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ABSTRACT 

 

 

METHODOLOGIES TO DETECT LEAKAGES FROM  

GEOLOGICAL CARBON STORAGE SITES  

 

 

Geological carbon storage (GCS) has been proposed as a favorable technology to reduce 

carbon dioxide (CO2) emissions to the atmosphere. Candidate storage formations include 

abandoned oil and natural gas reservoirs, un-mineable coal seams, and deep saline aquifers. The 

large global storage capacity and widespread occurrence of deep saline formations make them 

ideal repositories of large volumes of CO2, however they generally lack of data for geological 

characterization in comparison to oil and gas reservoirs. Thus, properties of the injected 

formation or the sealing formation are unknown, which implies that the evolution and movement 

of the CO2 plume are uncertain in these geological formations.  

The first part of this research aims to provide an understanding of the main sources of 

uncertainty during the injection of CO2 that cause leakage variability and fluid pressure change 

near the injection well, which could be responsible for fracturing the sealing formation. With this 

purpose the effect of uncertain parameters such as permeability and porosity of injected aquifer, 

permeability of CO2 leakage pathways through the sealing layers, system compressibility, and 

brine residual saturation are investigated using stochastic and global sensitivity analyses. These 

analyses are applied to a potential candidate site for GCS located at the Michigan Basin. Results 

show aquifer permeability and system compressibility are the most influential parameters on 

fluid overpressure and CO2 mass leakage. Other parameters, such as rock porosity, permeability 

of passive wells, and brine residual saturation do not influence fluid overpressure nearby the 



iii 

injection well. CO2 mass leakage is found to be sensitive to passive well permeability as well as 

the type of statistical distribution applied to describe well permeability. 

Scarce data of the Michigan Basin exist that can be used directly to describe the spatial 

distribution at the basin scale of the caprock overlying the candidate site. The continuity of this 

formation is uncertain. The second part of this investigation explores the application of binary 

permeability fields for the study of CO2 leakage from GCS at the candidate site. A sequential 

indicator simulation algorithm is used to populate binary permeability fields representing a 

caprock formation with potential leaky areas (or inclusions). Results of the caprock continuity 

uncertainty conclude that increasing the probability of inclusions occurrence increases the CO2 

leakage. In addition, the correlation length used by the sequential indicator simulator affects the 

occurrence of inclusions.  

The third part investigates the detection and location of the presence of possible brine or 

carbon leakage pathways at the caprock during the injection operations of a GCS system. A 

computational framework for the assimilation of changes in head pressure data into a subsurface 

flow model is created to study the evolution of the CO2 plume and brine movement. The 

capabilities of two data assimilation algorithms, the ensemble smoother (ES) and the ensemble 

Kalman smoother (EnKS), to identify and locate the leaky pathways are examined. Results 

suggest that the EnKS is more effective than the ES in characterizing caprock discontinuities. 
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1 Chapter: Introduction 

 

 

 

1 Problem Statement 

The Earth is experiencing global warming as a consequence of increased greenhouse gas 

concentrations (IPCC, 2007). Global mean annual surface temperatures have increased between 

0.3 and 0.6° C since the late 19
th

 century (Nicholls et al., 1996; Ledley et al., 1999). Carbon 

dioxide (CO2) is the most important greenhouse gas produced by human activities (IPCC, 2007). 

Main sources of this CO2 are power generation from combustion of fossil fuels (coal, oil, and 

gas), transportation, and industrial processes. Combustion of fossil fuels accounts about 50% of 

CO2 emissions, transport about 25%, and industrial processes together with others contribute for 

the rest (International Energy Agency, 2002). These emissions exceed the estimated uptake of 

CO2 from natural sinks, such as oceans and terrestrial biosphere (Ledley et al., 1999). To 

mitigate climate change, one suggested goal is to limit atmospheric CO2 concentration around 

500 ± 50 ppm (O’Neill and Oppenheimer, 2002; Béal et al., 2010). This would imply to maintain 

emissions of CO2 at the existing level of 7 Giga tons of carbon per year (GtC/year) (Pacala and 

Socolow, 2004). Different options exist to mitigate CO2 emissions and/or reduce CO2 

atmospheric concentrations (IPCC, 2005): 1) improve energy efficiency; 2) switch to less 

carbon-intensive fuels; 3) increased use of low and near-zero-carbon energy sources; 4) sequester 

CO2 through the enhancement of natural, biological sinks; and 5) CO2 capture and storage. 

In the last decade, Carbon Capture and Storage (CCS) has been proposed as a technology 

for reducing CO2 emissions in the atmosphere. CCS involves the capture of CO2 at CO2 sources 

(e.g. power plant), transporting the CO2, and finally injecting the CO2 into a deep formation. 

Figure 1-1 illustrates an example of a CCS process including several CCS phases. A power plant 
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equipped with CCS could reduce CO2 emissions to the atmosphere by approximately 80-90% in 

comparison with a plant without CCS (IPCC, 2005).  

 

Figure 1-1. Carbon Capture and Storage process. Source: Cooperative Research Center for 

Greenhouse Gas Technologies (CO2CRC), 

http://www.co2crc.com.au/imagelibrary3/general.php. 

Candidate storage formations include abandoned oil and natural gas reservoirs, un-

mineable coal seams, and deep saline aquifers (Bergman and Winter, 1995; Ruether, 1998; 

Bachu, 2003). The Intergovernmental Panel on Climate Change (IPCC) recognizes the storage of 

CO2 in deep oil and gas fields, and saline formations as an economically feasible option (IPCC, 

2005). IPCC estimated storage capacity at a minimum of 1,678 GtCO2 and potentially much 

higher, of which 60% are of deep saline formations (International Energy Agency, 2008). 

Therefore, deep saline formations are potential alternatives to the lack of petroleum fields. 

Michael et al. (2010) provide a good review of the experience gained from existing saline aquifer 

storage operations (pilots and commercials projects) and point out CCS as technologically 

feasible.  

CO2 source

(eg. power plant)

CO2 capture & 

separation plant

CO2

monitoring

CO2 storage

CO2 injection

CO2 transportCO2

compression unit

CO2

compression unit
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Geological carbon storage (GCS) in a saline aquifer involves the injection of CO2 in 

supercritical state into a deep formation with a minimum depth of 800 meters (Van der Meer, 

1992; Bachu et al., 1994). CO2 density increases with depth, so at an adequate depth, CO2 has 

higher density and consequently a reduced volume. In supercritical state, CO2 has a density of a 

liquid (150 -  >800 kg/m
3
) (Bachu, 2003), and the viscosity of a gas, and behaves as a gas filling 

all the pore volume available. Figure 1-2 shows that CO2 is in supercritical state for temperatures 

higher than 31.1
o
C and pressures higher than 73.9 bar (IPCC, 2005). 

 

Figure 1-2. CO2 phase as function of temperature and pressure. Source: IPCC (2005). 

Several mechanisms contribute to the CO2 storage in reservoirs and saline aquifers during 

the stages of injection and post-injection. These mechanisms, illustrated in Figure 1-3 have been 

described in the literature (Bachu and Adams, 2003; IPCC, 2005) and can be classified into two 

categories: 
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Figure 1-3. Trapping mechanisms during injection and storage of CO2. 

1) Physical trapping: 

- Stratigraphic and structural: a portion of the injected CO2 is trapped as mobile phase, 

which migrates laterally and vertically until a sealing formation, a facies change, or an 

anticline detains the plume movement.   

- Hydrodynamic: part of the injected CO2 is trapped in the pore space as residual saturation 

of CO2 (immobile phase) due to capillary forces when brine reimbibes the CO2. 

2) Geochemical trapping: 

- Dissolution of CO2 into formation fluids: part of the injected CO2 is dissolved into the 

brine giving carbonic acid. When CO2 is dissolved into the brine, it increases brine 

density resulting in a convention process of carbonate brine and brine. 

- Chemical reactions with minerals: carbonic acid will react with minerals from the rock 

matrix and will dissolve silicate minerals at large times. During the reactions, stable 

precipitates will form. 
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The time scales associated with each trapping mechanism are very different. Time scales 

span from the decades of the injection stage to the centuries and millennia of the dissolution and 

mineral trapping. Figure 1-4 shows time scales corresponding at each trapping mechanism. 

Storage security is correlated to the time scale of the trapping mechanism, being mineral trapping 

the slowest and the safest at the same time (Figure 1-4). 

 

Figure 1-4. Storage security depending on time of post-injection stage and trapping mechanism. 

Source: IPCC (2005). 

One of the criteria of a geological formation candidate for GCS is that the formation must 

be permeable enough to accept large amounts of injected CO2, and must be overlain by a low 

permeability caprock to prevent CO2 from migrating upward toward drinking water aquifers or 

back into the atmosphere. If CO2 finds a potential pathway that leads upwards, CO2 can produce 

pH changes of groundwater resources by increasing the concentration of carbonates. This can 

influence dissolution and sorption of minerals and hazardous trace metals (such as arsenic), and 

consequently affecting groundwater quality (Kharaka et al., 2006; Apps et al., 2010). Potential 

pathways are (IPCC, 2005): “weak” areas of the caprock (permeable areas) where CO2 enter the 
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caprock if the capillary entry pressure is exceeded, faults and fractures, and poorly completed 

and abandoned wells.  

Deep saline aquifers are barely geologically characterized in comparison to oil and gas 

reservoirs. Thus, properties of the injected formation or the sealing formation are unknown, 

which involves that the evolution and movement of the CO2 plume are uncertain in these 

geological formations.  

This investigation is intended to (i) have developed a scientific basis for understanding of 

the main sources of uncertainty that cause leakage variability in GCS at the proposed site at the 

Michigan Basin; (ii) test the capacity of applying a binary permeability fields to study CO2 

leakages from GCS systems; and (iii) improve the performance of GCS by presenting a 

methodology that detects leakage pathways from fluid pressure head measurements. These goals 

are met by developing three main parts. 

The first part, Chapter 2, aims to provide an understanding of the main sources of 

uncertainty during the injection of CO2 that cause leakage variability and fluid pressure change 

near the injection well, which could be responsible for fracturing the sealing formation. Thereby 

identifying where uncertainty reduction efforts should be directed during the characterization of 

a candidate site for GCS. This will allow CCS site managers to predict the feasibility of GCS in 

barely characterized aquifers. With this purpose the effect of uncertain parameters such as 

porosity and permeability of injected aquifer, permeability of CO2 leakage pathways through the 

sealing layers, system compressibility, and brine residual saturation are investigated using 

stochastic and global sensitivity analyses. We apply these analyses to a potential site candidate 

for GCS located at the Michigan Basin. 
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Scarce data exist in the Michigan Basin exist that can be used directly to describe the 

spatial distribution at the basin scale of the sealing formation overlying the candidate site at the 

Michigan Basin. The continuity of this sealing formation is uncertain outside a certain area. The 

second part of this investigation, Chapter 3, explores the use of a sequential indicator Kriging 

simulation algorithm to study the sealing properties of the caprock at the Michigan Basin for 

GCS. Seismic surveys are used to define lithological facies of this real site and used to generate 

stochastically different distributions of facies over the caprock of the reservoir where no 

information is available. 

The third part, Chapter 4, investigates the detection of the presence of possible brine or 

carbon leakage pathways during the injection operations of a GCS system, as well as monitor 

and predict the movement of the CO2 plume. A computational framework for the assimilation of 

changes in head pressure data into a subsurface flow model is created to study the evolution of 

the CO2 plume and brine movement in deep geologic formations during the CO2 injection. This 

will provide a methodology to identify the spatial distribution of the injected CO2 and detect 

escapes from the injected formation, allowing GCS site managers to control injection rates or 

schemes of injections to prevent undesirable leakages. 

2 Major Findings 

One of the main concerns about GCS is the risk of CO2 escape from the storage 

formation through leakage pathways in the sealing formation. The second chapter of this study 

aims at understanding the main sources of uncertainty affecting the upward migration of CO2 

through pre-existing “passive” wells and the risk of fissuring of target formation during GCS 

operations, which may create pathways for CO2 escape. The analysis focuses on a potential GCS 
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site located within the Michigan Basin, a geologic basin situated on the Lower Peninsula of the 

state of Michigan. For this purpose, a stochastic approach and a global sensitivity analysis is 

applied to investigate the influence of uncertain parameters such as permeability and porosity of 

the injected formation, passive well permeability, system compressibility, and brine residual 

saturation. A semi-analytical model that reduces the time of simulation and makes the 

application of stochastic analysis and global sensitivity analysis computationally feasible is used.  

From the investigation of potential injection scenarios, it is observed that lower injection 

rates with longer injection times reduce the probability of producing excessive fluid 

overpressures in the injected aquifer. As far as CO2 mass leakage is concerned, there is a small 

difference among these scenarios. Therefore, injection of CO2 at low rates and protracted for a 

longer period of time appears to be the most convenient policy for the safety of the GCS system. 

Results of the stochastic and global sensitivity analyses show that, among these parameters, the 

most influential on both fluid overpressure and CO2 mass leakage are the aquifer permeability 

and the system compressibility. Uncertainty on passive well permeability is important only for 

CO2 mass leakage. Also, passive wells closer to the injection well are found to have a greater 

impact on CO2 mass leakage. 

The sealing formation outside the boundaries of the test site is barely characterized. 

Information about the continuity of this layer or its possible discontinuities is highly uncertain. 

To model this uncertainty, in Chapter 3, a sequential indicator simulator is developed and 

implemented to represent the sealing properties, namely permeability, of the geological unit 

overlying the GCS candidate formation. The sequential indicator simulation algorithm is used to 

create binary fields of caprock with low permeability and inclusions with high permeability 

where brine and CO2 could leak out. Due to the lack of geological data, different geostatistical 
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configurations for the sealing formation are studied to assess the impact of the uncertainty of 

caprock discontinuity. To simulate injection and potential leakage of CO2, a semi-analytical 

multiphase flow model is used. Inclusions located at close distance from one another are grouped 

and considered as single clusters to reduce the number of leaky points used by the semi-

analytical multiphase flow model, thus reducing significantly the computational effort. The 

results obtained with the semi-analytical model are compared with those obtained using a 

numerical model to understand the limitations of using the semi-analytical model with large 

areas of leakage. Results of this comparison validate the semi-analytical multiphase flow.  

Results of the caprock continuity uncertainty conclude that increasing the probability of 

inclusions occurrence increases the CO2 leakage. In addition, the correlation length used by the 

sequential indicator simulators affects the occurrence of inclusions. CO2 leakage is affected by 

passive wells permeability uncertainty for scenarios with low probability of inclusions.  

One of the main concerns of GCS systems is the risk of leakage through “weak” 

permeable areas of the sealing formation or caprock. Since the fluid pressure pulse travels faster 

than the carbon dioxide (CO2) plume across the storage reservoir, a fluid pressure change is 

inevitably transmitted into overlying permeable formations through “weak” areas of the caprock, 

and can be potentially detected sooner than actual CO2 leakage occurs. An inverse modeling 

method based on fluid pressure measurements collected in strata above the target CO2 storage 

formation is proposed, which aims at detecting the presence, the location, and the extent of 

possible carbon leakage pathways. A three-dimensional subsurface multiphase flow model with 

ensemble-based data assimilation algorithms are combined to identify potential caprock 

discontinuities that can undermine the long-term safety of GCS. In Chapter 4, this study 

examines and compares the capabilities of data assimilation algorithms such as the ensemble 
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smoother (ES) and the ensemble Kalman smoother (EnKS) to detect the presence of brine and/or 

CO2 leakage pathways, potentially in real-time during GCS operations. For the purpose of this 

study, changes in fluid pressure in the brine aquifer overlying to CO2 storage formation aquifer 

are assumed to be observed in monitoring wells, or provided by 4D time-lapse seismic surveys. 

Caprock discontinuities are typically characterized by higher values of permeability, so that the 

permeability distribution tends to fit to a non-Gaussian bimodal process, which does not comply 

with the requirements of the ES and EnKS algorithms. Here, issues related to the non-

Gaussianity of the caprock permeability field are investigated by developing and applying a 

normal score transform procedure.  

The performance of ES and EnKS methods is evaluated for two different scenarios: 1) a 

scenario in which permeability of both storage and overlying aquifer is considered known and 

homogeneous, and 2) a scenario in which aquifers’ permeability are considered uncertain and 

heterogeneous. Results suggest that the EnKS is more effective than the ES in characterizing 

caprock discontinuities. Also, since results from ES-NST rely on only one update of the system, 

it is found that EnKS-NST method allows for better detection of leaky pathways. In the case of 

the heterogeneous aquifers scenario, more assimilation times are required in order to better 

identify caprock discontinuities from spurious leakages. 

3 Future Research 

Brine leakage through a passive well or a ‘weak’ area from the candidate storage 

formation may affect the quality of shallow groundwater resources. Although this study focuses 

the methodologies presented in Chapter 2 and Chapter 3 on CO2 leakage, it could also be applied 

to study their impact on brine leakage. 
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 In Chapter 4, it would be of particular interest to extend several aspects of the research 

presented.  

First, apply a sensitivity analysis of the reference caprock log-  variance to verify that 

EnKS-NST performs better than ES when the non-Gaussianity and nonlinearity of the 

experiments are increased or decreased.  

Second, study the effect on identifying and detecting leakage areas if the number of 

measurements locations is decreased or increased.  

Third, study the possibility of combining measurements from the overlying and storage 

aquifers if these are provided by 4D time-lapse seismic surveys. This would allow better 

definition of pressure pulse movement through the formations. Consequently, better 

identification and location of the discontinuities of the caprock would be expected.  

Fourth, apply the same methodology using the EnKF algorithm, which would present a 

reduced central processor unit time in comparison to the EnKS. In order to avoid the 

inconsistency of updated state values that EnKF may provide, only system parameters would be 

updated. 

Last, apply the methodology presented in Chapter 4 to a real scenario. 

One of the main risks associated with carbon geological storage in deep brine aquifers is 

the escape of CO2 through potential pathways of the sealing layers such as poorly completed and 

abandoned wells. The vast number of abandoned wells present in certain areas and the lack of 

information about their cementation integrity convert them in a main source of leakage 

uncertainty. Based on a similar data assimilation-framework presented in Chapter 4, it would be 

possible to identify which wells are leaking in a certain field. This would provide a method to 
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detect escapes through poor cemented wells from the injected formation and a better control of 

injection rates or schemes of injections to prevent undesirable leakages. 

4 Organization 

This dissertation is organized in the following three sections: 

 Chapter 2 is entitled ‘Stochastic and global sensitivity analyses of uncertain parameters 

affecting the safety of geological carbon storage in saline aquifers of the Michigan Basin’ 

and includes an article by González-Nicolás, Baù, Cody, and Alzraiee, being submitted to 

“International Greenhouse Gases Journal”.  

 Chapter 3 is entitled ‘Application of binary permeability fields for the study of CO2 

leakage from geological carbon storage in saline aquifers of the Michigan Basin’ and 

includes an article by González-Nicolás, Cody, Baù. In preparation, to submit to 

“Hidrogeology Journal”. 

 Chapter 4 is entitled ‘Detection of potential leakage pathways from geological carbon 

storage by fluid pressure data assimilation’ and includes an article by González-Nicolás, 

Baù, and Alzraiee. In preparation, to submit to Special Issue in “Advances in Water 

Resources”. 
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2 Chapter: Stochastic and Global Sensitivity Analyses of Uncertain 

Parameters Affecting the Safety of Geological Carbon Storage in Saline 

Aquifers of the Michigan Basin 

 

 

 

Summary 

Geological carbon storage (GCS) has been proposed as a favorable technology to reduce 

carbon dioxide (CO2) emissions to the atmosphere. One of the main concerns about GCS is the 

risk of CO2 escape from the storage formation through leakage pathways in the sealing 

formation. This study aims at understanding the main sources of uncertainty affecting the upward 

migration of CO2 through pre-existing “passive” wells and the risk of fissuring of target 

formation during GCS operations, which may create pathways for CO2 escape. The analysis 

focuses on a potential GCS site located within the Michigan Basin, a geologic basin situated on 

the Lower Peninsula of the state of Michigan. For this purpose, we apply a stochastic approach 

and a global sensitivity analysis to investigate the influence of uncertain parameters such as: 

permeability and porosity of the injected formation, passive well permeability, system 

compressibility, and brine residual saturation. We use a semi-analytical model that reduces the 

time of simulation and makes the application of stochastic analysis and global sensitivity 

analysis computationally feasible. Results show that, among these parameters, the most 

influential on both fluid overpressure and CO2 mass leakage are the aquifer permeability and the 

system compressibility. Uncertainty on passive well permeability is important only for CO2 mass 

leakage. Passive wells closer to the injection well are found to have a greater impact on CO2 

mass leakage. 
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1 Introduction 

The Earth’s atmosphere is experiencing global climate change caused by increasing 

greenhouse gas concentrations. Carbon dioxide (CO2) is the most important greenhouse gas 

produced by human activities (Solomon et al., 2007). In the last decade, geological carbon 

storage (GCS) has been identified as a promising technology for reducing CO2 emissions to the 

atmosphere. Candidate storage formations include depleted oil and natural gas reservoirs, 

unmineable coal seams, and deep saline aquifers (Bergman and Winter, 1995; Ruether, 1998; 

Bachu, 2003). The latter represent potential alternatives to the lack of petroleum fields and 

constitute 60% of the estimated storage capacity worldwide (International Energy Agency, 

2008). GCS in saline aquifers involves the injection of supercritical CO2 into deep brine-

saturated formations. Supercritical CO2 is less dense and less viscous than the brine residing in 

saline formations, which causes gravity override as well as viscous fingering. Thus, supercritical 

CO2 tends to migrate upwards driven by buoyancy until low-permeable layers, or caprock, 

detains its ascent. However, if the injected CO2 finds a potential leakage pathway through the 

caprock, it may adversely affect shallow fresh groundwater resources or even migrate to the land 

surface.  

Characteristics of the caprock overlying the injected formations are critical elements for 

the effectiveness and safety of GCS operations. Nevertheless, unlike petroleum reservoirs, saline 

aquifers have never contained oil or gas. Consequently, there are less data associated with saline 

aquifers than petroleum reservoirs. In addition, information about the sealing properties of the 

caprock might be scarce or inexistent. Typically, physical properties of potential candidate GCS 

sites are highly uncertain. Host rock permeability, spatial distribution of potential leakage 

pathways, and increase of fluid pressure in the injected formations may directly influence CO2 
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leakage. Leakage pathways may also be created during the CO2 injection process due to caprock 

fracturing associated with increased fluid pressure and the ensuing reduction in effective stress. 

Therefore, assessing the risk of CO2 leakage given the uncertainty on these parameters is vital 

prior to the implementation of GCS systems. 

Carbon injection into deep saline aquifers involves complex processes of two-phase flow 

in confined geological formations, which make its modeling a demanding endeavor. 

Complexities associated with multiphase flow and transport processes, such as non-linearity, 

induced fingering, convective mixings, etc., create the need for computationally efficient 

assessment approaches. Several analytical and semi-analytical solutions have appeared in the 

literature, including Saripalli and McGrail (2002), Nordbotten et al. (2005a), Gasda et al. (2008) 

and Dentz and Tartakovsky (2009) among others, which rely on a number of simplifying 

assumptions. Modifications of some of these solutions accounting for CO2 compressibility are 

presented in Vilarrasa et al. (2010). The main advantage of analytical and semi-analytical models 

is that they allow simulations to be performed in a very short central processor unit (CPU) time 

(of the order of seconds), which makes stochastic and global sensitivity analyses, requiring on 

the order of thousands of model runs, computationally viable. 

Risk assessment is an important tool for decision making during the initial stages of GCS 

projects. Some algorithms have been developed to predict performance and risk of GCS systems 

(e.g., LeNeveu, 2008; Stauffer et al., 2008; Oldenburg et al., 2009; Dobossy et al., 2011), where 

potential candidate sites are selected for evaluation of their safety and effectiveness. Several 

studies have been published that statistically analyze the uncertainty of leakage associated with 

parameters of the injected aquifer in a GCS system. For example, Celia et al. (2009) investigated 
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the influence of the injection depth on leakage risk and showed that this risk decreases when 

injection depth increases.  

CO2 injection performance and sequestration efficiency have also been investigated in 

published literature. For example, Celia et al. (2011) found that CO2 injection rates are reduced 

by higher brine residual saturations and are influenced by the relative permeability of CO2. 

Gupta and Bryant (2011) found that more CO2 trapping is achieved when the gravity number 

(i.e. the ratio between buoyancy and viscous forces) is low, leading to enhanced lateral 

displacement of the CO2 plume. On the other hand, high gravity numbers lead to stronger gravity 

override, resulting in both less trapping of CO2 and less contact between the CO2 plume and 

ambient brine. Middleton et al. (2012) showed that uncertainties from permeability, porosity, and 

formation thickness significantly affected capacity and cost calculations. 

