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ABSTRACT

DEEP AND SHALLOW OVERTURNING CIRCULATIONS IN THE TROPICAL

ATMOSPHERE

This dissertation examines the dynamics of zonally symmetric, deep and shallow overturning

circulations in the tropical atmosphere. The dynamics are discussed in the context of idealized an-

alytical solutions of the equatorialβ-plane version of the Eliassen meridional circulation equation

that arises in balanced models of the Hadley circulation. This elliptic equation for the meridional

circulation has been solved analytically by first performing a vertical normal mode transform that

converts the partial differential equation into a system ofordinary differential equations for the

meridional structures of all the vertical modes. These meridional structure equations can be solved

via the Green’s function, which can be expressed in terms of parabolic cylinder functions of half-

integer order. The analytical solutions take simple forms in two special cases: (1) Forcing by deep

diabatic heating that projects only onto the first internal mode in the absence of Ekman pump-

ing; (2) Forcing by Ekman pumping in the absence of any diabatic heating. Case (1) leads to deep

overturning circulations, while case (2) leads to shallow overturning circulations. Both circulations

show a marked asymmetry between the winter hemisphere and summer hemisphere overturning

cells. This asymmetry is due to the basic anisotropy introduced by the spatially varying inertial sta-

bility coefficient in the Eliassen meridional circulation equation. A simple physical interpretation

is that fluid parcels forced near the equator to overturn by diabatic and frictional processes tend to

move much more easily in the horizontal direction because the resistance to horizontal motion (i.e.

inertial stability) is so much less than the resistance to vertical motion (i.e., static stability).
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CHAPTER 1

INTRODUCTION

The winter and summer hemisphere Hadley cells are well knownfeatures of the tropical atmo-

spheric circulation. They consist of ascending motion close to the equator, divergent flow at upper

tropospheric levels, convergent flow toward the ITCZ near thesurface, and descending motion in

the subtropics. In addition to this deep circulation, Zhanget al. (2004) have presented evidence

for a shallow meridional circulation (SMC) in the eastern Pacific. As schematically illustrated in

Fig. 1.1, this shallow overturning circulation resembles the deep overturning circulation in many

respects, but its cross-equatorial return flow occurs just above the top of the frictional boundary

layer. This SMC is observed as southerly flow at the lowest levels, with a shallow return northerly

flow between 1 and 5 km, in contrast to the well-known northerly flow of the deep Hadley circu-

lation, found between 10 and 12 km. Wang et al. (2005) found that the SMC is strongest between

85◦W and125◦W, with a tendency to become deeper toward the west, which seems to be correlated

with the increase of the inversion height toward the west (Neiburger et al. 1961; von Ficker 1936).

Its meridional extent also varies in the zonal direction. For example, east of105◦W the SMC is

confined between5◦S and the northern Intertropical Convergence Zone (ITCZ), which occurs at

∼ 10◦N, whereas near120◦W the SMC penetrates to15◦S.

Zhang et al. (2004) and Nolan et al. (2007) attributed the cause of the SMC to sea surface

temperature (SST) gradients. In particular, Nolan et al. (2007) analyzed the SMC as a large-scale

sea-breeze type circulation, driven by north-south SST gradients with shallow convection in the

ITCZ region. They suggest that these SST gradients induce pressure gradients that produce the

SMC; they find that a stronger SMC occurs when deep convection in the ITCZ is absent. In a

later paper, Nolan et al. (2010) performed idealized simulations of the ITCZ and its multilevel

1



FIG. 1.1. Schematic cross section of the deep (dashed lines) andshallow (solid
lines) meridional circulations in the tropical eastern Pacific. From Zhang et al.
(2004).

flows. These multilevel flows include: Boundary Layer Inflow (BLI), Shallow Return Flow (SRF),

Midlevel Inflow (MLI) and Upper-Level Outflow (ULO). In theirstudy the SRF is analyzed as a

sea-breeze-like response to surface gradients of pressureand temperature, in particular, a strong

meridional SST gradient near the equator. Their simulations show that both the SRF and the MLI

are robust features of the ITCZ in the eastern Pacific. Lindzenand Nigam (1987) proposed this

mechanism of surface temperature and pressure gradients toexplain low-level wind in the trade

cumulus boundary layer, and they found that SST and its gradients are correlated positively in the

vertical through the depth of the trade cumulus layer.

From previous global analyses, it appears that shallow meridional circulations occur in several

other parts of the globe. For example, Trenberth et al. (2000) studied the mean annual cycle of the

divergent wind and vertical motion using both the NCEP-NCAR reanalysis and the ECMWF re-

analysis. They applied a complex empirical orthogonal function (CEOF) analysis to the divergent

wind, which produced two dominant modes of overturning throughout the tropical and subtrop-

ical troposphere. The first mode (CEOF1) is the deep overturning global monsoon mode in the

troposphere, with a maximum in vertical motion at approximately 400 hPa, divergence in the up-

per troposphere (with a maximum at 150 hPa), and convergencein the lower troposphere with a

2



maximum at 925 hPa (ECMWF) or 850 hPa (NCEP). The Hadley circulation, the Pacific and At-

lantic Walker cells, and the Asia-Africa transverse cell are part of this deep overturning mode. The

CEOF1 has a maximum in July and a secondary maximum in January.

The CEOF2 is the lower-tropospheric overturning cell centered about 800 hPa, where it reaches

its maximum vertical velocity, with outflow from 750 to 350 hPa and inflow peaking at 925 hPa.

This second mode is strong over Africa, migrating back and forth across the equator with the

seasons. It is also observed in the Middle East, Australia, the tropical eastern Pacific and the

Atlantic. The upward motion peaks at10◦N in August and at10◦S in February. The downward

motion peaks at25◦N in February and at30◦S in August. Two examples from the Trenberth et al.

(2000) analysis are shown in Figures 1.2 and 1.3. Figure 1.2 shows the regional meridional cross

section of the divergent flow, averaged between170◦W and90◦W, for July. This example illustrates

the simultaneous occurrence of deep and shallow Hadley cells. In contrast, Figure 1.3 shows the

regional meridional cross section of the divergent flow, averaged between30◦W and 10◦E, for

January. This example illustrates the occurrence of the shallow Hadley cell during a period when

the deep Hadley cell is largely absent.

Observational insights into the role of sea surface temperature in boundary layer processes in

the eastern tropical Pacific have been provided by Wallace etal. (1989) and Deser et al. (1993).

They found that northward moving boundary layer flow, upon crossing into the cold SST tongue

at 1◦S, is stabilized to such an extent as to inhibit the downward turbulent mixing of northward

momentum from aloft, due to the high static stability (Chelton et al. 2000b). As this low-level air

subsequently flows across the equator and over the SST frontal zone at2◦N (i.e., toward warmer

waters), the boundary layer is destabilized, leading to increased turbulence and therefore increased

downward mixing of northward momentum. The low-level wind thus displays strong horizontal
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divergence as it moves through the frontal zone. These northward winds are influenced by the

El Niño/Southern Oscillation and the annual cycle, with stronger flow during the cold seasons, in

particular during cold seasons of warm years. Satellite images and SST data were used by Deser

et al. (1993) to test the hypothesis that cool low-level winds blowing across the SST front in the

equatorial eastern Pacific produce stratiform clouds on thewarm side of the front. When the front

is strong (weak), there is a maximum (minimum) of cloudiness. A strong (weak) front is found

during cold (warm) ENSO episodes. Lindzen and Nigam (1987) argued that the motion in the

lower layer of the trade cumulus boundary layer is due to the pressure gradients resulting from the

SST distribution. Similar results were found by Back and Bretherton (2009a), who showed that

the distribution of convergence is primarily due to boundary layer temperature gradients related to

SST gradients.

It appears that all SMCs undergo marked seasonal cycles, reaching their peak in different sea-

sons at different longitudes: Spring over West Africa, Summer over the Atlantic Ocean and Fall

over the Eastern Pacific. SMCs can be classified into two types:(i) the maritime ITCZ type and (ii)

the summer monsoon type (Zhang et al. 2008). Stratocumulus clouds are found north and south

of the equator. Using data from EPIC 2001 to study the atmospheric boundary layer over the cold

tongue and ITCZ, de Szoeke et al. (2005) found that during the boreal fall, a weak return circula-

tion is present above the boundary layer along95◦W, between 1.2 and 2.8 km height,3◦N and8◦N

with average speed of 1.25 m s−1. The area between1◦N and3◦N shows the highest cloud frac-

tion of stratocumulus and they lay over the convective mixedlayer, whereas stratocumulus south

of the equator are found near the inversion base. The authorsinterpret these southern clouds as

residual stratocumulus maintained by cloud-top radiativecooling. The area over the cold tongue

displays occasional thin altostratus clouds above the boundary layer. The radiative cooling caused
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by the presence of these clouds strengthens the SST gradients, enhances the southeast trade winds

and therefore increases precipitation in the ITCZ region north of the equator. The authors then

argue that, if the cloud-radiative effect over the southeast Pacific is removed, the boundary layer

clouds almost disappear south of the equator and the precipitation in the ITCZ north of the equator

would be reduced by 15%-20% over the eastern Pacific. The maximum net cloud-induced radia-

tive cooling found by Wang et al. (2005) through the use of a linear steady state primitive equation

model, was 2 K day−1, which drives an anomalous surface southerly flow of 2 m s−1. According

to Masunaga and L’Ecuyer (2010), clouds offset the net radiation by 10–15 W m−2 throughout the

year in the tropical southeast Pacific. If these clouds were not present, a double ITCZ would also

be present during the boreal Fall. This short-wave reflection by high clouds of the southern ITCZ

produces a meridional asymmetry of the annual mean climatology of the absorbed shortwave flux,

with a marked difference of 40 W m−2 between10◦S and10◦N (Masunaga and L’Ecuyer 2011).

Using the same data from EPIC 2001, McGauley et al. (2004) found the strongest meridional wind

between 0 and5◦N; however, these winds do not accelerate due to the forcing of the strong pressure

gradient found in the boundary layer. The meridional pressure gradient reverses sign above 1 km

at certain latitudes, resulting in reversal of the meridional wind near 1200 m, where the northerlies

are strongest near5◦N.

The treatment of the circulation between10◦S and10◦N as a sea-breeze circulation (Nolan et al.

2007) does not account for important mechanisms such as the variation of the Coriolis parameter

with latitude, which causes important variations in the inertial stability. Vorticity in the region of

the ITCZ produces Ekman pumping out the boundary layer. The most likely horizontal trajectory

for this air is toward an area with low inertial stability (low resistance to displacement due to the

Coriolis force), i.e., equatorward rather than poleward where the inertial stabilityβ2y2 is larger
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and the inertial stability more effectively retards the flow. In the present study we explore the

hypothesis that Ekman pumping out of the boundary layer is one of the driving mechanisms for

the SMC.

Over the past several decades, considerable understandingof Hadley cell dynamics has been

obtained through the use of idealized analytical and numerical models of zonally symmetric flow.

For example, using the Held and Hou (1980) numerical model ofzonally symmetric Hadley cells,

Lindzen and Hou (1988) simulated the seasonal migration of these cells in response to the north-

south migration of the sea surface temperature maximum. Their results show that, as the center

of the heating moves off the equator, the latitude separating the winter and summer cells moves

much further into the summer hemisphere while the summer cell becomes negligible. The summer

cell is the one found in the hemisphere where the ITCZ is located, while the winter cell is found

in the opposite hemisphere. Using a high resolution versionof the numerical model, steady state

solutions were found, and the meridional streamfunctions were computed for cases with the heat

source located at the equator, 2◦N, and 6◦N. Symmetric cells centered on the equator were found

when the heat source is located at the equator, but when the heat source is at 2◦N, the winter cell is

50% stronger than the symmetric cells, while the summer cellis half the strength of the symmetric

cells. The latitude where the two cells meet is no longer the area of maximum vertical velocity;

instead, it remains near the latitude of the heat source. Whenthe heat source is located at 6◦N,

the winter cell dominates and it is more than four times as intense as the symmetric cells. The

meridional displacement of the ITCZ was studied by Kang et al.(2008) using a GCM coupled to

a slab mixed layer ocean. In their experiments, the northernextratropics are cooled and the south-

ern extratropics are warmed by a cross-equatorial flux beneath the mixed layer, in simple words,

heat is substracted from one hemisphere and simultaneouslyadded to the other hemisphere. This
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procedure forced a southward displacement of the ITCZ and subsidence is created in the tropics

of the cooler hemisphere, favoring low-level clouds. The asymmetry between the summer hemi-

sphere and winter hemisphere Hadley cells was also exploredby Hack et al. (1989) and Hack and

Schubert (1990) using dynamical arguments based on the Eliassen meridional circulation equa-

tion (with variable coefficients: static stability, baroclinicity and inertial stability) and by Schubert

et al. (1991) based on potential vorticity dynamics. These dynamical arguments are quite different

than those used by Lindzen and Hou (1988) since they are not based on a steady state assumption,

but rather involve wind and mass fields that are evolving intostates that satisfy the Charney-Stern

necessary condition for combined barotropic-baroclinic instability. Another possible aspect of the

dynamics was noted by Tomas and Webster (1997), who point outthat strong cross-equatorial flow

can lead to an area in the meridional plane, between the equator and the zero absolute vorticity sur-

face, wheref(f + ζ) < 0, i.e., the absolute vorticity(f + ζ) has the opposite sign of the Coriolis

parameterf , which is the condition for inertial instability. Whether this potential instability plays

an important role in the Hadley circulation remains an open question.

