DISPERSION OF VAPOR FROM LNG SPILLS -SIMULATION IN A METEOROLOGICAL WIND TUNNEL

5	
	v
$\boldsymbol{\omega}$	
-	

R. N. Meroney*

D. E. Neff**

J. E. Cermak*

M. Megahed**

Prepared Under Contract to R & D Associates Marina del Rey, California

Fluid Dynamics and Diffusion Laboratory Department of Civil Engineering College of Engineering Colorado State University Fort Collins, Colorado 80523

May 1977

* Co-Principal Investigators ** Graduate Research Assistants

CER76-77RNM-JEC-DEN-MM57

DISPERSION OF VAPOR FROM LNG SPILLS -SIMULATION IN A METEOROLOGICAL WIND TUNNEL

By Meroney, Cermak, Neff and Megahed

ERRATA SHEET

1. Tables 8-15 and 8-16 are incorrect. Ignore, they will be replaced in a subsequent errata.

Note in explanation: Runs 11 and 12 were initially performed at incorrect flow rates. The tests were repeated and are designated 11R and 12R.

2. Tables 8-9, 8-10, and 8-11 are incorrect. Ignore.

Note in explanation: Runs 6, 7 and 8 were initially performed at incorrect wind speeds. The tests were repeated and are designated 6R, 7R, and 8R.

3. Table 8-1 to 8-26. All 1/400 scale models utilize a z_{ref} = 33 feet whereas in Figures z_{ref} = 129 feet.

All 1/106 scale models utilize $z_{ref} = 5.3$ feet. All 1/200 scale models utilize $z_{ref} = 25$ feet.

- 4. Figures 23-1b. Eliminate.
- 5. Figures 25 to 36, Table 8, and Figures 23-1 to -4 and 24-1 to -2. All CO₂ data must be corrected to reflect fact that the number

of moles of natural gas released at the cold field conditions exceed number of moles released during isothermal model tests. Hence following formulae must be applied to both figures and tables.

$$x_{p_{\text{corrected}}} \cong \frac{x_{m}}{x_{m} + (1 - x_{m})} \xrightarrow[T_{\text{boiloff}}]{T_{\text{ambient}}} = C x_{m}$$

(Typically C varies from 1.0 to 2.7 as x_m varies from 1.0 to 0.0) $K_p = \frac{K_m}{\frac{T_{ambient}}{T_{boiloff}}} = C'K_m$ (Q evaluated $T_{boiloff} = (1 - x_m)$) Typically C' varies from 1.0 to 0.3 as x_m varies from

0.0 to 0.3)

EXECUTIVE SUMMARY

Tests were conducted in the Meteorological Wind Tunnel and the Industrial Wind Tunnel Facilities to evaluate the rate of dispersion and extent of downwind hazards associated with the rupture of large liquid natural gas cryogenic storage tanks. These tests were conducted on two different dike storage areas, varying in scale from 1:400 to 1:200. In addition, approximate conditions under which the Capistrano Test 044 (1/106 scale) occurred were simulated to provide a direct validation of wind tunnel to field measurements. Two different model release gases were used to simulate the behavior of the cold methane plume. One was a gas of molecular weight 44 at 70°F and the other was a gas of molecular weight 16 at -260°F. Concentration and temperature measurements, and photographic records were obtained for different wind speeds, wind directions and boiloff rates under both neutral and stable density stratification. On the basis of the experimental measurements reported herein, the following comments may be made:

1. The magnitudes and time variation of Case I Capistrano Test 044 concentrations substantially agree with the behavior of the field measurements at most tested locations. The wind tunnel results follow the mean dilution behavior of the LNG plume, but they do not exhibit the large and intermittent concentration peaks at late times observed in the field. This is attributed to the absence of plume meandering and gustiness in the laboratory.

2. Bimodal plume distributions reported in earlier measurements are once again observed in the ground concentration contours. Variation of the peak concentrations found at a given distance are generally

i

slightly less than that suggested by equivalent Pasquill Diffusion Category results.

3. Distances to the lower flammability limit (LFL) are slightly greater for the Low Dike model than those observed for the High Dike model under similar meteorological conditions. If the boiloff rates for both models were the same the differences might be even more pronounced.

4. Boiloff rates associated with concrete or insulated concrete floors and walls in the High Dike considerably reduced the hazard zone or distance to LFL.

5. Visualization of the transient boiloff phenomena suggest that continuous releases should represent an upper bound to the transient phenomenon. Unfortunately possible systematic errors between the gas chromatograph and the aspirated hot-wire anemometer probe may preclude any quantitative statement in certain cases.

6. Continuous releases made from 1/200 scale models of the High Dike utilizing CO₂ result in concentrations which agree well with earlier Freon-Air release simulations. These measurements generally exceed values taken behind the 1/400 models under equivalent situations by a factor of two. This suggests a significant influence of the tunnel side walls persists in the 1/200 scale models.

7. The dimensionless concentration coefficient $\chi_{max}\overline{U}_{ref}H^2/Q$ is a function of non-dimensional downwind distance x/H. Results for both High and Low Dike, neutral and stable flows, and insulated versus

ii

conducting floor surfaces for the continuous releases studied generally decay similar to Pasquill Diffusion Category C-D.

8. No consistent influence of the insulated versus the conducting floor condition could be identified during continuous releases of He-N₂ model gas. The effects are thus judged to be small.

9. Visualization results suggest that heat transfer to an uncooled dike model are excessive in the laboratory. No visible plume occurs when He-N₂ releases are made with plastic or room temperature steel models.

10. Visualization of the influence of a ramp slope of 1/50 on a continuous boiloff rate from a model dike indicates slope of this magnitude may cause significant plume asymmetries, large case to case variabilities, and upwind movement of the cloud.

11. Upwind model tanks tend to introduce additional turbulence which lessen the influence of slope and disperse gases more rapidly.

12. Plume liftoff experiments with line, area, and point sources suggest that dimensionless distance to plume liftoff x/l_b is a function of a Froude number based on characteristic plume width, i.e.,

 $Fr = \frac{\rho_a \overline{U}^3 w}{g \Delta \rho Q} \text{ and a buoyancy length scale, } \ell_b = \frac{g \Delta \rho Q}{\rho_a \overline{U}^3} .$

ACKNOWLEDGMENTS

The support of R & D Associates in carrying out this study is gratefully acknowledged. Construction of the models was accomplished by personnel of the Engineering Research Center Machine Shop. Mr. James A. Garrison supervised photographic records of flow visualization. Mr. James Maxton supervisor operation of gas chromatograph concentration measuring equipment.

TABLE OF CONTENTS

Chapter		Page
	EXECUTIVE SUMMARY	i
	ACKNOWLEDGMENTS	iv
	LIST OF FIGURES	vi
	LIST OF TABLES	ix
	LIST OF SYMBOLS	x
1.0	INTRODUCTION	1 2 3
	1.3 MODELING CRITERIA	9
2.0	DATA ACQUISITION AND ANALYSIS	11 11 12 13 14
	 SIMULATION	15 15 17 18
	2.6.2 Errors in Concentration Measurements	21
3.0	TEST PROGRAM RESULTS	23 23 24
	3.2 VARIABLE RELEASE CASES	25 26 26 28
	3.3 VISUALIZATION RESULTS	29 29 31 33
	3.3.4 Buoyant Plume Liftoff Behavior	33
	REFERENCES	35
	FIGURES	36
	TABLES	87

LIST OF FIGURES

Figure		Page
1	The Meteorological Wind Tunnel	37
2	The Industrial Wind Tunnel	38
3	Coordinates for Mean Concentration Measuring Locations	39
4	Coordinates for Instantaneous Concentration Measuring Locations	40
5	Representative High Dike and Representative Low Dike	41
6	High and Low Dike Models for Simulation With Helium- Nitrogen Gas Mixture	42
7	Sketch of Ramp Construction	43
8	Sketch of Line, Area, and Point Source Configurations	44
9	Typical Velocity Profile for Neutral Flow	45
10	Typical Velocity and Temperature Profile for Stable Flow	46
11	Flow Chart of Mean Concentration Sampling System	47
12	High Dike Gas Release Rates for Model and Prototype for a Spill on Soil	48
13	High Dike Gas Release Rates for Model and Prototype for a Spill on Concrete	49
14	High Dike Gas Release Rates for Model and Prototype for a Spill on Insulated Concrete	50
15	Low Dike Release Rates for Model and Prototype for a Spill on Soil	51
16	Capistrano 044 Gas Release Rates for Model and Prototype for Case I	52
17	Capistrano 044 Gas Release Rates for Model and Prototype for Case II	53
18	Variable Flow Rate Control Valve	54

LIST OF FIGURES (continued)

Fi	gure		Page
	19	Aspirating Probe Design	55
	20	Typical Response of Hot Film Aspirating Probe Versus Temperature	56
	21	Typical Response of Hot Film Aspirating Probe Versus % CO_2 in Air for Different Overheat Ratios .	57
	22	Flow Chart of Aspirating Probe Instrumentation	58
	23-1 - 23-6	Dimensionless Concentration Coefficient Versus Non-Dimensional Downwind Distance	59- 65
	24-1 - 24-2	Dimensionless Concentration Coefficient Versus Non-Dimensional Downwind Distance Variable Boiloff Results	66- 67
	25	Comparison of Model Data (Case I) with Capistrano 044 Field Data for a Sample Location at (320', 0', 0')	68
	26	Comparison of Model Data (Case I) with Capistrano 044 Field Data for a Sample Location at (640', 0', 0')	69
	27a	Mean Concentration Decay With Height at Different Downwind Distances for Capistrano 044 Case I	70
	27Ъ	Mean Concentration Decay With Height at Different Downwind Distances for Capistrano 044 Case II	71
	28	Mean Concentration Decay With Height at Different Downwind Distances for High Dike, Soil, Neutral Flow, 7 mph	72
	29	Mean Concentration Decay With Height at Different Downwind Distances for Low Dike, Soil, Neutral Flow, 7 mph	73
	30a	Mean Concentration Decay With Distance for Capistrano 044 Case I	74
	30Ъ	Mean Concentration Decay With Distance for Capistrano 044 Case II	75
	31	Mean Concentration Decay With Distance for High Dike, Soil, Neutral Flow, 7 mph	76

÷.

LIST OF FIGURES (continued)

Figure		Page
32	Ground Contour Plots of Peak Concentration for Capistrano Cases I and II	77
33	Ground Contour Plots of Peak Concentration for the High Dike	78
34	Ground Contour Plots of Peak Concentration for the Low Dike	79
35	Observed Lower Flammability Limit (LFL = 5%) Contours as a Function of Time From the Spill	80
36	Observed Hazard Zone Contours	81
37	High Dike on Sloping Ground Surface	82
38	High Dike on Flat (Zero Slope) Ground Surface	83
39	Line Source in a Shear Layer: Q = 2.25 cfm, U = 0.75 ft/sec	84
40	Dimensionless Lift Off Distance vs. Froude Number for Buoyant Surface Released Plumes	85

LIST OF TABLES

Table		Page
1	Prototype Conditions	88
2	Model Conditions	89
3	Film Log for Flow Visualizations	90
4	Summary of Concentration Tests Performed	94
5	Approximate Distances Downwind to the LFL for the Mean Concentration Tests	95
6	Approximate Distances Downwind (ft) to the LFL for a Variable Release of CO_2	97
7-1 - 7-11	Peak Concentration Data for Variable Boiloff	98
8	Locator Table and Mean Concentration Results	109
9-1 - 9-13	Taped Data Record of Aspirating Probe Response for Variable Boiloff Simulation With CO_2 Gas	136- 148
10	Approximate Distances to Liftoff for Ground Released Buoyant Plumes in a Crossflow Boundary Layer	149
11	Identification Chart for Continuous Flow Visualization Experiments	150

LIST OF SYMBOLS

Dimensions are given in terms of mass (M), length (L), time (t), moles (n), and temperature (t)

Symbol	Definition	
CH4	Methane	
co ₂	Carbon Dioxide	
D	Tank diameter	[L]
d	Dike diameter	[L]
Е	Voltage *	r ٦
g	Gravitational acceleration	Lt ⁻²
н	Tank height	[L]
h	Dike height	[L]
h _c	Convective heat transfer coefficient	
Не	Helium	
L	Stability length parameter	[L]
٤	Buoyancy length scale	[L]
L.S.	Length scale	
М	Molecular weight	, ,
m	Mass boiloff rate	Mt ⁻¹
N ₂	Nitrogen	гı
n or c	Moles	mo ¹
n	Exponent of velocity distribution power law	-
Q	Volumetric rate of gas flow	$L^{3}t^{-1}$
q	Quantity of heat	$\left[L^2 Mt^{-}\right]$

LIST OF SYMBOLS (continued)

Symbol		
S.G.	Specific gravity	
Τ .	Temperature	[T]
ΔΤ	Temperature difference across some reference layer	[T]
t	Time	[t]
U,u	Wind speed	Lt ⁻¹
w	Plume width at release location	[L]
x	Mole fraction of gas	
x	General downwind coordinate	[L]
у	General lateral coordinate	[L]
z	General vertical coordinate	[L]
^z o	Surface roughness parameter	[L]
δ	Boundary layer thickness	[L]
θ	Time of plume trajectory	[t]
ν	Kinematic viscosity	$L^2 t^{-1}$
ρ	Density	ML-3
Δρ	Density difference between methane gas and air	
σy	Standard deviation of plume distri- bution in the y-direction	[L]
σz	Standard deviation of plume distri- bution in the z-direction	[L]
x	Volume dilution ratio	

xi

1.0 INTRODUCTION

The objective of this study was to evaluate the rate of dispersion and extent of downwind hazards associated with the rupture of large liquid natural gas (LNG) cryogenic storage tanks. In particular the use of diked storage areas to ameliorate the extent of potential damage was examined. It is estimated that in the 1980 time period 0.04 trillion cubic meters per year of natural gas will be supplied in the form of LNG. Thus safety at LNG facilities is of utmost importance to the gas industry and the public. The hazards associated with LNG release are fire and thermal radiation from such fires. If ignition does not occur immediately during an accidental LNG release, the boiling LNG produces vapors which are mixed with ambient air and transported downwind. This cloud is potentially flammable until the atmosphere dilutes the gas mixture below the lower flammable limit (LFL) (a local concentration for methane below 5 percent by volume).

However the ultimate purpose of this study is to provide basic information on the structure of vapor plumes resulting from LNG spills on land for a realistic range of meteorological variables, source variables and site features. Small scale models of the tank-dike complex were placed in a meteorological wind tunnel capable of simulating the appropriate meteorological conditions. Mean concentrations of LNG vapor were determined by sampling concentrations of tracer gas released from the LNG spill with CO_2 or a cooled He-N₂ gas mixture to simulate the LNG vapor. Overall plume goemetry and behavior were obtained by photographing smoke or water vapor condensed by the chilled gas.

1.1 REVIEW OF PREVIOUS SIMULATION EFFORT

Dispersion of the LNG vapor and the resulting concentrations are affected by the following primary factors:

- A. Meteorological variables--wind speed, wind direction, thermal stratification, relative humidity, and temperature of the land surfaces relative to temperature of the air.
- B. Source characteristics--geometry of tank-dike complex, and source strength (boil-off rate).
- C. Site features--topographical features and thermal properties of soil.

During Phase I research (see Neff, et al., 1977) on the influence of gas and site features on dispersion during an LNG spill, it was found that ground level concentrations may remain at levels above the Lower Flammability Limit (LFL) for distances in excess of 1,500 meters. These tests included high and low tank-dike combinations, neutral and stably stratified flow fields, and various continuous boiloff rates. On the basis of experimental measurements reported in Neff, et al. (1977), the following conclusions were drawn:

1) The dimensionless concentration coefficient $\chi \overline{uH}^2/Q$ is a function of non-dimensional downwind distance x/H. This function suggests an initial decay rate in the region x/H < 10 that is less than the decay rate in the region of x/H > 10, and perhaps data should be evaluated in terms of a different length scale related to buoyancy parameters.

2) The dimensionless concentration coefficient curves asymptotically approach the slope of those given by the appropriate Pasquill diffusion category for both neutral and stable flow.

3) Visualization of similar tests for the range of model scales used (1:130 to 1:666) indicate a similar plume geometry. Concentration results of the different model scales agree to within the experimental accuracy of approximately + 20%. Similarly identical tests also show good agreement.

4) The effect of the increased aerodynamic turbulence of the High Dike over that of the Low Dike does not appear to influence the far downwind dispersion of methane gas for a continuous release. (Note however that one expects the boiloff rate of the Low Dike to be greater than that of the High Dike)

5) Modeling of an adiabatic plume in a low humidity atmosphere by the use of a Freen $12-N_2$ simulation gas at 70° F tends to give lower concentrations at the same sampling positions than that of modeling unrestricted plume behavior with the use of a He-N₂ simulation gas at -260° F. This difference was noted to be as high as 1:6.

A number of questions were left unresolved by the Part I study, these include the effects caused by:

- a) Initial heat transfer to the plume at the tank dike complex,
- b) Heat transfer to the cold plume from the underlying surface,
- c) Influence of local terrain on plume shape and trajectory,
- d) Variable boiloff rates versus continuous releases at a constant rate, and
- e) The influence of model scale compared to full scale spill behavior.

1.2 MEASUREMENT PROGRAM

Part II measurements will examine the sensitivity of distance to LFL for continuous and transient releases to features such as:

- a) Initial heat transfer to the plume at the tank/dike complex,
- b) Heat transfer to the cold plume from the underlying surface, and
- c) Influence of local terrain on plume shape and trajectory.

The following sections discuss the details of each measurement phase.

1.2.1 Heat Transfer Influence on LNG Plume Behavior

The influence of heat transfer on LNG plume dispersion can be divided into three phases. First, the temperature (and hence S.G.) of the plume at exit from the dike is dependent on the thermal diffusivity of the tank-dike materials, the volume of the tank-dike structure, the actual boiloff rate, and the details of dike geometry. A second plume phase involves the heat transfer from the ground surface beyond the dike to lower the plume density. A series of tests were performed to bound the potential heat transfer to a LNG plume. Since earlier measurements indicate that background stratification is a predictable characteristic in plume dispersion only a few stable stratification conditions are considered. Thirdly, once the plume is heated to a buoyant condition there is still some questions as to whether lift off will occur. A separate series of tests were performed to permit determination of an appropriate lift off parameter to characterize plume lift off.

1.2.1.1 Tank/Dike Transient Heat Transfer Study

Several time scales are involved in this process--i.e., the time scale for heat conduction $(t \sim \rho \frac{p}{k})$, the time scale for heat transfer to the LNG gases $(t \sim \frac{\rho \frac{p}{p}}{Ah_c})$, and the time scale of the buoyant plume $(t \sim \frac{L}{U})$. Matching these time scales simultaneously would require analysis of the interior structure of an actual tank complex, specification of special materials for model constriction, and model construction.

An evaluation of this problem suggests no tank model materials exist which will satisfactorily model heat transfer time scales adequately. Cases were considered to evaluate sensitivity of the transient plume

dispersal to tank/dike changes; however there is no guarantee these will result in quantitatively similar results to a field case. Rather it is expected a bounding influence of different conditions can be determined. The influence of dike material on heat transfer was studied by visualization of He-N₂ model gases. The appropriate runs are cases 35-42 in the test matrix.

1.2.1.2 Controlled Surface Heat Flux Study

The trajectory of an LNG plume will be dependent upon the rate of entrainment of water vapor and the rate of heat transfer to the plume from the ground surface or the unmixed ambient air. Large addition of heat can result in a buoyant LNG gas plume early in its release history. Some analysts have suggested this rate is sufficient to cause vertical department of the flammable plume from the area.

Laboratory and field measurements made to date do not seem to support a rising plume scenario. Nevertheless, it would be informative to determine under what circumstances plume rise may occur. Runs 45-54 were performed to examine the influence of heat transer from soil surface to LNG plume.

1.2.1.3 Plume Lift Off Experiment

Whether or not a buoyant plume or puff can lift itself off the ground in the presence of turbulent diffusion and wind shear depends on how the buoyancy-induced velocities compare with the turbulent velocity fluctuations. A criteria suggested by Briggs (1973) for lift off is

$$LP = \frac{gH(\Delta\rho/\rho)}{U^{*2}}$$

Analytical considerations suggest a value of $2 \div 2.5$ for a critical value. Unfortunately no measurements are available to confirm this number. Briggs himself suggests a factor of ± 4 accuracy in the number he recommends. Order of magnitude calculations for typical LNG release conditions suggest that even with large heat transfer to the plume the conditions may be marginal for plume lift off for many meteorologically typical situations. (A plume where S.G. ≈ 0.975 , a depth of 2 meters, and in a wind field at 4m/sec would not necessarily rise!)

A program was included to evaluate the physics of this lift off process. Buoyant gases under point, line, or area release configurations at ground level were examined for lift off visually at various wind speeds. Plume buoyancy was regulated by changing Helium volumetric source strength, and visualization was affected by marking with TiCl₄ smoke trace.

