤ 2 is

available.

Our numerical experiments considerΩ = (0, 1) and both the nonlocal homogeneous Dirichlet

volume-constrained problem, where (3.3.1) and (3.3.2a) combine to give




ut(x, t) =
1

λ

∫

R

(
u(y, t)− u(x, t)

)
φε(x− y) dy, x ∈ (0, 1),

u(x, t) = 0, x ∈ R \ (0, 1),

u(x, 0) = u0(x), x ∈ (0, 1),

(3.3.3a)

and the nonlocal homogeneous Neumann volume-constrained problem, where (3.3.1) and (3.3.2b)

combine to give



ut(x, t) =

1

λ

∫ 1

0

(
u(y, t)− u(x, t)

)
φε(x− y) dy, x ∈ (0, 1),

u(x, 0) = u0(x), x ∈ (0, 1).

(3.3.3b)

Here, ε is a positive number representing the nonlocality,λ = cεα, and the symmetric density

functionφε is defined

φε(s) :=
1

λ
φ(s/ε), (3.3.4)

whereφ is a specified symmetric probability density function that satisfies

φ̂(ξ) = 1− c|ξ|α + o |ξ|α, c > 0.

If φ is zero outside a closed and bounded interval centered at zero, which impliesα = 2 in (3.3.4),

then solutions of (3.3.3a) and (3.3.3b) approximate those of the classical homogeneous Dirichlet

and Neumann volume-constrained problems




vt(x, t) = vxx(x, t), x ∈ (0, 1),

v(0, t) = v(1, t) = 0,

v(x, 0) = u0(x), x ∈ (0, 1)

(3.3.5a)
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and 



vt(x, t) = vxx(x, t), x ∈ (0, 1),

vx(0, t) = vx(1, t) = 0,

v(x, 0) = u0(x), x ∈ (0, 1),

(3.3.5b)

respectively, asε→ 0 for smoothu(x, t); see [1, 2] for details.

The results in [36] provide the variational formulation associated with (3.3.3a) and (3.3.3b).

Define the bilinear form

BI(u, v) :=
1

2

∫

I

∫

I

(
u(y, t)− u(x, t)

)(
v(y)− v(x)

)
φε(x− y) dy dx, (3.3.6)

whereI is an open interval such thatI ⊆ R. Then, the nonlocal Green’s first identity [36, Section 4]2

leads to

BI(u, v) = −
∫

I

∫

I

(
u(y, t)− u(x, t)

)
v(x)φε(x− y) dy dx. (3.3.7)

Multiplying (3.3.3a) and (3.3.3b) byu(x, t) and integrating shows

d

dt

∫ 1

0
u2 dx = − 2

λ
BR(u, u) and

d

dt

∫ 1

0
u2 dx = − 2

λ
B(0,1)(u, u),

respectively. In either case, the assumptions onφε are sufficient for
∫ 1
0 u

2 dx to be decreasing in

time.

Let VI ⊆ L2(I) denote subspaces of test and trial functions defined overI ⊆ R, as discussed

in [36]. The variational formulation for the nonlocal homogeneous Dirichlet volume-constrained

problem is: Findu ∈ VR × (0,∞), i.e.,u(x, t) for x ∈ R andt > 0, such that




∫ 1

0
utv dx+

1

λ
BR(u, v) = 0, ∀ v ∈ VR,

u(x, t) = 0, x ∈ R \ (0, 1), t > 0,

u(x, 0) = u0(x), x ∈ (0, 1)

(3.3.8a)

and the variational formulation for the nonlocal homogeneous Neumann volume-constrained prob-

lem is: Findu ∈ V̄(0,1) × (0,∞) such that





∫ 1

0
utv dx+

1

λ
B(0,1)(u, v) = 0, ∀ v ∈ V̄(0,1),

u(x, 0) = u0(x), x ∈ (0, 1),

(3.3.8b)

2 See also the “integration by parts” formula given in [37, Lemma 2.1].
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whereV̄(0,1) := {v |
∫ 1
0 v =

∫ 1
0 u0} ⊂ V(0,1). BecauseB(0,1)(u, 1) = 0, the compatibility relation

necessary for (3.3.8b) (or (3.3.3b)) to possess a solution is

∫ 1

0
u(x, t) dx = u0 :=

∫ 1

0
u0(x) dx, t ≥ 0. (3.3.9)

The compatibility relation is a statement that the integrated quantityu is conserved for all time.

The use of Green’s identity (3.3.7) demonstrates that the above two variational problems imply

their respective strong forms (3.3.3a)–(3.3.3b). For instance,

0 =

∫ 1

0
utv dx+

1

λ
B(0,1)(u, v)

=

∫ 1

0
ut(x, t)v(x) dx− 1

λ

∫ 1

0

∫ 1

0

(
u(y, t)− u(x, t)

)
v(x)φε(x− y) dy dx

=

∫ 1

0

(
ut(x, t)−

1

λ

∫ 1

0

(
u(y, t)− u(x, t)

)
φε(x− y) dy

)
v(x) dx

must hold for allv ∈ V̄(0,1). Therefore

ut(x, t)−
1

λ

∫ 1

0

(
u(y, t)− u(x, t)

)
φε(x− y) dy = 0, x ∈ (0, 1),

and so (3.3.8b) implies (3.3.3b).

The variational formulation (3.3.8a) extends the one presented in [32] for a homogeneous

Dirichlet volume constraint problem3 where only the case1 < α ≤ 2, the order of the fractional

Laplacian, is considered. The formulation (3.3.8a) extends the attainable order to0 < α ≤ 2 by

imposing nonlocal volume constraints over intervals of non-zero length.

3.4 Numerical Experiments

Three one-dimensional examples are presented in dimensionless form. The first example examines

a nonlocal Neumann problem admitting closed-form solutions for any initial condition. Example 2,

which examines numerical solutions of both nonlocal Dirichlet and nonlocal Neumann problems,

and Example 3, which examines numerical solutions to the nonlocal Dirichlet problem, both use the

discontinuous initial condition

u0(x) =

{
0, 0 < x < 0.5,

1, 0.5 ≤ x < 1.
(3.4.1)

3 The Neumann problem (3.3.8b) is not considered.
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The first two examples use the density

φ(s) = χ(−1,1)(s),

whereχA is the indicator function for the setA, and the third example uses Lévy stable densities

φ = φα with stability indicesα = 2, 1, 1/2. These last choices, and their relationship to frac-

tional diffusion where the order of the fractional Laplacian isα, are discussed in Example 3. In all

cases,φε is normalized via (3.3.4) and we investigate the effects ofε, a parameter describing the

nonlocality, upon the solutions at various times.

Finite element method

Partition the interval(0, 1) inton subintervalsΩi of lengthh, recall thatχΩi is the indicator function

for Ωi, and letV h
(0,1) denote the space of piecewise constant functions on the subintervalsΩi. Given

the approximationuh ∈ V h
(0,1) × (0,∞),

uh(x, t) =
n∑

j=1

γj(t)χΩj (x),

the discrete variational problem is: Finduh ∈ V h
(0,1) × (0,∞) such that

∫

Ωi

γ̇i(t) dx =
1

λ
BI(uh, χΩi)

=
1

λ

∫

I

∫

I

(
uh(y, t)− uh(x, t)

)
φε(x− y)χΩi(x) dy dx

=
1

λ

∫

Ωi

∫

I\Ωi

(
uh(y, t)− γi(t)

)
φε(x− y) dy dx

=
∑

j 6=i

γj(t)

(
1

λ

∫

Ωi

∫

Ωj

φε(x− y) dy dx

)

− γi(t)

(
1

λ

∫

Ωi

∫

I\Ωi

φε(x− y) dy dx

)
, i = 1, . . . , n,

(3.4.2)

whereI = R andI = (0, 1) for the nonlocal Dirichlet (3.3.8a) and Neumann (3.3.8b) problems,

respectively. A forward Euler integrator in time evolves the discrete solution.

Whenφε for the nonlocal Dirichlet problem is positive overR, the last double integral of (3.4.2)

is computed as

1

λ

∫

Ωi

∫

R\Ωi

φε(x− y) dy dx =
1

λ

∫

Ωi

(
1−

∫

Ωi

φε(x− y) dy

)
dx

=
1

λ

(
1−

∫

Ωi

∫

Ωi

φε(x− y) dy dx

)
.
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In the case of the nonlocal Neumann problem, the solutionuh ∈ V̄ h
(0,1) × (0,∞) is extracted by

enforcing that

h

n∑

j=1

γj(t) = u0.

Properties of the numerical solutions

Theorems 2-3 in [26] provide important properties for the solutions of (3.3.3a) and (3.3.3b). Namely,

the numerical solutionuh(x, t) given by the finite element method satisfies, for the case of the ho-

mogeneous Dirichlet problem,

∫ 1

0
u2h(x, t) dx ≤ e−c1t

∫ 1

0
u20(x) dx, c1, t > 0 (3.4.3a)

and, for the case of the homogeneous Neumann problem,

∫ 1

0
uh(x, t) dx = u0, t > 0, (3.4.3b)

∫ 1

0

(
uh(x, t)− u0

)2
dx ≤ e−c2t

∫ 1

0

(
u0(x)− u0

)2
dx, c2, t > 0, (3.4.3c)

where the positive constantsc1 andc2 do not depend upon the discretization.

Examples

Example 3.4.1.Consider the nonlocal Neumann problem (3.3.3b) whereλ = cε2,

φε(s) =
1

2ε
χ(−ε,ε)(s), c =

1

6
, ε ≥ 1,

so that, definingη := 3
ε3 ,

ut(x, t) = η

∫ 1

0

(
u(y, t)− u(x, t)

)
χ(−ε,ε)(x− y) dy

= η

(∫ 1

0
u(y, t) dy − u(x, t)

)

= η
(
u0 − u(x, t)

)
.

The solution for this ordinary differential equation yields a convex combination ofu0(x) andu0,

u(x, t) = u0(x)e
−ηt + u0

(
1− e−ηt

)
. (3.4.4)
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Thus, the solutionu(x, t) will lie between the initial conditionu0(x) and the constantu0, for all

t, and the differenceu(x, t) − u0 decays exponentially in time. The rate of decay decreases with

increasing nonlocalityε, and for largeε the solution is well approximated by the initial condition

u0(x). Therefore, increasing nonlocalityε implies that the magnitude of the jump discontinuity

present in the initial condition remains large for increasing finite time.

Increasing nonlocality is also an indication that the higher-order moments may not be small. To

see this, consider the formal Taylor’s expansion

1

λ

∫

R

(
u(y, t)− u(x, t)

)
φε(x− y) ds =

∞∑

k=1

1

λ

∫

R

(−1)k

k!

∂ku(x, t)

∂xk
skφε(s) ds

=
∞∑

k=1

∂2ku(x, t)

∂x2k
1

λ

∫

R

s2k

(2k)!
φε(s) ds,

where the odd moments disappear due to the symmetry ofφε, and then

1

λ

∫

R

(
u(y, t)− u(x, t)

)
φε(x− y) ds = 6

∞∑

k=1

∂2ku(x, t)

∂x2k
ε2(k−1)

(2k + 1)!
.

Truncating this expansion after one term yields the classical diffusion equation — a poor approxi-

mation when higher order moments cannot be neglected. In fact, because

ε2k

(2k + 3)!
=

ε2

(2k + 3)(2k + 2)

ε2(k−1)

(2k + 1)!
,

for anyε satisfyingε2 > (2K + 1)(2K) for the smallest possible integerK > 1, the firstK even

moments form an increasing sequence since

ε2i

(2i+ 3)!
>

ε2(i−1)

(2i+ 1)!
, i = 1, . . . ,K − 1.

Example 3.4.2. Consider the nonlocal Dirichlet (3.3.3a) and Neumann (3.3.3b) problems where

λ = cε2,

φε(s) =
1

2ε
χ(−ε,ε)(s), c =

1

6
, ε ≥ 1,

with η = 3
ε3 , and the initial condition (3.4.1) is used. Because closed-form solutions are not avail-

able as in Example 3.4.1, Fig. 3.1 and Fig. 3.2 plot the approximate solutions given by the finite

element method with mesh spacingh = 5 · 10−4 and t ∈ [0, 0.25]. The numerical solutionsuh

computed satisfy the corresponding properties (3.4.3). The rate of decay of the magnitude of the

jump discontinuity in the initial condition increases withdecreasingε.

25



0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(a) ε = 1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(b) ε = 0.5

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(c) ε = 0.25

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(d) ε = 0.125

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(e) ε = 0.0625

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(f) classical

Fig. 3.1:Panels (a)–(e) show solutions to the nonlocal homogeneous Dirichlet problem in Example 3.4.2.
Panel (f) shows solutions to the corresponding classical homogeneous Dirichlet problem. The verti-
cal axis in each panel is the value ofuh(x, t) and the horizontal axis isx. The ten different solution
profiles in each panel correspond to the solutions at ten different times, fort ∈ [0, 0.25].
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Fig. 3.2:Panels (a)–(e) show solutions to the nonlocal homogeneous Neumann problem in Example 3.4.2.
Panel (f) shows solutions to the corresponding classical homogeneous Neumann problem. The
vertical axis in each panel is the value ofuh(x, t) and the horizontal axis isx. The ten different
solution profiles in each panel correspond to the solutions at ten different times, fort ∈ [0, 0.25].
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Fig. 3.3 plots theL∞,1,2(0, 1) norms of the difference,uh − vh, between numerical solutions of

(3.3.3a) and (3.3.3b) and numerical solutions of (3.3.5a) and (3.3.5b), e.g.,

‖uh − vh‖L∞(0,1) = max
i

max
x∈Ωi

|uh(x, t)− vh(x, t)|,

‖uh − vh‖L1(0,1) =
∑

i

∫

Ωi

|uh(x, t)− vh(x, t)| dx,

‖uh − vh‖2L2(0,1) =
∑

i

∫

Ωi

|uh(x, t)− vh(x, t)|2 dx.

Each norm tends to zero ast → ∞, reflecting agreement with steady-state solutions. However,

transient solutions can differ substantially, which is witnessed by some norms increasing during

small values oft. This is due to both the discontinuity in the initial condition lingering for all finite

time in the solutions to the nonlocal problems and the effectof the nonlocal volume constraints,

i.e., nonlocal volume constraints do not requireuh(0+, t) = 0 or (uh)x(0+, t) = 0, for instance.

Further, for a fixedt, the norms tend to zero asε decreases demonstrating agreement of solutions

in the absence of nonlocality. The plots in Fig. 3.3 emphasize both the nonlocal nature of volume

constraints for nonlocal diffusion and that jump discontinuities in the initial data remain for all finite

time.

Fig. 3.4 plots four bar graphs for the normalized moments

1
λ

∫
R

s2k

2k!φε(s) ds
1
λ

∫
R

s2

2! φε(s) ds
= 3

ε2(k−1)

(2k + 1)!
, k = 2, 3, 4, 5, 6, 7,

i.e., the moments are normalized so that the second moment isequal to one. The higher-order

moments become negligible relative to the second moment as the nonlocalityε decreases leading

to better agreement between the solutions to the nonlocal and classical diffusion equations. A side-

by-side comparison of Fig. 3.4 to Fig. 3.1 and Fig. 3.2 illustrates this point.

Example 3.4.3.The fractional diffusion behavior of (3.3.3a) is examined by choosingφ = φα to

be a centered and symmetric stable density with stability index α = 2, 1, 1/2. As explained in

Section 3.2,α represents the fraction of the Laplacian in the equation (3.2.7). Such centered and

symmetric stable densities are characterized through their Fourier transforms, i.e.,

φα(s) = F−1 (exp (−|ξ|α)) (s),

see [4,§§ 1.2.5] for relevant definitions and theorems. We use the normalization (3.3.4) to define
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Fig. 3.3:Panels (a)–(c) showL∞,1,2(0, 1) norms ofuh − vh, whereu andv solve (3.3.3a) and (3.3.5a),
respectively. Panels (d)–(f) showL∞,1,2(0, 1) norms ofuh − vh, whereu andv solve (3.3.3b)
and (3.3.5b), respectively. The vertical axis in each panelis the value of the given norm and the
horizontal axis ist ∈ [0, 0.25]. The five different curves correspond to the five different values ofε
in φε considered.
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Fig. 3.4:The normalized moments described in Example 3.4.2.
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φαε and for the special casesα = 2, 1 we have closed-form expressions forφαε :

φαε (s) =





(
1

4πε6

) 1
2

exp

(
− s2

4ε2

)
, α = 2,

1

π(s2 + ε2)
, α = 1,

which are scaled Gaussian and Cauchy densities, respectively. The caseα = 1/2, however, does

not admit a closed-form forφαε (s). These three densities have similarities, e.g., they are symmetric

and unimodal, but differ significantly in other aspects. Forinstance, the second moment ofφ2ε is

finite, whereas the two second moments associated withφ
1,1/2
ε are infinite. Moreover, the two first

moments ofφ1,1/2ε are undefined and infinite, respectively.

Fig. 3.5 plots the time-evolutions of the approximate solutions to (3.3.3a) forα = 2, 1, 1/2,

respectively, and variousε given by the finite element method with mesh spacingh = 5 · 10−4 and

t ∈ [0, 0.25]. The numerical solutionsuh computed satisfy the corresponding properties (3.4.3).

The solutions of (3.3.3a) withφ2ε behave asymptotically, with respect toε, as solutions to the clas-

sical diffusion equation. However, the asymptotic behavior of solutions of (3.3.3a) withφ1,1/2ε is

given by a fractional Laplace parabolic equation. Consequently, the magnitude of the jump discon-

tinuity in the initial data decays more slowly in these latter two cases.

3.5 Summary

The contribution of this paper was to present volume-constrained problems for nonlocal diffusion on

bounded domains. This included a variational formulation that lead to a conforming finite element

method using piecewise discontinuous shape functions. Nonlocal diffusion was demonstrated to be

a model for anomalous diffusion applicable when Fick’s firstlaw represents an inaccurate model.

A generalization of Fick’s first law in terms of a nonlocal fluxwas demonstrated to hold, and a

relationship between nonlocal and fractional diffusion was also reviewed, where the order of the

fractional Laplacian can lie in the interval(0, 2]. The nonlocal Dirichlet and Neumann volume

constraints used represent generalizations of the classical boundary conditions. Several examples

are given where the effect of nonlocality is studied. The relationship between nonlocal and fractional

diffusion explained that the numerical solution of volume-constrained problems, where the order of

the fractional Laplacian can lie in the interval(0, 2], is possible.
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Fig. 3.5:Solutions to the nonlocal homogeneous Dirichlet problem with φαε in Example 3.4.3. The vertical
axis in each panel is the value ofuh(x, t) and the horizontal axis isx. The ten different solution
profiles in each panel correspond to the solutions at ten different times, fort ∈ [0, 0.25].
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4. THE NONLOCAL CATTANEO-VERNOTTE EQUATION ON BOUNDED
DOMAINS

This chapter is concerned with studying the nonlocal Cattaneo-Vernotte equation on bounded do-

mains. The work in this chapter is currently in preparation for journal submission by the author.

We demonstrate that the nonlocal Cattaneo-Vernotte equation is obtained by including a relaxation

effect in the nonlocal diffusion equation and, in fact, arises from a generalization of Fick’s first law

in terms of a nonlocal flux. In a certain limit of vanishing nonlocality and relaxation time, we find

a relationship between the nonlocal Cattaneo-Vernotte equation and the classical and fractional dif-

fusion equations. The contribution of this paper is to introduce volume constraints for the nonlocal

Cattaneo-Vernotte equation, which induce boundary conditions for the underlying CTRWs. Fur-

ther, the variational and finite element formulations for these nonlocal volume-constrained problems

are reviewed and demonstrated to be powerful tools. We review well-posedness of these nonlocal

boundary value problems and provide properties of their solutions. We investigate the effect of

relaxation time, i.e., non-Markovian effects, and nonlocality.

4.1 Introduction

This chapter focuses on the nonlocal Cattaneo-Vernotte equation

ut(x, t) +
τ

2
utt(x, t) =

1

β

∫

R

(
u(y, t)− u(x, t)

)
φ(x− y) dy, (4.1.1)

whereu is some field, e.g., temperature or probability,φ is a symmetric function, i.e.,φ(x − y) =

φ(y − x), andτ, β > 0. The integral operator in (4.1.1) is nonlocal because the change at timet of

the fieldu at x depends onu at y 6= x via the convolution ofu andφ. The equation (4.1.1) is the

generalized master equation for a non-Markovian CTRW, namely a renewal-reward process

Yt =

Nt∑

k=1

Rk, (4.1.2)

where the wait-times arenotexponentially distributed andRk
iid∼ φ. In this setting,φ is a probability

density function so thatφ(x − y) represents the step density fromx to y of the random walker.



Moreover,β is the mean wait-time between steps andτ/2 > 0 is a relaxation time. We note the

nonlocal Cattaneo-Vernotte equation (4.1.1) is also a model for nonlocal hyperbolic heat conduction.

It is revealing to contrast (4.1.1) to the classical Cattaneo-Vernotte equation

wt +
τ

2
wtt = awxx, (4.1.3)

whereτ/2 > 0 is again a relaxation time anda > 0 is the diffusion coefficient. The equation (4.1.3)

is a model for diffusion that admits finite speeds of propagation, specifically
√

2a/τ . Whenw is a

temperature field, (4.1.3) is a model of hyperbolic heat conduction [45]. Further, (4.1.3) arises from

the classical balance law,wt = −qx, and a generalization of Fick’s first law in which the flux is

given by a convolution of the gradient of the fieldw and a relaxation kernel [39],

q(x, t) = −a
∫ t

0

2

τ
exp

(
− t− t′

τ/2

)
wx(x, t

′) dt′. (4.1.4)

The assumption (4.1.4) also takes the more familiar form of Cattaneo’s equation [25],

q +
τ

2
qt = −awx. (4.1.5)

Equation (4.1.3) overcomes limitations of the classical diffusion equation

wt = awxx, (4.1.6)

which arises from the classical balance law,wt = −qx, and Fick’s first law

q = −awx. (4.1.7)

One such limitation is that (4.1.6) implies an infinite speedof propagation since its fundamental

solution is given by

w(x, t) =
1√
4πat

exp

(
− x2

4at

)
, (4.1.8)

which is positive for allx, for any arbitrarily smallt. This is referred to in the literature as “unphys-

ical” since disturbances are instantaneously propagated.Moreover, (4.1.6) is incapable of capturing

transient dynamics of the field in situations involving short times, high frequencies, and short wave

lengths [45]. One approach to remedy these issues is to introduce a relaxation time [39] and a

special case of this is the classical Cattaneo-Vernotte equation (4.1.3). A criticism of the classical
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Cattaneo-Vernotte equation as a model for heat conduction,however, is that it can violate the second

law of thermodynamics.

It is also revealing to contrast (4.1.1) with the nonlocal diffusion equation

ut(x, t) =
1

λ

∫

R

(
u(y, t)− u(x, t)

)
φ(x− y) dy, (4.1.9)

which has been used in various applications, see [5, 17, 24, 35], and is well-understood as the

generalized master equation for a Markovian CTRW, namely a compound Poisson process

Yt =

Nt∑

k=1

Rk, (4.1.10)

where, again,Rk
iid∼ φ, but the wait-timesare exponentially distributed. As in (4.1.1), the second-

order spatial derivative in (4.1.9) has been replaced with the nonlocal integral operator and, con-

sequently, is a model for anomalous diffusion. Models for anomalous diffusion include (4.1.1),

(4.1.9), and the fractional diffusion equation

vt = −c (−∆)α/2 v, 0 < α ≤ 2, (4.1.11)

which includes (4.1.6) as the special caseα = 2 and c = a. The fundamental solution to the

fractional diffusion equation (4.1.11) satisfies

v̂(ξ, t) = exp (−c|ξ|αt) ,

which is the density of a centered and symmetric stable process,Sα
t , with index of stabilityα.

Again, the caseα = 2 and c = a yields (4.1.8), the probability density function of Brownian

motion.