To address both the deep and shallow overturning problems, the present study uses a zonally

symmetric, equatorialβ-plane model. From the governing equations for this simplified model we

derive a meridional circulation equation for the streamfunction. This equation has two variable

coefficients—the static stability and the inertial stability. It also has two forcing effects—the dia-

batic heating, which appears in the interior equation, and the boundary layer frictional pumping,

which appears in the lower boundary condition. By assuming that the diabatic heating and the

boundary layer pumping are confined to the ITCZ region, other types of circulations not related

to the present study are eliminated. The meridional circulation equation is solved analytically us-

ing vertical and horizontal transform methods. These analytical solutions serve as the basis for
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a better understanding of the processes that force deep and shallow overturning circulations and

the dynamics that leads to large asymmetries between winterhemisphere and summer hemisphere

Hadley cells.

The dynamics are presented in the context of idealized analytical solutions of the meridional

circulation equation that arises in the zonally symmetric model of the Hadley circulation. Under

certain simplifications of its coefficients, this elliptic partial differential equation for the meridional

circulation can be solved by first performing a vertical transform to obtain a horizontal structure

equation from which arises the concept of a spectrum of Rossby lengths. In the tropics, Rossby

lengths are large and Rossby depths are small, so the interior circulation associated with Ekman

pumping cannot penetrate deep into the troposphere. The purpose of this dissertation is to examine

several other dynamical aspects, which in addition to the hypothesis of sea surface temperature

gradients, appear to play an important role in understanding the SMC. The three dynamical aspects

examined here are: (i) Ekman pumping out of the boundary layer in the high vorticity region of

the ITCZ; (ii) low inertial stability in the equatorial region, causing most of the Ekman pumped air

to be returned across the equator; (iii) a spectrum of small Rossby depths, causing the return flow

to be trapped just above the boundary layer.

The arguments presented here are based on the assumption of balanced zonal flow. If the

zonal flow is balanced in the sense that it is continuously evolving from one geostrophically bal-

anced state to another, then the meridional circulation is determined by the solution of a second

order partial differential equation in the(y, z)-plane. According to this “meridional circulation

equation”, the streamfunction for the poleward and vertical motion is determined by the following

factors: the meridional derivative of the diabatic heating, the Ekman pumping at the top of the

boundary layer, the static stability, and the inertial stability. Although solutions of the meridional
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circulation equation generally yield poleward and vertical velocities that are much weaker than

the zonal velocity, the poleward and vertical directions are the directions of large gradients, so the

relatively weak meridional circulation is crucial for zonal flow evolution.

The remainder of this dissertation is organized as follows.In Chapter 2, data from the “Year

of Tropical Convection (YOTC)” is used to examine the boreal summer wind fields and cloud

distributions in the eastern Pacific, where the SMC has been previously observed. The design of

a simplified, zonally symmetric model of the deep and shallowHadley circulations is presented

in Chapter 3. This chapter presents the governing equations (section 3.1), the vertical transform

method that transforms the meridional circulation equation from a partial differential equation in

(y, z, t) into a system of partial differential equations in(y, t) for the meridional structure of each

vertical mode (section 3.2), and finally the solution of these partial differential equations via both

a Green’s function method (section 3.3) and a Hermite transform method (section 3.4). Chapter 4

discusses the analytical solutions obtained in Chapter 3, concentrating on two interesting cases: (1)

Deep overturning circulations, representing the deep Hadley circulation forced by diabatic heating

in the ITCZ region; (2) Shallow overturning circulations, inthis case forced by Ekman pumping

out of the top of the boundary layer in the high vorticity region of the ITCZ. Conclusions are

given in Chapter 5. Several detailed mathematical derivations of the differential equation solution

methods are given in the appendices.
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FIG. 1.2. Regional meridional cross section (170◦W to 90◦W) of the divergent
mass flux as vectors from50◦S to50◦N, derived from ECMWF data for July. The
mass flux scale is is given below Figure 1.3. From Trenberth etal. (2000).

FIG. 1.3. Regional meridional cross section (30◦W to 10◦E) of the divergent mass
flux as vectors from50◦S to 50◦N, derived from ECMWF for January. The mass
flux scale is below the figure. From Trenberth et al. (2000).
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CHAPTER 2

AN OBSERVATIONAL ANALYSIS OF THE EASTERN PACIFIC USING YOTC DATA

Analysis from the research program known as the Year of Tropical Convection (YOTC) (Waliser

et al. 2012) is used in this chapter to examine the relationship of SSTs, clouds, and low-level cir-

culation features over the Eastern Pacific during boreal summer. The temporal resolution of the

YOTC analysis fields is 6 h and the horizontal resolution is0.5◦ × 0.5◦ with 15 irregularly spaced

vertical levels between 1000 and 100 hPa. YOTC analyses are available for the 2-yr period be-

tween May 2008 and April 2010. Although originally proposedto be a 1-yr research program,

YOTC was extended for an additional year in order to capture both La Nina and El Nino phases of

an ENSO cycle. In this chapter we only consider analyses fromthe boreal summer of 2009, during

which time the Multivariate ENSO Index ranged from 0.36 to 0.96 corresponding to weak warm

anomalies over the Eastern Pacific. The excellent agreementbetween ECMWF and QuikSCAT

surface divergence and vorticity analyses over the tropical Eastern Pacific, found by McNoldy

et al. (2004), gives us confidence that the ECMWF-based YOTC analyses are accurately depicting

conditions over this region. However, it must be kept in mindthat the YOTC analyses provide only

2 years of data.

During May, an area of warm water known as the Western Hemisphere Warm Pool (WHWP)

starts to develop in the Eastern Tropical Pacific. The evolution of SSTs over this region in boreal

Spring, Summer and Fall 2009 is shown in Fig. 2.1. The WHWP, defined as the region covered

by water warmer than 28.5◦C (Wang and Enfield 2001, 2005; Enfield and Lee 2005), providesan

environment conducive for producing deep convective clouds and upper-level cirrus. The 28.5◦C

isotherm and the oceanic mixed layer have an annual average depth of 25 m. The WHWP is

divided into four regions: Eastern North Pacific (ENP), Gulfof Mexico, western Tropical North
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FIG. 2.1. Sea surface temperature (◦C) for May, July, and September 2009. Note
the development of the cold tongue along the equator, the SSTfront just north of
the Galapagos, and SSTs warmer than30◦C in September.
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Atlantic (TNA) and Caribbean. These four regions correspondto areas of hurricane genesis and

development.

High and low cloudiness superimposed with surface winds over this region for September

2009 are shown in Figs. 2.2 and 2.3. Low clouds are usually found between the surface and

2 km while high clouds are located above 8 km. As seen here low-level trade winds from the

Southern Hemisphere converge strongly with those of the Northern Hemisphere forming an ITCZ

at approximately10◦N (Fig. 2.3). High level clouds can be seen near the average position of

the ITCZ (low-level wind convergence) whereas low-level clouds are found south of the ITCZ,

including the southeastern Pacific, which correspond to areas of maximum meridional low-level

wind (Fig. 2.2). As it was pointed out by Philander et al. (1996), thin layers of stratus clouds

develop in regions of subsidence where the surface winds evaporate water vapor from the ocean.

A strong low-level atmospheric inversion traps this moist air, forming stratus clouds at the base of

the inversion.

Low-level convergence associated with the ITCZ in the eastern tropical Pacific is located be-

tween 2.5◦N and 15◦N (Figs. 2.4–2.6), with maximum surface southerly winds between the equator

and 5◦N (e.g., Fig. 2.10). These results are consistent with the QuikScat divergence patterns found

in Fig. 3 of McNoldy et al. (2004), although their average values are over 4 years (1999–2002). The

strongest values of low-level divergence are found betweenthe equator and 2◦N, with less-well-

defined convergence often occuring near 5◦S, noting of course that the YOTC data sample pnly a

brief period during the transition from La Nina to El Nino. During these summer months, cyclonic

vorticity is present north of 8◦N, zero relative vorticity near 7◦N (white shading) and anticyclonic

vorticity south of 7◦N (Figs. 2.7–2.9).
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FIG. 2.2. Fractional high-level cloud cover (scale on right) and surface wind (with
the reference 10 m s−1 vector shown at the bottom).

By July the ITCZ is genallly located between 8◦N and 10◦N (Fig. 2.5), and it continues moving

north until September, when it reaches its northernmost position, often slightly north of 10◦N

(Fig. 2.6). Strong low-level southerly winds south of the ITCZ display magnitudes between 4 to

7 m s−1 (Fig. 2.10), and start decreasing in magnitude and horizontal extent during October (not

shown).

As mentioned in Chapter 1, as part of the SMC, a shallow return flow (northerly winds) near

the equator has been observed over the Eastern Pacific in the lowest 2–5 km of the atmosphere.
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FIG. 2.3. Fractional low-level cloud cover (scale on right) andsurface wind (with
the reference 10 m s−1 vector shown at the bottom).

To examine the characteristics of the SMC over this region inmore detail, Figs. 2.11–2.13 show

monthly-averaged cross sections of YOTC meridional winds between85◦W and 95◦W for the

months of May, July and September 2009, respectively. The upper panels, which show the full

depth of the troposphere, reveal the traditional deep Hadley circulation with a stronger cross-

equatorial cell and upper-level northerlies to the south ofthe ITCZ. To better reveal details of

the lower-level SMC, the bottom panels of Figs. 2.11–2.13 focus on the 1000–600 hPa layer. As

noted in earlier figures, low-level winds converge between5◦N and10◦N during these months. To
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FIG. 2.4. May divergence (scale at right in units of10−5 s−1) and streamlines at
1000 hPa.

the south of the ITCZ, low-level southerlies with peak speedsbetween 6 and 7 m s−1 are observed

between20◦S and10◦N. Above the southerlies, a weak northerly (1–2 m s−1) return flow centered

near2.5◦N is observed between 700 and 800 hPa. Although not shown here, this shallow return

flow in the YOTC analyses deepens and its meridional extent increases towards the west, consistent

with the findings of Wang et al. (2005). Some strengthening ofthe SMC between May and the

later months is consistent with wind profiler observations from this region (Zhang et al. 2004). To

the north of the ITCZ, low-level northerlies are present roughly between10◦N and20◦N, with no

evidence of a shallow southerly return flow to the north. Notethat the northerly maximum in July
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FIG. 2.5. July divergence (scale at right in units of10−5 s−1) and streamlines at
1000 hPa.

found near12◦N and 900 hPa is partially a reflection of the Papagayo Jet (Chelton et al. 2000a)

which has a peak northerly component near 925 hPa.

The characteristics of the SMC, and in particular, the northerly return flow between 800 hPa

and 700 hPa in the 2009 YOTC analyses are largely consistent with the Tropical East Pacific ob-

servations of this flow presented in Zhang et al. (2004). Withsuch consistency between model

analyses and observations, examining additional years of model analyses and interannual variabil-

ity patterns, would be helpful in understanding the variability of the SMC in this region.
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FIG. 2.6. September divergence (scale at right in units of10−5 s−1) and streamlines
at 1000 hPa.

In the following two chapters we derive and solve the equations for a simple, zonally symmetric

model that elucidates some of the fundamental dynamics of these deep and shallow overturning

circulations.
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FIG. 2.7. May vorticity (scale at right in units of10−5 s−1) and streamlines at 1000 hPa.
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FIG. 2.8. July vorticity (scale at right in units of10−5 s−1) and streamlines at 1000 hPa.
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FIG. 2.9. September vorticity (scale at right in units of10−5 s−1) and streamlines
at 1000 hPa.
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FIG. 2.10. July meridional wind (m s−1) at 1000 hPa.

22



FIG. 2.11. May meridional wind (m s−1) cross section, averaged over the longitude
range 85◦W–95◦W.
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FIG. 2.12. July meridional wind (m s−1) cross section, averaged over the longitude
range 85◦W–95◦W.
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FIG. 2.13. September meridional wind (m s−1) cross section, averaged over the
longitude range 85◦W–95◦W.
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CHAPTER 3

THE ZONALLY SYMMETRIC MODEL AND THE MERIDIONAL CIRCULATION EQUATION

In order to gain insight into the dynamics of the shallow and deep Hadley circulations, this

chapter considers zonally symmetric motions in a stratified, compressible atmosphere on the equa-

torial β-plane. The limitation to zonally symmetric motions is a strong one, because it precludes

simulation of Walker-type circulations. However, as we shall see, the zonally symmetric model

can yield insight into situations such as the one depicted inFigure 3.1, which shows a typical,

boreal summer 6.7µm water vapor image of the eastern Pacific from the GOES West satellite.