Studies that analyze the uncertainty of leakage associated with abandoned wells can also 

be found. Kopp et al. (2010) concluded that the increased risk of leakage is produced by a long 

injection time, small distance between injection wells and leaky wells, high permeability 

anisotropy, high geothermal gradient, and shallow depth. In order to show that potential leakage 

depends on formation properties, as well as location and number of leaky wells, Nogues et al. 

(2012) conducted a Monte Carlo simulation where the main uncertainty was the effective well 

permeability. 

A sensitivity analysis on the long-term behavior of CO2 in a multilayered aquifer was 

conducted by Kano and Ishido (2011). Parameters that had more influence in the long-term were 

geothermal gradient and thicknesses of layers, as well as the capillary pressure, relative 

permeability and permeability. Aoyagi et al. (2011) presented an example of a sensitivity 

analysis of productivity index and fault permeability affecting the leakage of CO2 through wells 
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or faults. They found that the fault permeability value is more relevant when leakage starts. Zhao 

et al. (2010) determined that CO2 dissolution increased when the vertical-to-horizontal 

permeability ratio, critical gas saturation, or brine salinity are decreased, and when brine 

saturation is increased. 

Alternative methods for quantifying uncertainty by stochastic simulation can be found, 

for example, in the works of Oladyshkin et al. (2011) and Walter et al. (2011). Oladyshkin et al. 

(2011) used an integrative probabilistic collocation method to reduce the computational cost 

associated with stochastic approaches. Walter et al. (2011) used this method to study the pressure 

increase in a channel system during injection of CO2.  

All these studies investigate uncertainties of multiple factors to aid the decision making 

of best injection strategies. The aim of this study is to provide an understanding of the main 

sources of uncertainty that affect leakage through potential escape pathways and fluid 

overpressure variability, thereby identifying where data collection efforts should be directed to 

improve the characterization of a candidate site for GCS. With this purpose, we perform 

stochastic simulations and conduct global sensitivity analyses to investigate the effect of several 

parameters − such as permeability and porosity of injected aquifers, passive well permeability, 

system compressibility, and brine residual saturation − on the potential fracturing of the storage 

formation during CO2 injection and the upward migration of CO2 through passive wells. This 

study is applied to a potential GCS site embedded in the Michigan Basin. 

To simulate the CO2 injection, we use ELSA-IGPS, a semi-analytical model implemented 

by Cody et al. (2014), which builds upon the semi-analytical model developed by Celia and 

Nordbotten (2009) and Nordbotten et al. (2009). We apply these analyses to study the influence 

of these uncertain parameters on: (i) the maximum fluid overpressure produced by carbon 
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injection; and (ii) the mass of CO2 that migrates into overlying formations in relation to the total 

mass of injected CO2. Results from the stochastic approach are used to estimate the probability 

of fracturing the caprock, and the probability of leaked mass to exceed predefined threshold 

values. The global sensitivity analysis aims at identifying the most influential and the least 

relevant uncertain parameters. 

This paper is organized as follows. First, the multiphase flow model is presented, 

followed by a description of the methodologies used for stochastic analysis and global sensitivity 

analysis. Results of the application of these methodologies to the Michigan Basin test site are 

thus presented and discussed. Last, a summary and conclusions of this work are given. 

2 Multiphase Flow Semi-Analytical Model 

The algorithm used in this study is called ELSA-IGPS (Estimating Leakage Semi-

Analytically- Iterative Global Pressure Solution) (Cody et al., 2014), and constitutes a modified 

version of the semi-analytical model ELSA devised by Celia and Nordbotten (2009) and 

Nordbotten et al. (2009). 

By solving the partial differential equations for two-phase immiscible flow, Nordbotten et 

al. (2005b) developed a semi-analytical model to estimate the leakage of brine and CO2 flux 

through permeable caprock locations resulting from GCS. Permeable caprock locations are 

conceptualized as segments of pre-existing, abandoned wells and represent cylindrical portions 

of the caprock layers having low, yet non-negligible, permeability.  These are referred to as 

“passive” wells and are assumed to be the only pathways for fluid flux exchange between 

permeable layers. 
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In ELSA-IGPS, the domain is structured into a stack of   aquifers separated by     

caprock layers, perforated by   carbon injection wells and   passive wells. Aquifers are 

assumed to be horizontal, homogenous, and isotropic. Injection wells are theoretically able to 

inject into any aquifer. Initially, fluid is not flowing through any of the passive wells because the 

entire domain is assumed saturated with brine under hydrostatic pressure conditions. Additional 

assumptions include perfectly horizontal flow, and negligible capillary pressure, which results in 

a sharp CO2-brine interface. The CO2 plume thickness at any given location is assumed to be the 

thickness from all sources and sinks in the aquifer. Pressure response from sources and sinks can 

be superimposed in each aquifer, and the capacity of the formation to store the injected CO2 

remains constant during GCS operations. 

At the start of injection, aquifer fluid pressures begin to change throughout the domain 

resulting in pressure differentials across caprock layers and fluid flux through passive wells. It is 

therefore very important to understand aquifer fluid pressure response resulting from changes in 

the mass storage of CO2 and brine. Celia et al. (2011) express this radial pressure response   

[ML
-1

T
-2

] at the bottom of an aquifer in which a single well injects CO2 as: 

     (     )      (2-1) 

where    is the initial fluid pressure at the bottom of the aquifer,    is the fluid density [ML
-3

] 

( denotes the phase type,   for brine and   for CO2),   is the gravitational acceleration [LT
-2

] 

and   is the aquifer thickness [L]. In Equation (2-1),     [/] is defined as: 
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In Equations (2-2)-(2-7):   is the CO2 plume thickness [L],    [/] is the CO2 plume 

thickness relative to the aquifer thickness  ;   
    is the residual saturation of the brine [/];   

represents time [T];   is the aquifer permeability [L
2
];    is the dynamic viscosity of the brine 

[ML
-1

T
-1

];  is the aquifer porosity [/];   is the total CO2 volumetric well flux [L
3
T

-1
];      is 

the effective compressibility of the fluid and the solid matrix [M
-1

LT
2
]; and   is the radial 

distance [L]. Also,  (  ) is an offset term related to the vertical pressure distribution (Celia et 

al., 2011), and the mobility ratio is defined as          , where            and      is the 

relative permeability of phase    
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To determine the fluid overpressure at any given time throughout the aquifer system 

Nordbotten et al. (2005b) apply superposition of effects derived from the application of Equation 

(2-1) for all the volumetric sources and sinks corresponding to CO2 injection wells and passive 

wells. Consequently, the fluid pressure at any given time  , at the bottom of the generic aquifer 

  ( =1,2,..,L) and for each passive well   ( =1,2,..,N) can be expressed as: 

        
 (     )   [ ∑    (       )
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] (2-8) 

where               (      
   )     

 (      )⁄  and 

             (      
   )    

 ∫ (           )  
 

 
⁄  (see Equation (2-3)).     and     are the 

injection well radius [L] and the total CO2 volumetric injection well flux [L
3
T

-1
] respectively. 

With this approach, the fluid pressures at the bottom of each aquifer and at each passive well can 

be grouped into the following (   )    vector: 

 ( )   [    ( )] 
(2-9) 

which is a function of the array: 

   [        
                              ] (2-10) 

where the     vectors  ,  ,   
    and   include the thicknesses, porosities, brine residual 

saturations and permeabilities of all aquifers;     is a (   )    vector including the CO2 

inflow rates for each aquifer   ( =1,2,..,L) and for each injection well    (  =1,2,..,M); and the 

(   )  (   ) matrix   includes the relative distances between all injection and passive 

wells. 

In addition,  ( ) (Equation (2-9)) is a function of the     array  ( ), whose generic 

component     ( ) represents the net cumulative fluid mass transferred into aquifer   through 

passive well   until time t, calculated as: 
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where         ( ) is the effective fluid density in aquifer   at passive well  . This density is time-

dependent since the composition of the leaking fluid is a function of the phase saturations of CO2 

and brine, which vary based on the CO2 plume location. The effective fluid density is estimated 

as                 
   (       

), where      
 denotes CO2 saturation. 

Since the application of Equation (2-9) requires the temporal evolution of leakage rates 

through passive wells (Equation (2-11)) to be known, Nordbotten et al. (2005b) propose to use 

the sum of the flow rates      
 for each phase  calculated using the multiphase version of 

Darcy’s law across each confining layer   for each passive well  : 

      ∑ [    
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(2-12) 

In Equation (2-12),       
 is the passive well radius and       

 is the single phase passive 

well permeability for passive well   ( =1,2,..,N) and aquitard layer  . Note that in order to apply 

Equation (2-12), fluid pressures      as well as CO2 relative thicknesses in passive well pathways 

must be known to estimate pressure gradients, fluid saturations and relative permeability values. 

Given Equation (2-12), the flow rates across each aquitard   ( =1,2,..,L) for each passive well   

( =1,2,..,N) can be grouped into the (   )    vector  : 

 ( )   [    ( )] (2-13) 

where the array    is given by: 

   [                                   ] 
(2-14) 

In Equation (2-14), the (L+1)×1 vector   includes the aquitard thicknesses [L], the 

  (   ) matrices     and     contain the passive well radii and the permeabilities, and the 
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  (   ) matrices      and      include the relative permeabilities of CO2 and brine at 

passive wells, respectively.  

By combining Equations (2-9) and (2-13), a set of       non-linear equations in 

      unknowns is obtained. These unknowns are the fluid pressures at the bottom of each 

aquifer and at each passive well (Equation (2-8)), and the flow rates (Equation (2-12)) across 

each aquitard for each passive well. 

To solve this system, a computationally efficient fixed-point iterative scheme (Takahashi, 

2000) is implemented. Note that since Equation (2-9) requires the calculation of the cumulative 

fluid mass transferred through passive wells, time-stepping is applied by discretizing the time 

interval [0;     ], over which CO2 injection occurs, into a number of time steps of length   . 

This approach allows for approximating the evolution of the pressure distribution, passive well 

fluxes, as wells CO2 plume locations and thicknesses over the interval [0;     ]. 

A fixed-point iteration scheme is applied to solve the system of non-linear equations 

introduced above at a generic time t given the solution at time      obtained at the previous 

time step. By denoting with ( ) the iteration index, the scheme uses the initial (for  =1) 

assumption that passive well flow rates for the current time-step remain the same as in the 

previous time step: 

 ( )( )   (    ) (2-15) 

Next, the vector of the cumulative fluid mass transferred through passive wells is 

approximated as: 

 ( )( )   (    )

 [(   )    (    ) (    )       ( )
( ) ( )( )]   

(2-16) 
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where   is a relaxation coefficient such that      . This coefficient is implemented to 

smooth out oscillations and speed up convergence. In Equation (2-16),     ( )
( ) includes the 

fluid densities at passive wells, which are assumed to be equal to     (    ) for the first 

iteration ( = 1). The current estimate of the vector  ( )( ) is substituted in Equation (2-9) to 

provide: 

 ( )( )   [    ( )( )] (2-17) 

This pressure distribution at passive wells is used in Equation (2-13) to obtain the 

updated passive flow rate vector: 

 ( )(   )   [  
( )  ( )( )] (2-18) 

Note that before applying Equation (2-18), the array   
( )

 must be re-calculated since it 

depends on the relative permeabilities of CO2 and brine at passive wells (Equation (2-14)). 

At this point, the iteration index is increased (   +1) and the sequence of Equations 

(2-16)-(2-18) is repeated. The iteration proceeds until the maximum norm of the vector including 

the relative error between the preceding and current iteration’s flow rate becomes smaller than a 

prescribed tolerance coefficient,     :  

 

    {|
    

(   )      
( )

    
(   )

|    |
    

(   )      
( )

    
(   )

|    |
    

(   )      
( )

    
(   )

|}

      

(2-19) 

In order to ensure time-step convergence stability, a maximum passive well flow rate, 

       , is specified to dampen artificially high-magnitude pressure differentials calculated 

when using large time- step intervals or closely-spaced passive well positions.         is 

typically of the order of one tenth the volumetric CO2 injection rate. 
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This ELSA-IGPS algorithm (Cody et al., 2014) described above allows for drastically 

reducing the computational effort (a complete simulation takes CPU times on the order of 

seconds or minutes) making possible the application of this solution within a stochastic 

simulation (or Monte Carlo) approach or a global sensitivity analysis such as those described in 

the following sections. 

In this study, ELSA-IGPS is used to explore the uncertainty and sensitivity of the input 

parameters on the uncertainty and variability of two states variables of interest: i) the fluid 

overpressure nearby the injection well, and ii) the percentage of CO2 mass leakage into overlying 

formations.  

In these analyses, fluid overpressure      is defined as the difference between the final 

(at final time     ) and initial fluid pressures in proximity of the injection well. In our analyses, 

the number of injection wells   is set equal to 1, and injection occurs into the deepest aquifer 

( =1). Therefore, based on Equation (2-8), the fluid overpressure nearby the injection well at 

final time is calculated as: 

          (   
      )  (     )   [   (      )  ∑   (      )

 

   

] 
(2-20) 

where    
  is a radial distance nearby the injection well, equal to 5 m in this study.  

The total CO2 mass leakage is given by (Equation (2-11)):  

     (    )   ∫ [∑        ( )    ( )

 

   

]   
    

 

 

(2-21) 

Thus, the percent of CO2 mass leakage        is defined as the ratio between the mass 

of CO2 that escapes from the injected aquifer into overlying formations and the total mass of 

injected CO2 at time     : 
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     (    )

          
    

(2-22) 

3 Stochastic Analysis 

Stochastic, or Monte Carlo, simulation is a mathematical method that allows for the 

analysis of complex systems while accounting for uncertainty in quantitative terms. The main 

advantage of stochastic analysis (SA) is that it produces statistical distributions of possible 

outcomes resulting from uncertain input parameters. The number of total simulations required by 

SA depends in general on the number of uncertain parameters and their degree of uncertainty or 

range of variability. Values of the uncertain parameters are sampled randomly from their 

respective probability distribution functions (PDF), which are meant to reproduce the uncertainty 

of the parameter. Since the sampling is random, the outputs of the model are random as well. 

In the SA presented here, the uncertain input parameters that may affect the state 

variables of interest, that is,      (Equation (2-20)) and        (Equation (2-22)) are: 

permeability and porosity of injected aquifers, passive well permeability, system compressibility, 

and brine residual saturation. These uncertainties are modeled conceptually using a series of 

independents PDFs representing their typical range of uncertainty. In the case of passive well 

permeability, up to three different PDFs are considered.  

In this study, ensembles of uncertain parameters are used within the mathematical model 

(see Section 2) to simulate how parameter uncertainty affects the uncertainty in the state 

variables of interest. Output ensembles of the state variables are used to produce cumulative 

distribution function (CDF) plots. The CDF of the generic state variable  , either      or 

      , is obtained from the output of     model simulations, where     is the size of the 

ensemble. After ordering the   values in ascending order,             
, the 
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corresponding CDF values are calculated as    ( )  (  –     )     (i=1,2,…,   ) (Hahn, 

1967). 

By analyzing the statistics of the output ensembles (            
) the 

information that can be drawn is, for example, PDF type and its parameters, ensemble spread, 

quantiles, confidence bounds, and percentile values. In the case of state variables such as      

(Equation (2-20)) and        (Equation (2-22)), percentile values can be used to estimate the 

probability of fracturing the caprock formations and the probability of leaked mass to exceed 

predefined threshold values. 

4 Global Sensitivity Analysis 

Modeling CO2 injection into a deep saline aquifer requires a large number of parameters 

that often are difficult to obtain and consequently present large uncertainties. Therefore, 

separating the most significant input parameters from the non-relevant, and assessing their 

relative contributions to the overall output uncertainty can be extremely helpful to focus research 

means effectively. To achieve this goal, global sensitivity analysis (GSA) may be used. 

GSA (Saltelli, 2008) differs from typical sensitivity analysis methods in that it computes 

incremental ratios of a generic output state variable   over an input parameter    ( =1,2,…,  ; 

where   is the total number of uncertain input parameters) such as [ (      )   (  )]    , 

and is able to explore all the space of the input parameters, also called input factors. Contrarily, 

sensitivity analysis computes these ratios as derivatives of   with respect to    (i.e.      ⁄ ) 

centered on a single data point of the input space. 

GSA methods can be classified into two groups (Sudret, 2008): (1) regression-based 

methods, and (2) variance-based methods, better known as ANOVA techniques. The first group 
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includes, among others, standardized regression coefficient and partial correlation coefficient 

methods (Helton, 1993). The second group includes methods such as Sobol’s indices (Sobol, 

1993) and the Fourier amplitude sensitivity test (FAST) indices (Cukier et al., 1978; Saltelli et 

al., 1999; Saltelli, 2008). 

In this study, we apply the extended Fourier Amplitude Sensitivity Test (FAST) 

introduced by Saltelli (1999). Extended FAST is a GSA variance-based method, whose main 

characteristic is it can capture not only the uncertain parameters having more influence on the 

variance of the model output, but also the interaction effect among the input parameters. For 

each uncertain parameter   , the extended FAST method provides two sensitivity measures: the 

first-order index and the total effect index. The first-order index    represents the main effect 

contribution of each model input parameter     to the variance of the generic model output   

(     or       ). In practice,    quantifies how much the variance of   would be reduced if the 

uncertain input parameter     was fixed. This index is calculated as (Saltelli, 2008): 

   
 [ ( |  )]

 ( )
 

(2-23) 

where  ( ) indicates the variance operator and  ( |  ) indicates the expected value of   

conditioned to    , and  [ ( |  )] is the first-order effect.  

Two or more input parameters present interaction when the sum of their first-order 

indices cannot explain their effect on  .  ( ) can thus be decomposed into first-order and 

higher-order effect terms:  

 ( )  ∑   ∑ ∑    

 

     

 

   

 ∑ ∑ ∑     

 

     

 

     

 

   

 

   

   
(2-24) 

where     [ ( |  )] is the first-order effect of   , and      [ ( |     )]   [ ( |  )]  

 [ ( |  )] is the second-order effect between parameters     and    , etc. The reader is referred 
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to Saltelli (Saltelli, 2008) to find equations for terms of order greater than second.  If both sides 

of Equation (2-24) are divided by  ( ), the following identity is obtained:  

∑   ∑ ∑    

 

     

 

   

 ∑ ∑ ∑     

 

     

 

     

 

   

 

   

     
(2-25) 

where    is the first-order index of    (Equation (2-23)),     is the second-order index of 

parameters of    and of   , etc. It is possible to show that the total number of terms at the left-

hand side of Equation (2-25) is     , which increases exponentially with    This makes the 

calculation of higher-order indices computationally intensive. 

As an alternative to compute higher-order indices, GSA computes the total effect index 

   
 ( =1,2,…  ), which detects the interaction of the parameter     with all other parameters and 

represents its total contribution to the model output. In other words,    
 is equal to the first-order 

index    plus the interaction of    with other uncertain parameters, and is calculated as (Saltelli, 

2008): 

   
   

 [ ( |   )]

 ( )
 

(2-26) 

where     is the vector including all input parameters but   . For example, for a model 

composed by three uncertain parameters,   ,    , and    , the total effect index of parameter    

is defined as: 

   
                 (2-27) 

Consequently, the sum of higher-order effects    
 ( =1,2,…  ) can be defined as: 

   
    

    (2-28) 

The index    
 quantifies the importance of the interaction of parameter     with the all 

other input parameters. Consequently, if    
 is negligible, then the interaction of the uncertain 
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parameter     with other parameters is non-relevant (   
   and    

   ). On the other hand, 

the value of    
 provides information concerning the relevance of the input parameter    . If    

 

is zero or close to zero, then the parameter     can be set to any value of its range of variability 

without having any impact on the output variance of the model.  

Extended FAST is a Monte-Carlo based numerical procedure, where the variances and 

the conditional variances of the model response with respect to uncertain input parameters are 

estimated from the output of an ensemble of model runs. To apply the extended FAST and 

compute first-order and total effect indices of each parameter the SIMLAB package (SIMLAB, 

2007) is employed. The total number of executions that the extended FAST method requires is 

equal to   (   ), where   is the size of the ensemble used for each input parameter, which 

can range from a few hundreds to a few thousands. For example, for a number of 5 input 

parameters and an ensemble size of 1,000, extended FAST would require 7,000 runs. Inevitably, 

for a model with a large number   of input parameters, this method requires large ensembles of 

executions, and is viable only for simulation models that are not computationally intensive, as is 

the case of the multiphase flow simulator presented in Section 2.  

5 Application to the Michigan Basin Test Site 

5.1 Site description 

The SA and GSA introduced in Sections 3 and 4 are applied to a geological test site 

located near the town of Thompsonville, MI. The storage formation proposed for GCS is 

embedded in the northern reef trend of the Michigan Basin. These reefs are evaporate-encased 

and, up until a few decades ago, significantly contributed to the production of hydrocarbons in 

Michigan. Most of these formations are associated with the reef buildups of Middle Silurian age. 
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Figure 2-1 shows a cross-section of the Michigan Basin in the area of interest with available log-

wells.  

 

Figure 2-1. Cross-section of the Michigan Basin test site (adapted from (Turpening et al., 1992). The Gray 

Niagaran formation highlighted in yellow, is selected as potential candidate for GCS. 



35 

The Gray Niagaran formation, highlighted in yellow, lies below the Brown Niagaran 

pinnacle, a depleted oil reservoir currently used by Michigan Technological University for 

geophysical research (Figure 2-1). This formation is chosen as a candidate to store supercritical 

CO2 because it is underneath the Brown Niagaran pinnacle, and thus the sealing capacity in that 

region is somehow warranted. In addition, the Gray Niagaran formation is already perforated by 

two exploration wells (Burch 1-20B and Stech 1-21A), which could possibly serve as CO2 

injection wells. The top and the bottom of this formation lie at a depth of 1,500 m and 1,619 m 

below ground, respectively. These characteristics make this formation a good candidate for 

storage of CO2 in supercritical state. 

To simplify the simulation of CO2 injection, the system is modeled as an aquifer (the 

Gray Niagaran formation) confined by one sealing caprock (Evaporites), and another aquifer 

with lower permeability (Carbonate formation) located above the sealing caprock. Supercritical 

CO2 is injected within the lower aquifer from a single well. The thicknesses of the Gray 

Niagaran formation and the overlying aquifer are 119 m and 35 m, respectively. The caprock has 

a thickness of 17 m and is assumed impermeable except where there are passive wells. The area 

of interest covers a horizontal extent of about 9,000 m × 9,000 m around the Brown Niagaran 

pinnacle and comprehends a total of 80 passive, and potentially leaky wells drilled across the 

Gray Niagaran formation. The locations of these wells have been obtained from DEQ (2013). If 

these wells are deteriorated or not well cemented, they may represent a pathway for upward 

leakage of both brine and CO2 from the Gray Niagaran formation. In this study, all formations 

are assumed initially saturated with brine under hydrostatic pressure conditions.  

Wells logs are available for the two boreholes shown in Figure 2-1. Log-porosity values 

are extracted from neutron porosity hydrogen index from the available logs (SCH, 1983; 
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Halliburton, 1990; SCH, 1991). Given the lack of data, permeabilities  , in millidarcy (mD; 1mD 

≡ 1×10
-15 

m
2
), for the candidate formation and the overlying aquifers are estimated from porosity 

  as (Trebin, 1945): 

              if      < 12%     

      (    )        if      > 12%     

 

(2-29) 

 

The residual saturation of brine,   
   , is assumed to be equal to 0.3 (Zhou et al., 2009).  

In the analyses presented here, a reference case is considered with the hydro-

geomechanical parameters provided in Table 2-1.  

Table 2-1. Hydro-geomechanical parameters of the reference case. Parameters of this table remain 

unchanged (deterministic) unless the parameter of interest is considered uncertain. 

Parameter Symbol Value Units 

Brine density    1,045 kg m
-3

 

CO2 density    575 kg m
-3

 

Brine viscosity    4.5×10
-4

 Pa s 

CO2 viscosity    4.6×10
-5

 Pa s 

System compressibility       4.6×10
-10

 Pa
-1

 

Injected aquifer porosity    0.084 / 

Overlying aquifer porosity    0.05 / 

Brine residual saturation   
    0.3 / 

Injected aquifer permeability    2.8×10
-14

 m
2
 

Overlying aquifer permeability    9.6×10
-15

 m
2
 

Passive wells permeability     1.0×10
-14

 m
2
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The uncertain parameters of interest are: permeability    and porosity  
  of the injected 

aquifer, passive wells permeability    , system compressibility     , and brine residual 

saturation   
   . A PDF is prescribed for each of these parameters to represent their uncertainty 

for the candidate formation. These PDFs are given in Table 2-2.  

Table 2-2. Probability distribution functions (PDFs) for uncertain parameters. 

