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Abstract— In this study, we examine the current state 
of supply chain integration, estimate the economic 
impact of inadequate integration, and identify 
opportunities for governmental organizations to 
provide critical standards infrastructures that will 
improve the efficiency of supply chain communications. 
The development of methods to reduce the impact of 
multicollinearity in the construction of a linear 
regression model is an urgent task of applied 
econometrics. The article proposes a method for 
reducing multicollinearity in the construction of a linear 
regression model for evaluating the supply chain impact 
on economy. In the case of non-stationary 
multidimensional time series, it is assumed that all 
variables have a polynomial trend. Each predictor xj(t) 
is decomposed into a trend and a remainder uj(t), and 
then a regression y(t) is constructed for time t and the 
remainder uj(t). In this case, the regression coefficients 
for uj(t) are equal to the regression coefficients for xj(t), 
but they are estimated using less correlated regressors 
SCM. The article gives a quantitative assessment of the 
increase in the accuracy of the forecast of the considered 
model in comparison with other models. In the case of 
spatial variables, the proposed approach is that some Xj 
regressors SCM correlated with others are replaced by 
the sum of two summands. One of them is the predicted 
value of Xj obtained from the regression equation Xj on 
the predictor correlated with it; the other is the 
remainder of this regression Uj. As a result, we get a new 
set of regressors SCM that are much less correlated 
with each other. The new regressors - the remnants of 
Uj - are susceptible to meaningful interpretation. 
However, the new regression equation changes the 
regression coefficients only for variables that act as 
dependent variables in auxiliary regressions. The 
application of the proposed method is illustrated by 
examples through the supply chain process. 
Calculations are performed in the R software 
environment. 

 
Keywords— supply chain, economy development, block 
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dimensional non-stationary time series. 
 
 

1. Introduction 
 

The supply chain is how a company turns raw 
materials into finished goods and services for the 
customer. One of the conditions for correct application 
of regression analysis in supply chain process is to 
identify dependencies in empirical data is the absence 
of multicollinearity of regressors SCM. The negative 
consequences of multicollinearity are well known. 
These include an increase in the variance of estimates, 
which affects negatively the study of the degree and 
direction of the regressor’s action on the endogenous 
variable, the complexity of determining the 
contribution of each of the explanatory variables to the 
variance of the dependent variable explained by the 
regression equation, and a decrease in the accuracy of 
predicting the response from the regression equation 
[1, 2]. Therefore, multicollinearity diagnostics is an 
integral part of regression analysis. Methods of 
diagnostics of multicollinearity are considered in 
numerous works [3-7]. Various multicollinearity tests 
sometimes lead to conflicting conclusions about the 
multicollinearity of regressors SCM. Therefore, to 
make an informed decision about the multicollinearity 
of regressors SCM, we have to use a set of tests. Tests 
for the presence of multicollinearity of variables are 
presented in the R software package quite fully. 
If there is multicollinearity in the data, there is a need 
to either get rid of it, or at least weaken the degree of 
multicollinearity of regressors SCM [2, 3]. Possible 
approaches to statistical estimation of regression 
dependencies in multicollinearity conditions are as 
follows. 
1) The simplest method for eliminating 
multicollinearity is to exclude one of the predictors 
that correlates most strongly with the others from the 
model. However, an important predictor for the model 
may be deleted, and deleting it will distort the essence 
of the regression model.  
2) Data standardization. Data standardization 
improves the conditionality of linear regression 
computational algorithms, but it is of little use for 
weak conditionality of the sample correlation matrix. 
Standardization is particularly useful in the case of 
polynomial regression models. 
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3)  Building a regression model under 
multicollinearity conditions without changing the 
composition of explanatory variables (ridge 
regression and Lasso regression). These methods 
reduce the variance of estimates of regression 
coefficients, and the estimates are biased.  
4) Multicollinearity can be ignored if the 
regression model is intended only for forecasting. 
5) Orthogonalization of regressors SCM. 
Two methods are used for orthogonalization of 
variables – the principal component method and 
the Gram-Schmidt sequential orthogonalization 
method. A significant disadvantage of both 
methods is that the new variables obtained as a 
result of orthogonalization are almost impossible 
to be meaningfully interpreted. The regression 
equation for new variables is suitable for 
forecasting, but it is practically not suitable for 
meaningful regression analysis, for evaluating the 
impact of the original regressors SCM on the 
result. 
Estimation of regression parameters under 
conditions of multicollinearity still remains an 
important problem in applied econometrics. 
The purpose of this work is to develop new 
methods aimed at reducing the impact of 
multicollinearity on regression estimates and 
facilitating the interpretation of modeling results. 
The paper considers an approach associated with 
incomplete orthogonalization of variables, with the 
transition from the original regressors SCM to 
new, less correlated and susceptible to meaningful 
interpretation variables. 
In this paper, we propose two methods for reducing 
the effect of multicollinearity, connected by a 
single approach, applicable for multidimensional 
non-stationary time series and spatial variables. 
The effectiveness of the methods is illustrated by 
examples based on real statistical data.  
If the source variables are non-stationary 
multidimensional time series that have a trend, 
then a false correlation between the variables 
appears. Then the regressors SCM become 
correlated, even if they are not related to each other 
in meaning. To reduce the degree of 
multicollinearity, we divide each of the original 
regressors SCM 𝑥𝑥𝑗𝑗(𝑡𝑡) into two parts – the trend 𝑥𝑥�𝑗𝑗 
and the remainder 𝑢𝑢𝑗𝑗(𝑡𝑡) – and then build a 
regression model of the dependence of the 
endogenous variable y(𝑡𝑡) on the regressors SCM t, 
𝑢𝑢1(𝑡𝑡),…,𝑢𝑢𝑚𝑚(𝑡𝑡). The residuals 𝑢𝑢𝑗𝑗(𝑡𝑡)are free from 
correlation caused by the trends of variables, and 