Under clear sky conditions, the 6.7µm channel is sensitive to the vertically averaged humidity in

the 200–500 hPa layer, so the dark blue areas on either side ofthe ITCZ indicate regions of low

humidity in the upper troposphere, and hence regions of enhanced subsidence in the downward

branches of the summer hemisphere and winter hemisphere Hadley and Walker cells. The com-

plete explanation of atmospheric water vapor distributions can be quite complicated and involve

several different physical processes, such as the stretching and folding processes associated with

the Rossby wave pattern just east of Hawaii in Figure 3.1. Fordetailed discussions of tropical

moisture distributions, including trajectory analysis and the concept of “time since last condensa-

tion,” see Sun and Lindzen (1993), Soden and Fu (1995), Salathé and Hartmann (1997), Galewsky

et al. (2005), Sherwood et al. (2006), Cau et al. (2007), and Schreck et al. (2013). In spite of the

intricacies involved in comprehensive explanations of tropical water vapor distributions, it appears

that, during much of the year, the explanation of the water vapor distribution in the eastern Pacific

is simpler than in many other areas. An important part of the explanation lies in the dynamics of

the Hadley cells, with the winter hemisphere Hadley cell having a large meridional extent and a

large overturning mass flux. These are the aspects on which weshall focus.
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FIG. 3.1. The 06 UTC 25 June 2013 water vapor image (6.7µm) from the GOES
West satellite. The image is typical of the eastern Pacific during the boreal summer
when the ITCZ is located near 10–15N. The dark blue areas on either side of the
ITCZ indicate regions of low humidity in the upper troposphere, and hence regions
of enhanced subsidence in the downward branches of the summer hemisphere and
winter hemisphere Hadley cells. For a detailed discussion of 6.7 µm radiance-
to-humidity transformation formulas, see Soden and Bretherton (1993, 1996) and
Jackson and Bates (2001).

In the theory presented here, only the flow in the inviscid interior (i.e., above the 900 hPa

isobaric surface) is explicitly considered. The effects ofthe frictional boundary layer will appear as

the lower boundary condition on the inviscid interior. The derivation of the time dependent problem

for the meridional circulation is given in section 3.1. The problem consists of a partial differential
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equation in(y, z, t), with appropriate boundary and initial conditions. This problem can be solved

by a variety of methods. The methods used here are analyticaland provide important insights

into the dynamics. As described in section 3.2, the first stepinvolves application of a vertical

transform that converts the original partial differentialequation in(y, z, t) into a system of partial

differential equations in(y, t). Two different analytical methods have been used here to solve the

partial differential equations in(y, t). The first method, described in section 3.3, uses the Green’s

function approach (evanescent basis functions). This approach yields the most physical insight

into the quasi-balanced meridional flow and the fundamentalasymmetry between the summer

hemisphere and winter hemisphere Hadley cells. The second method, described in section 3.4,

uses the Hermite transform approach (oscillatory basis functions). This approach yields the most

physical insight into the transient aspects of the flow and, in particular, how zonally symmetric

inertia-gravity waves can be emitted due to pulsating convection in the ITCZ. The primary results

obtained in this chapter are the mathematical statement of the meridional circulation problem,

given below in (3.11)–(3.15), the analytical solution of the filtered version of this problem, given

below in (3.42), (3.44), and (3.45), the analytical solution of the fully time dependent problem,

given below in (3.56)–(3.58), and finally a second analytical representation of the filtered solution,

given below in (3.60). An extensive discussion of these solutions is given in Chapter 4.

3.1. DERIVATION OF THE TIME DEPENDENT MERIDIONAL CIRCULATION EQUATION

As the vertical coordinate we usez = H ln(p0/p), wherep0 = 900 hPa,T0 = 293 K, and

H = RT0/g = 8581 m. We consider the case of weak zonal and meridional flow and weak

baroclinicity, so that thev(∂u/∂y) andw(∂u/∂z) terms in the zonal momentum equation, the

v(∂v/∂y) andw(∂v/∂z) terms in the meridional momentum equation, and thev(∂T/∂y) term in

the thermodynamic equation can be neglected. Under these assumptions, the governing equations
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for zonally symmetric flow are

∂u

∂t
− βyv = 0, (3.1)

∂v

∂t
+ βyu+

∂φ

∂y
= 0, (3.2)

∂φ

∂z
=

g

T0

T, (3.3)

∂v

∂y
+
∂w

∂z
− w

H
= 0, (3.4)

∂T

∂t
+
T0

g
N2w =

Q(y, z)S(t)

cp
, (3.5)

whereu andv are the zonal and meridional components of velocity,w is the log-pressure vertical

velocity,φ is the geopotential,β = 2Ω/a is the constant northward gradient of the Coriolis param-

eter,Ω anda are the Earth’s rotation rate and radius, andN2(z) = (g/T0)[(dT̄ /dz) + (κT̄/H)]

is the square of the buoyancy frequency, which is computed from the specified mean temperature

profile T̄ (z). The diabatic heating has been assumed to have the spatial dependenceQ(y, z) and

the time dependence

S(t) = 1 − (1 + γt)e−γt, (3.6)

with the constantγ specifying the sharpness of the switch-on functionS(t). Figure 3.2 displays

four S(t) curves for the particular valuesγ−1 = 3, 6, 12, 24 hours. Equations (3.1)–(3.5) consti-

tute a system of five equations in the five unknownsu, v, w, φ, T , so long as the diabatic forcing

is considered known. We have avoided use of a “parameterization” relating the diabatic heating to

u, v, w, φ, T . Obviously, adding an equation in this manner has the serious disadvantage that our

confidence that this additional equation is an accurate description of nature is much lower than our

confidence that (3.1)–(3.5) are accurate descriptions of nature. Because of this, we attempt here to
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see what physical insights can be gained about the meridional circulation without making use of

such comparatively uncertain parameterization relations.

γ−1
 = 3 h

γ−1
 = 6 h

γ−1
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γ−1
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S(t) = 1 − (1 + γt)e−γt

FIG. 3.2. Plots of the switch-on functionS(t) for the four choicesγ−1 =
3, 6, 12, 24 hours. The “filtered solutions” discussed in sections 3.3 and 3.4 are
valid for the “slow switch-on” cases, i.e., for large valuesof γ−1.

We shall now combine (3.1)–(3.5) in such a way as to obtain a single equation for the stream-

function of the meridional overturning circulation. We begin by multiplying the zonal wind equa-

tion (3.1) byβy and the thermodynamic equation (3.5) by(g/T0), and then make use of the merid-

ional wind equation (3.2) and the hydrostatic equation (3.3), thereby obtaining

∂

∂y

(

∂φ

∂t

)

+

(

∂2

∂t2
+ β2y2

)

v = 0, (3.7)

∂

∂z

(

∂φ

∂t

)

+N2w =
gS(t)

cpT0

Q. (3.8)
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The next step in the derivation is to eliminate(∂φ/∂t) between (3.7) and (3.8), thereby obtain-

ing

N2∂w

∂y
−
(

∂2

∂t2
+ β2y2

)

∂v

∂z
=
gS(t)

cpT0

∂Q

∂y
. (3.9)

We can now regard (3.4) and (3.9) as a closed system inv andw. One way of proceeding with

this system is to make use of (3.4) to express the meridional circulation (v, w) in terms of the

streamfunctionψ by

e−z/Hv = −∂ψ
∂z

and e−z/Hw =
∂ψ

∂y
, (3.10)

and then to use (3.10) in (3.9) to obtain a single equation inψ. This procedure yields the partial

differential equation given below in (3.11). Assuming thatv → 0 asy → ±∞ and thatw vanishes

at the top boundary (z = zT ), we obtain the boundary conditions given below in (3.12) and (3.13).

Concerning the lower boundary condition, we assume that the actual vertical velocity (i.e., the

physical height vertical velocity) is specified at the lowerisobaric surfacez = 0 (i.e., the top

of the boundary layer). The appropriate linearized versionof this lower boundary condition is

(∂φ/∂t) + g(∂ψ/∂y) = gS(t)W(y) atz = 0, whereW(y) is the specified meridional distribution

of the physical height vertical velocity atz = 0 and where we have assumed a time dependence

S(t) identical to that for the diabatic heating. From (3.7), we also have(∂/∂y)(∂φ/∂t)−(∂2/∂t2+

β2y2)(∂ψ/∂z) = 0 at z = 0. Eliminating (∂φ/∂t) from these last two relations, we obtain the

lower boundary condition given below in (3.14). Concerning the initial conditions, we assume

that the meridional circulation and its tendency both vanish att = 0. In summary, the meridional

circulation problem is

N2ez/H ∂
2ψ

∂y2
+

(

∂2

∂t2
+ β2y2

)

∂

∂z

(

ez/H ∂ψ

∂z

)

=
gS(t)

cpT0

∂Q

∂y
, (3.11)
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with boundary conditions

ψ → 0 as y → ±∞, (3.12)

ψ = 0 at z = zT , (3.13)

g
∂2ψ

∂y2
+

(

∂2

∂t2
+ β2y2

)

∂ψ

∂z
= gS(t)

∂W
∂y

at z = 0, (3.14)

and with initial conditions

ψ = 0 and
∂ψ

∂t
= 0 at t = 0. (3.15)

Note that the diabatic forcing appears through the right hand side of the interior equation (3.11)

while the frictional forcing appears through the right handside of the lower boundary condition

(3.14).

The meridional circulation problem (3.11)–(3.15) can be written in a slightly simpler form by

definingψ̂(y, z, t) andQ̂(y, z) as

ψ̂(y, z, t) = ψ(y, z, t)ez/2H ,

Q̂(y, z) = Q(y, z)e−z/2H .

(3.16)

Using (3.16) in (3.11)–(3.15) we can write the meridional circulation problem in the form

N2∂
2ψ̂

∂y2
+

(

∂2

∂t2
+ β2y2

)

(

∂2ψ̂

∂z2
− ψ̂

4H2

)

=
gS(t)

cpT0

∂Q̂

∂y
, (3.17)

with boundary conditions

ψ̂ → 0 as y → ±∞, (3.18)

ψ̂ = 0 at z = zT , (3.19)
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g
∂2ψ̂

∂y2
+

(

∂2

∂t2
+ β2y2

)

(

∂ψ̂

∂z
− ψ̂

2H

)

= gS(t)
∂W
∂y

at z = 0, (3.20)

and with initial conditions

ψ̂ = 0 and
∂ψ̂

∂t
= 0 at t = 0. (3.21)

Note that (3.17) has a convenient form because of the absenceof the ez/H factors that occur in

(3.11). Because of the linearity of the problem and the associated superposition principle, we can

separately calculate the responses to the two forcing effects and then add these to obtain the total

response. This approach will be adopted in Chapter 4, where the response to diabatic forcing is

discussed in section 4.1 and the response to Ekman pumping isdiscussed in section 4.2.

The meridional circulation problem (3.17)–(3.21) constitutes the primitive equation, equatorial

β-plane version of the balanced problem first formulated by Eliassen (1952). Because of the sim-

plifications introduced into (3.1) and (3.5), baroclinic terms (i.e., cross derivative terms) are absent

from (3.17) and the inertial stability factor takes the simplified form β2y2. Baroclinic effects can

be important in the overturning circulations of tropical cyclones, where they lead to substantial

tilts in the eyewall updrafts (Schubert and McNoldy 2010). However, as discussed by Hack et al.

(1989), baroclinic effects play only a minor role in the Hadley circulation.

It is interesting to note that the lower boundary condition (3.20) relates a combination of̂ψ,

(∂ψ̂/∂z), and(∂2ψ̂/∂y2) to the physical height vertical velocityW at the top of the boundary layer.

The importance of formulating the lower boundary conditionin this way has been emphasized by

Haynes and Shepherd (1989), who have studied solutions of the spherical coordinate version of

the meridional circulation equation. As we shall see in the next section, a consequence of the

mathematical form of the lower boundary condition (3.20) isa slightly generalized version of

the Sturm-Liouville eigenvalue-eigenfunction problem for the vertical structure functions, with
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the eigenvalue appearing in both the second order ordinary differential equation and in the lower

boundary condition, as will be seen below in (3.24)–(3.26).

3.2. VERTICAL TRANSFORM OF THE MERIDIONAL CIRCULATION EQUATION

We seek solutions of (3.17)–(3.21) via the vertical transform pair

ψ̂m(y, t) =
1

g

∫ zT

0

ψ̂(y, z, t)Zm(z)N2(z) dz + ψ̂(y, 0, t)Zm(0), (3.22)

ψ̂(y, z, t) =
∞
∑

m=0

ψ̂m(y, t)Zm(z). (3.23)

In other words, the streamfunction̂ψ(y, z, t) is represented in terms of a series of vertical structure

functionsZm(z), with the coefficientsψ̂m(y, t) given by (3.22). The reason for the last term in

(3.22) arises from the lower boundary condition (3.20), as will become apparent shortly. The

vertical structure functionsZm(z) are solutions of the Sturm-Liouville eigenvalue problem

d2Zm

dz2
− Zm

4H2
= −N

2Zm

ghm

, (3.24)

Zm = 0 at z = zT , (3.25)

dZm

dz
− Zm

2H
= −Zm

hm

at z = 0, (3.26)

with eigenvalues (or equivalent depths) denoted byhm. A discussion of the transform pair (3.22)–

(3.23) is given in Appendix A, along with a proof thathm > 0. The derivation of the solutions

to the eigenvalue problem (3.24)–(3.26) for the special case of constantN2 is given in Appendix

B. For the caseN = 1.2 × 10−2 andzT = 13 km, the eigenvalueshm are given in the second

column of Table 3.1. The corresponding eigenfunctionsZm(z) for m = 0, 1, 2, 3, 4 are displayed

in Figure 3.3. In the remainder of the derivation in this section, we retain the generality of allowing
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FIG. 3.3. Vertical structure functionsZm(z) for the external modem = 0 and the
first four internal modesm = 1, 2, 3, 4. As discussed in Appendix B, these vertical
structure functions are solutions of the Sturm-Liouville problem (3.24)–(3.26) with
the constant buoyancy frequencyN = 1.2 × 10−2 s−1 andzT = 13 km.

the buoyancy frequency to be a function ofz. However, for simplicity, the sample solutions shown

in Chapter 4 are for the special case of constantN . An interesting possibility (not explored here) is

thatN(z) could have reduced values just above the boundary layer, thereby simulating an “effective

N ” associated with shallow moist convection.