Parameter (unit) Distribution 
Median 

value 

Log 

standard 

deviation 

Minimum 

value 

Maximum 

value 
Realizations 

Aquifer permeability 

(m
2
) 

lognormal 2.8×10
-14

 0.5 - - 1,000 

Aquifer porosity (/) 
uniform - - 0.05 0.35 1,000 

Passive 

well 

permeability 

(m
2
) 

Case 1 
lognormal 1.0×10

-14
 1 - - 1,000 

Case 2 
bimodal 1.0×10

-14
 - 1.0×10

-17*
 1.0×10

-11*
 1,000 

Case 3 
bimodal 1.0×10

-14
 - 1.0×10

-16*
 1.0×10

-12*
 1,000 

System 

compressibility (Pa
-1

) 

lognormal 1.0×10
-9

 1 - - 1,000 

Brine residual 

saturation (/) 

uniform - - 0.00 0.40 1,000 

*
50% chance for bimodal distributions 

 

To characterize the permeability of passive wells, three different PDFs sharing the same 

median value are considered (see Table 2-2). In Case 1, a lognormal PDF with a median 

permeability of 1.0x10
-14

 m
2
 and a log-standard deviation of 1 log-m

2
 is adopted (Nordbotten et 

al., 2009). For Cases 2 and 3, bimodal distributions, in which each passive well permeability may 

assure two values, each with a 50% probability of occurrence. In Case 2, the minimum value of 

permeability assigned to well-cemented passive well is 1×10
-17

 m
2

, and the maximum value of 

permeability assigned to a passive well is 1×10
-11

 m
2
. In Case 3, the permeabilities for a well-

cemented well and a leaky passive well are 1×10
-16

 m
2
 and 1×10

-12
 m

2
, respectively. In both 

cases, the permeability corresponding to a cemented well never exceeds the maximum 
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permeability recommended for a well-sealed passive well, which is 2×10
-16

 m
2
 according to 

Kutchko et al. (2009). 

In the SA, the 80 passive wells are considered individually, whereas in the GSA, these 

wells are clustered into 20 equivalent leakage pathways to reduce the number of input parameters 

and, consequently, the computational cost of the procedure. Figure 2-2 shows the position of the 

passive wells (DEQ, 2013) located in the area under consideration and the position of each 

cluster of wells.  

 

Figure 2-2. Location of the 80 passive wells (indicated as crosses) that reach the Niagaran formation and 

location of the 20 equivalent leakage pathways (indicated as circles) used in the GSA and obtained after 

clustering the 80 passive wells. The injection well is located at the center of the domain. 

Well clusters are identified with an optimization procedure that minimizes the sum of 

the Euclidean distances of the passive wells forming a cluster and the cluster centroid. The 

equivalent leaky area considered for each cluster of wells is equal to the sum of the cross section 
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areas of the wells included in that group. Since the focus is on investigating the contribution of 

passive well permeability to the variance of the outputs, compared to the single contribution of 

individual passive well permeability to the output, it is expected that this clustering process will 

not affect results significantly. 

Hence, in the GSA,  =24 input parameters are considered, characterized by the PDFs 

given in Table 2-2. These parameters are: the permeability    and the porosity    of the aquifer, 

the permeability     of the 20 clusters of passive wells (Figure 2-2), the system compressibility 

    , and the brine residual saturation   
   . The GSA is applied to study the impact of these 24 

parameters on the maximum fluid overpressure reached around the injection well      (Equation 

(2-20)) and on the percent of CO2 mass leakage        (Equation (2-22)).  

Preliminary tests are run to figure out the minimum ensemble size beyond which CDFs 

remain substantially stationary. Based on the results of these tests (i.e. the SA and the GSA) 

sample sizes of    =1,000 and  =1,000 are selected respectively. Thus, in the GSA we use a 

total of  26,000 simulations (  (   ), see Section 4). 

5.2 Results and discussion 

This section includes first a preliminary analysis carried out to select the CO2 injection 

rate and the duration of CO2 injection. Next, we present and discuss the results of the stochastic 

and global sensitivity analyses applied to the Michigan Basin deep saline aquifer introduced in 

Section 5.1. 

5.2.1 Selection of CO2 injection rates 

To choose an appropriate injection rate, a set of multiphase flow simulations is performed 

for a hypothetical system representative of the Michigan Basin. This hypothetical system 
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consists of the same permeable formations and caprock considered for this study plus two 

overlying aquifers of thickness equal to 37 m and 75 m, underlain by two 18-m and 109-m thick 

aquitards, corresponding to the formations illustrated in Figure 2-1. Deterministic values of 

porosity and permeability are assigned to each layer based on values from available log-wells 

(SCH, 1983; Halliburton, 1990; SCH, 1991). The aquifers are named L1, L2, L3 and L4 from the 

deepest to the shallowest. Aquitards are assumed impermeable except where passive wells are 

present. 24 hypothetical leaky passive wells are included in a 5×5 square regular grid, with the 

injection well positioned at its center. The N-S and E-W distances between these passive wells 

are equal to 1 km. Three main scenarios with different CO2 mass injection rates    and 

durations are simulated. Table 2-3 summarizes these scenarios. Note that the final injected mass 

of CO2 is the same in all scenarios and equal to about 63 Mt. 

Table 2-3. CO2 injection rates and duration of injection of the multiphase flow simulations of the 

hypothetical system representative of the Michigan Basin. 

Scenario    (kg/s)      (years) 

S1 100 20 

S2 50 40 

S3 33.33 60 

 

Fluid overpressure values      nearby the injection well at final time      (Equation 

(2-20)) resulting from multiphase flow simulations for the three scenarios of Table 2-3 are 

reported in Figure 2-3. Scenario S1 produces the greatest overpressure around the injection well 

with a value of 78 bar (1 bar ≡ 1×10
5 

Pa) at     = 20 years. On the other hand, scenario S3 

produces the lowest overpressure nearby the injection well with a value of 33 bar at     = 60 
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years. Scenario S2 produces intermediate results between S1 and S3, with a     = 46 bar at 

    = 40 years. 

 

Figure 2-3. Fluid overpressure results nearby the injection well from the multiphase flow simulations of 

the hypothetical system based on the Michigan Basin for scenarios S1, S2, and S3 (Table 2-3). The 

vertical dashed line represents the maximum overpressure allowed at the injected formation. 

In Figure 2-3, the vertical dashed line represents the maximum admissible overpressure, 

     , that is, the overpressure threshold beyond which the caprock is likely to fissure. This 

threshold value is calculated as
 
(Teatini et al., 2010): 

        
 

 

   
 

(2-30) 

where:   is the Poisson ratio and   
  is the estimated effective vertical stress at the caprock depth 

under pressostatic undisturbed conditions. Assuming a Poisson ratio of  =0.25,       is 

estimated to be equal to 72 bar. The results in Figure 2-3 show that the maximum overpressure 

allowed is exceeded only in Scenario S1. In practice, these results indicate that S2 and S3 would 

be the safest for the GCS system not to fissure the sealing formation.  
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Figure 2-4 shows results concerning the amount of CO2 mass leaked into the overlying 

formations (L2, L3, and L4) estimated by multiphase flow simulation of the considered 

hypothetical system. This figure presents the        that escapes from the injected formation 

L1 and is stored into the overlying formations, L2, L3, and L4. Scenario S1 produces the lowest 

total percentage of CO2 leaked from the injected aquifer with       =0.014% at     = 20 years, 

while S3 produces the highest leakage with       =0.020% at     = 60 years. Although 

scenario S1 produces the highest fluid overpressure nearby the injection well (Figure 2-3), it has 

the lowest CO2 leakage. It is, however, important to observe that the resulting values of 

       for the three scenarios are very similar to one another. From Figure 2-4, it can also be 

noticed that in all scenarios S1, S2, and S3, most of the leaked CO2 tends to be stored in the 

lower aquifer L2. 

 

Figure 2-4. Percent of CO2 mass leaked to overlying formations (L2, L3, and L4) from the multiphase 

flow simulations of the hypothetical system based on the Michigan Basin for scenarios S1, S2, and S3 

(Table 2-3). 

The fact that scenario S3 produces greater leakage than scenario S1 is explained by the 

CO2 plume spread. In both scenarios, the final shape and distribution of the CO2 plume are very 
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similar since they only depend on the mass of CO2 injected into the formation and the mass that 

escapes into overlying formations (Equation (2-6)). In scenario S1, the plume advances faster 

since the injection rate is greater than in scenario S3, therefore the plume reaches passive wells 

sooner than in scenario S3. However, the period of time in which a passive well is exposed to the 

CO2 plume in scenario S1 is shorter than the period of time in which the same passive well is 

exposed to the CO2 plume in scenario S3.  

Figure 2-5 shows the temporal evolution of CO2 mass leakage through one passive well 

located at a distance of 1,000 m from the injection well for scenarios S1 and S3. In scenario S1, 

the CO2 plume reaches the passive well at  = 2 years, whereas in scenario S3 at  = 6 years. Due 

to different injection rates and simulation times, in scenario S1 the leakage occurs over 18 years, 

while in scenario S3 it occurs over 54 years, with a greater CO2 mass leakage occurring in the 

latter. 

In summary, these tests show that scenario S3 produces significantly lower fluid 

overpressure nearby the injection well than the other two scenarios. At the same time, the 

differences in        at the end of the injection time may be considered negligible. Therefore, 

scenario S3 will be the only one used in the following analyses. 
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Figure 2-5. Comparison of CO2 mass leakage through one passive well located at 1,000 m from injection 

well for scenarios S1 (dashed line) and S3 (solid line). See Table 2-3 for descriptions of these two 

scenarios. 

5.2.2 Stochastic Analysis Results 

In this section, we present results obtained from the SA. We study the effects of 

uncertainty on aquifer permeability   , aquifer porosity   , passive well permeability    , 

system compressibility     , and brine residual saturation   
    on the two state variables of 

interest:      (Equation (2-20)) and        (Equation (2-22)). 

Results from stochastic flow simulations are used to derive CDFs (see Section 3) for 

these state variables. These CDFs may be used to estimate the probability of fracturing the 

caprock, and the probability of CO2 mass leakage not to exceed given threshold values.  To 

analyze the risk of fracturing the caprock formations we consider “safe” conditions when the 95
th

 

percentile of      is below       as estimated by Equation (2-30). To investigate the risk of 

CO2 mass leakage, we consider “safe” conditions when the 95
th

 percentile of        does not 

exceed limits derived from maximum CO2 leakage rates of 1% per one year as suggested by 
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Pacala (2003). To have a consistent metric with this threshold and        results, the thresold 

must be converted to       , resulting in 1%. It is important to emphasize that this estimate is 

rather conservative since the limit proposed by Pacala (2003) represents CO2 leakage rates back 

to the atmosphere, whereas we consider the mass of CO2 that escapes the target storage 

formation as leaked and do not account for the processes of storage and attenuation that CO2 may 

undergo within the overburden formations.  

Effect of aquifer permeability. The permeability of the aquifer is expected to have a 

significant influence on the fluid overpressure, with low permeability values producing large 

overpressure. SA results for aquifer permeability as the uncertain input parameter are shown in 

Figure 2-6.  

 

Figure 2-6. CDF of the (a) fluid overpressure nearby the injection well, and (b) %CO2 mass leakage 

associated with the uncertainty on aquifer permeability. 

Figure 2-6a shows the CDF of      obtained by sampling the aquifer permeability from 

the PDF described in Table 2-2. Aquifer permeability uncertainty affects significantly the spread 

of the CDF. Its range varies between 1 bar and 450 bar (more than two orders of magnitude). 

Figure 2-6b shows the CDF of        obtained by assuming uncertain aquifer permeability 

(Table 2-2). This figure shows that uncertainty on    has also a significant influence on CO2 
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leakage, with a CDF whose spread spans over more than two orders of magnitude, from a 

minimum value of 0.02% to a maximum value of 0.72%.  

Figure 2-7 shows the percent of CO2 mass leaked as a function of aquifer permeability. In 

general, lower permeability values correspond to increased mass leakage since higher fluid 

overpressures are obtained, which ease the escape of CO2 through passive wells. On the contrary, 

the CO2 plume advances more easily through the injected formation with higher permeabilities, 

easing its storage in the injected aquifer.  

 

Figure 2-7. %CO2 mass leakage as a function of aquifer permeability. 

Effect of aquifer porosity. SA results for uncertain aquifer porosity (Table 2-3) are 

presented in Figure 2-8a for      and Figure 2-8b for       , respectively. The CDF in Figure 

2-8a shows that uncertainty on formation porosity has a weak impact on the statistical variability 

of the maximum fluid overpressure at the injection well. Figure 2-8a reveals that      varies 

between approximately 30 and 41 bars, resulting in a very small spread of the CDF. In general, 

larger porosities produce larger values of overpressure. Propagation of the overpressure pulse 

depends on porosity (Equation (2-2)), in such a way that the same amount of CO2 occupies a 

smaller region of the aquifer, hence retarding the attenuation of the overpressure pulse.  
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Figure 2-8. CDF of the (a) fluid overpressure nearby the injection well, and (b) %CO2 mass leakage 

associated with the uncertainty on aquifer porosity. 

Uncertainty on formation porosity has also a minor effect on the variability of CO2 mass 

leakage. Smaller porosities are generally expected to result in larger leakage rates. Indeed, the 

shape of the plume depends on porosity (Equation (2-6)) and lower porosities result in faster 

plume propagation and a higher likelihood of encountering leakage pathways. However, Figure 

2-8b shows that the variability of CO2 mass leakage is relatively contained since the CDF spread 

is less than one order of magnitude. Comparison of Figure 2-6 and Figure 2-8 indicates that 

uncertainty on porosity    has a much lower influence on fluid overpressure and CO2 mass 

leakage than the uncertainty on injected formation permeability   . 

Effect of passive well permeability. Stochastic simulation results indicate that the fluid 

overpressure nearby the injection well is rather insensitive to passive well permeabilities    . 

The CDF of      is consequently not presented here. This result can be easily explained by 

noting that, for the geological setting investigated here (Section 5.1), fluid overpressure depends 

upon “local” conditions around the injection well, such as injection rate and formation 

permeability, rather than on conditions in regions of the domain “away” from the well.  
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On the other hand, the SA shows that uncertainty on leakage passive well permeability 

has a strong impact on CO2 mass leakage.Figure 2-9 displays the CDFs of        

corresponding to the three PDFs for the passive well permeability      given in Table 2-2.  

Although the three PDFs have the same median value of     , the CDFs for CO2 mass 

leakage are substantially different. In Figure 2-9 one may observe that in Case 1 (Table 2-2, 

lognormal PDF) the probability of CO2 leakage is typically the smallest except for values of 

    sampled from the upper tail of its distribution. Case 1 also presents the largest CDF spread 

(more than one order of magnitude), whereas in Cases 2 and 3 the spread of the CDF is hardly 

noticeable. In Cases 2 and 3,     is sampled from bimodal distributions (Table 2-2) 

characterized by two equally likely values, 1×10
-17

 m
2
 and 1×10

-11
 m

2
 in Case 2, and 1×10

-16
 m

2 

and 1×10
-12

 m
2
 in Case 3. Figure 2-9 shows that CO2 mass leakage is probabilistically larger in 

Case 2, which indicates that the intensity of leakage is largely affected by the presence of highly 

permeable discontinuities.  

 

Figure 2-9. CDF of %CO2 mass leakage associated with the uncertainty on passive well permeability. See 

Table 2-2 for descriptions of Case 1 – Case 3. 



49 

Effect of system compressibility. The system compressibility is expected to have an 

impact on the fluid overpressure and mass leakage, with low values of       producing greater 

values of fluid overpressure       and consequently higher       . SA results under uncertain 

      (Table 2-2) are presented in Figure 2-10. Figure 2-10a shows the CDF of     , which 

varies between 1 and 68 bar.  

The CDF of        shown in Figure 2-10b, indicates that system the compressibility has 

a significant impact on the variability of CO2 mass leakage (about two orders of magnitude). 

However, the comparison of Figure 2-6b and Figure 2-10b reveals that the spread of the CDF is 

smaller than that obtained with uncertain aquifer permeability. 

 

Figure 2-10. CDF of the (a) fluid overpressure nearby the injection well, and (b) %CO2 mass leakage 

associated with the uncertainty on system compressibility. 

Figure 2-11 shows fluid overpressure and percent of CO2 mass leakage as functions of 

system compressibility, suggesting that lower values of system compressibility lead to larger 

fluid overpressure and larger leakage. In general, larger values of       results in lower values of 

      since the propagation of the pressure pulse depends on system compressibility (Equations 

(2-2) and (2-5)), and the outer boundary of the pressure pulse will be smaller (Equation (2-5)). 
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Hence, a smaller region of the aquifer accepts the same amount of CO2 because of the larger 

storage capacity deriving from the deformability of the porous medium.  

 

Figure 2-11. Fluid overpressure (left vertical axis) and %CO2 mass leakage (right vertical axis) as 

functions of system compressibility. 

Effect of brine residual saturation. SA results show that uncertainty from brine residual 

saturation   
    has a negligible effect on the maximum fluid overpressure     . Similar results 

are obtained for       , which is not significantly affected by the uncertainty on   
   . For these 

reasons, the CDFs of      and        are not shown here. In general, greater   
    values result 

in slightly larger leakage rates. Certainly, the extension of the CO2 plume depends on brine 

residual saturation (Equation (2-6)) and greater values of   
    result in a more pronounced plume 

propagation and a higher likelihood of encountering leakage pathways.  

General considerations from the SA applied to the Michigan Basin test site. In order 

to make general considerations on the feasibility of GCS for the Michigan Basin test site, a SA 

under Scenario S3 is carried out considering all parameters of Table 2-2 uncertain at the same 

time. For passive well permeability, the PDF of Case 1 (Table 2-2) is considered since is the 
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situation that produces the greatest CDF spread as well as the largest values of       . The 

CDFs of      and        calculated from this SA are given in Figure 2-12. 

 

Figure 2-12. CDF of the (a) fluid overpressure nearby the injection well, and (b) %CO2 mass leakage 

associated with the uncertainty on all uncertain parameters for scenarios S3 and S4. The vertical dashed 

line in (a) represents the maximum overpressure allowed at the injected formation and in (b) the %CO2 

mass leakage threshold. 

The solid black line in Figure 2-12a represents the CDF of      under Scenario S3. In 

the same graph, the vertical dashed line represents the maximum fluid overpressure      =72 

bar allowed in the formation in order not to fracture the caprock (Equation (2-30)). The 

intersection of this vertical line with the CDF of      shows that in scenario S3 there is an 83% 

probability of not exceeding      . 

Likewise, the solid black line in Figure 2-12b represents the CDF of        under 

Scenario S3. The 1% CO2 mass leakage threshold defined by Pacala (2003) is represented by the 

vertical dashed line. Based on the CDF of       , there appears to be a 90% probability of not 

exceeding such threshold. 

In order to increase both the 83% probability of not fissuring the caprock and the 90% 

probability of not exceeding the 1% CO2 mass leakage threshold to 95%, a new injection 
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scenario S4 is investigated. In this scenario, the total amount of injected CO2 is reduced by 70%, 

with an injection rate   = 14 kg/s and an injection period     = 40 years.  The SA for Scenario 

S4 leads to the CDFs of      and        represented by the dotted profiles in Figure 2-12a and 

Figure 2-12b, respectively. Under this new scenario, the probabilities of not exceeding both 

     = 72 bar and       = 1% are increased to 95%. 

The need to reduce the total mass injected from Scenario S3 to S4 in order to meet the 

prescribed safety constraints on      and        is due to a “conflict” existing between these 

constraints when injecting a given mass of CO2 (        ). Indeed, increasing the CO2 injection 

rate    and decreasing the injection time      is beneficial towards reducing       , but also 

increases the probability that      exceeds      . Vice versa, decreasing    and increasing 

     reduces the probability of fracturing the caprock, but increases the probability of violating 

the 1% threshold for       . Therefore, in order to comply with the requirement of both safety 

constraints,      = 72 bar and       = 1%, the total mass of injected CO2 must be necessarily 

reduced by adequately decreasing both the injection rate    and the injection time     . 

5.2.3 Results of Global Sensitivity Analysis 

In this section, we present results of the application of the extended FAST methodology 

to the Michigan Basin deep saline aquifer. The sensitivities of the 24 uncertain parameters 

(aquifer permeability, aquifer porosity, permeability of 20 potential passive well pathways, 

system compressibility, and brine residual saturation) on the variability of the outputs      

(Equation (2-20)) and        (Equation (2-22)) are studied. For the permeability of passive 

wells, the PDF of Case 1 (Table 2-2) is chosen since, in the SA, this has been shown to produce 

the largest spread of the        CDF (see Section 5.2.2). 
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The GSA results are presented in Figure 2-13 and in Table 2-4. Figure 2-13 shows pie 

charts for      and       , where each total effect index    
 (Equation (2-26)) is represented 

by the “normalized” percentage: 

    
 

   

∑    

 
   

    
(2-31) 

where   is the total number of uncertain input parameters, in this case equal to 24. In this figure, 

the combined effect of the 20 leakage pathways is grouped and denoted as        . Figure 2-13 

displays the first-order sensitivity indices    as a percentage of the total effect indices    
 for 

both      and       . 

 

Figure 2-13. Total effect indices normalized after applying extended FAST method on: (a) maximum 

fluid overpressure at the vicinity of the injection well, and (b) %CO2 mass leakage. 

Fluid overpressure nearby the injection well. Figure 2-13a illustrates the normalized 

total effect indices     
 for the fluid overpressure nearby the injection well. This figure shows 

that the variability of      is mainly influenced by only two parameters, that is, the aquifer 

permeability    and the system compressibility     , which altogether account for about 87% of 

the overall      variance. Of this 87%, 59% is due to    and 28% is due to     .  



54 

Table 2-4. First-order effect as a percentage of the total effect obtained applying the Extended FAST 

method for fluid overpressure at the vicinity of the injection well, and %CO2 mass leakage. 

Uncertain 

parameter 

%   of     

     

%   of     

       

Uncertain 

parameter 

%   of     

     

%   of     

       

k1 68.6 19.4      0.7 4.8 

φ1 49.8 12.5       0.0 0.6 

ceff 37.1 20.8       0.6 8.3 

  
    27.7 3.1       0.7 1.9 

     1.0 1.0       0.4 2.4 

     0.4 1.0       0.7 2.3 

     0.1 1.6       0.3 3.4 

     0.6 1.2       1.9 16.4 

     0.4 0.2       1.0 2.1 

     0.3 12.3       0.6 1.6 

     0.1 0.7       0.3 2.1 

     0.4 2.9       0.8 0.7 

 

The prominent influence of these two parameters is somehow expected since the 

propagation of the pressure pulse is mainly governed by the aquifer permeability and the system 

compressibility (Equations (2-2) and (2-5)). When    has a large value, the overpressure pulse 

can propagate easily through the injected formation moving away from the injection well and 

producing lower      values and vice versa. When      is larger the aquifer exhibits a larger 

capacity and consequently a lower increase in pressure throughout the domain. 

Figure 2-13a indicates that the porosity has a small impact on the variability of     , 

with a      
 equal to 4%. Residual saturation accounts for only 1% of the total variance 
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(   
  
   = 1%). The compound effect of leakage permeabilities,           

, accounts for 8%, 

with each individual leakage pathway permeability accounting for less than 1%. These results 

indicate that the total effect indices of porosity, brine residual saturation, and pathway 

permeability are negligible, so that their uncertainty has a limited impact on the variability of the 

fluid overpressure nearby the injection well. 

In Table 2-4 one may observe that only aquifer permeability    affects the variability of 

    , mostly through the first-order index, with    
= 68.6% of the total effect index. The 

contribution of system compressibility      to the variability of      derives from the interaction 

with other parameters (     
= 37.1% <       

= 62.9%). The contribution of porosity    is about 

50% from the first-order effect and 50% from higher-order effects. The contribution of brine 

residual saturation   
    and leakage pathway permeabilities          to the total effect derives 

from the interaction with other parameters. It must be pointed that the respective total effect 

indices of   ,   
   , and          are insignificant.  

CO2 mass leakage. Figure 2-13b illustrates results of total effect index normalized on 

       variance. This figure shows that the spread of the CO2 mass leakage output is mainly 

influenced by the passive well permeability as a group with           
= 71%. However, the 

maximum total effect index coming from an individual pathway permeability cluster is 8%. The 

clusters of passive wells located closer to the injection well (clusters 6, 8, 11, 13, and 16 in 

Figure 2-2) have the largest values of the total effect index. The total effect index normalized of 

the aquifer permeability is      
= 10%, followed by the system compressibility with        

= 

8%, and the aquifer porosity with      
= 7%. Therefore, the aquifer permeability has a larger 

total effect index than the pathway permeability of any of the 20 clusters has. The brine residual 



56 

saturation contributes to the        variability for about 4%. Although the contribution of   
    

to the        variability is greater than the contribution to the      variability, it is less 

important than the effect due to other uncertain parameters. Therefore, the total effect index for 

  
    can be considered negligible. In other words, any value of   

    selected from the PDF 

presented in Table 2-2 would produce the same variability of CO2 mass leakage.  