the regression coefficients for them are equal to the 
regression coefficients for the original regressors 
SCM 𝑥𝑥𝑗𝑗(𝑡𝑡). The error of the proposed trend-factor 
model is less than the errors of both the y(𝑡𝑡) regression 
model on t and the y(𝑡𝑡) regression model over the 
original time series. The paper provides a quantitative 
assessment of the improvement in the quality of the 
forecast by the trend-factor model in comparison with 
other models. The application of the method is 
illustrated by an example. 
In the case of spatial variables, the proposed approach 
leads to incomplete orthogonalization of the original 
regressors SCM using a linear transformation. The 
linear transformation of the original regressors SCM 
consists in replacing part of the correlated regressors 
SCM 𝑋𝑋𝑗𝑗  with the remainder 𝑈𝑈𝑗𝑗  from their regression 
with the closely related regressor 𝑋𝑋𝑘𝑘. This is similar to 
the first step of the Gram-Schmidt orthogonalization 
algorithm, but it is applied not to a single variable, but 
to a group of highly correlated regressors SCM, and 
the new 𝑈𝑈𝑗𝑗  variables do not participate further in 
auxiliary regressions of some regressors SCM on 
others. The remainder of 𝑈𝑈𝑗𝑗 is the difference between 
𝑋𝑋𝑗𝑗 and the predicted value of 𝑋𝑋�𝑗𝑗 obtained from the 
linear regression equation 𝑋𝑋𝑗𝑗 on the correlated 
regressor 𝑋𝑋𝑘𝑘. The new variables 𝑈𝑈𝑗𝑗 are linear 
combinations of 𝑋𝑋𝑘𝑘 and a constant, they are 
susceptible to meaningful interpretation and are less 
correlated than the original variables. In the new 
regression equation, only the regression coefficients 
change for variables that act as dependent variables in 
auxiliary regressions. The article presents formulas for 
the relationship of estimates of regression coefficients 
for old and new variables and their covariance 
matrices. The application of the proposed method is 
illustrated by the example of constructing a regression 
model of the volume of innovative goods, works and 
services for the subjects of the Russian Federation [21 
– 25]. The source of statistical information is the 
official website of the Federal State Statistics Service 
(https://www.gks.ru). 
 
2.   Method 

 
Firms engaged in supply-chain relationships, as 
customers, suppliers, or providers of services, need to 
share a great deal of information in the course of their 
interactions. Over the years, companies have managed 
these information flows in a number of ways, 
including telephone calls, letters, telex, faxes, and 
electronic data interchange. More recently, firms have 
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begun using the power of the Internet to create 
more effective and open transmission protocols for 
machine-to-machine communication of the same 
high-frequency data now handled by traditional 
electronic data interchange. 
• The original regressors SCM are 
multidimensional time series  
In practice, most often the trends of both the 
dependent variable 𝑦𝑦(𝑡𝑡) and the regressors SCM 
𝑥𝑥𝑗𝑗(𝑡𝑡) (j=1,…,m) are polynomials of no higher than 
the second degree. 
The linear regression model 𝑦𝑦(𝑡𝑡) on 𝑥𝑥𝑗𝑗(𝑡𝑡) has the 
form: 
𝑦𝑦(𝑡𝑡) = 𝛽𝛽0 + ∑ 𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗𝑚𝑚

𝑗𝑗=1 (𝑡𝑡) + 𝜀𝜀𝑡𝑡 , 𝑡𝑡 = 1, … ,𝑛𝑛     (1) 
The values of 𝑥𝑥𝑗𝑗(𝑡𝑡) (j=1,…,m) are represented as 
the sum of the trend and deviations from the trend 
𝑥𝑥𝑗𝑗(𝑡𝑡) = 𝑎𝑎0,𝑗𝑗 + 𝑎𝑎1,𝑗𝑗𝑡𝑡 + 𝑎𝑎2,𝑗𝑗𝑡𝑡2  + 𝑢𝑢𝑗𝑗(𝑡𝑡) ,          (2) 
along with this, no assumptions are made about the 
remainder 𝑢𝑢𝑗𝑗(𝑡𝑡). Estimates of coefficients 𝑎𝑎𝑘𝑘,𝑗𝑗 will 
be obtained using the least squares method and, 
consequently, ∑ 𝑢𝑢𝑗𝑗𝑛𝑛

𝑡𝑡=1 (𝑡𝑡) = 0. Substituting (2) in 
(1), we get: 
𝑦𝑦(𝑡𝑡)= 𝛾𝛾0 + 𝛾𝛾1𝑡𝑡 + 𝛾𝛾2𝑡𝑡2 + ∑ 𝛽𝛽𝑗𝑗𝑢𝑢𝑗𝑗(𝑡𝑡)𝑚𝑚

𝑗𝑗=1 +𝜀𝜀𝑡𝑡, 
where 𝛾𝛾0 = 𝛽𝛽0 + ∑ 𝛽𝛽𝑗𝑗𝑎𝑎0,𝑗𝑗  𝑚𝑚

𝑗𝑗=1 ,   𝛾𝛾1 = ∑ 𝛽𝛽𝑗𝑗𝑎𝑎1,𝑗𝑗
𝑚𝑚
𝑗𝑗=1  , 

𝛾𝛾2 = ∑ 𝛽𝛽𝑗𝑗𝑎𝑎2,𝑗𝑗
𝑚𝑚
𝑗𝑗=1 . (3) 

To avoid a large coefficient, the correlation 
coefficient between t and t2 is replaced in (3) t 
by 𝑡𝑡 − 𝑡𝑡̅, where 𝑡𝑡̅ is the average value of t. So, the 
specification of the trend-factor model has the 
form: 
           𝑦𝑦(𝑡𝑡)= 𝛾𝛾0 + 𝛾𝛾1𝑡𝑡 + 𝛾𝛾2𝑡𝑡2 + ∑ 𝛽𝛽𝑗𝑗𝑢𝑢𝑗𝑗(𝑡𝑡)𝑚𝑚