1.2.2 Time Dependent Plume Behavior

Peak to mean concentration information and transient concentration conditions represent an important facet in the evaluation of plume flammability limits. Past plume measurements suggest peak/mean ratios may vary between 2-10 depending upon the circumstances and location within the plume. Because of the scale distortion of time, phenomena occur much faster in the laboratory than in the atmospheric prototype. Time scale in the laboratory varies as $t_m = t_p \frac{U_p}{L_p} \frac{Lm}{Um}$, and the velocity scale is determined by Froude number scaling, thus $U_m = U_p \frac{\sqrt{Lm}}{Lp}$

Thus for $\frac{Lm}{Lp} \simeq \frac{1}{400}$

$$\frac{\mathrm{tm}}{\mathrm{tp}} = \frac{\sqrt{\mathrm{Lm}}}{\mathrm{Lp}} = \frac{\sqrt{1}}{400} \alpha \frac{1}{20}$$

Since fluctuations of 0.1 sec are significant in the atmosphere, a response to 0.01 sec phenomena is at least required in the laboratory.

The use of different molecular weight gases suggest the use of thermal conductivity type probes (TSI-1440) capable of response to 100 khz. These probes are jointly responsive to temperature, plume concentration, and humidity to the first order as

$$E^2 \alpha \frac{\Delta T}{\sqrt{M}}$$

where M is molecular weight and ΔT is temperature difference between a sample and the sensor wire. Currently Colorado State University staff are evaluating the characteristics of a conventional single film TSI-1440 as well as a two-film design specified by Colorado State University. The two-film design has been utilized in an isothermal release situation to examine probe characteristics and phenomena variations to bound the behavior.

To validate the instrumentation an 80 foot field spill performed at Capistrano as part of the AGA Phase II program has been simulated. Capistrano test 044 from American Gas Association (1974) was simulated at a 1 to 106 scale. Runs 9,10 and 23,24 include continuous and variable boiloff releases for this case.

A systematic evaluation of the characteristics of boiloff near typical High and Low Dike designs at two model scales encompasses runs 1 to 8, 11 to 22, and 30 to 33 in the text matrix. These measurements include two wind speeds, two boiloff ratios, two model scales, and two stratification conditions in different combinations.

	T			s	IMULATED	STRATIFICATION .		SIMULATED BOILOFF RATE			MODEL CONSTRUCTION		SURFACE DESCRIPTION			
MEASUREMENT TECHNIQUE	RUN NO.	DIKE**	LOW	W1	(mph) 12 ⁴ 16*	NEUTRAL	GIFFO CAT.G	RD -115°C/100m	CONTINUOUS	VARIABLE	1bm/sec (OR DESCRIPTION IF VARIABLE)	STEEL	STEEL	PLASTIC	ALUM INUM (CONDUCT ING)	INSULATED
	co.	TESTS	co	NCE	NTRATION										1	
	1	·		1					·		2400		1		×	
	2	1		1		~			1		1400		1		*	
	3	1			1	1			1		2400		1		1	
APHY	4	1			1	1			1		1400		1		1	
TOGR	5		1	1		1			1		2400		1		1	
CONIC	6	1		1			1		1		2400		1		1	
E	7	1		1			1		1		1400		1		1	
GAS	8		1				1		1		2400		1		1	
	9	CAPIST	RANO (944	1	1		1	1		202		1		1	
	10	CAPIST	ANO C	44	1	1		1	1		141		1		1	
	'11	1/2	00	1		1			1		1400		1		1	
	12	/ 1/2	100		1	1			1		1400		1		1	_
	13	1		1		1				1	SOIL		1		1	NAME OF EACH
	14	1		1		1				1	CONCRETE		1		1	
	15	1		1		1			*	1	INSUL.CONCRETE		1		1	
	16	1			1	1				1	SOIL		1		1	
PROB	17	1			1	1				1	CONCRETE		1		1	
ß	18	1			1	1				1	INSUL.CONCRETE		1		1	
PIRA	19		,	1		1				1	SOIL		1		/	
I ASI	20	2		,			1			,	SOIL		,		,	
TSI	21	,)			,			,	CONCRETE		÷			
	21		,	,						,	CONCRETE		,		,	
	22		*		1	,	v	,		,	SUL					
	23	CAPISIN	UANO O	44				а к .		·	CASE I		,		,	
	24	CAPISIN	ANU U	44						*	CASE 11					
	2	VISUALIA	ATTON													
	25	1		1		1				/	SOIL		1		1	
	26	1			1	1				1	SOIL		~		1	
	27		1	1		/				1	SOIL		1		1	
8	28		1	_	1	1				1	SOIL		1		1	
ZATI	HeN2	VISUALI	ZATIO	N												
IJAU	29	1		1		1				1	SOIL	1			1	
VIS	30	1			1	1				1	SOIL	1			1	
NOT	31	1		1		1				1	SOIL			1	1	
	32	1			1	1				1	SOIL			1	1	
	33		1	1		1				1	SOIL	1			/	
	34		1		1	1				1	SOIL	1			1	
	35		1	1		1				1	SOIL		1		/	
	36		1		1	1				1	SOIL		1		/	
	HeN,	CONCENT	RATIO	N												
	37	1		1		,			,		2400					
	38	1		150	1	,					2400	2			,	
	39		/	,		,			,		2400	1			÷	
YHAA	40		5	357	1	,			1		2400	,			,	
TOGR	40	1	1	,		,					2400					,
ONO	41	,		*		,					2400	×				
CH8	42				v	÷.					2400					
GAS	43		1	1		1			×		2400	1				
	44		1		V	1			1		2400	/				1
	45	1		1			1		1		2400	/			·	
an 1	46		1	1			1		/		2400				1	

TEST MATRIX FOR QUANTITATIVE INSTRUMENTATION EXPERIMENTS

*DEFINED AT 10 METER HEIGHT

DEFINED AT HEIGHT OF S FT

**1/400 SCALE UNLESS OTHERWISE STATED

1.2.3 Ramp Effects

Since the LNG plume is buoyancy dominated, surface slope can act to either accelerate or decelerate a dense plume lying on that surface. Earlier tests performed by Hall, et al. (1975), at Warren Springs Labs, U.K., demonstrated that for some Froude number/slope combinations this may be an effect of first order. Since the proposed Salton Sea site for a field program has slopes up to 1/50, a series of flow visualization tests were performed. To isolate the influence of slope, a series of simple area source releases were studies as well as releases from the 1/400 High Dike model both alone and in the presence of dummy upward tank structures.

This report is supplemented by a motion picture (in color) which shows the plume behavior for different dike configurations and ramp and dummy tank arrangements. Black and white plot sequences for the ramp and dummy tank arrangements as well as the plume lift off results have been provided R & DA.

Details of the model and test configurations are presented in Section 2.0. In addition experimental equipment are described. Section 3.0 discusses the results obtained and their significance.

1.3 MODELING CRITERIA

The increasing need to study environmental problems in areas of complex boundary conditions has motivated serious efforts to simulate atmospheric boundary layers in the laboratory. Successful simulation permits both applied and fundamental studies of flows with complex boundary conditions on a scope which would be prohibitive in the field because large expenditures of time and money would be required.

Modeling criteria has been discussed in detail in the report by Neff, et al. (1977), "Wind Tunnel Study of the Negatively Buoyant Plume Due to an LNG Spill", Section 2.0. Additional consideration during phase II has been given to the constraints imposed by simulation of heat transfer characteristics of the plume dynamics.

2.0 DATA ACQUISITION AND ANALYSIS

Measurements in wakes require considerable care, both in their acquisition and in their interpretation. In this section the methods used to make measurements and the techniques used in converting directly measured quantities to meaningful physical quanties are discussed. Attention is drawn to the limitations in the techniques in an attempt to prevent misinterpretation or misunderstanding of the results to be presented in the next section. Some of the methods used are conventional and need little elaboration.

2.1 WIND TUNNEL FACILITIES

The majority of the experiments were performed in the Meteorological Wind Tunnel (MWT) shown in Figure 1. This wind tunnel, expecially designed to study atmospheric flow phenomena, incorporates special features such as an adjustable ceiling, a rotating turntable, temperature controlled boundary walls, and a long test section to permit adequate reproduction of micrometeorological behavior. Mean wind speeds of 0.2 to 130 ft/sec (0.14 to 90 mi/hr) in the MWT can be obtained. Boundary-layer thickness up to four feet can be developed "naturally" over the downstream 20 feet of the MWT test section. Thermal stratification in the MWT is provided by the heating and cooling systems in the section passage and test section floor. The flexible test section roof on the MWT is adjustable in height to permit the longitudinal pressure gradient to be set at zero. A set of vortex generators were installed two feet downwind of the entrance to give the simulated boundary layer an initial impulse of growth. From six to 40 ft a set of 12 roll-bond aluminum panels were placed on the tunnel floor. These panels were connected to the facility refrigeration system

and cooled to approximately 32°F. From 40 ft to the end of the test section a permanently installed set of cooling panels were used to also lower the aluminum floor temperature to a level of 32°F. The free stream temperature was raised to a level near 115°F as prescribed by the Bulk Richardson number. The facility is described in detail by Plate and Cermak (1963).

Visualization experiments associated with the influences of ground slope, the wake influence of additional upwind LNG storage tanks, and the character of buoyant plume lift off were performed in the Industrial Aerodynamics Wind Tunnel (IWT) shown in Figure 2. This wind tunnel features an adjustable ceiling, a rotating turntable, and large uninterrupted expanses of glass side walls which facilitate photography.

ξį.

2.2 MODEL CONFIGURATIONS

Capistrano Test 044 Model

Test 044 from the Capistrano Series supported by the American Gas Association (1974) involved spills into an 80 ft diameter by 1.5 ft high dike. This test was modeled utilizing a 1/106 scale circular plenum with a porous punched plate upper surface. The plenum diameter was 9.0 inches, and the plenum was fed by a tube inserted beneath the model through the oval tunnel floor.

Representative High and Low Dike Models

Two different LNG tank and dike facilities were modeled, one entitled the Representative High Dike, the other the Representative Low Dike. The drawings indicating full-scale dimensions were supplied by R & D Associates and are presented as Figure 5. For both the High and Low Dikes two different model scales were made--1:400 and 1:200. The 1:200 scale models were constructed from lucite and styrofoam. At the

1:400 scale, two High Dike models were made, one of plastic and one of steel. These two steel models were made in the form of liquid nitrogen reservoirs so that a release gas of helium and nitrogen at -260°F would not be preheated during flow within the model. Figure 6 shows a schematic of the construction of these models.

Terrain and Dummy Tank Models

A false floor with a rising slope of 1 to 50 was constructed to insert into the IWT. This floor shown in Figure 7 was inserted 30 feet from the tunnel entrance and extended 24 ft downwind. The 1/400 Representive High Dike Model and the 1/106 Capistrano Area Series were placed on the sloping floor ~8.5 feet from its inception.

Dummy tanks were constructed from styrofoam at the 1/400 scale High Dike dimensions. These were placed 2 to 3 dike diameters upwind of the model High Dike to evaluate wake influence on the continuous LNG spill conditions.

Line, Area and Point Source Models

Figure 8 reviews the dimensions and locations of representative line, area and point sources installed in the IWT dummy plume lift off visualization.

Reference velocity measurements were made at a one foot height. Typical velocity profiles have a power law index $n\approx.15$.

2.3 FLOW VISUALIZATION TECHNIQUES

Smoke was used to define plume behavior over the LNG Facility. The smoke was produced by passing the simulation gas mixture through a container of titanium tetrachloride located outside the wind tunnel and transported through the tunnel wall by means of a tygon tube terminating at the dike inlet within the model. The plume was illuminated with arclamp beams. A visible record was obtained by means of pictures taken with a Speed Graphic camera utilizing Polaroid film for immediate examination. Additional still pictures were obtained with a Hasselblad camera. Stills were taken with camera speeds of approximately one second. A series of color motion pictures were also taken with a Bolex motion picture camera mounted on a movable dolly which was traversed the length of the tunnel parallel to the plume trajectory at the average wind speed. A film log of the scenes recorded on 16mm film is included as Table 3.

2.4 WIND PROFILES AND TEMPERATURE MEASUREMENTS

A Datametrics Series 800-L Linear Flow Anemometer was utilized to measure the upstream velocity profiles in both the neutrally and stably stratified flow fields. This instrument is accurate to within two percent of its reading. Measurements of temperature were made with a miniature thermistor (Fennal glass coated bead) system constructed by Yellowsprings Corp. (YSI Model 42 SC).

All the concentration and visualization experiments were carried out over the range of conditions shown in Table 2. For the neutral flow situation a velocity profile similar to that shown in Figure 9 was obtained. This profile may be approximated by the relation $\frac{U(z)}{U_{ref}} = \left(\frac{z}{z_{ref}}\right)^{0.12}$ where z_{ref} and U_{ref} for the prototype conditions are presented with the profile in Figure 9. For the stable flow situation a velocity and temperature profile similar to that shown in Figure 10 was obtained. This velocity profile may be approximated by the relation $\frac{U(z)}{U_{ref}} = \left(\frac{z}{z_{ref}}\right)^{0.4}$. The Bulk Richardson number for stable flow was 0.67.

2.5 MEASUREMENT TECHNIQUE FOR CONTINUOUS BOILOFF SIMULATION

Two different simulation gases were premixed and stored in large high pressure tanks. One was pure carbon dioxide, CO_2 , which was released at room temperature. The other was a mixture of 50% helium and 50% nitrogen which was precooled in a liquid-nitrogen filled heat exchanger and released at -260°F. These two gas mixtures had molecular weights of 44 and 16 respectively. Depending upon the test being undertaken, one of these gas mixtures was allowed to flow from the model, simulating the exit flow rate and buoyancy effects due to the density difference between LNG vapor and the ambient atmosphere. This gas was metered by Fischer-Porter precision flow rators which were adjusted for pressure, temperature, and molecular weight effects as necessary. Figure 11 contains an outline of the two different gas release systems.

For all of the tests involving continuous release concentration data the release gas flow rates were held at different constant values selected from the time history of the full scale boiloff rate curves. Magnitudes simulated are indicated in the Summary of Concentration Tests, Table 4.

2.5.1 Gas Concentration Measurements

After the flow in the tunnel was stabilized, the appropriate model gas was released from the model dikes at the required rate. Samples of air were withdrawn from the sample points isokinetically and analyzed. The flow rate of the model gas mixture was controlled by a pressure regulator at the supply cylinder outlet and monitored by a Fischer and Porter precision flow meter. The sampling and detection systems are shown in Figure 11.

Samples were analyzed by use of a Model 8500 Carle Gas Chromatograph with a thermal conductivity cell sensor.

The procedure for analyzing the samples was as follows:

- 2 cc volumes of the source gas, tunnel background air, and sample gases from within the plume were introduced into the thermal conductivity cell of the Model 8500 Carle Gas Chromatograph individually.
- The output from the heated thermister was integrated for each of these gases and the readings in volt-seconds were recorded.
- 3) The correction for background level was performed on the sample gases. (volt-sec sample)_{corrected} = (volt-sec sample) -(volt-sec background)
- The percentage of source gas remaining at each sample point is expressed as percent methane.

methane) =
$$\frac{(\text{volt-sec sample})_{\text{corrected}}\chi(100)}{(\text{volt-sec source})}$$

5) The dimensionless concentration parameter $(\chi \overline{u}_{ref} L^2/Q_m \text{ was} \text{ calculated for each sampling point knowing that}$ $\chi = (\% \text{ methane}) \div 100$ $\overline{u}_{ref} = \text{mean speed of wind at reference height}$ L = reference length (either tank height H or reference height

subscript m = under model conditions

 z_{ref}

(%

6) Since the dimensionless concentration parameters are equivalent between model and prototype, one may calculate percent methane at points in the field under any condition with an equivalent Froude number, density ratio, and dimensionless source ratio and similar approach velocity and Richardson number profiles. For example, say that a boiloff of 944.6 lbm/sec of methane under a mean wind speed of 22 ft/sec over a tank height of 129 ft is of interest. Then for a point where

$$\left(\frac{\chi \overline{u}_{ref}}{Q}\right)_{m}$$
 = 1.0; $Q_{p} = \frac{944.6}{.1047} = 9021 \text{ ft}^{3}/\text{sec}$, and where

 $^{\rho}CH_{4}$ gas @ -260°F = .10471bm/ft³.

%methane = 100 $\chi_p = \frac{\chi \overline{u} H^2}{Q} \mid_m x \frac{Q}{\overline{u} H^2} \mid_p x 100$

= 1.0 x $\frac{9021}{22(129)^2}$ x 100 = 2.5.

7

2.5.2 Errors in Concentration Measurement

The reference state for the thermal conductivity detector is established by a constant carrier gas flow. At this baseline level the output from the detector was set at zero. When a sample passes through the detector the output from the detector rises to a level proportional to the amount of tracer gas flowing through the detector. Since the chromatograph used features a temperature control there is very low drift. The integrator circuit is designed for linear response over the range considered. A total system error can be evaluated by considering the standard deviation found for a set of measurements where a precalibrated gas mixture is monitored. For an appropriate calibration gas (helium or carbon dioxide) the average standard deviation from the integrator was five percent.

Since the source gas was premixed to the appropriate molecular weight and repetitive measurements were made of its source strength the confidence in source strength concentration is similar. The flow rate of the source gas was monitored by Fischer-Porter Flowmeters which are expected to be accurate to \pm two percent including calibration and scale fraction error. The wind tunnel velocity was constant to \pm 20 percent at such low settings. Hence the cumulative confidence in the measured values of $\chi \overline{u} H^2/Q$ will be a standard deviation of about \pm 20 percent, whereas the worst cumulative scenario suggests an error of no more than \pm 30 percent.

The lower limit of measurement is imposed by the instrument sensitivity and the background concentrations of tracer gas in the air within the wind tunnel. Background concentrations were measured and subtracted from all measurements quoted herein; however, a lower limit of ~5-10 ppm of the source gas is unavoidable as a result of background CO_2 of He levels plus previous model gas releases. An upper limit with the instrument used does not exist; however, long chromatograph columns are necessary to avoid overwhelming the detector when concentrations are very high.

2.6 MEASUREMENT TECHNIQUE FOR VARIABLE BOILOFF SIMULATION

To obtain an accurate prediction of the extent of hazard associated with the vaporization of liquefied natural gas spill the model should simulate the variable boiloff rate of the gaseous methane characteristic to that of a given spill configuration. For the model simulations performed in the present study R & D Associates provided the desired characteristic boiloff rate curves for the models tested. These boiloff curves for the prototype situation along with the actual model gas release rates measured by a Datametrics Series 1000 Mass Flow Transducer are presented in Figures 12-17. These gas flow rate curves with time were obtained by the use of a programmed cam to close a micrometer needle valve controlling the flow of simulation gas at a predetermined rate.

Figure 18 shows a schematic of this valve arrangement and the location of the mass flow transducer used to measure the resultant flow rate vs. time.

2.6.1 Gas Concentration Measurements

As a result of this time dependent release of simulation gas (CO₂ for all tests performed), concentration measurements at test points downwind of the spill site must be taken on a real time basis. It was necessary to have a high frequency response to concentration so that peaks of methane concentrations above 5% (the lower flammability limit of methane in air, LFL) would be detected. To satisfy these requirements an aspirating dual film probe was designed for use with this study.

The basic principles governing the behavior of such a probe have been previously discussed by Blackshear and Fingerson (1962), Brown and Rebollo (1972), and Kuretsky (1967). A diagram of the design of this probe is presented in Figure 19.

A vacuum source sufficient to choke the flow through the small omifice just downwind of the sensing elements was applied. One film was operated in a constant temperature mode at a temperature above that of the ambient air temperature. This was accomplished by a feedback amplifier which maintained a constant resistance through adjustment of the heating current. A change in output voltage from this sensor circuit corresponds to a change in heat transfer between the hot-wire and the sampling environment.

The heat transfer rate from a hot cylindrical film to a gas flowing over it depends upon the film diameter, the temperature difference between the film and the gas, the thermal conductivity and viscosity of the gas, and the gas velocity. For a film in an aspirated probe with a sonic throat, the gas velocity can be expressed as a function of the ratio of the probe cross-sectional area at the film position to the area at the throat, and the specific heat ratio and velocity of sound in the gas. The latter two parameters, as well as the thermal conductivity and viscosity of the gas mentioned earlier, are determined by the gas composition and temperature. Hence, for a fixed probe geometry and film temperature, the heat transfer rate, or the related voltage drop across the film, is a function only of the gas composition and temperature.

Figure 21 shows the measured variation of the voltage drop with percentage of CO_2 in a CO_2 -air mixture, for a typical mixture temperature and four different values of the film temperature. For an overheat ratio of 1.23, the voltage drop varies essentially linearly with the CO_2 concentration, so this particular overheat ratio was used in the wind tunnel measurements.

The voltage drop of the hot film also depends upon the ambient gas temperature. In the tests involving a stable (thermally stratified) atmospheric boundary layer, the gas temperature varied over several degrees, and this produced an additional voltage variation which was essentially linear with temperature (Figure 20). To compensate for this variation, the second film in the probe was operated as a resistance thermometer by passing a very small constant current through it. The resulting voltage drop varied linearly with the gas temperature, as shown in Figure 20 and was independent of gas composition. This voltage was electronically amplified by the proper factor and subtracted from the voltage of the first film to give a

signal which varied linearly with CO₂ concentration and was independent of temperature (within a few percent) over the temperature range of the wind tunnel tests. Figure 22 presents a flow chart of the instrumentation used to process the signals and record the results. Eleven different cases were considered with a variable boiloff. These were summarized in Table 4. For each test the different locations where instantaneous concentration vs. time plots were obtained are shown in Figure 4. For each test position up to five replications were performed.