Table 2-4 lists the first-order sensitivity index for each of the 24 uncertain parameters as a 

percentage of the total effect on %CO2 mass leakage. One can observe that the main contribution 

to the        variability comes from higher-order effects. Aquifer permeability and system 

compressibility have the largest contribution from the first-order index with a value of about 

20%. Higher-order effects from porosity, residual saturation, and pathways permeability have 

more impact on the variability of        than their respective first-order effects. The leakage 

pathway permeability that presents the greatest contribution from the first-order sensitivity index 

is        with a value of 16%. Indeed this is the passive well cluster closest to the injection well, 

which shows that the location of leakage pathways is an important component on the 

contribution to        variability. 

General considerations from the GSA applied to the Michigan Basin test site. GSA 

results for fluid overpressure confirm observations already made in the SA. A large portion of 

the      variability is attributed to only two parameters: aquifer permeability and system 

compressibility. By far, aquifer permeability is the most influential parameter as it ranks in first 

position with a normalized    equal to 59%. In order to significantly reduce the prediction of 

    , acquiring accurate data of aquifer permeability is necessary. 

From the GSA results for       , one can conclude that aquifer permeability, system 

compressibility, and pathway permeability have the most significant impact on the variability of 
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the output. Aquifer porosity and brine residual saturation also show an impact, although this is 

minor in comparison to the other parameters. Location of leakage pathways closer to the 

injection well shows a significant effect on        with significantly higher first-order indices 

respect to passive wells located farther away. Therefore, when interested in studying uncertainty 

and risk of CO2 leakage, an effort to acquire data concerning aquifer permeability, system 

compressibility, and location and permeability of potential leakage pathways is essential to 

reduce the uncertainty in the simulation of       . 

6 Summary and Conclusions 

In this work, we analyzed the variability of fluid overpressure in proximity of injection 

wells and CO2 mass leakage of a candidate site for GCS located within the Michigan Basin. This 

study relied on a stochastic analysis and a global sensitivity analysis accounting for the 

uncertainty on the following: permeability and porosity of injected aquifers, permeability of 

passive wells, system compressibility, and brine residual saturation. From the investigation of 

potential injection scenarios, it was observed that lower injection rates with longer injection 

times reduced the probability of producing excessive fluid overpressures in the injected aquifer. 

As far as CO2 mass leakage is concerned, there was a small difference among these scenarios. 

Therefore, injection of CO2 at low rates and protracted for a longer period of time appears to be 

the most convenient policy for the safety of the GCS system. 

The stochastic analysis showed that the most influential parameter on both fluid 

overpressure and CO2 mass leakage is the aquifer permeability, followed by the system 

compressibility, although with less intensity. Fluid overpressure in proximity of injection well 

seems unaffected by uncertainty on porosity, permeability of passive wells, or brine residual 
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saturation. On the other hand, CO2 mass leakage is shown to be particularly sensitive to passive 

well permeability and the type of statistical distribution used to characterize uncertainty in it. The 

stochastic analysis also revealed that constraints on maximum overpressure and maximum 

leakage are competing against one another when injecting the same mass of CO2. 

Results from the extended FAST global sensitivity analysis confirmed the influences 

already observed in the stochastic analysis. Aquifer permeability and system compressibility had 

an impact on both the variability of the fluid overpressure and CO2 mass leakage. Porosity had a 

greater impact on CO2 mass leakage; however its impact is relatively minor. When studying the 

variability on the fluid overpressure, permeability of the leakage pathways and brine residual 

saturation resulted to be non-relevant parameters. Therefore, any value included in the variability 

studied could be assigned to     and   
   , and results on fluid overpressure nearby the injection 

well would not be affected. On the other hand, the effect of leakage pathways with respect to the 

variability on CO2 mass leakage is significant and cannot be neglected.  

From this analysis, we can conclude that efforts to obtain further information about 

influent parameters, such aquifer permeability and system compressibility are necessary when 

studying their impact on fluid overpressure and CO2 mass leakage for the test site under 

consideration. In addition, recollection of leakage pathway information especially from pathways 

located closer to the injection well is needed for quantifying potential CO2 mass leakages with 

higher degree of confidence. 
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3 Chapter: Application of Binary Permeability Fields for the Study of CO2 

Leakage from Geological Carbon Storage in Saline Aquifers of the 

Michigan Basin 

 

 

 

Summary 

Global mean annual surface temperature has increased about 0.3-0.6
o
C since the late 19

th
 

century due to the proliferation of greenhouse gas concentrations from anthropogenic emissions; 

particularly from carbon dioxide (CO2). Several strategies have been advanced to stabilize CO2 

emissions into the atmosphere, among them geological carbon storage (GCS). One of the 

requirements for GCS is that there must be a sealing formation to prevent CO2 from escaping 

from the storing formation. A test site located in the Michigan Basin is proposed as a potential 

candidate for GCS. Since the sealing formation outside the boundaries of the test site is barely 

characterized, information about the continuity of this layer or its possible discontinuities is 

highly uncertain. To model this uncertainty, a sequential indicator simulator is here developed 

and implemented to represent the sealing properties, namely permeability, of the geological unit 

overlying the GCS candidate formation. The sequential indicator simulation algorithm is used to 

create binary fields of caprock with low permeability and inclusions with high permeability 

where brine and CO2 could leak out. To simulate injection and potential leakage of CO2, a semi-

analytical multiphase flow model is used. Inclusions located at close distance from one another 

are grouped and considered as single clusters to reduce the number of leaky points used by the 

semi-analytical multiphase flow model, thus reducing significantly the computational effort.  The 

results obtained with the semi-analytical model are compared with those obtained using a 
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numerical model to understand the limitations of using the semi-analytical model with large 

areas of leakage. Results of this comparison validate the semi-analytical multiphase flow. Results 

of the caprock continuity uncertainty study conclude increasing the probability of inclusions 

occurrence increases the CO2 leakage. The occurrence of inclusions is affected by the correlation 

length used by the sequential indicator simulator. CO2 leakage is affected by passive wells 

permeability uncertainty for scenarios with low probability of inclusions.  

1 Introduction 

Increase of global average temperatures in air and ocean are documented around the 

world (IPCC, 2007), with a global mean annual surface temperature increase of 0.3-0.6
o
C since 

the late 19
th

 century (Nicholls et al., 1996). This phenomenon is due to the proliferation of 

greenhouse gas concentrations from anthropogenic emissions, and particularly from carbon 

dioxide (CO2), which is the most important greenhouse gas produced by human activities (IPCC, 

2007). To stabilize CO2 emissions into the atmosphere several strategies have been suggested, 

among them geological carbon storage (GCS). GCS is advanced as a promising approach to 

reduce CO2 emissions from power plants without the necessity of fuel switching (IPCC, 2005). 

Suitable reservoirs for GCS are deep saline formations, depleted oil and gas reservoirs, and 

unmineable coal seams (Bergman and Winter, 1995; Ruether, 1998; Bachu, 2003). Deep saline 

formations are widespread and offer 60% of the estimated storage capacity (IEA, 2008). 

However compared to oil and gas reservoirs, they are barely characterized and available 

information about their geological properties is not expected to have.  

 One of the requirements for GCS is that there must be a sealing formation that prevents 

the stored CO2 from escaping from the injected formation (IPCC, 2005) and guarantees a long 
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term sequestration. Thus, deep saline aquifers, seemingly an appropriate option to store CO2 due 

to their widespread availability around the world and large storage capacities, have the 

inconvenience of being typically unexplored. So that little is known about the properties of the 

sealing formations, which are potentially compromised by the presence of leakage pathways, 

such as faults or fractures, permeable areas of the caprock, and poorly completed existing wells 

(IPCC, 2005). 

Several studies that investigate the importance of CO2 leakage associated with faults and 

existing wells have been documented. For instance, Chang et al. (2008) studied the CO2 leakage 

through faults when flow properties of faults are uncertain. They found that lateral CO2 

migration through overlying permeable formations attenuates CO2 leakage through faults. The 

effect of faults, fault permeability, and flow velocity of groundwater on the migration of CO2 

plume was studied by Sakamoto et al. (2011). Zhang et al. (2010) proposed a method to calculate 

the probability of CO2 leakage through fractures and faults in a two-dimensional system.  

For high well density areas, abandoned wells may represent a significant escape pathway 

for the injected CO2. Gasda et al. (2004) observed that a CO2 plume could impact 20 to several 

hundred abandoned wells depending on the well density of the studied area. Kopp et al. (2010) 

concluded that high risk of leakage through abandoned wells was produced by long injection 

times, small distances between an injection well and leaky well, high permeability anisotropy, 

high geothermal gradient, and low depth. In Celia et al. (2011), permeability of abandoned wells 

was identified as the most influential parameter resulting in CO2 leakage from GCS. Nogues et 

al. (2012) implemented a Monte Carlo simulation where the main uncertainty was the effective 

well permeability. They showed that results on leakage depended on formation properties, 

location, and number of leaky wells. In González-Nicolás et al. (2014), results showed that the 
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most influential parameters on CO2 mass leakage are the storage formation permeability, the 

system compressibility, and uncertainty on passive well permeability. Also, passive wells closer 

to the injection well are found to have a greater impact on CO2 mass leakage. 

In this work, CO2 leakage through weak caprock areas generated with a sequential 

indicator simulation algorithm is studied. Here, the weak areas are referred to as ‘discontinuities’ 

or ‘inclusions’. Also the influence of CO2 leakage through existing abandoned wells located in 

the area of interest is studied.  

A discontinuity of the sealing formation, as defined in this paper, is a localized deposition 

of higher permeability materials. These analyses are applied to a potential candidate site located 

at the Michigan Basin, whose sealing properties of the caprock are unknown. Therefore the 

location, size and frequency of the discontinuities are practically unknown. A sequential 

categorical indicator Kriging simulation algorithm is developed and applied to generate an 

ensemble of realizations of the caprock permeability field with two types of facies: 1) sealing 

formation (areas with low permeability), and 2) inclusions (areas with high permeability). The 

caprock permeability ensemble is thus used in a Monte Carlo simulation to simulate 

stochastically injection of CO2 and study probabilistically its leakage through the weak caprock 

areas. Due to the unavailability of geological data, different geostatistical configurations for the 

sealing formation are studied to assess the impact of the uncertainty of caprock discontinuity. 

Areas of high permeability having relatively similar spatial locations are grouped together and 

considered a cluster to reduce the number of leaky points used by the semi-analytical multiphase 

flow model, thus reducing the computational effort. To understand the limitations of the 

clustering approach the semi-analytical multiphase flow model results are compared with those 

obtained using a numerical model. 
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The organization of this paper is as follows. First, the methodology used is presented. 

This includes the multiphase flow semi-analytical algorithm, the sequential categorical indicator 

Kriging, the clustering approach, and the statistical analysis. Then the application of the 

methodology to the Michigan Basin test site and results are presented. Lastly, a summary and 

conclusion of this study are given. 

2 Methodology 

2.1 Multiphase Flow Semi-Analytical Model 

In this section the multiphase flow semi-analytical model used in this study is introduced. 

ELSA-IGPS (Estimating Leakage Semi-analytically - Iterative Global Pressure Solution) (Cody 

et al., 2014) is a revised version of the semi-analytical model ELSA developed by Celia and 

Nordbotten (2009) and Nordbotten et al. (2009). ELSA-IGPS is able to simulate the injection of 

supercritical CO2 into a deep saline formation and compute the leakage of brine and CO2 through 

permeable segments located on the caprocks. These segments represent poorly-sealed wells and 

are called ‘passive wells’. 

The domain is structured as a stack of   aquifers separated by     caprock layers, 

perforated by   carbon injection wells and   passive wells. The model assumes that aquifers are 

horizontal, homogeneous, and isotropic; caprocks are impermeable except where a passive well 

is located; initially the domain is saturated with brine at hydrostatic pressure; flow is horizontal 

through the aquifers; there is no transition zone between brine and supercritical CO2 since 

capillary pressure is neglected; there is vertical equilibrium in pressure distributions; and the 

pressure response from sources and sinks can be superimposed in each aquifer. More details 

about the model assumptions can be found in Celia and Nordbotten (2009). 
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ELSA-IGPS, as the original model, applies superposition of effects for the fluid flux 

across sources    (injection wells,   =1,2,…, ) and sinks   (passive wells,  =1,2,…, ) to 

solve the fluid pressure      [ML
-1

T
-2

] at any given time   [T] at the bottom of the generic aquifer 

l ( =1,2,.., ) and for each passive well  . Therefore, fluid pressure can be expressed as: 
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where:    
 is the initial fluid pressure [ML

-1
T

-2
] at the bottom of the aquifer  ,    is the fluid 

density [ML
-3

] ( denotes the phase type,   for brine and   for CO2),   is the gravitational 

acceleration [LT
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 (  )  
  

   
[   

  [(   )    ]

   
] (3-7) 

where:   is the CO2 plume thickness [L];    [/] is the CO2 plume thickness relative to the aquifer 

thickness  ;   
    is the residual saturation of the brine [/];   is the aquifer permeability [L

2
];    

is the dynamic viscosity of the brine [ML
-1

T
-1

];  is the aquifer porosity [/];   is the total 

volumetric well flux [L
3
T

-1
];      is the effective compressibility of the fluid and solid matrix 

[M
-1

LT
2
]; and   is the radial distance [L]. F(h’) is an offset term related to the vertical pressure 

distribution (Celia et al., 2011) and the mobility ratio   [/] . 

 This derives to a system of equations where the unknowns are the fluid pressures      at 

the bottom of each aquifer   and at each passive well  , and the flow rates      across each 

caprock for each passive well.      is calculated using the multiphase version of Darcy’s law: 

      ∑ [    
 

   

       
      

    
(                         )]

     

 (3-8) 

where:       
 is the passive well radius [L],        

 is the relative permeability of phase   [/], and 

      
 is the single phase passive well permeability [L

2
] for passive well   and aquitard layer  , 

and   is the caprock thickness [L]. 

The fluid pressure (Equation (3-1)) at the bottom of each aquifer and at each passive well 

can be grouped into a (   )    vector. Similarly, the flow rates (Equation (3-8)) across each 

aquitard for each passive well can be grouped into another (   )    vector. By combining 

these two vectors a set of       non-linear equations with       unknowns is obtained.  

Domains having large numbers of passive wells ( ) and/or layers ( ) produce very large 

sets of equations; resulting in significantly higher simulation run times.   
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To solve this system of non-linear equations at a time  , a computational efficient fixed-

point iterative scheme (Takahashi, 2000) is developed. For more details about ELSA-IGPS, the 

reader is referred to Cody et al. (2014) and González-Nicolás et al. (2014). 

In this work, to investigate CO2 mass leakage from caprock continuity uncertainty and 

wells permeability uncertainty, we focus on the following state variable: percent of CO2 mass 

leakage into overlying formations. In some scenarios, to better understand results of CO2 mass 

leakage, fluid overpressure near the injection well is also considered. 

In these analyses, CO2 injection takes place in the deepest formation ( =1) through a 

single injection well ( =1), with only one overlying aquifer ( =2) above the injected aquifer 

considered (see Section 3.1 for more details on the conceptualized model).  

The percent of CO2 mass leakage (      ) is defined as the ratio between the mass of 

CO2 that escapes from the injected formation into layer  =2 and the total amount of injected CO2 

at final time     :  

       
     (    )

          
    

(3-9) 

where      (    ) is given by the net cumulative CO2 mass transferred into aquifer  =2 through 

all passive wells   ( =1,2,…, ): 
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where        is the CO2 saturation at passive well   and layer  =2. 

Fluid overpressure      is defined as the difference between the final (at     ) and initial 

(at  =0) fluid pressures in proximity of the injection well based on Equation (3-1): 
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          (   
      )  (     )   [   (      )  ∑   (      )

 

   

] 
(3-11) 

where    
  is a radial distance near the injection well (   

 = 5 m in this study).  

Originally, ELSA-IGPS was developed to simulate multi-phase flow and estimate the 

leakage of both brine and CO2 flux along existing passive wells. That is to say leakage always 

occurs through small cross-sectional areas of the caprock (radii between 0.15 m – 1 m). On the 

other hand, here, ELSA-IGPS is used to simulate escapes through larger weak areas of the 

caprock (minimum radius of 56.4 m in our example). A comparison with a numerical code is 

used to understand the limitations the semi-analytical model when is used in this way.  

2.2 Multiphase Flow Numerical Model 

Results of ELSA-IGPS are compared with results obtained using ECLIPSE 

(Schlumberger, 2010). ECLIPSE is a commercial numerical multi-phase flow model based on a 

3D finite-difference discretization and widely used in the gas and oil industry. The comparison is 

carried out using the CO2SOL option of ECLIPSE (Schlumberger, 2010).  The compositional 

version (E300) of ECLIPSE is here used to perform two-phase compositional simulation of gas-

brine systems, which computes mass balances for each component. Our interest focuses on the 

CO2 and H2O components, since the salinity of water is neglected in order to compare results of 

ELSA-IGPS with ECLIPSE. 

Assuming the presence of only two fluid phases, a CO2-rich gas phase denoted as  , and 

H2O-rich liquid phase denoted as  ,     represents the mass fraction of component   present in 

the gas phase and     represents the mass fraction of component   in the liquid phase. Based on 

mass continuity, in a system of    components mass fractions must be such that: 
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∑     

  

   

 (3-12a) 

∑     

  

   

 (3-12b) 

The compositional option E300 of ECLIPSE follows the formulation of Trangenstein and 

Bell (1989), in which the components flux is defined as the sum of the phases of the molar 

densities  ̂   (moles per volume, where a mole is the mass divided by the molecular weight), 

times its flow rate     ⁄ . Hence, the PDE for one-dimensional is written as: 
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subject to the conditions: 

        (3-14) 

 ̂   ̂    ̂   (3-15) 

where:   represents the spatial coordinate,   is the porosity of the medium, and    and    are the 

saturation and the Darcy velocity of phase   ( denotes the phase type, either water   or gas  ), 

respectively. Darcy’s velocity of phase   is expressed as: 

    
    

  

   

  
 (3-16) 

where:   is the intrinsic permeability of the porous medium,          and    are the relative 

permeability, the dynamic viscosity, and the partial pressure of phase  , respectively. The 

capillary pressure    is defined as: 

         
(3-17) 
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The relative permeabilities and capillary pressure depend upon saturation values, which 

can be calculated using different models such as Van Genuchten’s model (Van Genuchten, 

1980), or they can be obtained from experimental data. 

Based on Equations (3-13) and , the one-dimensional flow of    fluid components is 

governed by the following system of PDEs: 
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(3-18) 

To obtain comparable results between ELSA-IGPS and ECLIPSE, capillary pressure is 

neglected in ECLIPSE. CO2SOL option is used to model immiscible fluids. This option of 

ECLIPSE does not allow water to dissolve in the gas phase. In contrast, CO2 can be present in 

both gas and liquid phase. Therefore, solubility of CO2 into water must be specified to a 

negligible value. 

2.3 Sequential Indicator Simulation Algorithm 

In this section we introduce the indicator Kriging (Krige, 1951) simulation algorithm 

developed and implemented to generate the ensemble of realization fields of permeability at the 

sealing formation. This algorithm creates two types of facies: 1) sealing formation (areas with 

low permeability), and 2) inclusions (areas with high permeability) where CO2 may leak.  

Indicator Kriging (IK) is a geostatistical approach to geospatial modeling. IK is useful 

when the data are non-normally distributed, highly skewed, or essentially of categorical nature 

(e.g., success/failure drilling, soil type, vegetation type). IK does not assume a normal 

distribution at unsampled locations; instead IK builds the cumulative distribution function (CDF) 

at each unsampled location with the information available from the neighborhood locations. IK 

needs a series of thresholds (or cutoff) values that comprise the data and uses them to build the 
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CDF at the unsampled locations. For each threshold, IK transforms the neighborhood data to 

indicators and calculates their correlation based on an interpolation method such as simple 

Kriging (Krige, 1951) or ordinary Kriging (Matheron, 1963). With this information, IK estimates 

the probability of the variable at the unsampled location to be less or equal to the threshold. The 

final result of IK represents the uncertain distribution at the unsampled locations.  

To sample a value at the unsampled locations, first, a conditional technique must be 

applied. IK uses an indicator transform. For a random continuous variable  ( ) at position  , the 

corresponding indicator transform can be defined as (Journel et al., 1989): 

 (    )                 ( )                    

(3-19) 

           ( )     

 And similarly, for a discrete variable  ( ): 

 (    )            ( )                     

(3-20) 

   ,  otherwise 

where: I is the indicator value,  ( ) or  ( ) is the value of the variable at position  ,    and kt 

are the threshold or category value, and    is the total number of thresholds or categories. This 

indicator transform has the characteristic that its expected value is equal to the cumulative 

probability of the variable (Olea, 1999) and  (    ) is a random variable itself. That is to say, the 

IK method, instead of predicting the  ( ) value, predicts  (    ) for the selected thresholds, and 

provides a least-squares estimate of the conditional CDF at the threshold xt (Deutsch and Journel, 

1997): 

[ (    )]
   { (    |( ))}    { ( )    |( )}   (3-21) 

where:   indicates the expectancy of  (    ) conditioned to the information ( ) available in the 

neighborhood of location  , and P is the probability. Therefore  (    ) means the probability 
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that  ( )≤xt. The indicator value needs to be calculated at each threshold, which discretizes the 

interval of variability of property  ( ). Depending on the value of   ( ), the indicator variable 

will take a value of 0 or 1 at each threshold, as Equation (12) states. 

Once the indicator values are assigned at each threshold, the indicator values at the 

unsampled locations can be estimated. To calculate the indicator values at the unsampled 

locations   , a Kriging  algorithm is used. If simple Kriging (SK) is used, for a continuous and 

discrete variables the following equations are written (Kelkar et al., 2002), respectively: 

  (     )     ∑   (     )

 

   

 
(3-22) 

  (     )     ∑   (     )

 

   

 
(3-23) 

 

where: n is the number of sampled locations to calculate the indicator values and   are the SK 

weights corresponding to the thresholds. Since the indicator values represent the CDF, they must 

satisfy for a continuous variable: 

 (    )   (    )          (3-24) 

and for a discrete variable: 

∑ (    )   

  

   

 

(3-25) 

2.3.1 Simple Indicator Kriging 

If the random continuous variable  ( ) is stationary with constant mean  ̅, and the 

covariance function  ( )   (     )  for any  , the SK algorithm is reduced to its stationary 

version (Deutsch and Journel, 1997): 
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where   is the lag-distance between two points.  

The expectancy   of the random variable  (    ) is the CDF of the random 

function  ( ): 

 { (    )}     { (    )    }     { (      )    }

    { (    )   }     { (      )   }

    { (    )   }     (  ) 

(3-28) 

where:    (  ) is the CDF value for threshold xt. According to Equations (3-21), (3-26), and 

(3-28) the SK estimate of the indicator transform is written as: 

[ (    )]  
  [ { (    )    |( )}]  

  ∑   (    )   
   

 (     )  [  ∑   (    
 
   )]    (  )  

(3-29) 

where: the weights    are given by a SK system of type Equation (3-27): 

∑   (    )  (        )    (       )             
      (3-30) 

where:   (    )     { (    )  (      )} is the indicator covariance at the threshold xt. 

Once the variograms are estimated and modeled, a selection of a path to visit the 

unsampled locations is needed to create a field of the random variable. For this purpose, a 

random sequential condition simulation method can be used. 
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2.3.2 Sequential Indicator Kriging Simulation Method 

The sequential conditional simulation methods are grid-based and Kriging-based 

methods, in which unsampled locations are sequentially visited randomly until all locations are 

visited. The sequential simulation extends the conditioning to include all data available in the 

neighborhood of  , which includes the original data and values previously simulated. The 

sequential indicator simulation can be used for both continuous and discrete variables.  

To generate the path to follow, a random number generator is used to create a sequence 

of random numbers corresponding to the total number of gridblocks. The sequence of the path is 

random to avoid artifacts resulting from a restricted search and a regular path. Based on the 

order, all unsampled locations are visited following the path. When an unsampled location is 

visited, a search neighborhood is applied where both the sampled points and previously 

simulated values are selected. To estimate the value of the unsampled location, a Kriging method 

is used. For SK the system to be solved is based on Equation (3-29) where the weights have been 

replaced by Equation (3-30). Therefore, for location (   ) the probability of the variable 

 (    )     is: 

[ (       )]  
     (       )        

     
  [ (     )     (     )] (3-31) 

where: [ (       )]  
  is the marginal probability of category xt,  (     ) is a column vector 

including the indicator value calculated at the locations previously simulated,    (     ) is a 

column vector including the CDF value for threshold    calculated at the previous   locations, 

     is the covariance matrix for the   location previously simulated,         is the covariance 

matrix between the current simulation location     and the   locations already simulated. 