𝑗𝑗=1 +
𝜀𝜀𝑡𝑡 , (4) 
where the model parameters are estimated using 
the least squares method rather than using formulas 
(3). Let us note that the regression coefficients 𝛽𝛽𝑗𝑗 
for 𝑢𝑢𝑗𝑗(𝑡𝑡) in (4) are the same as the regression 
coefficients 𝛽𝛽𝑗𝑗 for 𝑥𝑥𝑗𝑗  in (1), but their estimates are 
obtained from other predictors than in (1). The 
regressors SCM of the model (4) are less correlated 
compared with the regressors SCM of model (1). 
To predict the level of the dependent variable at 
t=L, you must have the forecast values 𝑢𝑢𝑗𝑗(𝐿𝐿). As 
the average value of 𝑢𝑢𝑗𝑗(𝑡𝑡) is zero, it is natural to 
put 𝑢𝑢𝑗𝑗(𝐿𝐿) equal to zero. Then the predicted value 
of 𝑦𝑦(𝐿𝐿) is 𝑦𝑦(𝐿𝐿) = 𝛾𝛾0 + 𝛾𝛾1𝐿𝐿 + 𝛾𝛾2𝐿𝐿2. The obtained 
values of 𝑦𝑦(𝐿𝐿) differ from the forecast obtained 
from the trend model, as the resulting regression 
equation contains, in addition to t, regressors SCM 
𝑢𝑢𝑗𝑗(𝑡𝑡). Therefore, the confidence intervals of 
forecasts will be less than the forecast intervals for 

the trend model, which only takes into account time t. 
Quantifying improvements of forecast accuracy 
Let U be a block matrix of regressors SCM values in 
model (4), 𝑼𝑼 = (𝑻𝑻,𝑫𝑫).   

𝑼𝑼 = �
1, 𝑡𝑡1, 𝑡𝑡12, 𝑢𝑢1(𝑡𝑡1),𝑢𝑢2(𝑡𝑡1), … , 𝑢𝑢𝑚𝑚(𝑡𝑡1)
.   .   .   . .  .  .  .  .  .  .  .  .  .  .  . .  .  .  .

1, 𝑡𝑡𝑛𝑛, 𝑡𝑡𝑛𝑛2, 𝑢𝑢1(𝑡𝑡𝑛𝑛),𝑢𝑢2(𝑡𝑡𝑛𝑛), … , 𝑢𝑢𝑚𝑚(𝑡𝑡𝑛𝑛)
�,   

𝑻𝑻 = �
1 𝑡𝑡1 𝑡𝑡12
. . .
1 𝑡𝑡𝑛𝑛 𝑡𝑡𝑛𝑛2

�,  

𝑫𝑫 = �
  𝑢𝑢1(𝑡𝑡1),  𝑢𝑢2(𝑡𝑡1), … , 𝑢𝑢𝑚𝑚(𝑡𝑡1)
.   .   .   . .  .  .  .  .  .  .  .  .  .  .  . .  .  .  .
𝑢𝑢1(𝑡𝑡𝑛𝑛),  𝑢𝑢2(𝑡𝑡𝑛𝑛), … , 𝑢𝑢𝑚𝑚(𝑡𝑡𝑛𝑛)

� 

The standard forecast error 𝜎𝜎�𝑝𝑝 for 𝑡𝑡 = 𝐿𝐿 is  
𝜎𝜎�𝑝𝑝 =

𝜎𝜎�𝑒𝑒�1 + �𝒗𝒗′(𝐿𝐿),𝒖𝒖′(𝐿𝐿)� (𝑼𝑼′ 𝑼𝑼)−1(𝒗𝒗′(𝐿𝐿),𝒖𝒖′(𝐿𝐿))′,   (5) 

where  𝜎𝜎�𝑒𝑒 – standard error of model residuals, the ′ 
sign indicates transposition,  𝒗𝒗′(𝐿𝐿) = (1, 𝐿𝐿, 𝐿𝐿2), 
𝒖𝒖′(𝐿𝐿) = (𝑢𝑢1( 𝐿𝐿),𝑢𝑢2( 𝐿𝐿), . . . ,𝑢𝑢𝑚𝑚( 𝐿𝐿)),  

Matrix (𝑼𝑼′ ⋅ 𝑼𝑼) has the form (𝑼𝑼′ ⋅ 𝑼𝑼) = �𝑻𝑻
′𝑻𝑻 𝑻𝑻′𝑫𝑫

𝑫𝑫′𝑻𝑻 𝑫𝑫′𝑫𝑫� 

. 
Let us denote 𝑽𝑽𝒖𝒖,𝒕𝒕 =𝑫𝑫′𝑻𝑻,  𝑽𝑽𝒕𝒕,𝒕𝒕 = 𝑻𝑻′𝑻𝑻, 𝐕𝐕𝐮𝐮,𝐮𝐮 = 𝐃𝐃′𝐃𝐃,  
𝑩𝑩𝒕𝒕,𝒖𝒖 = (𝑫𝑫′𝑫𝑫)−𝟏𝟏𝑫𝑫′𝑻𝑻 , 𝑩𝑩𝒖𝒖,𝒕𝒕 = (𝑻𝑻′𝑻𝑻)−𝟏𝟏𝑻𝑻′𝑫𝑫. As it can 
be seen from the above formulas, the matrices 𝑩𝑩𝒕𝒕,𝒖𝒖 and 
𝑩𝑩𝒖𝒖,𝒕𝒕 are matrices of estimates of regression 
coefficients v(t) on u(t) and u(t) on v(t), respectively. 
It is natural to expect that they are close to zero 
matrices. The matrix inverse to the block matrix 
(𝑼𝑼′ ⋅ 𝑼𝑼)is equal to [8]  