Volume constraints on the solution play the role of boundaryconditions and have been studied

for the integral operator in (4.1.1) and (4.1.9), see [36], and specifically for the nonlocal diffu-

sion equation, see [21, 26]. As expected, the resulting nonlocal volume-constrained value prob-

lems for (4.1.1) and (4.1.9) were demonstrated in [22] to be the generalized master equations for

non-Markovian and Markovian CTRW, respectively, on bounded domains. Thus, the variational

formulations of such nonlocal volume-constrained problems and ensuing finite element method

provide a powerful tool for studying CTRW on bounded domains. The contribution of this chapter

is to investigate the effect of a nonzero relaxation time, i.e., differences between Markovian and
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non-Markovian random walks, by comparing solutions of the nonlocal boundary value problems

corresponding to (4.1.9) to those corresponding to (4.1.1).

The rest of this chapter is organized as follows. Section 4.2demonstrates how (4.1.1) arises

from a generalization of Fick’s first law in which the flux is given by a convolution of a memory

kernel and a nonlocal spatial operator acting as the gradient of the field, in contrast to (4.1.4). The

relationships between (4.1.1), (4.1.11), and (4.1.9) are also reviewed. Further, we show that the

nonlocal Cattaneo-Vernotte equation is the master equation for a renewal-reward process and that it

admits infinite speeds of propagation. Volume constraints for (4.1.1) are reviewed in Section 4.3 as

are the variational formulation and ensuing finite element method. Section 4.4 provides numerical

examples to illustrate the effects of nonzero relaxation time and nonlocality. In these examples, we

investigate the effect of relaxation time and study the effect of nonlocality and the relationship to

fractional diffusion.

4.2 The Nonlocal Cattaneo-Vernotte Equation in Free Space

In this section, we study the nonlocal Cattaneo-Vernotte equation in free space. Namely, we demon-

strate how (4.1.1) arises from a generalization of Fick’s first law in which the flux is given by a

convolution of a memory kernel and a nonlocal spatial operator acting as the gradient of the field,

in contrast to (4.1.4). The relationships between (4.1.1),(4.1.11), and (4.1.9) are also reviewed.

Further, we show that the nonlocal Cattaneo-Vernotte equation is the master equation for a renewal-

reward process and that it admits infinite speeds of propagation.

Generalization of Fick’s first law and a nonlocal flux

We demonstrate that (4.1.1) arises via the classical balance law,ut = −̺x, and a generalization of

Fick’s first law,

̺(x, t) =

∫ t

0

2

τ
exp

(
− t− t′

τ/2

)(
1

β
p(x, t′)

)
dt′, (4.2.1)

where

p(x, t) := −1

2

∫

R

∫

Ω

(
u(x+ (1− µ)z, t)− u(x− µz, t)

)
zφ(z) dµdz.

Differentiating (4.2.1) with respect tot and rearranging reveals

̺+
τ

2
̺t =

1

β
p, (4.2.2)
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and so

ut = − 1

β
px +

τ

2
̺xt = − 1

β
px −

τ

2
utt.

Noll’s Lemma I [46, 54] implies that

− 1

β
px(x, t

′) =
1

β

∫

R

(
u(x+ z, t′)− u(x, t′)

)
φ(z) dz, (4.2.3)

and so (4.1.1) is established.

A relationship to fractional and classical diffusion equations

A formal relationship between (4.1.1) and (4.1.3) in the presence of vanishing nonlocality is now

established. Fixτ > 0, let β = ε2, whereε > 0, and define the symmetric probability density

φε(s) :=
1

ε
φ(s/ε), (4.2.4)

where the given symmetric densityφ satisfies

∫

R

s2kφ(s) ds <∞, k = 0, 1, 2 . . . .

As ε → 0, φε(x − y) weights points nearbyx more heavily, relative to points further away. Speci-

fying the second moment appropriately, the Fourier transform of φ has an expansion of the form

φ̂(ξ) = 1− a|ξ|2 + o(|ξ|2), a > 0.

With φε in place ofφ and assuming a formal Taylor expansion is valid for sufficiently small ε,

1

β
p(x, t) = −1

2

∫

R

∫

Ω

1

ε2

(
ux(x, t)z

2 +

∞∑

k=2

1

k!
zk+1∂

ku(x, t)

∂xk

)
φε(z) dµdz

= −aux(x, t) +
1

ε2

∞∑

k=2

∂2k−1u(x, t)

∂x2k−1

1

(2k − 1)!

∫

R

z2kφε(z) dz

= −aux(x, t) +
∞∑

k=2

∂2k−1u(x, t)

∂x2k−1

ε2(k−1)

(2k − 1)!

∫

R

z2kφ(z) dz

and, utilizing (4.2.2), we obtain an approximation of (4.1.5),

̺+
τ

2
̺t = −aux +O(ε2). (4.2.5)

Thus, in the absence of nonlocality, the nonlocal Cattaneo-Vernotte equation (4.1.1) reduces to the

classical Cattaneo-Vernotte equation (4.1.3). The effectof the densityφε with β = ε2 asε decreases
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is to “localize” the diffusion of (4.1.1). Indeed, takingφ(x− y) = δ(x− y)+ aδ′′(x− y) in (4.1.1)

recovers (4.1.3). Moreover, ifτ = O(ε2), (4.2.5) reduces to

̺ = −aux +O(ε2), (4.2.6)

approximating (4.1.7). Thus, in the absence of both relaxation time and nonlocality, the nonlocal

Cattaneo-Vernotte equation (4.1.1) reduces to the classical diffusion equation (4.1.6).

Finally, we establish a relationship to the fractional diffusion equation (4.1.11). Supposeφ is a

symmetric probability density function with the expansion

φ̂(ξ) = 1− c|ξ|α + o(|ξ|α), 0 < α ≤ 2, (4.2.7)

for c > 0, so that, definingφε via (4.2.4),

φ̂ε(ξ) = 1− cεα|ξ|α + o(εα|ξ|α).

Assumingβ = εα, the Fourier transform of (4.1.1) gives

ût(ξ, t) +
τ

2
ûtt(ξ, t) =

1

εα

(
φ̂ε(ξ)− 1

)
û(ξ, t)

=
1

εα
(−cεα|ξ|α + o(εα|ξ|α))û(ξ, t)

= −c|ξ|αû(ξ, t) + O(εα|ξ|α),

implying thatu, formally, is approximately given by the fractional Cattaneo-Vernotte equation

vt(x, t) +
τ

2
vtt(x, t) = −c(−∆)α/2v(x, t). (4.2.8)

Further, ifτ = O(εα), u is approximately given by the fractional diffusion equation (4.1.11).

Master equation for a renewal-reward process

We now show that (4.1.2) is the master equation for a renewal reward process. First, recall the

master equation for an arbitrary CTRW,

ut(x, t) =

∫ t

0
Λ(t− t′)

∫

R

(
u(y, t′)− u(x, t′)

)
φ(x− y) dy dt′. (4.2.9)

Choosing

Λ(t− t′) =
1

β

2

τ
exp

(
− t− t′

τ/2

)
, (4.2.10)
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whereφ is a symmetric function, i.e.,φ(x − y) = φ(y − x), andβ ≥ 2τ > 0, gives the nonlocal

Cattaneo-Vernotte equation. The assumption (4.2.10) is tantamount to

ω(t) =





t

τ2
exp

(
−1

τ
t

)
, β = 2τ,

2√
β(β − 2τ)

exp

(
− t

τ

)
sinh

(√
β(β − 2τ)

βτ
t

)
, β > 2τ.

(4.2.11)

The special caseβ = 2τ impliesW ∼ Gamma(2, τ), whereW is the wait-time random vari-

able. The restrictionβ ≥ 2τ has appealing consequences as well, e.g., positivity of solutions and

conservation of mass. We note

ω̂(s) =
2

βτs2 + 2βs + 2
=

∞∑

k=0

(−1)k

k!
E(W k)sk = 1− βs+ o(s),

which shows that the mean wait-time is indeedβ.

We focus on the special caseβ = 2τ . By independence,

n∑

k=1

Wk ∼ Gamma(2n, τ ) ,

so that

fn(t) =
t2n−1

τ2n(2n − 1)!
exp

(
− t

τ

)
,

wherefn(t) denotes the density of
∑n

k=1Wk. Notice

P (Nt ≥ n) = P

(
n∑

k=1

Wk ≤ t

)
=

∫ t

0
fn(s) ds

and thus

P (Nt = n) =

∫ t

0
fn(s) ds−

∫ t

0
fn+1(s) ds = exp

(
− t

τ

)[
(t/τ)2n

(2n)!
+

(t/τ)2n+1

(2n + 1)!

]
.
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The characteristic function is then found directly,

ϕYt
(ξ) = E(eiξYt)

= E

(
exp

(
iξ

Nt∑

k=1

Rk

))

=
∞∑

n=0

E

(
exp

(
iξ

n∑

k=1

Rk

))
P (Nt = n)

=

∞∑

n=0

[E (exp (iξR1))]
n
P (Nt = n)

= exp

(
− t

τ

)
∞∑

n=0

[ϕR1
(ξ)]n

[
(t/τ)2n

(2n)!
+

(t/τ)2n+1

(2n+ 1)!

]

= exp

(
− t

τ

)[ ∞∑

n=0

(
(t(ϕR1

(ξ))1/2/τ)2n

(2n)!

)
+ (ϕR1

(ξ))−1/2
∞∑

n=0

(
(t(ϕR1

(ξ))1/2/τ)2n+1

(2n+ 1)!

)]

= exp

(
− t

τ

)[
cosh

(
t

τ
(ϕR1

(ξ))1/2
)
+ (ϕR1

(ξ))−1/2 sinh

(
t

τ
(ϕR1

(ξ))1/2
)]

. (4.2.12)

Speed of propagation

From (4.2.12), we note that the Fourier transform of the solution to (4.1.1) for the caseβ = 2τ = ε2

with u(x, 0) = δ(x) andut(x, 0) = 0 is

û(ξ, t) = exp

(
− t

τ

)[
cosh

(
t

τ
(φ̂ε(ξ))

1/2

)
+

1

τ

(
τ(φ̂ε(ξ))

−1/2
)
sinh

(
t

τ
(φ̂ε(ξ))

1/2

)]
.

The Fourier transform of the solution to (4.1.3) withw(x, 0) = δ(x) andwt(x, 0) = 0 is

ŵ(ξ, t) = exp

(
− t

τ

)[
cosh (ηt) +

1

τη
sinh (ηt)

]
, (4.2.13)

where

η =

√
1

τ2
− 2aε2

τ
ξ2,

see [40]. As we know, (4.1.3) admits a finite speed of propagation, namely
√

2a/τ . As expected,

if φ̂ε(ξ) = 1 − 2aτε2ξ2, i.e.,φε(x − y) = δ(x − y) + 2aτε2δ′′(x − y), then (4.2.12) reduces to

(4.2.13). An effect of replacing the Laplacian with the nonlocal operator in (4.1.1) is that distur-

bances propagate with an infinite speed.

Theorem 4.2.1.For the equation(4.1.1), disturbances propagate with an infinite speed.
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Proof. A disturbance atx and timet will propagate at least to(x − δ, x + δ), where supp(φ) ⊇

(−δ, δ), at timet + t̃ for any t̃ > 0. An inductive argument demonstrates that a disturbance atx

and timet will be felt at least within(x− kδ, x + kδ) at timet+ t̃ for t̃ =
∑k

i=1 t̃i, wheret̃i > 0.

Takingk → ∞ such that̃t remains finite demonstrates an infinite speed of propagation.

4.3 The Nonlocal Cattaneo-Vernotte Equation with Volume Constraints

The results in [36] provide a variational formulation for volume-constrained problems for (4.1.1).

This follows closely to that presented for the nonlocal diffusion equation (4.1.9) in [21].

Volume constraints and variational formulation

We consider the bounded domainΩ and the bilinear form

BI(u, v) :=
1

2

∫

I

∫

I

(
u(y, t)− u(x, t)

)(
v(y)− v(x)

)
φε(x− y) dy dx, (4.3.1)

whereI ∈ {R,Ω}. Let V̄I denote the possible choices for the subspaces of test and trial functions,

V̄R :=

{
v ∈ VR

∣∣∣∣ v
∣∣
R\Ω= 0

}
and V̄Ω :=

{
v ∈ VΩ

∣∣∣∣
∫

Ω
v dx =

∫

Ω
u0 dx

}
,

whereu(x, 0) = u0(x) is a given initial density satisfyingu0 ≥ 0 and
∫
Ω u0(x) dx = 1 and

VI :=

{
v

∣∣∣∣
∫

I
|v|2 dx <∞

}
.

The nonlocal homogeneous Dirichlet (I = R) and Neumann (I = Ω) volume-constrained

problems for (4.1.1) are presented together: findu ∈ V̄I × (0,∞) such that




ut(x, t) +
τ

2
utt(x, t) =

1

β

∫

I

(
u(y, t)− u(x, t)

)
φε(x− y) dy, x ∈ Ω,

u(x, 0) = u0(x), x ∈ Ω,

ut(x, 0) = 0, x ∈ Ω.

(4.3.2)

We recall the nonlocal homogeneous Dirichlet and Neumann volume-constrained problems for

(4.1.9), 


ut(x, t) =

1

λ

∫

I

(
u(y, t)− u(x, t)

)
φε(x− y) dy, x ∈ Ω,

u(x, 0) = u0(x), x ∈ Ω,

(4.3.3)

studied in [21, 26, 36]. Both (4.3.2) and (4.3.3) were studied in [22] in the context of CTRW. Well-

posedness of (4.3.3) has been treated in [26] and we now present a useful result from [31] on the

well-posedness of (4.3.2).
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Theorem 4.3.1(Emmrich and Weckner (2006)). Suppose

κ0 := esssupx∈I |K0(x)| <∞ and κ :=

∫

Ω

∫

Ω
|K(x, y)|2 dy dx <∞.

Then, for a givenu0 ∈ V̄I , there is a unique mild solutionu ∈ C2([0, T ]; V̄I ) to

2

τ
ut(x, t) + utt(x, t) =

∫

Ω
K(x, y)u(y, t) dy −K0(x)u(x, t).

Existence and uniqueness of solutions to (4.3.2) follow from Theorem 4.3.1 with

K(x, y) :=
2

τβ
φε(x− y) and K0(x) =

∫

I

2

τβ
φε(x− y) dy.

The variational formulations to (4.3.2) and (4.3.3) are: find u ∈ V̄I × (0,∞) such that





∫

Ω
utv dx+

τ

2

∫

Ω
uttv dx+

1

β
BI(u, v) = 0, ∀ v ∈ VI ,

u(x, 0) = u0(x), x ∈ Ω,

ut(x, 0) = 0, x ∈ Ω

(4.3.4)

and findu ∈ V̄I × (0,∞) such that




∫

Ω
utv dx+

1

λ
BI(u, v) = 0, ∀ v ∈ VI ,

u(x, 0) = u0(x), x ∈ Ω.

(4.3.5)

We refer the reader to [21, 36] for more details concerning the variational formulations.

The nonlocal Dirichlet volume constraint constrains the field u on the volumeR \ Ω, whereas

the nonlocal Neumann volume constraint restricts diffusion to occur only insideΩ, i.e., density

neither enters nor exitsΩ. Further, sinceBΩ(u, 1) = 0, the compatibility condition necessary for

the Neumann problems in both (4.3.2) and (4.3.3) to possess solutions is

u0 :=

∫

Ω
u0(x) dx =

∫

Ω
u(x, t) dx, ∀t ≥ 0, (4.3.6)

which is a statement that the integrated quantityu is conserved for all time.

Properties of solutions

The following theorem and its corollary demonstrate that solutions of (4.3.2) necessarily converge

to a stationary solution ast→ ∞.

40



Theorem 4.3.2.Let u ∈ C2([0, T ]; V̄I ) be the unique solution to(4.3.2). Then,ut(x, t) → 0, as

t→ ∞, for almost everyx ∈ I.

Proof. Multiply (4.3.2) byut(x, t), integrate overx ∈ I, and then integrate int to obtain

τ

4

∫

I
u2t (x, t) dx =

1

2β
(BI(u0, u0)−BI(u, u))−

∫ t

0

∫

I
u2t (x, s) dxds

and thus

BI(u0, u0) ≥ BI(u, u) + 2β

∫ t

0

∫

I
u2t (x, s) dxds ≥ 2β

∫ t

0

∫

I
u2t (x, s) dxds.

SinceBI(u0, u0) <∞, ut(x, t) ∈ L2(I) for all t and

‖ut(x, t)‖2L2(I) =

∫

I
u2t (x, t) dx→ 0.

The completeness ofL2(I) implies thatut → g with ‖g‖L2(I) = 0, i.e.,g = 0 almost everywhere

and, thus,ut → 0 for almost everyx ∈ I.

A stationary solution to (4.3.2),us ∈ V̄I , solves

∫

I

(
us(y)− us(x)

)
φ(x− y) dy = 0, ∀x ∈ Ω.

The results in [26, 36] demonstrate that the unique stationary solution,x ∈ I, of the homogeneous

Dirichlet problem isus = 0 and that of the homogeneous Neumann problem isus = u0. Conse-

quently, a simple corollary to Theorem 4.3.2 exists.

Corollary 4.3.3. For almost everyx ∈ Ω, u(x, t) → us(x) ast→ ∞ .

We have thus supplied the following properties for the solutions of (4.3.2): for the case of the

homogeneous Dirichlet problem,

∫

Ω
u(x, t) dx→ 0, ast→ ∞, (4.3.7a)

∫

Ω
u2(x, t) dx→ 0, ast→ ∞, (4.3.7b)

and, for the case of the homogeneous Neumann problem,

∫

Ω
u(x, t) dx = 1, t > 0, (4.3.7c)

∫

Ω

(
u(x, t)− u0

)2
dx→ 0, ast→ ∞. (4.3.7d)
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The results of [26] provide properties for the solutions of (4.3.3): for the homogeneous Dirichlet

problem,

∫

Ω
u(x, t) dx ≤ e−

c1
2
t

√∫

Ω
u20(x) dx, c1, t > 0 (4.3.8a)

∫

Ω
u2(x, t) dx ≤ e−c1t

∫

Ω
u20(x) dx, c1, t > 0 (4.3.8b)

and, for the homogeneous Neumann problem,

∫

Ω
u(x, t) dx = 1, t > 0, (4.3.8c)

∫

Ω

(
u(x, t)− u0

)2
dx ≤ e−c2t

∫

Ω

(
u0(x)− u0

)2
dx, c2, t > 0. (4.3.8d)

A semi-discrete finite element formulation

To formulate the finite element method, we partitionΩ into n subintervalsΩi and letχΩi(x) be the

indicator function forΩi. We denote the space of piecewise constant functions on the subintervals

Ωi by V h
Ω . Note anyuh ∈ V h

Ω × (0,∞) can be written

uh(x, t) =
n∑

j=1

γj(t)χΩj (x).

The discrete variational problems to (4.3.4) and (4.3.5) are then: finduh ∈ V h
Ω × (0,∞) such that

Mγ̇ +
τ

2
Mγ̈ = − 1

β
Aγ and Mγ̇ = − 1

λ
Aγ,

respectively, whereM andA are the mass and stiffness matrices defined by

Mii = |Ωi| and Aij =





−
∫

Ωi

∫

Ωj

φε(x− y) dy dx, i 6= j,
∫

Ωi

∫

I\Ωi

φε(x− y) dy dx, i = j.

For the Neumann problems, in light of (4.3.6),uh ∈ V h
Ω × (0,∞) is extracted by enforcing that

n∑

j=1

γj(t)|Ωj | = u0.

The numerical solutions satisfy the appropriate properties in (4.3.7) and (4.3.8).
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4.4 Numerical Experiments

In this section, we present examples demonstrating variousproperties of numerical solutions of the

nonlocal Cattaneo-Vernotte equation on bounded domains. In each example,φε is defined in (4.2.4)

and we use the scaling

β = 2τ = cεα, (4.4.1)

whereα andc are given in (4.2.7). In Example 4.4.1, we takeλ = β and investigate the effect

of relaxation time by comparing solutions of the nonlocal Cattaneo-Vernotte equation (4.1.1) to

the nonlocal diffusion equation (4.1.9). Example 4.4.2 investigates the relationship of solutions of

the nonlocal Cattaneo-Vernotte equation to those of fractional diffusion in the limit of vanishing

nonlocality and relaxation time. The analysis in Example 4.4.3 studies the effect of relaxation time

and nonlocality on solutions by comparing solutions of the classical Cattaneo-Vernotte, nonlocal

Cattaneo-Vernotte, classical diffusion, and nonlocal diffusion equations.

Example 4.4.1.This example examines a nonlocal Cattaneo-Vernotte equation with homogeneous

Neumann volume constraints that admits an analytic solution for any initial condition. We demon-

strate that solutions can be viewed as perturbations of solutions to the corresponding nonlocal dif-

fusion equation (4.1.9) and we investigate the effects of a nonzero relaxation time.

Consider the nonlocal homogeneous Neumann Cattaneo-Vernotte equation




ut(x, t) +
ε2

24
utt(x, t) =

6

ε2

∫

Ω

(
u(y, t)− u(x, t)

)
φε(x− y) dy, x ∈ Ω,

u(x, 0) = u0(x), x ∈ Ω,

ut(x, 0) = 0, x ∈ Ω,

(4.4.2)

where

φε(s) =
1

2ε
χ(−ε,ε)(s), ε ≥ 1,

so thatα = 2, c = 1/6, and, consequently,β = ε2/6 andτ = ε2/12.

In this example, sinceε ≥ 1 and supp(φ(x− y)) containsΩ for all x ∈ Ω, (4.4.2) reduces to an

ordinary differential equation




ut(x, t) +
ε2

24
utt(x, t) =

3

ε3
(u0 − u(x, t)) , x ∈ Ω,

u(x, 0) = u0(x), x ∈ Ω,

ut(x, 0) = 0, x ∈ Ω,
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whose solution can be given as a convex combination of the initial conditionu0(x) andu0,

uc(x, t) = u0(1− ζc(t)) + ζc(t)u0(x), (4.4.3)

where

ζc(t) = exp

(
−12

ε2
t

)(√
1

1− 1
2ε

sinh

(
12

ε2

√
1− 1

2ε
t

)
+ cosh

(
12

ε2

√
1− 1

2ε
t

))
.

The functionζc(t) ∈ (0, 1] is a strictly decreasing function that tends to zero ast→ ∞. If u0(x) =

u0 for somex ∈ Ω, thenx is a fixed point, i.e.,u(x, t) = u0(x), for all t ≥ 0. Also, the monotonicity

of ζc impliesu(x, t) ր u0 if u0(x) < u0 and, likewise,u(x, t) ց u0 if u0(x) > u0 ast → ∞.

As ε → ∞, ζc(t) → 1 for any fixedt < ∞. Thus,uc(x, t) can be well-approximated byu0(x) for

arbitrarily large finite time by choosingε sufficiently large.

To investigate the effects of a relaxation time, we consider(4.1.9) with homogeneous Neumann

volume constraints as well,



ut(x, t) =

6

ε2

∫

Ω

(
u(y, t)− u(x, t)

)
φε(x− y) dy, x ∈ Ω,

u(x, 0) = u0(x), x ∈ Ω,

(4.4.4)

for the sameφε as in (4.4.2). As shown in [21], (4.4.4) also reduces to an ordinary differential

equation whose solution is given by a convex combination ofu0(x) andu0,

ud(x, t) = u0(1− ζd(t)) + ζd(t)u0(x), (4.4.5)

where

ζd(t) = exp

(
− 3

ε3
t

)
.

Thus, solutions of (4.4.2) may be written

uc(x, t) = ud(x, t) + (ζc(t)− ζd(t))(u0(x)− u0),

the sum of the solution to (4.4.4) and a perturbation(ζc(t) − ζd(t))(u0(x) − u0) due to a nonzero

relaxation time. Sinceu0(x) andu0 are fixed for a given initial condition, we study the difference

uc(x, t)− ud(x, t) simply by investigatingζc(t)− ζd(t).

In Fig. 4.1, we plotζc(t)− ζd(t) for t ∈ [0, 3] andε ∈ [1, 3]. As t→ ∞, ζc(t)− ζd(t) → 0, but

more slowly for increasingε. This reflects agreement of stationary solutions for the twoproblems.
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For small values oft, ζc(t) > ζd(t), which is an effect of the nonzero relaxation time. After this

short time frame,ζc(t)− ζd(t) = 0, i.e., the solutions agree exactly at some point in timet > 0, and

thenζc(t) < ζd(t) for the duration of time. These observations hold for allε, but are less dramatic

asε increases.
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(a) ε = 1 andt ∈ [0, 3]
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(b) ε ∈ [1, 3] andt ∈ [0, 3]
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(c) ε = 5/4 andt ∈ [0, 3]

Fig. 4.1:The vertical axes areζc(t)− ζd(t) and in panels (a) and (c) the horizontal axis ist ∈ [0, 3].