2.6.2 Errors in Concentration Measurement

Without temperature compensation and the flared fitting attached to the front of the probe to reduce pressure fluctuations (Figure 19) the noise and baseline drift detected were so severe concentration measurements of 5% CO_2 in air were barely detectable in a wind tunnel environment. But with the addition of these two improvements the noise level was reduced to 0.1% CO_2 in air and the maximum baseline drift was also about this value. Since the effective sampling area of the probe is now greater than the area of the probe inlet and the sensor is located 4 in. from the probe inlet the fine structure of concentration variation may be partially erased. The limiting factor for the upper frequency response of the actual concentration signal is that of the travel time from the sensor to the sonic choke. At high frequencies the correlation between concentration fluctuation and velocity fluctuations (velocity fluctuations are a result of the changes of sonic velocity with concentration) at the sensor begin to decline. With the probe used an upper frequency response of 1000 Hz would be a fair estimate.

It is difficult to estimate the maximum possible error in these measurements due to the involved relation between temperature and concentration responses of the sensor. Considering the errors involved in thermal compensation and the accuracy of the concentration standard used, one might estimate a maximum error of about 3.5% of the reading for above 4% CO_2 and $\pm 0.15\%$ for readings less than 4% CO_2 .

3.0 TEST PROGRAM RESULTS

The test program consisted of (1) a qualitative study of the flow field around the different tank and dike facilities by visual observation of the plume released from a model area; and (2) a quantitative study of gas concentrations produced by the release of a tracer from the model area. The test conditions are summarized in Table 4 and the test matrix in Section 1.2. Both of these qualitative and quantitative studies were performed with two different model simulation gases. One was Carbon Dioxide at 70°F to model the characteristics of an adiabatic plume in a low humidity atmosphere. The other was a Helium-Nitrogen gas mixture at -260°F to model plume behavior without placing the above restrictions on heat transfer rate and atmospheric conditions. For a more complete description of simulation gas characteristics refer to Sections 2.5 and 2.6.

Downwind distances refer to lengths converted from model to prototype as measured from the center of the respective model. Unless otherwise noted, the term wind velocity refers to the velocity in the approach stream at a reference height of 10 meters for the High and Low Dike Tests and 5 feet for the Capistrano 044 tests. A velocity at any reference height is available by referring to the appropriate velocity profile (Figures 9-10).

3.1 CONTINUOUS BOILOFF RELEASE CASES

Turbulent diffusion of a simulated LNG plume for three different LNG tank and dike complexes, two model gas mixtures, two atmospheric stratifications, two scale ratios, and a number of wind speed and boiloff rate combinations were studied in Runs 1-12 and 45-54. Mean concentration measurements were obtained for as many as 23 different
sample points distributed over a ground level zone up to 900 feet wide and from 160 to 6500 feet long and in the vertical over a height of 0 to 200 feet. A representative layout of the grids used is shown in Figure 3. One is referred to Table 8 and the locator table provided for the specific location of each sampling point for the tests performed. All concentration data has been placed into the forms of

 $K = \frac{\chi \ \overline{u}_{ref} \ H^2}{Q} \quad \text{and } \chi \ x \ 100 \ \text{in Table 8.} \ \chi \ represents a \ normalized concentration or dilution observed at a sample point, Q is a volumetric boiloff rate, <math>\overline{u}_{ref}$ is the mean wind speed measured at z_{ref} . An explanation of how these values are obtained and how to use them is given in Section 2.5.1. The ranges of the various scaling parameters and test conditions are summarized in Tables 1 and 2 for prototype and model, respectively. For the specific test conditions for each test performed one is referred to in Table 4.

3.1.1. Behavior of CO2 Model Gas Simulation

Continuous releases made from 1/200 scale models of the representative high dike utilizing CO₂ result in concentrations which agree well with earlier Freon-12-N₂ simulations performed by Neff, et al. (1976). Dilutions measured during Run 11 of the present report at a boiloff rate m = 250 lbm/sec fall between Runs 19 and 30 of the earlier report where m = 420 lbm/sec and m = 160 lbm/sec, respectively. Similarly, results from Run 11R of this report at m = 1400 lbm/sec fall between measurements of Runs 9 and 19 where m = 2400 lbm/sec and m = 420 lbm/sec respectively. These measurements generally exceed values taken behind the 1/400 models under equivalent situations up to a factor of two.

Since in the earlier study by Neff, et al. (1976) Run 1 therin at 1/200 scale and Run 101 at 1/500 scale displayed a similar trend the more recent results suggest a continued significant influence of the tunnel side walls persists for 1/200 scale models.

In order to obtain a comparable characteristic curve among sites of different tests, the test conditions were grouped on the basis of model, release gas flow rates, stability, and simulation gas. Figures 23-1 to 23-4 present CO₂ model gas results in terms of $\chi \ \overline{u}_{ref} \ H^2/Q \ vs. \ \chi/H$. The data do follow trends expected for dispersion in the atmosphere. Values fall between or somewhat below Pasquill Diffusion Category C and D.

In Neff, et al. (1976) stable background stratification tended to result in concentration decay rates which approached Pasquill Diffusion Category F. In the present results, there is no significant difference noticeable between the neutral and stable dispersion cases. Since one might expect that a buoyant plume will generate its own entrainment rate this seems reasonable. Perhaps the earlier differentiation noticed for 1/200 scale models is again a result of plume blockage.

3.1.2. Behavior of He-N2 Model Gas Simulation

Runs 45 to 54 concerned tests made to discern the effects of surface heat transfer characteristics and stratification on He-N₂ model gas releases from 1/400 scale models of the representative high and low dike cases. Figures 23-5 and 23-6 present the He-N₂ model gas results in terms of $\chi \, \overline{u}_{ref} \, H^2/Q \, vs. \chi/H$ as before. The data follow similar trends to the CO₂ release situations. No significant differentiation appears between high and low dike or neutral versus stable stratification. No consistent influence of the insulated versus the conducting floor conditions could be identified. The effects are thus judged to be small.

3.2 VARIABLE BOILOFF RELEASE RESULTS

A comparison of model data (Case I) with Capistrano Field data is presented in Figures 25 and 26. Curves of mean concentration decay, with height for selected downwind sites of the Capistrano Cases, Representative High Dike, and Representative Low Dike are presented in Figures 27, 28 and 29, respectively. Selected curves of mean concentration decay with distance for the Capistrano Cases and the Representative High Dike are presented in Figures 30 and 31, respectively. Ground contour plots of peak concentration, obtained by visual interpolation, for all tests except those with a dike surface of insulated concrete are presented in Figures 32, 33 and 34. Observed lower flammability limit (LFL = 5 percent) contours as a function of time after the spill are presented for a Representative High Dike and a Representative Low Dike in Figure 35. Figure 36 presents ground contours of the hazard zone (zone in which a peak value of five percent was observed) for the High and Low Dikes under the different conditions tested. Table 6 presents the maximum distance to the lower flammability limit for all the tests performed. Tables 7-1 to 7-11 summarize the maximum peak concentration value observed in each test and the maximum peak at different times observed in each test.

3.2.1. Comparison of Capistrano 044 Field Data with Model Test Data

The model Capistrano Case I test yield consistently higher concentrations than that of Case II test, which is to be expected since it describes a higher boiloff rate. In a comparison of the mean behavior of these model

tests to those of the Capistrano 044 Field test, the Case II model results always yield lower concentrations than those observed in the field. When a comparison is made between model Case I and the field, the time and magnitude of highest concentrations observed at most of the test locations is in good agreement. Figures 25 and 26 display the dilution time history of the model Case I and the field situation superimposed upon each other for the test positions (320', 0', 0') and (640', 0', 0') respectively. The three differences observed between the results are (1) the timing of the plume's arrival at the measurement location is not exactly the same, (2) the concentrations in the plumes leading edge for the model are lower than that observed in the field, and (3) the model does not predict the large and intermittent concentrations peaks at late times that were observed in the field. The first two differences may be explained by considering that diffusion of air across the perforated release plate into the cavity below occurs between model tests. This would result in low concentrations of model gas within the plenum being released at the start of each test. These lower concentrations would be entrained by the wind and swept downwind faster than the main plume's bulk, thus giving the appearance of a faster travelling plume with low concentrations at the leading edge. These arguments are reinforced by noting that in the model the first major peak (the plume actual leading edge) occurs at the same time as that observed in the field. The third major difference, that of high peaks observed at late times for the field case, may be do to gustiness and changes in wind direction and speed that are present in the atmosphere but not present in the wind tunnel.

The above inconsistencies between model and prototype may not be of major importance for hazard evaluation since in the plume leading edge where the highest concentration occurs the model and prototype agree quite well. Similar agreement for model and prototype was observed for test locations (320', 0', 10'), (320', -80', 0'), (640', -100', 0') but for location (160', 0', 0') the agreement was poor. The field data observed a maximum peak of 47 percent while the model data observed a maximum peak of 17 percent. This inconsistency may be the result of bad field data, improper modeling of the ground and release geometry, or the large effective sampling area on the instantaneous concentration sampling probe. If the plume thickness was significantly less than the height of the effective sampling area of the probe the high concentrations at the ground level may be under estimated.

3.2.2. Comparison of High and Low Dikes

The existence of a bimodal plume distribution as cited by Neff, et al. (1976) for the High and Low Dikes is once again observed in the ground contour plots of concentration for the Representative Low and High Dikes (Figures 33 and 34). The characteristic-signature of this bimodal distribution disappears with a low wind speed for the High Dike, whereas it is still a very strong characteristic with Low Dike at a low wind speed. For the Low Dike, this bimodal distribution may be both a function of the aerodynamic flow pattern around the tank and the geometric layout of the square dike being placed at a 45° angle to the wind direction. As a result of uneven spreading of the plume from the Low Dike, the distances to the LFL (Table 6) are slightly greater than those observed for the High Dike under similar meteorological conditions and similar boiloff rates (Figures 13 and 16). By inspection of observed

hazard zone contours (Figure 36) this effect may be of greater importance than shown in Table 6 as the distance to LFL is still increasing at the most lateral sample position tested for neutral flow. If the wind direction at the Low Dike was at 0°, this effect of bimodal spreading possibility would not be as pronounced, thus yielding a hazard zone distance similar to that of the High Dike. The effects of the plume release at a more elevated plane and the increased aerodynamic turbulence of the High Dike do not appear to reduce its hazard zone over that of the Low Dike. But it should be clarified that for the boiloff rates considered, the volume of spilt LNG is much greater for the High Dike than for the Low Dike. The modeling of boiloff rates for utilization of concrete and insulated concrete floors and walls in the High Dike were very effective in reducing the hazard zone--see Table 6.

3.3 VISUALIZATION RESULTS

Visual examination of gaseous plume outlines tagged with a smoke tracer or moisture provide qualitative guidance concerning the significance of different parameters. Plume behavior has been recorded photographically on black and white stills and 16 mm color film where appropriate. Print copies and film records have been forwarded separately to R & D Associates. Only those black and white views which display a typical behavior pattern are included herein since report reproduction methods limit the quality of half-tone copies.

3.3.1 Tank/Dike Heat Transfer Results

Film records of Runs 30 to 42 listed in Table 3 document the visual behavior of transient boiloff releases of cooled He-N_2 from High and Low Dike LNG tanks. Releases from the precooled steel tank models produced

dense plumes which rolled over the dike lips and moved downward with a shallow, wide cross-section. There was no evidence of plume liftoff. The appearance of the transient boiloff plume some moments after passing a given downwind station looked very similar to the structure and size of continuous release plumes of equivalent boiloff rate examined by Neff, et al. (1976).

When a room-temperature steel model or a room-temperature plastic model was utilized under the same release conditions as above, no visible plume was obtained. Apparently the precooled He-N₂ warms significantly inside the model/dike walls; since plume visualization depends upon moisture condensation, no visible plume appeared. This behavior confirms the earlier estimates that heat transfer time scales during laboratory release will be significantly less than the equivalent release and dispersion time scale. This effect is an apparently unavoidable result of different governing physics and scaling laws for dispersion versus conduction within the model.

3.3.2 Ground Slope Effects

Table 11 summarizes the flow visualization tests. The picture numbers refer to the flow visualization photographs submitted separately to R & D Associates. Pictures 1 through 24 illustrate the effects of ground plume geometry. Pictures 1A through 24A present the same conditions on a flat (zero slope) surface. All pictures presenting a side-on view were taken first. The test runs were then repeated for the overhead sequence. A comparison of the side-on and overhead pictures taken under the same conditions indicates a lack of repeatability of the basic shape of the plume (e.g., Pictures 3 and 4). Two caveats are in order, however. First the lighting conditions (and shadows) make the overhead pictures difficult to interpret; secondly, permanent lightcolored blotches, unrelated to the presence of LNG vapor, appear in both sets of photographs.

The sloped section of the wind tunnel floor begins about 7 feet upwind of the model and ends about 15 feet downwind. Thus, one would expect that for a range of wind speeds enough vapor would accumulate downstream (upslope) to overcome the wind pressures. The vapor should then begin to travel upwind. Since this phenomenon is an unstable one, it is not inconceivable that the transients associated with the startup process could influence the final steady state condition. Also, random perturbations could conceivable cause the vapor motion to switch from an upwind to a downwind character.

In addition to the lack of repeatability, a marked asymmetry in the vapor cloud was occasionally observed (e.g., Picture 8A, overhead). This type of asymmetry is almost certainly caused by a non-planar perturbation in the wind field, either associated with the vapor

injection (a Coanda attachment perhaps) or irregularities in the ramp construction. In either case, such asymmetries could probably be removed in highly controlled experiments. Symmetric vapor clouds are illustrated in Pictures 9A through 12A. A comparison of these pictures, which were taken under flat terrain conditions, with Pictures 9 through 12 (2 percent slope) indicates the effect of ground slope, which for the higher boiloff rates resulted in upwind travel of the vapor.

The location of the upwind boundary of a dense plume on a rising slope is a result of the balance between gravity forces and the drag forces imposed on the cloud eddy by the approach wind. Since for a continuous release the total cloud excess weight continues to increase it is not surprising that for significant boiloff rates upstream flow eventually results. Thus the cloud behavior becomes a complicated function of Froude number, Reynolds, and time. A short finite release even at a large boiloff rate may not be expected to continue upwind spread as its cross-sectional (or frontal area) increases since this increases the drag by the approach wind.

Figure 37 displays the typical behavior of a dense plume emitted from the 1/400 Representative High Dike Model at two prototype windspeeds. In the upper photograph although plume reflection from the side walls has occurred upwind motion is minimal. At the lower wind speed, however, the dense plume develops its own reverse circulation and reverse wake near the surface! Notice the circular wave produced by the dense spill at the base of the tank. Figure 38 displays the equivalent conditions as the previous figure but for a zero ground slope.

3.3.3 Upwind Tank Influence

Pictures 25 through 36 from Table 11 show the effect of two upstream obstacles on the shape of the vapor cloud. A comparison of, for example, Pictures 21 through 24 with Pictures 25 through 28 seem to suggest that the presence of obstacles tends to lessen the effects of ground slope. In addition, they seem to discourage the formation of asymmetrical vapor clouds. The presence of one upstream obstacle does not appear to have as significant an influence on the vapor cloud as does the presence of two obstacles.

The diluting influence of added wake turbulence is not unexpected. Earlier investigators have suggested effective increases in plume standard deviation weighted by obstacle size and upwind obstacle. One expects increases proportional to

$$\sigma_{obstacle} \simeq \sigma_{wo} x (1 + CAf(\Delta x))$$

obstacles

where

A = cross sectional area of obstacle

 $f(\Delta x)$ = decreasing function of separation distance

C = constant of order one.

3.3.4 Buoyant Plume Liftoff Behavior

Whether or not a buoyant plume or puff can lift itself off the ground in the presence of a shear flow depends upon the buoyancy induced forces compared with the velocity induced pressures on the buoyant gas cloud. More than fifty-eight combinations of source configurations, and velocity, and plume flow rate were considered to evaluate the behavior of a buoyant gas versus a neutrally buoyant gas. Table 10 records the estimated distance to plume lift off for these cases. Thirty-four

cases of interest were recorded on black and white film. Typical lift off behavior is displayed in Figure 39.

Since plume kinematics may be expected to be governed by buoyancy and inertial forces these results have been sealed by the relevant buoying length scale, ℓ_b . Hence,

$$\frac{\mathbf{x}}{\mathbf{b}} = \frac{\mathbf{x}}{\frac{\mathbf{g}\Delta\rho\mathbf{Q}}{\rho_{\mathbf{a}}\bar{\mathbf{U}}^{3}}}$$

versus

$$Fr = \frac{\rho_a \overline{U}^S W}{g \Delta \rho Q}$$

has been plotted in Figure 40. The data clearly show that for conditions to the right of the solid line a buoyant plume may be expected to remain near the ground surface; whereas for low windspeeds or high buoyant flow rate situations lift off may occur for conditions to the left of the line.

REFERENCES

- American Gas Association (1974), "LNG Safety Program, Interim Report on Phase II Work," Report on American Gas Association Project IS-3-1, Battelle Columbus Laboratories.
- Blackshear, P. L., Jr. and Fingerson, L. (1962), "Rapid Response Heat Flux Probe for High Temperature Gases,: ARS Journal, November, 1962, pp. 1709-1715.
- Brown, G. L. and Rebollo, M. R. (1972), "A Small, Fast Response Probe to Measure Composition of a Binery Gas Mixture," AIAA Journal, Vol. 10, No. 5, pp. 649-652.
- Cermak, J. E. (1975), "Applications of Fluid Mechanics to Wind Engineering, A Freeman Scholar Lecture," J. of Fluids Engineering, Vol. 97, Ser. 1, No. 1, pp. 9-38.
- Hall, D. J., Barrett, C. F., and Ralph, M. O. (1975), "Experiments on a Model of an Escape of Heavy Gas," Warren Spring Laboratory Report CR882 (AP), Dept. of Trade and Industry, United Kingdom.
- Kuretsky, W. H., (1967) "On the Use of an Aspirating Hot-Film Anemometer for the Instantaneous Measurement of Temperature," Thesis, Master of Mechanical Engineering, University of Minnesota, Minneapolis.
- Neff, D. E., Meroney, R. N., and Cermak, J. E. (1976), "Wind Tunnel Study of Negatively Buoyant Plume Due to an LNG Spill," Report Prepared for R & D Associates, California, Fluid Dynamics and Diffusion Laboratory Report CER76-77DEN-RNM-JEC22, Colorado State University, Fort Collins, 241 p.
- Plate, E. J. and Cermak, J. E. (1963), "Micro-Meteorological Wind-Tunnel Facility: Description and Characteristics," Fluid Dynamics and Diffusion Laboratory Report No. CER63-EJP-JEC9, Colorado State University, Fort Collins.

FIGURES

Figure 1. The Meteorological Wind Tunnel

ELEVATION

Figure 2. The Industrial Wind Tunnel

I: 400 Scale Test Position Locations

I:400 Scale Test Position Locations (For I:200 Scale Mult. Dimensions by 2)

Figure 4. Coordinates for Instantaneous Concentration Measuring Locations

Figure 5. Representative High Dike and Representative Low Dike

Figure 6. High and Low Dike Models for Simulation with Helium-Nitrogen Gas Mixture

Side View

Figure 7. Sketch of Ramp Construction

Figure 8. Sketch of Line, Area, and Point Source Configurations

Figure 9. Typical Velocity Profile for Neutral Flow

Figure 10. Typical Velocity and Temperature Profile for Stable Flow

Figure 11. Flow Chart of Mean Concentration Sampling System

Figure 12. High Dike Gas Release Rates for Model and Prototype for a Spill on Soil

Figure 13. High Dike Gas Release Rates for Model and Prototype for a Spill on Concrete

Figure 14. High Dike Gas Release Rates for Model and Prototype for a Spill on Insulated Concrete

Figure 15. Low Dike Release Rates for Model and Prototype for a Spill on Soil

Figure 16. Capistrano 044 Gas Release Rates for Model and Prototype for Case I

Figure 17. Capistrano 044 Gas Release Rates for Model and Prototype for Case II

Figure 18. Variable Flow Rate Control Valve

Figure 19. Aspirating Probe Design

Figure 21. Typical Response of Hot Film Aspirating Probe Versus % CO₂ in Air for Different Overheat Ratios

Figure 22. Flow Chart of Aspirating Probe Instrumentation

Figure 23-1b. Dimensionless Concentration Coefficient Versus Non-Dimensional Downwind Distance

Please refer to errata on verso of title page.

Figure 23-2. Dimensionless Concentration Coefficient Versus Non-Dimensional Downwind Distance

Figure 23-3. Dimensionless Concentration Coefficient Versus Non-Dimensional Downwind Distance

Figure 23-4. Dimensionless Concentration Coefficient Versus Non-Dimensional Downwind Distance

Figure 23-5. Dimensionless Concentration Coefficient Versus Non-Dimensional Downwind Distance

Figure 23-6. Dimensionless Concentration Coefficient Versus Non-Dimensional Downwind Distance

Figure 24-1. Dimensionless Concentration Coefficient Versus Non-Dimensional Downwind Distance Variable Boiloff Results

Please refer to errata on verso of title page.

Figure 24-2. Dimensionless Concentration Coefficient Versus Non-Dimensional Downwind Distance Variable Boiloff Results

Please refer to errata on verso of title page.

Figure 25. Comparison of Model Data (Case I) with Capistrano 044 Field Data for a Sample Location at (320', 0', 0')

Figure 20 to 36 Please refer to errata on verso of title page.