To take the vertical transform of (3.17), we first multiply itbyZm(z) and integrate overz from

0 to zT . The integral originating from the second order vertical derivative term in (3.17) is then

integrated by parts twice to yield

∂2

∂y2

∫ zT

0

ψ̂(y, z, t)Zm(z)N2(z) dz +

(

∂2

∂t2
+ β2y2

)

[

Zm(z)
∂ψ̂(y, z, t)

∂z
− ψ̂(y, z, t)

dZm(z)

dz

]zT

0

+

(

∂2

∂t2
+ β2y2

)∫ zT

0

ψ̂(y, z, t)

(

d2Zm(z)

dz2
− Zm(z)

4H2

)

dz =
gS(t)

cpT0

∂

∂y

∫ zT

0

Q̂(y, z)Zm(z) dz.

(3.27)
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To simplify (3.27) we first use (3.24) in the third term and then use (3.19) and (3.25) to show

that the upper boundary term vanishes. To evaluate the lowerboundary term we first use (3.20) to

eliminate∂ψ̂/∂z and then group the resulting∂2ψ̂/∂y2 term with the first term of (3.27). Similarly,

we use (3.26) to eliminatedZm/dz and then group the resultingZm/hm term with the third term

of (3.27). This procedure simplifies (3.27) to

∂2

∂y2

{

1

g

∫ zT

0

ψ̂(y, z, t)Zm(z)N2(z) dz + ψ̂(y, 0, t)Zm(0)

}

− 1

ghm

(

∂2

∂t2
+ β2y2

){

1

g

∫ zT

0

ψ̂(y, z, t)Zm(z)N2(z) dz + ψ̂(y, 0, t)Zm(0)

}

=
gS(t)

cpT0

d

dy

{∫ zT

0

Q̂(y, z)Zm(z) dz + W(y)Zm(0)

}

.

(3.28)

Then, with the use of (3.22), we obtain the meridional structure equation

∂2ψ̂m(y, t)

∂y2
− 1

ghm

(

∂2ψ̂m(y, t)

∂t2
+ β2y2ψ̂m(y, t)

)

= S(t)
∂Fm(y)

∂y
, (3.29)

with boundary conditions

ψ̂m(y, t) → 0 as y → ±∞, (3.30)

and the initial conditions

ψ̂m(y, t) = 0 and
∂ψ̂m(y, t)

∂t
= 0 at t = 0, (3.31)

where the forcing termFm(y) on the right hand side of (3.29) is given by

Fm(y) =

∫ zT

0

Q̂(y, z)

cpT0

Zm(z) dz + W(y)Zm(0). (3.32)
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To summarize the results of this section, we have used the vertical transform pair (3.22)–(3.23)

to reduce the partial differential equation (3.17) to the meridional structure equations (3.29), with

a single forcing term (3.32) that combines the diabatic forcing term Q̂(y, z) with the frictional

boundary layer forcing termW(y). After solution of the meridional structure equations (3.29) for

ψ̂m(y, t), the solution forψ̂(y, z, t) can be recovered from (3.23).

3.3. SOLUTION OF THE FILTERED MERIDIONAL STRUCTURE EQUATIONS VIAGREEN’ S FUNC-

TIONS

In general, if the diabatic and frictional forcing vary slowly in time, the∂2/∂t2 term in (3.29)

can be neglected. This is the special case we shall explore inthis section. In this “slow forcing”

case, the meridional circulation has no memory of the past forcing and is diagnostically determined

by the current forcing only. Thus, the initial conditions (3.31) are no longer needed, and the

meridional structure equation (3.29) simplifies to the diagnostic equation

d2ψ̂m(y, t)

dy2
− y2

4b4m
ψ̂m(y, t) = S(t)

dFm(y)

dy
, (3.33)

with boundary conditions

ψ̂m(y, t) → 0 as y → ±∞, (3.34)

where the Rossby lengthbm is given by

bm =

(

ghm

4β2

)1/4

= ǫ−1/4
m

a√
2
, (3.35)

with Lamb’s parameter defined byǫm = 4Ω2a2/(ghm). The spectra of equivalent depthshm,

Rossby lengthsbm, and Lamb’s parametersǫm for m = 0, 1, 2, . . . , 10 are shown in Table 3.1.
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TABLE 3.1. The spectra of equivalent depthshm, gravity wave speeds(ghm)1/2

(with approximate values in parentheses), Rossby lengthsb̄m = [ghm/β
2]1/4 (for

Hermite functions) andbm = [ghm/(4β
2)]1/4 (for parabolic cylinder functions), and

Lamb’s parametersǫm = 4Ω2a2/(ghm) for the eleven values ofm listed in the left
column. The values have been computed from (B.5) and (B.11) usingzT = 12.91
km, g = 9.8 m s−2, a = 6371 km, Ω = 7.292× 10−5 s−1,N = 1.2× 10−2 s−1, and
H = 8581 m.

m hm (m) (ghm)1/2 (m s−1) b̄m (km) bm (km) ǫm
0 7074 263.3 (—–) 3391 2398 12.44
1 226.7 47.14 (47.94) 1435 1015 388.4
2 60.55 24.36 (24.47) 1032 729.4 1454
3 27.26 16.35 (16.38) 845.0 597.5 3229
4 15.41 12.29 (12.30) 732.7 518.1 5715
5 9.882 9.841 (9.848) 655.6 463.6 8910
6 6.870 8.205 (8.210) 598.6 423.3 12815
7 5.051 7.036 (7.038) 554.4 392.0 17431
8 3.869 6.158 (6.159) 518.6 366.7 22757
9 3.058 5.474 (5.476) 489.0 345.8 28792
10 2.478 4.927 (4.928) 464.0 328.1 35538

We now solve (3.33) and (3.34) via the Green’s functionsGm(y, y′), which are the solutions of

the ordinary differential equations

d2Gm

dy2
− y2

4b4m
Gm = − 1

b2m
δ

(

y − y′

bm

)

, (3.36)

with the boundary conditions

Gm(y, y′) → 0 as y → ±∞, (3.37)

where the Dirac delta function,δ((y − y′)/bm), vanishes fory 6= y′ and satisfies

1

bm

∫ y′+

y′
−

δ

(

y − y′

bm

)

dy = 1. (3.38)
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The Green’s functionGm(y, y′) is constructed from the parabolic cylinder functionsDν(x), which

satisfy

d2Dν(y/bm)

dy2
+

(

ν +
1

2
− y2

4b4m

)

Dν(y/bm) = 0. (3.39)

Note that the orderν = −1/2 parabolic cylinder functionsD−1/2(y/bm) andD−1/2(−y/bm) are

solutions of the homogeneous version of (3.36). The functionsD−1/2(x) andD−1/2(−x) for −3 ≤

x ≤ 3 are plotted in Figure 3.4. The half-integer order paraboliccylinder functions have also been

used by Dias and Pauluis (2009) in their study of convectively coupled waves along the ITCZ.

FIG. 3.4. Parabolic cylinder functionsD−1/2(x) andD−1/2(−x) for −3 ≤ x ≤ 3.
The functionD−1/2(x), shown by the blue curve, satisfies they → ∞ boundary
condition and is used to construct the Green’s functionGm(y, y′) north ofy′. Sim-
ilarly, the functionD−1/2(−x), shown by the red curve, satisfies they → −∞
boundary condition and is used to construct the Green’s function Gm(y, y′) south
of y′. Because these two parabolic cylinder functions are solutions of the Weber
differential equation (3.39) withν = −1/2, their second derivatives are zero at the
equator but become large away from the equator. All the calculations presented
here use the Mathematica function ParabolicCylinderD[ν, x].
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Because of the lateral boundary conditions given in equation (3.34), only the solutionGm(y, y′) =

α1D−1/2(−y/bm) is valid for−∞ ≤ y ≤ y′ and only the solutionGm(y, y′) = α2D−1/2(y/bm) is

valid for y′ ≤ y < ∞, whereα1 andα2 depend ony′. The two factorsα1 andα2 are determined

by requiring thatGm(y, y′) is continuous aty = y′ and that the jump in the first derivative satisfies

bm

[

dGm

dy

]y′+

y′
−

= −1, (3.40)

which is obtained by integrating (3.36) across a narrow region surroundingy = y′, making use of

the delta function property (3.38). The two algebraic equations forα1 andα2 can be solved with

the aid of the Wronskian

D−1/2(x)
dD−1/2(−x)

dx
−D−1/2(−x)

dD−1/2(x)

dx
=

√
2. (3.41)

This procedure results in

Gm(y, y′) =
1√
2























D−1/2(y
′/bm)D−1/2(−y/bm) if −∞ < y ≤ y′

D−1/2(−y′/bm)D−1/2(y/bm) if y′ ≤ y <∞.

(3.42)

Plots ofGm(y, y′) for y′ = −1500,−750, 0, 750, 1500 km andm = 0, 1, 2 are shown in Figure 3.5.

For larger values ofm the jump in the derivative ofGm(y, y′) at y = y′ is larger and the Green’s

function is more confined to the region neary = y′.

To express the solution̂ψm(y, t) in terms of the Green’s function, we multiply (3.33) by

Gm(y, y′), multiply (3.36) by ψ̂m(y, t), and then take the difference of the resulting equations
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FIG. 3.5. Green’s functionsGm(y, y′) for y′ = −1500,−750, 0, 750, 1500 km and
for m = 0 (top panel),m = 1 (middle panel), andm = 2 (bottom panel). These
curves have been computed from (3.42). Note that, because ofthe bm factors in
(3.42), the Green’s functions become more confined as the vertical mode indexm
becomes larger.

to obtain

∂

∂y

(

Gm(y, y′)
∂ψ̂m(y, t)

∂y
− ψ̂m(y, t)

∂Gm(y, y′)

∂y

)

= S(t)
dFm(y)

dy
Gm(y, y′) + ψ̂m(y, t)

1

b2m
δ

(

y − y′

bm

)

.

(3.43)
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Integrating (3.43) overy, using the boundary conditions (3.34) and (3.37), using thedelta function

property (3.38), and finally using the Green’s function symmetry propertyGm(y′, y) = Gm(y, y′),

we obtain (3.45). In summary, the solution of the meridionalcirculation problem is

ψ(y, z, t) = e−z/2H

∞
∑

m=0

ψ̂m(y, t)Zm(z), (3.44)

where

ψ̂m(y, t) = −bmS(t)

∫

∞

−∞

dFm(y′)

dy′
Gm(y, y′) dy′. (3.45)

The solution for the streamfunction is obtained by first calculatingFm(y′) from (3.32), then calcu-

lating ψ̂m(y, t) from (3.45), and finally calculatingψ(y, z, t) from (3.44). Although this procedure

generally involves the calculation of two integrals and an infinite sum, there are two interesting spe-

cial cases where the formulas (3.44) and (3.45) are considerably simplified. These simple Hadley

circulation models are discussed in Chapter 4.

The next section presents an alternative procedure for the solution of (3.29)–(3.30). This alter-

native procedure uses Hermite transforms instead of Green’s functions and results in the filtered

solution (3.61), which is simply a different mathematical representation of the solution (3.44)–

(3.45). Readers wishing to now examine plots of the solution(3.44)–(3.45) should skip directly to

Chapter 4. Section 3.4 can then be read later, especially by those wishing to explore the transient,

inertia-gravity wave aspects of the problem.