Next, the simulated value is added to the data set and next location is simulated. 
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In this work, we use CIKSIM (Baù, 2012) a sequential indicator simulator based on SK 

that can generate several categories. Therefore, CIKSIM generates   inclusions of the caprock to 

introduce in the multiphase flow semi-analytical model explained in Section 2.1. If larger 

number of   inclusions is generated for each field of the ensemble, the computational cost of the 

model will increase. To avoid higher simulation run times, a clustering method of the inclusions 

is applied. 

2.4 Clustering approach 

To enhance the performance of the semi-analytical model, a method that groups these 

inclusions is applied. Grouping the inclusions by clusters considerably decreases the number of 

leaky areas to be introduced into the semi-analytical model of Section 2.1.  

It is considered a cluster when two or more inclusion blocks are in contact. Thereby, two 

inclusions that are in contact only diagonally belong to the same group. That is the distance 

between the centers of their grid-blocks is less or equal to √    . For our grid (Section 3.2) this 

distance is 142.4 m.  

The size and distribution of these clusters depend on the parameters assigned for their 

generation. Each cluster is modeled as a single circular area of leakage with the equivalent area 

of the cluster. The position of the circular area is calculated as the average   and   coordinates of 

the gridblock centers that constitute this cluster.  

One example of grouping the clusters at the caprock is shown in Figure 3-1. This 

example has 84 grid-blocks that are inclusions (orange grid-blocks), after clustering this number 

is reduced to only 16 clusters. The equivalent area of the clusters are shown as a black circles in 
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Figure 3-1. Each of these clusters is used as a single leaky point in the semi-analytical model 

ELSA-IGPS.  

 

Figure 3-1. Representation of the clusters circular equivalent area (in black) of one realization of the 

caprock generated with CIKSIM. In this example, the number of 84 inclusions-blocks (in orange) is 

reduced to 16 clusters. 

2.5 Statistical analysis 

Output ensembles of the state variables are used to produce CDF plots. CDF of the state 

variable   (either        or     )  is obtained from the output of     model simulations. After 

ordering the   values in ascending order,             
, the corresponding CDF values 

are calculated as    ( )  (  –     )     (i=1,2,…,   ) (Hahn, 1967). 

To optimize the performance of the simulations, preliminary tests are run to find the 

minimum ensemble size     beyond which CDFs remain substantially stationary. A sample size 
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of    = 500 is selected, therefore 500 fields of caprock are generated for each scenario of Table 

3-2.  

A flow chart of the methodology is summarized in Figure 3-2. First, the sequential 

indicator simulator CIKSIM is applied to the grid domain conditioned to the available previous 

information. As a result of this step, an ensemble of caprock binary fields containing the two 

types of facies is obtained. Then the clustering approach is applied to the caprock binary fields in 

order to decrease the number of leaky areas to introduce in the multiphase flow semi-analytical 

model. Upon clustering process, the ELSA-IGPS Monte Carlo simulations are run and the output 

ensembles of the state variables are obtained. Last, the statistical analysis is applied to obtain the 

CDF results. 

 

Figure 3-2. Flow chart of the methodology. 
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3 Application to the Michigan Basin Test Site 

3.1 Study Area 

The methodology introduced in Section 2 is applied to a geological test site located 

within the Michigan Basin close to Thompsonville (MI). The candidate formation proposed for 

GCS is known as the Gray Niagaran formation. Figure 3-3 shows a cross-section of the Michigan 

basin in the area of interest with the candidate storage formation highlighted in yellow. The Gray 

Niagaran formation lies below an almost depleted hydrocarbon reservoir (Brown Niagaran 

pinnacle in Figure 3-3), which is currently used by Michigan Technological University for 

geophysical research.  

The Gray Niagaran formation has a thickness of 119 m (390 ft) with its top at 1,500 m 

(4,920 ft) below ground surface, making this formation a good repository for GCS. The choice to 

store supercritical CO2 in this formation is justified by the sealing capacity of the formation 

above the Brown Niagaran pinnacle. In addition, the Gray Niagaran formation is already 

perforated by two exploration wells, Burch 1-20B and Stech 1-21A (Figure 3-3), which could 

possibly serve as CO2 injection wells.  

A relevant source of uncertainty in choosing the Gray Niagaran formation as a candidate 

for GCS is the continuity of its caprock highlighted in green in Figure 3-3. Although some data 

are available from monitoring wells at the test site such as Burch 1-20B and Stech 1-21A (SCH, 

1983; Halliburton, 1990; SCH, 1991), the data that can be used directly to describe the spatial 

distribution of the sealing properties of the caprock formation at the basin scale are scarce. 
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Figure 3-3. Cross-section of the Michigan Basin test site proposed for GCS (Turpening et al., 1992). 

Candidate formation is highlighted in yellow and caprock in green.  
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The model system is conceptualized in ELSA-IGPS as a stack of two aquifers ( =2): the 

Gray Niagaran formation (119 m thick) and the Carbonate formation (35 m thick). The two 

aquifers are separated by a caprock: the Evaporites formation (17 m thick). The enumeration of 

the aquifers starts from the deepest one. Supercritical CO2 is injected into aquifer  =1 from a 

single well ( =1). The mass injection rate is   = 30 kg s
-1

 and remains constant throughout the 

simulation time     = 10 years.  

In ECLIPSE, the geological model is conceptualized as two aquifers separated by a 

caprock. Thicknesses of these formations follow thicknesses applied in ELSA-IGPS. Tthe model 

domain is divided into 100 m × 100 m grid-blocks horizontally. Vertically, each formation is 

divided into four layers. A single CO2 injection vertical well is considered at the center of the 

model domain and screened within the deepest formation. The surrounding area of the injection 

well is refined to achieve an appropriate size for a well (≈0.5 m). The CO2 injection well is 

assumed to operate at a rate of 30 kg s
-1

 for a period of 10 years. Initially all formations are 

saturated only with brine and in hydrostatic pressure conditions. To simulate a laterally infinite 

aquifer system, the pore-volume of the boundary blocks is multiplied by a factor of 1x10
6
. 

In both models, ELSA-IGPS and ECLIPSE, the caprock is assumed impermeable except 

for the location of inclusions or passive wells located in the area of interest. Initially all 

formations are saturated with brine and pressure is hydrostatically distributed. Due to the lack of 

data availability, Van Genuchten model (Van Genuchten, 1980) is used to calculate relative 

permeabilities of CO2 and brine. The parameters used for this model are a brine residual 

saturation of   
   =0.3 and a fitting parameter of 0.41 (Zhou et al., 2009). Representations of the 

relative permeability curves of CO2 and brine are shown in Figure 3-4.  
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Figure 3-4. Relative permeability curves of CO2 (dashed line) and brine (solid line) as a function of brine 

saturation. 

Porosity values are extracted from Burch 1-20B and Stech 1-21A log-wells (SCH, 1983; 

Halliburton, 1990; SCH, 1991). The injected aquifer and the overlying formation are assumed to 

have a permeability equal to 2.8×10
-14

 m
2
 and 9.6×10

-15
 m

2
, respectively, calculated according to 

Trebin (1945) as: 

                                  if      < 12%   

      (    )        if      > 12%   

 

(3-32) 

 

where:   is the permeability in millidarcy (mD, 1mD ≡ 1×10
-15

 m
2
), and   is the porosity 

(/). For simplification, the weak areas of the caprock are considered to have the same set of 

properties as the injected aquifer  =1 (      ). The hydro-geomechanical parameters used in 

this study are provided in Table 3-1. In order to obtain comparable results with ELSA-IGPS, 

CO2SOL option of ECLIPSE is used to model the flow of immiscible fluids. Also capillary 

pressure is neglected and the wetting phase is assumed as pure water to exclude the impact of 

salt on the results.  
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Table 3-1. Hydro-geomechanical parameters. 

Parameter Symbol Value Units 

Brine density    1,000 kg m
-3

 

CO2 density    575 kg m
-3

 

Brine viscosity    4.5×10
-4

 Pa s 

CO2 viscosity    4.6×10
-5

 Pa s 

System compressibility       4.6×10
-10

 Pa
-1

 

Injected aquifer porosity     0.084 / 

Overlying aquifer porosity     0.05 / 

Brine residual saturation   
    0.3 / 

Injected aquifer permeability     2.8×10
-14

 m
2
 

Overlying aquifer permeability     9.6×10
-15

 m
2
 

Weak areas/inclusions    2.8×10
-14

 m
2
 

 

3.2 Sequential indicator simulation applied to the Michigan Basin  

In order to generate permeability fields of the caprock formation according to a bimodal 

stochastic process, CIKSIM is implemented to generate weak areas of the caprock where data are 

not available. For this purpose, a grid covering an area of 7 km × 7 km is considered with the 

hydrocarbon reservoir located at its center (Figure 3-5). Each grid-block is 100 m × 100 m, 

yielding a total of 4,900 blocks.  

The thickness of the caprock above the Gray Niagaran formation is relatively small when 

compared to the horizontal extension of this formation (30.5 m thickness of caprock vs. 7,000 m 

of estimated grid extension). For this reason, the permeability is assumed to be homogeneous in 
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the vertical direction  , whereas in the horizontal directions,   and  , the permeability is 

assumed heterogeneous.  

 

Figure 3-5. Area of 7 km × 7 km used by CIKSIM. Each grid-block is 100 m × 100 m. Limit of the 

hydrocarbon reservoir is shown by the blue line (Brown Niagaran pinnacle in Figure 3-3). Red spots 

correspond to the sealing caprock above the reservoir, which are conditional locations of facies 1 with 

low permeability. 

Assuming the sealing formation (facies 1 of low permeability) comprises uncertain 

inclusions of high permeability where CO2 could leak (facies 2 with a high permeability), the 

permeability in the horizontal direction can be considered a binary field. The horizontal 

permeability of the confining formation is low compared to permeability values of the inclusions, 

and the inclusions represent randomly distributed zones of high permeability within the caprock.   

The nearly depleted reservoir is already known to be covered by a sealing formation, 

since it contained oil originally. Thus the sealing capacity in that region is somehow warranted. 

Hence the blocks in the reservoir are assumed to be sealing formation (conditioning 

information), whereas the formation of the others blocks (unsampled locations) are unknown and 
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need to be simulated stochastically. Figure 3-5 shows the lateral boundary of the reservoir by the 

blue line and red dots correspond to the conditional locations of facies 1.  

3.2.1 Uncertainty from caprock continuity 

To represent the uncertainty from caprock continuity, an ensemble of realizations of the 

caprock permeability field is generated with the sequential indicator simulation algorithm of 

Section 2.3. The generation of the caprock ensembles follows the properties provided in Table 

3-2.  

An exponential covariance model is used to generate random permeability fields of the 

caprock containing inclusions. Several probabilities of the occurrence of    are applied for facies 

2 (inclusions) ranging between 0.0005 and 0.02, as well as correlation lengths     extending 

between 200 m and 1,500 m (where    denotes that correlation lengths in the   and   direction 

are equal). Facies 1 (sealing formation) have a probability of         , and a correlation 

length constant for all scenarios with a value of    = 1,000 m.  

To test the application of CIKSIM to generate the caprock binary fields, two relationships 

as a function of the inclusions correlation length     are defined for scenarios of Table 3-2. The 

two relationships are the following: (i) relationship between correlation length and distances 

from the centers of the clusters to the injection well  , and (ii) relationship between correlation 

length and number of inclusion blocks ratio         .  

The average distance   between centers of the clusters and injection well for one 

ensemble of realizations of Table 3-2 is defined as: 

  
 

   
∑

∑   
   
   

   

   

   

 

(3-33) 
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Table 3-2. Parameters used for the generation of caprock fields with CIKSIM (Baù, 2012). All considered 

scenarios are assumed to have a correlation length    =1,000 m for facies 1. 

Scenario  
Correlation 

model 
      

*
     (m) 

1.1 

Exponential 500 0.0005 

200 

1.2 400 

1.3 600 

1.4 1,500 

2.1 

Exponential 500 0.001 

200 

2.2 400 

2.3 600 

2.4 1,500 

3.1 

Exponential 500 0.005 

200 

3.2 400 

3.3 600 

3.4 1,500 

4.1 

Exponential 500 0.01 

200 

4.2 400 

4.3 600 

4.4 1,500 

5.1 

Exponential 500 0.02 

200 

5.2 400 

5.3 600 

5.4 1,500 

*
Where facies=2 corresponds to inclusions. Probability of facies 1 (sealing formation) is         .  



90 

where     is the total number of clusters present in one realization   ( =1,2,..,    ), and    is the 

distance between the center of the cluster   and the injection well.  

The ratio of inclusion blocks          of one ensemble of realizations is defined as the 

ratio between the average number of inclusion blocks of one ensemble of realizations and the 

expected number of inclusion blocks of one realization: 

         

∑     
   
   

   

      
 

(3-34) 

 

where      is the total number of grid-blocks considered for the generation of the caprock (   = 

4,900, see section 3.2), and      is the number of inclusion blocks or leaky blocks (with facies 2) 

of realization  . For instance, for a probability   = 0.01, the expected number of inclusion blocks 

is 49 (      ).  

Also in this section, the influence of the injected formation permeability and inclusions 

permeability on CO2 leakage is studied. Different pairs of permeability values of the injected 

formation and inclusions for scenarios 1.1, 2.1, 3.1, 4.1, and 5.1 are considered. The range of 

permeabilities of the injected formation     and inclusions    studied spans from 1×10
-15

 m
2
 (1 

mD) to 1×10
-12

 m
2
 (1,000 mD). Results of this analysis report the CO2 leakage percentage at the 

95
th

 percentile. 

3.2.2 Uncertainty from caprock continuity and passive wells permeability 

The area considered in Section 3.1 comprises 60 wells that perforate the candidate 

formation to store CO2. The locations of these wells are obtained from the Michigan Department 

of Environmental Quality database (DEQ, 2013). However, the conditions of these wells are not 

known. A deteriorated or poorly cemented well can create a leaky pathway for brine and/or CO2. 
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The significant number of wells at this location results in a source of uncertainty that cannot be 

disregarded. Consequently, they are included in the uncertainty analysis of caprock continuity to 

study their influence on CO2 leakage. 

Associated with the use of the semi-analytical model, these 60 passive wells are grouped into 

20 equivalent leaky pathways. Figure 3-6 shows the position of the passive wells located in the 

area under consideration and the position of each cluster of wells. These clusters are identified 

through an optimization procedure that minimizes the sum of the Euclidean distances of the 

passive wells that form a cluster and the cluster centroid. The equivalent leaky area considered 

for each cluster of wells is equal to the sum of the cross sectional areas of the wells included in 

that group.  

 

Figure 3-6. Location of the 60 passive wells (indicated as crosses) that reach the candidate storage 

formation and location of the 20 leaky pathways (indicated as circles) after clustering the existing 

passive wells. The injection well is located at the center of the domain (indicated as a red point). 

The location of these clusters of wells is deterministic in each of the realizations of the 

caprock binary fields of Table 3-2. On the other hand, the permeability of the clusters of wells is 

considered stochastic, since permeability of the passive wells is unknown. We assume that all 
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passive wells follow the same lognormal probability distribution function with a log-mean of 

log(1×10
-14

 m
2
) and a log-standard deviation of 1 log-m

2
 (Nordbotten et al., 2009).  

4 Results and Discussion 

This section includes results and discussions of the analyses conducted on the area of 

study introduced in Section 3.1. First, we present results of an ad-hoc analysis conducted to 

validate ELSA-IGPS when large areas of leakage are introduced in the model. Next, we present 

and discuss results of the caprock continuity uncertainty study followed by a sensitivity analysis 

of the permeability of the injected formation and the inclusions affecting CO2 mass leakage. 

Finally, we investigate the effect that uncertainty from passive wells permeability has on CO2 

leakage produced by caprock continuity uncertainty. 

4.1 Validation of ELSA-IGPS for large areas of CO2 leakage 

We compare the results of the semi-analytical algorithm ELSA-IGPS with those 

produced with the numerical code ECLIPSE when large areas of leakage are introduced in the 

semi-analytical model. 

To compare the results of the semi-analytical solution (Section 2) with the numerical 

model, we randomly select one realization from the ensemble of realizations of the permeability 

fields available for scenarios 1.1, 2.1, 3.1, 4.1, and 5.1 (Table 3-2). Both ELSA-IGPS and 

ECLIPSE are used to simulate these realizations. Inclusions of these realizations are clustered 

following the approach explained in Section 2.4. Information of the number of inclusions, the 

number of clusters after the clustering approach, minimum and maximum radius of the clusters is 

provided in Table 3-3. 
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Table 3-3. Information of the number of inclusions, clusters, and their minimum and maximum radius. 

Scenario 

(one realization) 

Number of 

inclusions 

Number of 

clusters 

Minimum 

radius of the 

clusters 

Maximum radius 

of the clusters 

1.1 0 - - - 

2.1 12 2 112.8 159.6 

3.1 24 3 56.4 239.4 

4.1 68 7 56.4 418.4 

5.1 132 15 56.4 343.2 

 

Comparison of the results obtained with both codes ELSA-IGPS and ECLIPSE are 

shown in Figure 3-7, where each subpanel presents the cumulative mass leakage of CO2 over 

time for each scenario. Note that the y-axis of the cumulative CO2 mass leakage is presented in 

logarithmic scale.  

Scenario 1.1, with the lowest probability of finding an inclusion    and a correlation 

length    =200 m, does not produce CO2 mass leakage using either code. This is an obvious 

result since the realization simulated does not include any inclusion at the caprock (see Table 

3-3). Consequently, these results are not shown here.  

In Scenario 2.1 and Scenario 3.1, Figure 3-7a and Figure 3-7b respectively, CO2 mass 

leakage produced by ECLIPSE starts earlier than the leakage produced by ELSA-IGPS. 

However, final cumulative CO2 mass leakage for each code is very similar.  

In Scenario 4.1 (Figure 3-7c) and Scenario 5.1 (Figure 3-7d), which have the largest 

probabilities (  ) of finding an inclusion, and consequently the largest probability of leakage, the 

two codes present similar CO2 mass leakages. Moreover, CO2 leakage seems to start 

approximately at the same time for both ELSA-IGPS and ECLIPSE. 
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Figure 3-7. ECLIPSE and ELSA-IGPS comparison of CO2 mass leakage results over time for one 

realization of the caprock ensemble: (a) Scenario 2.1, (b) Scenario 3.1, (c) Scenario 4.1, and (d) Scenario 

5.1. See Table 3-2 for description of the scenario. 

The fact that CO2 leakage with ELSA-IGPS starts later than in ECLIPSE for Scenario 2.1 

and 3.1 (Figure 3-7a and Figure 3-7b, respectively) can be explained by the difference in the 

evolution of fluid pressure. Results of the comparison of fluid overpressure near the injection 

well for the two codes are reported in Figure 3-8. We notice that initial fluid overpressure pulse 

in ECLIPSE is greater than in ELSA-IGPS for the first years, which is associated with a faster 

propagation of the CO2 plume in the injected aquifer. Therefore, the CO2 plume reaches the 
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clustered areas sooner in ECLIPSE. As time increases fluid overpressure produced by ECLIPSE 

decreases, until it reaches similar overpressure values produced by ELSA-IGPS at     . 

In general, the cumulative CO2 mass leakage produced with both models is of the same 

order of magnitude at later times, hence showing a good agreement between the two models. 

Therefore, the approach of clustering the inclusions-blocks and introducing them into ELSA-

IGPS as a large equivalent leaky area can be considered valid. 

  

Figure 3-8. ECLIPSE and ELSA-IGPS comparison of fluid overpressure nearby the injection well 

results over time for one realization of the caprock ensemble: (a) Scenario 2.1, and (b) Scenario 3.1. See 

Table 3-2 for description of the scenario. 

4.2 Results of the study of caprock continuity uncertainty 

In this section, we present results of the study of uncertainty from caprock continuity. 

4.2.1  CIKSIM tests results 

Here, results of the relationships   and          (Section 3.2.1) as function of correlation 

length are reported. 
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Figure 3-9 reports the relationship between the correlation length and the average 

distance between cluster centers and injection well distances for probabilities    equal to 0.005, 

0.01, and 0.02.  

 

Figure 3-9. Relationship between correlation length and the average distance between cluster centers and 

injection well. 

Figure 3-9 shows that the   distance decreases when     is increased. Correlation length 

   = 200 m has the greatest   for the different probabilities   . When the correlation length of 

facies 2 is increased, larger inclusions are expected to be generated, which occupy more space in 

the domain and consequently their locations are more restricted in the domain. On the other 

hand, smaller correlation lengths generate smaller inclusions, which can be more spread out 

through the domain and further from the injection well. As a result, same probability    but 

different correlation lengths, the lowest     produces less CO2 mass leakage. CO2 leakage is 

lower for the lowest     because the average distance   that the CO2 plume has to travel through 

the storage formation is longer, therefore the time to reach the inclusions of the caprock is larger 

too.   
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Figure 3-10 displays the relationship between correlation length     and the ratio of 

inclusion blocks          for probabilities    equal to 0.005, 0.01, and 0.02. This figure shows 

that the average number of inclusion blocks of one ensemble of generated caprock fields is equal 

to the expected inclusion blocks; that is to say that          is equal to 1 only when the 

correlation length is very small (   = 0.1 m).  

The ratio of inclusion blocks increases with the correlation length, meaning that the 

correlation length affects the number of inclusion blocks of one ensemble of caprock fields. This 

dependency does not seem to increase significantly for correlation lengths greater than    = 400 

m, and it seems to reach a value between         = 1.6 and         = 1.8 for the different 

probabilities. 

 

Figure 3-10. Relationship between correlation length and the ratio of inclusion blocks. 

4.2.2 CO2 leakage results 

In this section, we present results concerning the uncertainty analysis for caprock 

continuity. The effects of correlation length and probability of facies 2 on the two state variables 
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of interest:        (Equation (3-9)) and      (Equation (2-20)) are studied. Output ensembles 

of the state variables are used to produce the CDF plots.  

Figure 3-11 presents results of        and      obtained for correlation lengths    = 

200 m and    = 400 m, and different values of the probability   . In Figure 3-11a one may note 

that CO2 mass leakage is higher for larger    values. For instance, 81% of realizations in 

Scenario 1.1 (  = 0.0005 and    = 200 m) present        lower or equal to 1x10
-3

%, whereas 

in Scenario 5.1 (  = 0.02 and    = 200 m) only 1% of the realizations has        lower than 

1×10
-3

%. This agrees with the fact that higher probability    is expected to present greater CO2 

leakage since the probability of the CO2 plume to find an inclusion through the caprock is higher. 

Similarly, Figure 3-11a shows that CO2 mass leakage increases with    when correlation length 

is    = 400 m.  

 

Figure 3-11. ELSA-IGPS results of scenario with correlation length    = 200 m (in black) and    = 400 

m (in grey): (a) percent of CO2 mass leakage, and (b) fluid overpressure near the injection well. See 
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Table 3-2 for description of the scenarios. 

When comparing the        of both correlation lengths    = 200 and    = 400 m in 

Figure 3-11a, we observe that        is greater for the latter correlation length (Scenarios 1.2, 

2.2, 3.2, 4.2, and 5.2). Greater CO2 leakages are expected for higher correlation lengths since the 

inclusions generated by CIKSIM are larger in size and, consequently, the CO2 mass leakage is 

larger as the carbon plume reaches the inclusions.  

Figure 3-11b shows fluid overpressure in bars (1 bar ≡ 1×10
5 

Pa).      decreases when 

the probability of finding an inclusion is greater; therefore, CDF curves for a   = 0.02 have the 

lowest      in Figure 3-11b (dotted lines). 

Correlation length also influences the fluid overpressure. When comparing the same 

probability    for    = 200 m and    = 400 m, the greatest correlation length yields to a lower 

fluid overpressure. This agrees with the fact that greater correlation lengths have inclusions with 

greater leakage areas, and consequently when the CO2 plume reaches the inclusion there is more 

leakage from the injected aquifer to the overlying formation. As a result a larger relief in fluid 

pressure takes place. 

Figure 3-12 shows mass leakage CDFs obtained with probabilities   = 0.005 and   = 

0.01 for different correlation lengths of facies 2, ranging from    = 200 m to    = 1,500 m. 

Figure 3-12a shows that        increases with the correlation length     and the probability   .  

Results of fluid overpressure are illustrated in Figure 3-12b.      decreases when 

increasing the correlation length and when increasing the probability of finding an inclusion   . 