Figure 26. Comparison of Model Data (Case I) with Capistrano 044 Field Data for a Sample Location at (640', 0', 0')

Figure 27a. Mean Concentration Decay with Height at Different Downwind Distances for Capistrano 044 Case I

Figure 27b. Mean Concentration Decay with Height at Different Downwind Distances for Capistrano 044 Case II

Figure 28. Mean Concentration Decay with Height at Different Downwind Distances for High Dike, Soil, Neutral Flow, 7 mph

Figure 29. Mean Concentration Decay with Height at Different Downwind Distances for Low Dike, Soil, Neutral Flow, 7 mph

Figure 30a. Mean Concentration Decay with Distance for Capistrano 044 Case I

Figure 30b. Mean Concentration Decay with Distance for Capistrano 044 Case II

Figure 31. Mean Concentration Decay with Distance for High Dike, Soil, Neutral Flow, 7 mph

Case I

Case II

Figure 32. Ground Contour Plots of Peak Concentration for Capistrano Cases I and II

Figure 33. Ground Contour Plots of Peak Concentration for the High Dike

Soil, 7 mph, Stable Atmosphere

Low Dike, Soil, 7 mph, Neutral Atmosphere

Figure 35. Observed Lower Flammability Limit (LFL = 5%) Contours as a Function of Time from the Spill

High Dike

Low Dike

Figure 36. Observed Hazard Zone Contours

Picture 20; U = 23 ft/sec, \dot{m} = 2400 lbm/sec

Picture 16; U = 16 ft/sec, \dot{m} = 2400 lbm/sec Figure 37. High Dike on Sloping Ground Surface

Picture 20A; U = 23 ft/sec, \dot{m} = 2400 lbm/sec

Picture 16A; U = 23 ft/sec, \dot{m} = 2400 lbm/sec Figure 38. High Dike on Flat (Zero Slope) Ground Surface

Figure 39a. Line Source in a Shear Layer: Q = 2.25 cfm, U = 0.75 ft/sec

Figure 39b. Line Source in a Shear Layer: Q = 2.25 cfm, U = 0.75 ft/sec

Helium

Figure 40. Dimensionless Lift Off Distance vs. Froude Number for Buoyant Surface Released Plumes

			Full Scale					
Characteristi	c		High Dike	Low Dike	Capistrano			
Tank Diameter	D	(ft)	240	128	-			
Height	Н	(ft)	129	121	-			
Dike Diameter	d	(ft)	260	330 x 305	80			
Height	h	(ft)	80	21	-			
Boiloff Rates	m _{mx}	1bm sec	2680	2513	202			
	Q _{mx}	cfm	1.54×10^{6}	1.44×10^{6}	1.6 x 10 ⁵			
	m _{min}	1bm sec	100.0	231.6	20.2			
	Q _{min}	cfm	5.59 x 10 ⁴	1.33×10^5	1.6×10^4			
Velocity U _H		mph	7*, 16	7, 16	12 ^Δ			
ΔΤ	° _{F/}	'1000 ft	25	25	0			
S.G. _{CH4} ^{@ bo:}	iloff		1.4	1.4	1.4			
Δρ/ρ _a			0.4	0.4	0.4			
$Re_{D} = U_{H}d/v$			1.55×10^7 , 3.56×10^7	2.13×10^7 , 4.89×10^7	8.40×10^{6}			
$Fr_{d} = \frac{U_{H}^{2}}{g \frac{\Delta \rho}{\rho_{a}} d}$			0.030, 0.16	0.022, 0.12	0.302			
Ri _B = Ri _B			0.67	0.67	0			
Times		sec	1, 200, 1000	1, 200, 1000	1, 200, 1000			
$T_{B} = 201^{\circ}R, \rho_{I}$	= 26.5	lbm/ft ³ , ρ	$= 0.1047 \text{ lbm/ft}^3, v = 1$	$.68 \times 10^{-4} \text{ ft}^2/\text{sec}$				

PROTOTYPE	CONDITIONS
-----------	------------

* at 10 meters Δ at 5 feet

MODEL CONDITIONS

		Full-Scale	e 1/200 Model	Full-Scale	1/400 Mode1	Capistrano 1/106
Characteristic		High Dike	Low Dike	High Dike	Low Dike	
Tank Diameter D	(in)	14.4	7,68	7.2	3.84	-
Height H	(in)	7.74	7.26	3.87	3.63	-
Dike Diameter d	(in)	15.6	19.8 x 18.3	7.8	9.9 x 9.15	9.1
Height h	(in)	4.8	1.26	2.4	.63	-
$Fr_m = Fr_p$		0.03, 0.16	0.022, 0.12	0.03, 0.16	0.022, 0.12	0.302
S.G. _{CH} @ boiloff		1.4	1.4	1.4	1.4	1.4
$(\Delta \rho / \rho_{a})_{m} = (\frac{\Delta \rho}{\rho_{a}})_{p}$		0.4	0.4	0.4	0.4	0.4
U [*] H	ft/sec	0.7, 1.6	0.7, 1.6	0.5, 1.2	0.5, 1.2	1.7
$Re_{Dm} = U_H d/v$		5494, 12535	7563, 17260	1935, 4643	2664, 6233	7637
$Ri_{B_{m}} = \frac{({}^{T}H^{-T} . 14H) (H 14H)g}{\overline{T}(U_{H}^{-U} 14H)^{2}}$		0	0	0.67	0.67	0
ΔT	⁰ F/ft	0	0	9	9	0
Boiloff ^{T-} Rates Q _{mx}	cfm	2.72	2.55	0.48	0.45	1.0
Q _{min}	cfm	0.10	0.24	0.018	.042	0.1
Time ^o	sec	0.07, 14.1 70.7	0.07, 14.1 70.7	0.05, 10, 50	0.05, 10, 50	0.1, 19.4, 97.1

FILM LOG FOR FLOW VISUALIZATION

<u>Reel No. 1</u> - 2% Upwind Grade Tests Filmed in the Industrial Aerodynamics Wind Tunnel. Model Gas of CO_2 @ $22^{\circ}C$.

RUN #	SOURCE DESCRIPTION	SIMULATED WIND SPEED (fps)	SIMULATED BOILOFF RATE (1b _m /sec)
1	Area Source (Capistrano 044 1/106 Scale Model)	23	160
2		23	420
3		23	1200
4		23	2400
5		16	160
6		16	420
7		16	1200
8		16	2400
9		30	160
10		30	420
11	11	30	1200
12	"	30	2400
13	High Dike (1/400 Scale Model)	16	160
14		16	420
15		16	1200
16	"	16	2400
17	"	23	460
18	"	23	420
19	"	23	1200
20		23	2400
21		30	160
22	"	30	420
23		30	1200
24		30	2400

TABLE 3 (continued)

FILM LOG FOR FLOW VISUALIZATION

Reel No. 1 (continued) - 2% Upwind Grade Tests Filmed in the Industrial Aerodynamics Wind Tunnel. Model Gas of CO₂ @ 22^OC.

DUN #	COUDCE DESCRIPTION	SIMULATED WIND SPEED (fps)	SIMULATED BOILOFF RATE (1b_/sec)
KUN #	SOURCE DESCRIPTION		m
25	High Dike (1/400 Scale Model with 2 Upstream Obstacles)	30	160
26	"	30	420
27	"	30	1200
28	"	30	2400
29	"	23	160
30	"	23	420
31	"	23	1200
32		23	2400
33	"	16	160
34		16	420
35		16	1200
36	н	16	2400
37	High Dike (1/400 Scale Model with 1 Upstream Obstacle)	16	160
38		16	420
39	"	16	1200
40		16	2400
41	11	23	160
42		23	420
43		23	1200
44	u.	23	2400
45		30	160
46		30	420
47	н	30	1200
48		30	1400

TABLE 3 (continued)

FILM LOG FOR FLOW VISUALIZATION

<u>Reel No. 2</u> - Flat Grade Tests Filmed in the Industrial Aerodynamics Wind Tunnel. Model Gas of CO_2° @ 22^o C.

RUN #	SOURCE DESCRIPTION	SIMULATED WIND SPEED (fps)	SIMULATED BOILOFF RATE (1b _m /sec)
1-A	Area Source (Capistrano 044 1/106 Scale Model)	16	160
2-A		16	420
3-A		16	1200
4-A	"	16	2400
5-A	U	23	160
6-A	"	23	420
7-A	"	23	1200
8-A		23	2400
9-A		30	160
10-A		30	420
11-A		30	1200
12-A		30	2400
13-A	High Dike (1/400 Scale Model)	30	160
14-A		30	420
15-A		30	1200
16-A		30	2400
17-A	"	23	160
18-A		23	420
19-A	"	23	1200
20-A	11	23	2400
21-A	n	16	160
22-A		16	420
23-A	"	16	1200
24-A		16	2400

TABLE 3 (continued)

FILM LOG FOR FLOW VISUALIZATION

<u>Reel No. 3</u> - Variable Boiloff Tests Filmed in the Meteorological Wind Tunnel.

RUN #	SOURCE DESCRIPTION	SIMULATION GAS	SIMULATED BOILOFF CHARAC- TERISTIC OF:	SIMULATED WIND SPEED (fps)
1V	High Dike (1:200)	CO ₂ @ 22 ^o C.	Soi1	10
1VA	"	л	Concrete	10
2V			Soil	16
3V			Soi1	23
4V	Low Dike (1:200)		Soil	10
4VA	"		Concrete	10
5V			Soil	16
6V			Soil	23
7V	High Dike (1:400)	916	Soi1	10
8V	"		Soi1	23
9V	Low Dike (1:400)		Soil	10
10V			Soil	23
11V	High Dike (1:400)	50% He - 50% N ₂ @	Soi1	10
		-160°C.		
12V			Soil	23
13V	Low Dike (1:400)		Soi1	10
14V			Soi1	23

RUN NO.	MODEL	WIND SPEED (mph)	STRATIFICATION	BOILOFF RATE (1bm/sec)	SURFACES MODEL	FLOOR
1	High 1:400	7*	Neutral	2400	Steel	Aluminum
2	High 1:400	7	Neutral	1400	Steel	Aluminum
3	High 1:400	16*	Neutral	2400	Steel	Aluminum
4	High 1:400	16	Neutral	1400	Steel	Aluminum
5	Low 1:400	7	Neutral	2400	Steel	Aluminum
6R	High 1:400	7	Stable	2400	Steel	Aluminum
7R	High 1:400	7	Stable	1400	Steel	Aluminum
8R	Low 1:400	7	Stable	2400	Steel	Aluminum
9	Capistrano	12 ^Δ	Neutral	202	Steel	Aluminum
10	Capistrano	12	Neutral	141	Steel	Aluminum
11R	High 1:200	7	Neutral	1400	Steel	Aluminum
45	High 1:400	7	Neutral	2400	Cold Steel	Aluminum
46	High 1:400	16	Neutral	2400	Cold Steel	Aluminum
47	Low 1:400	7	Neutral	2400	Cold Steel	Aluminum
48	Low 1:400	16	Neutral	2400	Cold Steel	Aluminum
49	High 1:400	7	Neutral	2400	Cold Steel	Styrofoam
50	High 1:400	16	Neutral	2400	Cold Steel	Styrofoam
51	Low 1:400	7	Neutral	2400	Cold Steel	Styrofoam
52	Low 1:400	16	Neutral	2400	Cold Steel	Styrofoam
53	High 1:400	.7	Stable	2400	Cold Steel	Aluminum
54	Low 1:400	7	Stable	2400	Steel	Aluminum
13	High 1:400	7	Neutral	Soil [†]	Steel	Aluminum
14	High 1:400	7	Neutral	Concrete	Steel	Aluminum
15	High 1:400	7	Neutral	Insulated Con- crete	Steel	Aluminum
16	High 1:400	16	Neutral	Soil	Steel	Aluminum
17	High 1:400	16	Neutral	Concrete	Steel	Aluminum
18	High 1:400	16	Neutral	Insulated Con- crete	Steel	Aluminum
19	Low 1:400	7	Neutral	Soil	Steel	Aluminum
20	High 1:400	7	Stable	Soil	Steel	Aluminum
22	Low 1:400	7	Stable	Soil	Steel	Aluminum
23	Capistrano	12	Neutral	Case I	Steel	Aluminum
24	Capistrano	12	Neutral	Case II	Steel	Aluminum

SUMMARY	OF	CONCENTRATION	TESTS

* at 10 meters

∆ at 5 feet

+ refer to Variable Boiloff Curves, Figures

TABLE 5a

APPROXIMATE DISTANCE (FT) DOWNWIND TO THE LFL (Obtain by Simulation Gas Pure CO_2 of M.W. 44 @ $70^{\circ}F$)

Surface Wind Description		Conti- nuous	STRATIFICATION								
Mode1	Direc- tion	Alumi- num	Insu- lated	Boiloff (lbm/sec)	10 ft/sec	Neutral 16 ft/sec	23 ft/sec	10 ft/sec	Stable Cat. 16 ft/sec	G. 23 ft/sec	$\frac{X}{H}$
High Dike	0	x		2400	730						5.6
1/400 Scale Model		x		1400	400						3.00
Steel Construction		x		2400			450				3.50
		x		1400			~			-	~
		x		2400				1500			11.50
		x		1400				1080			8.50
Low Dike	0	x		2400	1730						14.50
1/400 Scale Model		x		2400				1500			12.50
Steel Construction											
Capistrano 044	0	x		202		420					
		x		141		300					
High Dike	0	x	-	1400	2370						18.2
1/200 Scale Model		х		1400							
Styrofoam Construction											
								· · · · ·			

* H = Height of tank L.D. = 121 ft.

H.D. = 129 ft.
TABLE 5b

APPROXIMATE DISTANCE (FT) DOWNWIND TO THE LFL (Obtain by Simulation Gas He-N $_2$ of M.W. 16 @ $-260^{\rm o}{\rm F}$)

	Wind	Sur	face	Conti- nuous			STRATIF	ICATION			
	Direc-	Alumi-	Insu-	Boiloff		Neutral			Stable Cat. (3	X
Mode1	tion	num	lated	(1bm/sec)	10 ft/sec	16 ft/sec	23 ft/sec	10 ft/sec	16 ft/sec	23 ft/sec	H *
High Dike	0	x		2400	900						7.00
1/400 Scale Model		x		2400			1200				9.00
Steel Construction			x	2400	587						4.50
			x	2400		1	1210				9.50
		x		2400				~			-
Low Dike	0	х		2400	1590						13.25
1/400 Scale Model		x		2400			1130				9.50
Steel Construction			x	2400	1710						14.25
			x	2400			1700				14.00
2.		x		2400				963			8,00

* H = height of tank L.D. = 121 ft. H.D. = 129 ft.

TABLE 6

MODEL		NEUTRAL		STABLE
р 	7 mph	12 mph	16 mph	7 mph
High Soil	~850		~700	~800
High Concrete	~300		<300	ν.
High Insulated Concrete	<300		<300	
Low Soil	1000	v		1000
Capistrano Case I		700		
Capistrano Case II		400		
			×	

APPROXIMATE DISTANCES (FT) DOWNWIND TO THE LFL FOR A VARIABLE RELEASE OF CO_2

PEAK CONCENTRATION DATA FOR VARIABLE BOILOFF

Low Soil	-	1:400
Wind Speed	-	7 mph
Stratification	-	Neutral

Pos	ition (ft)	Maximum						Max	inum Peak	Occurs	at Time	(sec)					
X	Y	Z	Peak	71	106	141	177	212	283	354	424	495	566	636	707	849	Î061	1414
450	-300	0	15.5	9.2	15.5	14.5	12.6	10.7	7.8	6.8	6.3	5.8	5.3	5.1	4.8	0	0	o
450	-150	0	11.1	2.9	6.8	11.1	10.4	7.0	5.3	2.1	2.3	1.3	2.4	2.5	2.4	0	0	0
450	0	0	4.4	2.2	2.9	3.4	3.2	4.4	2.5	.4	.2	.9	1.2	1.2	1.0	0	0	0
450	150	0	11.1	10.7	11.1	10.7	8.6	7.6	5.8	4.8	4.6	2.9	2.9	4.4	3.9	2.5	.4	0
450	300	0	15.2	6.8	15.2	14.0	11.1	8.7	6.3	5.8	5.3	4.8	4.6	4.9	3.9	3.6	0	0
1000	-400	0	5.1	0	0	1.2	4.6	5.1	3.9	3.3	2.7	2.2	1.9	1.7	1.7	1.9	.5	0
1000	-200	0	2.6	0	.6	2.1	2.6	1.8	1.3	.8	1.0	.5	.9	1.1	1.2	0	0	0
1000	0	0	4.0	0	1.5	2.9	3.6	4.0	2.5	2.1	1.9	1.3	.9	1.0	1.6	0	0	0
1000	0	33	. 8	0	.3	.2	.8	.8	.5	.5	.6	.5	.3	.3	.2	0	0	0
1000	0	66	1.0	0	.2	.2	1.0	.8	.2	.2	.3	.6	.4	.2	.3	0	0	0
1000	200	0	3.8	0	1.3	2.7	2.5	3.8	2.4	1.7	1.6	1.4	1.6	1.2	1.3	0	٥	0
1000	400	0	4.9	0	0	4.0	4.7	4.9	4.1	2.9	2.8	2.7	2.3	2.2	2.0	1.8	.7	0
2000	0	0	1.2	0	0	0	0	.2	1.0	1.1	1.2	1.1	1.0	.9	.7	.5	.3	.1
3500	0	0	1.0	0	0	0	0	0	0	.4	.8	1.0	1.0	1.0	1.0	.7	.5	.4
3500	0	33	.8	0	0	0	.1	.1	.3	.6	.8	.7	.7	.6	.6	.4	.4	.2
3500	0	66	.7	0	ó	0	0	0	0	.4	.7	.5	.4	.4	.4	.4	.3	.2
5000	0	0	.6	0	0	0	0	0	0	.1	.2	.2	.4	.5	.5	.4	.2	.2

PEAK CONCENTRATION DATA FOR VARIABLE BOILOFF

Low Soil - 1:400 Wind Speed - 7 mph Stratification - Stable

Pos	ition (ft)	Maximum						Max	imum Peal	0ccurs	at Time	(sec)					
X	Y	Z	Peak	71	106	141	177	212	283	354	424	495	566	636	707	849	1061	1414
450	-300	0	19.6	13.6	19.6	18.6	15.0	12.5	7.9	6.1	5.4	5.7	4.6	4.5	4.6	1.3	0	0
450	-150	0	13.9	10.7	12.9	13.9	13.2	11.8	8.9	9.3	8.9	8.6	8.4	8.6	8.6	5.4	1.8	.7
450	0	0	3.6	1.1	1.8	3.0	3.6	2.7	2.3	3.2	2.3	2.3	2.7	2.5	2.9	3.2	3.0	2.7
450	150	0	8.9	5.0	8.2	8.9	7.9	6.4	5.7	5.0	5.4	5.7	5.0	5.0	5.0	2.9	.4	0
450	300	0	16.9	3.6	16.8	16.9	15.4	10.7	7.1	5.7	5.0	4.3	3.9	3.6	3.6	1.1	0	0
450	450	0	13.2	0	7.1	13.2	10	7.9	5.0	3.9	2.9	1.8	1.6	1.4	1.1	0	0	0
1000	-200	0	- 4.2	0	.4	2.3	3.6	4.2	3.4	2.7	1.4	1.1	.6	.7	.5	.7	0	0
1000	0	0	5.0	0	0	1.2	3.9	4.8	5.0	3.2	2.9	3.2	2.2	2.1	2.1	1.8	0	0
1000	0	33	2.5	.5	.3	1.6	2.5	2.3	1.2	1.6	1.7	1.1	.7	1.1	1.4	.5	.5	.7
1000	0	66	1.9	.5	.5	.7	.9	.9	1.0	1.1	1.2	1.3	1.3	1.4	1.5	1.6	1.9	0
1000	200	0	3.6	0	0	1.8	3.6	2.9	2.5	1.3	.7	.9	.9	.9	.6	.7	.5	0
2000	0	0	2.3	.1	.1	.1	.2	.3	1.1	2.1	2.1	2.0	2.0	1.8	1.6	1.2	.9	.4
3500	0	0	1.0	0	0	0	0	0	0	.2	.4	.9	.9	.9	.9	.7	.3	.1

PEAK CONCENTRATION DATA FOR VARIABLE BOILOFF

High	Soil	-	1:400
Wind	Speed	-	7 mph
Stra	tification	-	Neutral

Fos	ition (ft)	Maximum						Max	imum Peak	Occurs	at Time	(sec)					
x	Y	Z	Peak	71	106	141	177	212	283	354	424	495	566	636	707	849	1061	1414
459	-450	0	8.3	0	8.0	8.3	7.2	6.3	5.2	4.4	3.6	3.1	3.5	3.5	2.5	0	0	0
450	-300	0	11.5	6.8	11.5	10.8	7.8	7.5	6.2	5.3	4.8	4.4	3.8	3.4	2.8	0	0	0
450	0	0	11.5	.1	11.5	11.0	6.1	4.7	1.0	1.1	1.5	1.7	2.2	1.5	.7	0	0	0
1000	-200	0	3.1	0	0	2.9	3.0	3.1	2.5	1.9	1.5	1.5	1.2	1.1	.8	.6	.7	0
1000	0	0	3.7	0	0	.5	3.0	3.7	2.5	1.7	1.4	1.0	.8	.6	.8	.6	.8	0
1000	0	33	2.4	0	.3	2.4	1.2	1.3	1.8	1.0	.7	.8	.5	.3	.6	.4	.3	0
1000	0	66	. 6	.2	.5	.4	.6	. 2	.6	.1	.4	. 4	.1	.1	.2	.3	.2	0
1000	200	0	4.1	0	0	2.8	4.1	3.7	2.8	1.8	.7	.7	.3	.5	.3	.2	. 2	0
2000	0	0	. 8	.1	0	.1	.1	.4	.7	.8	.6	.6	.5	.3	. 2	.2	.1	.1
3500	0	0	.4	0	0	0	.1	. 1	.3	.4	.4	.3	.3	.2	.2	.1	0	0
3500	0	33	. 5	.1	.1	.1	0	0	. 2	.4	.5	.5	.4	.3	.5	.2	.1	. 1
3500	0	66	.5	0	0	.1	0	.1	.1	.4	.5	.2	.3	.2	.2	.1	.1	0
5000	0	0	.2	0	0	0	0	0	0	0	.1	.2	.2	.2	.2	.1	.1	0