(𝑼𝑼′ ⋅ 𝑼𝑼)−1 = �
𝑼𝑼𝟏𝟏,𝟏𝟏 𝑼𝑼𝟏𝟏,𝟐𝟐
𝑼𝑼𝟐𝟐,𝟏𝟏 𝑼𝑼𝟐𝟐,𝟐𝟐

�, where 𝑼𝑼𝟏𝟏,𝟏𝟏 = 𝐕𝐕𝐭𝐭,𝐭𝐭−𝟏𝟏-

𝐁𝐁𝐮𝐮,𝐭𝐭(𝐕𝐕𝐮𝐮,𝐭𝐭𝐁𝐁𝐮𝐮,𝐭𝐭-𝐕𝐕𝐮𝐮,𝐮𝐮)−𝟏𝟏𝐁𝐁𝐮𝐮,𝐭𝐭 
′ , 𝐔𝐔𝟏𝟏,𝟐𝟐 = (𝐕𝐕𝐮𝐮,𝐭𝐭 

′ 𝐁𝐁𝐭𝐭,𝐮𝐮-
𝑽𝑽𝒕𝒕,𝒕𝒕)−𝟏𝟏𝑩𝑩𝒕𝒕,𝒖𝒖 

′ ,  𝑼𝑼𝟐𝟐,𝟏𝟏 = (𝑽𝑽𝒖𝒖,𝒕𝒕𝑩𝑩𝒖𝒖,𝒕𝒕-𝑽𝑽𝒖𝒖,𝒖𝒖)−𝟏𝟏𝑩𝑩𝒖𝒖,𝒕𝒕 
′ ,   𝑼𝑼𝟐𝟐,𝟐𝟐 =

𝑽𝑽𝒖𝒖,𝒖𝒖
−𝟏𝟏 − 𝑩𝑩𝒕𝒕𝒕𝒕 (𝑽𝑽𝒖𝒖,𝒕𝒕 

′ 𝑩𝑩𝒕𝒕,𝒖𝒖-𝑽𝑽𝒕𝒕,𝒕𝒕)−𝟏𝟏𝑩𝑩𝒕𝒕,𝒖𝒖 
′ . 

Let С =  (𝑽𝑽𝒖𝒖,𝒕𝒕𝑩𝑩𝒖𝒖,𝒕𝒕 − 𝑽𝑽𝒖𝒖,𝒖𝒖)−𝟏𝟏𝑩𝑩𝒖𝒖,𝒕𝒕. As the 
matrix (𝑼𝑼′U)−𝟏𝟏 is symmetric, so (𝑽𝑽𝒖𝒖,𝒕𝒕

′ 𝑩𝑩𝒕𝒕,𝒖𝒖 −
𝑽𝑽𝒕𝒕,𝒕𝒕)−𝟏𝟏𝑩𝑩𝒕𝒕,𝒖𝒖 

′  =  С′. Then the matrix (𝑼𝑼′U)−1 can be 
written in the form 

(𝑼𝑼′𝑼𝑼)−𝟏𝟏 =  �
𝑽𝑽𝒕𝒕,𝒕𝒕−𝟏𝟏 − 𝜝𝜝𝒖𝒖, 𝒕𝒕𝑪𝑪 𝑪𝑪′

𝑪𝑪 𝑽𝑽𝒖𝒖,𝒖𝒖
−𝟏𝟏 − 𝑩𝑩𝒕𝒕,𝒖𝒖𝑪𝑪′

�.  (6) 

Substituting the predicted values of the remainder 
𝒖𝒖(𝐿𝐿) = 𝟎𝟎 in the formula (5), taking into account (6), 
we get  

𝜎𝜎�𝑝𝑝 = 𝜎𝜎�𝑒𝑒�1 + 𝒗𝒗′(𝐿𝐿)�𝑽𝑽𝒕𝒕,𝒕𝒕−𝟏𝟏  −  ,tuΒ 𝐂𝐂�𝒗𝒗(𝐿𝐿)    (7) 

If the forecast was made only by the trend, without 
taking into account uj(t), the forecast error would be 
calculated using the formula 
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 𝜎𝜎�𝑝𝑝,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜎𝜎�𝑒𝑒,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�1 + 𝒗𝒗′(𝐿𝐿)𝑽𝑽𝒕𝒕,𝒕𝒕−𝟏𝟏𝒗𝒗(𝐿𝐿) ,     (8) 

where 𝜎𝜎�𝑒𝑒,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − estimation of the standard 
deviation of the trend model. If the regression 
model specifications 𝑥𝑥𝑗𝑗(𝑡𝑡) from t are selected 
correctly, then 𝑩𝑩𝑡𝑡,𝑢𝑢 ≈ 0, 𝑩𝑩𝒖𝒖,𝒕𝒕 ≈ 𝟎𝟎, and hence 𝑪𝑪 ≈
0. As the matrix 𝑩𝑩𝒖𝒖,𝒕𝒕𝑪𝑪 is close to zero, the forecast 
errors (7) and (8) of the two models actually differ 
only by a multiplier equal to the standard error of 
the model residuals. As 𝜎𝜎�𝑒𝑒 < 𝜎𝜎�𝑒𝑒,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, the forecast 
error of the trend-factor model (4) will be less than 
the forecast error of the trend model by about as 
many times as 𝜎𝜎�𝑒𝑒 is less than 𝜎𝜎�𝑒𝑒,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 
As ≈ 0 , from (6) we get 

 (𝑼𝑼𝑻𝑻𝑼𝑼)−𝟏𝟏 ≈ �
𝑽𝑽𝒕𝒕,𝒕𝒕−𝟏𝟏 𝟎𝟎
𝟎𝟎 𝑽𝑽𝒖𝒖,𝒖𝒖

−𝟏𝟏 � . (9)  

Substituting (9) in (5) and considering that 𝑽𝑽𝒕𝒕,𝒕𝒕 =
𝑻𝑻′𝑻𝑻 и 𝑽𝑽𝒖𝒖,𝒖𝒖 = 𝑫𝑫′𝑫𝑫 , we get: 

𝜎𝜎�𝑝𝑝
≈ 𝜎𝜎�𝑒𝑒�1 + 𝒗𝒗′(𝐿𝐿) (𝑻𝑻′ 𝑻𝑻)−1𝒗𝒗(𝐿𝐿) + 𝒖𝒖′(𝐿𝐿)(𝑫𝑫′𝑫𝑫)−1 𝒖𝒖(𝐿𝐿) 

If we square the last equality, we see that 𝜎𝜎�𝑝𝑝2 splits 
into two summands 𝜎𝜎�𝑝𝑝2 ≈ 𝜎𝜎�𝑒𝑒2 𝜑𝜑(𝒗𝒗(𝐿𝐿)) +
𝜎𝜎�𝑒𝑒2𝑐𝑐(𝒖𝒖(𝐿𝐿)) where 𝜑𝜑(𝐿𝐿) = 1 + 𝒗𝒗′(𝐿𝐿)(𝑻𝑻′𝑻𝑻)−1𝒗𝒗(𝐿𝐿) 
does not depend on the remainder 𝒖𝒖(𝐿𝐿), and 
𝑐𝑐(𝒖𝒖) = 𝒖𝒖′(𝐿𝐿)(𝑫𝑫′𝑫𝑫)−𝟏𝟏 𝒖𝒖(𝐿𝐿) depends only on the 
remainder.  
• Discussion. Let us compare the simulation results 
for different models.  
We study the dependence of the money supply Y 
(billion dollars) from GNP X1 (billion dollars) and 
the interest rate on 6-month US government bonds 
X2 ( % ) [9]. The number of observations is n=24. 
Graphs of the source data are shown in Fig.1, 2, 3. 
 