Thus, the greatest fluid overpressure is produced by Scenario 1.1 (  = 0.005 and    = 200 m, in 

black solid line), whereas the lowest fluid overpressure is produced by Scenario 5.4 (  = 0.01 

and    = 1,500 m, in grey dotted line). 
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Figure 3-12. ELSA-IGPS results of scenarios with probability   = 0.005 (in black) and   =0.01 (in 

grey): a) percent of CO2 mass leakage, and b) fluid overpressure nearby the injection well. See Table 3-2 

for description of the scenarios. 

Figure 3-11 indicates that scenarios with the same correlation length and with higher    

have greater        and lower     . In Figure 3-11, when comparing the amount of leaked CO2 

for the two correlation lengths (   = 200 m and    = 400 m), we observe that        is greater 

for    = 400 m. This agrees with two facts: 1) the distance from the center cluster to the injection 

well   is lower for correlation length    = 400 m (see Figure 3-9), and 2) the ratio of inclusion 

blocks is greater for    = 400 m (see Figure 3-10). Therefore, in the scenario of    = 400 m, 

there are more inclusion blocks on average for one stochastic simulation, and the distance that 

the CO2 plume must travel until reaches the center of the cluster is shorter, favoring the CO2 

leakage. 

Increasing the ratio of inclusion blocks facilitates the CO2 leakage to aquifer  =2, 

relieving pressure in the injected aquifer  =1. Therefore,      results with correlation length 
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   = 400 m present slightly lower fluid overpressures than results with    = 200 m, since 

        (200 m) <         (400 m).  

4.2.3 Influence of permeability values of the injected formation and inclusions on CO2 mass 

leakage 

To study the influence of the injected formation permeability     and inclusions 

permeability    on the maximum probable amount of leaked CO2, different pairs of permeability 

values of     and    are considered for Scenarios 1.1, 2.1, 3.1, 4.1, and 5.1 (Table 3-2). These 

results are presented in terms of the        95
th

 percentile and shown in Figure 3-13 for 

different values of     and    .  

Each subpanel in Figure 3-13 corresponds to one of the scenarios. All scenarios present 

low CO2 mass leakages when     is high and    is low. In general, high permeability of the 

injected formation  corresponds to less escape of CO2 through weak areas. The CO2 plume 

advances more easily through the injected formation when     is high, easing its storage instead 

of CO2 escape (González-Nicolás et al., 2014). 

Scenarios 1.1 and 2.1 produce the lowest CO2 mass leakages. In Scenarios 4.1 (Figure 

3-13d) and 5.1 (Figure 3-13e), considerable amounts of CO2 leakage are observed when the 

inclusion’s permeability is greater than 3.16×10
-13

 m
2
 (log-  = -12.5). 
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Figure 3-13. Maximum probable CO2 leakage within a confidence of 95
th
 as a function of the injected 

formation permeability (   ) and the inclusions permeability (  ): (a) Scenario 1.1, (b) Scenario 2.1, (c) 

Scenario 3.1, (d) Scenario 4.1, and (e) Scenario 5.1. See Table 3-2 for description of the scenarios. 
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       values of Figure 3-13 can be compared to the metric reported by Pacala (2003) 

that limits the amount of CO2 leakage returning to the atmosphere to 1% per one year. In 

Scenario 1.1 (Figure 3-13a), where the probability of finding an inclusion is the lowest,        

would be less than or equal to 1% per one year for values of     greater than 5.01×10
-14

 m
2
 (log-

     -13.3). On the other hand, if    is increased to 0.01 (Figure 3-13d), in order to maintain the 

maximum probable CO2 leakage below the 1% per year threshold, the minimum permeability 

required for the injected formation and the inclusions should be 3.98×10
-13

 m
2
 (log-   = -12.4) 

and 6.31×10
-14

 m
2
 (log-  = -13.2), respectively. 

This analysis shows geostatistical data such as the probability    and the correlation 

length     play a critical role for the risk assessment prior to the injection of CO2 into a candidate 

reservoir. For instance, from Figure 3-13 it is deduced that a    greater than 0.001 with    = 200 

m (Scenarios 2.1, 3.1, 4.1, and 5.1) is likely to produce CO2 leakages greater than 1% per year, in 

which case the injections of CO2 into the candidate storage formation should not be 

recommended.  

It is also important to emphasize that these estimates are conservative since the limit 

proposed by Pacala (2003) consists of CO2 leakage rates back to the atmosphere, whereas in this 

study the CO2 mass leakage considered is the CO2 that escapes the target storage formation  =1. 

Therefore, additional processes of storage and attenuation that CO2 may undergo in the 

overburden formations are not accounted for. 

4.3 Results of the study of uncertainty from caprock continuity and passive wells 

permeability 

Uncertainty from passive wells permeability does not impact      results when this 

uncertainty is added to caprock continuity uncertainty. These results are coincident to results 
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when only caprock uncertainty is considered. Therefore,      results are not shown here. On the 

other hand, uncertainty from passive wells affects CO2 mass leakage, especially in scenarios in 

which CO2 leakage from the caprock discontinuities is expected to be low. 

Figure 3-14 shows a comparison of        results obtained when considering only the 

uncertainty of caprock, and both uncertainties (caprock continuity and passive wells 

permeability) for Scenarios 1.1, 2.1, 3.1, 4.1, and 5.1 (Table 3-2).  

Uncertainty from passive wells permeability does not affect CO2 mass leakage results of 

caprock continuity uncertainty, independently of    value, when CO2 mass leakage is greater 

than 1% as Figure 3-14a–Figure 3-14e show. Both scenarios, with and without passive wells 

permeability uncertainty, produce similar results of       . 

Figure 3-14a reports the results of Scenario 1.1, which has the lowest probability of 

finding an inclusion on the caprock. We can see that for the scenario considering only caprock 

continuity uncertainty (dashed line), there is an 82% probability that        will be equal to or 

lower than 1x10
-3

%. Whereas when taking into account passive well permeability uncertainty 

(solid line) yields a 0% probability that        will be equal to or lower than 1x10
-3

%.  
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Figure 3-14. CO2 mass leakage considering uncertainty from the caprock continuity and uncertainty from 

passive wells permeability. Solid line represents scenario with both uncertainties, and dashed line scenario 

with only caprock continuity uncertainty: (a) Scenario 1.1, (b) Scenario 2.1, (c) Scenario 3.1, (d) Scenario 

4.1, and (e) Scenario 5.1. See Table 3-2 for description of the scenarios.  
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Scenarios 2.1, 3.1, 4.1 and 5.1 (Figure 3-14b–Figure 3-14e, respectively) present the 

same tendency seen in Scenario 1.1. Uncertainty from passive wells permeability is noticeable 

only for low CO2 mass leakages.  

Scenarios with high probability of finding inclusions, such as Scenario 4.1 (Figure 3-14d) 

and 5.1 (Figure 3-14e), present small differences on their CDFs even for low values of CO2 mass 

leakage. The influence on leakage produced by passive wells permeability uncertainty is 

negligible in comparison to the leakage produced through the weak areas of the caprock for these 

scenarios. 

To study the effect of the correlation length on passive wells permeability uncertainty, 

Scenarios 2.2, 2.3, and 2.4 are simulated including this uncertainty. Figure 3-14b and Figure 3-15 

report the comparison of CO2 mass leakage results obtained when considering the uncertainty of 

caprock continuity together with wells uncertainty for the same   = 0.001 and different     (see 

Table 3-2 for their description). Results of these figures show that independent of the correlation 

length, uncertainty of passive wells permeability has an impact on low       . For CO2 mass 

leakages greater than 1% this influence is not noticed.  
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Figure 3-15. CO2 mass leakage considering uncertainty from the caprock continuity and uncertainty 

from passive wells permeability. Solid line represents scenario with both uncertainties, and dashed line 

scenario with only caprock continuity uncertainty. (a) Scenario 2.2, (b) Scenario 2.3, and (c) Scenario 

2.4. See Table 3-2 for description of the scenarios. 

Figure 3-16 displays the comparison of CO2 mass leakage obtained for Scenarios 2.1, 2.2, 

2.3, and 2.4 when considering both uncertainties (caprock continuity and passive wells 

permeability). It shows with better detail how the uncertainty of passive wells permeability 

produces the same        at low leakages. It also shows that the influence     of facies 2 (i.e. 

the size of the inclusions) is noticed about 0.1%; being more prominent at 1%. 
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Figure 3-16. Comparison of CO2 mass leakage considering uncertainty from the caprock continuity and 

uncertainty from passive wells of Scenarios 2.1, 2.2, 2.3, and 2.4. See Table 3-2 for description of the 

scenarios. 

5 Summary and Conclusions 

A sequential indicator simulation algorithm is used to study the uncertainty on the 

continuity of the geological sealing unit of a candidate formation for GCS located at the 

Michigan Basin. This algorithm creates binary fields of caprock with low permeability and 

inclusions with high permeability. The inclusions represent areas where CO2 could leak through 

the caprock. A semi-analytical multiphase flow model is used to simulate the CO2 injection and 

study the CO2 leakage. Inclusions having similar spatial locations are grouped together and 

considered a cluster to reduce the number of leaky points introduced in the multiphase flow 

semi-analytical algorithm in order to improve its computational efficiency.  

Originally, the semi-analytical model is built to simulate escapes through small tubular 

diameters such as abandoned wells. To understand the limitations of applying the semi-analytical 

to simulate leakage through large areas of the caprock, a comparison of the semi-analytical 
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algorithm with a numerical code was carried out. Results show that, in general, the cumulative 

CO2 mass leakage produced with both models is of the same order at later times, showing there 

is a good agreement between their results. 

We studied the impact of caprock continuity uncertainty with and without the impact of 

passive wells permeability uncertainty on CO2 mass leakage results. From the results of the study 

of the caprock continuity uncertainty, we can conclude that:   

i) Increasing the probability of inclusions occurrence increases the CO2 leakage to 

overlying formations, relieving more pressure in the injected aquifer.  

ii) Correlation length affects the number of the expected inclusion blocks of one 

realization that the sequential indicator simulation algorithm generates. Also the distance that the 

CO2 plume must travel until it reaches the center of the cluster for high correlation length is 

shorter, thus favoring the CO2 leakage. This dependency on correlation length does not seem to 

increase significantly for correlation scales greater than 400 m.  

And iii) influence of the inclusion permeability and injected aquifer permeability on CO2 

leakage is significant, especially in scenarios where a high probability of inclusion occurs, in 

which CO2 leakage can be very high. 

From the results of the study of the caprock continuity uncertainty and passive wells 

permeability uncertainty, we conclude that uncertainty from passive wells permeability seems 

not to have influence on fluid overpressure results when this uncertainty is added to caprock 

continuity uncertainty. Also, the uncertainty from passive wells permeability does not affect CO2 

mass leakage results of caprock continuity uncertainty when CO2 mass leakage is high; it only 

has influence at low values of CO2 leakages. 

  



110 

6 References 

Bachu, S., 2003. Screening and ranking of sedimentary basins for sequestration of CO2 in 

geological media in response to climate change. Environmental Geology 44, 277-289. 

Baù, D., 2012. Multi-Objective Optimization Approaches for the Design of Carbon Geological 

Sequestration Systems. DE-FE0001830 Progress Report III, DOE, National Energy 

Technology Laboratory. 

Bergman, P.D., Winter, E.M., 1995. Disposal of carbon-dioxide in aquifers in the US. Energy 

Conversion and Management 36, 523-526. 

Celia, M.A., Nordbotten, J.M., 2009. Practical Modeling Approaches for Geological Storage of 

Carbon Dioxide. Ground Water 47, 627-638. 

Celia, M.A., Nordbotten, J.M., Court, B., Dobossy, M., Bachu, S., 2011. Field-scale application 

of a semi-analytical model for estimation of CO2 and brine leakage along old wells. 

International Journal of Greenhouse Gas Control 5, 257-269. 

Chang, K.W., Minkoff, S., Bryant, S., 2008. Modeling Leakage Through Faults of CO2 Stored in 

an Aquifer. 

Cody, B., Baù, D., González-Nicolás, A., 2014. Improved Semi-Analytical Simulation of 

Geological Carbon Sequestration (in review). Computational Geosciences. 

DEQ, 2013. Oil and Gas Database. Department of Environmental Quality, Michigan.Gov. 

Deutsch, C.V., Journel, A.G., 1997. GSLIB: Geostatistical Software Library and User's Guide. 

Oxford University Press, USA. 

Gasda, S.E., Bachu, S., Celia, M.A., 2004. Spatial characterization of the location of potentially 

leaky wells penetrating a deep saline aquifer in a mature sedimentary basin. 

Environmental Geology 46, 707-720. 



111 

González-Nicolás, A., Baù, D., Cody, B.M., Alzraiee, A., 2014. Stochastic and Global 

Sensitivity Analyses of Uncertain Parameters Affecting the Safety of Geological Carbon 

Storage in Saline Aquifers of the Michigan Basin. International Journal of Greenhouse 

Gas Control (submitted). 

Hahn, G.J., 1967. Statistical models in engineering. Wiley, New York. 

Halliburton, 1990. Log 21101375660000 Stech Upper Half (Date: 09/04/1990). 

International Energy Agency, 2008. Carbon Capture and Storage: Meeting the Challenge of 

climate change, Paris. 

Journel, G., A., Alabert, F., 1989. Non-Gaussian data expansion in the Earth sciences. Terra 

Nova 1, 123-134. 

Kelkar, M., Perez, G., Chopra, A., 2002. Applied Geostatistics for Reservoir Characterization. 

Society of Petroleum Engineers. 

Kopp, A., Binning, P.J., Johannsen, K., Helmig, R., Class, H., 2010. A contribution to risk 

analysis for leakage through abandoned wells in geological CO2 storage. Adv Water 

Resour 33, 867-879. 

Krige, D.G., 1951. A statistical approach to some mine valuations and allied problems on the 

Witwatersrand, Master's thesis of the University of Witwatersrand. M.Sc. Eng. Thesis of 

University of Witwatersrand, Johannesburg. 

Matheron, G., 1963. Principles of geostatistics. Economic Geology 58, 1246-1266. 

Metz, B., Intergovernmental Panel on Climate Change. Working Group III., 2005. IPCC Special 

Report on Carbon Dioxide Capture and Storage. Cambridge University Press, for the 

Intergovernmental Panel on Climate Change, Cambridge. 



112 

Nicholls, N., Gruza, G., Jouzel, J., Karl, T., Ogallo, L., Parker, D., 1996. Observed climate 

variability and change. Cambridge University Press. 

Nogues, J.P., Court, B., Dobossy, M., Nordbotten, J.M., Celia, M.A., 2012. A methodology to 

estimate maximum probable leakage along old wells in a geological sequestration 

operation. International Journal of Greenhouse Gas Control 7, 39-47. 

Nordbotten, J.M., Kavetski, D., Celia, M.A., Bachu, S., 2009. Model for CO2 Leakage Including 

Multiple Geological Layers and Multiple Leaky Wells. Environ Sci Technol 43, 743-749. 

Olea, R.A., 1999. Geostatistics for Engineers and Earth Scientists. Kluwer Academic. 

Pacala, S.W., 2003. Global Constraints on Reservoir Leakage, in: Gale, J., Kaya, Y. (Eds.), 

Greenhouse Gas Control Technologies - 6th International Conference. Pergamon, 

Oxford, pp. 267-272. 

Ruether, J.A., 1998. FETC Programs for Reducing Greenhouse Gas Emissions, Other 

Information: PBD: Feb 1998, p. Medium: ED; Size: 20 p.; Other: FDE: PDF; PL:. 

Sakamoto, Y., Tanaka, A., Tenma, N., Komai, T., 2011. Numerical study on flow behavior of 

CO2 in an aquifer for risk assessment of carbon capture and storage. Energy Procedia 4, 

4170-4177. 

SCH, 1983. Log 21101365880000 Burch Main Suite (Date 06/19/1983). 

SCH, 1991. Log 21101375660000 Stech Lower Half (Date: 06/29/1991). 

Schlumberger, 2010. Eclipse technical description, v. 2010.1, Report, Abingdon, U.K. 

Solomon, S., Intergovernmental Panel on Climate Change., Intergovernmental Panel on Climate 

Change. Working Group I., 2007. Climate change 2007 : the physical science basis : 

contribution of Working Group I to the Fourth Assessment Report of the 



113 

Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge ; 

New York. 

Takahashi, W., 2000. Nonlinear Functional Analysis, Fixed point theory and its applications, p. 

iv+ 276. Yokohama, Yokohama, Japan. 

Trangenstein, J.A., Bell, J.B., 1989. Mathematical structure of compositional reservoir 

simulation. SIAM journal on scientific and statistical computing 10, 817-845. 

Trebin, F.A., 1945. Permeability to oil of sandstone reservoir. 

Turpening, R., Toksöz, M., Born, A., al., e., 1992. Reservoir Delineation Consortium Annual 

Report, Massachusetts Institute of Technology, Cambridge. 

Van Genuchten, M.T., 1980. A Closed-form Equation for Predicting the Hydraulic Conductivity 

of Unsaturated Soils1. Soil Science Society of America Journal 44, 892. 

Zhang, Y., Oldenburg, C.M., Finsterle, S., 2010. Percolation-theory and fuzzy rule-based 

probability estimation of fault leakage at geologic carbon sequestration sites. Environ 

Earth Sci 59, 1447-1459. 

Zhou, Q., Birkholzer, J.T., Mehnert, E., Lin, Y.-F., Zhang, K., 2009. Modeling Basin- and 

Plume-Scale Processes of CO2 Storage for Full-Scale Deployment. Ground Water 48, 

494-514. 

 



114 

4 Chapter: Detection of potential leakage pathways from geological carbon 

storage by fluid pressure data assimilation 

 

 

 

Summary 

One of the main concerns of geological carbon storage (GCS) systems is the risk of 

leakage through “weak” permeable areas of the sealing formation or caprock. Since the fluid 

pressure pulse travels faster than the carbon dioxide (CO2) plume across the storage reservoir, a 

fluid pressure change is inevitably transmitted into overlying permeable formations through 

“weak” areas of the caprock, and can be potentially detected sooner than actual CO2 leakage 

occurs. In this work, an inverse modeling method based on fluid pressure measurements 

collected in strata above the target CO2 storage formation is proposed, which aims at detecting 

the presence, the location, and the extent of possible carbon leakage pathways. We combine a 

three-dimensional subsurface multiphase flow model with ensemble-based data assimilation 

algorithms to identify potential caprock discontinuities that can undermine the long-term safety 

of GCS. This work examines and compares the capabilities of data assimilation algorithms such 

as the ensemble smoother (ES) and the ensemble Kalman smoother (EnKS) to detect the 

presence of brine and/or CO2 leakage pathways, potentially in real-time during GCS operations. 

For the purpose of this study, changes in fluid pressure in the brine aquifer overlying to CO2 

storage formation aquifer are assumed to be observed in monitoring wells, or provided by 4D 

time-lapse seismic surveys. Caprock discontinuities are typically characterized by higher values 

of permeability, so that the permeability distribution tends to fit to a non-Gaussian bimodal 

process, which does not comply with the requirements of the ES and EnKS algorithms. Here, 
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issues related to the non-Gaussianity of the caprock permeability field are investigated by 

developing and applying a normal score transform procedure. Results suggest that the EnKS is 

more effective than the ES in characterizing caprock discontinuities. 

1 Introduction 

In the last decades, geological carbon storage (GCS) has been identified as a technology 

of great potential for reducing anthropogenic emissions of carbon dioxide (CO2) in the 

atmosphere. However, while technically feasible, GCS must be carefully evaluated with respect 

to environmentally threatening side effects, such as the leakage of CO2 through sealing 

formations or caprock. When CO2 is injected underground it displaces the resident fluid in the 

geological formation, which, in the case of deep aquifers, is constituted mainly by high-density 

saline water or brine. If the brine and/or CO2 find a pathway through the caprock, they migrate 

into overlying formations, which may negatively affect the quality of shallow fresh water 

resources (Birkholzer et al., 2009). In particular, CO2 can produce pH changes of groundwater 

resources by increasing the concentration of carbonates, which can influence dissolution and 

sorption of minerals and hazardous trace metals, and consequently deteriorate groundwater 

quality (Kharaka et al., 2006; Apps et al., 2010). The 2005 report of the Intergovernmental Panel 

on Climate Change (IPCC, 2005) provided a list of potential CO2 leakage pathways: (1) “weak” 

areas of the caprock (permeable areas) where CO2 breaks into the caprock if capillary entry 

pressure is exceeded; (2) faults and fractures, and (3) poorly completed and/or abandoned wells. 

In order to monitor and/or detect leakage sources different techniques have been proposed and 

classified into three main groups (DOE/NETL, 2009): i) atmospheric monitoring techniques, ii) 

near-surface monitoring techniques, and iii) subsurface monitoring techniques. Seto and McRae 



116 

(2011) advanced an integrated framework that provides an understanding of the type of 

monitoring techniques available for GCS.  

Measuring fluids pressure is a key component of subsurface monitoring (Group III). 

Since the fluid pressure pulse travels faster than the CO2 plume across the storage reservoir, if 

leakage of brine occurs through “weak” areas of the caprock, the fluid pressure change 

propagates into overlying permeable formations and can be identified sooner than CO2 leakage. 

This fluid pressure change can be detected, for example, by pressure-monitoring wells 

(DOE/NETL, 2009) and time-lapse seismic data (Cole et al., 2002; Cole et al., 2006; MacBeth et 

al., 2006).  

A number of studies related to monitoring pressure changes in observation wells have 

been published (Chabora and Benson, 2009; Nogues et al., 2011; Zeidouni et al., 2011; Park et 

al., 2012; Sun and Nicot, 2012). Chabora and Benson (2009) presented a method to assess the 

usefulness of pressure monitoring in overlying formations based on the correlation between 

calculated pressure changes and a proposed detection factor. Similarly, Zeidouni et al. (2011) 

developed an analytical solution to detect leakage through pressure-monitoring wells screened in 

the geologic formations overlying the injection point. They showed that their model is capable of 

locating and quantifying the leakage of CO2 and found a positive correlation between the 

accuracy of the estimation and the number of available monitoring wells. Also, Nogues et al. 

(2011) developed an analytical solution to estimate the CO2 and brine leakage from pressure 

variations observed at monitoring wells and investigated optimal location of the monitoring wells 

to improve leakage detection. Park et al. (2012) proposed a methodology to detect CO2 leakage 

by measuring pressure changes at monitoring wells with a constrained distribution. Sun and 
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Nicot (2012) presented an inversion method based on a global optimization algorithm to identify 

CO2 leakage from pressure anomalies observed in the layers overlying the injected aquifer.  

While analytical solutions and optimization algorithms constitute appealing tools for 

leakage detection, improved accuracy of estimation and reduced computational cost may be 

achieved by resorting to ensemble-based Kalman filter (KF) (Kalman, 1960) data assimilation 

methods. Some advantages of these methods are, for instance: (1) reduced computational 

demand in comparison to global optimization methods; (2) deterministic optimization techniques 

typically produce a unique solution, possibly suboptimal, for an ill-posed inverse problem and 

thus ignore the existence of infinite number of possible solutions; and (3) typical analytical 

solutions are based on highly idealistic assumptions and do not account for system 

heterogeneities. 

Another alternative to analytical solutions and optimization algorithms is offered by 

conventional inverse approaches such as Monte Carlo inverse methods (e.g., Hendricks Franssen 

(2009)); however, the intensive central processor unit (CPU) effort and their inability to 

assimilate real-time data may hinder their application for CO2 leakage detection problems. In 

contrast, ensemble-based KF data assimilation methods require relatively less CPU time and 

allow for incorporating available measurements into model results as they are collected. Data 

assimilation methods are commonly used in various disciplines to update model states (Nævdal 

et al., 2002; Keppenne and Rienecker, 2003; Chen and Zhang, 2006), and system parameters 

(Chen and Zhang, 2006; Zhou et al., 2012) based on field observations. 

The classical KF (Kalman, 1960) provides an optimal solution in the case of linear 

Gaussian systems and unbiased measurements. Expanding the applicability of KF to nonlinear 

problems can be achieved by using an ensemble of realizations to approximate the prior 
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uncertainty in states and parameters (Evensen, 1994). According to Evensen (2009), ensemble-

based KF methods can be subdivided into three main categories depending on the scheme 

adopted to assimilate measurements: (1) ensemble Kalman smoother (EnKS) algorithms, (2) 

ensemble Kalman filter (EnKF) algorithms, and (3) ensemble smoother (ES) algorithms. Some 

examples of successful application of EnKS can be found in the literature (Brusdal et al., 2003; 

Dunne and Entekhabi, 2006; Ngodock et al., 2006; Durand et al., 2008). Examples of EnKF 

applications are reported by Chen and Zhang (2006), Hendricks Franssen and Kinzelbach (2008), 

and Li et al. (2012). Skjervheim and Evensen (2011) effectively applied the ES to solve the 

history-matching problem in a petroleum reservoir and compared it with the EnKF. Bailey and 

Bau (2012) used ES iteratively to obtain the hydraulic conductivity through assimilation of water 

table height and stream flow rate data. Herrera and Simuta-Champo (2012) applied the ES to 

optimize the three-dimensional location of sampling wells in an aquifer and estimate 

contaminant concentrations. 