PEAK CONCENTRATION DATA FOR VARIABLE BOILOFF

High Soil - 1:400 Wind Speed - 7 mph Stratification - Stable

Post	ition (ft)	Maximum						Max	imum Peal	k Occurs	at Time	(sec)					
X	Y	Z	Peak	71	106	141	177	212	283	354	424	495	566	636	707	849	1061	1414
450	0	0	10.3	7.8	10.3	4.3	3.9	5.4	4.3	5.0	. 5.2	5.4	7.3	6.4	7.1	7.8	7.5	0
450	150	0	11.8	8.2	11.8	11.0	10.0	9.3	8.2	8.2	8.2	8.6	9.5	9.6	10.3	11.1	8.9	7.1
450	300	0	15.4	1.1	14.3	15.4	12.1	10.7	7.9	5.4	3.9	3.9	3.2	2.1	2.1	.7	0	0
450	450	0	10.0	0	7.5	8.9	10.0	7.9	3.6	1.8	.5	.4	.4	0	0	0	0	0
1000	-200	0	3.0	.2	.4	1.1	2.5	3.0	2.1	1.2	0	0	0	0	0	0	0	0
1000	0	0	2.7	.9	.5	.6	2.7	2.1	1.2	.2	4.5	.9	.9	1.1	0	0	0	0
1000	0	33	1.1	.2	.5	.7	.6	.4	.5	.5	.5	.5	.7	.8	.9	1.1	0	0
1000	200	0	2.9	.4	.9	2.1	2.5	2.7	2.7	2.0	2.0	1.8	1.2	1.4	1.8	1.8	0	0
2000	0	0	1.4	0	0	0	.1	0	.4	1.1	1.4	1.4	1.0	.8	.8	.4	.1	0

PEAK CONCENTRATION DATA FOR VARIABLE BOILOFF

High Soil - 1:400 Wind Speed - 16 mph @ 10 meters Stratification - Neutral

Pos	ition (ft)	Maximun						Max	imum Peak	Occurs	at Time	(sec)					
x	Y	Z	Peak	71	106	141	177	212	283	354	424 .	495	566	636	707	849	1061	1414
450	- 300	0	11.1	0 -	0	2.9	7.7	11.1	9.3	7.8	6.8	4.8	3.3	2.9	2.7	2.5	.8	.6
450	-150	0	11.1	0	1.0	4.8	11.1	9.7	8.1	6.8	5.2	4.7	4.5	2.9	2.5	2.3	2.7	1.4
450	0	0	6.4	3.9	3.9	3.9	3.5	6.4	1.4	1.4	1.4	1.0	3.5	1.4	1.0	.8	.1	0
450	150	0	12.4	0	0	3.9	12.4	11.0	6.8	5.2	4.3	3.9	3.3	2.3	1.9	1.4	1.4	.8
450	300	0	12.4	0	0	4.8	9.1	12.4	7.8	5.8	5.4	4.5	3.5	2.7	2.1	.97	.5	.4
450	450	0	10.9	0	0	0	6.8	10.9	10.9	9.7	6.8	4.8	3.7	1.4	0	0	0	0
450	600	0	2.1	0	0	0	0	0	.5	2.1	.5	0	0	0	0	0	0	0
1000	-200	0	2.1	0	1.6	2.0	2.1	1.6	1.2	.8	.6	.6	.5	.3	.3	0	0	0
1000	0	0	1.4	0	1.2	1.2	1.3	1.4	.8	.5	.3	.3	.2	.1	.1	.2	.4	0
1000	0	33	1.5	.1	1.4	1.5	.6	.6	.6	.5	.4	.4	.3	.3	.4	0	0	0
1000	0	66	1.7	.2	1.7	.8	.6	.9	.8	.4	.4	.3	.3	.3	.2	0	0	0
1000	200	0	2.2	0	.1	.2	.8	1.8	1.8	2.2	1.3	1.1	1.1	.8	.5	.3	.4	.2
2000	0	0	.5	.1	.8	.4	.5	.4	.3	.2	.2	.1	.1	.1	.1	.1	.1	0
3500	0	0	.3	0	0	0	.1	.2	.3	.3	.1	.1	.2	.1	.1	.1	.1	٥
3500	0	33	.3	.1	.1	.1	.2	.3	.3	.2	.2	.2	.2	.2	.2	.2	0	0
3500	0	66	.4	.1	.1	.1	.1	.3	.3	.2	.2	.1	.1	.1	.1	.2	0	0
5000	0	0	. 3	0	.1	.1	.1	.1	.3	.3	.3	.1	.2	.1	.1	0	0	0

PEAK CONCENTRATION DATA FOR VARIABLE BOILOFF

High Concrete - 1:400 Wind Speed - 7 mph Stratification - Neutral

Pos	ition (ft)	Maximum						Max	imum Peal	Occurs	at Time	(sec)					
x	Y	z	Peak	71	106	141	177	212	283	354	424	495	566	636	707	849	1061	1414
450	-150	0	3.3	0	. 4	2.6	3.0	3.3	2.2	2.0	1.8	1.9	2.1	1.1	.9	1.2	.7	0
450	0	0	1.9	0	.7	1.5	1.5	1.6	1.8	1.5	1.4	.9	.8	1.2	1.3	.6	.4	. 2
450	150	0	2.6	.1	.7	2.4	2.6	2.6	1.5	1.5	1.5	1.7	1.2	1.4	1.4	1.2	.6	0
1000	-200	0	.9	0	.1	. 3	.4	.6	.8	.9	.7	.6	.4	.5	.3	.3	.1	.1
1000	0	0	.5	.1	.1	.1	.1	.2	.5	.5	.4	.3	.3	.3	.2	.2	.2	.1
1000	0	33	.5	.1	.1	.2	.3	.3	.4	.4	.4	.4	.3	.3	.3	.3	.2	.2
1000	0	66	.4	.1	.1	. 2	.3	.4	.3	.4	.4	.3	.3	.3	.3	.2	.2	. 2
1000	200	0	.8	0	.1	.2	.4	.6	.6	.3	.3	.5	.4	.4	.4	.3	. 2	.1
2000	0	0	.2	.1	.1	.1	.1	.1	.1	.1	.2	.2	.2	.2	.1	.2	.2	.1
3500	0	0	.1	.1	.1	.1	.1	.1	.1	.1	.1	.1	.1	.1	.1	.1	.1	0

PEAK CONCENTRATION DATA FOR VARIABLE BOILOFF

High Concrete Wind Speed - 16 mph Stratification - Neutral

Pos	ition (ft)	Maximum						Max	imum Peal	k Occurs	at Time	(sec)					
x	Y	2	Peak	71	106	141	177	212	283	354	424 .	495	566	636	707	849	1061	1414
450	0	0	1.1	0	.5	1.1	1.0	1.1	1.0	.9	.7	.5	.6	.5	.5	.5	.2	.1
1000	- 200	0	.6	0	0	.3	.4	.5	.5	.6	.3	.4	.4	.3	.2	.2	.2	0
1000	0	0	.6	0	.1	.2	.5	.6	.5	. 5	.5	.4	.3	.3	.2	.2	.1	0
1000	0	33	.4	.1	.1	.2	.3	.4	.3	.4	.4	.3	.3	.3	.3	.2	.1	0
1000	0	66	.4	0	.1	.3	.2	.2	.3	. 3	.2	.3	.3	.4	.2	.2	.2	0
1000	200	0	.5	0	0	.2	.4	.5	.4	.4	.4	.4	.4	.4	.3	.2	.2	0
2000	0	• 0	.2	0	0	0	.1	.1	.2	.1	.1	.1	.1	.1	.1	.1	.1	0

PEAK CONCENTRATION DATA FOR VARIABLE BOILOFF

High	Insulated	Concrete	-	1:400
Wind	Speed		-	7 mph
Strat	tification		-	Neutral

Posi	tion (ft)	Maximum						Max	imum Peal	k Occurs	at Time	(sec)					
X	Y	Z	Peak	71	106	141	177	212	283	354	424	495	566	636	707	849	1061	1414
450	0	0	.5	0	0	0	.1	.1	.3	. 3	.2	.3	.4	.4	.4	. 3	.4	υ
1000	-200	0	.2	0	0	.1	.1	0	.1	.1	.1	.2	.1	.1	.1	.1	.1	0
1000	0	0	.3	0	0	. 2	.1	. 2	. 2	.2	.3	.2	.3	.1	.2	. 2	.1	0
1000	0	33	.3	0	.1	.1	.1	.1	. 2	. 2	1	.1	.3	.2	.2	. 3	.1	0
1000	200	0	.2	0	0	0	.1	0	.1	.2	.2	.1	.2	.2	.2	.1	.1	U

PEAK CONCENTRATION DATA FOR VARIABLE BOILOFF

High Insulated	Concrete	-	1:400
Wind Speed		-	16 mph
Stratification		-	Neutral

Post	ition (ft)	Maximum						Max	imum Peal	k Occurs	at Time	(sec)					
x	Y	Z	Peak	71	106	141	177	212	283	354	424	495	566	636	707	849	1061	1414
450	0	0	.5	0	0	0	.2	.3	.3	.3	.5	.4	.5	.3	.3	0	0	0
1000	-200	0	.2	0	.1	.1	.1	.1	.1	.1	.1	.1	.2	.1	0	0	0	0
1000	0	0	.3	.1	.1	.1	.1	.1	.1	· .1	.2	.3	.2	.2	.2	0	0	0
1000	200	0	.1	0	0	0	0	0	0	.1	.1	0	0	0	0	0	0	0

PEAK CONCENTRATION DATA FOR VARIABLE BOILOFF

Capistrano Case I Wind Speed - 12 mph @ 5 ft. Stratification - Neutral

Po: x	sition y	(ft) z	Maximum Peak	51	77	103	Maxim 129	um Peak 154	that 206	occurs 257	at time 309	(sec) 360	412	463	515
160	0	0	16.9	14.1	16.9	16.5	11.8	9.3	7.1	4.9	3.8	3.0	3.0	3.4	3.0
320	-80	0	9.9	6.2	9.0	9.0	10.0	5.4	1.8	0.8	0.5	0.2	0.6	0.1	0.4
320	0	0	9.9	7.5	8.8	9.9	6.9	4.3	3.2	2.3	2.1	1.7	1.9	1.7	1.5
320	0	10	4.7	3.9	4.7	2.4	3.8	3.0	2.4	2.3	1.5	1.1	1.2	1.6	1.4
320	80	0	9.2	5.4	9.2	8.3	6.7	3.4	1.0	0.4	0	0	0	0	0
640	-100	0	4.7	0.6	3.8	4.7	3.9	3.6	0.3	0.2	0.2	0.2	0.1	0.2	0
640	0	0	5.3	1.3	4.1	4.7	5.2	4.1	2.8	1.3	1.1	0.8	0.6	0.6	0.6
640	0	20	2.0	0.8	1.1	2.0	1.0	0.9	1.1	0.5	0.5	0.6	0.5	0.7	0.3
640	100	0	4.1	1.2	3.6	4.1	3.9	2.9	0.7	0.3	0	0	0	0	0
960	-80	0	3.1	0.2	1.4	2.3	3.1	2.6	1.6	0.8	0.6	0.4	0.3	0.5	0.4
960	0	0	3.0	0.2	1.5	2.8	2.8	2.6	1.5	1.3	0.8	0.6	0.6	0.5	0.5
960	0	20	1.9	0.1	0.8	1.6	1.9	1.5	0.8	0.6	0.4	0.4	0.5	0.5	0.3
960	80	0	2.4	0.2	1.4	1.7	2.1	2.4	1.2	0.9	0.5	0.6	0.4	0.3	0.2

PEAK CONCENTRATION DATA FOR VARIABLE BOILOFF

Capistrano Case II Wind Speed - 12 mph @ 5 ft. Stratification - Neutral

Pos	sition	(ft)	Maximum				Maxim	um Peak	that	occurs	at time	(sec)			
х	У	Z	Peak	51	77	103	129	154	206	257	309	360	412	463	515
160	0	0	13.7	13.7	10.3	7.8	8.0	6.6	6.0	5.8	3.4	4.0	3.6	3.4	2.3
320	-80	0	4.8	2.3	4.8	4.0	1.7	0.8	2.1	0.3	0.9	1.3	0.7	0.1	0.2
320	0	0	6.6	6.6	6.1	4.7	6.0	4.0	3.8	2.5	2.2	2.2	1.6	1.5	1.0
320	0	10	3.4	3.2	2.4	3.0	3.4	2.2	2.8	3.0	2.2	1.2	2.3	1.9	1.1
320	80	0	4.9	3.2	4.9	3.0	2.4	2.8	0.1	0.1	0.1	0.1	0.1	0.1	0
640	-100	0	1.4	0.4	1.4	1.2	1.2	1.0	0.5	0.8	0.4	0.3	0.6	0.1	0.3
640	0	0	2.7	1.1	2.7	2.7	2.7	1.9	1.6	1.3	1.4	1.0	1.0	0.9	0.7
640	0	20	1.1	0.7	0.7	0.9	0.8	0.6	1.1	0.6	0.5	0.7	0.7	0.6	0.8
640	100	0	2.2	0.2	0.6	2.2	1.7	1.1	1.0	1.0	0.2	0	0.3	0.3	0
960	-80	0	2.1	0	1.1	1.7	2.1	1.5	0.5	1.0	0.6	0.6	0.4	0.4	0.8
960	0	0	1.7	0	1.1	1.6	1.7	1.7	1.5	1.0	0.9	0.6	0.5	0.6	0.5
960	0	20	1.0	0	0.9	0.9	0.9	0.9	0.9	1.0	0.7	0.5	0.5	0.4	0.4
960	80	0	1.8	0	0.4	1.8	1.6	1.7	1.0	0.7	0.7	0.2	0.1	0.3	0.3

TABLE 8

			H _e -N ₂ Rele	ase MW16		
			Wind Speed		Wind S	peed
Model	Boiloff Rate (1bm/sec)	7 mph (10 ft/sec)	12 mph (18 ft/sec)	16 mph (23 ft/sec)	7 mph (10 ft/sec)	16 mph (23 ft/sec)
High Dike	2400	1,6,9		3	17,21,25	18,22
1/400	1400	2,7,10		4		
High Dike	1400	14				
1/200	250	15		16		
Low Dike	2400	5,8,11			19,23,26	20,24
1/400						
Capistrano 044	202		12			
1/106	141		13			

LOCATOR TABLE MEAN CONCENTRATION RESULTS

8-1 to 8-26 Please refer to errata on verso of title page.

RUN NUMBER DIKE TYPE SCALE 1 TO STRATIFICATION WIND SPEED BOIL OFF RATE	ONE HIGH 400 NEUTRAL 7 MPH 2400 LB/S			12
X(FT)	Y(FT)	2(FT)	DILLUTION	K COEF X 10-2
$\begin{array}{c} 450.00000\\ 450.00000\\ 450.00000\\ 450.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 350$	$\begin{array}{c} -600 \cdot 00000 \\ -300 \cdot 00000 \\ -0 \cdot 00000 \\ 300 \cdot 00000 \\ 600 \cdot 00000 \\ -800 \cdot 00000 \\ -400 \cdot 00000 \\ -0 \cdot 0000 \\ -0 \cdot 00000 \\ -0 \cdot 0000 \\ -0 \cdot 000 \\ -0 \cdot 0$	$\begin{array}{c} -0.00000\\ -0.0000\\ -0.00000\\ -0.00000\\ -0.00000\\ -0.00000\\ -0.00000\\ -0.00000\\ $	$\begin{array}{c} 4 \cdot 21353\\ 3 \cdot 37087\\ 2 \cdot 17170\\ 6 \cdot 44982\\ 4 \cdot 31076\\ 2 \cdot 91713\\ 3 \cdot 63015\\ 3 \cdot 63015\\ 3 \cdot 63084\\ \cdot 16228\\ \cdot 19469\\ \cdot 22710\\ \cdot 06528\\ \cdot 03264\\ \cdot 22710\\ 0 \cdot 00000\\ \cdot 45397\\ \cdot 14607\\ 0 \cdot 00000\\ \cdot 45397\\ \cdot 14566\\ \cdot 58361\\ 0 \cdot 00000\\ \cdot 00000\\ \end{array}$	2.06417 1.65136 1.06390 3.15971 2.11180 1.42908 1.77838 1.60373 .33354 .07950 .09538 .11125 0.3187 .07950 .01599 .11125 0.00000 .22240 .07156 0.00000 .30178 .36529 .28591 0.00000

RUN NUMBER TWO DIKE TYPE HIGH SCALE 1/400 STRATIFICATION WIND SPEED 7 MP BOIL OFF RATE 1	NEUTRAL PH 1400 LB/S		
X(FT) Y(FT	r) Z(FT)	DILLUTION	K COEF X 10-2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.69026 2.53145 2.27865 4.57004 2.97871 2.06151 2.80694 2.39533 .63871 .17524 0.00000 .14932 .13959 .6663 .19145 .23682 .40866 .23358 .71001 .58037 .42156 .34702 0.00000	2.21413 2.08343 1.87537 3.76122 2.45153 1.69666 2.31016 1.97140 .52567 .14423 0.00000 .12289 .11489 .54434 .10422 .15757 .19491 .33628 .19224 .58435 .47765 .34695 .28560 0.00000

Table 8-3

DIKE TYPE	HIGH			
STRATIFICATION WIND SPEED BOIL OFF RATE	NEUTRAL 16 MPH 2400 LB/S			
X (FT)	Y(FT)	Z(FT)	DILLUTION	K COEF X 10-2
$\begin{array}{c} 450 \cdot 00000\\ 450 \cdot 00000\\ 450 \cdot 00000\\ 450 \cdot 00000\\ 1000 \cdot 0000\\ 1000 \cdot 0000\\ 1000 \cdot 0000\\ 1000 \cdot 0000 \\ 1000 \cdot 0000 \\ 10$	$\begin{array}{c} -600 \cdot 00000 \\ -300 \cdot 00000 \\ -0 \cdot 00000 \\ 300 \cdot 00000 \\ 600 \cdot 00000 \\ -0 \cdot 00000 \\ -400 \cdot 00000 \\ -0 \cdot 0000 \\ -0 \cdot 00000 \\ -0 \cdot 0000 \\ -0 \cdot 000 \\ -0 \cdot 00 \\ -0 \cdot $	$\begin{array}{c} -0 & 0 & 0 & 0 & 0 \\ -0 & 0 & 0 & 0 & 0 \\ -0 & 0 & 0 & 0 & 0 \\ -0 & 0 & 0 & 0 & 0 & 0 \\ -$	$\begin{array}{c} .5/713\\ 3.9/370\\ 1.70176\\ 4.98489\\ .35998\\ .43452\\ 3.24771\\ 1.00494\\ .61278\\ .33405\\ .30164\\ .34702\\ 0.00000\\ .71001\\ .11367\\ .17848\\ .12339\\ .39887\\ .21089\\ .57389\\ .57389\\ .70029\\ .45073\\ .40536\\ 0.00000\\ 0.00000\\ 0.00000\\ \end{array}$.40469 2.78642 1.19330 3.49549 .25242 .30470 2.27735 .70468 .42969 .23424 .21152 .24333 0.00000 .49787 .07970 .12516 .08652 .27970 .14788 .40242 .49105 .31606 .28424 0.00000 0.00000

RUN NUMBER DIKE TYPE SCALE 1/4	FOUR HIGH 00			
STRATIFICATION WIND SPEED BOIL OFF RATE	N NEUTRAL 16 MPH 1400 LH/S			
X(FT)	Y (FT)	Z (FT)	DILLUTION	K COEF X 10-2
450.00000	-600.00000	-0.00000	•14283 2•15225	•16826 2•53545
450.00000 450.00000 450.00000	-0.00000 300.00000 600.00000	-0.00000 -0.00000 -0.00000	1.41006 2.16198 .34053	1.66112 2.54691 .40117
	-800.00000 -4.00.00000 -0.00000	-0.00000 -0.00000 -0.00000	• 36646 2•15549 • 52527	.43171 2.53927 .61879
		66.00000 -0.00000 -0.00000	• 27896 • 23358 • 23358	•40225 •32862 •27517
	-0.00000 -800.00000 -400.00000	-0.00000 -0.00000 -0.00000 -0.00000	0.00000 60630	0.00000 71425 20263
3500.00000 3500.00000 3500.00000	-0.00000 -0.00000 -0.00000	-0.00000 33.00000 100.00000	.20441 .26275 .20765	24081 30953 24463
3500.00000 3500.00000 3500.00000	-0.00000 400.00000 800.00000	-0.00000 -0.00000 -0.00000	•05209 •25303 •20117	.06136 .29808 .23699
6500.00000 -0.00000 -0.00000		-0.00000 -0.00000 -0.00000 -0.00000	• 25303 0• 00000	• 30953 • 29808 0• 00000