Example 4.4.2. The fractional diffusion behavior of the boundary value problems for (4.1.1) is

examined by choosingφ = φα to be a centered and symmetric stable density with stabilityindex

α ∈ {2, 3/2, 1, 1/2}. As explained in Section 2,α represents the fraction of the Laplacian in the

equations (4.1.11) and (4.2.8). Such centered and symmetric stable densities, normalized so that

c = 1, are characterized through their Fourier transforms via the Lévy-Khintchine representation,

i.e.,

φα(s) = F−1 (exp (−|ξ|α)) (s), (4.4.6)

see [4,§§ 1.2.5]. We use (4.2.4) to defineφαε and the casesα = 2, 1 yield closed-form expressions

for φαε :

φαε (s) =





(
1

4πε2

) 1
2

exp

(
− s2

4ε2

)
, α = 2,

ε

π(s2 + ε2)
, α = 1,

(4.4.7)

which are Gaussian and Cauchy densities, respectively. Forother values ofα, φαε is symmetric and

unimodal though closed-forms forφαε typically do not exist. Forα < 2, the second moment is

infinite and forα < 1, all moments are infinite. We consider the discontinuous initial condition

u0(x) =





0, 0 < x < 0.5,

1, 0.5 ≤ x < 1
(4.4.8)
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and investigate the effects of vanishing relaxation time and nonlocality, i.e., lettingε → 0, on the

solutions to a nonlocal Dirichlet boundary value problem.

Fig. 4.2 plots the time-evolutions of the approximate solutions to the nonlocal homogeneous

Dirichlet boundary value problem in (4.3.2) given by the finite element method with mesh spacing

h = 5 · 10−4 and t ∈ [0, 0.25]. We considerα ∈ {2, 3/2, 1, 1/2} and variousε. The solutions

of (4.3.2) withφ2ε behave asymptotically, with respect toε, as solutions to the classical diffusion

equation (4.1.6). However, the asymptotic behavior of solutions of (4.3.2) withφα6=2
ε is given by a

fractional Laplace parabolic equation (4.1.11). Consequently, the magnitude of the jump disconti-

nuity in the initial data decays more slowly in these latter cases.

Example 4.4.3.In this example, we study the effect of relaxation time for a homogeneous nonlocal

Dirichlet boundary value problem with an initial condition

u0(x) =
1√

4π(0.02)2
exp

(
−(x− 0.5)2

4(0.02)2

)
, x ∈ Ω,

which, to numerical precision, integrates to one. We use both of the densitiesφαε in (4.4.7) in this

example.

In Fig. 4.3, we plot the approximate solutions for the nonlocal diffusion, nonlocal Cattaneo-

Vernotte, classical diffusion, and classical Cattaneo-Vernotte equations. The relatively large nonlo-

cality, i.e.,ε = 0.10, explains the differences between the solutions of the nonlocal and classical

equations. The effect of the relaxation time in the nonlocalequations is slight in the transient time

and the asymptotic behavior of the two solutions is the same.In the classical equations, though

the asymptotic behavior of the solutions are the same, the effect of relaxation time is dramatic in

transient time. In fact, the solution of the classical Cattaneo-Vernotte equation becomes bimodal, a

characteristic not shared by the other solutions. For the nonlocal equations,
∫
Ω uh(x, t) dx decreases

faster initially than for the classical equations. The asymptotic behavior of both
∫
Ω uh(x, t) dx and

∫
Ω u

2
h(x, t) dx, however, are the same for the nonlocal and classical equations.

In Fig. 4.4, the nonlocality is small so that little difference between the nonlocal and classical

equations is present. Moreover, the relaxation time is alsosmall and there is little effect due to the

relaxation time. This corroborates the notion that the solutions to the four equations all behave like

the classical diffusion equation in the limit of vanishing nonlocality and relaxation time.

The results in Fig. 4.5 show that even in the limit vanishing nonlocality and relaxation time the

solutions to the nonlocal equations withα 6= 2 behave very differently than those to the classical
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Fig. 4.2:Each panel shows solutions to the nonlocal homogeneous Dirichlet problem for differentα andε.
The densityφαε is used, whereφα is a Lévy stable density with index of stabilityα. Sincec = 1,
we take2τ = εα. The vertical axis in each panel is the value ofuh(x, t) and the horizontal axis is
x. The ten different solution profiles in each panel correspond to the solutions at ten different times,
t ∈ [0, 0.25].
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Fig. 4.3:Top: Panels (a)–(d) show approximate solutions,uh(x, t), for t ∈ [0, 0.05] to the nonlocal and
classical diffusion and Cattaneo-Vernotte (C-V) equations, respectively. The vertical axis in each
panel isuh(x, t) and the horizontal axis isx ∈ Ω. Bottom: Panels (e) and (f) show solutions of the
nonlocal (marked) and classical (unmarked) diffusion (dashed) and C-V (solid) equations. In this
experiment,α = 2 andε = 0.10.
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Fig. 4.4:Top: Panels (a)–(d) show approximate solutions,uh(x, t), for t ∈ [0, 0.05] to the nonlocal and
classical diffusion and Cattaneo-Vernotte (C-V) equations, respectively. The vertical axis in each
panel isuh(x, t) and the horizontal axis isx ∈ Ω. Bottom: Panels (e) and (f) show solutions of the
nonlocal (marked) and classical (unmarked) diffusion (dashed) and C-V (solid) equations. In this
experiment,α = 2 andε = 0.02.
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equations. This is because the asymptotic behavior of the nonlocal equations is given by a fractional

diffusion equation.
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Fig. 4.5:Top: Panels (a)–(d) show approximate solutions,uh(x, t), for t ∈ [0, 0.05] to the nonlocal and
classical diffusion and Cattaneo-Vernotte (C-V) equations, respectively. The vertical axis in each
panel isuh(x, t) and the horizontal axis isx ∈ Ω. Bottom: Panels (e) and (f) show solutions of the
nonlocal (marked) and classical (unmarked) diffusion (dashed) and C-V (solid) equations. In this
experiment,α = 1 andε = 0.02.

4.5 Summary

We demonstrate that the nonlocal Cattaneo-Vernotte equation is obtained by including a relaxation

effect in the nonlocal diffusion equation and, in fact, arises from a generalization of Fick’s first

law in terms of a nonlocal flux. In a certain limit of vanishingnonlocality and relaxation time,

we find a relationship between the nonlocal Cattaneo-Vernotte equation and the classical and frac-

tional diffusion equations. The contribution of this paperis to introduce volume constraints, in

the form of volume constraints, for the nonlocal Cattaneo-Vernotte equation, which induce volume

constraints for the underlying CTRWs. Further, the variational and finite element formulations for

these nonlocal boundary value problems are reviewed and demonstrated to be powerful tools. We

review well-posedness of these nonlocal boundary value problems and provide properties of their

solutions. We investigate the effect of relaxation time, i.e., non-Markovian effects, and nonlocality.
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5. CONTINUOUS TIME RANDOM WALKS ON BOUNDED DOMAINS

A useful perspective when studying anomalous diffusion processes is that of a continuous time

random walk and its associated master equation. In particular, forφ ∈ L1(R), the nonlocal diffusion

equation,

ut(x, t) =
1

λ

∫

R

(
u(y, t)− u(x, t)

)
φ(x− y) dy, (5.0.1)

and the nonlocal Cattaneo-Vernotte equation,

ut(x, t) +
τ

2
utt(x, t) =

1

β

∫

R

(
u(y, t)− u(x, t)

)
φ(x− y) dy, (5.0.2)

are the master equations for Markovian and non-Markovian CTRWs, respectively. We restrict the

random walker to a bounded domain where two types of interactions between the random walker

and the boundary are considered. We derive the master equations for CTRWs that are restricted to

a bounded domain and compare numerical solutions to densityestimates of the probability density

function computed from simulations. The numerical solution of the master equation represents a

powerful tool in the study of CTRWs on bounded domains. Much of this chapter has been taken

directly from published work of the author in [22].

5.1 Introduction

Anomalous diffusion processes have been observed in many applications, for example, contaminant

flow in groundwater [28], dynamic motions in proteins [51], turbulence in fluids [43], and dynamics

of financial markets [47] have all been verified experimentally to exhibit characteristics of anoma-

lous diffusion; see [42] for a review of such applications. Adiffusion process is termed anomalous

when the mean square displacement has a nonlinear dependence on time, i.e.,

〈X2
t 〉 =

∫

R

x2v(x, t) dx ∼ tγ , γ 6= 1, (5.1.1)

unlike normal diffusion, whereγ = 1. In (5.1.1),v is the probability density function of the random

variableX(t), which is the displacement of a diffusing particle at timet. When0 < γ < 1 such



a process is subdiffusive, whileγ > 1 indicates a superdiffusive process. A thorough survey of

theoretical considerations for anomalous diffusion processes can be found in [49].

One common perspective to take when studying anomalous diffusion processes is that of a

CTRW and its associated master equation [49, 52]. As is discussed in [49, 50, 64], this perspective

is especially useful when the diffusion process lacks finitecharacteristic scales, e.g., mean square

displacement of a particle or the mean wait-time between collisions. Though the relationship be-

tween CTRWs in free space and anomalous diffusion processeshas been well-studied, the same

cannot be said for the subsequent relationship on bounded domains. Of the existing research, much

is concerned with graphs and lattices and there exists comparatively little work into the master equa-

tions for CTRWs on general bounded domains. Recent efforts,namely [50], however, have made

advances to remedy this by investigating certain MarkovianCTRWs with absorbing and reflecting

boundary conditions. The analysis in [50] is limited in relying on special cases so that explicit,

closed-form, solutions to the master equations can be foundfor simple one-dimensional domains.

This analysis becomes difficult when the Markovian assumption is removed, the domains in two and

three dimensions are not simple, and the step density is not suitably chosen, e.g., it is approximated

from data.

There is a well-known relationship between the master equations for CTRWs in free space

and fractional diffusion equations. Considerably more research exists for fractional diffusion than

for integro-differential equations, such as the aforementioned master equations, on bounded do-

mains. For instance, the paper [71] gives a probabilistic interpretation of the Lévy-Feller fractional

diffusion equation with absorbing boundaries, where the fraction of the Laplacian is restricted to

α ∈ (1, 2), i.e., the casesγ ≥ 2 in equation (5.1.1) are not considered. Other work, e.g., [44], con-

siders fractional diffusion equations on bounded domains with reflecting boundaries. However, even

for fractional diffusion, there is little notion of generalboundary conditions outside of specialized

domains, e.g., rectangles and parallelepipeds in two and three dimensions, respectively.

In this paper, we derive the master equations for both Markovian and non-Markovian CTRWs on

bounded domains with either absorbing or insulated boundaries. An insulated boundary restricts the

random walker from taking a step past the boundary, e.g., a special case of insulated boundaries is

the reflective behavior described in [50]. Boundary conditions such as these appear naturally when

a diffusion process is restricted to a bounded domain, e.g.,contaminant flow in an underground
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aquifer. The boundary conditions for a random walker inducevolume constraints on the solution of

the master equation and the resulting equations are then studied via a variational formulation and

conforming finite element method described in [21, 36]. Thiscomputational approach allows for

the study of a wide-class of problems on nontrivial bounded domains in two and three dimensions,

a capability currently unavailable.

We demonstrate the numerical solutions to the master equations agree with density estimates

of the solution from CTRW simulations. This renders the aforementioned finite element formula-

tion a powerful tool in studying CTRW as models of anomalous diffusion because computationally

intensive simulations may be avoided.

5.2 Continuous Time Random Walks in Free Space

We consider separable CTRWs, i.e., wait-times are independent of the choice of step. The wait-

time density is denoted withω and the step density withJ(y, x). That is,J(y, x) is the probability

density of taking a step fromy to x and, consequently,
∫
R
J(y, x) dx = 1. Note, however, that

∫
R
J(y, x) dy 6= 1 in general. It is well-known, see for instance [14, 47, 49], that the probability

density function of the CTRWs,u(x, t), satisfies the master equation

ut(x, t) =

∫ t

0
Λ(t− t′)LJ

Ru(x, t
′) dt′, (5.2.1)

where the Laplace transform of the memory kernelΛ is

Λ̂(ζ) =
ζω̂(ζ)

1− ω̂(ζ)

and we have introduced the operator

Lf
Iu(x, t) :=

∫

I

(
u(y, t)f(y, x)− u(x, t)f(x, y)

)
dy.

The analogous operator toLf
Iu(x, t) for a CTRW on a lattice has been studied previously [41].

We consider two choices ofΛ in (5.2.1):

Λ(t− t′) =
1

2τ
δ(t− t′) (5.2.2a)

Λ(t− t′) =
1

τ2
exp

(
− t− t′

τ/2

)
, (5.2.2b)
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which are tantamount to specifying that wait-times are distributed as

Exp(2τ), i.e., ω(t) =
1

2τ
exp

(
− t

2τ

)
(5.2.3a)

Gamma(2, τ), i.e., ω(t) =
t

τ2
exp

(
− t

τ

)
, (5.2.3b)

respectively, both of which imply finite mean wait-times. Infact, (5.2.3a) and (5.2.3b) imply the

underlying CTRWs are compound Poisson and renewal reward processes, respectively. With (5.2.2),

(5.2.1) reduces to

ut(x, t) =
1

2τ
LJ
Ru(x, t) (5.2.4a)

ut(x, t) +
τ

2
utt(x, t) =

1

2τ
LJ
Ru(x, t). (5.2.4b)

Since the mean wait-time is finite, (5.2.4a) and (5.2.4b) aremodels for either normal diffusion

or anomalous superdiffusion, depending on whether
∫
R
(x− y)2J(y, x) dx is finite or infinite, re-

spectively. By selecting a heavy-tailed wait-time density, we may obtain models for subdiffusion,

normal diffusion, or superdiffusion, depending now upon the interplay between the characteristic

step-length variance and characteristic mean wait-time. For the discussion in this section, we assume

J is a radial step density, i.e.,J(y, x) = J(y − x) = J(x− y). Moreover, we assumeJ is a Lévy

stable density with stability indexα. Such densities are characterized via their Lévy-Khintchine

representation [4,§§ 1.2.5], i.e.,

J(s) = F−1 {exp (−εα|ξ|α)} (s).

Relationship to fractional diffusion

We now establish a relationship between the nonlocal operator (2τ)−1LJ
R

and the fractional Lapla-

cian−(−∆)α/2. The fractional Laplacian may be defined in Fourier space, i.e.,

F
{
−(−∆)α/2u(x, t)

}
(ξ) = −|ξ|αû(ξ, t),

and we refer the reader to [4, 60, 73] for more details. Setting 2τ = εα,

F
{
(2τ)−1LJ

Ru(x, t)
}
(ξ, t)

= F
{
ε−α

∫

R

(
u(y, t)− u(x, t)

)
J(x− y) dy

}
(ξ, t)

= ε−α(Ĵ(ξ)− 1)û(ξ, t)

= −|ξ|αû(ξ, t) + O(εα),
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demonstrating the nonlocal operator is well-approximatedby the fractional Laplacian for smallε.

A distinction between the two operators is that the nonlocaloperator encapsulates the fractional

derivative within the step densityJ . The casesα = 2, 1 yield closed-form expressions forJ :

J(s) =





(
1

4πε2

) 1
2

exp

(
− s2

4ε2

)
, α = 2,

ε

π(s2 + ε2)
, α = 1,

which are Gaussian and Cauchy densities, respectively.

Anomalous diffusion

For α ∈ (0, 2), the mean square displacement diverges for the CTRWs described in (5.2.4a) and

(5.2.4b), i.e.,

〈X2
t 〉 =

∫

R

x2u(x, t) dx = ∞, ∀t > 0.

We instead consider a pseudo mean square displacement,

〈X2
t 〉B =

∫ B2t1/α

B1t1/α
x2u(x, t) dx, (5.2.5)

for appropriately chosenB1 andB2. This so-called pseudo mean square displacement was intro-

duced in [38], see also [49], and we find

〈X2
t 〉B ∼ t2/α. (5.2.6)

We now demonstrate numerically that both (5.2.4a) and (5.2.4b) are models for anomalous dif-

fusion, in the sense of (5.2.6). As an example, we considerα = 1.2, ε = 0.25, B1 = 10, B2 = 20,

and start 100,000 random walkers at the origin. We compute the pseudo mean square displace-

ment of the random walkers on the time intervalt ∈ [1, 10]. A log-log plot of the simulations and

least-squares fit to the data is shown in Fig. 5.1. The slopes of the least-squares fits are 1.6658 and

1.6722, respectively, which approximate the slope 1.6667 predicted from (5.2.6). This confirms

that the diffusion processes underlying the equations in (5.2.4) are indeed anomalous. We refer the

reader to [49] for further information.

To understand this analytically, we recall (5.2.1) for symmetricJ ,

ut(x, t) =

∫ t

0
Λ(t− t′)

∫

R

(
u(y, t′)− u(x, t′)

)
J(x− y) dy dt′
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Fig. 5.1:Left: 〈X2
t 〉B for the CTRW of (5.2.4a). Right:〈X2

t 〉B for the CTRW of (5.2.4b). The horizontal
axis is time and the vertical axis is〈X2

t 〉B, in log scales. The solid line denotes the pseudo mean
square displacement from the simulations and the dashed line is the least-squares fit.

and apply both Fourier and Laplace transforms to obtain:

ŝ̂u(ξ, s)− û(ξ, 0) = Λ̂(s)
(
φ̂(ξ)− 1

)
̂̂u(ξ, s) =

sω̂(s)
(
φ̂(ξ)− 1

)

1− ω̂(s)
̂̂u(ξ, s).

Rearranging,

û(ξ, 0) =
s
(
1− ω̂(s)φ̂(ξ)

)

1− ω̂(s)
̂̂u(ξ, s),

so that

̂̂u(ξ, s) = 1− ω̂(s)

s
(
1− ω̂(s)φ̂(ξ)

) ,

where, for convenience, we have takenu0(x) = δ(x), i.e., û(ξ, 0) = 1.

We assumêω andφ̂ have expansions of the form

ω̂(s) = 1− cγs
γ + o(sγ), γ ∈ (0, 1],

φ̂(ξ) = 1− cαξ
α + o(ξα), α ∈ (0, 2].

(5.2.7)

Then, see [38, 49], we find (5.2.6). There are then three casesto consider. First, when2γ < α,

long wait-times dominate the behavior, resulting in subdiffusion. On the other hand, when2γ > α,

long step-lengths dominate the behavior, resulting in superdiffusion. When2γ = α, wait-times and

step-lengths appropriately balance each other, resultingin (normal) diffusion, which is not to be

confused with classical diffusion.

5.3 Continuous Time Random Walks with Volume Constraints

Boundary conditions for CTRWs, which manifest themselves in the definition of the step density

J(y, x), are now formulated. We letφ be a symmetric probability density that should be interpreted

as the step density in the absence of boundary conditions.
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We first describe the behavior of fully absorbing boundaries. Once a random walker reaches, or

steps beyond, the boundary∂Ω, it is banned fromΩ for all future time. This description gives the

step density

J(y, x) =

{
φ(x− y), y ∈ Ω,

δ(x − y), y /∈ Ω.
(5.3.1)

It is convenient then to setu(x, t) = 0 for x /∈ Ω and insertion of (5.3.1) into (5.2.1) yields



ut(x, t) =

∫ t

0
Λ(t− t′)Lφ

R
u(x, t′) dt′, x ∈ Ω,

u(x, t) = 0, x /∈ Ω

and, thus,

ut(x, t) =
1

2τ
Lφ
R
u(x, t), x ∈ Ω, (5.3.2a)

ut(x, t) +
τ

2
utt(x, t) =

1

2τ
Lφ
R
u(x, t), x ∈ Ω. (5.3.2b)

The equation (5.3.2a) was studied in the context of Markovian CTRWs in [50], while (5.3.2b)

belongs to a non-Markovian CTRW.

Next, in the case of fully insulated boundaries, a random walker is restricted from reaching, or

stepping beyond,∂Ω and this description gives rise to

J(y, x) = χΩ(x)φ(x− y) + δ(x− y)

∫

R\Ω
φ(z − y) dz, y ∈ Ω, (5.3.3)

The step density (5.3.3) states that a random walker may stepfrom y ∈ Ω to x ∈ Ω via the radial

densityφ(x− y). Further, there is a nonzero probability,
∫
R\Ω φ(z − y) dz, of the walker aty ∈ Ω

not taking a step. Together, these guarantee that the randomwalker remains inΩ for all time and,

consequently, definingJ(y, x) for y /∈ Ω in (5.3.3) is not required. Insertion of (5.3.3) into (5.2.1)

gives

ut(x, t) =

∫ t

0
Λ(t− t′)Lφ

Ωu(x, t
′) dt′, x ∈ Ω

and, thus,

ut(x, t) =
1

2τ
Lφ
Ωu(x, t), x ∈ Ω, (5.3.4a)

ut(x, t) +
τ

2
utt(x, t) =

1

2τ
Lφ
Ωu(x, t), x ∈ Ω. (5.3.4b)

Now, we relate the equations (5.3.2) and (5.3.4) to nonlocalvolume-constrained problems that

have been postulated and studied in various different settings, see [3, 21, 26, 36, 50]. A nonlocal
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volume-constrained problem augments (5.2.4) by constraining the solution on a nonzero volume,

generalizing the notion of classical boundary conditions to that of a volume constraint. Such volume

constraints need not be relegated to the exterior ofΩ. We specify an initial densityu0(x) on Ω,

satisfyingu0 ≥ 0 and
∫
Ω u0(x) dx = 1.

The nonlocal Dirichlet boundary value problems are




ut(x, t) =
1

2τ
Lφ
R
u(x, t), x ∈ Ω,

u(x, t) = 0, x /∈ Ω,

u(x, 0) = u0(x), x ∈ Ω

(5.3.5a)

and 



ut(x, t) +
τ

2
utt(x, t) =

1

2τ
Lφ
R
u(x, t), x ∈ Ω,

u(x, t) = 0, x /∈ Ω,

u(x, 0) = u0(x), x ∈ Ω,

ut(x, 0) = 0, x ∈ Ω.

(5.3.5b)

The nonlocal Dirichlet boundary condition constrainsu for x /∈ Ω, analogous to the classical Dirich-

let boundary condition that does so at the points on the boundary.

The nonlocal Neumann boundary value problems are



ut(x, t) =

1

2τ
Lφ
Ωu(x, t), x ∈ Ω,

u(x, 0) = u0(x), x ∈ Ω

(5.3.6a)

and 



ut(x, t) +
τ

2
utt(x, t) =

1

2τ
Lφ
Ωu(x, t), x ∈ Ω,

u(x, 0) = u0(x), x ∈ Ω,

ut(x, 0) = 0, x ∈ Ω.

(5.3.6b)

The integrals in (5.3.6), in contrast to those in (5.3.5), are overΩ rather than all ofR. This implies

a constraint on diffusion so that it occurs strictly insideΩ, i.e., density neither enters nor exitsΩ,

which is analogous to the classical Neumann boundary condition.

In summary, the descriptions of the boundary conditions forthe CTRWs determineJ in (5.2.1)

so that (5.2.1) reduces to an appropriate nonlocal volume-constrained problem in (5.3.5) or (5.3.6).

Evidently, these nonlocal volume-constrained problems describe the time-evolution of the probabil-

ity density of the state of the corresponding CTRWs. The analysis in [21, 36] allows us to analyze

(5.3.5) and (5.3.6) via a variational formulation and conforming finite element method so extending

the class of problems computationally tractable.
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5.4 Finite Element Method and Density Estimation from Simulations

Data from the CTRW simulations are used to estimate the density u(x, t). Let pi(t) denote thei-th

random walker’s position at timet and partitionΩ = (0, 1) into n subintervalsΩi. Then, define the

density estimate

µN (x, t) =

n∑

k=1

χΩk
(x)

(
1

Nh

N∑

i=1

χΩk
(pi(t))

)
. (5.4.1)

Though results exist that give the “optimal” bandwidth, i.e., h, so not to over-smooth or under-

smooth the data, it is convenient in this case to pickh to be the mesh size induced by the finite

element discretization. We denote the numerical solutionsto (5.3.5) and (5.3.6) withuh.