To provide an optimal solution, these ensemble-based KF methods require: (a) unbiased 

and uncorrelated observation errors, (b) parameters and state variables to fit to multiGaussian 

distributions, and (c) a linear relationship between predicted data and model data. Since in 

practical applications at least one of these assumptions is often not satisfied, there is a need to 

devise approaches to circumvent these limitations. For example, to avoid the problem of non-

Gaussianity, Gu and Oliver (2006) successfully applied the normal score transform (NST) 

(Goovaerts, 1997) to saturation data in a one-dimensional multiphase reservoir. Other more 

recent studies have addressed issues of non-Gaussianity of state variables or parameters (e.g. 

Simon and Bertino, 2009; Béal et al., 2010; Zhou et al., 2011; Schöniger et al., 2012; Zhou et al., 

2012; Crestani et al., 2013).  
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In this work, we propose an inverse modeling method based on the assimilation of fluid 

pressure data collected in strata above the target carbon storage formation. The objective is to 

detect the presence, location and extent of potential CO2 leakage pathways through the caprock 

formation. The inverse modeling framework relies on the combination of a subsurface 

multiphase flow model with two ensemble-based data assimilation algorithms. In particular, we 

investigate and compare the capabilities of the ES and the EnKS to identify the presence of brine 

and/or CO2 leakage pathways during GCS operations. Issues related to the non-Gaussianity of 

caprock permeability field are also examined. For the purpose of this study, we assumed that 

changes in pressure in the upper aquifer are either observed at monitoring wells or provided by 

4D seismic time-lapse. To pose the CO2 detection problem as an inverse estimation of 

permeability from known pressure measurements, we assumed that regions with high brine or 

CO2 leakage can be represented as regions with high permeability, resulting in a non-Gaussian 

bimodal distribution of the caprock permeability. To overcome issues of non-Gaussianity of the 

caprock permeability spatial distribution, such parameter is transformed using a NST procedure. 

The multiphase flow model used in this work is ECLIPSE (Schlumberger, 2010), a reservoir 

simulator widely used in the petroleum industry, which is also able to simulate injection of 

supercritical CO2 into the subsurface. 

This paper is organized as follows. Section 2 presents first the multiphase flow governing 

equations, followed by the ES and EnKS approach. Section 3 demonstrates the application of 

these two methods for identifying potential leakage areas of the caprock during GCS operations. 

Finally, Section 4 summarizes the major findings of the present work. 
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2 Methodology 

In this section, a basic description of the multiphase flow model ECLIPSE 

(Schlumberger, 2010) used in the numerical experiments is given. Next the ES and the EnKS 

algorithms are described, followed by the definition of parameters that can be used to assess their 

performance. 

2.1 Multiphase flow model  

The multiphase flow equations are solved using the CO2STORE option of ECLIPSE 

(Schlumberger, 2010). The model is written in Fortran90, and is based on a finite-difference 

discretization of the subsurface system.  The compositional version (E300) of ECLIPSE is here 

used to perform two-phase compositional simulation of gas-brine systems, which computes mass 

balances for each component. Our interest focuses on the CO2 and H2O components, whereas 

salt components, such as NaCl, CaCl2, and CaCO2 are neglected. 

Assuming the presence of only two fluid phases, a CO2-rich gas phase denoted as  , and 

H2O-rich liquid phase denoted as  ,     represents the mass fraction of component   present in 

the gas phase and     represents the mass fraction of component   in the liquid phase. Based on 

mass continuity, in a system of    components, mass fractions must be such that: 

∑     

  

   

 (4-1a) 

∑     

  

   

 (4-1b) 

The mass balance of component   for one-dimensional systems is expressed by the 

following partial differential equation (PDE): 
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subject to the condition: 

        (4-3) 

where:   represents the spatial coordinate,   is the porosity of the medium, and   ,    and    are 

the density, the saturation, and the Darcy velocity of phase   ( denotes the phase type, either 

water   or gas  ), respectively. Darcy’s velocity of phase   is expressed as: 

    
    

  

   

  
 (4-4) 

where:   is the intrinsic permeability of the porous medium,          and    are the relative 

permeability, the dynamic viscosity, and the partial pressure of phase  , respectively. The 

capillary pressure    is defined as: 

         (4-5) 

The relative permeabilities and capillary pressure depend upon saturation values, which 

can be calculated using different models such as Van Genuchten’s model (Van Genuchten, 1980) 

and Brooks and Corey model (Brooks and Corey, 1964), or they can be obtained from 

experimental data. 

Based on Equations (4-2) and (4-4), the one-dimensional flow of    fluid components is 

governed by the following system of PDEs: 
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[ (               )]       (        ) 

(4-6) 

The compositional option E300 of ECLIPSE (Schlumberger, 2010) follows the 

formulation of Trangenstein and Bell (1989), in which the components flux is defined as the sum 
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of the phases of the molar densities  ̂   (moles per volume, where a mole is the mass divided by 

the molecular weight), times its flow rate     ⁄ . Therefore the mass conservation law (PDE 

(4-6)) can be rewritten as: 
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)  

 

  
( ( ̂    ̂  ))    (        ) 

(4-7) 

where the total amount of moles of each component   per pore volume is constant:  ̂   ̂   

 ̂  .  

In this work, we adopt a finite-difference discretization in time based on a fully implicit 

Euler scheme (selected by the E300 option FULLIMP) to ensure stability of the numerical 

solution. Newton’s method is used to linearize and solve a set of residual (mass balance error) 

non-linear equations derived from the three-dimensional form of Equation (3-18). The equation 

of the residual   for each fluid component in each gridblock cell at each time step may be 

expressed as: 

  
        

  
  (       ̂    )   (       ̂    )    

(4-8) 

where:   is the mass accumulated during the current time step,   is the net flow rate into 

neighboring grid blocks, and   is the net flow rate into wells during the time step.  

 A set of solution variables is required to solve Equation (4-8). The number of independent 

variables has to be equal to the number of residual conditions. In E300, the primary solution 

variables are pressure   and molar densities of each component  ̂ . In Equation (4-8), pressures 

and molar densities are solved implicitly at the end of the time step and, as previously 

mentioned, using Newton’s method. The linear equations produced by Newton’s method are 

preconditioned and solved simultaneously by a nested-factorization procedure that uses the 

Orthomin iterative method (Vinsome, 1976). 
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The CO2STORE option of ECLIPSE allows the two phases to contain the components 

CO2 and H2O, and can account for the processes of dissolution, evaporation, and condensation. 

The partitioning of CO2 and H2O is computed by following a fugacity equilibrium between the 

two phases (Spycher and Pruess (2005) and (2010)). The fugacity measures how the available 

energy of a real fluid differs from the available energy of an ideal gas. To calculate CO2 fugacity 

ECLIPSE uses a modified Redlich-Kwong equation of state (Redlich and Kwong, 1949), 

whereas water fugacity is computed using Henry’s law. ECLIPSE also computes densities and 

viscosities of CO2 and water phases. CO2 gas density is calculated by a cubic equation of state 

according to Spycher and Pruess (2005), whereas CO2 gas viscosity is computed based on 

relationships developed by Vesovic et al. (1990) and Fenghour et al. (1998). 

ECLIPSE output includes, among others, the spatial distributions of fluid phase pressures 

and saturations in the model domain. For each cell, centered at the generic location (     ), the 

equivalent fluid pressure  ̅ at time   is calculated as the average of the phase pressures,    and 

  , weighted with respect to the phase saturations,    and    (Bishop, 1959; Gray and Miller, 

2007): 

 ̅            (4-9) 

Therefore the fluid pressure change at location (     ) and time   is defined as: 

     (       )   ̅(       )    (     ) (4-10) 

where   (     ) is the initial fluid pressure (at time   = 0). 

2.2 Ensemble based data assimilation 

The problem of detecting CO2 leakage is approached herein as a data assimilation 

problem, in which observations of fluid pressure at a number of given locations and subsequent 

times are assimilated into the multiphase model results to identify potential carbon leakage 
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pathways in the caprock. Typically, the amount of available pressure data is less than the 

unknowns, that is, the model output at the cells of the finite difference grid, leading to an ill-

posed problem. In this case, since the inverse problem has no unique solution, a Bayesian 

framework is adopted. Prior information on the system state, characterized by the vector   

including the fluid pressure distribution within the model domain at a given time, can be updated 

based on pressure data collected at that time using Bayes’ law: 

   ( |   )  
   ( | )   (   )

   ( | )
 (4-11) 

where the vector   includes local pressure observations,    ( |   ) represents the posterior 

probability distribution function (PDF) of   given the observations   and a generic prior 

information   on the system,    ( | ) is the so-called “likelihood” PDF,    (   ) is the prior 

PDF of  , and    ( | ) constitutes a normalization term. An exact solution to Equation (4-11) 

can be obtained when the measurements   are related to the state   through a linear 

relationship, and when all PDFs conform to Gaussian joint distributions. This solution is referred 

to as the Kalman filter (KF) (Kalman, 1960). In the KF, the assimilation of system observations 

into the system state is carried out with a two-step process, defined by a forecast stage and an 

update stage. In the forecast stage, a forward in time prediction of the state and its error 

covariance is made. This prediction is carried out at the time in which system observations are 

made. In the update stage, the system state is corrected based to resemble field measurements. 

In addition to being limited to Gaussian linear systems, the application of the KF to high 

dimensional system states is computationally expensive. To address these shortcomings, Evensen 

(1994) devised  the ensemble Kalman filter (EnKF) in order to extend the KF to nonlinear 

systems. Within the EnKF, the prior PDF of  ,    (   ) (Equation (4-11)) is approximated by 

an ensemble of realizations that characterize the prior uncertainty in the system state. The EnKF 
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can be used to correct not only the system state, but also the system parameters. This may be 

achieved by “augmenting” the prior ensemble of the state vectors   with a corresponding 

ensemble of the system parameters  , thus resulting in a state-parameter forecast ensemble, 

[   ] . 

Similar to the classic KF, the EnKF (Evensen, (1994)) calculates system updates 

sequentially as system measurements are made available; the forward model forecast simulation 

proceeds from the current to the next data assimilation time. In contrast, the ES (Van Leeuwen 

and Evensen, (1996)) uses a forecast state formed by the system states at all measurement times 

and by the system parameters. All available data are assimilated simultaneously, as opposed to 

sequentially in time. With the EnKS (Evensen and Van Leeuwen, 2000), the system state and its 

parameters are updated as measurements become available, in a fashion similar to the EnKF. 

However, after each update step, the forward model is restarted using the updated parameters, 

from the initial time to the time at which new systems observations are made. 

Figure 4-1 illustrates the procedural structures of (a) the ES, (b) the EnKS, and (c) the 

EnKF. The horizontal red arrows indicate forecast simulation stages. The vertical blue arrows 

represent both collection and assimilation of data into the forecast model results. For the ES and 

EnKS schemes (Figures 1a and 1b), the horizontal green arrows indicate the “restart” of the 

forward model from the initial time after each update step. 

With the ES (Figure 1a), the forward forecast stochastic simulation is performed only 

once, whereas the EnKS (Figure 1b) requires re-running the forward model after each update 

step from time  =0 to the next data assimilation time. Consequently, the ES is computationally 

more advantageous than the EnKS, particularly in the case of “expensive” simulation models. 

From this perspective, the EnKF (Figure 1c) involves a computational burden similar to that of 
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the ES, since it does not require restarting the model, and the forward simulation continues from 

the current data assimilation time to the next. 

 

Figure 4-1. Data assimilation processes for (a) the ES, (b) the EnKS, and (c) the EnKF (adapted from 

Evensen (2009)). Horizontal red arrows indicate forecast simulation stages. Vertical blue arrows 

represent both collection and assimilation of data. Horizontal green arrows indicate the “restart” of the 

forward model from the initial time after each update step.     denotes the vector   of fluid 

overpressure data collected at a number    of generic times    ( =1,2,…,  ). 

 

A well-known inconsistency of the EnKF, when applied to non-linear processes, is 

constituted by its tendency to provide corrected state values that are not coherent with the 

physical laws behind the model equations. This inconsistency is further accentuated if the EnKF 

is used to update system parameters as well as the system states, and may have a significant 

effect on the accuracy of the forward forecast simulation performed from the current data 
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assimilation step to the next. For this reason, the EnKF is not considered in this study, and only 

the ES and the EnKS are investigated for the identification of possible leakage pathways of 

brine/CO2 through the caprock. 

2.2.1 Forecast of system parameters 

In this work, the uncertain parameters of interest are the spatial distribution of 

permeability in the caprock layer overlying the CO2 storage formation. As explained above, we 

use data assimilation algorithms to estimate system parameters by considering “augmented” 

state-parameter ensemble [   ]. For the purpose of this study, the spatial distribution of the 

caprock permeability   is simulated geostatistically, using as a two-dimensional, stationary, 

spatially-distributed random process (Marsily, 1986). According to this process, at any given 

location the log-transformed permeability,  =log-k, is assumed to fit to a bimodal PDF, 

characterized by two average values     and     with overall probabilities of occurrence    and 

       , respectively: 

        (             ) (4-12) 

The first value,    , denotes a sealing caprock, whereas the second value,    , denotes a 

permeable, potentially leaky, “weak” area of the caprock (       ). In addition, a local 

variability of caprock   is prescribed by adding a “nugget” Gaussian noise, with zero mean and 

standard deviation equal to   . Figure 4-2 shows a demonstrative example of a bimodal 

cumulative distribution function (CDF) for the caprock permeability, obtained using   = 0.8,   = 

0.2,    = -20,    = -13, and   = 0.5. 
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The spatial variability of caprock   is characterized by two exponential isotropic 

covariance functions, denoted as      (     
     ) and      (     

     ) for sealing caprock 

facies and weak caprock facies, respectively: 

     
(     

     
)     

    ( 
 

   

)    (     ) (4-13) 

The scalar   represents the horizontal distance between any two points;    
 ,    

 , and    ,     

represent the variances and the correlation lengths of the two facies. Note that    
    (    ) 

and    
    (    ). 

 

Figure 4-2. Example bimodal CDF of the caprock permeability obtained using parameters of Table 4-1, 

but probabilities   = 0.8 and   = 0.2. 

Similar to the caprock permeability, the aquifers’ permeability is simulated 

geostatistically, as a three-dimensional, stationary Gaussian process (Marsily, 1986) in a log-

transformed space, characterized by an anisotropic exponential covariance model: 

        (     ) (4-14) 
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  (4-15) 

where:    and   
  are the mean and variance of the aquifer log-transformed permeability  ;   , 

  , and    are the components of the distance vector   along the coordinate directions  ,  , and 

 , respectively;  and   ,   , and    are the corresponding spatial correlation scales. 

Using the geostatistical models described above, it is possible to generate an ensemble of 

    equally likely realizations of the   field. This is denoted as   [         
], where 

   (         ) is a     column vector, and   is the number of cells in the finite-difference 

grid used to discretize the model domain.  The resulting ensemble can be seen as a discrete 

approximation of the prior joint PDF of  .  

In this work, a sequential categorical indicator Kriging simulator (CIKSIM) algorithm 

(Baù, 2012) is used to generate the ensemble of caprock permeability fields. The ensemble of 

aquifer permeability fields is generated using a sequential Gaussian simple Kriging (SKSIM) 

algorithm (Baù and Mayer, 2008). Note that, with this approach, statistical independence 

between the permeability distributions in the aquifers and in the caprock is intrinsically assumed. 

It is worth pointing out that the set of geostatistical parameters of the models (Equations (4-12)-

(4-15)) (               
               

          ) necessary to generate the forecast 

parameter ensemble   are assumed to be known, and truly constitute the prior information   of 

this problem (Equation (4-11)). 

2.2.2 Forecast of system states 

The forecast ensemble   of fluid pressure distributions in the model domain is obtained 

through a stochastic, or Monte Carlo, multiphase flow simulation performed with ECLIPSE 
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(Schlumberger, 2010). In this step, the three-dimensional version of PDE (3-18) is solved 

numerically for each realization    (         ) of the forecast parameter ensemble   in 

order to compute the corresponding forecast state ensemble   [         
], where    (  

       ) is the     vector including the fluid pressure values (Equation (4-10)) at the cells 

of the finite-difference grid. 

The augmented forecast state-parameter matrix is constructed as    [   ] . The size 

of this matrix is       , where    is the number of degrees of freedom used to characterize 

the state-parameter system. In the case of the ES, the state is formed by the system states at all 

   measurement times and by the system parameters, therefore     (    ). In the case of 

the EnKS, the state is formed by the system state at the current assimilation time and by the 

system parameters, therefore      . 

The forecast ensemble    is used to calculate the following       ensemble prior 

covariance matrix:  

   
(      ̅ )(      ̅ )

 

     
 (4-16) 

where  ̅  is the prior ensemble mean obtained as  ̅      ̅   
 and  ̅   

 is a matrix of size 

      , where each element is equal to      . 

2.2.3 Update of system states and parameters 

Following a Bayesian least-square estimate, the state measurements are used to “correct” 

the forecast matrix    and thus obtain updated ensembles of system states and parameters. The 

measurements are assembled into a     vector  . In the investigated problem, it is assumed 

that fluid pressure measurements are made at a number    of locations over    measurement 

times, therefore the size   is equal to      in the case of the ES, and    in the case of the 
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EnKS. Based on the KF, the updated state-parameter matrix    [      ] and the updated 

covariance matrix    [     ] are calculated as follows: 

        (     ) 
(4-17) 

   (    )  (    )       (4-18) 

where:   is a       matrix obtained by perturbing the measurement vector   with a 

Gaussian noise representing unbiased measurement errors,   is a      matrix that maps each 

measurement to its location in the finite difference grid and in time, so that the product     

holds model results at measurement locations and times.   is the     measurement error 

covariance matrix that includes the variance of the measurement values: 

  
   

     
 

(4-19) 

where   [     ] is a matrix including the ensemble of measurement errors, with mean equal 

to zero and prescribed standard deviations.   is the      Kalman Gain matrix, and is 

computed as:  

      
 (    

   )   (4-20) 

Note that, in the context of parameter estimation addressed here, we are interested in the 

update of the spatial distribution of permeability, rather than the fluid pressure distribution within 

the model domain. As a result, the updated ensemble of log-transformed permeability is 

extracted from the update state as      (             ). The mean of the log-

transformed permeability posterior ensemble is computed as   ̅     ̅   
, where  ̅   

 is a 

      vector with all components equal to      . 



132 

2.3 Assessment of ES and EnKS performance 

To evaluate the performance of the ES and the EnKS, “synthetic” fluid-pressure pressure 

data are collected from a “true” reference state     . The reference state is obtained with the 

multiphase flow model (Section 2.1) using a corresponding “true” parameter set     . Doing so 

allows for computing the deviation from the “true” parameter distribution on a cell-by-cell basis 

for both the forecasted and updated parameter ensembles, which quantifies the degree to which 

the forecast is corrected by data assimilation. This correction is quantified by the two associated 

global parameters    (absolute error) and     (average ensemble precision) (Hendricks 

Franssen and Kinzelbach, 2008): 

  ( )  
 

    
∑ ∑|           |

 

   

   

   

 (4-21) 

   ( )  
 

    
∑ ∑|      ̅ |

 

   

   

   

 (4-22) 

where:        is the true value at location  ,      is the value at location   and realization  , and  ̅  is 

the average value of all realizations at location  . The absolute error    measures the deviation 

between the reference parameter and the updated parameter ensemble. On the other hand,     

measures the deviation between the updated ensemble and its mean. Lower values of    

correspond to a model state approaching the reference state; whereas lower values of     

signify reduced uncertainty in the model state. 

For a visual assessment, the maps of the updated ensemble median (50
th

 percentile), maps 

of the 10
th

 and 90
th

 percentile parameter distributions may be plotted and compared to the 

reference      map. Maps of the 10
th

 percentile of   should show the permeability value with a 

90% probability of being exceeded. Therefore, if that value is high, of the order of  =-13, then 



133 

there is a 90% probability that this spot is leaky. On the other hand, maps of the 90
th

 percentile of 

  should show the permeability value with a high probability of not being exceeded. So if the 

value is small, of the order of  =-20, then there is a 90% probability that the caprock is sealing. 

Also, in some situations, a map of the local ensemble spread      ∑ |      ̅ |    ⁄   
    may 

be used to analyze the spatial variability of the updated parameter ensemble. 

3 Numerical Experiments 

This section presents the results of numerical tests performed to analyze the effectiveness 

of the propose methodologies. First, we introduce the model setup, and then we present two 

scenarios in which the ES and the EnKS are applied and, last, we show and discuss the obtained 

results. 

3.1 Model setup 

The methodology is applied to a hypothetical geological system consisting of a 100-m 

thick deep saline aquifer, denoted as “Aquifer 1”, which constitutes the target CO2 storage 

formation, overlain by another 100-m thick aquifer, denoted as “Aquifer 2”. A low permeable 

30-m thick layer, representing the caprock, separates the two aquifers. The bottom of Aquifer 1 

lies at a depth of 1,600 m, whereas the top of Aquifer 2 lies at a depth of 1,370 m. The extension 

of the three-dimensional domain is 4,100 m × 4,100 m × 230 m. Figure 4-3 shows a plan view 

and a cross section of the model domain.  Within the model grid, each formation (Aquifer 1, its 

caprock, and Aquifer 2) is divided vertically into 4 layers for a total of  =12 layers. 
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Figure 4-3. (a) Plan view of Aquifer 2, and (b) Vertical cross section of the domain. Measurement 

locations of Aquifer 2 are indicated as black dots. Fully penetrating injection well is located at the center 

of the domain in Aquifer 1. Note that vertical cross section is not in scale. 

Horizontally, the model domain is uniformly discretized with 100 m × 100 m grid blocks. 

Overall, 20,172 cells (41×41×12) make up the model grid. A single CO2 injection vertical well is 

considered at the center of the model domain and screened within Aquifer 1. The resolution of 

the finite-difference grid in the area surrounding the injection well is increased in order to 

achieve an appropriate size for a well (≈0.5 m). The CO2 injection well is assumed to operate at a 

constant surface volume injection rate of 1,395,575 m
3
/d for an indefinite period of time. For 

demonstrative purposes, we focus on assimilating fluid pressure data collected during the first 

two years of operation. 
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Initially, all formations are saturated only with brine and at hydrostatic pressure 

conditions. To simulate a laterally infinite aquifer system, the pore-volume of boundary cells is 

multiplied by a factor of 1×10
6
. The brine phase is assumed as fresh water to exclude the impact 

of salts on results.  

Van Genuchten’s model (Van Genuchten, 1980) is used to calculate capillary pressure 

and relative permeability of CO2 and brine, using data from Zhou et al. (2009). Figure 4-4 

illustrates    ,    , and     as functions of     obtained using Van Genuchten’s model.  

A porosity of 0.15 is considered for both aquifers and 0.10 for the caprock. 

 

Figure 4-4. (a) Relative permeability curves of CO2 (dashed line) and brine (solid line) and (b) Capillary 

pressure as functions of brine saturation. 

Fluid-pressure data are assumed to be available at the   =49 nodes of a uniform 7×7 

square grid, whose locations are indicated in Figure 4-3. These data are collected at the bottom 

layer of Aquifer 2 every three months, for a total of   =8 measurement times over two years. 

Therefore, in the ES a total of  =392 measurements (49×8) are assimilated into the simulation 

model response simultaneously; whereas in the EnKS only 49 measurements are assimilated at 
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each of the   =8 observation times. Fluid pressure measurements are characterized by an error 

that follows a Gaussian distribution with mean equal to zero and a standard deviation of 0.09 bar. 

In this work, the uncertain parameters of interests consist of the spatial distribution of 

permeability in the caprock separating Aquifer 1 and Aquifer 2. The parameters 

(               
         

) identifying the bimodal geostatistical model used to simulate the 

spatial distribution of   in the caprock (Section 2.2.1) are given in Table 4-1. Note that this 

model is two-dimensional and no variability of the caprock permeability is hypothesized in the 

vertical direction  . 

Table 4-1. Parameters defining the bimodal distribution to generate the log-transformed permeability at 

the caprock and weak areas. 