3.4. SOLUTION OF THE MERIDIONAL STRUCTURE EQUATIONS VIAHERMITE TRANSFORMS

In section 3.3 we used Green’s functions to solve the problem(3.29)–(3.31) for the case in

which the diabatic and frictional forcing varies slowly in time, so that the∂2/∂t2 term in (3.29)

could be neglected. The neglect of the∂2/∂t2 term results in a filtered model, i.e., a model that
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does not simulate transient inertia-gravity waves. In thissection we return to the complete prob-

lem (3.29)–(3.31), including the∂2/∂t2 term. We solve this complete problem using Hermite

transforms. The Hermite transform pair for the streamfunction is

ψ̂m(y, t) =
∞
∑

n=0

ψ̂mn(t)Hn(y/b̄m), (3.46)

ψ̂mn(t) =
1

b̄m

∫

∞

−∞

ψ̂m(y, t)Hn(y/b̄m)dy, (3.47)

whereb̄m =
√

2 bm (with numerical values given in the fourth column of Table 3.1)1 and where the

meridional structure functionsHn(y/b̄m) are related to the Hermite polynomialsHn(y/b̄m) by

Hn(y/b̄m) =
(

π
1

2 2nn!
)

−
1

2

Hn(y/b̄m)e−
1

2
(y/b̄m)2 . (3.48)

Since the Hermite polynomials satisfy the recurrence relation (y/b̄m)Hn(y/b̄m) = 1
2
Hn+1(y/b̄m)+

nHn−1(y/b̄m) and the derivative relationdHn(y/b̄m)/dy = (2n/b̄m)Hn−1(y/b̄m), it is easily

shown that the meridional structure functionsHn(y/b̄m) satisfy the recurrence relation

(y/b̄m)Hn(y/b̄m) =
(n

2

) 1

2 Hn−1(y/b̄m) +

(

n+ 1

2

) 1

2

Hn+1(y/b̄m), (3.49)

the derivative relation

b̄m
dHn(y/b̄m)

dy
=
(n

2

) 1

2 Hn−1(y/b̄m) −
(

n+ 1

2

) 1

2

Hn+1(y/b̄m), (3.50)

1Note that thebm definition of Rossby length is convenient when working with parabolic cylinder functions (section
3.3), while theb̄m definition of Rossby length is convenient when working with Hermite functions (section 3.4).
This situation arises because the two functions (for integer n) are related byHn(y/b̄m) = (π1/2n!)−(1/2)Dn(y/bm).
Another way of understanding this situation is to simply note that the parabolic cylinder functions are defined by the
differential equation (3.39), which includes a factor1/4, while the Hermite functions are defined by the differential
equation (3.51), which does not include this factor.
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and the second order equation

(

d2

dy2
− y2

b̄4m

)

Hn(y/b̄m) = −
(

2n+ 1

b̄2m

)

Hn(y/b̄m). (3.51)

The first two meridional structure functions areH0(y/b̄m) = π−
1

4 e−
1

2
(y/b̄m)2 andH1(y/b̄m) =

2
1

2π−
1

4 (y/b̄m)e−
1

2
(y/b̄m)2, from which all succeeding structure functions can be computed using the

recurrence relation (3.49). ComputingHn(y/b̄m) via its recurrence relation is much preferable to

computingHn(y/b̄m) via its recurrence relation and then computingHn(y/b̄m) by evaluation of

the right hand side of (3.48), because the former method avoids explicit calculation of the factor

2nn! for largen. The Hermite functions satisfy the orthonormality relation

1

b̄m

∫

∞

−∞

Hn(y/b̄m)Hn′(y/b̄m) dy =



















1 n′ = n,

0 n′ 6= n.

(3.52)

Note that (3.47) can be obtained through multiplication of (3.46) byHn′(y/b̄m), followed by inte-

gration overy and use of (3.52). Plots ofHn(y/b̄m) for n = 0, 1, 2, 3, 4 are shown in Figure 3.6.

To take the meridional transform of (3.29), we first multiplyit by Hn(y/b̄m) and integrate over

y. The integral originating from the second ordery-derivative term in (3.29) is then integrated by

parts twice, making use of the boundary conditions (3.30), to yield

∫

∞

−∞

ψ̂m(y, t)

(

d2

dy2
− y2

b̄4m

)

Hn(y/b̄m) dy

− 1

ghm

∂2

∂t2

∫

∞

−∞

ψ̂m(y, t)Hn(y/b̄m) dy = S(t)

∫

∞

−∞

dFm(y)

dy
Hn(y/b̄m) dy.

(3.53)
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FIG. 3.6. The Hermite functionsHn(ŷ) for n = 0, 1, 2, 3, 4. The dimensionless
argument̂y is defined bŷy = y/b̄m.

To simplify (3.53) we first use (3.51) in the integrand of the first integral. We then make use of

(3.47) to simplify (3.53) to the second order ordinary differential equation

d2ψ̂mn

dt2
+ ν2

mnψ̂mn = FmnS(t), (3.54)

with the initial conditions

ψ̂mn = 0 and
dψ̂mn

dt
= 0 at t = 0, (3.55)

where the inertia-gravity wave frequencyνmn is given by

νmn =
cm
b̄m

(2n+ 1)1/2 , (3.56)
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and the forcing by

Fmn = − 1

b̄m

∫

∞

−∞

dFm(y)

dy
Hn(y/b̄m) dy. (3.57)

The solution of (3.53) consists of the sum of the homogeneoussolution and a particular so-

lution. As is easily checked by direct substitution into (3.53), the solution satisfying the initial

conditions (3.54) is

ψ̂mn(t) =
Fmn

ν2
mn

{

(

γ2(ν2
mn − γ2)

(ν2
mn + γ2)2

)

cos(νmnt) −
(

2γ3νmn

(ν2
mn + γ2)2

)

sin(νmnt)

+ 1 −
(

ν2
mn + 3γ2

ν2
mn + γ2

+ γt

)(

ν2
mne

−γt

ν2
mn + γ2

)

}

.

(3.58)

In summary, the solution of the original meridional circulation problem (3.11)–(3.15) is obtained

by combining (3.16), (3.23), and (3.46) into

ψ(y, z, t) = e−z/2H

∞
∑

m=0

∞
∑

n=0

ψ̂mn(t)Zm(z)Hn(y/b̄m), (3.59)

whereψ̂mn(t) is given by (3.57). The full transient solution for the streamfunction is obtained

by first calculatingFmn from (3.56), then calculatinĝψmn(t) from (3.57), and finally calculating

ψ(y, z, t) from (3.58).

The spectral space solution (3.58) can be considered to be the sum of three parts, with the

first part consisting of the oscillatory termscos(νmnt) andsin(νmnt), the second part consisting

of the steady state termFmn/ν
2
mn, and the third part consisting of the decaying term with thee−γt

factor. For large times (i.e.,γt≫ 1), the third part is negligible and the oscillatory terms represent

inertia-gravity waves that have propagated far from any confined region of forcing. Thus, no matter

how slowly or rapidly the forcing terms are switched on, the final steady state Hadley overturning

circulation (near the forcing region) is computed by usingψ̂mn(t) = Fmn/ν
2
mn in (3.59).
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To understand the conditions for which the filtered solutionis accurate at all times, consider

the case in whichγ ≪ νmn. Then, the solution (3.58) simplifies considerably since the coefficients

of thecos(νmnt) andsin(νmnt) terms become very small compared to unity, while the second line

in (3.58) approachesS(t). Then, the spectral space solution (3.58) simplifies to

ψ̂mn(t) =
FmnS(t)

ν2
mn

, (3.60)

so that the physical space solution (3.59) becomes

ψ(y, z, t) = S(t) e−z/2H

∞
∑

m=0

∞
∑

n=0

Fmn

ν2
mn

Zm(z)Hn(y/b̄m). (3.61)

Since the time dependence on the right hand side of (3.61) isS(t), theψ(y, z, t) field develops

in lockstep with the forcing, i.e., there is no time delay between the forcing and the response,

no matter how far one is from the forcing. Since this represents “action at a distance,” it should

be regarded as a filtered approximation of the actual dynamics, valid only in the case of “slowly

varying forcing.” To better understand how slow the forcingneeds to be, use (3.56) to rewrite the

conditionγ ≪ νmn as

γ−1 ≫ b̄m
cm(2n+ 1)1/2

≈



















(3.6 h) (2n+ 1)−1/2 if m = 0,

(8.5 h) (2n+ 1)−1/2 if m = 1,

(3.62)

where, for illustration, the last approximate equality is form = 0 (the external mode) andm = 1

(the first internal mode). Thus, for the external mode and thefirst internal mode, theγ−1 = 24

h curve in Figure 3.2 yields a forcing that is probably slow enough for the filtered approximation
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to be reasonably accurate, but theγ−1 = 3 h curve yields a forcing that excites a non-negligible

inertia-gravity wave response, especially for the higher internal modes.

It should be noted that the solution (3.41)–(3.42), obtained through the use of Green’s func-

tions, and the solution (3.60), obtained through the use of Hermite functions, are simply two differ-

ent mathematical representations of the same physical solution. In other words, plots generated by

evalution of (3.60) are identical to those generated by evalution of (3.41)–(3.42). In Chapter 4 we

shall consider some sample solutions resulting from some particularly simple forcing distributions.

For physical interpretation of the slowly changing, quasi-balanced meridional circulation, we shall

find the Green’s function representation more useful.

In concluding this chapter it is interesting to note that, ast becomes large,S(t) → 1 and the

forced divergent circulation(v, w) comes into steady state. However, as can be seen from (3.1) and

(3.5), the zonal flow and the temperature continue to evolve.In fact, as we shall see in Chapter 4,

they evolve in such a way that the associated potential vorticity field develops local extrema in the

ITCZ, leading to a zonal flow that satisfies the Charney-Stern necessary condition for combined

barotropic-baroclinic instability. Thus, one should not expect the evolving zonal flow to remain

zonally symmetric for more than approximaely 10–15 days.
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CHAPTER 4

DEEP AND SHALLOW OVERTURNING CIRCULATIONS

The analytical solutions of the meridional circulation equation are given by (3.44) witĥψm(y, t)

defined by (3.45) and the Green’s functionGm(y, y′) defined by (3.42). In this chapter we first see

how these formulas simplify for the case in which the diabatic and frictional forcing is localized

in the ITCZ (section 4.1). Then, two special cases are considered. Section 4.2 considers the spe-

cial case of deep diabatic heating, which forces a deep overturning circulation with an asymmetry

between the summer hemisphere and winter hemisphere Hadleycells. This asymmetry maximizes

when the ITCZ is centered approximately 1200 km off the equator. Section 4.3 considers the spe-

cial case of frictional forcing through Ekman pumping in a narrow latitude band, which produces

a shallow overturning circulation.

4.1. RESPONSE TO LOCALIZEDITCZ FORCING

Consider the response to a forcing that is localized within anITCZ region, i.e.,Fm(y) is as-

sumed to vanish everywhere except in the latitudinal rangey1 < y < y2, wherey1 andy2 are

constants. Within this region the forcing is assumed to be independent ofy, i.e.,

Fm(y) =



















Fm if y1 < y < y2

0 otherwise,

(4.1)

where the constantsFm specify the projection of the forcing onto the vertical modes. With these

assumptions, the forcing terms(∂Q̂/∂y) and(∂W/∂y) on the right hand sides of (3.17) and (3.20)

vanish everywhere except along the edges of the ITCZ, where they become infinitely large over an
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infinitesimally thin layer. Thus, the circulation in the(y, z)-plane will consist of a counterclock-

wise turning gyre on the southern edge of the ITCZ and a clockwise turning gyre on the northern

edge of the ITCZ.

Use of (4.1) in (3.45) now yields

ψ̂m(y, t) = −S(t) bm

(

Gm(y, y1)

∫ y1+

y1−

dFm(y′)

dy′
dy′ +Gm(y, y2)

∫ y2+

y2−

dFm(y′)

dy′
dy′
)

= S(t) bmFm

[

Gm(y, y2) −Gm(y, y1)
]

,

(4.2)

where the final line in (4.2) follows from the fact that the narrow integral acrossy = y1 is Fm,

while the narrow integral acrossy = y2 is −Fm. Use of (4.2) in (3.44) yields the final solution

ψ(y, z, t) = S(t) e−z/2H

∞
∑

m=0

bmFm

[

Gm(y, y2) −Gm(y, y1)
]

Zm(z), (4.3)

where the Green’s functionsGm(y, y1) andGm(y, y2) are given in (3.42).

4.2. PRODUCTION OF DEEP OVERTURNING CIRCULATIONS THROUGH DIABATIC FORCING

In this section we consider the case in which there is no frictional forcing and the diabatic

forcing projects only onto the first internal mode, so that

F1 =
gQmax

cpT0N2
, (4.4)
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whereQmax is a constant. Then, the solution (4.3) can be written as

ψ(y, z, t) =
gS(t)b1Qmax

cpT0N2
√

2
e−z/2HZ1(z)

·







































[

D−1/2(y2/b1) −D−1/2(y1/b1)
]

D−1/2(−y/b1) if −∞ < y ≤ y1,

D−1/2(y2/b1)D−1/2(−y/b1) −D−1/2(−y1/b1)D−1/2(y/b1) if y1 ≤ y ≤ y2,

[

D−1/2(−y2/b1) −D−1/2(−y1/b1)
]

D−1/2(y/b1) if y2 ≤ y <∞.

(4.5)

Figure 4.1 shows isolines ofψ(y, z, t) computed from (4.5) usingS(t) = 1 and the parameters

zT = H ln(9/2) ≈ 12.91 km, Qmax/cp = 5 K day−1, N = 1.2 × 10−2 s−1, and the four ITCZ

positions(y1, y2) = (0, 500), (500, 1000), (1000, 1500), (1500, 2000) km. Note that the asymmetry

between the winter hemisphere Hadley cell and the summer hemisphere Hadley cell becomes larger

as the ITCZ shifts off the equator due to the anisotropy of the inertial stability (Hack et al. 1989).

Another way to view the meridional circulation is in terms ofparcel trajectories, or more precisely,

the projection of parcel trajectories onto the(y, z)-plane for our zonally symmetric flow with non-

zero zonal winds. A collection of such three-day trajectories is shown in Fig. 4.2. From a rough

count of the number of three-day segments needed for a complete cycle, one can estimate that the

overturning time of the Hadley cells is on the order of several months, depending of course on how

far poleward the cycle extends.

To understand how a localized ITCZ diabatic heating can causenonzero(∂T/∂t) over a large

region outside the ITCZ, consider the thermodynamic equation (∂T/∂t) + (T0/g)N
2w = (Q/cp).