RUN NUMBER DIKE TYPE SCALE 1/400 STRATIFICATION WIND SPEED ROIL OFF RATE	FIVE OW 7 NEUTRAL 7 MPH 2400 LB/S			² а .
X (FT)	Y(FT)	Z(FT)	DILLUTION	K COEF X 10-2
$\begin{array}{c} 450.00000\\ 450.00000\\ 450.00000\\ 450.00000\\ 450.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 3500.000000\\ 350$	$\begin{array}{c} -600 \cdot 00000 \\ -300 \cdot 00000 \\ -0 \cdot 00000 \\ 300 \cdot 00000 \\ 300 \cdot 00000 \\ -0 \cdot 00000 \\ -800 \cdot 00000 \\ -0 \cdot 0000 \\ -0 \cdot 000 \\ -0 \cdot 00 \\ -0 \cdot 0 \\ -0 \cdot 00 \\$	$\begin{array}{c} -0.00000\\ -0.0000\\ -0.00000\\ -0.00000\\ -0.00000\\ -0.00000\\ -0.00000\\ $	$\begin{array}{c} 6 \cdot 28777 \\ 4 \cdot 73209 \\ 2 \cdot 00965 \\ 13 \cdot 32074 \\ 10 \cdot 72794 \\ 5 \cdot 31547 \\ 6 \cdot 44982 \\ 4 \cdot 34317 \\ 2 \cdot 00965 \\ \cdot 42156 \\ 1 \cdot 84760 \\ 2 \cdot 98195 \\ \cdot 09746 \\ 1 \cdot 62073 \\ \cdot 00347 \\ 1 \cdot 55591 \\ 1 \cdot 16699 \\ \cdot 77807 \\ \cdot 22710 \\ 1 \cdot 58832 \\ 1 \cdot 32904 \\ 1 \cdot 23181 \\ 1 \cdot 03735 \\ 0 \cdot 00000 \\ 0 \cdot 00000 \end{array}$	3.08032 2.31821 98451 6.52572 5.25553 2.60400 3.15971 2.12768 98451 .20652 .90512 1.4683 .04774 .79398 .00170 .76223 .57170 .38117 .11125 .77810 .65109 .60345 .50819 0.00000

RUN NUMBER	SIXR			5
DIKE TYPE	НІСН			
SCALE 1/40				
WIND SPEED				
POTI OFF DATE	2400 LBM/S			
BUIL OFT MATE	2400 18475			
X(FT)	Y(FT)	Z(FT)	DILLUTION	K COEF X 10-2
«E0 00000	-600 00000	-0 00000	16 41760	H 04 384
450.00000	-300 00000	-0.00000	10.41/00	10 35121
450 00000	-300.00000	-0.00000	4 26560	2 08968
450 00000	300 00000	-0.00000	4.20300	5 91671
450 00000	600 00000	-0.00000	9.92000	4 95072
1000 00000	-800.00000	-0.00000	1.56400	3.70554
1000 00000	-400.00000	-0.00000	H. 75440	4.28871
1000.00000	-0.00000	-0.00000	6.29920	3.04542
1000.00000	-0.00000	33.00000	4.31520	2.11398
1000.00000	-0.00000	66.00000	1.91840	1,91959
1000.00000	400.00000	-0.00000	.91760	44952
1000.00000	800.00000	-0.00000	0.00000	0.00000
2000.00000	-0.00000	-0.00000	2.82720	1.38502
3500.00000	-800.00000	-0.00000	.66960	.32803
3500.00000	-400.00000	-0.00000	.84320	.41308
3500.00000	-0.00000	-0.00000	1.41360	.69251
3500.00000	-0.00000	33.00000	1.66160	.81400
3500.00000	-0.00000	100.00000	1.24000	.60747
3500.00000	-0.00000	200.00000	1.71120	.83830
3500.00000	400.00000	-0.00000	• 37200	.18224
3500.00000	800.00000	-0.00000	0.00000	0.00000
5000.00000	-0.00000	-0.00000	1.11000	. 340/2
6500.00000	-0.00000	-0.00000	• / 9 3 6 0	
-0.00000	-0.00000	-0.00000	0.00000	0.00000
-0.00000	-0.00000	-0.00000	0.00000	0.0000

Table 8-7

RUN NUMBER DIKE TYPE SCALE 1/40	SEVENR HIGH			
STRATIFICATION WIND SPEED BOIL OFF RATE	G STRAT M MPH 1400 LBM/S			
X(FT)	Y(FT)	Z (FT)	DILLUTION	K COEF X 10-2
$\begin{array}{c} 450.00000\\ 450.00000\\ 450.00000\\ 450.00000\\ 450.00000\\ 1000.0000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.0000\\ 1000.0000\\ 1000.0000\\ 1000.0000\\ 1000.0000\\ 1000.0000\\ 1000.0000\\ 1000.000\\ 10000\\ 1000.000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 1$	$\begin{array}{c} -600 \\ -300 \\ 00000 \\ -300 \\ 00000 \\ -0 \\ 00000 \\ 300 \\ 00000 \\ -0 \\ 00000 \\ -400 \\ 00000 \\ -400 \\ 00000 \\ -0 \\ 00000 \\ -0 \\ 00000 \\ -0 \\ 00000 \\ -0 \\ 00000 \\ -0 \\ 00000 \\ -0 \\ 00000 \\ -0 \\ 00000 \\ -0 \\ -0 \\ 00000 \\ -0 \\ -0 \\ 00000 \\ -0 \\ -0 \\ 00000 \\ -0 \\ -0 \\ 00000 \\ -0 \\ -0 \\ 00000 \\ -0 \\ -0 \\ 00000 \\ -0 \\ -0 \\ 00000 \\ -0 \\ -0 \\ 00000 \\ -0 \\ -0 \\ 0 \\ $	$\begin{array}{c} -0 & 0 & 0 & 0 & 0 & 0 \\ -0 & 0 & 0 & 0 & 0 & 0 \\ -0 & 0 & 0 & 0 & $	$\begin{array}{c} 9.30000\\ 13.14400\\ 1.63680\\ 7.14240\\ 6.12560\\ 4.71200\\ 5.38160\\ 2.60400\\ 1.68640\\ 1.90960\\ .29760\\ 0.00000\\ .76880\\ .54560\\ .37200\\ .32240\\ .12400\\ .12400\\ .32240\\ .12400\\ .32240\\ .32240\\ .32240\\ .00000\\ 0.0000\\ 0.000\\ 0.000\\ 0.0000\\ 0.0000\\ 0.000\\ 0$	7.65406 10.81774 1.34712 5.87832 5.04148 3.87806 4.42915 2.14314 1.38794 1.57163 .24493 0.000000 .63274 .44904 .30616 .26534 .10205 .06123 .16329 0.000000 0.000000 .30616 .26534 0.000000 0.0000000 0.000000

RUN NUMBER DIKE TYPE SCALE 1/40 STRATIFICATION WIND SPEED BOIL OFF RATE	EIGHTR LOW 0 G STRAT 7 MPH 2400 LBM/S			
X (FT)	Y(FT)	Z(FT)	DILLUTION	K COEF X 10-2
$\begin{array}{c} 450.00000\\ 450.00000\\ 450.00000\\ 450.00000\\ 450.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 3500$	$\begin{array}{c} -600 \cdot 00000 \\ -300 \cdot 00000 \\ -0 \cdot 00000 \\ 300 \cdot 00000 \\ 300 \cdot 00000 \\ -0 \cdot 00000 \\ -800 \cdot 00000 \\ -400 \cdot 00000 \\ -0 \cdot 00000 \\ -0 \cdot 00000 \\ -0 \cdot 00000 \\ 400 \cdot 00000 \\ -0 \cdot 0000 \\ -0 \cdot 000 \\ -0 \cdot 00 \\ -0 \cdot 00$	$\begin{array}{c} -0 & 0 & 0 & 0 & 0 & 0 \\ -0 & 0 & 0 & 0$	$15 \cdot 12800$ $21 \cdot 05520$ $2 \cdot 30640$ $12 \cdot 97040$ $11 \cdot 53200$ $5 \cdot 70400$ $8 \cdot 55600$ $5 \cdot 55520$ $2 \cdot 80240$ $1 \cdot 06640$ $0 \cdot 00000$ $1 \cdot 48800$ $1 \cdot 31440$ $1 \cdot 36400$ $0 \cdot 9920$ $0 \cdot 00000$ $- 94240$ $5 \cdot 7040$ $0 \cdot 00000$	7.41108 10.31476 1.12989 6.35409 5.64943 2.79434 4.19151 2.72144 1.37287 52242 0.00000 .72896 .64391 .66821 .04860 0.00000 .46167 .27943 0.00000

RUN NUMBER DIKE TYPE SCALE 1/400 STRATIFICATION WIND SPEED BOIL OFF RATE	SIX HIGH D G STABLF 7 MPH 2400 LR/S			x)
X(FT)	Y(FT)	Z(FT)	DILLUTION	K COEF X 10-2
$\begin{array}{c} 450 \cdot 00000 \\ 1000 \cdot 0000 \\ 1000 \cdot 000 \\ 1000 \cdot 000 \\ 1000 \cdot 0000 \\ 1000 \cdot 000 \\ 1000 \cdot 0000 \\ 1000 \cdot 000 \\ 100 \cdot 000 \\ 1000 \cdot 000 \\ 1$	$\begin{array}{c} -600.00000\\ -300.00000\\ -0.00000\\ 300.00000\\ 600.00000\\ -600.00000\\ -400.00000\\ -0.0000\\ -0.0000\\ -0.0000\\ -0.00000\\ -0.000\\ -0.00$	$\begin{array}{c} -0.00000\\ -0.0000\\ -0.00000\\ -0.00000\\ -0.00000\\ -0.00000\\ -0.00000\\ $.00023 3.33846 1.03735 3.33846 .03264 1.39386 1.88001 .42156 .19469 .16228 .61602 .065023 .00023 .55120 .37294 .35674 .25951 .25951 .25951 .25951 .25951 .25951 .25951 .25951 .35674 .35674	$\begin{array}{c} 0 \ 0 \ 0 \ 1 \ 1 \\ 1 \ 6 \ 3 \ 5 \ 4 \ 8 \\ 5 \ 0 \ 8 \ 1 \ 9 \\ 1 \ 6 \ 3 \ 5 \ 4 \ 8 \\ 0 \ 1 \ 5 \ 9 \ 9 \\ 1 \ 6 \ 3 \ 5 \ 4 \ 8 \\ 0 \ 1 \ 5 \ 9 \ 9 \\ 6 \ 8 \ 2 \ 8 \ 4 \\ 9 \ 2 \ 1 \ 0 \ 0 \\ 2 \ 0 \ 6 \ 5 \ 2 \ 8 \\ 0 \ 9 \ 5 \ 3 \ 0 \ 1 \ 5 \ 8 \\ 0 \ 3 \ 0 \ 1 \ 7 \ 5 \ 0 \\ 1 \ 6 \ 1 \ 7 \ 4 \ 7 \ 6 \\ 1 \ 5 \ 8 \ 9 \\ 0 \ 7 \ 9 \ 5 \ 9 \\ 1 \ 2 \ 7 \ 1 \ 3 \ 1 \ 1 \ 7 \ 4 \ 7 \ 6 \\ 1 \ 7 \ 4 \ 7 \ 6 \\ 1 \ 7 \ 4 \ 7 \ 6 \\ 1 \ 7 \ 4 \ 7 \ 6 \\ 1 \ 7 \ 4 \ 7 \ 6 \\ 1 \ 7 \ 4 \ 7 \ 6 \\ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$

Please refer to errata on verso of title page.

RUN NUMBER DIKE TYPE SCALE 1/ STRATIFICATI WIND SPEED ROIL OFF RAT	SEVEN HIGH 400 ON G STABLE 7 MPH E 1400 LB/			
X (FT)	Y (FT)	Z(FT)	DILLUTION	K COEF X 10-2
$\begin{array}{c} 450.00000\\ 450.00000\\ 450.00000\\ 450.00000\\ 1000.0000\\ 1000.0000\\ 1000.0000\\ 1000.0000\\ 1000.0000\\ 1000.0000\\ 1000.0000\\ 1000.0000\\ 1000.000\\ 10000\\ 1000.000\\ 1000$	$\begin{array}{c} -600 \cdot 00000 \\ -300 \cdot 00000 \\ -0 \cdot 00000 \\ 300 \cdot 00000 \\ 600 \cdot 00000 \\ -0 \cdot 00000 \\ -800 \cdot 00000 \\ -0 \cdot 0000 \\ -0 \cdot 000 \\ -0 \cdot 00 \\ -0 \cdot 00 \\ -0 \cdot$	$\begin{array}{c} -0.00000\\ -0.0000\\ -0.00000\\ -0.00000\\ -0.00000\\ -0.00000\\ -0.00000\\ $	$\begin{array}{c} 0 \ 0 \ 0 \ 2 \ 3 \\ 1 \ 4 \ 9 \ 1 \ 0 \ 9 \\ 8 \ 7 \ 5 \ 3 \ 0 \\ 1 \ 2 \ 3 \ 1 \ 8 \ 1 \\ 0 \ 0 \ 0 \ 2 \ 3 \\ 2 \ 2 \ 7 \ 1 \ 0 \\ 2 \ 2 \ 7 \ 1 \ 0 \\ 3 \ 7 \ 4 \ 8 \ 6 \ 3 \ 8 \\ 1 \ 6 \ 2 \ 2 \ 7 \ 1 \ 0 \\ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0$	$\begin{array}{c} 0 \ 0 \ 0 \ 1 \ 9 \ 1 \ 2 \ 2 \ 7 \ 1 \ 9 \ 7 \ 2 \ 0 \ 3 \ 9 \ 1 \ 0 \ 1 \ 3 \ 8 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 8 \ 6 \ 9 \ 1 \ 1 \ 1 \ 6 \ 6 \ 9 \ 1 \ 1 \ 1 \ 6 \ 6 \ 9 \ 1 \ 1 \ 6 \ 6 \ 9 \ 1 \ 1 \ 6 \ 6 \ 9 \ 1 \ 1 \ 6 \ 6 \ 9 \ 1 \ 1 \ 6 \ 6 \ 9 \ 1 \ 1 \ 6 \ 6 \ 9 \ 1 \ 1 \ 6 \ 6 \ 9 \ 1 \ 1 \ 6 \ 6 \ 9 \ 1 \ 1 \ 6 \ 6 \ 9 \ 1 \ 1 \ 6 \ 6 \ 9 \ 1 \ 1 \ 6 \ 6 \ 9 \ 1 \ 1 \ 6 \ 6 \ 9 \ 1 \ 6 \ 6 \ 9 \ 1 \ 6 \ 6 \ 9 \ 1 \ 6 \ 6 \ 9 \ 1 \ 6 \ 6 \ 9 \ 1 \ 6 \ 6 \ 1 \ 6 \ 6 \ 9 \ 1 \ 6 \ 6 \ 1 \ 6 \ 6 \ 1 \ 6 \ 6 \ 1 \ 6 \ 6$

Table 8-11						L	Fitle	page:
please	refer	10	errata	on	Verso	OT	7 7 7 7 7 7	/ / / -

RUN NUMBER DIKE TYPE SCALE 1/40 STRATIFICATION WIND SPEED BOIL OFF RATE	EIGHT LOW 0 G STARLE 7 MPH 2400 LB/S			ж.
X (FT)	Y(FT)	Z(FT)	DILLUTION	K COEF X 10-2
$\begin{array}{c} 450.00000\\ 450.00000\\ 450.00000\\ 450.00000\\ 450.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 3500$	$\begin{array}{c} -600 \cdot 00000 \\ -300 \cdot 00000 \\ -0 \cdot 00000 \\ 300 \cdot 00000 \\ 600 \cdot 00000 \\ -800 \cdot 00000 \\ -800 \cdot 00000 \\ -0 \cdot 0000 \\ -0 \cdot 000 \\ -0 \cdot 00 \\ -$	$\begin{array}{c} -0.00000\\ -0.0000\\ -0.00000\\ -0.00000\\ -0.00000\\ -0.00000\\ -0.00000\\ -0.00000\\ $	$\begin{array}{c} 1.84760\\ 6.32018\\ .35674\\ 5.96367\\ 2.69026\\ .61602\\ 2.49580\\ .29192\\ .16228\\ .06505\\ 1.16699\\ 1.71796\\ .00023\\ .64843\\ .45397\\ .45397\\ .25951\\ .09746\\ 0.00000\\ .16228\\ .35674\\ .35674\\ .35674\\ .35674\\ .38915\\ 0.00000\\ 0.00000\\ \end{array}$	90512 3.09620 17476 2.92155 1.31794 .30178 1.22267 .14301 07950 03187 .57170 .84161 .00011 .31766 .22240 .22240 .22240 .22240 .12713 .04774 0.00000 .17476 .17476 .17476 .17476 .17476 .17476 .17476 .17476 .00000 .07950 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .0000000 .0000000 .0000000 .0000000 .00000000

RUN NUMBER NINE DIKE TYPE SCALE 1/1 STRATIFICATION CAPISTRANO 1/106 NEUTRAL WIND SPEED BOIL OFF RATE 12 MPH 202 LB/S K COEF X 10-2 X(FT) Y(FT) Z(FT) DILLUTION 160.00000 -0.00000 -0.00000 1.90448 .48850 320.00000 -78.00000 -0.00000 .86966 .22307 320.00000 -0.00000 -0.00000 5.77420 1.48108 320.00000 -0.00000 11.00000 2.97409 .76285 78.00000 -0.00000 3.85239 .98814 640.00000 -102.00000 -0.00000 .50188 1.95666 640.00000 -0.00000 -0.00000 3.15671 .80970 640.00000 -0.00000 20.00000 2.43444 .62456 .49742 640.00000 102.00000 1.93927 -0.00000 960.00000 -78.00000 -0.00000 .05224 .01340 -0.00000 960.00000 -0.00000 .03484 .00894 960.00000 20.00000 -0.00000 .00006 .00002 960.00000 78.00000 -0.00000 .86966 .22307 -0.00000 -0.00000 .16528 -0.00000 .04240 -0.00000 -0.00000 -0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 0.00000 0.00000 -0.00000 -0.00000-0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 0.00000 0.00000 -0.00000 -0.00000 0.00000 0.00000 -0.00000 0.00000 -0.00000 -0.00000 -0.00000 0.00000 -0.00000 -0.00000 -0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 0.00000 0.00000

RUN NUMBER DIKE TYPE SCALE 1/1 STRATIFICATION WIND SPEED BOIL OFF RATE	TEN CAPISTRANO 06 12 NEUTRAL 12 MPH 141 LB/S			
X (FT)	Y(FT)	2(FT)	DILLUTION	K COEF X 10-2
$\begin{array}{c} 160 \cdot 00000\\ 320 \cdot 00000\\ 320 \cdot 00000\\ 320 \cdot 00000\\ 320 \cdot 00000\\ 640 \cdot 00000\\ 960 \cdot 00000\\ -0 \cdot 00$	$\begin{array}{c} -0.00000\\ -78.00000\\ -0.00000\\ -0.00000\\ -0.00000\\ -0.00000\\ -102.00000\\ -0.00000\\ -0.00000\\ -0.00000\\ -0.00000\\ -78.00000\\ -78.00000\\ -78.00000\\ -0.0000\\ -0.00000\\ -0.00000\\ -0.000\\$	$\begin{array}{c} -0 & 0 & 0 & 0 & 0 & 0 \\ -0 & 0 & 0 & 0 & 0 & 0 \\ -0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ -0 & 0 & 0 & 0 $	3.00018 49573 4.68720 1.62621 1.15663 .72183 2.40016 .76531 .76531 .60878 .54791 0.000000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.000000 0.000000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000000000000000000000000000000	1.09935 .18165 1.71753 .59589 .42382 .26450 .87949 .28043 .22307 .20077 0.00000 .15935 .06056 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000000

RUN NUMBER	ELEVENR HIGH			18.
STRATIFICATION	NEUTRAL			
BOIL OFF RATE	1400 LBM/S			
× / E T)	Y/ET)	7/51)		K COFE X 10-2
X(FI)	1(-1)	2(F1)	DILLUTION	K CUEF X 10-2
450 00000	- 4 3 4 0 0 0 0 0	0 00000	10 14560	20 74436
450.00000	-217.00000	-0.00000	19.14560	20.74936
450.00000	217.00000	-0.00000	17.03760	23.67900
450.00000	434.00000	-0.00000 -0.00000	18.79840 8.48160	20.37308
1000.00000	-217.00000	-0.00000 -0.00000	11.13520	12.06796
1000.00000	-0.00000	16.00000	10.01920	10.85848
1000.00000	217.00000	-0.00000	7.76240	8.41263
2000.00000	-0.00000	-0.00000	5.30720	5.75177
3500.00000	-533.00000	-0.00000 -0.00000	2.57920	2.79525
3500.00000	-0.00000	-0.00000	3.02560	3.27904
3500.00000	-0.00000	50.00000	3.91840	4.24663
3500.00000	267.00000	-0.00000	2.15760	2.33834
5000.00000	-0.00000	-0.00000	2.50480	2.71462
6500.00000	-0.00000 -0.00000	-0.00000	1.66160	1.80079
-0.00000	-0.00000	-0.00000	0.00000	0.00000

Table 8-15 Please refer to errata on verso of title page.