For each of the homogeneous Dirichlet problems,
∫ 1

0
u(x, t) dx→ 0, ast→ ∞, (5.4.2a)

∫ 1

0
u2(x, t) dx→ 0, ast→ ∞, (5.4.2b)

and, for each of the homogeneous Neumann problems,

∫ 1

0
u(x, t) dx = 1, t > 0, (5.4.2c)

∫ 1

0

(
u(x, t) − u0

)2
dx→ 0, ast→ ∞. (5.4.2d)

With (5.4.1), we compute density estimate analogs to (5.4.2). For absorbing boundaries,

∫

Ω
µN (x, t) dx =

1

N

N∑

i=1

χΩ(pi(t)), (5.4.3a)

∫

Ω
µ2N (x, t) dx =

1

N2h

n∑

k=1

(
N∑

i=1

χΩk
(pi(t))

)2

, (5.4.3b)

and, for the case of insulated boundaries,

∫

Ω
µN (x, t) dx =

1

N

N∑

i=1

χΩ(pi(t)), (5.4.3c)

∫

Ω

(
µN (x, t)− u0

)2
dx =

1

N2h

n∑

k=1

(
N∑

i=1

χΩk
(pi(t))

)2

− 1

|Ω| . (5.4.3d)

We simulateN random walkers and a density estimate ofu at various points in time is computed.

This density estimate is compared to the finite element solution of the associated nonlocal boundary

value problem.
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A walker begins at a random locationx0 ∈ (0, 1) according to the initial densityu0(x). For

eachk, a wait-timetk is generated fromω and the arrival-timeak = ak−1 + tk is recorded. A step

sk is generated fromφ, the new locationxk = xk−1+ sk is recorded, and then boundary conditions

are imposed. For instance, ifxk /∈ (0, 1) for the case of absorbing boundary conditions, the random

walk is stopped. In the case of insulated boundary conditions, if xk /∈ (0, 1), we setxk = xk−1,

i.e., the walker waits at the current position. Again, this treatment of an insulated boundary differs

from the reflective behavior in [50] and is merely one approach for treating insulated boundaries.

Deciding on the appropriate treatment is application specific and depends largely on the mechanism

driving the CTRWs. This algorithm is summarized in Algorithm 5.1. Note that the position of

the random walker is known for all time, e.g., the walker is atpositionxk for the time interval

[ak, ak+1).

Algorithm 5.1: Pseudo code for simulating a CTRW on a bounded domain
a0 = 0
simulatex0 ∼ u0(x)
for k from 1 toT do

simulatetk ∼ ω(t)
ak = ak−1 + tk
simulatesk ∼ φ(s)
xk = xk−1 + sk
if xk /∈ (0, 1) then

apply appropriate BC
end

end

We now demonstrate that the nonlocal volume-constrained problems govern the joint probability

densities of the corresponding CTRWs on bounded domains with appropriate boundary conditions.

We selectφ to be a Lévy stable density withα = 3/2 andε = 0.25. The results we present simulate

N random walkers withε = 0.25, α = 3/2, h = 0.01, andt ∈ [0, 0.5]. Unless stated otherwise,

assumeN = 8 · 104. To compare the difference betweenuh andµN , we compute theL2-norm,

denoted simply with‖ · ‖, of their difference,

‖uh − µN‖2 =
n∑

k=1

∫

Ωk

(
uh(x, t)− µN (x, t)

)2
dx

= h

n∑

k=1

(
γk(t)−

1

Nh

N∑

i=1

χΩk
(pi(t))

)2

. (5.4.4)

The density estimate is plotted as a piecewise linear function by plotting the height ofµN at the

midpoint of the subintervalΩi and then connecting the points. This gives a more pleasing visual

comparison ofuh andµN .
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Fig. 5.2 shows results of the CTRW simulations on(0, 1) with absorbing boundaries and the

solutions of the appropriate Dirichlet volume-constrained problems withu0(x) = 2x. TheL2-norm

decays ofuh andµN , corresponding to (5.4.2b) and (5.4.3b), are shown in panel(c).
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Fig. 5.2:Results of CTRW simulations on(0, 1) with absorbing boundaries and solution of the nonlocal
Dirichlet problem. The horizontal axis ist and the vertical axis is the value of the norm.

Fig. 5.3 shows results of the CTRW simulations on(0, 1) with insulated boundaries and the

solution of the appropriate Neumann volume-constrained problems withu0(x) = π
2 sin(πx). The

L2-norm decays ofuh−u0 andµN −u0, corresponding to (5.4.2b) and (5.4.3b), are shown in panel

(c).

5.5 Summary

The results in Section 5.2 corroborate that the nonlocal boundary value problems in (5.3.5) and

(5.3.6) are indeed the master equations for CTRWs with appropriate boundary conditions. The

recently developed variational formulation and numericalmethods employed in obtaining these

results are thus a powerful tool in studying CTRWs restricted to bounded domains. Consequently,

a rapid means of investigating statistics of the CTRWs, e.g., exit-times, exists via approximating

solutions to master equations. Without this capability, estimating such statistics requires simulations

of the CTRW, a computationally demanding task.
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Fig. 5.3:Results of CTRW simulations on(0, 1) with insulated boundaries and solution of the nonlocal Neu-
mann problem. The horizontal axis ist and the vertical axis is the value of the norm.

61



6. VOLUME CONSTRAINTS AND EXIT-TIMES FOR ĹEVY PROCESSES

This chapter studies pure jump Lévy processes on bounded domains via the corresponding master

equation, i.e., a nonlocal diffusion equation with volume constraints. Volume constraints allow for

the study of exit-times of the process from a bounded domain via solution of the master equation.

We describe how the activity of the process, variation of thesample paths, exit-time distribution

of the process, and smoothing of the nonlocal operator are all related. In particular, the type of

diffusion can be identified from these statistics. General volume constraints allow for the study

of exit-times from nontrivial domains as well. The contribution of this chapter is to present the

master equations for pure jump Lévy processes restricted to a bounded domain and then numerical

techniques to approximate probability densities of the stochastic process. With this, an efficient

means for computing important statistics of the process is available.

6.1 Introduction

Lévy processes, see [4], are a general class of stochastic processes that arise in several applications,

e.g., see [14, 38, 43, 42, 49, 58, 62, 64], and include Brownian motion, compound Poisson pro-

cesses, interlacing processes, and stable processes. Applications involving Brownian motion and

compound Poisson processes are abundant in many fields, as are stable processes and more general

Lévy processes. The increments of a Lévy process have infinitely divisible distributions, which

include Gaussian, Cauchy, exponential, Poisson, and gammadistributions as special cases.

Several statistics of a Lévy process, e.g., moments, the median, or exit-times, that characterize

the process are necessary in any given application. Though such statistics are easily computed given

the density of the process,u(x, t), often the density is unavailable. Instead, it is common in practice

to simulate the random process multiple times and produce anestimate of the density which can

then be used to estimate such desired statistics. The masterequation for a Lévy process, i.e., the

deterministic equation that governs the time evolution of the densityu(x, t), provides a powerful

alternative to simulation-based approaches.



The contribution of this chapter is to present the master equations for pure jump Lévy processes

restricted to a bounded domain. The resulting master equations are so-called nonlocal diffusion

equations with general volume constraints. We present numerical techniques for finding approxi-

mate densities and compare to density estimates computed from simulations of the process. With

this, an efficient means for computing exit-times of the process is available. Exit-times are not

traditionally studied via the master equation because manycases do not lead to a well-posed prob-

lem, e.g., fractional diffusion with the order of the Laplacian α ∈ (0, 1) on a bounded domain.

The emerging work in [3, 29] have presented well-posed master equations for a large class of Lévy

processes restricted to a bounded domain. An equivalence between the smoothing of the nonlocal

operator and the activity of the stochastic process and variation of the sample paths is established.

Numerically solving the master equation also provides a means for dealing with processes of infi-

nite activity, where simulation is impossible and difficultto even approximate such processes. Also,

the general volume constraints allow for consideration of non-simple domains, e.g., not connected,

which appear naturally in many applications but traditionally are not easily handled.

A Lévy processes is characterized by a so-called Lévy triple (b, c, ν), whereb is the drift,c is the

diffusion coefficient, andν is a measure. This characterization is a consequence of the celebrated

Lévy-Khintchine decomposition and is reviewed in Section6.2. Depending on the triple, the master

equation takes very different forms, e.g.,

1. the transport equation,

ut(x, t) = −bux(x, t), (6.1.1)

arises from the triplet(b, 0, 0) and is the master equation for a deterministic drift process

2. the classical diffusion equation,

ut(x, t) =
c

2
uxx(x, t), (6.1.2)

arises from the triplet(0, c, 0) and is the master equation for Brownian motion

3. the nonlocal diffusion equation,

ut(x, t) =

∫

R

(
u(y, t)− u(x, t)

)
ν(y − x) dy, (6.1.3)

arises from the triplet(0, 0, ν) and is the master equation for a jump process.
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As many of the applications mentioned in [14, 38, 43, 42, 49, 58, 62, 64] are posed on bounded

domains, a restriction of the stochastic process to a bounded domain is in order and we study statis-

tics that are specific to this restriction, e.g., exit-timesout of the bounded domain. Simulating

stochastic processes on bounded domains has been studied invarious settings, but often little atten-

tion is given to the corresponding master equations. The master equations for triples of the form

(b, c, 0), e.g., (6.1.1) and (6.1.2), restricted to a bounded domain have been well-studied in classical

PDE literature. However, master equations for processes with ν 6= 0 restricted to a bounded domain

have received far less attention. In the papers [3, 36, 29, 29], nonlocal diffusion equations with

general volume constraints are formulated and we demonstrate that they are the master equations

for such processes. Forν ∈ L1(R), [50] presents analytic solution techniques for such master equa-

tions, whereas a variational and finite element formulationis given in [21, 22] and used to compute

numerical solutions.

The caseν /∈ L1(R) has been studied in [29, 72] in terms of the smoothing of the nonlocal

operator. The underlying stochastic process in this case isnot a compound Poisson process and,

instead, is a square integrable pure jump martingale. The distinction betweenν ∈ L1(R) and

ν /∈ L1(R) is tantamount to distinguishing the cases when the stochastic process has finite activity

and infinite activity, respectively. Evidently, the activity of the process implies the smoothing of the

operator in the corresponding master equation.

The rest of the chapter is organized as follows. In Section 6.2, we review the Lévy-Khintchine

formula and describe how a Lévy process can be split into drift, diffusion, and jump components.

We then discuss in detail the jump component of the process and distinguish between cases of finite

and infinite activity. Volume-constrained problems are then introduced as the master equations for a

Lévy process restricted to a bounded domain. Variational formulations, a conforming finite element

method, and simulation procedures are reviewed in Section 6.3. Several numerical experiments are

given in Section 6.4 and we summarized our findings in Section6.5.

6.2 Understanding Particle Motion via the Lévy-Khintchine Formula

We now give a brief introduction to Lévy processes. A Lévy processLt is a stochastic process

beginning at the origin, i.e.,L0 = 0, that has independent and stationary increments and whose

sample paths are almost surely right continuous with left limits. A Lévy process can be decomposed
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into four independent processes (constant driftbt, Brownian motion
√
cWt, compound Poisson

processYt, and square integrable martingaleZt), i.e.,

Lt = bt+
√
cWt + Yt + Zt. (6.2.1)

We note thatYt andZt comprise the jump components of the process. The decomposition (6.2.1)

is a consequence of the Lévy-Khintchine decomposition, which characterizes an arbitrary Lévy

process by its characteristic function

ϕLt(ξ) = exp

((
ibξ − cξ2

2
+

∫

R

(
eiξx − 1− iξxI{|x|<δ}

)
ν(dx)

)
t

)
, (6.2.2)

whereb ∈ R, c ∈ R≥0, and the so-called Lévy measureν satisfies

ν({0}) = 0 and
∫

R

(
1 ∧ |x|2

)
ν(dx) <∞. (6.2.3)

Consequently, a Lévy process is associated with a Lévy triplet (b, c, ν). The parameterδ distin-

guishes between small jumps, i.e.,|Lt − Lt−| < δ, and large jumps, i.e.,|Lt − Lt−| ≥ δ and is an

arbitrary positive number.

We assume that the Lévy measureν(dx) can be writtenν(x)dx, whereν is a function. In this

chapter, we focus only on triplets of the form(0, 0, ν), whereν is symmetric, i.e.,

ν(−x) = ν(x), ∀x 6= 0, (6.2.4)

since the case(b, c, 0) has been well-studied. The symmetry ofν removes the need for the compen-

satoriξxI{|x|<δ} so that (6.2.2) reduces to

ϕLt(ξ) = exp

((∫

R

(
eiξx − 1

)
ν(x) dx

)
t

)
. (6.2.5)

We introduce the Fourier transform of the density,û(ξ, t), which, by definition, is the characteristic

functionϕLt(ξ). Then, differentiating (6.2.5) with respect tot gives

ût(ξ, t) =

(∫

R

(
eiξx − 1

)
ν(x) dx

)
û(ξ, t).

Inverse Fourier transforming yields the master equation for Lt = Yt + Zt,

ut(x, t) =

∫

R

(
u(y, t)− u(x, t)

)
ν(y − x) dy. (6.2.6)
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Processes with finite activity

We first consider the caseν ∈ L1(R) so that the stochastic process has finite activity, i.e., almost

surely the particle motion exhibits a finite number of jumps on every compact time interval. In this

case, the Lévy process is a compound Poisson process, i.e.,

Lt =

Nt∑

k=1

Rk. (6.2.7)

In (6.2.7),Nt is a Poisson process with intensityλ−1 that is independent ofRk
iid∼ φ, where we have

defined the probability density functionφ and mean wait-timeλ so that

φ(z) =
1

λ
ν(z). (6.2.8)

Consequently, the master equation forLt in this case reduces to

ut(x, t) =
1

λ

∫

R

(
u(y, t)− u(x, t)

)
φ(y − x) dy. (6.2.9)

To understand the smoothing effect of the nonlocal operatorin (6.1.3), we introduce the frac-

tional diffusion equation

ut(x, t) = −c(−∆)α/2u(x, t), 0 < α ≤ 2, (6.2.10)

which arises from the triplet(0, 0, ν), with ν(x) = c
|x|1+α , and is the master equation for a centered

and symmetric stable processSα
t . The analysis in [3, 26, 29, 72] demonstrates that the nonlocal

operator in (6.2.9) does not smooth the data, i.e, the solution is no smoother than the initial condition.

In particular, a discontinuity in the initial data will remain for all finite time. This result is given in

Theorem 6.2.1.

Theorem 6.2.1(Chasseigne et al. [26]). If φ ∈ L1(R) and φ̂ ∈ L1(R), then the fundamental

solution, i.e., the solution withu(x, 0) = δ(x), whereδ(x) is the Dirac measure, of(6.2.9)is given

by

gu(x, t) = exp(−λ−1t)δ(x) +w(x, t), (6.2.11)

wherew is smooth.

66



Relationships between fractional and nonlocal diffusion have been studied in several fashions,

e.g., the asymptotic behaviors were shown to converge in [26] and an equivalence between the

appropriate solution spaces was demonstrated in [29, 72]. As nonlocality vanishes, per the inter-

pretation in [21], the nonlocal diffusion well-approximates fractional diffusion for special choices

of ν ∈ L1(R). We now show under suitable conditions that the processes underlying the fractional

diffusion equation (6.2.10) can be well-approximated by a sequence of processes underlying the

nonlocal diffusion equation, which is summarized in Theorem 6.2.2.

Theorem 6.2.2.Assumêφ(ξ) = exp(−cεα|ξ|α),α ∈ (0, 2], andλ = εα, whereφ andλ are defined

in (6.2.8). Letuε ∈ C([0,∞), L1(R)) denote the solution to



uεt (x, t) =

1

λ

∫

R

(
uε(y, t)− uε(x, t)

)
φ(y − x) dy,

uε(x, 0) = δ(x)

(6.2.12)

andv ∈ C([0,∞),Hα/2(R)) denote the solution to



vt(x, t) = −c(−∆)α/2v(x, t),

v(x, 0) = δ(x).
(6.2.13)

Denote the compound Poisson process corresponding touε with Y ε
t and the stable process corre-

sponding tov with Sα
t . Then, for allt > 0, asε→ 0,

Y ε
t

d→ Sα
t ,

i.e.,Y ε
t converges in distribution toSα

t .

Proof. The characteristic function forY ε
t is

ûε(ξ, t) = û0(ξ) exp

(
1

λ

(
φ̂(ξ)− 1

)
t

)
= û0(ξ) exp

(
1

εα
(exp(−cεα|ξ|α)− 1) t

)
.

Clearly,

lim
ε→0

ûε(ξ, t) = û0(ξ) exp (−c|ξ|αt) ,

which is continuous atξ = 0, so that the Lévy Continuity Theorem gives the result.

Corollary 6.2.3. LetFY ε
t

andFSα
t

denote the distribution functions ofY ε
t andSα

t . Then, sinceFSα
t

is continuous,
∫ x

−∞
uε(z, t) dz →

∫ x

−∞
v(z, t) dz,

for all x ∈ R.

67



We remark thatλ = εα specifies a scaling of time and space asφ becomes localized. In the case

of α = 2, the scalingλ = ε2 is is typical of classical diffusion processes. Formally, Theorem 6.2.2

can be interpreted as stating that the distinction between the compound Poisson and centered and

symmetric stable processes is negligible asε → 0 because the size of the jumps becomes so small

that the error made in approximating the former with the latter is small.

Processes with infinite activity

In the caseν /∈ L1(R), the stochastic process has infinite activity, i.e., almostsurely the particle

motion exhibits an infinite number of jumps on every compact time interval. To condense the

presentation, we only consider choices forν of the formν(x) = C
|x|1+α , α ∈ (0, 2), C > 0. In this

case, the Lévy process is comprised of a compound Poisson processYt of the large jumps and a

square integrable martingaleZt of the small jumps, i.e.,Lt = Yt + Zt and

ϕLt(ξ) = ϕYt(ξ) · ϕZt(ξ)

= exp

((∫

|x|≥δ

(
eiξx − 1

)
ν(x) dx

)
t

)
· exp

((∫

|x|<δ

(
eiξx − 1

)
ν(x) dx

)
t

)
.

The compound Poisson processYt can be understood readily by definingλ =
(∫

|x|≥δ ν(x) dx
)−1

andφ(x) = λν(x) so that

ϕYt(ξ) = exp

(
1

λ

(∫

|x|≥δ

(
eiξx − 1

)
φ(x) dx

)
t

)
.

The master equation forZt is then

ut(x, t) =

∫

R

(
u(y, t)− u(x, t)

)
ν(y − x) dy, (6.2.14)

whereν(x) = C
|x|1+αχ(−δ,δ)(x).

For the choiceν(x) = (2−α)δα−2

|x|1+α χ(−δ,δ)(x), α ∈ (0, 2), the analysis in [29, 72] gives that solu-

tions to (6.2.14) converge to the solution of the classical diffusion (6.1.2) asδ → 0. The following

theorem corroborates this result from the viewpoint of the underlying stochastic processes.

Theorem 6.2.4. Let Zδ
t denote the jump process to(6.2.14)with ν(x) = (2−α)δα−2

|x|1+α χ(−δ,δ)(x),

α ∈ (0, 2). Then,

Zδ
t

d→
√
2Wt,

asδ → 0.

68



Proof. The characteristic function ofZδ
t is given by

ϕZδ
t
(ξ) = exp

(
t

∫ δ

−δ

(
eiξx − 1

) (2− α)δα−2

|x|1+α
dx

)
.

Expandingeiξx in a Taylor series about the origin and noticing the odd termsvanish, we have

ϕZδ
t
(ξ) =

∞∏

k=1

exp

(
t

∫ δ

−δ

(iξx)2k

(2k)!

(2− α)δα−2

|x|1+α
dx

)

= exp

(
t

∫ δ

−δ

(iξx)2

2

(2− α)δα−2

|x|1+α
dx

)
· exp (O(δ))

= exp
(
−tξ2

)
· exp (O(δ)) ,

which, takingδ → 0 and an application of the Lévy Continuity Theorem, completes the proof.

The analysis of [29, 72] demonstrates that the nonlocal operator in (6.2.14) has a fractional

smoothing effect, i.e., the nonlocal operator maps intoHα/2(R), α ∈ (0, 2). We contrast this with

the lack of smoothing in the caseν ∈ L1(R). Specifically, the Lévy process has finite activity (ν ∈

L1(R)) if and only if the spatial operator in the corresponding master equation has no smoothing.

That is, the Lévy process has infinite activity (ν /∈ L1(R)) if and only if the spatial operator in the

corresponding master equation has smoothing. Further, theamount of smoothing is related to the

variation of the sample paths. For instance, in the caseα ∈ (0, 1), the sample paths have finite

variation (less smoothing). On the other hand, ifα ∈ [1, 2), the sample paths have infinite variation

(more smoothing).

Volume constraints

In this section we present volume constraints for (6.1.3), which have been studied in [3, 21, 22, 29,

36]. We consider the bounded domainΩ and assume the initial densityu(x, 0) = u0(x) satisfies

u0 ≥ 0 and
∫
Ω u0(x) dx = 1. We impose homogeneous Dirichlet volume constraints onu over the

nonzero volumeΓ = R \ Ω. Let

V =

{
v ∈ L1(R)

∣∣∣∣ v
∣∣
Γ
= 0

}

be the subspaces of test and trial functions.

Thus, the Dirichlet problem reads: findu ∈ V × (0,∞) such that



ut(x, t) =

1

λ

∫

R

(
u(y, t)− u(x, t)

)
φ(y − x) dy, x ∈ Ω,

u(x, 0) = u0(x), x ∈ Ω.

(6.2.15)
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Well-posedness of (6.2.15) has been treated in [29]. Such problems whenΩ is a connected domain

have been studied in [3, 21, 22, 26, 36]. Such a volume constraint arises by imposing absorbing

behaviors of the stochastic process on the volumes; see [22]for an example.

In the paper [29], the smoothing of the nonlocal diffusion equation with volume constraints was

considered. The smoothing of the operator with volume constraints corresponds again to the activity

and variation of sample paths of the Lévy process on a bounded domain.

6.3 Finite Element Method and Density Estimation from Simulations

We present the variational and finite element formulations.Then we discuss simulations and density

estimation. Properties of the analytic solutions are also presented.

Variational and finite element method

Define the bilinear formB : V × V → R

B(u, v) =
1

2

∫

R

∫

R

(
u(y, t)− u(x, t)

)(
v(y)− v(x)

)
φ(y − x) dy dx. (6.3.1)

The variational formulation to (6.2.15) is: findu ∈ V × (0,∞) such that




∫

Ω
utv dx+

1

λ
B(u, v) = 0, ∀ v ∈ L1(Ω),

u = u0, x ∈ Ω.

(6.3.2)

To formulate the finite element method, we partitionΩ into n subintervalsΩk of width hk and

let χΩk
(x) be the indicator function forΩk. We denote the space of piecewise constant functions

on the subintervalsΩk by V h
Ω . Note anyuh ∈ V h

Ω × (0,∞) can be written

uh(x, t) =

n∑

k=1

γk(t)χΩk
(x). (6.3.3)

The discrete variational problem to (6.3.2) is then: finduh ∈ V h
Ω × (0,∞) such that

Mγ̇ = − 1

λ
Aγ,

respectively, whereM andA are the mass and stiffness matrices defined by

Mkk = |Ωk| and Akj =





−
∫

Ωk

∫

Ωj

φ(y − x) dy dx, k 6= j,
∫

Ωk

∫

R\Ωk

φ(y − x) dy dx, k = j.

We note that this is a conforming finite element method and convergence studies and error analysis

has been studied [27].
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Density estimation

We considerN realizations of the stochastic process, which might represent data from an experi-

ment. Letpi(t) denote thei-th particle’s position at timet. We construct the density estimate

µN (x, t) =

n∑

k=1

χΩk
(x)

(
1

Nhk

N∑

i=1

χΩk
(pi(t))

)
(6.3.4)

and note that the bins are defined precisely by the finite element discretization. In general, one seeks

an optimalhk so not to over-smooth or under-smooth the data. This choice of density estimate

allows for discontinuous solutions and an easy specification of the support of the density estimate,

which is known from the volume constraints. Standard kerneldensity estimation techniques, e.g.,

DN (x, t) =
1

dN

N∑

i=1

K

(
x− pi(t)

d

)
,

whereK is a Gaussian kernel andd is the bandwidth, do not share these properties. Also, the

choice of kernel has a dramatic impact on the resulting estimate and requires a priori knowledge of

the densityu, which is unavailable.