As shown in Fig. 4.3, the(∂T/∂t) field attributable to ITCZ diabatic heating tends to be small

compared toQ/cp, but to extend from approximately30◦S to30◦N. Outside the ITCZ,(Q/cp) = 0

but there is weak subsidence over a large area, so that(∂T/∂t) is small and positive over a large

area. Within the ITCZ,(Q/cp) peaks out at 5 K day−1 and(T0/g)N
2w is positive, nearly reaching
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FIG. 4.1. Diabatic heatinge−z/HQ(y, z)/cp, shown in color, and streamfunction
ψ(y, z), shown in the black contours with solid lines indicatingψ > 0 and dashed
lines indicatingψ < 0, and with a contour interval of 400 m2 s−1. The maxi-
mum magnitude ofψ(y, z) is 2852 m2 s−1. Theψ(y, z) field has been computed
from (4.5). For thee−z/HQ(y, z)/cp field, the maximum value is 3.5 K day−1,
with changes in shading every 0.5 K day−1. Four ITCZ positions are shown: (a)
(y1, y2) = (0, 500) km; (b) (y1, y2) = (500, 1000) km; (c) (y1, y2) = (1000, 1500)
km; and (d)(y1, y2) = (1500, 2000) km.
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FIG. 4.2. Parcel trajectories during the first three days for thefour deep diabatic
heating positions (a)(y1, y2) = (0, 500) km; (b) (y1, y2) = (500, 1000) km; (c)
(y1, y2) = (1000, 1500) km; and (d)(y1, y2) = (1500, 2000) km. Note: the grid
changes for each ITCZ displacement.
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this same peak value, so(∂T/∂t) in the ITCZ is also small and positive. Note that both(Q/cp)

and (T0/g)N
2w are discontinuous across the edges of the ITCZ, but, as seen inFig. 4.3, their

resulting tendency(∂T/∂t) is continuous. It is interesting to note from Fig. 4.3 that, for ITCZ

positions within10◦ latitude of the equator, there is very little localization of the resulting temper-

ature anomaly. However, when the(Q/cp) field occurs near20◦ latitude, as in Indian Monsoon

convection, the temperature response becomes much more localized. Note that our assumption that

(Q/cp) = 0 outside the ITCZ neglects the effects of radiative cooling, but that radiative cooling, if

uniform in y, would not appear in the right hand side of (3.7).

It is interesting to note that the determination of the tendenciesTt andut, shown in Figs. 4.3

and 4.4, highlight the difference between the present approach to ITCZ and Hadley dynamics

and the steady-state approach used by Schneider (1977), Held and Hou (1980), and Lindzen and

Hou (1988). The present approach makes no steady-state assumption and focuses attention on the

solution of the meridional circulation equation, which does not explicitly appear in the steady state

models.

As listed in Table 3.1, the equatorial Rossby length for the first internal mode isb1 = 1025

km. In general terms, the Rossby length (inf -plane theory) is often considered as the approximate

distance over which compensating subsidence will occur dueto a point source of diabatic heating

(Eliassen 1952). However, this simplef -plane argument does not capture the basic anisotropy of

tropical dynamics, which is easily seen in they-structure of the Green’s functions shown in Fig.

3.5. For example, in Fig. 4.1d the compensating subsidence extends approximately 1000 km north

of the ITCZ, but extends approximately 3500 km south of the ITCZ. This anisotropy is reflected in

all the fields shown in Figs. 4.1–4.4 and is a fundamental aspect of the Green’s functions shown in

Fig. 3.5.
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FIG. 4.3. Log-pressure vertical velocityw(y, z), shown in color, and temperature
tendencyTt(y, z), shown in the black contours with the zero contour indicatedin
bold. Forw, blue indicates subsidence and red indicates ascent, with changes in
the shading every 0.2 cm s−1. Note that thew field is discontinuous at the edges
of the ITCZ, but theTt(y, z) field is continuous. The contour interval forTt(y, z)
is 0.2 K day−1. The maximum magnitude ofw(y, z) is 1.801 cm s−1. Four ITCZ
positions are shown: (a)(y1, y2) = (0, 500) km; (b) (y1, y2) = (500, 1000) km; (c)
(y1, y2) = (1000, 1500) km; and (d)(y1, y2) = (1500, 2000) km.
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FIG. 4.4. Zonal wind tendencyut(y, z), shown in color, and meridional wind
v(y, z), shown in the black contours with solid lines indicating southerlies (v > 0),
dashed lines indicating northerlies (v < 0), and bold lines indicating the zero con-
tours. The contour interval forv(y, z) is 0.4 m s−1 per day. The maximum magni-
tude forv(y, z) is 2.141 m s−1. Forut(y, z), blue indicatesut > 0 and red indicates
ut < 0, with changes in the shading every 1.0 m s−1 day−1. The maximum mag-
nitude forut(y, z) is 7.403 m s−1 per day. Four ITCZ positions are shown: (a)
(y1, y2) = (0, 500) km; (b) (y1, y2) = (500, 1000) km; (c) (y1, y2) = (1000, 1500)
km; and (d)(y1, y2) = (1500, 2000) km.
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A simple formula for the partition of the total ITCZ mass flux between the summer hemisphere

and winter hemisphere Hadley cells can be found by considering the case(y2 − y1) → 0, but

Qmax → ∞ in such a way that the productQmax(y2−y1) = constant. Equation (4.5) then reduces

to

ψ(y, z, t) =
gS(t)Qmax(y2 − y1)

cpT0N2
√

2
e−z/2HZ1(z)

·



















D′

−1/2(y1/b1)D−1/2(−y/b1) if −∞ < y < y1

D′

−1/2(−y1/b1)D−1/2(y/b1) if y1 < y <∞,

(4.6)

whereD′

−1/2(x) = dD−1/2(x)/dx andD′

−1/2(−x) = dD−1/2(−x)/dx. Note thatψ(y, z, t) is

discontinuous aty = y1 and that the total upward mass flux atz is given by

ψ(y1+, z, t) − ψ(y1−, z, t) =
gS(t)Qmax(y2 − y1)

cpT0N2
e−z/2HZ1(z). (4.7)

Then, the fractional mass fluxes in the two cells are







Fractional Mass

Flux of Summer

Hemisphere Cell






=

ψ(y1+, z, t)

ψ(y1+, z, t) − ψ(y1−, z, t)
=

1√
2
D′

−1/2(−y1/b1)D−1/2(y1/b1),

(4.8)






Fractional Mass

Flux of Winter

Hemisphere Cell






=

−ψ(y1−, z, t)
ψ(y1+, z, t) − ψ(y1−, z, t)

= − 1√
2
D′

−1/2(y1/b1)D−1/2(−y1/b1).

(4.9)

Plots of (4.8) and (4.9), as a function of the ITCZ positiony1, are shown in Fig. 4.5. The maximum

asymmetry between the winter and summer hemisphere cells occurs when the ITCZ is located

1200–1300 km off the equator, in which case the winter cell carries approximately twice the mass
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flux of the summer cell. Such cross-equatorial mass transports lead to large cross-equatorial mois-

ture and energy transports, as discussed by Kang et al. (2008). This theoretical result, obtained

using the equatorialβ-plane approximation, is in close agreement with the numerical calculations

of Hack et al. (1989), who used the exact spherical coordinate version of the Eliassen meridional

circulation equation.

FIG. 4.5. Fractional mass flux carried by the summer hemisphere Hadley cell (red)
and fractional mass flux carried by the winter hemisphere Hadley cell (blue), for the
case of an infinitesimally thin ITCZ at the distancey1 from the equator. Wheny1 =
1200 km, approximately 1/3 of the upward mass flux in the ITCZ is partitioned to
the summer hemisphere Hadley cell and 2/3 is partitioned to the winter hemisphere
cell.
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4.3. PRODUCTION OF SHALLOW OVERTURNING CIRCULATIONS THROUGHEKMAN PUMPING

While the direct effects of friction are confined to the boundary layer flow in the lowest kilo-

meter, the inviscid interior is indirectly affected through the meridional circulation produced by

the upward extension of the Ekman pumping at the top of the boundary layer. To isolate the effects

of the upward penetration of Ekman pumping, consider the case in whichQ̂ = 0 and

W(y) =



















Wmax if y1 < y < y2,

0 otherwise,

(4.10)

whereWmax is a constant. This results in

Fm = WmaxZm(0), (4.11)

which leads to the final solution

ψ(y, z, t) = WmaxS(t) e−z/2H

∞
∑

m=0

bmZm(0) [Gm(y, y2) −Gm(y, y1)]Zm(z). (4.12)

Note that the shallow overturning solution (4.12) differs from the deep overturning solution (4.5)

in the sense that (4.12) involves a sum over all vertical modes.

Figure 4.6 shows isolines ofψ(y, z, t) for the four cases(y1, y2) = (0, 500), (y1, y2) =

(500, 1000), (1000, 1500), (1500, 2000) km, all usingS(t) = 1, as will be the case in all the

following diagrams. Figure 4.7 shows essentially the same information in terms of three-hour

trajectories, while Figs. 4.8 and 4.9 show isolines of the meridional velocityv(y, z, t) and the log-

pressure vertical velocityw(y, z, t). Since the upward penetration of the boundary layer pumping

is so restricted in tropical regions, only a small portion (i.e.,0 ≤ z ≤ 3 km) of the vertical domain
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is displayed in Figs. 4.6–4.9. The main conclusion from these results is that Ekman pumping in the

tropical region does not penetrate very far in the vertical.For example, for Ekman pumping in the

region1500 ≤ y ≤ 2000 km, the upward penetration is approximately 2 km (see Fig. 4.9), while

for pumping in the region500 ≤ y ≤ 1000 km, the upward penetration is only 1 km. In addition,

boundary layer fluid that is pumped upward tends to flow equatorward and poleward primarily in

a 1–2 km thick layer just above the top of the boundary layer. As shown in Fig. 4.10 (which is the

shallow circulation counterpart of Fig. 4.5), most of the shallow return flow is in the equatorward

rather than the poleward direction.

Figure 4.11 shows isolines of the streamfunction that results when both the diabatic and fric-

tional forcings act together. The result of this experimentcompared to the separate cases is a

stronger Hadley cell at low and mid levels away from the ITCZ with subsidence extending further

north and south toward the poles. The shallow meridional circulation patterns seem to be most ap-

parent when the ITCZ is close to the equator, i.e., in for Figs.4.11a,b. In contrast, when the ITCZ is

far north of the equator, as in Fig. 4.11d, only a single deep cell occurs in each hemisphere and no

shallow meridional circulation is present. When Ekman pumping occurs very close to the equator,

the resistance to horizontal motion is so weak that the return meridional flow occurs very close to

the top of the boundary layer, i.e., there is very little upward penetration of the Ekman pumping.

Thus, very shallow Hadley circulations tend to occur when Ekman pumping occurs close to the

equator.

4.4. A POTENTIAL VORTICITY PERSPECTIVE

We have formulated the zonally symmetric balanced model using (y, z)-coordinates. In this

formulation the Eliassen meridional circulation equationemerges as a key part of the dynamics.

Another approach to this problem is to define an angular momentum coordinateY by 1
2
βY 2 =
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FIG. 4.6. Isolines of the streamfunctionψ(y, z) for the shallow overturning case.
Note that here, and in the following three figures, the vertical scale extends up-
ward to only 3 km. Solid contours and red shading are forψ > 0, with dashed
contours and blue shading forψ < 0. The contour interval is 400 m2 s−1. The max-
imum magnitude forψ(y, z) is 1712 m2 s−1. Four ITCZ positions are shown: (a)
(y1, y2) = (0, 500) km; (b) (y1, y2) = (500, 1000) km; (c) (y1, y2) = (1000, 1500)
km; and (d)(y1, y2) = (1500, 2000) km.
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FIG. 4.7. Parcel trajectories during the first three days for three Ekman pumping
displacements: (a)(y1, y2) = (500, 1000) km; (b) (y1, y2) = (1000, 1500) km; and
(c) (y1, y2) = (1500, 2000) km. Note the grid changes for each ITCZ displacement

1
2
βy2 − u, and then formulate the zonally symmetric balanced model using (Y, θ)-coordinates,

whereθ is the potential temperature. In this formulation an Eliassen meridional circulation equa-

tion does not arise. Instead, the dynamics reduces to a potential vorticity evolution equation and a

potential vorticity invertibility principle (an ellipticproblem), from which the balanced wind and
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FIG. 4.8. Meridional velocityv(y, z), with red indicating southerly flow (v > 0)
and blue indicating northerly flow (v < 0). The contour interval is 0.5 m s−1.
The maximum magnitude forv(y, z) is 7.922 m s−1. Three ITCZ positions are
shown: (a)(y1, y2) = (500, 1000) km; (b) (y1, y2) = (1000, 1500) km; and (c)
(y1, y2) = (1500, 2000) km.

mass fields are obtained. A more detailed discussion of this approach can be found in Schubert

et al. (1991).
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FIG. 4.9. Log-pressure vertical velocity, with red indicatingascent and blue indi-
cating descent. The contour interval is 0.5 mm s−1, with the zero contour indicated
in bold. The maximum magnitude forw(y, z) is 3.774 mm s−1. Three ITCZ posi-
tions are shown: (a)(y1, y2) = (500, 1000) km; (b)(y1, y2) = (1000, 1500) km; and
(c) (y1, y2) = (1500, 2000) km. Note that the vertical penetration depth is reduced
when the Ekman pumping is located near the equator.
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FIG. 4.10. Fractional mass flux carried by the summer hemisphereHadley cell and
fractional mass flux carried by the winter hemisphere Hadleycell, for the case of
an infinitesimally thin ITCZ.