RUN NUMBER DIKE TYPE SCALE 1/20 STRATIFICATION WIND SPEED BOIL OFF RATE	ELEVEN HIGH 0 NEUTRAL 7 MPH 250 LB/S			
X (FT)	Y(FT)	2(FT)	DILLUTION	K COEF X 10-2
$\begin{array}{c} 450.0000\\ 450.0000\\ 450.0000\\ 450.0000\\ 450.0000\\ 1000.0000\\ 1000.0000\\ 1000.0000\\ 1000.0000\\ 1000.0000\\ 1000.0000\\ 1000.0000\\ 1000.0000\\ 1000.0000\\ 1000.0000\\ 1000.0000\\ 1000.0000\\ 1000.0000\\ 1000.000\\ 10000\\ 1000.000\\ 10000\\ 1000.000\\ 10$	$\begin{array}{c} -434.00000\\ -217.00000\\ -0.00000\\ 217.00000\\ 434.00000\\ -434.00000\\ -434.00000\\ -217.00000\\ -0.00000\\ -0.00000\\ 217.00000\\ -0.00000\\ -0.00000\\ -33.00000\\ -0.0000\\ -0.00000\\ -0.00000\\ -0.00000\\ -0.0000\\ -0.0000\\ -0.0000\\ -0.0000\\ -0.0000\\ -$	$\begin{array}{c} -0 & 0 & 0 & 0 & 0 & 0 \\ -0 & 0 & 0 & 0 & 0 & 0 \\ -0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}$	$\begin{array}{c} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$	$\begin{array}{c} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$

RUN NUMBER

TWELVE

Please refer to errata on verso of tille page.

X(FT) Y(FT) Z(FT) DILLUTION K COEF X I 450.00000 -600.00000 -0.00000 0.00000 0.00000 450.00000 -300.00000 -0.00000 0.00000 0.00000 450.00000 -0.00000 -0.00000 0.00000 0.00000 450.00000 -0.00000 -0.00000 13.06340 6.39965 450.00000 300.00000 -0.00000 0.00000 0.00000 1000.00000 -800.00000 -0.00000 0.00000 0.00000 1000.00000 -800.00000 -0.00000 0.00000 0.00000 1000.00000 -0.00000 -0.00000 0.00000 0.07441 1000.00000 -0.00000 -0.00000 .07595 .03722 1000.00000 -0.00000 -0.00000 .038800 1.4882 2000.00000 -0.000000 -0.00000 .038800 1.48823 3500.00000 -0.000000 -0.000000 .07441 .07441 1000.00000 -0.000000 -0.000000 .000000	RUN NUMBER DIKE TYPE SCALE 1/40 STRATIFICATION WIND SPEED BOIL OFF RATE	FORTYFIVE HIGH 0 NEUTRAL 7 MPH 2400 LBM/S			х
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	X(FT)	Y(FT)	2(FT)	DILLUTION	K COEF X 10-2
6500.00000 -0.00000 -0.00000 0.00000 0.00000 0.00000	$\begin{array}{c} 450.00000\\ 450.00000\\ 450.00000\\ 450.00000\\ 450.00000\\ 1000.0000\\ 1000.0000\\ 1000.0000\\ 1000.0000\\ 1000.0000\\ 1000.0000\\ 1000.0000\\ 1000.00$	$\begin{array}{c} -600 \cdot 00000 \\ -300 \cdot 00000 \\ -0 \cdot 00000 \\ 300 \cdot 00000 \\ 300 \cdot 00000 \\ -0 \cdot 00000 \\ -800 \cdot 00000 \\ -0 \cdot 0000 \\ -0 \cdot 0000 \\ -0 \cdot 0000 \\ -0 \cdot 0$	$\begin{array}{c} -0 & 0 & 0 & 0 & 0 & 0 \\ -0 & 0 & 0 & 0$	$\begin{array}{c} 0.00000\\ 0.00000\\ 13.06340\\ .30380\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ .15190\\ 3.34180\\ .07595\\ .15190\\ 2.20255\\ 3.03800\\ .51646\\ 0.00000\\ $	$\begin{array}{c} 0.00000\\ 0.00000\\ 6.39965\\ .14883\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.07441\\ 1.63712\\ .03721\\ .07441\\ 1.63712\\ .03721\\ .07441\\ 1.07901\\ 1.48829\\ .25301\\ 0.000000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0$

RUN NUMBER DIKE TYPE SCALE STRATIFICATION WIND SPEED BOIL OFF RATE	ORTYXIX HIGH NEUTRAL 16 MPH 2400 LBM/S			
X (FT)	Y(FT)	2(FT)	DILLUTION	K COEF X 10-2
$\begin{array}{c} 450 \cdot 00000\\ 450 \cdot 00000\\ 450 \cdot 00000\\ 450 \cdot 00000\\ 1000 \cdot 0000\\ 1000 \cdot 000\\ 1000 \cdot$	$\begin{array}{c} -600 \cdot 00000 \\ -300 \cdot 00000 \\ -0 \cdot 00000 \\ 300 \cdot 00000 \\ -0 \cdot 00000 \\ -800 \cdot 00000 \\ -800 \cdot 00000 \\ -0 \cdot 0000 \\ -0 \cdot 000 \\ -0 \cdot 00 \\ -0 \cdot 000 \\ -0 \cdot 000 \\ -0 \cdot 000 \\ -0 \cdot 00 \\ -0 $	$\begin{array}{c} -0.00000\\ -0.0000\\ -0.00000\\ -0.00000\\ -0.00000\\ -0.00000\\ -0.00000\\ -0.00000\\ $	$\begin{array}{c} 0 & 0 & 0 & 0 & 0 \\ & 92659 \\ 10 & 63300 \\ 1 & 97470 \\ 0 & 0 & 0 & 0 & 0 \\ & 15190 \\ & 65317 \\ 5 & 65625 \\ 1 & 59495 \\ 0 & 0 & 0 & 0 & 0 \\ 5 & 69625 \\ 4 & 7 & 0 & 890 \\ 2 & 23293 \\ 0 & 0 & 0 & 0 & 0 \\ 2 & 23293 \\ 0 & 0 & 0 & 0 & 0 \\ 2 & 23293 \\ 0 & 0 & 0 & 0 & 0 \\ 2 & 23293 \\ 0 & 0 & 0 & 0 & 0 \\ 2 & 23293 \\ 0 & 0 & 0 & 0 & 0 \\ 2 & 23293 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 16963 \\ & 92659 \\ & 27342 \\ 1 & 41267 \\ 1 & 21520 \\ & 69874 \\ & 97216 \\ & 57722 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$	$\begin{array}{c} 0.00000\\ 1.04137\\ 11.95009\\ 2.21930\\ 0.00000\\ 17072\\73408\\ 6.40184\\ 1.79251\\ 0.00000\\ 6.40184\\ 5.29218\\ 2.50952\\ 0.00000\\ 6.49508\\ 1.31451\\ 1.04137\\30729\\ 1.58766\\ 1.36573\\78529\\ 1.09258\\64872\\ 0.00000\\ 0.00000\\ 0.00000\\ \end{array}$

Table 8-19

	DILLUTION	K COFE X 10-3
X(FT) Y(FT) Z(FT)		K COEF A IU-2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.69630 10.13173 4.02535 21.03815 9.11400 2.70382 6.00005 2.43040 10.63300 2.09622 $.835455$ 1.139255 $.531655$ 1.139255 $.51646$ $.44051$ $.39494$ 4891.18000 $.30380$ $.42532$ $.19747$ 0.00000	5.72992 4.96345 1.97198 10.30641 4.46487 1.32458 2.9937 1.99063 5.20902 1.02692 .40928 .26045 .524557 .44649 .33487 .25301 .21580 19348 2396.14716 .14883 .20836 .09674 0.00000

RUN NUMBER	FORTYEIGHT				
STRATIFICATION WIND SPEED	NEUTRAL 16 MPH 2600 LBM/S				
BUIL OFF RATE	2400 18473				
X(FT)	Y(FT)	Z(FT)	DILLUTION	K COEF X 10-2	
450.00000	-600.00000	-0.00000	4.86080	5.46290	
450.00000	-0.00000	-0.00000	5.11220	97308	
450.00000	300.00000	-0.00000	16.32925	18.35193	
450.00000	600.00000	-0.00000	12.54694	14.10111	
	-800.00000	-0.00000	2.10382	3.038/4	
1000,00000		-0.00000	4.01010	1.10965	
1000.00000	-0.00000	33.00000	5.19498	5.83847	
1000.00000	-0.00000	66.00000	3.29623	3.70453	
1000.00000	400.00000	-0.00000	.48608	.54629	
2000.00000	800.00000	-0.00000	• 3/9/5	-420/9	
3500.00000	-800,00000	-0.00000	45570	51215	
3500.00000	-400.00000	-0.00000	48608	\$54629	
3500.00000	-0.00000	-0.00000	.34937	.39265	
3500.00000	-0.00000	33.00000	1.62533	1.82666	
3500.00000	-0.00000	100.00000	.53165	.59/50	
3500.00000	400 00000	200.00000	-80507	·904/9	
3500.00000	800.00000	-0.00000	30380	34143	
5000.00000	-0.00000	-0.00000	.63798	71701	
6500.00000	-0.00000	-0.00000	.56203	.63165	
-0.00000	-0.00000	-0.00000	0.00000	0.00000	
-0.80000	-0.00000	-0.00000	0.00000	0.00000	

RUN NUMBER DIKE TYPE SCALE 1/4 STRATIFICATION WIND SPEED BOIL OFF RATE	FORTYNINE HIGH INSFL 00 NEUTRAL 7 MPH 2400 LBM/S			
X(FT)	Y (FT)	Z(FT)	DILLUTION	K COEF X 10-2
$\begin{array}{c} 450.00000\\ 450.00000\\ 450.00000\\ 450.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.0000\\ 1000.0000\\ 1000.0000\\ 1000.000$	$\begin{array}{c} -600.00000\\ -300.00000\\ -0.00000\\ 300.00000\\ 600.00000\\ -0.00000\\ -800.00000\\ -400.00000\\ -0.00000\\$	$\begin{array}{c} -0.00000\\ -0.0000\\ -0.00000\\ -0.0000\\ -0$	37975 36456 $11 \cdot 72668$ 42532 31899 41013 36456 $3 \cdot 44813$ 07595 03038 34937 $2 \cdot 62787$ 31899 334937 $2 \cdot 62787$ 318997 334937 $2 \cdot 5823$ $0 \cdot 00000$ 21266 19747 36456 42532 $0 \cdot 00000$ $0 \cdot 00000$ $0 \cdot 00000$	$ \begin{array}{r} 18604 \\ 17859 \\ 5.74480 \\ 20836 \\ 15627 \\ 20092 \\ 17859 \\ 1.68921 \\ 03721 \\ 03721 \\ 03721 \\ 01488 \\ 17115 \\ 1.28737 \\ 15627 \\ 17115 \\ 1.2650 \\ 0.00000 \\ 10418 \\ 09674 \\ 17859 \\ 20836 \\ 0.00000 \\ 0.0000 \\ 0.$

RUN NUMBER DIKE TYPE SCALE 1/ STRATIFICATIO WIND SPEED BOIL OFF RATE	FIFTY HIGH INSFL 400 NEUTRAL 16 MPH 2400 LHM/S			
X (FT)	Y(FT)	Z (FT)	DILLUTION	K COEF X 10-2
450.00000	-600.00000	-0.00000	•3/9/5	• 42679 4 • 40446
450.00000	-0.00000		15.03810 19.13940	16.90085 21.51017
1000.00000	-800.000000		• 36456 • 48608 1• 5/976	54629 1.77544
1000.00000 1000.00000 1000.00000		-0.00000 33.00000 66.00000	5.80258 5.28612 .09114	6.52134 5.94090 .10243
	400.00000		4.01016 3.37218	4.50689 3.78989 2.32173
3500.00000	-800.00000		.12152	.13657
3500.00000			1.42786	1.60473
3500.00000 3500.00000 3500.00000	-0.00000 400.00000 800.00000	200.00000 -0.00000 -0.00000	1.88356 .83545 .74431	2.11687 .93894 .83651
5000.00000			.85064 .53165 0.00000	95601 59750
-0.00000	-0.00000	-0.00000	0.00000	0.00000
Table 8-23

DIKE TYPE	LOW INSELR			
STRATIFICATION	NEUTRAL			
WIND SPEED	7 MPH			
BUIL OFT PATE	2400 LBM/3			
X(FT)	Y(FT)	Z(FT)	DILLUTION	K COEF X 10-2
450 00000	-600 00000	_0_00000	7 744 (10	3 70514
450.00000	-300.00000	-0.00000	4.07092	1,99431
450.00000	-0.00000	-0.00000	6.71474	3.31889
450.00000	300.00000	-0.00000	15.44823	7.56796
1000 00000	-800-00000	-0.00000	•54684	• 26 / 89
1000.00000	-400-00000	-0.00000	2.70382	1.32458
1000.00000	-0.00000	-0.00000	3.08357	1.51061
1000.00000	-0.00000	33.00000	6.71398	3.28912
	-0.00000	66.00000	0.00000	0.00000
1000.00000	800.00000	-0.00000	.12912	.35/19
2000.00000	-0.00000	-0.00000	-24304	.11906
3500.00000	-800.00000	-0.00000	.30380	.14883
3500.00000	-400.00000	-0.00000	.30380	.14883
3500.00000	-0.00000	-0.00000	• 25823	•12650
3500.00000	-0.00000	100,00000	-15190	07441
3500.00000	-0.00000	200.00000	•44051	21580
3500.00000	400.00000	-0.00000	-22785	.11162
5000.00000	-0.00000	-0.00000	•31899	•15627
6500.00000	-0.00000	-0.00000	- 34937	16371
-0.00000	-0.00000	-0.00000	0.00000	0.00000
-0.00000	-0.00000	-0-00000	0 00000	0 00000

132

RUN NUMBER DIKE TYPE SCALE 1/40 STRATIFICATION WIND SPEED BOIL OFF RATE	FIFTYTWO LOW INFLR 0 NEUTRAL 16 MPH 2400 LBM/S			
X (FT)	Y (FT)	Z(FT)	DILLUTION	K COEF X 10-2
$\begin{array}{c} 450 \cdot 00000\\ 1000 \cdot 00000\\ 3500 \cdot 00000\\ $	$\begin{array}{c} -600 \cdot 00000 \\ -300 \cdot 00000 \\ -0 \cdot 00000 \\ 300 \cdot 00000 \\ 600 \cdot 00000 \\ -800 \cdot 00000 \\ -800 \cdot 00000 \\ -400 \cdot 00000 \\ -0 \cdot 0000 \\ -0 \cdot 000 \\ -0 \cdot 00 \\ -0 \cdot 000 \\ -0 \cdot 00 \\ -0 \cdot 00 \\ -0$	$\begin{array}{c} -0 & 0 & 0 & 0 & 0 & 0 \\ -0 & 0 & 0 & 0$	$1 \cdot 15444 \\ 8 \cdot 50134 \\ 1 \cdot 9/470 \\ 18 \cdot 16724 \\ 1 \cdot 79242 \\ 1 \cdot 21520 \\ 6 \cdot 50132 \\ 1 \cdot 06330 \\ 5 \cdot 10384 \\ 1 \cdot 09368 \\ 9/216 \\ \cdot 66636 \\ 1 \cdot 03292 \\ \cdot 27342 \\ \cdot 88102 \\ \cdot 8810 \\ \cdot 881$	$1 \cdot 29744$ $1 \cdot 0 \cdot 00394$ $2 \cdot 21930$ $2 \cdot 0 \cdot 41759$ $2 \cdot 0 \cdot 1444$ $1 \cdot 36573$ $7 \cdot 30663$ $1 \cdot 193605$ $1 \cdot 22915$ $1 \cdot 09258$ $\cdot 75115$ $1 \cdot 16087$ $\cdot 30729$ $\cdot 99015$ $1 \cdot 29744$ $\cdot 81944$ $\cdot 61458$ $0 \cdot 00000$ $\cdot 68286$ $\cdot 75115$ $0 \cdot 00000$

.

F	RUN NUMBER DIKE TYPE SCALE G STO STRATIFICATION WIND SPEED BOIL OFF RATE	FIFTYTHREE HIGH RAT 7 MPH 2400 LBM/ S			
	X (FT)	Y(FT)	Z(FT)	DILLUTION	K COEF X 10-2
•	$\begin{array}{c} 450.00000\\ 450.00000\\ 450.00000\\ 450.00000\\ 450.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 1000.00000\\ 3500.0000\\ 3500.0000\\ 3500.0000\\ 3500000\\ 3500000\\ 3$	$\begin{array}{c} -600.00000\\ -300.00000\\ -0.00000\\ 300.00000\\ 600.00000\\ -0.00000\\ -800.00000\\ -$	$\begin{array}{c} -0 & 0 & 0 & 0 & 0 & 0 \\ \end{array}$	0.00000 2.68863 .39494 .24304 .36456 2.61268 .82026 .16709 2.49116 2.96205 1.04811 0.00000 0.00000 .56203 .42532 0.00000 .57722 .50127 .31899 0.00000 0.00000	$\begin{array}{c} 0.00000\\ 0.00000\\ 1.31714\\ .19348\\ .11906\\ .17859\\ 1.27993\\ .40184\\ .08186\\ 1.22040\\ 1.45108\\ .51346\\ 0.00000\\ 0.00000\\ .27533\\ .20836\\ 0.00000\\ .27533\\ .20836\\ 0.00000\\ .27533\\ .20836\\ 0.00000\\ .27533\\ .20836\\ 0.00000\\ .27533\\ .20836\\ 0.00000\\ .27533\\ .20836\\ 0.00000\\ .27533\\ .20836\\ 0.00000\\ .27533\\ .20836\\ 0.00000\\ .27533\\ .20836\\ 0.00000\\ .27533\\ .20836\\ 0.00000\\ .27533\\ .20836\\ 0.00000\\ .27533\\ .20836\\ 0.00000\\ .27533\\ .20836\\ 0.00000\\ .27533\\ .28278\\ .24557\\ .15627\\ .15627\\ 0.00000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ $

RUN NUMBER	FIFTYROUP				
SCALE 1/40)0				
STRATIFICATION	G STRAT				
WIND SPEED	7 MPH				
BUIL OFF RATE	2400 LBM/5				
X(FT)	Y(FT)	Z(FT)	DILLUTION	K COEF X 10-2	
					0
450.00000	-600.00000	-0.00000	.48608	.23813	
450.00000	-300.00000	-0.00000	7.82285	3.83235	
450 00000	300 00000	-0.00000	1.10903	.5/299	
450,00000	600,00000	-0.00000	2 4 30 40	D.10009	
1000.00000	-800.00000	-0.00000	1.6/090	-81856	
1000.00000	-400.00000	-0.00000	4.81523	2.35894	
1000.00000	-0.00000	-0.00000	1.12406	.55067	
1000.00000	-0.000000	33.00000	3.55446	1.74130	
1000.00000	-0.00000	66.00000	.16709	.08186	
1000.00000	400.00000	-0.00000	.30380	.14883	
2000.00000	-0.00000		· 24304	.11906	
3500,00000	-800,000000	-0.00000	15140	07441	
3500.00000	-400.00000	-0.00000	45570	22324	
3500.00000	-0.00000	-0.00000	.44051	.21580	
3500.00000	-0.00000	33.00000	.60760	.29766	
3500.00000	-0.00000	100.00000	1.09368	.53578	
3500.00000	-0.00000	200.00000	.89621	.43905	
3500 00000	400.00000 800.00000	-0.00000	.00030	. 32/42	
5000.00000	-0.00000	-0.00000	1.12406	• 1339D	
6500.00000	-0.00000	-0,00000	1.01773	49858	
-0.00000	-0.00000	-0.00000	0.00000	0.00000	
-0.00000	-0.00000	-0.00000	0.00000	0.00000	

TABLE 9-1 TAPED DATA RECORD OF ASPIRATING PROBE RESPONSE FOR VARIABLE BOILOFF SIMULATION WITH CO_2 GAS

MODELING	POSITION	TAPE	CHANNELS	Т	IME CODE	
INFORMATION	NO.	CONC.	TIME CODE	DAY	START	STOP
Low-Soil 1:400 Wind Speed67 ft/s neutral	1	1	14	1	10''	215"
п	1	1	14	2	10"	1'51"
н	1	1	14	3	15''	2'25"
ju.	1	1	14	4	15"	1'45"
u	1	1	14	5	10"	1'20''
	1	1	14	6	15"	1'25"
	3	1	14	7	10"	1'22''
н	3	1	14	8	10"	1'20''
п	3	1	14	9	10"	1'20''
n.	3	1	14	10	10"	1'20''
•	3	. I	14	11	10"	1'20"
п	3	1	14	12	10"	1'20"
"	5	1	14	13	10"	1'20"
	5	1	14	14	10"	1'20"
	5	1	14	15	10"	1'20''
н	5	1	14	16	10"	1'20"
н	5	1	14	17	10"	1'20"
	6	1	14	18	10"	1'20''
	6	1	14 .	19	10"	1'20"
н	6	1	14	20	10"	1'20"
" (no good)	4	1	14	21	10"	1'20"
"	4	l	14	22	10"	1'20"

TAPED DATA RECORD OF ASPIRATING PROBE RESPONSE FOR VARIABLE BOILOFF SIMULATION WITH CO_2 GAS

MODELING	POSITION	TAPE	CHANNELS	T	IME CODE	
INFORMATION	NO.	CONC.	TIME CODE	DAY	START	STOP
Low-Soil 1:400 Wind Speed67 ft/s neutral	4	1	14	23	10"	1'20"
u	4	1	14	24	10''	1'20"
ч Ц	2	1	14	25	10''	1'20"
н. :	2	1	14	26	10''	1'20"
ан (2	1	14	27	10''	1'20"
	7	1	14	28	10''	2'10"
	7	1	14	29	10''	2'10"
на н	7	1	14	30	10''	2'10"
" ₅	8	1	14	31	10",	2'10"
"	8	1	14	32	10"	2'57''
н.	8	2	13	33	10''	2'10"
	8	2	13	34	10''	2'10"
н ".	9	2	13	35	10''	2'10"
	9	2	13	36	10''	2'10"
н	. 10	2	13	37	10''	2'10"
н	10	2	13	38	10"	2'10"
	10	2	13	39	10"	2'10"
ii.	10	2	13	40	10"	2'10"
"	10	2	13	41	10"	2'10"
"	11	2	13	42	10''	1'41"
	11	2	13	43	10''	2'10"
"	11	2	13	44	10"	2'10"

t.