There are several nice consequences of the choice (6.3.4), summarized in the following theorem.

For conciseness of the presentation, we assumehk = h throughout the duration of the chapter.

Theorem 6.3.1.The density estimateµN (x, t) is

(a) unbiased in the sense that

lim
n→∞

E(µN (x, t)) = u(x, t)

(b) the variance is given by

Var(µN (x, t)) = E
(
(µN (x, t)− E(µN (x, t)))2

)

=
1

Nh2

n∑

k=1

χΩk
(x)

(∫

Ωk

u(z, t) dz −
(∫

Ωk

u(z, t) dz

)2
)
,

which tends to zero asN → ∞

(c) almost surely,

lim
N→∞

‖µN − u‖2L2(Ω) =
n∑

k=1

∫

Ωk

(
1

h

∫

Ωk

u(z, t) dz − u(x, t)

)2

dx,

which then tends to zero asn→ ∞.
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Proof. To prove (a), we first note

E(µN (x, t)) =
n∑

k=1

χΩk
(x)

1

h

∫

Ωk

u(z, t) dz.

Then,

lim
n→∞

E(µN (x, t)) = lim
n→∞

1

h

∫

Ωk(n)

u(z, t) dz,

whereΩk(n) is the subdomain that containsx for a givenn. Takingn→ ∞ shows (a). Showing (b)

is a straightforward computation. Now, to show (c), first note

‖µN − u‖2L2(Ω) =

n∑

k=1

∫

Ωk

(
1

hN

N∑

i=1

χΩk
(pi(t))− u(x, t)

)2

dx.

Then, by the Strong Law of Large Numbers, almost surely,

lim
N→∞

‖µN − u‖2L2(Ω) =

n∑

k=1

∫

Ωk

(
1

h

∫

Ωk

u(z, t) dz − u(x, t)

)2

dx.

The mean value theorem for integrals gives

n∑

k=1

∫

Ωk

(
1

h

∫

Ωk

u(z, t) dz − u(x, t)

)2

dx =

n∑

k=1

(u(ck, t)− u(dk, t))
2 h,

whereck, dk ∈ Ωk. Takingn→ ∞ shows (c).

Properties of solutions

The results of [26] provide properties for the solutions of (6.2.15), namely

‖u‖L1(Ω) ≤ e−
c1
2
t‖u0‖L2(Ω), c1, t > 0, (6.3.5a)

‖u‖2L2(Ω) ≤ e−c1t‖u0‖2L2(Ω), c1, t > 0, (6.3.5b)

where

‖u‖Lp(Ω) =

(∫

Ω
up dx

)1/p

and

c1 = inf
u∈L2(Ω)

B(u, u)

‖u‖2
L2(Ω)

. (6.3.6)
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We note that (6.3.5a) follows from an application of the Cauchy-Schwarz inequality to (6.3.5b).

The equation (6.3.5a) implies the probability of the particle remaining inΩ decreases. We compute

estimates of (6.3.5) using the density estimate from simulations, namely

∫

Ω
µN (x, t) dx =

1

N

N∑

i=1

χΩ(pi(t)), t > 0, (6.3.7a)

∫

Ω
µ2N (x, t) dx =

1

N2h

n∑

k=1

(
N∑

i=1

χΩk
(pi(t))

)2

, t > 0. (6.3.7b)

We now consider the exit-timeT of the process from the bounded domainΩ. Notice the distri-

bution function ofT is given by

F (t) = 1−
∫

Ω
u(x, t) dx. (6.3.8)

SinceT ≥ 0, the expected exit-time can be computed via

E(T ) =

∫ ∞

0
(1− F (t)) dt =

∫ ∞

0

∫

Ω
u(x, t) dxdt (6.3.9)

and is always finite since, by (6.3.5a),

∫ ∞

0

∫

Ω
u(x, t) dxdt ≤ 2

c1

√∫

Ω
u20(x) dx.

The bound on the mean exit-time is inversely proportional toc1, e.g., decreases as the eigenvaluec1

increases. All of the moments,

E(Xk) =

∫

Ω
xku(x, t) dx,

also decay to zero.

The exit-time distribution is approximated from the numerical solutions via

Fh(t) = 1−
∫

Ω
uh(x, t) dx = 1− h

n∑

k=1

γk(t) (6.3.10)

and from the density estimates via

FN (t) = 1−
∫

Ω
µN (x, t) dx = 1− 1

N

N∑

i=1

χΩ(pi(t)). (6.3.11)

Notice thatFN (t) is an unbiased estimator ofF (t) and also

Var(FN (t)) =
1

N

(∫

Ω
u(x, t) dx

)(
1−

∫

Ω
u(x, t) dx

)
,

which tends to zero asN → ∞.
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6.4 Numerical Experiments

Forν ∈ L1(R),Lt is a compound Poisson process. Simulating such a process on abounded domain

is simple and is presented in Algorithm 1; see [22] also. Ifν /∈ L1(R), we recall

ϕLt(ξ) = ϕYt(ξ) · ϕZt(ξ)

= exp

(
1

λ

(∫

|x|≥δ

(
eiξx − 1

)
φ(x) dx

)
t

)
· exp

((∫

|x|<δ

(
eiξx − 1

)
ν(x) dx

)
t

)
,

whereλ =
(∫

|x|≥δ ν(x) dx
)−1

andφ(x) = λν(x). The process of large jumps,Yt, is a compound

Poisson process, which is easily treated and thus removed from this discussion. The process of

small jumps,Zt, however, is not a compound process. Unfortunately, such processes are impossible

to simulate since, for example, an infinite number of jumps are present on every arbitrarily small

compact time interval. Thus, we instead approximateZt with a compound Poisson processZτ
t with

characteristic function given by

ϕZτ
t
(ξ) = exp

((∫

τ≤|x|<δ

(
eiξx − 1

)
ν(x) dx

)
t

)
.

Again, in the more familiar notation,

ϕZτ
t
(ξ) = exp

(
1

λτ

(∫

τ≤|x|<δ

(
eiξx − 1

)
φτ (x) dx

)
t

)
,

whereλτ =
(∫

τ≤|x|<δ ν(x) dx
)−1

andφτ (x) = λτν(x). The processZτ
t approximatesZt in

the sense that asτ → 0, Zτ
t

d→ Zt, which can be shown with an application of Lévy Continuity

Theorem. This approximation is the so-called Poisson approximation.

Algorithm 6.1: Simulating a com-
pound Poisson process
a0 = 0
simulateL0 ∼ u0(x)
for k from 1 toT do

simulatetk ∼ Exp(λ)
ak = ak−1 + tk
simulatesk ∼ φ(s)
Ltk = Ltk−1

+ sk
if Ltk /∈ Ω then

break
end

end

Algorithm 6.2: Simulating a pure
jump martingale

chooseτ sufficiently small
defineλτ andφτ

follow Algorithm 6.1 to simulate
Zτ
t
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Example 6.4.1(Comparison of numerical solutions to density estimates from simulations). We

now demonstrate the capability of simulating processes forbothν ∈ L1(R) andν /∈ L1(R), with

the latter being the Poisson approximation, obtaining density estimates from the simulations, and

numerically solving the corresponding master equations via the finite element method. In both, we

let Ω = (0, 1), u0(x) = 6xχ(0,1/2)(x), andh = 0.005

We first considerν ∈ L1(R) with

φ(x) =
1√
4πε2

exp

(
− x2

4ε2

)
, (6.4.1)

ε = 0.25, λ = ε2. We plot the numerical solutions and density estimates at the timest = 0, 0.05, 0.1

in Fig. 6.1. Two different numbers of realizations are considered,N = 1 · 104 andN = 5 · 104, and

three different bin widths are considered,h, 5h, and10h. Fig. 6.1 demonstrates the capability of
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(c) bin width10h, N = 1 · 104
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(e) bin width5h, N = 5 · 104
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(f) bin width 10h, N = 5 · 104

Fig. 6.1:Numerical solutionsuh(x, t) and density estimatesµN (x, t) from simulations. For computingµN ,
we consider two different values ofN and three different bin widths. The three profiles in each
panel correspond to timest = 0, 0.05, 0.1.

approximating the densityu(x, t) by solving the master equation rather than relying on simulations.

The effect the bin width has on smoothing the data is evident,e.g., a bin width ofh seems to

under-smooth the data, whereas a bin width of10h seems to over-smooth the data.

We next considerν /∈ L1(R),

ν(x) =
1

x3/2
. (6.4.2)
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We plot the numerical solutions and density estimates at thetimest = 0, 0.025, 0.05 in Fig. 6.2.

We simulateN = 5 · 104 realizations and we selecth as the bin width. The Poisson approximation

of Zt is used with three different values ofτ . Notice the disagreement between the density estimate
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(a) bin widthh, τ = 0.25
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(b) bin widthh, τ = 0.05
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(c) bin widthh, τ = 0.01

Fig. 6.2:Numerical solutionsuh(x, t) and density estimatesµN (x, t) from the Poisson approximation of
simulations for three different values ofτ .

from the simulations and the numerical solution for largeτ . This is corrected by decreasingτ , i.e.,

improving the approximation ofZt Also notice the lack of smoothing forν ∈ L1 compared to the

smoothing effect in the other case.

We finally compare the exit-times distributions for the two choices (6.4.1) and (6.4.2), shown

in Fig. 6.3. Moreover, the mean exit-times are approximately 0.2484 and 0.1527, respectively. The

time required for 90% (95%, 99%) of the density to leaveΩ are approximately 0.5610 (0.7250,

1.1060) and 0.3460 (0.4490, 0.6850), respectively.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

(a) ν ∈ L1(R)

0 0.5 1
0

0.2

0.4

0.6

0.8

1
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Fig. 6.3:Approximate exit-time distributionsFh(t) (solid) andFN (t) (dashed) fort ∈ [0, 1] andN = 1000.

Example 6.4.2(Identifying different types of diffusion). We present density estimates and numeri-

cal solutions of the master equation forν ∈ L1(R) with λ = 1
εα and

φ̂(ξ) = exp (−εα|ξ|α) .
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We plot the time-evolutions of the approximate solutions for α = 2 andα = 1/2 and variousε

given by the finite element method with mesh spacingh = 0.0005 andt ∈ [0, 0.25] in Fig. 6.4. For

α = 2, the solutions behave asymptotically, with respect toε, as solutions to the classical diffusion

equation. Forα = 1/2, however, the asymptotic behavior of solutions is given by afractional

Laplace parabolic equation.
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Fig. 6.4:Solutions to the nonlocal homogeneous Dirichlet problem with φαε in Example 6.4.2. The vertical
axis in each panel is the value ofuh(x, t) and the horizontal axis isx. The ten different solution
profiles in each panel correspond to the solutions at ten different times, fort ∈ [0, 0.25]. In panels
(c) and (f), the solutions to (6.1.2) and (6.2.10) are given,respectively.

Example 6.4.3. This example demonstrates one advantage of considering general volume con-

straints. In particular, we show exit-times from non-simple, e.g., not connected, domains can be

studied via the appropriate master equation. Moreover, thenonlocal nature of the equation allows

for the process to jump between non-connected parts of the domain. For this discussion, we assume

ν(x) = 1√
4πε2

exp
(
− x2

4ε2

)
.

In general, we consider a bounded domainΩ that is given by

Ω =

D⋃

k=1

Ωk and Γ =

D+1⋃

k=1

Γk.

We are interested in the density exchanges between volumes.More specifically, define

MΓk
Ωj

(t) =
1

λ

∫ t

0

∫

Γk

∫

Ωj

u(x, s)φ(y − x) dxdy ds,

77



0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

(a) Fh(t), α = 2

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

(b) first moment,α = 2

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

(c) second moment,α = 2

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

(d) Fh(t), α = 1/2

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

(e) first moment,α = 1/2

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

(f) second moment,α = 1/2

Fig. 6.5:In each panel, we plot the appropriate statistic computed from the numerical solution withε =
0.100, ε = 0.025, and the classical (top) and fractional (bottom) diffusion.

which represents the density that has moved fromΩj to Γk by timet. Integrating (6.2.9),

d

dt

(∫

Ω
u(x, t) dx

)
= − 1

λ

∫

Γ

∫

Ω
u(x, t)φ(y − x) dxdy

so that
∫

Ω
u(x, t) dx−

∫

Ω
u0(x) dx = − 1

λ

∫ t

0

∫

Γ

∫

Ω
u(x, s)φ(y − x) dxdy ds.

The quantity on the left is the negative of the density that has exitedΩ and we thus have
∫

Ω
u0(x) dx−

∫

Ω
u(x, t) dx =

∑

k

∑

j

MΓk
Ωj

(t).

To illustrate this, we consider a specific example. LetΩ = (0, 1/2) ∪ (3/5, 1) andΓ = R \ Ω.

We impose Dirichlet volume constraints onΓ. We compute the density that exits the constrained

regionsΓ1 = (−∞, 0), Γ2 = (0.5, 0.6), andΓ3 = (1,∞). The results are plotted in Fig. 6.6.

We study the effect of varyingε on these quantities. Asε → 0, half of the density leavesΩ to

Γ1 and the other half toΓ2. For nonzeroε, however, the nonlocal nature allows density that starts

in Ω1 to leaveΩ to Γ3. The results are plotted in Fig. 6.7.

6.5 Summary

This chapter studies pure jump Lévy processes on bounded domains via the master equation, i.e.,

a nonlocal diffusion equation with volume constraints. Volume constraints allows for the study of
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Fig. 6.6:The numerical solutionuh and density estimateµN with h = 0.005,N = 5 · 104, and bin widthh.
Three different times and two different values ofε are considered.

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

(a) ε = 0.25, MΓ1

Ω (t)

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

(b) ε = 0.25, MΓ2

Ω (t)

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

(c) ε = 0.25, MΓ3

Ω (t)

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

(d) ε = 0.05, MΓ1

Ω (t)

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

(e) ε = 0.05, MΓ2

Ω (t)

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

(f) ε = 0.05, MΓ3

Ω (t)

Fig. 6.7:The quantitiesMΓi

Ω
for t ∈ [0, 0.25] and two different values ofε.
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exit-times of the process from a bounded domain. Such nonlocal diffusion equations with volume

constraints have received much attention lately and we describe how the activity of the process,

variation of the sample paths, exit-time distribution of the process, and smoothing of the nonlocal

operator are all related. We show how the exit-times vary with respect to the type of diffusion.

Moreover, the general volume constraints allow for the study of exit-times from nontrivial domains.
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Part II

Formulation and Analysis for Elliptic Problems on Uncertain Domains



7. A SURVEY OF COMPUTATIONS FOR ELLIPTIC PROBLEMS WITH
STOCHASTIC COEFFICIENTS AND DATA

Many natural phenomena are modeled by boundary value problems for PDEs. Given a fixed set of

input data into the model, e.g., boundary conditions, parameters, and coefficients, much effort has

been exhausted to give efficient and accurate solutions of the model. However, these input data are

often accompanied by various sources of uncertainty, e.g.,errors in estimating parameters from data,

and, consequently, effectively using the solutions of the model requires an analysis of the effects of

the uncertainty. The important issue is understanding how the uncertainty propagates through the

mathematical model, which results in a description of the uncertainty for all outputs of the model,

e.g., for all time and all space. In this chapter, we considerthe effects of uncertainty in the coeffi-

cients of the differential equation and in the geometry on which the differential equation is posed.

We begin by reviewing some of the standard tools for solving such problems, e.g., Monte Carlo

methods, parametric and nonparametric density estimation, Karhunen-Loeve expansions, general-

ized polynomial chaos, and stochastic Galerkin methods.

7.1 Introduction

We introduce the PDE posed on the domainΩ ⊂ R
2,





−∇ · (a(x;θ)∇w(x;θ)) = f(x;θ), x ∈ Ω,

w(x) = 0, x ∈ ∂Ω,
(7.1.1)

whereθ is a random variable or field with some given probability structure. In the case of a ran-

dom field, the limitations of experiment and computation motivates replacing the field by a finite

collection of independent random variables,

θ1, θ2, θ3, . . . ;θn,

We might assume these quantities provide a better approximation asn increases. However, it is

desirable to find an approximation that is valid for smalln.



We discuss studying (7.1.1) via sampling methods, e.g., Monte Carlo, and by the stochastic

Galerkin method. In general, sampling methods are very simple to implement and require solving

a deterministic problem for each sample. If an efficient means for solving the original problem for

a fixed sample is available, sampling methods are appealing.The stochastic Galerkin method, on

the other hand, requires formulating a more difficult problem, which is often a system of coupled

PDEs. Not only can the task of deriving this problem be difficult, but subsequent study of it often

requires the development of new solvers and methods. If these issues can be overcome, the stochas-

tic Galerkin method eliminates the need to sample and yieldsthe optimal accuracy by the same

account of the standard Galerkin method.

The authors of [33, 34] consider the nonparametric density estimation problem of a QOFI via

standard Monte Carlo methods in conjunction with Lions domain decomposition and a Neumann

expansion in order to provide an efficient computational approach. A posteriori error analysis and

adaptive error control algorithms are also presented. In [12], the authors present a stochastic col-

location method to solve PDEs with stochastic coefficients and data under the assumption that the

input data depends on a finite number of random variables. Theprobability density of the state of a

system is studied in [20], where the authors seek to quantifythe uncertainty in chemical properties

during the transport of a reactive solute in a heterogeneousporous media.

In [8], the authors assume that the coefficients are described by an appropriate Karhunen-Loeve

expansion and then give well-posedness results and error estimates in Sobolev spaces. The stochas-

tic Galerkin method is used in [13] to obtain statistical moments of the solution. The so-called

“worst case scenario” for elliptic PDEs with uncertainty ispresented in [11].

7.2 Sample-Based Methods

A sample-based method for examining uncertainty involves sampling from the input spaces and then

processing the results to compute various statistical quantities. In this section, we briefly describe

a Monte Carlo sampling method for PDE with stochastic coefficients. Other sampling approaches

exist, e.g., collocation and importance sampling, but are omitted for brevity.

Sampling from a known distribution

We first describe how to generate realizations of a random variable with a known distributionF

via the Inverse CDF Method [66]. Assume we have a pseudo-random number generator that draws
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numbers from Unif(0, 1). The approach for generating realizationsx of a random variableX is to

simply generate a realizationu from Unif(0, 1) and then define

x = F−1
∗ (u),

where

F−1
∗ (u) = inf

z∈R
{F (z) |F (z) ≥ u}.

LettingU ∼ Unif(0, 1), we then haveF−1
∗ (U) ∼ X. Further, sinceU ∼ 1−U , F−1

∗ (1−U) ∼ X.

Monte Carlo methods simulate a random variable repeatedly to obtain information about the

distribution of the variable. Using the realizations, we can compute the probability distribution of

the output. Alternatively, we may be satisfied with some statistics, e.g. the mean. We explore

the relationship between the number of realizations and theaccuracy of the statistical information

obtained.

We now review some basic modes of convergence.

Definition 7.2.1. LetXn be a sequence of random variables, and letX be a random variable. Then,

Xn converges toX

1. in distribution,Xn
d→ X, if, for all pointsx whereF (x) is continuous,

lim
n→∞

Fn(x) = F (x),

2. in probability,Xn
p→ X, if

lim
n→∞

Pr (|Xn −X| ≤ ε) = 1, ∀ε > 0

3. almost surely,Xn
a.s.→ X, if

Pr
(
lim
n→∞

Xn = X
)
= 1

4. in mean-square if

lim
n→∞

E
(
|Xn −X|2

)
= 0.
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If Xn converges toX almost surely, the set of values such thatXn does not converge toX is a

set of measure zero. Convergence in probability is a weaker notion of convergence and convergence

in distribution is weaker still.

The Central Limit Theorem states that the sum of a large number of i.i.d. random variable

behaves like a single normal random variable. To analyze large sets of random variables, we need

the Central Limit Theorem, as well as the Law of Large Numbers.

Theorem 7.2.1(Central Limit Theorem). LetXi be i.i.d. random variables withE(Xi) = µ and

Var(X) = σ2, with 0 < σ2 <∞. Then

lim
n→∞

Pr

(
a ≤

1
n

∑n
i=1Xi − µ

σ/
√
n

< b

)
= Φ(b)− Φ(a) =

1√
2π

∫ b

a
e−

x2

2 dx.

In particular,

1
n

∑n
i=1Xi − µ

σ/
√
n

d→ Z ∼ N(0, 1).

Theorem 7.2.2(Strong Law of Large Numbers). LetXi be i.i.d. random variables withE(Xi) = µ

andVar(X) = σ2, with 0 < σ2 <∞. Then,

X̄ =
1

n

n∑

i=1

Xi
a.s.→ µ.

Theorem 7.2.3(Weak Law of Large Numbers). LetXi be i.i.d. random variables withE(Xi) = µ

andVar(X) = σ2, with 0 < σ2 <∞. Then,

X̄ =
1

n

n∑

i=1

Xi
p→ µ.

Monte Carlo method

The Monte Carlo method gives a way for obtaining samples of the output space by taking random

samples of the input space and solving the resulting deterministic PDEs. The general description of

Monte Carlo methods is simple. For fixedN , we

1. generateN realizations of the input parameters

2. solve each of theN deterministic problems

3. use the output values to compute a cumulative probabilitydistribution or desired statistics.
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The hope is that computed statistical quantities converge to the true statistic. asN → ∞.

Monte Carlo methods are specifically useful for approximating integral-based quantities, i.e.,

I =

∫

Ω
h(θ) dF (θ) =

∫

Ω
h(θ)f(θ) dθ,

where the probability density functionf(θ) is typically unknown. We selectN realizations ofθ

independently and consider the estimate

IN =
1

N

N∑

n=1

h(θn).

By the Strong Law of Large Numbers, asN → ∞, IN → I almost surely. Moreover, the error in

the estimate is related to the variance of the functionh and the number of samplesN . In fact,

Var (IN ) =
1

N2

N∑

n=1

Var(h(θn)) =
Var(h)

N
=
σ2(h)

N

so that the error in the estimate scales with
√
N . To see this more clearly, note

lim
N→∞

Pr

(
−aσ(h)√

N
≤ IN − I ≤ b

σ(h)√
N

)
= Φ(b)− Φ(−a).

We are particularly interested in computing the distribution and various moments of solutions

to partial differential equations with stochastic coefficients. Suppose we are interested in statistics

of a QOFI computed fromw(x;θ), which solves (7.1.1). Namely, let

Q(w;θ) =

∫

Ω
w(x;θ)ψ(x) dx

denote such a QOFI. Various moments, e.g., thek-th moment, ofQ(w;θ) can be approximated via

IN =
1

N

N∑

n=1

(Q(w;θn))
k.

The Strong Law of Large Numbers gives that

1

N

N∑

n=1

(Q(w;θn))
k a.s.→

∫

Θ
(Q(w;θ))k dP (Q(θ)).

Moreover, we can estimate the distribution ofQ(w;θ) by using the empirical distribution function

IN = FN (y) =
1

N

N∑

n=1

χ(−∞,y)(Q(w;θn)).
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Parametric and nonparametric density estimation

Supposex1, . . . , xn are data fromn observations of a random variableX with an unknown distri-

bution. We assume that the probability density functionf belongs to a parameterized family, but the

parameters,θ, are unknown. For example, one might assumeX ∼ N(µ, σ2), whereθ = (µ, σ2) is

unknown. We define the likelihood

L(x1, . . . , xn | θ) = f(x1, . . . , xn | θ).

Assuming the observations are independent,

L(x1, . . . , xn | θ) =
n∏

i=1

f(xi | θ).

The goal of maximum likelihood estimation is to find the parametersθ that maximizeL, i.e.,

θ̂MLE = argmax
θ

L(x1, . . . , xn | θ).

Often, we instead equivalently maximize the log-likelihood ℓ = ln(L), i.e.,

θ̂MLE = argmax
θ

ℓ(x1, . . . , xn | θ) = argmax
θ

(
n∑

i=1

ln(f(xi | θ))
)
.