The above discussion motivates a potential vorticity perspective of the results shown in section

4.1. The potential vorticity equation, derived from the original system (3.1)–(3.5), is

∂q

∂t
= −βv +

gS(t) βy

cpT0N2

(

∂Q

∂z
− Q

H

)

, (4.13)

where

q = −∂u
∂y

+
gβy

T0N2

(

∂T

∂z
− T

H

)

(4.14)
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FIG. 4.11. Isolines of the streamfunctionψ(y, z) for the deep and the shallow over-
turning case. Solid contours and red shading are forψ > 0, with dashed contours
and blue shading forψ < 0. The contour interval is 500 m2 s−1. The maxi-
mum magnitude ofψ(y, z) is 2852 m2 s−1. Four ITCZ positions are shown: (a)
(y1, y2) = (0, 500) km; (b) (y1, y2) = (500, 1000) km; (c) (y1, y2) = (1000, 1500)
km; and (d)(y1, y2) = (1500, 2000) km. TheQ(y, z) e−z/H shade interval is 0.5 K
day−1 and the maximum diabatic heating is 3.496 K day−1
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is the potential vorticity anomaly. Figure 4.12 shows isolines ofqt(y, z, t) as computed from (4.13).

In the ITCZ region the diabatic term[gS(t) βy/(cpT0N
2)][(∂Q/∂z) − (Q/H)] is dominant over

the meridional advection term−βv, producing a positive PV anomaly in the lower troposphere

and a negative PV anomaly in the upper troposphere. Because of theβy factor in the diabatic term,

the diabatically produced PV anomalies are biased toward the poleward edge of the ITCZ. Outside

the ITCZ, the diabatic term vanishes soqt(y, z, t) is due entirely to the−βv term in (4.13).

Since, for larget, the zonal flowu(y, z, t) is in geostrophic balance and the temperature

T (y, z, t) is in hydrostatic balance, the right hand side of (4.14) can be expressed entirely in terms

of the geopotential, thereby making (4.14) an invertibility principle from which the balanced wind

and mass fields can be recovered from the PV via solution of a second order elliptic problem. Thus,

theut(y, z, t) fields shown in Fig. 4.4 and theTt(y, z, t) fields shown in Fig. 4.3 can be consid-

ered the balanced zonal flow field and mass field tendencies associated, through the invertibility

principle, with the PV tendencies shown in Fig. 4.12.

An important feature of theqt(y, z, t) field shown in Fig. 4.12 is that there is a tendency to

reverse the poleward gradient of PV on the north side of the ITCZ in the lower troposphere and on

the south side of the ITCZ in the upper troposphere. Thus, the necessary conditions for combined

barotropic-baroclinic instability are naturally evolving. Thus, evolving ITCZs seem to naturally

contain the seeds of their own destruction.
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FIG. 4.12. Potential vorticity tendencyqt(y, z), computed from (4.13), with blue
indicatingqt < 0 and red indicatingqt > 0. Four ITCZ positions are shown: (a)
(y1, y2) = (0, 500) km; (b) (y1, y2) = (500, 1000) km; (c) (y1, y2) = (1000, 1500)
km; and (d)(y1, y2) = (1500, 2000) km.
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CHAPTER 5

CONCLUDING REMARKS

An observational analysis of YOTC data has confirmed the existence of both a deep and a

shallow overturning meridional circulation in the easternPacific. To understand the dynamics

of these meridional circulations, a zonally symmetric model on the equatorialβ-plane has been

formulated and the associated meridional circulation equation has been derived. This meridional

circulation equation is a partial differential equation in(y, z, t). It contains two types of forcing: (1)

horizontal variation of the interior diabatic heating; (2)Ekman pumping at the top of the boundary

layer. Since the problem is linear, the meridional circulations attributable to these two forcing

effects can be treated separately, and then the resulting flows can simply be added together to

obtain the total response.

The meridional circulation equation has been solved analytically by first performing a ver-

tical transform that converts the partial differential equation in (y, z, t) into a system of partial

differential equations in(y, t) for the meridional structures of all the vertical modes. These partial

differential equations have been solved via both the Green’s function approach (evanescent basis

functions) and the Hermite transform approach (oscillatory basis functions). These two approaches

yield two different mathematical representations of the same physical solution. For understanding

the basic asymmetry between the intensities of the winter hemisphere and the summer hemisphere

Hadley cells, the Green’s function approach is preferable because of the efficiency of the mathe-

matical representation, which is simply a superposition oftwo Green’s functions written in terms

of parabolic cylinder functions of order−1
2
.
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The analytical solutions take simple forms in two special cases: (1) Forcing by deep diabatic

heating that projects only onto the first internal mode in theabsence of Ekman pumping; (2) Forc-

ing by Ekman pumping in the absence of any diabatic heating. Case (1) leads to deep overturn-

ing circulations, while case (2) leads to shallow overturning circulations. Both circulations show

a marked asymmetry between the winter hemisphere and summerhemisphere overturning cells.

This asymmetry is due to the basic anisotropy introduced by the spatially varying inertial stability

coefficient in the meridional circulation equation. A simple physical interpretation is that fluid

parcels forced near the equator to overturn by diabatic and frictional effects tend to move much

more easily in the horizontal direction because the resistance to horizontal motion (i.e. inertial

stability) is so much less than the resistance to vertical motion (i.e., static stability). In fact, when

Ekman pumping occurs very close to the equator, the resistance to horizontal motion is so weak

that the return meridional flow occurs very close to the top ofthe boundary layer, i.e., there is very

little upward penetration of the Ekman pumping. Thus, very shallow Hadley circulations tend to

occur when Ekman pumping occurs close to the equator.

In closing we note that the analytical solutions of the meridional circulation equation are con-

sistent with the extent and shape of upper tropospheric dry regions regularly observed in satellite

water vapor images, such as the one shown in Figure 3.1. Theseupper tropospheric dry regions

play an important role in our ability to observe the universewith surface-based visible, infrared,

and millimeter/submillimeter telescopes. The best astronomical observatory sites are at high alti-

tudes in regions of persistently low upper tropospheric water vapor, such as Mauna Kea, Hawaii,

the mountains of northern Chile, and the Canary Islands. Thesesites are above the trade wind in-

version layer, which normally lies between 2000 and 2500 m. Above the trade wind inversion the
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clear, dry air generally provides excellent observing conditions, but there can be important varia-

tions on synoptic, seasonal, and interannual time scales. As discussed by Businger et al. (2002),

forecasts of weather conditions can play an important role in telescope scheduling and observing

strategy at these sites.

This work has shown that Ekman pumping is a viable forcing mechanism for the Shallow

Hadley Circulation. However, diabatic heating due to shallow precipitating convection and surface

heating (in analogy with land/sea breezes, as discussed by Nolan et al. (2007, 2010)) are also

viable forcing mechanisms. Further research is needed to understand the relative importance of

these three forcing mechanisms.

71



REFERENCES

Back, L. and C. Bretherton, 2009a: On the relationship between SST gradients, boundary layer
winds and convergence over the tropical oceans.J. Climate, 22, 4182–4196.

Businger, S., R. McLaren, R. Ogasawara, D. Simons, and R. Wainscoat, 2002: Starcasting.Bull.
Amer. Meteor. Soc., 83, 858–871.

Cau, P., J. Methven, and B. J. Hoskins, 2007: Origins of dry airin the tropics and subtropics.J.
Climate, 20, 2745–2759.

Chelton, D., M. Freilich, and S. Esbensen, 2000a: Satellite observations of the wind jets off the
Pacific coast of Central America. part II: Regional relationships and dynamical considerations.
Mon. Wea. Rev., 128, 2019–2042.

Chelton, D., et al., 2000b: Observations of coupling betweensurface wind and sea surface
temperature in the Eastern Tropical Pacific.J. Climate, 14, 1479–1498.

de Szoeke, S., C. Bretherton, N. Bond, M. Cronin, and B. Morley,2005: EPIC 95◦W observations
of the Eastern Pacific atmospheric boundary layer from the cold tongue to the ITCZ.J. Atmos.
Sci., 62, 426–442.

Deser, C., J. Bates, and S. Wahl, 1993: The influence of sea surface temperature gradients on
stratiform cloudiness along the equatorial front in the Pacific Ocean.J. Climate, 6, 1172–1179.

Dias, J. and O. Pauluis, 2009: Convectively coupled waves propagating along an equatorial ITCZ.
J. Atmos. Sci., 66, 2237–2255.

Eliassen, A., 1952: Slow thermally or frictionally controlled meridional circulations in a circular
vortex.Astrophysica Norvegica, 5, 19–60.

Enfield, D. and S. Lee, 2005: The heat balance of the Western Hemisphere Warm Pool.J. Climate,
18, 2662–2681.

Galewsky, J., A. Sobel, and I. Held, 2005: Diagnosis of subtropical humidity dynamics using
tracers of last saturation.J. Atmos. Sci., 62, 3353–3367.

Hack, J. and W. Schubert, 1990: Some dynamical properties ofidealized thermally-forced
meridional circulations in the Tropics.Meteorol. Atmos. Phys., 44, 101–117.

Hack, J., W. Schubert, D. Stevens, and H. Kuo, 1989: Responseof the Hadley circulation to
convective forcing in the ITCZ.J. Atmos. Sci., 46, 2957–2973.

Haynes, P. and T. Shepherd, 1989: The importance of surface pressure changes in the response of
the atmosphere to zonally-symmetric thermal and mechanical forcing. Quart. J. Roy. Meteor.
Soc., 115, 1181–1208.

72



Held, I. and A. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmo-
sphere.J. Atmos. Sci., 37, 515–533.

Jackson, D. and J. Bates, 2001: Upper tropospheric humidityalgorithm assessment.J. Geophys.
Res., 32, 259–270.

Kang, S., I. Held, D. Frierson, and M. Zhao, 2008: The Response of the ITCZ to Extratropical
Thermal Forcing: Idealized Slab-Ocean Experiments with a GCM. J. Climate., 21, 3521–3532.

Lindzen, R. and A. Hou, 1988: Hadley circulations for zonally averaged heating centered off the
equator.J. Atmos. Sci., 45, 2416–2427.

Lindzen, R. and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing
low-level winds and convergence in the tropics.J. Atmos. Sci., 44, 2418–2436.

Masunaga, H. and T. L’Ecuyer, 2010: The Southeast Pacific warm band and double ITCZ.J.
Climate, 23, 1189–1208.

Masunaga, H. and T. L’Ecuyer, 2011: Equatorial asymmetry ofthe East Pacific ITCZ: Observa-
tional constraints on the underlying processes.J. Climate, 24, 1784–1800.

McGauley, M., C. Zhang, and N. Bond, 2004: Large-scale characteristics of the atmospheric
boundary layer in the Eastern Pacific cold tongue-ITCZ region. J. Climate, 17, 3907–3920.

McNoldy, B., P. Ciesielski, W. Schubert, and R. Johnson, 2004: Surface winds, divergence, and
vorticity in stratocumulus regions using QuikSCAT and reanalysis winds.Geophys. Res. Lett.,
31, L08 105.

Neiburger, M., D. Johnson, and C. Chien, 1961: Studies of the structure of the atmosphere over
the eastern Pacific Ocean in summer, I. the inversion over theeastern north Pacific Ocean.Univ.
Calif. Publ. meteor., 1, 1–94.

Nolan, D., S. Powell, C. Zhang, and B. Mapes, 2010: Idealized simulations of the Intertropical
Convergence Zone and its multilevel flows.J. Atmos. Sci., 67, 4028–4053.

Nolan, D., C. Zhang, and S. Chen, 2007: Dynamics of the shallow meridional circulation around
Intertropical Convergence Zones.J. Atmos. Sci., 64, 2262–2285.

Philander, S., D. Gu, D. Halpern, G. Lambert, L. N.-C, T. Li, and R. Pacanowski, 1996: Why is
the ITCZ mostly north of the Equator.J. Climate, 9, 2958–2972.

Salath́e, E. and D. Hartmann, 1997: A trajectory analysis of tropical upper-tropospheric moisture
and convection.J. Climate, 10, 2533–2547.

73



Schneider, E. K., 1977: Axially Symmetric Steady-State Models of the Basic State for Instability
and Climate Studies. part II. Nonlinear Calculations.J. Atmos. Sci., 34, 280–296.

Schreck, C., L.Shi, J. Kossin, and J. Bates, 2013: Identifying the MJO, equatorial waves, and their
impacts using 32 years of HIRS upper-tropospheric water vapor. J. Climate, 26, 1418–1431.

Schubert, W., P. Ciesielski, D. Stevens, and H. Kuo, 1991: Potential vorticity modeling of the
ITCZ and the Hadley circulation.J. Atmos. Sci., 48, 1493–1509.

Schubert, W. and B. McNoldy, 2010: Application of the concepts of Rossby length and rossby
depth to tropical cyclone dynamics.J. Adv. Model. Earth Syst., 2, Art. #7, 13 pp.

Sherwood, S., E. Kursinski, and W. Read, 2006: A distribution law for free-tropospheric relative
humidity.J. Climate, 19, 6267–6277.