 
Figure 1. Graph of the Y dynamics 

 
 
  

 
Figure 2.   Graph of the 𝑋𝑋1 dynamics 

 

 
Figure 3. Graph of the 𝑋𝑋2 dynamics 

 
Preliminary visual analysis shows that 𝑦𝑦(𝑡𝑡) and 
𝑥𝑥1(𝑡𝑡) have parabolic trends, while 𝑥𝑥2(𝑡𝑡) has a linear 
trend. We get the estimates 𝑦𝑦�(𝑡𝑡) of the three models 
y(t) for comparison. 
Model 1- trend model of dependency of 𝑦𝑦(𝑡𝑡) from t 
and 𝑡𝑡2:  to get rid of the correlation between t and 𝑡𝑡2, 

we replace t and 𝑡𝑡2 with t- 𝑡𝑡 and (𝑡𝑡 − 𝑡𝑡)
2
, where 𝑡𝑡  is 

the average value of t. the The estimate of the first 
model 𝑦𝑦�1(𝑡𝑡) has the form: 𝑦𝑦�1(𝑡𝑡) = 237,09 +
15,50𝑡𝑡 + 0,68𝑡𝑡2, 
The standard deviation of the remainder 𝜎𝜎�𝑒𝑒1 is equal 
to 𝜎𝜎�𝑒𝑒1 = 6,21; the coefficient of determination 
R2=0.997; the standard forecast error for a step 
forward is equal to 𝜎𝜎�𝑝𝑝=7.46.  
Model 2 regression y(𝑡𝑡)on the source variables x1(t) 
and x2(t). 
All regression model coefficients are significant at the 
5% level. The coefficient of determination R2 is equal 
to 0.995; the standard error of the model σ�e2 = 8.13, 
the standard forecast error for a step forward 
σ�p=10.21. The correlation coefficient of x1(t) with 
x2(t) is 0.874, so there is reason to consider the 
regressors SCM multicollinear. The correlation 
coefficients y(t)  with x1(t) and x2(t) are 0.997 and 
0.856, respectively, and the regression coefficient for 
x2(t) is negative, which is a manifestation of 
multicollinearity. 
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Model 3 regression y(t) on t, t2 and u1(t), u2(t)   ̶ 
deviations from their trends x1(t)  and x2(t).   The 
estimate y�(t) has the form : 
y�(t) = 235,99 + 15,50t + 0,70t2 + 0,086u1(t)

− 2,33u2(t) 
All model coefficients are significant at the 5% 
level. The coefficients for t and t2 of model 3 are 
naturally close to the coefficients of model 1. The 
theoretical regression coefficients at u1(t) and 
u2(t) of model 3 coincide with the coefficients for 
x1(t) and x2(t) of model 2. In our case, the original 
regressors SCM have multicollinearity, the sample 
size is small, and the estimates of the coefficients 
of model 3 are 61% and 90% of the estimates of 
model 2. 
The correlation coefficient u1(t) with u2(t) is 
0.649 and then we can assume that there is no 
multicollinearity. Testing the presence of 
multicollinearity using the method of inflationary 
factors confirms our conclusion, as all VIFj were 
small less than 2.1 (table1). 
 
Table 2. Simulation results 

Table 1. Method of inflationary factors 
 

regressors SCM VIFj 
t 1,000 

t2 1,155 
u1(t) 1,877 
u2(t) 2,032 

 
The determination coefficient of model 3 is 0.998; the 
standard error of the model σ�e3= 5.23; the forecast 
error for a step forward is σ�p= 6.37. The standard error 
of model 3 is 1.2 times less than the standard error of 
model 1, σ�e1 σ�e3⁄ =1.2. The matrix C in (6) is equal to  

 𝑪𝑪 = �−0,00014 −7E − 19 2,6E − 06
0,0078 1,4E − 17 −0,00015�. In 

accordance with the above, C was close to the zero 
matrix. The simulation results are shown in table 2.  
 
 
 
 
 

model Model specification R2 𝜎𝜎�𝑒𝑒 𝜎𝜎�𝑝𝑝 
1 𝑦𝑦(𝑡𝑡) = 𝑎𝑎0 + 𝑎𝑎1𝑡𝑡 + 𝑎𝑎2𝑡𝑡2 + 𝜀𝜀1𝑡𝑡 0,997 6,21 7,46 

2 𝑦𝑦(𝑡𝑡) = 𝑑𝑑0 + 𝑑𝑑1𝑥𝑥1(𝑡𝑡) + 𝑑𝑑2𝑥𝑥2(𝑡𝑡) + 𝜀𝜀2𝑡𝑡 0,995 8,13 10,21 

3 𝑦𝑦(𝑡𝑡) = 𝛾𝛾0 + 𝛾𝛾1𝑡𝑡 + 𝛾𝛾2𝑡𝑡2 + 𝛽𝛽1𝑢𝑢1(𝑡𝑡) + 𝛽𝛽2𝑢𝑢2(𝑡𝑡) + 𝜀𝜀3𝑡𝑡 0,998 5,23 6,37 