The maximum likelihood estimator has the desired property of consistency, that is,

θ̂MLE
p→ θ,

asn → ∞. Unfortunately, such estimators are in general biased. An estimatorθ̂ for θ is unbiased

if E(θ̂) = θ. We refer toE(θ̂)− θ as the bias.

We recall the likelihood

L(x1, . . . , xn | θ)

and suppose a prior distribution on the parametersπ(θ). An application of Bayes’ theorem demon-

strates that the posterior distribution is proportional tothe product of the likelihood and priors, i.e,

π(θ |x1, . . . , xn) ∝ L(x1, . . . , xn | θ)π(θ).

In the special case that the prior is conjugate to the likelihood, closed forms for the posterior are

easily found. A conjugate priorπ(θ) to the likelihoodπ(· | θ) is such that the posterior distribution

lies in the same parameterized family as the prior.
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In many applications, experience suggests that the posterior density is rarely described in para-

metric form. To this effect, one can consider a nonparameteric estimation of the density. We first

consider the density histogram. Consider the meshtk, wheretk+1 − tk = h and, consequently,

the histogram is said to have bin widthh. The density histogram is constructed by using blocks of

width h and height(nh)−1 and is defined

f̄(x) =
1

nh

K∑

k=1

n∑

i=1

χ[tk,tk+1)(xi)χ[tk,tk+1)(x),

whereχA(x) is the indicator function of the setA. Notice
∫

R

f̄(x) dx = 1.

We also consider the kernel density estimator, where a kernel is a non-negative and symmetric

functionK such that
∫
R
K(x) dx = 1. LetK be some kernel function andxi be data samples from

a densityf . The basic kernel estimator is

f̄ =
1

nh

n∑

i=1

K

(
x− xi
h

)
,

whereh is a parameter, often called the bandwidth, that controls the smoothing of the data. The

kernel estimator̄f is an approximation of the densityf and inherits smoothness properties of the

kernelK. Again, sinceK integrates to1, we have
∫

R

f̄(x) dx = 1.

A common choice forK is the Gaussian kernelK(x) = 1√
2π

exp
(
−x2

2

)
so that

f̄ =
1

nh
√
2π

n∑

i=1

exp

(
−(x− xi)

2

2h2

)
,

which is the average ofn different Gaussian densities that are each centered atxi and have variance

h. In this example, it is clear that varyinghwill affect the smoothness of the kernel density estimator.

The empirical distribution function is defined

Fn(x) =
1

n

n∑

i=1

χ(−∞,x](xi).

Applying a simple divided difference to approximate the density f , we find

f̄ =
Fn(x)− Fn(x− h)

h
=

1

nh

n∑

i=1

χ(xi,xi+h] (x) ,

which can be referred to as an empirical density function.
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7.3 Stochastic Galerkin Methods

The stochastic Galerkin method [67] uses Karhunen-Loeve and generalized polynomial chaos ex-

pansions to represent the solution to and inputs for a differential equation with stochastic coef-

ficients. Typically, a coupled system of equations must be solved to obtain the coefficients in the

polynomial chaos expansion and is often done with the standard Galerkin finite element method. We

first review the Karhunen-Loeve expansion and generalized polynomial chaos. Then, we present a

short introduction of the stochastic Galerkin method.

Karhunen-Loeve expansion

The Karhunen-Loeve expansion represents a stochastic process as an infinite sum of orthogonal

basis functions multiplied by uncorrelated random variables. Letω(x;θ) be a random process with

ω(x) = E(ω(x;θ)) and Cω(x, y) = Cov(ω(x;θ), ω(y;θ)).

Then, the Karhunen-Loeve expansions allows us to write

ω(x;θ) = ω(x) +

∞∑

k=1

√
λkfk(t)ξk(θ),

wherefk (λk) are the orthogonal eigenfunctions (eigenvalues), i.e.,

∫

Ω
Cω(x, y)fk(y) dy = λkfk(x), x ∈ Ω.

The random variables{ξk(θ)} are zero-mean, unit-variance, and uncorrelated. In fact,

ξk(θ) =
1√
λk

∫

Ω

(
ω(x;θ)− ω(x)

)
fk(x) dx (7.3.1)

We typically truncate the Karhunen-Loeve expansion to obtain a finite dimensional approxima-

tion of ω(x;θ),

ω(x;θ) = ω(x) +
K∑

k=1

√
λkfk(t)ξk(θ).

The decay rate of the eigenvaluesλk determines when to truncate the series to obtain the desired

accuracy. In general, the decay rate of the eigenvalues depends inversely on the correlation length.

We now present an outline of the proof of the Karhunen-Loeve expansion.
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Lemma 7.3.1. The covariance functionCω is bounded, symmetric, and positive definite.

Proof. We first illustrate boundedness. Choosex, y ∈ Ω and notice, using Hölder’s inequality,

|Cω(x, y)| = |E [ω(x;θ)ω(y;θ)]− ω(x)ω(y)|

≤ |E [ω(x;θ)ω(y;θ)]|+ ω(x)ω(y)

≤
(
E
[
(ω(x;θ))2

])1/2 ·
(
E
[
(ω(y;θ))2

])1/2
+ ω(x)ω(y).

From the uniform boundedness of the second moments ofω(x;θ), we have thatCω is bounded.

Showing symmetry is trivial as

Cω(x, y) = E [ω(x;θ)ω(y;θ)]− ω(x)ω(y) = Cω(y, x).

To demonstrate positive definite, letn ∈ N be given andx1, . . . , xn ∈ Ω. We recall that the

covariance matrix is positive semidefinite. Thus, by definition,Cω is positive definite.

Theorem 7.3.2(Mercer’s theorem). SupposeCω is a continuous symmetric positive definite kernel

on Ω. Then there is an orthonormal basisfk consisting of eigenfunctions such that the sequence

of corresponding eigenvaluesλk is nonnegative. The eigenfunctions corresponding to non-zero

eigenvalues are continuous onΩ and

Cω(x, y) =

∞∑

n=1

λkfk(x)fk(y), (7.3.2)

where the convergence is absolute and uniform onΩ.

Thus,Cω admits the decomposition (7.3.2), whereλk andfk are the eigenvalues and orthonor-

mal eigenfunctions, i.e., they satisfy
∫

Ω
Cω(x, y)fk(y) dy = λkfk(x), x ∈ Ω, (7.3.3)

and
∫

Ω
fn(x)fm(x) dx = δnm, x ∈ Ω, (7.3.4)

We decomposeω(x;θ) into its meanω(x) and a zero mean random processα(x;θ),

ω(x;θ) = ω(x) + α(x;θ).

Note that the covariance functionCα is also given by

Cα(x, y) = Cω(x, y).
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Theorem 7.3.3(Karhunen-Loeve Decomposition I). Letα(x;θ) = ω(x;θ)−ω(x). Then there are

random variables{ξn}n such thatE [ξj(θ)ξk(θ)] = δjk, E [ξj(θ)] = 0, and

α(x;θ) =

∞∑

n=1

ξn(θ)
√
λnfn(x), (7.3.5)

where the sum converges in mean square uniformly inx.

Proof. From previous discussions,Cα is bounded, symmetric, and positive definite. Mercer’s The-

orem gives us the orthonormal eigenfunctionsfn. For non-zero eigenvalueλn, define

ξn(θ) =
1√
λn

∫

Ω
α(x;θ)fn(x) dx.

Sincefn is continuous onΩ, ξn is integrable and

E [ξn(θ)] = 0.

Further,

E [ξj(θ)ξk(θ)] = E

[
1√
λj

∫

Ω
α(x;θ)fj(x) dx · 1√

λk

∫

Ω
α(y;θ)fk(y) dy

]

= E

[
1√
λjλk

∫

Ω

∫

Ω
α(x;θ)α(y;θ)fj(x)fk(y) dxdy

]

=
1√
λjλk

∫

Ω

∫

Ω
E [α(x;θ)α(y;θ)] fj(x)fk(y) dxdy

=
1√
λjλk

∫

Ω

(∫

Ω
Cα(x, y)fj(x) dx

)
fk(y) dy

=

√
λj√
λk

∫

Ω
fj(y)fk(y) dy

= δjk.

Then, one can show

E



(

N∑

n=1

ξn(θ)
√
λnfn(x)− α(x;θ)

)2



=

N∑

n=1

λnfn(x)
2 − 2

N∑

n=1

E [ξn(θ)α(x;θ)]
√
λnfn(x) + Cα(x, x).

Notice

E [ξn(θ)α(x;θ)] =
√
λnfn(x).
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Thus,

E



(

N∑

n=1

ξn(θ)
√
λnfn(x)− α(x;θ)

)2

 = Cα(x, x)−

N∑

n=1

λnfn(x)
2.

The above term converges to0 uniformly in x, completing the proof.

Corollary 7.3.4 (Karhunen-Loeve Decomposition II). For the random processω(x;θ) described

earlier, we can find the Karhunen-Loeve expansion

ω(x;θ) = ω(x;θ) +

∞∑

n=1

ξn(θ)
√
λnfn(x), (7.3.6)

whereE [ξn(θ)] = 0 andE [ξn(θ)ξm(θ)] = δnm.

Generalized polynomial chaos

Let Z be a random variable with distributionF and all finite moments. To keep the presentation

concise, we assume thatZ is absolutely continuous so that we can associate toZ a probability

density functionψ. Thus,

E(|Z|m) =

∫

R

|z|mψ(z) dz <∞, m ∈ N.

Definition 7.3.1. The generalized polynomial chaos basis functions are the orthogonal polynomials

that satisfy

E(φm(Z)φn(Z)) = γnδmn, m, n ∈ N,

whereγn = E(φ2n(Z)).

Since

E(φm(Z)φn(Z)) =

∫

R

φm(z)φn(z)ψ(z) dz,

the functions{φk} are a set of orthogonal polynomials with respect to the weight ψ. The choice of

Z, i.e., the distribution ofZ, thus determines the class of orthogonal polynomials, e.g., if Z has a

uniform distribution thenφk is thek-th Legendre polynomials.

Consequently, theN -th order orthogonal projection of a mean square integrablefunction f is

given by

πNf =

N∑

k=0

f̂kφk(Z), wheref̂k =
1

γk
E(f(Z)φk(Z)).
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Such an approximation is said to be a strong approximation off , e.g.,

E((f − πNf)
2) → 0, asN → ∞.

In fact, theN -th order orthogonal projection is the best approximation in PN , the space of all

polynomials of degreeN , i.e.,

E((f − πNf)
2) = inf

g∈PN

E((f − g)2).

Since convergence in mean square implies weaker types of convergence, e.g., in probability and in

distribution. We also have the following theorem involvingweak convergence.

Theorem 7.3.5. Let Y be a random variable with distributionFY and E(Y 2) < ∞. Let Z be

a random variable with distributionFZ , and finite moments such that the generalized polynomial

chaos basis functions exist. Then, defining

YN =

N∑

k=0

akφk(Z), where ak =
1

γk
E
(
F−1
Y (FZ(Z))φk(Z)

)
,

YN
p→ Y asN → ∞.

Stochastic Galerkin finite element method

The Karhunen-Loeve expansion and generalized polynomial chaos methods play a large role in the

stochastic Galerkin finite element method. We present the approach for the two-dimensional PDE




−∇ · (a(x;Z)∇w(x;Z)) = f(x;Z), x ∈ Ω,

w(x;Z) = 0, x ∈ ∂Ω.
(7.3.7)

The idea is to insert an approximation ofw,

wN (x;Z) =

N∑

|k|=0

ŵk(x)φk(Z), where ŵk(x) =
1

γk
E(w(x;Z)φk(Z)),

that is based on generalized polynomial chaos expansions. Sincew is unknown, we cannot actually

compute the coefficientŝwk(x). This motivates the stochastic Galerkin finite element method, i.e.,

we introduce the problem: find̂vk in

vN (x;Z) =
N∑

|k|=0

v̂k(x)φk(Z)
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such that




E (−∇ · (a(x;Z)∇vN (x;Z))φj(Z)) = E (f(x;Z)φj(Z)) , x ∈ Ω,

E (vN (x;Z)φj(Z)) = 0, x ∈ ∂Ω.
(7.3.8)

We next assumea has an Karhunen-Loeve expansion,

a(x;Z) =

Na∑

i=0

âi(x)Zi,

whereZ0 ≡ 1, and we use the orthogonal projection off ,

πNf(x;Z) =

Nf∑

|ℓ|=0

f̂ℓ(x)φℓ(Z).

Insertion of these into (7.3.8), we find for eachj

E

(
−∇ ·

([
Na∑

i=0

âi(x)Zi

]
∇vN (x;Z)

)
φj(Z)

)
= E






Nf∑

ℓ=0

f̂ℓ(x)φℓ(Z)


φj(Z)




= γjf̂j(x).

Utilizing vN (x;Z) in the above and then ordering theM vectors appropriately,

E


−∇ ·



[

Na∑

i=0

âi(x)Zi

]


N∑

|k|=0

∇v̂k(x)φk(Z)




φj(Z)




=

Na∑

i=0

N∑

|k|=0

E (Ziφk(Z)φj(Z)) (−∇ · (âi(x)∇v̂k(x)))

=

M∑

k=1

(−∇ · (Cjk(x)∇v̂k(x))) ,

where

Cjk =

Na∑

i=0

E (Ziφk(Z)φj(Z)) âi(x).

Thus, for eachj = 1, . . . ,M , we solve

M∑

k=1

(−∇ · (Cjk(x)∇v̂k(x))) = γj f̂j(x),

which is now just a system of coupled PDEs that can be solved approximately via the standard

(deterministic) Galerkin finite element procedure.
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8. FORMULATION OF ELLIPTIC PROBLEMS ON UNCERTAIN DOMAINS

In several applications of boundary value problems for PDEsthe geometry on which the equations

are posed are uncertain. To model this uncertainty, we formulate a class of elliptic problems that

are posed on stochastic domains. We demonstrate well-posedness of such problems and introduce a

piecewise transformation of the domain to a deterministic reference domain. The resulting problems

have stochastic coefficients, which we study via Monte Carloand standard finite element methods.

8.1 Introduction

In many applications of boundary value problems for PDEs thegeometry on which the equations

are posed are uncertain. Though much work has been done in thestudy of PDEs with stochastic

coefficients, comparatively little work exists for PDEs with stochastic domains. In fact, given a

sufficiently fine spatial resolution, the physical domain onwhich the model is posed is almost in-

variably uncertain [70], e.g., due to manufacturing imperfections, the inability to obtain accurate

measurements, or the approximation of the geometry from a discrete set of data points.

Early attempts investigated the effects of “rough” boundaries with a deterministic framework,

e.g., using fractal boundaries. For instance, in [16, 19], heat conduction and transport across irreg-

ular boundaries in semi-infinite domains is considered. Conformal maps are used to transform the

domain with an irregular boundary to that with a simple boundary so that existing tools can then

be used to understand what effect such perturbations have onthe transport across the boundary.

In, [9, 10] the authors consider both Dirichlet and Neumann problems on a monotone sequence of

domains converging to an uncertain, but fixed, domain.

The inability to accurately measure parameters, inhomogeneities, and deviations from a deter-

ministic set of input data have deemed stochastic descriptions of the model more appropriate in

many circumstances. The ensuing analysis requires both sophisticated mathematical tools, e.g.,

numerical approximation via finite element methods, and statistics, e.g., parameter estimation, data

assimilation, and the modeling of uncertainty. In general,we consider the PDE posed on the domain



Ω(θ) ⊂ R
2, 




−∇ · (a(x)∇w(x;θ)) = f(x), x ∈ Ω(θ),

w(x) = 0, x ∈ ∂Ω(θ),
(8.1.1)

whereθ is a random variable with some given probability structure.

The case when uncertainties are present in the coefficients of a PDE model has received much

attention from numerous disciplines, e.g., biology, chemistry, and fluid dynamics. The ensuing

demand for rigorous mathematical and statistical theory toaccommodate the applications has been

met; see [8, 11, 12, 13, 20, 33, 34, 69]. Some commonly used tools include Karhunen-Loeve

expansions, generalized polynomial chaos, and stochasticcollocation.

Much less attention, however, has been given to PDE models inwhich the boundary of the

physical domain is uncertain, though this problem is equally practical in its application. Specific

applications of such problems are found in transport in tubes with rough boundaries [65], aerody-

namic studies in the design of wind turbines [23], heat diffusion across irregular and fractal-like

surfaces [16, 19], structural analysis studies [55], acoustic scattering on rough surfaces [56, 68],

seismology and oil reservoir management [13], various civil and nuclear engineering studies [11],

chemical transport in rough domains [20], and understanding the effect of geometric variability on

the electromechanical behavior of nanostructures [7].

One challenge for problems with stochastic domains is that the standard numerical techniques

used for problems with stochastic coefficients, e.g., Karhunen-Loeve, stochastic Galerkin, and

Monte Carlo, do not readily apply. For instance, standard sampling methods, e.g., Monte Carlo,

face several significant challenges: a naive approach will require constructing a mesh of the domain

for each realization ofθ; the variational formulation requires a basis of test functions that depend

on θ; and it is not clear how to perform an error analysis for multiple problems across different

domains and different meshes as the error estimates will depend onθ in some unknown way. These

issues make standard Monte Carlo approaches impractical for this problem. Other techniques, e.g.,

Karhunen-Loeve expansions, generalized polynomial chaos, and the stochastic Galerkin method,

fail for similar reasons due to the dependence of the orthogonal basis functions onθ. Consequently,

new tools must be developed for problems with stochastic domains. The most popular approach is

to transform the problem from the stochastic domain to a deterministic domain, which moves the

dependence onθ from the domain to the coefficients and data.
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The work of [70] provides a novel approach for transforming aproblem posed on a domain

whose boundary is parameterized by a stochastic process to aproblem posed on a deterministic

domain with stochastic coefficients. The parameterizationof the boundary is assumed to be well-

approximated by a Karhunen-Loeve expansion, which is truncated and used to construct a stochastic

transformation by solving Laplace’s equation. Applying the transformation gives rise to a PDE with

stochastic coefficients, which can be studied via Monte Carlo methods and stochastic Galerkin

methods.

The approach described in [70] has been largely successful in many applications. For instance,

the paper [65] studies flow and transport in tubes with rough surfaces. The effect of geometric

variability, due to, e.g., the manufacturing process, on the electromechanical behavior of nanos-

tructures is considered in [7]. At this scale, seemingly insignificant uncertainties, due to, e.g.,

etching imperfections can drastically affect the performance of the nanostructure. In [56, 68], the

acoustic scattering on rough surfaces is studied. Despite its successes, however, there are several

concerns and unanswered questions pertaining to this approach. Precise conditions to guarantee

well-posedness of the original and transformed problems are unknown. An error analysis is not

available for the effect of truncating the Karhunen-Loeve expansion, approximating the stochastic

transformation, among other sources of error. Further, thedescription of the boundary in terms of

a stochastic process requires detailed information that insome cases is not available and cannot

be obtained or verified through experimentation. Instead, we often only have measurements of the

domain at a finite set of points on the boundary.

We present an alternate formulation of elliptic problems onstochastic domains to the model

of stochastic domains considered in [70] that describes theboundary as a stochastic process. We

consider a definition of stochastic domains driven by measurements and tolerances that one might

obtain in an actual experiment. Given the significant differences in the models considered in this

approach and that in [70], we do not intend to argue one approach is better than the other. Instead,

we note that these are two different models of a stochastic domain and each appeals to different

applications.

We assume a finite number of points vary on the boundary, whichis meant to represent, e.g., im-

posed manufacturing tolerances or actual measurements of the domain. Using a piecewise smooth

transformation on a partition of the domain, we transform the problem to one posed on a determin-

istic domain with stochastic coefficients. The transformation is available at minimal additional cost.
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We demonstrate well-posedness of both the untransformed and transformed problems. A numerical

method that employs Lion’s domain decomposition to deal with the non-smooth transformed coef-

ficients and the standard finite element method is formulated. The large number of parameters and

unavailability of the distributions of the stochastic coefficients make Monte Carlo and other sample-

based methods appealing. Exploiting the piecewise smooth transformation allows for an efficient

implementation of such Monte Carlo methods. Moreover, an a posteriori error analysis is readily

available and is presented in the following chapter.

We present a simple stochastic transformation to a deterministic domainΩ that is motivated

from both the work of [70] and the theory of isoparametric finite element methods in classical

finite element theory. Constructing this mapping takes little additional computational effort and the

resulting problem is no more complicated. All of the problems are thus transformed to PDEs on

Ω with stochastic coefficients, which allows for easy comparison of results and errors across all

realizations ofθ.

The rest of the chapter is organized as follows. In Section 8.2, we describe a class of stochastic

domains and formulate elliptic problems on them. We demonstrate well-posedness and describe

how to transform the problem to one posed on a deterministic reference domain. In Section 8.3,

we briefly present the finite element method and the iterativedomain decomposition. We show

how Monte Carlo methods will be used to approximate statistics and the distribution of a QOFI in

Section 8.4.

8.2 Problem Formulation

We give a precise description of the types of stochastic domains that we consider. Then, we for-

mulate elliptic PDEs on these domains, present well-posedness results, and then describe how to

transform to a reference domain.

Description of a stochastic domain

We divide stochastic domain problems into three classes described in Fig. 8.1. We concern our-

selves with the study of the first two problems only. The thirdclass of problems can be studied by

employing isoparametric finite element method techniques and the analysis found hereafter. This is

left as a topic of future research.
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(a) (b) (c)

Fig. 8.1: Panel (a): The boundary of the domain is polygonal and includes a finite and small number of
points whose position are given by a random vectorθ. The perturbations may be quite large, but we
require that important characteristics of the geometry do not change, e.g., convexity is preserved.
Panel (b): The boundary of the domain is polygonal and includes many points whose position are
given by a random vectorθ. These points are relatively close together and sufficient restrictions on
the perturbations are required to guarantee well-posedness and regularity of the solutions.
Panel (c): The boundary of the domain is known to be smooth. Given a finite number of measure-
ments of the domain, a smooth boundary is fit, e.g., a least-squares fit or a cubic spline.

The first class of problems allows perturbations that do not significantly alter the geometry, e.g.,

convexity. For instance, a square is very robust to perturbations at the corners, whereas pertur-

bations along the edges easily make the domain non-convex. Such domains can be thought of in

a manufacturing setting as being stamped out of a sheet of metal. The second class of problems

allows many smaller perturbations that fundamentally change the original geometry. This class of

problems models indents and small imperfections along the boundary. To guarantee well-posedness,

non-degenerate domains, and sufficient regularity of the solutions, we impose strict restrictions on

the perturbations. The third class of problems requires an additional assumption that the boundary

is smooth. One can also consider this class of problems as a limit of the second class as the number

of perturbed points increases. Since the boundary of the domain is smooth, well-posedness and

regularity are not concerns.

Modeling assumptions

We restrict ourselves to the class of problems whose domain are defined by perturbations of a

convex polygonal domain. We require that the perturbationsare bounded and such that the perturbed

domain remains polygonal. We assumeθ is such that there exist a bounded polygonal domainΩ∗
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and a domainΩ∗ with nonzero volume such that

Ω∗ ⊆ Ω(θ) ⊆ Ω∗, ∀θ ∈ Θ.

Moreover, we assume0 ∈ Θ and note that as a sequenceθi → 0 the sequence of domainsΩ(θi)

converge toΩ(0). Thus, if the perturbations are small, we expectΩ∗ ≈ Ω∗. Since the locations of

the perturbed points are fixed,Ω∗ andΩ∗ limit the non-convexity that may occur.

The matrixa is defined onΩ∗ and is assumed to be bounded, symmetric, and positive definite.

Moreover, the entries ofa are assumed to be smooth and the formulation of the coefficients is not

dependent onθ, e.g., the physical characteristics of the material are notaltered asθ changes. We

then have that the bilinear form

BV (u, v) = (a∇u,∇v)V =

∫

V
a(x)∇u · ∇v dx

satisfies

|BΩ(θ)(u, v)| ≤ C1(θ)‖u‖H1
0 (Ω(θ))‖v‖H1

0 (Ω(θ)), ∀u, v ∈ H1
0 (Ω(θ)), (8.2.1a)

BΩ(θ)(u, u) ≥ C2(θ)‖u‖2H1
0 (Ω(θ)), ∀u ∈ H1

0 (Ω(θ)), (8.2.1b)

for all θ ∈ Θ. We assume a uniform boundedness and coercivity in the sensethat, for allθ,

C1(θ) ≤ C1 <∞ and C2(θ) ≥ C2 > 0.