TAPED DATA RECORD OF ASPIRATING PROBE RESPONSE FOR VARIABLE BOILOFF SIMULATION WITH CO₂ GAS

MODELING	POSITION	TAPE	CHANNELS	Т	IME CODE	
INFORMATION	NO.	CONC.	TIME CODE	DAY	START	STOP
Low-Soil 1:400 Wind Speed67 ft/s neutral	В	2	13	45	10''	1'20"
	В	2	13	46	10"	1'20"
"	В	2	13	47	10"	1'20"
11	В	2	13	48	10''	1'20"
"	A	. 2	13	49	10"	1'20"
"	A	2	13	50	10"	1'20"
**	A	2	13	51	10"	1'20"
	A	2	13	52	10"	1'20"
"	С	2	13	53	10"	1'20"
"	С	2	13	55	10"	1'50"
"	С	2	13	56	10"	2'00"
	D	2	13	57	10"	1'50"
	D	2	13	58	10"	1'50"
"	D	2	13	59	10"	1'30"
	E	2	13	60	15"	1'40"
" (out of tape)	E	2	13	61	9''	1'22"
"	Е	3	12	62	10''	1'41"
•	Е	3	12	63	10"	1'40"
"	F	3	12	64	10"	2'00"
11.	F	3	12	65	10"	1'50"
"	F	3	12	66	10"	1'50"

TABLE 9-4 TAPED DATA RECORD OF ASPIRATING PROBE RESPONSE FOR VARIABLE BOILOFF SIMULATION WITH CO _ GAS

MODELING	POSITION	TAPE	CHANNELS	T	IME CODE	
INFORMATION	NO.	CONC.	TIME CODE	DAY	START	STOP
High-Soil 1:400 Wind Speed67 ft/s neutral	1	3	12	67	10"	1'15"
ш	1	3	12	68	10''	1'10"
"	1	3	12	69	10'	1'20"
"	3	3	12	70	10"	1'10"
"	. 3	3	12	71	10"	1'40"
"	3	3	12	72	10"	1'40"
н » у	3	3	12	73	10"	1'40"
	5	3	12	74	10"	1'20"
"	5	3	12	75	10"	1'35"
"	5	3	12	76	11''	1'45"
"	6	3	12	77	10"	1'30"
"	6 .	3	12	78	10"	1'35"
	6	3	12	79	10"	(1'30'')
"	6	3	12	80	10"	1'50"
	2	3	12	81	10"	1'35"
11	2	3	12	82	10''	1'30"
"	2	3	12	83	10"	1'45"
"	4	3	12	84	10"	1'42''
"	4	3	12	85	10"	1'40"
"	4	3	12	86	10"	1'00"
" (signal jumped)	7	3	12	87	10"	2'05"
	7	3	12	88	10"	1'30"

TAPED DATA RECORD OF ASPIRATING PROBE RESPONSE FOR VARIABLE BOILOFF SIMULATION WITH CO₂ GAS

MODELING	POSITION	TAPE	CHANNELS	T	IME CODE	
INFORMATION	NO.	CONC.	TIME CODE	DAY	START	STOP
High-Soil 1:400						
Wind Speed67 ft/s						
neutral	7	3	12	89	10"	1'12"
	7	3	12	90	10"	1'52"
240					8	
	8	3	12	91	10"	1'51"
"	8	3	12	92	10"	1'45"
" (no good)	9	3	12	93	10"	1'20"
(
"	9	4	11	94	10"	2'10"
	9	4	11	95	10"	2'00"
	ŗ					
"	10	4	11	96	10"	1'52"
	10	241				
	10	4	11	97	10"	1'54"
	10		**	57.	10	10.
	10	1	11	98	10"	1150"
	10	7		50	10	1 50
	11	1	11	00	10"	1150"
	11	4	11	33	10	1 50
	11	4	11	100	1011	11501
		4	11	100	10	1 50
	11	1	11	101	1011	11501
	-11	4	11	101	10	1.20
	11		11	102	1011	21151
	11	4	11	102	10.	2.12.
×				107	1011	11220
	A	4	11	105	10	1.22.
				104	1011	112011
	A	4	11	104	10	1.20.
				105	1.54	11050
	α	4	11	105	15"	1.22.
High-Concrete 1:400						
Wind speed .67 ft/s				100	1.011	11401
neutral	1	4	11	106	10"	1'40"
				107	1.011	11540
	1	4	11	107	10"	1,54"
n	1	4	11	108	13"	1'58"
	1	4	11	109	10"	1'40"

TABLE 9-6 TAPED DATA RECORD OF ASPIRATING PROBE RESPONSE FOR VARIABLE BOILOFF SIMULATION WITH CO $_2$ GAS

MODELING	POSITION	TAPE	CHANNELS	Т	IME CODE	
INFORMATION	NO.	CONC.	TIME CODE	DAY	START	STOP
High-Concrete 1:400 Wind speed .67 ft/s neutral						
(background)	3	4	11	110	10''	2'04"
"	3	4	11	120	10"	1'45"
"	3	4	11	112	11''	2'00"
	3	4	11	113	10"	1'50"
"	3	4	11	114	10"	1'50"
"	5	4	11	115	10"	1'40"
"	5	4	11	116	10"	1'41"
"	5	4	11	117	10"	2'00"
**	5	4	11	118	10"	1'40"
	6	4	11	119	10''	1'40"
" (end of tape)	6	4	11	120	10"	1'58"
	6	5	10	121	10''	1'41"
" (no x-y plot)	2	5	10	122	10''	1'35"
	2	5	10	123	10'' ((1'35"))
	2	5	10	124	10"	1'50"
	2	5	10	125	10''	1'45''
"	4	5	10	126	10"	1'50"
	4	5	10	127	10''	1'30"
"	4	5	10	128	10''	1'30"
n :	7	5	10	129	10''	1'40''
"	7	5	10	130	10''	1'50"

TABLE 9-7TAPED DATA RECORD OF ASPIRATING PROBE RESPONSEFOR VARIABLE BOILOFF SIMULATION WITH CO2

MODELING	POSITION	TAPE	CHANNELS	Т	IME CODE	
INFORMATION	NO.	CONC.	TIME CODE	DAY	START	STOP
"	8	5	10	131	10"	2'00"
п	В	5	10	132	10"	1'45"
	В	5	10	133	10''	(1'30'')
" (time code off by 40 sec)	В	5	10	134	10"	1'45"
n	В	5	10	135	10"	1'30"
u	С	5	10	136	10"	2'20"
"	С	5	10	137	10"	2'00"
High - R&D Concrete* 1:400						
neutral	1	5	10	138	10''	1'40"
п	1	5	10	139	10"	1'30"
"	1	5	10	140	10"	1'40"
	3	5	10	141	10"	1'20"
"	3	5	10	142	10"	1'20"
"	3	5	10	143	10''	1'40"
11	5	5	10	144	5''	1'30"
н	5	5	10	145	5''	1'20"
n	5	5	10	146	5''	1'20"
п	2	5	10	147	7"	1'20"
" (background)	2	5	10	148	5''	1'10"
"	4	5	10	149	5''	1'32"
"	4	5	10	150	5''	1'20"
" (tape end)	4	5	10	151	5"	1'10"

TABLE 9-8 TAPED DATA RECORD OF ASPIRATING PROBE RESPONSE FOR VARIABLE BOILOFF SIMULATION WITH CO_2 GAS

MODELING	POSITION	TAPE	CHANNELS	Т	IME CODE	
INFORMATION	NO.	CONC.	TIME CODE	DAY	START	STOP
High - R&D Concrete* 1:400 Wind speed .67 ft/sec					2	- B
neutral (not recorded)	2	5	10	152		*
High - R&D Concrete* 1:400						
Wind speed 1.16 ft/sec neutral	3	6 (maybe	9 4)	153	5"	60''
п	2	6	9	155	5''	50''
"	4	6	9	156 [·]	5"	50''
	1	·6	9	157	6"	1'16"
н	1	6	9	158	5''	1'38"
High - Concrete 1:400 Wind speed 1.16 ft/sec	*					
neutral	1	6	9	159	5"	1'26"
	1	6	9	160	5"	1'16"
n. *	1	6	9	161	5''	1'11"
211	3	6	9	162	6''	1'22"
	3	6	9	163	5"	1'31"
	3	6	9	164	5"	1'20"
	5	6	9	165	5"	1'20"
"	5	6	9	166	6"	1'20"
"	6	6	9	167	5"	1'20"
" (motor off valve ope	n) 6	6	9	168	5''	1'25"
	6	6	9	169	5"	1'10"
"	6	6	9	170	5"	1'10"

TABLE 9-9 TAPED DATA RECORD OF ASPIRATING PROBE RESPONSE FOR VARIABLE BOILOFF SIMULATION WITH CO $_2$ GAS

MODELING	POSITION	TAPE	CHANNELS	T	IME CODE	
INFORMATION	NO.	CONC.	TIME CODE	DAY	START	STOP
High - Concrete 1:400						
neutral	4	6	9	171	10"	1'20"
н г	4	6	9	172	5"	1'20"
"	2	6	9	173	15"	1'25"
"	2	6	9	174	10"	1' 25"
"	7	6	9	175	15''	1'15"
High - Soil 1:400						
neutral	7	6	9	176 ·	10"	1'25"
"	7	6	9	177	10"	1'10"
"	7	6	9	178	10"	1' ?"
п	7	6	9	179	10"	1'10"
	8	6	9	180	10"	1'20"
"	9	6	9	181	10"	1'30"
"	9	6	9	182	10"	1'20"
"	10 .	6	9	183	10"	1'20"
"	11	6	9	184	10"	1'00"
п	11	6	. 9	185	10"	1'10"
	11	6	9	186	10"	1'10"
	3	6	9	187	10''	1'20"
	3	6	9	188	10"	1'20"
"	5	6	9	189	10"	1'10"
"	5	6	9	190	10"	1'00"
	5	6 、	9	191	10''	1'10"

TAPED DATA RECORD OF ASPIRATING PROBE RESPONSE FOR VARIABLE BOILOFF SIMULATION WITH CO₂ GAS

MODELING	POSITION	TAPE	CHANNELS	Т	IME CODE	
INFORMATION	NO.	CONC.	TIME CODE	DAY	START	STOP
High - Soil 1:400 Wind speed 1.16 ft/sec neutral			101			
(ran out of tape)	5	6	9	192	10''	1'10"
n .	5	7	8	193	10"	1'20"
"	5	7	8	194	10''	1'05"
"	6	7	8	195	10''	1'10"
- 11 	6	7	8	196	10"	1'00"
"	6	7	8	197	10"	1'00"
й с	4	7	8	198	10"	1'00"
",	4	7	8	199	10"	1'00"
а., ,	2	7	8	200	10"	1'00"
"	2	7	8	201	10"	1'00"
"	1	7	8	202	10"	1'10"
"	1	7	8	203	10"	1'25"
"	1	7	8	204	10''	1'20"
	В	7	8	205	20''	1'30"
	В	7	8	206	20''	1'20"
"	A	7	8	207	20''	1'10"
"	A	7	8	208	20''	1'10"
	с	7	8	209	20''	1'20"
	с	7	8	210	20''	1'20"
	D	7	8	211	20''	1'10"
н	Δ	7,	8	212	20''	1'10"
"	τ	7	8	213	20"	1'10"

146

TABLE 9-11

TAPED DATA RECORD OF ASPIRATING PROBE RESPONSE FOR VARIABLE BOILOFF SIMULATION WITH CO_2 GAS

MODELING	POSITION	TAPE	CHANNELS	Т	IME CODE	
INFORMATION	NO.	CONC.	TIME CODE	DAY	START	STOP
Capistrano - Case I						
wind speed 2.45 ft/sed neutral	1	7	8	214	30''	1'41"
"	1	7	8	215	20''	2'10"
" (motor off, value open continuous)	2	7	8	216	20"	1'11"
" (no 217)	2	7	8	218	20"	1'27"
<u>л</u>	2	. 7	8	219	20"	1'26"
н ⁻	2	7	8	220	20''	1'30"
"	3	7	8	221	20''	1'26"
"	3	7	8.	222	22"	1'29"
"	4	7	8	223	20"	(1'30")
u	4	7	8	224	20''	1'22"
11	4	7	8	225	20''	1'30"
"	5	7	8	226	20''	1'25"
	5	7	8	227	20''	1'05"
ш .	5	7	8	228	16"	1'15"
ч	6	7	8	229	20''	1'05"
11	6	7	8	230	23''	55''
"	6	7	8	231	20''	50''
Low - Soil 1:400 Wind speed67 ft/se	с					
stable	В	1	2	1B	35"	2'10"
"	1	1	2	2	20"	2'30"
"	1	1	2	3	25''	2'25"

TAPED DATA RECORD OF ASPIRATING PROBE RESPONSE FOR VARIABLE BOILOFF SIMULATION WITH $\rm CO_2$ GAS

MODELING	POSITION	TAPE	CHANNELS	Т	IME CODE	
INFORMATION	NO.	CONC.	TIME CODE	DAY	START	STOP
Low - Soil 1:400 Wind speed67 ft/se	с					
stable	(3)	1	2	4	32''	2'10"
н ^к	3	1	2	5	20''	1'30"
"	5	1	2	6	30''	?
" (16 [°] C)	6	1	2	7	20''	1'50"
(17 [°] C)	4	1	2	8	20''	1'30"
" (12 [°] C)	2	1	2	9	20''	1'40"
u.	7	1	2	10	40''	2'15"
" (10 [°] C)	. 7	1	2	11	20"	2'00"
" (10 [°] C)	, 8	1	2	12	20''	2'15"
" (13 ⁰ C)	' 9	1	2	13	20''	2'10"
и -	A	1	ż	14	40''	1'55"
" (13 ⁰ C)	С	1	2	15	20''	1'25"
" (11 [°] C)	Δ	1	2	16	20''	1'20"
" (11 [°] C)	Δ	1	2	17	20"	1'10"
High - Soil 1:400 Wind speed .67 ft/sec					e	
" (11° C)	Δ	1	2	18	20''	1'00"
" (11 [°] C)	Δ	1	2	19	20''	1'10"
" (12 [°] C)	С	1	2	20	20''	2'05"
" (14 [°] C)	1	1	2	21	20''	1'30"
" (13 [°] C)	3	1	2	22	20''	1'25"
" (13 [°] C)	3	1	2	23	20''	1'10"
" (16 [°] C)	5	1 `	2	24	30"	2'20"

148

TABLE 9-13

TAPED DATA RECORD OF ASPIRATING PROBE RESPONSE FOR VARIABLE BOILOFF SIMULATION WITH CO_2 GAS

MODELING	POSITION	TAPE	CHANNELS	Т	IME CODE	
INFORMATION	NO.	CONC.	TIME CODE	DAY	START	STOP
High - Soil 1:400 Wind speed .67 ft/sec stable " (17° C)	5	1	2 .	25	25''	1'15"
" (17 [°] C)	4	1	2	26	25"	1'10"
" (13 [°] C)	2	1	2	27	20''	1'15"
" (11 [°] C)	7	1	2	28	25''	1'55"
" (11 [°] C)	8	1	2	29	20"	1'25"
20) 6						~
					-	
~				84		1
	::					
		21				
					-	

TABLE 10

APPROXIMATE DISTANCES TO LIFTOFF FOR GROUND RELEASED BUOYANT PLUMES IN A CROSSFLOW BOUNDARY LAYER

<u>Line Source</u>: y = 4 feet, $x_0 = 40$ feet from tunnel entrance

		Flow Rate (cfm)						
Velocity (ft/sec)	0.75 cfm (10)	1.5 cfm (20)	2.25 cfm (30)	3.00 cfm (40)				
0.55	3	1.5-2	1.5	1				
0.75	9	6	2-3	2				
1.5	x > 15	7	6	4				
2.5	x > 15	x > 11	x > 11	7				

Area Source: 9 inch diameter, x (ft)

		Flow Rate (cfm)						
Velocity	0.75	cfm	1.5	cfm	2.25	cfm	3.00	cfm
(ft/sec)								
0.52		0		0		0		0
0.75		0		0		0		0
1.50		0		0		0		0
2.50		1.5		1		0.5		0
4.00	х	> 15	х	> 15		8		5

Point Source: x (ft)

		Flow Rate (cfm)						
Velocity	0.75	cfm	1.5 cfm	2.25 cfm	3.00 cf			
(ft/sec)								
2.50		0	0	0	0			
4.00		?	1.5	1.5	0			
6.50		?	2.5-3.0	2.0	2.			

TABLE 11-1

IDENTIFICATION CHART FOR CONTINUOUS FLOW VISUALIZATION EXPERIMENTS

SOURCE DESCRIPTION	TERRAIN DESCRIPTION	PICTURE* NUMBER	SIMULATED WIND SPEED (fps)	SIMULATED BOILOFF RATE (1b _m /sec)
Area Source (Capistrano 044 1/106 Scale Model)	2% Grade Upwind	1	23	160
n.	U	2	23	420
H	п	3	23	1200
u	н?	4	23	2400
п	н	5	16	160
U U	n	6	16	420
u	п	7	΄16	1200
u	i i i	8	16	2400
н	н	9	30	160
н	н	10	30	420
u .	н	11	30	1200
н	u.	12	30	2400
High Dike (1/400 Scale Model)	Ш л	13	16	160
н	U	14	16	420
u .	н	15	16	1200
н	н "	16	16	2400
u	u	17	23	460
н	Ш. не	18	23	420
н	u [°]	19	23	1200
11	u ·	20	23	2400
u	II	21	30	160
u	н	22	30	420
u	- 0.	23	30	1200
0	н	<u>م</u>	30	2400

PURE CO_2 TRACER

*Photographs provided separately to R&D Associates

TABLE 11-2 (continued)

IDENTIFICATION CHART FOR CONTINUOUS FLOW VISUALIZATION EXPERIMENTS

PURE CO₂ TRACER

SOURCE DESCRIPTION	TERRAIN DESCRIPTION	PICTURE* NUMBER	SIMULATED WIND SPEED (fps)	SIMULATED BOILOFF RATE (1b _m /sec)
Area Source (Capistrano 044 1/106 Scale Model)	Flat Surface	1-A	16	160
н	и	2-A	16	420
н	u	3-A	16	1200
н	н	4-A	16	2400
п	п —	5-A	23	160
11	н	6-A	23	420
н	н	7-A	23	1200
н	п	8-A	23	2400
н	н	9-A	30	160
н	u	10-A	30	420
н	н	11-A	30	1200
· •	н	12-A	30	2400
High Dike (1/400 Scale Model)	п	13-A	30	160
н	u	14-A	30	420
	U	15-A	30	1200
н	н	16-A	30	2400
н		17-A	23	160
п	n	18-A	23	420
.	н	19-A	23	1200
н	п	20-A	23	2400
	u	21-A	16	160
н		22-A	16	420
	и	23-A	16	1200
u	u	24-A	16	2400

*Photographs provided separately to R&D Associates

152 TABLE 11-3 (continued)

IDENTIFICATION CHART FOR CONTINUOUS FLOW VISUALIZATION EXPERIMENTS

PURE CO₂ TRACER

SOURCE DESCRIPTION	TERRAIN DESCRIPTION	PICTURE* NUMBER SIMULATED WIND SPEED (fps)		SIMULATED BOILOFF RATE (1b _m /sec)
High Dike (1/400 Scale Model with 2 Upstream Obstacles)	2% Grade Upwind	25	30	160
11	н	26	30	420
U	·	27	30	1200
н	н	28	30	2400
	п	29	23	160
н	n _i	30	23	420
u	0	31	23	1200
0		32	23	2400
н		33	16	160
н	н	34	16	420
н	н	. 35	16	1200
	н	36	16	2400
High Dike (1/400 Scale Model with 1 Upstream Obstacle)	н	37	. 16	160
0	0	38	16	420
	au	39	16	1200
н	н	40	16	2400
н		41	23	160
и	и	42	23	420
Ш	u u	43	23	1200
н	с u	44	23	2400
U U		45	30	160
	u	46	30	420
u .	н	47	30	1200
	н II	48	30	1400

*Photographs provided separately to R&D Associates