Soden, B. and F. Bretherton, 1993: Upper tropospheric relative humidity from the goes 6.7µm
channel: Method and climatology for July 1987.J. Geophys. Res., 98, 16,669–16,688.

Soden, B. and F. Bretherton, 1996: Interpretation of TOVS water vapor radiances in terms of
layer-average relative humidities: Method and climatology for the upper, middle, and lower
troposphere.J. Geophys. Res., 101, 9333–9343.

Soden, B. and R. Fu, 1995: A satellite analysis of deep convection, upper-tropospheric humidity,
and greenhouse effect.J. Climate, 8, 2333–2351.

Sun, D.-Z. and R. Lindzen, 1993: Distribution of tropical tropospheric water vapor.J. Atmos. Sci.,
50, 1643–1660.

Tomas, R. and P. Webster, 1997: The role of inertial instability in determining the location and
strength of near-equatorial convection.Quart. J. Roy. Meteor. Soc., 123, 1445–1482.

Trenberth, K., D. Stepaniak, and J. Caron, 2000: The global monsoon as seen through the
divergent atmospheric circulation.J. Climate, 13, 3969–3993.

von Ficker, H., 1936: Die passatinversion.Veroeff. Meteor. Inst. Univ. Berlin, 1, 1–33.

Waliser, D., et al., 2012: The Year of Tropical Convection (May 2008–April 2010) Climate
Variability and Weather Highlights.Bull. Amer. Meteor. Soc., 93, 1189–1218.

Wallace, J., T. Mitchell, and C. Deser, 1989: The influence of sea-surface temperature on surface
wind in the eastern equatorial Pacific: Seasonal and interannual variability. J. Climate, 2,
1492–1499.

Wang, C. and D. Enfield, 2001: The tropical Western HemisphereWarm Pool.Geophys. Res.
Lett., 28, 1635–1638.

74



Wang, C. and D. Enfield, 2005: A further study of the Tropical Western Hemisphere Warm Pool.
J. Climate, 16, 1476–1493.

Wang, Y., S. Xie, B. Wang, and H. Xu, 2005: Large-scale atmospheric forcing by southeast Pacific
boundary layer clouds: A regional model study.J. Climate, 18, 934–951.

Zhang, C., M. McGauley, and N. Bond, 2004: Shallow meridionalcirculation in the tropical
eastern Pacific.J. Climate, 17, 133–139.

Zhang, C., D. Nolan, C. Thorncroft, and H. Nguyen, 2008: Shallow meridional circulations in the
tropical atmosphere.J. Climate, 21, 3453–3470.

75



APPENDIX A

VERTICAL TRANSFORM

The mathematical principles underlying the vertical transform pair (3.22) and (3.23) are the or-

thonormality and completeness of the eigenfunctionsZm(z), which we now discuss. Consider the

eigenfunctionZm(z), which is a solution of (3.24)–(3.26), and the eigenfunctionZm′(z), which is

a solution of (3.24)–(3.26) withm replaced bym′. To obtain the orthonormality relation, multiply

the equation forZm(z) by Zm′(z), then multiply the equation forZm′(z) by Zm(z), and finally

integrate the difference of the resulting equations to obtain

1

g

(

1

hm

− 1

hm′

)∫ zT

0

Zm(z)Zm′(z)N2(z) dz +

[

Zm′(z)
dZm(z)

dz
−Zm(z)

dZm′(z)

dz

]zT

0

= 0.

(A.1)

The boundary terms in (A.1) can be evaluated with the aid of the boundary conditions (3.25)

and (3.26). Then, for distinct eigenvalues (hm 6= hm′) and for normalizedZm(z), we have the

orthonormality relation

∫ zT

0

Zm(z)Zm′(z) dz +
g

N2
Zm(0)Zm′(0) =



















zT if m = m′

0 if m 6= m′.

(A.2)

To confirm that (3.22) is the proper transform for the expansion (3.23), we multiply (3.23) by

Zm′(z) and then integrate overz to obtain

∫ zT

0

ψ̂(y, z)Zm′(z)N2(z) dz =
∞
∑

m=0

ψ̂m(y)

∫ zT

0

Zm(z)Zm′(z)N2(z) dz. (A.3)
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Similarly, we multiply (3.2), evaluated atz = 0, byZm′(0) to obtain

ψ̂(y, 0)Zm′(0) =
∞
∑

m=0

ψ̂m(y)Zm(0)Zm′(0). (A.4)

Multiplying (A.4) by g/N2, adding the result to (A.3), and then using the orthonormality relation

(A.2), we obtain (3.1), confirming the validity of the transform pair (3.1) and (3.2).

To prove that all the eigenvalues of the problem (3.24)–(3.26) are positive, multiply (3.24) by

Zm(z) to obtain

N2Z2
m

ghm

+
d

dz

(

Zm
dZm

dz

)

=

(

dZm

dz

)2

+

(Zm

2H

)2

. (A.5)

Integrating (A.5) overz and making use of the boundary conditions (3.25) and (3.26),we obtain

1

hm

{

1

g

∫ zT

0

Z2
m(z)N2(z) dz + Z2

m(0)

}

=

∫ zT

0

{

(

dZm(z)

dz

)2

+

(Zm(z)

2H

)2
}

dz +
Z2

m(0)

2H
.

(A.6)

The right hand side of (A.6) is positive. SinceN2 > 0, the term in braces on the left hand side of

(A.6) is also positive. Thus, all the eigenvalues are positive, i.e.,hm > 0 for all m.

To determine if the eigenfunctionsZm(z) form a complete set, we first write (3.1) in the form

ψ̂m(y) =
1

g

∫ zT

0

[1 + δ(z′)] ψ̂(y, z′)Zm(z′)N2(z′)dz′, (A.7)

whereδ(z′) satisfies

1

g

∫ zT

0

δ(z′)N2(z′)dz′ = 1. (A.8)
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Using (A.7) in (3.34), we obtain

ψ̂(y, z) =
1

g

∫ zT

0

{

[1 + δ(z′)]
∞
∑

m=0

Zm(z)Zm(z′)

}

ψ̂(y, z′)N2(z′)dz′. (A.9)

The right hand side of (A.9) evaluates tôψ(y, z) if

[1 + δ(z′)]
∞
∑

m=0

Zm(z′)Zm(z) = δ(z′ − z), (A.10)

which is the completeness relation. Although we shall not give a general proof of (A.10), we shall

confirm it numerically for the special case of constantN in Appendix B. For further discussions on

completeness relations, see Arfken and Weber (1990, section 8.4) and Courant and Hilbert (1953,

Volume I, section 6.3).
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APPENDIX B

CALCULATION OF THE EIGENVALUES hm AND THE EIGENFUNCTIONSZm(z)

To solve the Sturm-Liouville problem (3.24)–(3.26), consider the idealized case in which the

buoyancy frequencyN is a constant given byN = 1.2 × 10−2 s−1. As we shall see, the solution

of the second order equation (3.24) has different forms depending on the eigenvalueshm. We

begin by exploring the possibility that one of the eigenvalues is given bŷh, which is defined by

ĥ = (2NH)2/g = 4328 m. The corresponding eigenfunction̂Z(z) then satisfiesd2Ẑ/dz2 = 0, in

which case the solution satisfying the upper boundary condition (3.25) isẐ(z) = C(zT −z), where

C is a constant. The lower boundary condition is satisfied if{1 + zT [(1/H) − (1/ĥ)]}C = 0. We

shall assume that the constantzT is specified in such a way thatzT 6= [(1/ĥ) − (1/H)]−1 = 8731

m, so that1 + zT [(1/H) − (1/ĥ)] 6= 0 andC = 0, meaning that the boundary value problem

does not have a nontrivial eigenfunction with corresponding eigenvaluehm = ĥ. Since we have

already shown thathm > 0, we now separately investigate the two cases:hm > ĥ (Case 1) and

0 < hm < ĥ (Case 2).

Case 1. If the eigenvalues satisfyhm > ĥ, then the equation forZm(z) is

d2Zm(z)

dz2
− µ2

m

z2
T

Zm = 0, (B.1)

where

µ2
m

z2
T

=
N2

g

(

1

ĥ
− 1

hm

)

> 0. (B.2)

In this case the vertical structure functions satisfying the upper boundary condition are

Zm(z) = Am sinh[µm(1 − z/zT )], (B.3)
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whereAm is the normalization factor. Through application of the lower boundary condition (3.26),

it can be shown thatµm is the solution of

tanh(µm) =
µm

(zT/ĥ)[1 − ĥ/2H − (2Hµm/zT )2]
. (B.4)

The transcendental equation (B.4) has only one solution, denoted byµ0 and having the value

µ0 = 0.4686. The corresponding eigenvalueh0 is obtained from (B.2), written in the form

h0 = ĥ
[

1 − (2Hµ0/zT )2
]

−1 ≈ 7075 m. (B.5)

The top line in the orthonormality relation (A.2) is satisfied if the normalization factor is given by

A0 =

{

N2zT

2g

[

sinh(µ0) cosh(µ0)

µ0

− 1

]

+ sinh2(µ0)

}

−1/2

. (B.6)

Case 2. If the eigenvalues lie in the range0 < hm < ĥ, then the equation forZm(z) is

d2Zm(z)

dz2
+
ν2

m

z2
T

Zm = 0, (B.7)

where

ν2
m

z2
T

=
N2

g

(

1

hm

− 1

ĥ

)

> 0. (B.8)

In this case the vertical structure functions satisfying the upper boundary condition are

Zm(z) = Bm sin[νm(1 − z/zT )], (B.9)
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whereBm is the normalization factor. Through application of the lower boundary condition (3.26),

it can be shown thatνm is the solution of

tan(νm) =
νm

(zT/ĥ)[1 − ĥ/2H + (2Hνm/zT )2]
. (B.10)

After the transcendental equation (B.10) is solved forνm, the eigenvalueshm can be obtained from

(B.8), written in the form

hm = ĥ
[

1 + (2Hνm/zT )2
]

−1 ≈ ĥ
[

1 + (2Hmπ/zT )2
]

−1
. (B.11)

The second (approximate) equality follows from the fact that the solutions of the transcendental

equation (A.10) are approximatelyνm ≈ mπ for m = 1, 2, · · · , with the accuracy of the estimate

improving asm increases. The exact and approximate eigenvalues are listed in Table 3.1. Finally,

the top line in the orthonormality relation (A.2) is satisfied if the normalization factor is given by

Bm =

{

N2zT

2g

[

1 − sin(νm) cos(νm)

νm

]

+ sin2(νm)

}

−1/2

. (B.12)

Note that the dependence of the normalization factorsBm onm is weak becauseνm ≈ mπ, making

thesin(νm) terms in (B.12) negligible, which leads toBm ≈ [2g/(N2zT )]1/2 ≈ 3.2.

To summarize, the eigenvalue for the external mode is given by (B.5) whereµ0 is the single

solution of the transcendental equation (B.4), while the eigenvalues for the internal modes are given

by (B.11) whereνm are the solutions of the transcendental equation (B.10). The corresponding

eigenfunctions are

Zm(z) =



















A0 sinh[µ0(1 − z/zT )] m = 0

Bm sin[νm(1 − z/zT )] m ≥ 1,

(B.13)
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where the normalization factorsA0 andBm are given by (B.6) and (B.12). The first eleven eigen-

valueshm (m = 0, 1, ..., 10) are listed in Table 3.1, while the first five eigenfunctions are plotted

in Fig. 3.1.

FIG. B.1. Four plots of the left hand side of (B.15) for the choices ẑ = 1 km
(black),ẑ = 4 km (blue),ẑ = 7 km (red), and̂z = 10 km (green). The two sums on
the left hand side of (B.15) have been truncated atm = 800. These plots, and others
with different truncations, demonstrate that the left handside of (B.15) converges
in the mean to the right hand side of (B.15), thereby confirming the completeness
of the basis functionsZm(z) for the case of constantN .

To numerically confirm the completeness relation (A.10) forthe case of constantN , we first

write it in the form

[1 + δ(z′)]

(

Z0(z
′)Z0(ẑ) +

∞
∑

m=1

Zm(z′)Zm(ẑ)

)

= δ(z′ − ẑ), (B.14)
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where, for notational convenience, we have replacedz by ẑ. The numerical confirmation of (B.14)

is simpler if (B.14) is converted to an integrated form because then the two delta functions will

not appear. Thus, integrating (B.14) overz′ from zero toz, making use of (B.13), and finally

multiplying byN2/g, we obtain

A0N
2zT

gµ0

Z0(ẑ) {cosh(µ0) − cosh [µ0(1 − z/zT )]}

+
∞
∑

m=1

BmN
2zT

gνm

Zm(ẑ) {cos [νm(1 − z/zT )] − cos(νm)}

+
∞
∑

m=0

Zm(0)Zm(ẑ) =



















1 if z > ẑ

0 if z < ẑ.

(B.15)

Figure B.1 shows plots of the left hand side of (B.15) whenẑ = 1, 4, 7, 10 km and when 800 terms

are used in the summation overm. Note that, except for the Gibbs phenomenon nearz = ẑ, the left

hand side of (B.15) converges to the unit step function as thenumber of terms is increased. This

is numerical confirmation that (B.14) is valid and thereforethat the basis functions (B.13) form a

complete set in the special case of constantN .
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