Category Facies 
Covariance 

Type 

   

(log-m
2
) 

  (/) 
   

(m) 

   

(m) 

   

(log-m
2
) 

1 Caprock Exponential -20 0.99 1,000 1,000 0.5 

2 Weak areas Exponential -13 0.01 100 100 0.5 

  

With respect the permeability   in the Aquifers 1 and 2, two scenarios are considered. In 

the first scenario (Scenario 1), both aquifers are assumed homogeneous and isotropic, with a 

single value of permeability known deterministically and equal to 1×10
-13

 m
2
. In the second 

scenario (Scenario 2), the aquifers’ permeability is uncertain and modeled accordingly with the 

three-dimensional geostatistical process presented in Section 2.2.1 (Equations (4-14)-(4-15)). 

The parameters (     
          ) of this process are given in Table 4-2. The aquifer 

permeability in the vertical direction   is assumed to be 1/10 of the aquifer permeability in the 

horizontal directions   and  .  
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Table 4-2. Parameters defining the log-transformed permeability of the storage formation Aquifer 1 and 2. 

Scenario 
Covariance 

Type 

   

(log-m
2
) 

  
  

(log-m
2
)

2
 

      

(m) 

      

(m) 

      

(m) 

1 - -13 0 - - - 

2 Exponential -13 0. 25 1,000 1,000 500 

 

The prior ensemble of   distributions in the caprock layer is generated using CIKSIM 

(Baù, 2012) for both Scenarios 1 and 2. SKSIM  (Baù and Mayer, 2008) is applied to generate 

the forecast ensemble of permeability fields for Aquifers 1 and 2 in Scenario 2. The size     of 

the ensemble is either 200 or 1,000 depending on the numerical test under consideration, and is 

discussed in the next section. 

Extra realizations of the   spatial distribution in the caprock and in the two aquifers are 

generated to produce a “true” synthetic reference system from which collection of fluid-pressure 

data can be simulated, and with respect to which the performances of the ES and the EnKS can 

be assessed and compared (see Section 2.3). Figure 4-5 shows the spatial distribution of   in the 

caprock for the “true” reference system in both Scenarios 1 and 2. This map reveals the presence 

of two clearly distinct potential leakage pathways, one in proximity of the CO2 injection well and 

one in proximity of the lower right corner of the model domain. Figure 4-6 shows the   fields for 

Aquifer 1 and Aquifer 2 for the “true” reference system in Scenarios 2. 
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Figure 4-5. “True” reference spatial distribution of log-k in the caprock for the Scenarios 1 and 2.  

  

 

Figure 4-6. “True” reference spatial distributions of log-k in (a) Aquifer 1 and (b) Aquifer 2 for Scenario 

2. 

The temporal evolutions of the fluid pressure distribution within the model domain for 

the “true” reference systems in Scenarios 1 and 2 are obtained with two multiphase flow 
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ECLIPSE simulations making use of the corresponding “true” reference   fields presented 

above.  

Figure 4-7a and Figure 4-7b show the spatial distributions of fluid overpressure    

(Equation (4-10)) at  =2 years in Aquifer 2, where measurements are taken, for the reference 

fields of Scenarios 1 and 2, respectively. The    pulse is more spread out and pronounced in 

Scenario 2 than in Scenario 1 as a consequence of the aquifers’ heterogeneity. Values of    in 

excess of 3 bar can be found in Scenario 2, whereas in Scenario 1 the maximum    values are 

around 2.5 bar. In both scenarios larger fluid pressure changes are produced in correspondence 

the leakage area closer of the CO2 injection well (Figure 4-5 and Figure 4-7) indicating that brine 

leakage is taking place. However, low-pressure changes are also noticed in proximity of the 

leakage pathway located on the lower right corner of the model domain (Figure 4-7).  

 

Figure 4-7. Fluid pressure change evolution in the reference field at t= 2 years for: a) Scenario 1 and b) 

Scenario 2. 
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3.2 Model forecast 

In this stage, the forecast ensemble   [         
] of fluid pressure distributions in 

the model domain is computed with a Monte Carlo multiphase flow ECLIPSE (Schlumberger, 

2010) simulation using the generated ensemble   [         
] of realizations of the   field. 

The results of this stochastic simulation are used to assemble the forecast state-parameter matrix 

   [   ] .  

As previously commented, ensemble-based KF algorithms (Equations (4-17)-(4-18)) 

provide an optimal solution to Equation (4-11) under the hypotheses of linear systems with state 

variables conforming to multi-Gaussian joint distributions, and measurement errors unbiased, 

uncorrelated and normal-distributed. Since in the considered case the multiphase flow model 

(Section 2.1) is non-linear, the ES and EnKS solutions can be sub-optimal. This sub-optimality 

can however be reduced if all requirements of the KF other than model linearity are met. It is 

thus suitable to require that: (i) the state and parameter ensembles in the matrix    be Gaussian 

distributed; (ii) all fluid-pressure measurement errors be unbiased and normal distributed (see 

Section 2.2.3). To meet these conditions, adequate transformations may be applied to the 

parameter and the state variables that are not Gaussian.  

Since the caprock permeability is simulated as a bimodal random process, a NST 

algorithm is employed to transform permeability values to fit to a Gaussian PDF. A modified 

NST based on the works of Zhou et al. (2011) and Crestani et al. (2013) is here proposed to 

transform caprock   values. The “local” NST used by Zhou et al. (2011) builds a CDF for each 

model cell and each observation time. While Crestani et al. (2013) show that a “global” NST, 

with a CDF composed by model results at all cells and observation times, may provide better 
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results, since it avoids the corruption of the parameter-state cross-correlation structure occurring 

when a different NST is applied for each cell. 

In this study, we use a global NST for the current observation time when the EnKS is 

applied and a global NST for all the    when ES is applied. Both global NSTs are based on a 

sample CDF defined by all simulated      values of each cell ( =1,2,…, ) and all realizations of 

the ensemble ( =1,2,…,   ). The size of the sample used to build this CDF is     . After 

ordering the      values in ascending order,              
, the corresponding CDF values 

are calculated as    (  )  (  –     ) (    ) (Hahn, 1967) , where  =1,2,…,    .  

For both the ES and the EnKS, after the update of state and parameters, the inverse 

function of the adopted NST has to be applied to the parameter ensemble in order to retrieve the 

spatial distribution of   in the caprock.  

In the considered problem, the state variables of interest, that is, the    (Equation (4-10)) 

distribution within the model domain, require no transformation since a fit analysis indicates that 

this variable is normal-distributed. This fit analysis is based on a linear regression of the dataset 

[  (  )    (
     

   
)] (            ), where    represents fluid-overpressure values 

sampled from Aquifer 2 by stochastic simulation,     is the inverse of the theoretical CDF, 

numerically computed, and    is a function of    that depends on the type of CDF under 

consideration. The fit analysis is conducted by testing different types of CDF. The “goodness” of 

fit for the sampled distribution is assessed based on the accuracy with which the regression line 

approximates the sample, as quantified by the coefficient of determination    and the 

Kolmogorov-Smirnov statistics    (Massey, 1951).Values of    close to 1 and low values of    

are indicators of a good fit. Figure 4-8 shows the results of a fit test for    values sampled at a 

cell of Aquifer 2 at observation time  =0.25 years when   is chosen as a Gaussian CDF. For this 
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example, values of   = 0.975 and   = 0.063 are obtained, indicating Gaussian behavior. One 

must be aware, however, that, whenever possible, transformations of parameters and/or states 

can at most meet conditions of “marginal” Gaussianity for each of the state variables, but do not 

guarantee that states and parameters fit into a multi-Gaussian joint distribution as the KF 

hypotheses would require. Therefore applying transformations to states and parameters does not 

necessarily improve the optimality of the ES and the EnKS solutions. 

 

Figure 4-8. Inverse CDF of the fluid pressure change in one cell of Aquifer 2 at observation time  =0.25 

years, showing its Gaussian distributed behavior. 

Table 4-3 summarizes the numerical tests that are considered in this work. The ES and 

the EnKS are applied both with and without NST of the forecast parameter ensemble  . For both 

Scenarios 1 and 2, four sub-scenarios, termed “a”, “b”, “c”, and “d”, are investigated. 

Preliminary tests are run to evaluate an optimal ensemble size. Based on these tests, a sample 

size    =1,000 is adopted for the ES, whereas a sample size    =200 is used for the EnKS. 

These sizes of     are big enough to have a good representation of the covariance and to 

process the number of measurements that each algorithm uses. 
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Table 4-3. Scenario definition. 

Scenario 
Aquifers 

1 and 2 
Algorithm Scenario 

Aquifers 

1 and 2 
Algorithm     

1-a Homogeneous ES 2-a Heterogeneous ES 

1,000 

1-b Homogeneous ES-NST 2-b Heterogeneous ES-NST 

1-c Homogeneous EnKS 2-c Heterogeneous EnKS 

200 

1-d Homogeneous EnKS-NST 2-d Heterogeneous EnKS-NST 

 

3.3 Model update: Scenario 1 

In Scenario 1, both Aquifers 1 and 2 are considered homogeneous and isotropic. In 

scenarios 1a and 1b, the ES is applied without and with NST (Section 3.2) of the caprock   

values, respectively. In scenarios 1c and 1d, the EnKS is applied without and with NST of the 

caprock   values.  

Figure 4-9 and Figure 4-10 summarize results of these four scenarios. In Figure 4-9 for 

each scenario a-d, the subpanel on the left column shows the maps of the updated median value 

of the caprock  , whereas the subpanel on the right column shows the map of the ensemble 

spread (Section 2.3) at time  =2 years.  
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Figure 4-9. Scenario 1. Spatial distribution of updated caprock log-k at  =2 years (left) and ensemble spread 

maps of caprock log-k at  =2 years (right) for the Scenarios 1a, 1b, 1c, and 1d defined in Table 4-3.  
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Figure 4-9a illustrates results obtained with the ES with no parameter transformation. The 

ES is able to locate the caprock discontinuity in the proximity of the CO2 injection well but 

cannot quantify its permeability value with good accuracy. Figure 4-9b displays results obtained 

by the ES with NST of the caprock  . In this case, no high permeability zone is detected in the 

caprock.  

Figure 4-9c indicates that the EnKS is able to locate the caprock discontinuity in 

proximity of the CO2 injection well. However, it also points out to the existence of other caprock 

discontinuities at the top and top-right corner of the domain that do not truly exist in the 

reference field. Figure 4-9d presents the results of the combined EnKS-NST update. In this case, 

the EnKS with parameter NST locates the leakage area and quantifies its permeability with fairly 

good accuracy. In addition, the combined EnKS-NST is able to identify the leakage area located 

in proximity of the lower-right corner of the domain.    

Figure 4-9 also shows maps of the ensemble spread of the caprock   at  =2 years for 

scenarios 1a, 1b, 1c and 1d. The ES (Figure 4-9a) and the ES with NST (Figure 4-9b) produce 

ensemble spread values between 0.5 and 0.6, and between 0.4 and 1, respectively. Globally, the 

ES seems to perform better than the combined ES-NST, since the caprock discontinuity closer to 

the injection well is detected quite effectively. Interestingly, however, while the map of the 

median caprock   obtained using the ES with NST shows no potential leakage areas, high values 

of the ensemble spread are noticed in proximity of the weak caprock area nearby the injection 

well, which reveals that the ES-NST results are quite uncertain around it.  

Figure 4-9c shows a pronounced spread distribution with values between 0.5 and 1, 

which further highlights the low effectiveness of the EnKS in narrowing the uncertainty on the 

presence of weak caprock areas. Although the EnKS updates the parameter ensemble of caprock 
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  sequentially, over   = 8 assimilation times, it presents the highest ensemble spread values. 

This is expected, since the EnKS would require the parameter statistical distribution to be 

Gaussian, when the actual one is truly bimodal. On the other hand, the combined EnKS-NST in 

Scenario 1d (Figure 4-9d) exhibits a spatial distribution of the ensemble spread that is quite 

contained, with values that are typically between 0.2 and 0.3, but can be as high as 1 over a few 

areas of the domain. These results demonstrate the beneficial effect of the NST when combined 

with the EnKS. 

Figure 4-10 shows results of the 10
th

 percentile of the caprock   on the left column at 

time  =2 years, whereas the results of the 90
th

 percentile of the caprock   are shown on the right 

column, also at time  =2 years. Each row of this figure corresponds to one sub-scenario of 

Scenario 1 (“a”, “b”, “c”, and “d” respectively). The 10
th

 percentile results of ES (Figure 4-10a) 

show an area with a greater value of   equal to -18, that has a high probability of being exceed. 

However, 90
th

 percentile results show that this area has a maximum probable value of  =-16. 

ES-NST results, Figure 4-10b, do not display the detection of any leakage at the 10
th

 

percentile, but the 90
th

 percentile results show that there are two points that cannot be defined as 

sealing formation with a probability of the 90%. 
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Figure 4-10. Scenario 1. Spatial distribution of the 10th percentile maps of caprock log-k at  =2 years (left) 

and 90th percentile maps of caprock log-k at  =2 years (right) for the Scenarios 1a, 1b, 1c, and 1d defined in 

Table 4-3. 
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Figure 4-10c points out that the EnKS locates the caprock discontinuity closer to the CO2 

injection well with high values of   at the 10
th

 percentile. However, it also indicates the presence 

of other discontinuities at the top right corner and spread over the domain that do not exist at the 

reference field. On the other hand, in Figure 4-10d the EnKS-NST, at the 10
th

 percentile, detects 

there is a spot with a 90% of probability of being leaky. This spot corresponds to the caprock 

discontinuity in the proximity of the CO2 injection well. The EnKS-NST results of the 90
th

 

percentile report that there are spots that the code does not reproduce as caprock with a 90% of 

probability. As Figure 4-10d shows, these spots are spread over the entire domain. 

3.4 Model update: Scenario 2 

In Scenario 2 the capabilities of the ES and the EnKS to detect leakage areas of the 

caprock are investigated by assuming Aquifer 1 and Aquifer 2 as heterogeneous. Results from 

Scenarios 2b and 2c are not shown here since ES-NST and EnKS fail in determining log-k 

distributions and detect any of the leakage areas in Scenario 1.  

Figure 4-11 reports results of the ES on the left column and results of the EnKS on the 

right one. Each row of  Figure 4-11 displays a different map of Scenarios 2a and 2d evaluated at 

time  =2 years: map of the median value of the updated ensemble of the caprock  , map of the 

ensemble spread, map of the 10
th

 percentile, and last, the map of the  90
th

 percentile. 
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Figure 4-11. Scenario 2. Spatial distribution of updated caprock log-k maps (first row), ensemble spread maps 

(second row), 10th percentile maps (third row), and 90th percentile maps (fourth row) of caprock log-k at t=2 

years for (a) Scenario 2a (left), and (b) Scenario 2d (right) defined in Table 4-3. 
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Similarly to what observed in Scenario 1a, Figure 4-11a shows that ES is able to locate 

the caprock discontinuity nearby the injection well, but it does not to quantify its   value with 

good accuracy. Figure 4-11b shows that also the combined EnKS-NST can detect the same 

caprock discontinuity, although it identifies two other regions of high permeability that do not 

exist in the reference system of Figure 4-5. Further numerical tests reveal that these inaccuracies 

are due to the particular model setting adopted and the fluid pressure data assimilated here. At 

time  =2 years, the algorithm is not able to distinguish for between fluid pressure changes 

produced by heterogeneities of Aquifer 2 or by caprock leakages. So the algorithm assigns a high 

permeability at that spot of the caprock.  

If the time frame   is increased, the model is able to remove one of the inexistent 

leakages. Figure 4-12 shows the spatial distribution of the median of the caprock   ensemble 

updated with the combined EnKS-NST at time t=2.75 years in Scenario 2d. This map shows that 

one of the non-realistic caprock discontinuities has now disappeared. This outcome is evidence 

that continued data collection is instrumental towards improving the identification of leakage 

areas and removing update inconsistencies. 

Second row of Figure 4-11, with results from updates of the ensemble spread maps of 

caprock   updated at  =2 years for Scenario 2, displays the same tendency observed in Scenario 

1. Scenario 2a produces the lowest confidence results with high ensemble spread values (around 

0.5 and 0.6). Whereas Scenario 2d, in which EnKS-NST is applied, obtains the lowest values of 

the ensemble spread (around 0.2). The comparison of these two maps suggests that the combined 

EnKS-NST is globally more effective than the ES in identifying potential caprock leakage 

pathways. 
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Figure 4-12. Scenario 2d. Spatial distribution of updated caprock log-k at  =2.75 years applying EnKS-

NST. 

Third and fourth row of Figure 4-11 display results of the 10
th

 and 90
th

 percentile of 

caprock   maps respectively for (a) Scenario 2a and (b) Scenario 2d. The 10
th

 percentile   maps 

of both scenarios 2a and 2d are not able to detect any leakage with a 90% of probability. The 90
th

 

percentile caprock   map of Scenario 2a show 90% of probability of sealing formation for the 

entire domain, except on the leakage area closer to the injection well. The 90
th

 percentile caprock 

  map of Scenario 2d presents a significant number of spots with a lower probability than 90% 

of being a sealing spot.   

3.5 Discussion 

In Scenarios 1a (Figure 4-9a and Figure 4-10a) and 2a (Figure 4-11a), the ES is applied 

under the assumption that the distribution of caprock   is Gaussian and no modification is 

applied to the corresponding PDF. As expected, results obtained are not satisfactory and high 

values of   in the caprock are not matched since the hypothesized PDF is bimodal rather than 

normal. In Scenarios 1b (Figure 4-9b and Figure 4-10b) and 2b, Gaussianity is introduced for 

caprock   values by applying a NST before application of the ES. No improvement is observed 
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in these instances, and the performance of the combined ES-NST in detecting potential areas of 

CO2 leakage is lower than the ES. The lower-quality results achieved with the ES and the ES-

NST can be attributed to the fact that both algorithms update the parameter ensemble in a single 

comprehensive data assimilation step, thus not letting the parameter ensemble evolve gradually 

at each of the assimilation time.  

The features of sequential data assimilation are better exploited when using the EnKS. 

The test conducted in Scenarios 1c, 1d, 2c, and 2d indicate that EnKS does not perform as 

effectively as the EnKS-NST. In scenario 1c (Figure 4-9c and Figure 4-10c), the EnKS can 

detect the leakage area nearby the injection well, yet it cannot quantify its permeability value 

with good accuracy. In addition, fictitious leakage zones are identified. In scenario 2c, the 

fictitious leakage spots that are generated increase in number at each update, as well as their 

caprock   value. This results in a deterioration of the update with time and creating numerical 

errors in the multiphase flow code.  

Figure 4-13 reports updates of the median caprock   of Scenario 2c at two different 

times. For  =0.25 years (Figure 4-13a), EnKS detects the closest leakage to the injection well 

and one additional fictitious leakage area as the right top corner. At a later assimilation time  =1 

year (Figure 4-13b) the algorithm detects more leakages than those present in the “true” 

reference field. This figure shows that the updates of caprock   are deteriorated when increasing 

time of assimilation or more information is added.  
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Figure 4-13. Scenario 2c. Spatial distribution of updated caprock log-k at (a)  =0.25 years and (b)  =1 

year applying EnKS. 

In scenarios 1d and 2d, the main leakage area close to the injection well is detected by the 

combined EnKS-NST early on at  =0.5 years (caprock   maps are not shown here). In Scenario 

1d, the combined EnKS-NST is able to detect also the caprock discontinuity nearby the lower-

right corner of the domain at time  =2 years since an observable    reaches this region at this 

time. In Scenario 2d, however, when Aquifers 1 and 2 are considered heterogeneous, the EnKS-

NST cannot detect this leakage spot, whereas it seems to identify fictitious caprock 

discontinuities in other regions of the domain. However, as reported in Figure 4-12, increasing 

the number    of assimilation times seems to improve the precision of the leakage identification 

and effectively removes possibly spurious caprock discontinuities. A similar result was observed 

in Nævdal et al. (2002; 2005).  

Figure 4-14 and Figure 4-15 summarize the performance assessment for the investigated 

data assimilation algorithms in Scenario 1 and Scenario 2 respectively. Both figures show    

(Equation (4-21)) and     (Equation (4-22)) of the caprock   as a function of time. Note that 

  ( ) and    ( ) profiles of ES and ES-NST are formed by only two points: initial time  =0 
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(values of the forecast ensemble) and time  =2 years. In contrast,   ( ) and    ( ) profiles of 

EnKS and EnKS-NST are constituted by 9 points: initial time  =0 and   =8 assimilation times. 

In Figure 4-14a   ( ) of ES increases slightly with time. On the other hand, the    of 

the combined ES-NST decreases with time.    of EnKS increases significantly at each 

assimilation time indicating a global loss of accuracy in the characterization of the caprock  . 

Similar to the ES-NST, the combined EnKS-NST shows an improvement of    over time. The 

EnKS-NST is able to direct the solution to the reference one through the updating process. 

 

Figure 4-14. Performance assessment of Scenario 1: (a)    and (b)     of caprock log-k. See Table 4-3 

for description of Scenarios 1. 

In Figure 4-14b    ( ) profiles of ES and EnKS increase with time. However,     

increase of the EnKS is greater, meaning a deterioration of the updated ensemble spread and a 

loss of confidence on the updated ensemble caprock   values.     of ES-NST has an slight 

improvement of the ensemble spread. In contrast, EnKS-NST shows a significant reduction of 

the     profile, reporting a decrease on the uncertainty of the updated caprock   values.  

In Figure 4-15a none of the   ( ) profiles decreases. However, profile of the EnKS-

NST first increases its value at the first time of assimilation and decreases with the following 
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updates. We point out how   ( ) of the EnKS increases excessively, indicating that updated 

log-k values are further away from the true reference state at each assimilation time.  

 

Figure 4-15. Performance assessment of Scenario 2: (a)    and (b)     of caprock log-k. See Table 4-3 

for description of Scenarios 2. 

The     plot of Scenario 2 in Figure 4-15b follows the same tendency observed in 

Figure 4-14b.     profiles of ES, ES-NST, and EnKS increase. Only     of EnKS-NST 

indicates a decrease of the ensemble spread. 

Scenario 2 presents the challenge that Aquifer 1 and Aquifer 2 are heterogeneous and 

each realization of the ensemble has different permeability fields for both aquifers. Jafarpour and 

McLaughlin (2009) remarked the importance of the geology used for the replicates of the 

ensemble, that in order to obtain a good characterization realistic reproductions of the geology 

are needed. In Scenario 2, the fact that both aquifers are heterogeneous and unknown hinders the 

characterization of the caprock through the data assimilation updating process, as it is observed 

in Section 0. 
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In summary, ES is able to locate the leakage, but not to quantify a good approximation of 

the log-k value at this area. Although ES performs better than ES-NST and EnKS, EnKS-NST 

presents the best performance. EnKS-NST is able to locate leaky areas and to quantify their log-k 

values. Both scenarios 1d and 2d provide better fits to the reference system. These results are in 

accordance to the conclusion reported by Evensen and van Leewen (2000), who found that EnKS 

generally provides a better performance than ES for strongly nonlinear models. 

4 Summary and Conclusions 

The goal of this paper is to identify and locate possible leaky areas of brine and CO2 that 

could affect GCS operations. We use a hypothetical three-dimensional geological setup 

consisting of two deep saline aquifers separated by a sealing formation. Supercritical CO2 is 

injected into the deepest aquifer. The caprock includes areas of low permeability (sealing 

formation) and high permeability (leaky pathways) generated with a sequential indicator Kriging 

simulator, following a bimodal distribution. Taking advantage of the fact that fluid pressure 

travels and propagates faster than CO2 plume, measurements of fluid pressure at the overlying 

aquifer are used to identify and locate these discontinuities. 

A subsurface multiphase flow model and ensemble-based data assimilation algorithms 

are combined to characterize the caprock discontinuities. We compare the capabilities of the ES 

and EnKS algorithms to identify the leaky areas. The assimilated data is fluid pressure change 

measured at several locations of the aquifer above the caprock and taken for a period of time of 

two years and every three months. A NST technique is applied to caprock log-k data to transform 

them into a Gaussian distribution. The ES and EnKS methods are applied to two different 

scenarios: 1) scenario in which permeability of both aquifers are considered known and 
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homogeneous, and 2) scenario in which aquifers’ permeability are considered uncertain and 

heterogeneous.  

Results show that ES-NST performs poorly since results rely on only one update of the 

system, so the fluid pressure pulse advances freely without modifications from the inversion 

procedure. On the other hand, EnKS-NST may constitute an effective tool for inverting pressure 

data in order to detect potential leakage pathway in the geological storage of supercritical CO2, 

since it seems to provide a better performance.  In the case of scenario with heterogeneous 

aquifers, more assimilation times seem to be necessary to improve the detection of caprock 

discontinuities and distinguish them from spurious leakages caused by fluid pressure changes 

from the heterogeneities of the aquifers. 

Successful identification of caprock discontinuities through fluid pressure data 

assimilation is demonstrated, which improves the prediction of carbon storage models. This can 

be used to make decisions regarding injection rates and injection/production schemes and 

strategies to improve CO2 storage and reduce brine/CO2 leakages. 
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