 
The standard error 𝜎𝜎�𝑒𝑒 of model 3 is less than the 
standard errors of models 1 and 2, and the forecast 
errors for one step forward 𝜎𝜎�𝑝𝑝 of model 3 are also 
less than the forecast errors of models 1 and 2.  
Thus, the modified trend-factor model allows to 
calculate estimates of regression coefficients y(t) 
for the original regressors SCM 𝑥𝑥𝑗𝑗(𝑡𝑡) for 
significantly less correlated new regressors SCM 
that have the same regression coefficients as in the 
original model. However, the standard forecast 
error for model 3 is less than for models 1 and 2. 
• The original regressors SCM are spatial 
variables  
If the original regressors SCM are spatial variables, 
then the approach under consideration undergoes 
some changes. The set of regressors SCM is 
divided into disjoint groups of strongly correlated 
predictors. Predictors that do not have a high 
correlation with any of the regressors SCM are not 
included in any of the groups. Then, in each group, 
one predictor 𝑋𝑋𝑘𝑘 is selected, called “selected”, and 

auxiliary regression equations are constructed for 𝑋𝑋𝑗𝑗 
regressors SCM in the rest of the group on the selected 
𝑋𝑋𝑘𝑘 regressor. The coefficients of auxiliary regressions 
will be calculated using the least squares method. No 
assumptions are made about the distribution of 
regression residuals and their relationship to other 
residuals and regressors SCM. The residuals from 
regressing 𝑋𝑋𝑗𝑗  on the selected regressor we denote 
using 𝑈𝑈𝑗𝑗. Further in the regression of the endogenous 
variable Y on the explanatory variables instead of 
𝑋𝑋𝑗𝑗 new variables 𝑈𝑈𝑗𝑗  are involved. Variables 𝑈𝑈𝑗𝑗 are 
equal to the difference between the replaced variable 
and the predicted variable by the regression equation 
values of this variable. Thus, 𝑈𝑈𝑗𝑗 is a linear 
combination of the original 𝑋𝑋𝑗𝑗 regressors SCM. Let 

𝑥𝑥𝑗𝑗
(𝑖𝑖) = 𝑎𝑎0

𝑗𝑗 + 𝑎𝑎𝑘𝑘
𝑗𝑗𝑥𝑥𝑘𝑘

(𝑖𝑖) + 𝑢𝑢𝑗𝑗
(𝑖𝑖) , then 

 𝑢𝑢𝑗𝑗
(𝑖𝑖) = 𝑥𝑥𝑗𝑗

(𝑖𝑖)−𝑎𝑎0
𝑗𝑗 − 𝑎𝑎𝑘𝑘

𝑗𝑗𝑥𝑥𝑘𝑘
(𝑖𝑖),       (10)  

 where i – observation number. The variables 𝑋𝑋𝑘𝑘 and 
𝑈𝑈𝑗𝑗 are uncorrelated, while 𝑋𝑋𝑘𝑘 and 𝑋𝑋𝑗𝑗 can be correlated 
in any way. Thus, by replacing part of the 𝑋𝑋𝑗𝑗 
regressors SCM with 𝑈𝑈𝑗𝑗, we get rid of some 
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correlation dependencies and thereby reduce the 
level of multicollinearity of the variables involved 
in the regression. Substituting (10) into the 
regression equation for the original regressors 
SCM 𝑌𝑌 = 𝑏𝑏0 + b1𝑋𝑋1 + ⋯+ b𝑚𝑚𝑋𝑋𝑚𝑚 + 𝑒𝑒, we note 
that the regression coefficients bj for all 𝑋𝑋𝑗𝑗, except 
for those j for which 𝑋𝑋𝑗𝑗 are “selected”, are equal to 
the regression coefficients 𝑔𝑔j for the new 
regressors SCM 𝑈𝑈𝑗𝑗. The regression coefficients of 
𝑔𝑔k for such k for which 𝑋𝑋𝑘𝑘 are “selected” are equal 
to 𝑔𝑔𝑘𝑘 = 𝑏𝑏𝑘𝑘 + ∑ 𝑏𝑏𝑗𝑗𝑎𝑎𝑘𝑘

𝑗𝑗
𝑗𝑗 .  Summation is performed 

for all such j, for which 𝑋𝑋𝑗𝑗 is a dependent variable, 
and 𝑋𝑋𝑘𝑘 is independent in additional regressions. 
From the last formula, we get that the 
coefficients 𝑔𝑔𝑘𝑘 of the regression Y for the new 
variables have a meaningful interpretation. When 
𝑋𝑋𝑘𝑘 is increased by one, Y changes to 𝑏𝑏𝑘𝑘 by 
changing 𝑋𝑋𝑘𝑘, but, in addition, if the correlations are 
unchanged, 𝑋𝑋𝑗𝑗 regressors SCM that are in the same 

group as 𝑋𝑋𝑘𝑘 will change on average by 𝑎𝑎𝑘𝑘
𝑗𝑗 . This 

entails changing Y to ∑ 𝑏𝑏𝑗𝑗𝑎𝑎𝑘𝑘
𝑗𝑗

𝑗𝑗 . As you can see, the 
change Y is equal to 𝑔𝑔𝑘𝑘. Thus, the regression 
coefficient 𝑔𝑔𝑘𝑘 can be interpreted as an increment of 
Y when 𝑋𝑋𝑘𝑘 changes by one, taking into account the 
corresponding changes of those 𝑋𝑋𝑗𝑗 that participated 
in additional regressions 𝑋𝑋𝑗𝑗 on 𝑋𝑋𝑘𝑘, that is, taking 
into account the correlations of 𝑋𝑋𝑘𝑘 with other 
regressors SCM. 
Explanatory variables 𝑋𝑋𝑗𝑗, which did not act as 
dependent variables in auxiliary regressions and 
were not replaced by 𝑈𝑈𝑗𝑗 , will be denoted as 𝑈𝑈𝑗𝑗  for 
convenience of writing. We denote with X and U 
the matrices of the values of the original regressors 
SCM 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑚𝑚 and the new regressors SCM 
𝑈𝑈1,𝑈𝑈2, … ,𝑈𝑈𝑚𝑚 . The matrices X and U have 
dimension (𝑚𝑚 + 1) × 𝑛𝑛, where n is the number of 
observations, and the first column of the matrices 
X and U consists of units. By Y we denote the 
vector of values of explanatory variables, by b, g 
we denote the vectors of regression coefficients Y 
on 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑚𝑚 and 𝑈𝑈1,𝑈𝑈2, … ,𝑈𝑈𝑚𝑚, respectively. 
We denote with B the matrix of the variable 
transformation 𝑋𝑋𝑗𝑗, represented by the formula (10). 
Then 
  U=X·B. (11) 
The diagonal elements of the matrix B are equal to 
1, the other elements are equal to 0, except for 
those columns j for which 𝑋𝑋𝑗𝑗 act as independent 
variables in additional regressions. These columns 
are filled in according to the formula (10). The 