Considerf ∈ L2(Ω∗) that is defined onΩ∗ and does not depend onθ and note that the linear

functional

FV (v) =

∫

V
f(x)v(x) dx

satisfies

FΩ(θ)(v) =

∫

Ω(θ)
f(x)v(x) dx ≤ C3(θ)‖v‖H1

0 (Ω(θ)). (8.2.2)

Again, we assume uniform boundedness of the linear functional in the sense that, for allθ,

C3(θ) ≤ C3 <∞.

The variational formulation for (8.1.1) is: findw ∈ H1
0 (Ω(θ)) such that

BΩ(θ)(w, v) = FΩ(θ)(v), ∀v ∈ H1
0 (Ω(θ)). (8.2.3)

With the uniform boundedness and coercivity of the bilinearform on the left hand side of (8.2.3)

and the uniform boundedness of the linear form on the right hand side, the Lax-Milgram lemma

guarantees a unique weak solution to (8.2.3) for allθ ∈ Θ.
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Transformation to a reference domain

We now describe how to transform the domainΩ(θ) to a reference domainΩ. The reference domain

Ω ⊂ R
2 is assumed to be a convex polygonal domain. Choosing such a domain can be somewhat

arbitrary, but it is natural to takeΩ = Ω(0). There are several ways to transform the domainΩ(θ) to

Ω, e.g., conformal maps such as Schwarz-Christoffel transformations provide a global and smooth

map. We use a piecewise transformationϕ : Ω(θ) → Ω on a partition ofΩ(θ) into subdomains

Ωd(θ), d = 1, . . . ,D, such thatΩ(θ) =
⋃D

d=1 Ωd(θ), i.e.,ϕd : Ωd(θ) → Ωd.

This partitioning ofΩ(θ) intoD subdomains is not unique, though some choices have appealing

benefits, which are discussed later. We thus replace the global problem (8.1.1) with an abstract

domain decomposition on a partition ofΩ(θ). Letnd denote the outward pointing normal vector to

Ωd(θ) andwd denote the solution onΩd(θ). Then, (8.1.1) is equivalent to





−∇ · (ad(x)∇wd(x;θ)) = fd(x), x ∈ Ωd(θ),

wd(x;θ) = 0, x ∈ ∂Ω(θ) ∩ ∂Ωd(θ),

wd(x;θ) = w
d̃
(x;θ), x ∈ ∂Ωd(θ) ∩ ∂Ωd̃

(θ), ∀d̃ ∈ d′,

nd · (ad(x)∇wd(x;θ)) = −n
d̃
· (ad(x)∇wd̃

(x;θ)), x ∈ ∂Ωd(θ) ∩ ∂Ωd̃
(θ), ∀d̃ ∈ d′,

(8.2.4)

whered′ is the set of{1, . . . ,D}\{d} such thatΩd(θ) andΩ
d̃
(θ) share a boundary. The last two

lines in (8.2.4) are interface conditions guaranteeing continuity of the solution and a matching flux

across the boundaries.

We takeΩd(θ) andΩd to be triangular subdomains, so that we can selectϕd to be a linear map.

Let y ∈ Ωd denote the image ofx ∈ Ωd(θ) under the mapϕd and letJd denote the Jacobian of

the transformationϕd. Denote the three vertices ofΩd(θ) with rd,1, rd,2, andrd,3. and the three

vertices ofΩd with sd,1, sd,2, andsd,3. We note that

ϕd(x) = Jd(x− rd,1) + sd,1, (8.2.5)

whereJd is given by

Jd =
(
sd,2 − sd,1 −(sd,3 − sd,1)

) (
rd,2 − rd,1 −(rd,3 − rd,1)

)−1
= SdR

−1
d .

BothSd andRd are invertible sinceΩd(θ) andΩd are each non-degenerate triangles.
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(a) (b) (c)

Fig. 8.2:A realization of the random domainΩ(θ) (solid) and the reference domainΩ (dashed) for different
numbers of perturbed points. Two different partitions for identical domains are considered in panels
(b) and (c), respectively.

Then, using (8.2.5) in (8.2.4),




−∇ · (Ad(y)∇ud(y;θ)) = Fd(y), y ∈ Ωd,

ud(y;θ) = 0, y ∈ ∂Ω ∩ ∂Ωd,

ud(y;θ) = u
d̃
(y;θ), y ∈ ∂Ωd ∩ ∂Ωd̃

, ∀d̃ ∈ d′,

nd · (Ad(y)∇ud(y;θ)) = −n
d̃
· (A

d̃
(y)∇u

d̃
(y;θ)), y ∈ ∂Ωd ∩ ∂Ωd̃

, ∀d̃ ∈ d′,

(8.2.6)

whereud(y;θ) = wd(ϕ
−1
d (y);θ),

Ad(y) = J
⊤
d ad(ϕ

−1
d (y))Jd, and Fd(y) = fd(ϕ

−1
d (y)).

We require the partition to be such that

0 < M∗ ≤ inf
θ∈Θ

inf
d
|det(Jd)| ≤ sup

θ∈Θ
sup
d

|det(Jd)| ≤M∗ <∞. (8.2.7)

In practice, one might specifyM∗ andM∗ a priori, which thus limits the possible mapping grids

and resulting maps. It is appealing to select mapping grids such thatM∗ is small andM∗ is large.

Lemma 8.2.1(Ciarlet). Let Ωd andΩd(θ) be such thatϕd : Ωd(θ) → Ωd is a linear map, e.g.,

ϕd(x) = Jdx+ c, wherec ∈ R
2. Letκd = diam(Ωd) andκd(θ) = diam(Ωd(θ)). Further, define

ρd = sup{diam(S) |S ⊆ Ωd} andρd(θ) = sup{diam(S) |S ⊆ Ωd(θ)}. Then,

‖Jd‖ ≤ κd
ρd(θ)

and ‖J−1
d ‖ ≤ κd(θ)

ρd
.

Letw : Ωd(θ) → R and defineu = w ◦ ϕ−1
d . Then, ifw ∈ Wm,2(Ω(θ)) for integerm ≥ 0, then

u ∈Wm,2(Ω) and

|u|Wm,2(Ωd) ≤ C‖J−1
d ‖m · |det(Jd)|1/2 · |w|Wm,2(Ωd(θ)).

102



Theorem 8.2.2.For eachd, the matrixAd is symmetric and positive definite. Further,

BΩ(u, v) =
D∑

d=1

∫

Ωd

Ad(y)∇u · ∇v dy

is bounded and coercive and

FΩ(v) =

D∑

d=1

∫

Ωd

Fd(y)v(y) dy

is boundedc. Consequently, the Lax-Milgram Lemma grants, for a givenθ, (8.2.6) is well-posed.

Moreover, the set of problems is uniformly well-posed in thesense that

inf
θ

BΩ(u, u) ≥ C1‖u‖2H1(Ω)

sup
θ

BΩ(u, v) ≤ C2‖u‖H1(Ω)‖v‖H1(Ω)

and

sup
θ

FΩ(v) ≤ C3‖u‖H1(Ω)‖v‖H1(Ω),

whereC1 > 0 andC2, C3 <∞.

Proof. We see thatAd is symmetric and positive definite since

x
⊤
Adx = (Jdx)

⊤ad(ϕ
−1
d (y))(Jdx) ≥ 0,

with equality only whenJdx = 0, i.e.,x = 0. SinceAd is positive definite,

BΩ(u, u) =

D∑

d=1

∫

Ωd

Ad(y)∇u · ∇udy

≥
D∑

d=1

Cd
1 (θ)‖u‖2H1(Ωd)

≥ C1(θ)‖u‖2H1(Ω),

which shows coercivity. We demonstrate boundedness, we have

|BΩ(u, v)| ≤
D∑

d=1

∣∣∣∣
∫

Ωd

Ad(y)∇u · ∇v dy
∣∣∣∣

≤
D∑

d=1

‖Ad‖ · ‖u‖H1(Ωd) · ‖v‖H1(Ωd)

≤
D∑

d=1

Cd
2 (θ)‖u‖H1(Ωd) · ‖v‖H1(Ωd)

≤ C2(θ)‖u‖H1(Ω) · ‖v‖H1(Ω),
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whereC2(θ) =
(

κd
ρd(θ)

)2
maxx∈Ω∗ |a(x)|. Similarly,

|FΩd
(v)| ≤

D∑

d=1

∣∣∣∣
∫

Ωd

fd(ϕ
−1
d (y))v(y) dy

∣∣∣∣

≤
D∑

d=1

Cd
3 (θ)‖v‖H1(Ωd)

≤ C3(θ)‖v‖H1(Ω).

The Lax-Milgram Lemma gives well-posedness of the transformed problem for a fixedθ. The

assumption (8.2.7) gives the existence ofC1 andC2, whereasC3 = maxx∈Ω∗ |f(x)|, completing

the proof.

Effect of the transformation

As mentioned previously, the choice of partition and thus the transformations, is somewhat arbitrary.

We now discuss the effect of the choice made and its implications in the numerical method. The

following example illustrates this fact by considering poorly chosen mapping grids. We show how

the functionf(x, y) = 2 + sin(3πx) sin(3πy) is transformed from a randomly perturbed domain

to the unit square. We consider a mapping grid similar to thatin Fig. 8.2, but where the center of

the “X” is placed at three different points. We show how this transformation affects the transformed

function. As the center of the “X” approaches the corner of the domain, the functionf is conpressed

non-uniformly. The total variation off increases dramatically, which will then require finite element

refinement or better quadrature.
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(c)

Fig. 8.3:Center of the “X” at(0.5, 0.5) (a), at(0.75, 0.75) (b), and(0.9, 0.9) (c).

Although it is not immediately clear how to find an optimal mapping grid, certain characteristics

are desired. For instance, choosing restrictive boundsM∗ andM∗ on det(Jd) guarantees that

104



a subdomain will not undergo a non-proportionate amount of stretching and shrinking under the

transformation, see Fig. 8.3(c). More importantly, we require that the transformation increases

the total variation of the coefficients and data as little as possible, see Fig. 8.3(a) as opposed to

Fig. 8.3(b,c). With these motivations, we introduce the following constrained optimization problem

to find the desired mapping grid: findϕ such that

sup
θ∈Θ

max
d

(∫

Ωd

|∇ad(ϕ−1
d (y))| + |∇fd(ϕ−1

d (y))| dy
)

is minimized subject to the constraints ondet(Jd). In general, this is a difficult optimization prob-

lem, but an approximation will suffice. For instance, we can fix Ω(θ) = Ω∗ and pose the problem:

findϕ such that

max
d

(∫

Ωd

|∇ad(ϕ−1
d (y))|+ |∇fd(ϕ−1

d (y))| dy
)

is minimized subject to constraints on thedet(Jd). Further yet, for a mesh such as that found in

Fig. 8.2(a,b), we need only to locate to the center of the mesh. Similarly, for a mesh such as that

found in Fig. 8.2(c), we need only to determine the scale factor of the boundary of the domain. Both

of these problems are one-dimensional optimization problems that are much more tractable.

8.3 Finite Element Method and Domain Decomposition

LetU denote the finite element approximation ofu so that the finite element formulation reads: find

U ∈ V
(1)
0,h such that





∫

Ωd

Ad(y)∇Ud(y;θ) · ∇v dy =

∫

Ωd

Fd(y)v(y) dy, ∀v ∈ V (1)
0,h

Ud(y;θ) = 0, y ∈ ∂Ω ∩ ∂Ωd,

Ud(y;θ) = U
d̃
(y;θ), y ∈ ∂Ωd ∩ ∂Ωd̃

, ∀d̃ ∈ d′,

nd · (Ad(y)∇Ud(y;θ)) = −n
d̃
· (A

d̃
(y)∇U

d̃
(y;θ)), y ∈ ∂Ωd ∩ ∂Ωd̃

, ∀d̃ ∈ d′.
(8.3.1)

To approximateU , we employI iterations of Lion’s domain decomposition algorithm, resulting in

U I . That is, given a set of initial guesses{U0
d , d = 1, . . . ,D}, we solve fori = 1, 2, . . . , I,

(Ad(y)∇U i
d,∇v)d +

∑

d̃∈d′

(
1

λ
〈U i

d, v〉d∩d̃ − 〈n
d̃
·Ad(y)∇U i

d, v〉d∩d̃
)

= (Fd(y),∇v)d +
∑

d̃∈d′

(
1

λ
〈U i−1

d , v〉
d∩d̃ − 〈n

d̃
·Ad(y)∇U i−1

d , v〉
d∩d̃

)
,

(8.3.2)
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where

(f, g)d =

∫

Ωd

f(x)g(x) dx and 〈f, g〉
d∩d̃ = f(x)g(x)

∣∣∣∣
d∩d̃

.

The parameterλ can be chosen to improve convergence of the iterative method.

The matrix form of (8.3.2) reads, on each subdomainΩd,

MdU
i
d = b

i−1
d ,

where

(Md)k,ℓ = (Ad(y)∇ξkd ,∇ξℓd)d +
∑

d̃∈d′

(
1

λ
〈ξkd , ξℓd〉d∩d̃ − 〈n

d̃
·Ad(y)∇ξkd , ξℓd〉d∩d̃

)

(bi−1
d )k = (Fd, ξ

k
d )d +

∑

d̃∈d′

(
1

λ
〈U i−1

d , ξkd 〉d∩d̃ − 〈n
d̃
·Ad(y)∇U i−1

d , ξkd 〉d∩d̃
)
.

The numerical method is described in Algorithm 8.1.

Algorithm 8.1: Finite element method and domain decomposition for a singlerealization of
θ

for i = 1, . . . , I (number of iterations)do
for d = 1, . . . ,D (number of subdomains)do

solveU i
d = (Md)

−1
b
i−1
d

end
end

8.4 Monte Carlo Methods

Monte Carlo methods are specifically useful in computing integral-based quantities, i.e.,

I =

∫

Ω
h(θ) dF (θ) =

∫

Ω
h(θ)f(θ) dθ,

where the probability density functionf(θ) is typically unknown. We selectN realizations ofθ

independently and consider the estimate

IN =
1

N

N∑

n=1

h(θn).

By the Strong Law of Large Numbers, asN → ∞, IN → I almost surely. Moreover, the error in

the estimate is related to the variance of the functionh and the number of samplesN . In fact,

Var (IN ) =
1

N2

N∑

n=1

Var(h(θn)) =
Var(h)

N
=
σ2(h)

N
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so that the error in the estimate scales with
√
N . To see this more clearly, note

lim
N→∞

Pr

(
−aσ(h)√

N
≤ IN − I ≤ b

σ(h)√
N

)
= Φ(b)− Φ(−a).

We are particularly interested in computing the distribution and statistics of solutions to partial

differential equations with stochastic coefficients. Suppose we are interested in statistics of a QOFI

computed fromw(x;θ), which solves (7.1.1). Namely, let

Q(w;θ) =

∫

Ω
w(x;θ)ψ(x) dx

denote such a QOFI. Various moments, e.g., thek-th moment, ofQ(w;θ) can be approximated via

IN =
1

N

N∑

n=1

(Q(w;θn))
k.

The Strong Law of Large Numbers gives that

1

N

N∑

n=1

(Q(w;θn))
k a.s.→

∫

Θ
(Q(w;θ))k dP (Q(θ)).

Moreover, we can estimate the distribution ofQ(w;θ) by using the empirical distribution function

IN =
1

N

N∑

n=1

χ(−∞,y)(Q(w;θn)).

8.5 Summary

In several applications of boundary value problems for PDEsthe geometry on which the equations

are posed are uncertain. To model this uncertainty, we formulate a class of elliptic problems that

are posed on stochastic domains. We demonstrate well-posedness of such problems and introduce a

piecewise transformation of the domain to a deterministic reference domain. The resulting problems

have stochastic coefficients, which we study via Monte Carloand standard finite element methods.

In the next chapter, we consider the nonparametric density estimation problem for a QOFI.
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9. A POSTERIORI ERROR ANALYSIS FOR ELLIPTIC PROBLEMS ON
UNCERTAIN DOMAINS

In this chapter, we consider the nonparametric density estimation problem for a QOFI computed

from solutions of the elliptic PDEs with stochastic domainsthat were formulated in the previous

chapter. We use a simple Monte Carlo sampling procedure to estimate statistics and the distribution

of the QOFI. Several aspects of the problem formulation are exploited, e.g., localizing the effect of

the stochastic domain to the boundary subdomains, to improve the efficiency of the Monte Carlo

sampling method so that many samples can be obtained to approximate the distribution at a reason-

able cost. We present an a posteriori error analysis for eachsample and for the empirical distribution

function obtained from the samples. The a posteriori error estimate for the computed probability

distribution reflects both deterministic and statistical sources of error including the effects of the

transformation.

9.1 Introduction

We consider the PDE onΩ(θ)




−∇ · (a(x)∇w(x;θ)) = f(x), x ∈ Ω(θ),

w(x;θ) = 0, x ∈ ∂Ω(θ),
(9.1.1)

whereθ is a random variable with some given probability structure andΩ(θ) ⊂ R
2 is a polygonal

domain whose boundary nodes depend on the random variableθ. We use the formulation of the

problem presented in the previous chapter, which we briefly summarize at this time.

A piecewise transformationϕ : Ω(θ) → Ω on a partition ofΩ(θ) into subdomainsΩd(θ),

d = 1, . . . ,D, such thatΩ(θ) =
⋃D

d=1 Ωd(θ), i.e., ϕd : Ωd(θ) → Ωd is used to transform the

problem (9.1.1) to




−∇ · (Ad(y)∇ud(y;θ)) = Fd(y), y ∈ Ωd,

ud(y;θ) = 0, y ∈ ∂Ω ∩ ∂Ωd,

ud(y;θ) = u
d̃
(y), y ∈ ∂Ωd ∩ ∂Ωd̃

, ∀d̃ ∈ d′,

nd · (Ad(y)∇ud(y;θ)) = −n
d̃
· (A

d̃
(y)∇u

d̃
(y;θ)), y ∈ ∂Ωd ∩ ∂Ωd̃

, ∀d̃ ∈ d′,

(9.1.2)



whereud(y;θ) = wd(ϕ
−1
d (y);θ),

Ad(y) = J
⊤
d ad(ϕ

−1
d (y))Jd, and Fd(v) = fd(ϕ

−1
d (y)).

In Fig. 9.1, we present three such partitions of both the domain Ω and realizations of the stochastic

domainΩ(θ). We seek to compute the distribution of a QOFI computed as a linear functional of the

(a) (b) (c)

Fig. 9.1:A realization of the random domainΩ(θ) (solid) and the reference domainΩ (dashed) for different
numbers of perturbed points. Three different partitions are considered.

solution of (9.1.1), i.e.,

Q(w;θ) = (w,ψ)Ω(θ) =

∫

Ω(θ)
w(x;θ)ψ(x) dx,

whereψ defines the QOFI. Using the transformation, we define the QOFIin terms of the trans-

formed variables via

Q(u;θ) =

D∑

d=1

∫

Ωd

ud(y;θ)ψd(ϕ
−1
d (y)) det (Jd)

−1 dy.

We then employ Monte Carlo sampling methods to sample the output QOFI and then construct

estimates of various statistics and of the distribution of the QOFI.

We show how to localize the effects of randomness to the boundary subdomains and utilize a

Neumann series to make several of the necessary deterministic computations independent of the

number of samples. We further demonstrate that a single finite element mesh can be used for

all realizations and, consequently, Monte Carlo sampling methods can be performed with reduced

computational expense. We then present an a posteriori error analysis for each sample and for the

estimated distribution of the QOFI, which includes errors due to the finite element discretization,

the domain decomposition iteration, quadrature, and finitesampling.
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9.2 A Posteriori Error Analysis for a Single Realization

We present the finite element method and domain decomposition algorithm for a single realization.

Then, we give an a posteriori error analysis for a single realization. The error analysis includes the

effects of the finite element discretization, quadrature, and the domain decomposition algorithm.

Finite element method and domain decomposition

LetU denote the finite element approximation ofu so that the finite element formulation reads: find

U ∈ V
(1)
0,h such that





∫

Ωd

Ad(y)∇Ud(y;θ) · ∇v dy =

∫

Ωd

Fd(y)v(y) dy, ∀v ∈ V (1)
0,h

Ud(y;θ) = 0, y ∈ ∂Ω ∩ ∂Ωd,

Ud(y;θ) = U
d̃
(y;θ), y ∈ ∂Ωd ∩ ∂Ωd̃

, ∀d̃ ∈ d′,

nd · (Ad(y)∇Ud(y;θ)) = −n
d̃
· (A

d̃
(y)∇U

d̃
(y;θ)), y ∈ ∂Ωd ∩ ∂Ωd̃

, ∀d̃ ∈ d′.
(9.2.1)

To approximateU , we employI iterations of Lion’s domain decomposition algorithm, resulting in

U I . That is, given a set of initial guesses{U0
d , d = 1, . . . ,D}, we solve fori = 1, 2, . . . , I,

(Ad(y)∇U i
d,∇v)d +

∑

d̃∈d′

(
1

λ
〈U i

d, v〉d∩d̃ − 〈n
d̃
·Ad(y)∇U i

d, v〉d∩d̃
)

= (Fd(y),∇v)d +
∑

d̃∈d′

(
1

λ
〈U i−1

d , v〉
d∩d̃ − 〈n

d̃
·Ad(y)∇U i−1

d , v〉
d∩d̃

)
,

(9.2.2)

where

(f, g)d =

∫

Ωd

f(x)g(x) dx and 〈f, g〉
d∩d̃ = f(x)g(x)

∣∣∣∣
d∩d̃

.

The parameterλ can be chosen to improve convergence of the iterative method.

The matrix form of (9.2.2) reads, on each subdomainΩd,

MdU
i
d = b

i−1
d ,

where

(Md)k,ℓ = (Ad(y)∇ξkd ,∇ξℓd)d +
∑

d̃∈d′

(
1

λ
〈ξkd , ξℓd〉d∩d̃ − 〈n

d̃
·Ad(y)∇ξkd , ξℓd〉d∩d̃

)

(bi−1
d )k = (Fd, ξ

k
d )d +

∑

d̃∈d′

(
1

λ
〈U i−1

d , ξkd 〉d∩d̃ − 〈n
d̃
·Ad(y)∇U i−1

d , ξkd 〉d∩d̃
)
.

We refer the reader to Algorithm 8.1.
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A posteriori error analysis ignoring quadrature

We now introduce the dual problems for the problem (9.1.2). To begin, we letψ define a QOFI, i.e.,

Q(w;θ) =

∫

Ω(θ)
w(x;θ)ψ(x) dx

=
D∑

d=1

∫

Ωd(θ)
wd(x;θ)ψd(x) dx. (9.2.3)

There is a little ambiguity in defining an appropriate QOFI onΩ(θ). It is most intuitive to consider

QOFIs that are either specific to a reference domain or are somehow independent of the domain,

e.g.,ψ = δ(x), wherex ∈ Ω∗, is reasonable, butψ = δ(x) for x /∈ Ω∗ is not. Moreover, several

choices ofψ will not only measure the effect of the domain on the QOFI, butwill also measure the

size of the domain, e.g.,ψ = 1.

We rewrite (9.2.3) usingϕd and define

Q(u;θ) =
D∑

d=1

∫

Ωd

ud(y;θ)ψd(ϕ
−1
d (y)) det (Jd)

−1 dy. (9.2.4)

We use the same partition ofΩ and pose the dual problem as an abstract domain decomposition over

the partition, i.e.,




∫

Ωd

Ad(y)∇ηd(y;θ) · ∇v dy =

∫

Ωd

Ψd(y)v(y) dy, ∀v ∈ V
(1)
0,h

ηd(y;θ) = 0, y ∈ ∂Ω ∩ ∂Ωd,

ηd(y;θ) = η
d̃
(y;θ), y ∈ ∂Ωd ∩ ∂Ωd̃

, ∀d̃ ∈ d′,

nd · (Ad(y)∇ηd(y;θ)) = −n
d̃
· (A

d̃
(y)∇η

d̃
(y;θ)), y ∈ ∂Ωd ∩ ∂Ωd̃

, ∀d̃ ∈ d′,
(9.2.5)

where

Ψd(y) = ψ(ϕ−1
d (y)) det (Jd)

−1 .

Standard techniques show

Q(u;θ) =
D∑

d=1

∫

Ωd

Fd(y)ηd(y) dy. (9.2.6)

The numerical method gives an approximation ofQ(u;θ), namely

Q(U I ;θ) =

D∑

d=1

(U I
d ,Ψd)d.
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For a given realization ofθ, we are thus interested in the error

Q(u;θ)−Q(U I ;θ) =

D∑

d=1

[
(ud − Ud,Ψd)d + (Ud − U I

d ,Ψd)d
]
.

To understand the error due to the finite element method, we compute

E1 =
D∑

d=1

(ud − Ud,Ψd)d

=

D∑

d=1

∫

Ωd

(ud − Ud)Ψd(y) dy

=

D∑

d=1

[∫

Ωd

Fd(y)ηd dy −
∫

Ωd

Ad(y)∇ηd · ∇Ud dy

]
,

which, by Galerkin orthogonality, is equal to

E1 =

D∑

d=1

[∫

Ωd

Fd(y)(ηd − πhηd) dy −
∫

Ωd

Ad(y)∇Ud · ∇(ηd − πhηd) dy

]
.

Then, lettingΩj
d, j = 1, . . . , Nd, be thej-th element in the subdomainΩd, we have

E1 =

D∑

d=1

Nd∑

j=1

[∫

Ωj
d

Fd(y)(ηd − πhηd) dy −
∫

Ωj
d

Ad(y)∇Ud · ∇(ηd − πhηd) dy

]
. (9.2.7)

In practice, we approximate (9.2.7) by replacingU with U I , i.e.,

E1 ≈
D∑

d=1

Nd∑

j=1

[∫

Ωj
d

Fd(y)(ηd − πhηd) dy −
∫

Ωj
d

Ad(y)∇U I
d · ∇(ηd − πhηd) dy

]
. (9.2.8)

To understand the error due to Lion’s domain decomposition,we compute

E2 =

D∑

d=1

(Ud − U I
d ,Ψd)d. (9.2.9)

Again, we must approximate (9.2.9) and a reasonable choice is

E2 ≈
D∑

d=1

Nd∑

j=1

[∫

Ωj
d

(
U I+∆I
d − U I

d

)
Ψd(y) dy

]
, (9.2.10)

where∆I ∈ N is chosen to be sufficiently large.
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A posteriori error analysis of the effect of quadrature

When quadrature is used, we obtain the solutionŨ to




∫

Ωd

Ad(y)∇Ũd(y;θ) · ∇v dy =

∫

Ωd

Fd(y)v(y) dy, ∀v ∈ V (1)
0,h

Ũd(y;θ) = 0, y ∈ ∂Ω ∩ ∂Ωd,

Ũd(y;θ) = Ũ
d̃
(y;θ), y ∈ ∂Ωd ∩ ∂Ωd̃

, ∀d̃ ∈ d′,

nd · (Ad(y)∇Ũd(y;θ)) = −n
d̃
· (A

d̃
(y)∇Ũ

d̃
(y;θ)), y ∈ ∂Ωd ∩ ∂Ωd̃

, ∀d̃ ∈ d′,
(9.2.11)

where the notationg represents the appropriate projection ofg so that
∫

T
g(y) dy

gives the desired quadrature ofg on the triangular elementT .

We note

Q(u;θ)−Q(Ũ I ;θ) = (Q(u;θ)−Q(U ;θ))

+ (Q(U ;θ)−Q(U I ;θ))

+ (Q(U I ;θ)−Q(Ũ I ;θ)

and, mimicking earlier work,

Q(u;θ)−Q(Ũ I ;θ)

=
D∑

d=1

[∫

Ωd

Fd(y)(ηd − πhηd) dy −
∫

Ωd

Ad(y)∇Ũd · ∇(ηd − πhηd) dy

]

+

D∑

d=1

∫

Ωd

Ad(y)∇
(
Ũd − Ũ I

d

)
· ∇ηd dy

+

D∑

d=1

[∫

Ωd

(
Fd(y)− Fd(y)

)
πhηd dy −

∫

Ωd

(
Ad(y)−Ad(y)

)
∇Ũd · ∇πhηd dy

]
.

Then, lettingΩj
d, j = 1, . . . , Nd be thej-th element in the subdomainΩd, we have

Q(u;θ)−Q(Ũ I ;θ)

=

D∑

d=1

Nd∑

j=1

[∫

Ωj
d

Fd(y)(ηd − πhηd) dy −
∫

Ωj
d

Ad(y)∇Ũd · ∇(ηd − πhηd) dy

]

+

D∑

d=1

Nd∑

j=1

∫

Ωj
d

Ad(y)∇
(
Ũd − Ũ I

d

)
· ∇ηd dy

+

D∑

d=1

Nd∑

j=1

[∫

Ωj
d

(
Fd(y)− Fd(y)

)
πhηd dy −

∫

Ωj
d

(
Ad(y)−Ad(y)

)
∇Ũd · ∇πhηd dy

]
.
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The first two terms in (9.2.12) are the finite element and domain decomposition errors we have

already treated. The third term in (9.2.12),

E3 =
D∑

d=1

Nd∑

j=1

[∫

Ωj
d

(
Fd(y)− Fd(y)

)
πhηd dy −

∫

Ωj
d

(
Ad(y)−Ad(y)

)
∇Ũd · ∇πhηd dy

]
,

(9.2.12)

is the error due to quadrature. In practice, we approximate (9.2.12) via

E3 ≈
D∑

d=1

Nd∑

j=1

[∫

Ωj
d

(
Fd(y)− Fd(y)

)
πhηd dy −

∫

Ωj
d

(
Ad(y)−Ad(y)

)
∇U I

d · ∇πhηd dy
]
,

(9.2.13)

If the errorE3 is large, it suggests we need to improve the quadrature, which might be better to

improve the quadrature instead of refining the finite elementmesh (which can also be used to reduce

quadrature error). For clarity, we ignore the effect of quadrature for the duration of the chapter.

9.3 An Efficient Monte Carlo Algorithm for Many Realizations

In order to obtain estimates of statistics and the distribution of the QOFI, we must obtainN inde-

pendent realizations ofQ(u;θ). We describe ways to exploit the finite element and domain decom-

position formulations in order to make the Monte Carlo efficient. The results are binned according

to the empirical distribution function and we perform an a posteriori error analysis on the resulting

estimate of the distribution.

A global finite element mesh and initialization

Monte Carlo methods are computationally tractable for thisproblem largely because of the ability

to use a single finite element mesh for all realizationsθn, i.e., the need to mesh and perform mesh

refinement for each realization has been eliminated. This also allows for an intuitive and straightfor-

ward approach for comparing numerical methods and the associated errors for each realizationθn.

For an illustration, we refer to Fig. 9.2. Takea = Id, f(x, y) = 2000x(1−x)+ 2000y(1− y), and

ψ(x, y) = 100
π exp

(
−50(x− 0.8)2 − 50(y − 0.75)2

)
. We then refine the mesh if the element error

contribution is larger than0.005. Notice that the element-wise error contributions vary between

Ω(θ) andΩ in some complicated way that does not depends solely onh or the number of elements.

The problem at hand is to determine whether such a global finite element mesh exists and then

to find it. The global bounds on the boundedness and coercivity in Theorem 8.2.2 suggest the
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Fig. 9.2:Comparison of numerical errors betweenθ = 0 (center) and a small perturbationθ (left, right).
Center: we fixh = 0.05 so that there are 780 elements. Left:h = 0.05, but there are 705 elements.
Right: h = 0.0488, which gives 780 elements.

existence of such a mesh, but we also must be able to constructit. We take a very simple approach

to constructing such a mesh, described in Algorithm 9.1. This can be done in the initialization of

the code and is thus independent of the number of samples. During the Monte Carlo sampling, if a

realization is encountered that does not satisfy the error tolerance, we refine adaptively and continue

using the new mesh.

Algorithm 9.1: Finding the global finite element mesh
start with initial (uniform) mesh
adaptively refine mesh to solve a set of test problems sufficiently accurately
use the resulting mesh

Algorithm 9.1 is demonstrated in the following example. Forthis illustration, we takea = Id,

f(x, y) = 200x(1−x)+200y(1− y), andψ(x, y) = 100
π exp

(
−50(x − 0.75)2 − 50(y − 0.75)2

)
.

In Fig. 9.3, we show the required meshes to solve the problem on Ω∗, Ω(0), Ω∗, and all three

simultaneously.

We also use the numerical solution forΩ(θ) = Ω(0) to initialize the Lion’s domain decompo-

sition algorithm. Further, for allθ, especiallyθ small, this initialization will reduce the number of

iterations in the domain decomposition algorithm and, thus, lead to gains in efficiency and reduction

of numerical errors.
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Fig. 9.3:Mesh required to solve the problem onΩ∗ (a),Ω(0) (b),Ω∗ (c), and all three (d).
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Monte Carlo simulation

We now describe the Monte Carlo sampling and numerical solution of the PDEs in detail, which is

presented in Algorithm 9.2. We use a superscriptn in the established notation to denote then-th

realization ofθ. The matrix form of (9.2.2) reads, on each subdomainΩd,

M
n
dU

i,n
d = b

i−1,n
d ,

where

(Mn
d )k,ℓ = (An

d (y)∇ξkd ,∇ξℓd)d +
∑

d̃∈d′

(
1

λ
〈ξkd , ξℓd〉d∩d̃ − 〈n

d̃
·An

d (y)∇ξkd , ξℓd〉d∩d̃
)

(bi−1,n
d )k = (Fn

d , ξ
k
d )d +

∑

d̃∈d′

(
1

λ
〈U i−1,n

d , ξkd 〉d∩d̃ − 〈n
d̃
·An

d (y)∇U i−1,n
d , ξkd 〉d∩d̃

)
.

Algorithm 9.2: Finite element method and domain decomposition for a Monte Carlo simula-
tion

for n = 1, . . . , N (number of samples)do
for i = 1, . . . , I (number of iterations)do

for d = 1, . . . ,D (number of subdomains)do
solveU i,n

d = (Mn
d )

−1
b
i−1,n
d

end
end

end

Localizing the effect of uncertainty to the boundary subdomains

Motivation for localizing the effect of the perturbations to the boundary subdomains is found in

comparing Fig. 9.1(b,c). The shape and size of the subdomains in Fig. 9.1(c) are more appealing,

which has implications in the efficiency of the domain decomposition method. Since the effect of

the perturbations is localized to the boundary elements, weare also able to chooseϕ in such a way

thatϕd = Idd on manyd ∈ {1, . . . ,D}. Such a choice impliesAn
d = ad, for all n. This allows

us to precompute several of the matrix inverses and, in turn,make them independent ofn. Further,

Fn
d = fd so that we can precompute

(Fn
d , ξ

k
d )d = (fd, ξ

k
d )d
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as well. This is illustrated in Fig. 9.1 and described in Algorithm 9.3.

Algorithm 9.3: Monte Carlo simulation with localized randomness to the boundary subdo-
mains

for d = 1, . . . ,D do
if ϕd = Idd then

precompute(Md)
−1 and(Fd, ξ

k
d )d

end
end
for n = 1, . . . , N (number of samples)do

for i = 1, . . . , I (number of iterations)do
for d = 1, . . . ,D (number of subdomains)do

solveU i,n
d = (Md)

−1
b
i−1,n
d

end
end

end

Neumann series

We now write

Ad(y) = ad(y) + Ad(y),

where

Ad(y) = J
⊤
d ad(ϕ

−1
d (y))Jd − ad(y)

= ad(ϕ
−1
d (y))− ad(y)︸ ︷︷ ︸

A
(1)
d (y)

+J
⊤
d ad(ϕ

−1
d (y))Jd − ad(ϕ

−1
d (y))︸ ︷︷ ︸

A
(2)
d (y)

.

In the case thatAd(y) is a polynomial, the work of [33, 34] readily applies. It is useful to interpret

Ad(y) as the perturbation in the diffusion coefficient fromθ. Further,A(1)
d (y) can be interpreted

as describing howad(y) contributes to the perturbation, whereasA
(2)
d (y) describes howϕd(y) con-

tributes the perturbation. In theory, ifϕd ≈ Idd and the entries ofa vary sufficiently much in space,

thenA(1)
d (y) will dominateA(2)

d (y).

Remark 9.3.1. There are a two important cases to consider:

1. if ϕd = Idd, thenAd = 0 andAd(y) = ad(y)

2. if a(y) is a piecewise constant matrix, i.e.,ad(y) = ad, thenA(1)
d (y) = 0 andA

(2)
d (y) =

J
⊤
d adJd − ad
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We again consider the matrix form of (9.2.2). That is, on eachsubdomainΩd,

(Ka
d +K

n
d )U

i,n
d = b

i−1,n
d ,

where

(Ka
d)k,ℓ = (ad(y)∇ξkd ,∇ξℓd)d +

∑

d̃∈d′

(
1

λ
〈ξkd , ξℓd〉d∩d̃ − 〈n

d̃
· ad(y)∇ξkd , ξℓd〉d∩d̃

)

(Kn
d )k,ℓ = (An

d (y)∇ξkd ,∇ξℓd)d −
∑

d̃∈d′
〈n

d̃
· An

d(y)∇ξkd , ξℓd〉d∩d̃

(bi−1,n
d )k = (Fn

d , ξ
k
d )d +

∑

d̃∈d′

(
1

λ
〈U i−1,n

d , ξkd 〉d∩d̃ − 〈n
d̃
·An

d (y)∇U i−1,n
d , ξkd 〉d∩d̃

)
.

The ability to separate the elliptic coefficient into a deterministic piece and a perturbation can

be exploited by the Neumann series. We first assume

‖(Ka
d)

−1
K

n
d‖ < 1,

so that

(Ka
d +K

n
d )

−1 = (Idd + (Ka
d)

−1
K

n
d )

−1(Ka
d)

−1

=




∞∑

p=0

(
−(Ka

d)
−1

K
n
d

)p

 (Ka

d)
−1.

We defineU i,n
d,P to be

U i,n
d,P =




P∑

p=0

(
−(Ka

d)
−1

K
n
d

)p

 (Ka

d)
−1

b
I−1,n
d,P .
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Note in Algorithm 9.4 that the number of inverses is independent ofN .

Algorithm 9.4: Monte Carlo simulation with Neumann series

for d = 1, . . . ,D do
precomputeKa

d

if ϕd = Idd then
precompute(Ka

d)
−1 and(Fd, ξ

k
d )d

end
end
for n = 1, . . . , N (number of samples)do

for i = 1, . . . , I (number of iterations)do
for d = 1, . . . ,D (number of subdomains)do

if ϕd = Idd then
solveU i,n

d,P = (Ka
d)

−1
b
i−1,n
d

else

solveU i,n
d,P =

[∑P
p=0

(
−(Ka

d)
−1

K
n
d

)p]
(Ka

d)
−1

b
i−1,n
d

end
end

end
end

We are now concerned with the error associated with the Neumann expansion,

E4 =
D∑

d=1

(U I,n
d − U I,n

d,P ,Ψd)d, (9.3.1)

which may be approximated

E4 ≈
D∑

d=1

Nd∑

j=1

[∫

Ωj
d

(
U I,n
d,P+∆P − U I,n

d,P

)
Ψd(y) dy

]
, (9.3.2)

for sufficiently large∆P .

9.4 Estimating the Distribution of a Quantity of Interest

We now treat the approximation of the probability distribution function and the associated error.

The probability distribution function ofQ(u;θ) is given by

P (t) = Pr(Q(u;θ) ≤ t).

We only have the approximationsU I,n (or U I,n
P ) so that, givenN realizations ofθ, {θn}Nn=1, we

use theestimatedempirical distribution function

P̂N (t) =
1

N

N∑

n=1

χ(−∞,t)(Q(U I,n;θ)),
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which approximates the true empirical distribution function

PN (t) =
1

N

N∑

n=1

χ(−∞,t)(Q(un;θ)).

We are then interested in the error

|P (t)− P̂N (t)| ≤ |P (t)− PN (t)|︸ ︷︷ ︸
sampling

+ |PN (t)− P̂N (t)|︸ ︷︷ ︸
numerical

, (9.4.1)

where the first term on the right of (9.4.1) is the sampling error.

The empirical distributionPN is an unbiased estimator ofP since

E(PN (t)) =
1

N

N∑

n=1

E(χ(−∞,t](Q(un;θ))) =
1

N

N∑

n=1

Pr(Q(u;θ) ≤ t) = P (t).

Further,

Var(PN (t)) =
P (t)(1− P (t))

N
.

The Strong Law of Large Numbers gives

PN (t)
a.s.→ P (t), ∀t,

i.e., the estimatorPN (t) is consistent. Further, the Central Limit Theorem gives

√
N(PN (t)− P (t))

d→ N(0, P (t)(1 − P (t))).

Thus, takingN sufficiently large will make the first term on the right of (9.4.1) arbitrarily small

with arbitrarily high probability.

The second term on the right of (9.4.1) is

|PN (t)− P̂N (t)| =
∣∣∣∣∣
1

N

N∑

n=1

(
χ(−∞,t)(Q(un))− χ(−∞,t)(Q(U I,n

P ))
)∣∣∣∣∣

=

∣∣∣∣∣
1

N

N∑

n=1

(
χ(−∞,t)(Q(un))− χ(−∞,t+en)(Q(un))

)
∣∣∣∣∣ ,

where we have defineden = Q(un)−Q(U I,n
P ), and then,

|PN (t)− P̂N (t)| ≤
∣∣∣∣∣
1

N

N∑

n=1

(
χ(t−|en|,t+|en|)(Q(un))

)
∣∣∣∣∣

≤
∣∣∣∣∣
1

N

N∑

n=1

(
χ(t−e,t+e)(Q(un))

)
∣∣∣∣∣

= |PN (t+ e)− PN (t− e)| ,
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wheree = max
n

|en|. Consequently, by makinge sufficiently small, we can make the second term on

the right of (9.4.1) arbitrarily small. We note that the quantity e, and eachen, involves contributions

due to the finite element discretization, the domain decomposition algorithm, Neumann expansion,

and quadrature.

9.5 Numerical Experiments

We now consider a numerical example that demonstrates both adaptive mesh refinement via an a

posteriori error analysis and the approximation of statistics from Monte Carlo simulations. We con-

sider the domainΩ = (0, 1)×(0, 1) and perturbationsθi = Unif(−0.02, 0.02)×Unif(−0.02, 0.02)

at each corner of the square. We assume thata = 1 andf(x, y) = 2000x(1 − x) + 2000y(1 − y).

The QOFI is defined byψ(x, y) = 100
π exp

(
−50(x− 0.9)2 − 50(y − 0.75)2

)
, which approximates

a weighted average in a neighborhood of the point(0.9, 0.75). In Fig. 9.4, the transformed problem

is solved for one realization ofθ via the domain decomposition and finite element formulations

described previously. The QOFI is approximated to be 32.140. We refine the mesh at elements such
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Fig. 9.4:Solution (left) and element-wise finite element error (right) on a uniform mesh.

that the error contributions is larger than 0.004. The solution is then found on the refined mesh and

is shown in Fig. 9.5. The QOFI is approximated to be 32.265 on the refined mesh. Notice that the

element-wise error contributions have been reduced by roughly a factor of three.

To approximate the distribution of the QOFI and various subsequent statistics, we employ the

Monte Carlo simulation algorithm for 10,000 realizations.In Fig. 9.6, we plot the approximate

empirical distribution function and the density histogram. That latter is compared to a normal

distribution with mean 31.362 and variance 3.491, which were both computed from the simulations.
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Fig. 9.5:Solution (left) and element-wise finite element error (right) on a refinement of the mesh.

The purpose of such a comparison is not to argue that the distribution of the QOFI is normal, which

is clearly not the case because the density is known to have compact support. Fig. 9.6 demonstrates

that the density of the QOFI is right-skewed, e.g., the median was approximated to be 31.339.
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Fig. 9.6:Approximate empirical distribution function and density of the QOFI defined byψ(x, y) =
100

π exp
(
−50(x− 0.9)2 − 50(y − 0.75)2

)
. The results of 10,000 realizations in a Monte Carlo

algorithm were used.

We now investigate the dependence of the QOFI on the uncertainty at different corners of the

domain. Since the QOFI is localized near the corner(1, 1), hereafter referred to as corner 3, we

expect the sensitivity ofQ to be large relative to the other corners, e.g., corner 1, i.e., (0, 0). In

Fig. 9.7, we plotQ against thex andy components of the perturbations at corners 1 and 3. There is

no statistically significant relationship between the two for corner 1, whereas a strong relationship

exists for corner 3. Asθ1 increases, the QOFI increases, which is expected because the QOFI is

located farther from the homogeneous Dirichlet condition for increasingθ1.
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Fig. 9.7:The QOFI defined byψ(x, y) = 100

π exp
(
−50(x− 0.9)2 − 50(y − 0.75)2

)
plotted against the per-

turbations at corners 1 and 3.
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We now consider a different QOFI defined byψ(x, y) = 1 and, again, employ the Monte

Carlo simulation algorithm for 10,000 realizations. In Fig. 9.8, we plot the approximate empirical

distribution function and the density histogram. That latter is compared to a normal distribution

with mean 27.351 and variance 0.599, which were both computed from the simulations. As with

the other QOFI, the density of the QOFI has compact support and is right-skewed.
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Fig. 9.8:Approximate empirical distribution function and density of the QOFI defined byψ(x, y) = 1. The
results of 10,000 realizations in a Monte Carlo algorithm were used.

We now investigate the dependence of the QOFI on the uncertainty at different corners. Since

the QOFI is the average of the solution over the entire domain, we expect the sensitivity ofQ to be

similar across the four corners, which is verified in Fig. 9.9. If the perturbations are such that the

resulting domain is larger in size, the QOFI tends to increase as well.

9.6 Summary

We consider the nonparametric density estimation problem for a QOFI computed from solutions

of the elliptic PDEs with stochastic domains that were formulated in the previous chapter. We

consider several measures to improve the efficiency of the Monte Carlo sampling method so that

many samples can be obtained to approximate the distribution at a reasonable cost. An a posteriori

error analysis is presented for each sample and for the empirical distribution function obtained from

the samples. The a posteriori error estimate for the computed probability distribution reflects both

deterministic and statistical sources of error including the effects of the transformation.
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Fig. 9.9:The QOFI defined byψ(x, y) = 1 plotted against the perturbations at corners 1 and 3.
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10. CONCLUSION

In the first part of this dissertation, we study the nonlocal diffusion equation with so-called Lévy

measureν as the master equation for a pure-jump Lévy process. In the caseν ∈ L1(R), a rela-

tionship to fractional diffusion is established in a limit of vanishing nonlocality, which implies the

convergence of a compound Poisson process to a stable process. In the caseν /∈ L1, an equiva-

lence with fractional diffusion is reviewed and the smoothing of the nonlocal operator is shown to

correspond precisely to the activity of the underlying Lévy process and the variation of its sample

paths. We introduce volume-constrained nonlocal diffusion equations and demonstrate that they are

the master equations for Lévy processes restricted to a bounded domain. The ensuing variational

formulation and conforming finite element method provide a powerful tool for studying both Lévy

processes and fractional diffusion on bounded, non-simplegeometries with volume constraints.

In the second part of this dissertation, we consider the problem of estimating the distribution of

a quantity of interest computed from the solution of an elliptic partial differential equation posed on

a domainΩ(θ) ⊂ R
2 with a randomly perturbed boundary, whereθ is a random vector with given

probability structure. We construct a piecewise smooth transformation from a partition ofΩ(θ) to

a reference domainΩ in order to avoid the complications associated with solvingthe problems on

Ω(θ). The domain decomposition formulation is exploited by localizing the effect of the random-

ness to boundary elements in order to achieve a computationally efficient Monte Carlo sampling

procedure. An a posteriori error analysis for the approximate distribution, which includes a deter-

ministic error for each sample and a stochastic error from the effect of sampling, is also presented.

We thus provide an efficient means to estimate the distribution of a quantity of interest via a Monte

Carlo sampling procedure while also providing a posteriorierror estimates for each sample.
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[8] I. Babuška and P. Chatzipantelidis. On solving elliptic stochastic partial differential equations.

Computer Methods in Applied Mechanics and Engineering, 191(37-38):4093–4122, 2002.
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[12] I. Babuška, F. Nobile, and R. Tempone. A stochastic collocation method for elliptic partial

differential equations with random input data.Siam J. Numer. Anal, 45(3):1005–1034, 2007.
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