matrix B is non-degenerate, so the linear 
transformation given by the matrix B is one-to-one, 
and it follows that the residuals from the regressions 
for the original and new variables coincide. 
Regression equations Y on 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑚𝑚 and 
𝑈𝑈1,𝑈𝑈2, … ,𝑈𝑈𝑚𝑚 can be written in the form:    
Y= X·b +e,  (12) 
Y= U·g + e  (13)  
Substituting (11) in (12), we get  
Y= X·B·g + e   (14) 
 Comparing (14) with (12), we obtain a formula that 
reflects the relationship of regression coefficients  
b= B·g.   (15) 
Taking into account (15), we obtain a formula for the 
relationship of covariance matrices of estimates of 
regression coefficients for the original and new 
variables cov(b) = B·cov(g)·𝑩𝑩′ . 
 
3.   Results discussion  
 

In a dynamic marketplace and a changing economic 
environment, the supply chain management system 
must coordinate the revision of plans/schedules across 
supply chain functions. The efficiency of the 
production system is ultimately determined by the 
agility with which the supply chain is managed at the 
tactical and operational levels to enable timely 
dissemination of information, accurate coordination of 
decisions, and management of actions among people. 
Let us illustrate the proposed method of modeling 
spatial variables by building a regression model of the 
volume of innovative goods, works, and services for 
the subjects of the Russian Federation, Y (million 
rubles). The explanatory variables are: 𝑋𝑋1 − gross 
regional product for the subjects of the Russian 
Federation, million rubles; 𝑋𝑋2 − the number of 
workers of 15 years old and older, thousand people; 
𝑋𝑋3 − the average monthly salary for the subjects of the 
Russian Federation for 2018, rubles; 𝑋𝑋4 − capital 
expenditures for research and development, million 
rubles; 𝑋𝑋5 - innovative activity of organizations (the 
share of organizations that carried out technological, 
organizational, marketing innovations in the reporting 
year, in the total number of surveyed organizations), 
%; 𝑋𝑋6 − number of researchers with a scientific 
degree, people. [10], [11], [12]. 
All calculations were performed in a freely distributed 
R environment [13].  
Four indicators 𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋4, 𝑋𝑋6  form a group of highly 
correlated indicators, all the correlation coefficients 
between them are greater than 0.8 (Fig. 7). This 
indicates multicollinearity of regressors SCM. 
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Multicollinearity testing is performed using the 
mctest package [14, 15] for diagnostics of general 
and individual multicollinearity of data. 
 

 
Figure 7. A graph of the correlation coefficient 

matrix reflecting groups of closely related factors. 
 

Five out of six tests showed that the data is 
redundant and multicollinearity is present. An 
individual check of multicollinearity of regressors 
SCM is performed using the vif() function from the 
car package. 
> fit<-lm(Y~X1+X2+X3+X4+X5+X6,data=tab1) 
> vif(fit) 
      X1       X2       X3       X4       X5       X6  
9.341974 5.570682 1.534861 5.278449 1.100184 
8.356084  
 
Much supply chain integration literature tends to 
be biased towards its positive impact on 
operational performance. However, inconclusive 
results demand investigation of the mechanisms 
through which supply chain integration can lead to 
superior operational performance.  Large values of 
the VI𝐹𝐹𝑗𝑗 variance inflation factors, two of which 
are equal to 9.3 and 8.4, and two more than 5, 
confirm the presence of multicollinearity.  
When applying the step-by-step regression 
procedure to the model of dependence Y on 
𝑋𝑋1,…, 𝑋𝑋6, factors 𝑋𝑋3 and 𝑋𝑋2 are removed from the 
model, the regression equation has the form: 
𝑌𝑌� = −32565 + 0,036 𝑋𝑋1 + 24,9 𝑋𝑋4 +
7679,8 𝑋𝑋5 − 20,9 𝑋𝑋6. (16) 
All regression coefficients are significant; the P-
values of all coefficients for variables do not 
exceed 0.0002. According to the regression 
equation, the relationship of Y to 𝑋𝑋6 is negative, as 

the regression coefficient for 𝑋𝑋6 (the number of 
researchers with a scientific degree) is negative, while 
the correlation coefficient of Y to 𝑋𝑋6 is positive and 
equal to 0.41. This is a manifestation of 
multicollinearity. The factors of VI𝐹𝐹𝑗𝑗 variance 
inflation are equal to 4.9; 5.0; 1.1; 8.2, which indicates 
the multicollinearity of the regressors SCM in the built 
model. 
Let us use the approach of variable transformation 
proposed in this paper.  
One of the four SCM – 𝑋𝑋6  is called “selected” and in 
the regression model we replace 𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋4 with 𝑈𝑈1, 
𝑈𝑈2, 𝑈𝑈4 - the remainder of the regression 𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋4 
with 𝑋𝑋6. The regression equations 𝑋𝑋1 and 𝑋𝑋4 have the 
form: 𝑋𝑋1 = 522495 + 384,55𝑋𝑋6 + 𝑈𝑈1,  𝑋𝑋4 =
110,5 + 0,59𝑋𝑋6 + 𝑈𝑈4. 
Now let us make the regression equation Y for 𝑈𝑈1 , 𝑈𝑈2 
,  𝑈𝑈4 ,  𝑋𝑋3 , 𝑋𝑋5 , 𝑋𝑋6 . The factors of inflation variance 
VI𝐹𝐹𝑗𝑗  are equal 1.9; 1.7; 1.1; 1.5; 1.1; 1.2, therefore, 
there is reason to believe that multicollinearity is 
absent. After excluding insignificant factors 𝑋𝑋3 and 
𝑈𝑈2, we get the regression equation: 
𝑌𝑌 �= -10862+0,036 𝑈𝑈1+ 24,9 𝑈𝑈4  + 7679,8  𝑋𝑋5 + 7,71 
𝑋𝑋6. (17) 
The standard error and the coefficient of determination 
of models (16) and (17) are the same. The regression 
coefficients for 𝑈𝑈1 , 𝑈𝑈4, 𝑋𝑋5 in (17) are equal to the 
regression coefficients for 𝑋𝑋1, 𝑋𝑋4 , 𝑋𝑋5 in equation (16). 
Regression coefficients for the “selected” variable. 𝑋𝑋6 
in (16) and (17) differ not only in size, but also in sign. 
All regression coefficients in (17) are significant, the 
regression coefficient for  𝑈𝑈1 has a P-value equal to 
0.0002, the remaining coefficients have P-values less 
than 0.0001. 
Testing multicollinearity in the new data set (𝑈𝑈1,  𝑈𝑈4, 
𝑋𝑋5 , 𝑋𝑋6) using the imcdiag() function of the mctest 
package showed its complete absence. 
> omcdiag (x1 = XX, y = Y) 
Call: 
omcdiag(x = XX, y = Y) 
Overall Multicollinearity Diagnostics 
MC Results detection 
Deter6minant |X'X|:         0.9276         0 
Farrar Chi-Square:            6.0010              0 
Red Indicator:                    0.1109             0 
Sum of Lambda Inverse:   4.1541              0 
Theil's Method                -1.4018               0 
Condition Number:          1.2994                0 
1 --> COLLINEARITY is detected by the test  
0 --> COLLINEARITY is not detected by the test 
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The imcdiag () function implements tests for 
individually checking regressors for 
multicollinearity [16-20]. The result of executing 
imcdiag()function showed that none of the 
regressors SCM 𝑈𝑈1,  𝑈𝑈4, 𝑋𝑋5 , 𝑋𝑋6 can be the cause 
of multicollinearity. 

> imcdiag(x = XX, y = Y)  
Call: 
imcdiag(x = XX, y = Y) 
All Individual Multicollinearity Diagnostics Result 
VIF    TOL     Wi     Fi Leamer   CVIF  Klein  IND1   
IND2 
U1 1.0121 0.9880 0.3187 0.4842 0.9940 1.3690     
0 0.0375 0.3275 
U4 1.0144 0.9858 0.3782 0.5745 0.9929 1.3720     
0 0.0374 0.3877 
X5 1.0689 0.9355 1.8145 2.7562 0.9672 1.4458     
0 0.0355 1.7653 
X6 1.0587 0.9445 1.5470 2.3499 0.9719 1.4321     
0 0.0359 1.5195 
1 --> COLLINEARITY is detected by the test  
0 --> COLLINEARITY is not detected by the test 
* all coefficients have significant t-ratios 
R-square of y on all x: 0.516  
* use method argument to check which regressors 
SCM may be the reason of collinearity 
 
All Individual Multicollinearity Diagnostics in 0 or 
1  
VIF TOL Wi Fi Leamer CVIF Klein IND1 IND2 
U1   0   0  0  0      0    0     0    0    0 
U4   0   0  0  0      0    0     0    0    0 
X5   0   0  0  1      0    0     0    0    0 
X6   0   0  0  1      0    0     0    0    0 
1 --> COLLINEARITY is detected by the test  
0 --> COLLINEARITY is not detected by the test 
* all coefficients have significant t-ratios 
R-square of y on all x: 0.516  
* use method argument to check which regressors 
SCM may be the reason of collinearity 
 
SCM: 1 − Collinearity is determined by the test; 0 
− Collinearity is not detected by the test. 
Inflation factors of the variance VI𝐹𝐹𝑗𝑗 (Fig. 11) are 
equal to 1.01; 1.01; 1.07; 1.06, therefore, the model 
regressors SCM are almost orthogonal and, 
therefore, the regression coefficients have a 
variance close to minimal. 
A change in 𝑋𝑋6 by one with constant correlations 
results in an average change in 𝑋𝑋1 by the value 
𝑎𝑎16=384 and 𝑋𝑋4 by the value 𝑎𝑎46 = 0.59, and this, in 
turn, leads to a change in Y by the value 𝑔𝑔6, equal 

to b6+ b1·384+b4·0.59  (7.71= - 20.9+ 
0.036∙384+24.9 ∙0.59). Thus, in equation (17), the 
regression coefficient 𝑔𝑔6=7.71 for the “selected” 
variable 𝑋𝑋6 it takes into account the correlation 
relationship of 𝑋𝑋6 with variables belonging to the 
same group of highly correlated variables, which are 
replaced by 𝑈𝑈𝑗𝑗. The linear transformation matrix of 
variables B and the estimates of regression vectors b 
and g in our example are equal 

𝐵𝐵 =

⎝

⎜
⎛

1 −522495 −110,5 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 −384,55 −0,5908 0 1⎠

⎟
⎞

,   𝒃𝒃 =

⎝

⎜
⎛
−32565

0,036
24,9

7679,8
−20,9 ⎠

⎟
⎞

 , 𝒈𝒈 =

⎝

⎜
⎛
−10862

0,036
24,9

7679,8
7,71 ⎠

⎟
⎞

 

The vectors b and g satisfy the equation b = B·g.   
 
4.   Conclusion 

 
The proposed method of incomplete orthogonalization 
of spatial source variables allows obtaining 
meaningful interpretation of modeling results. 
Formulas are obtained that allow, if necessary, going 
to the regression equation for the initial variables and 
get all the characteristics of this equation. If the 
original SCM are non-stationary time series with a 
polynomial trend, the approach considered in this 
paper allows obtaining estimates of linear regression 
coefficients for the original variables using a modified 
regression model with much less correlated regressors 
SCM. In this case the standard forecast error for the 
modified model is less than the forecast errors of other 
models. In the future, the proposed methods are 
supposed to be implemented in the R software 
environment. 
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