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ABSTRACT

AUTOMATED DEEP LEARNING ARCHITECTURE DESIGN USING DIFFERENTIABLE
ARCHITECTURE SEARCH (DARTS)

Creating neural networks by hand is a slow trial-and-error based process. Designing new archi-
tectures similar to GoogleNet or FractalNets, which use repeated tree-based structures, is highly
likely to be inefficient and sub-optimal because of the large number of possibilities for composing
such structures. Recently, neural architecture search algorithms have been able to automate the
process of architecture design and have often attained state-of-the-art performances on CIFAR-10,
ImageNet and Penn Tree Bank datasets.

Even though the search time has been reduced to tens of GPU hours from tens of thousands of
GPU hours, most search algorithms rely on additional controllers and hypernetworks to generate
architecture encoding or predict weights for sampled architectures. These controllers and hyper-
networks might require optimal structure when deployed on a new task on a new dataset. And
since this is done by hand, the problem of architecture search is not really solved. Differentiable
Architecture Search (DARTS) avoids this problem by using gradient descent methods.

In this work, the DARTS algorithm is studied under various conditions and search hyperpa-
rameters. DARTS is applied to CIFAR-10 to check reproducibility of the original results. It is also
tested in a new setting — on the CheXpert dataset — to discover new architectures and is com-
pared to a baseline DenseNet121 model. The architectures searched using DARTS achieve better

performance on the validation set than the baseline model.
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Chapter 1

Introduction

Deep Learning architectures have been successfully deployed for image classification tasks
achieving state-of-the-art performance [Szegedy et al., 2014, Larsson et al., 2016, Huang et al.,
2016]. However, designing architectures by hand is a tedious process and requires years of expe-
rience. For someone who is a beginner to the Deep Learning field, the architecture designs often
seem unintuitive to study let alone to design them manually.

There is a growing trend in the field to use architectures that employ repeated cell based motifs.
Manually picking one cell architecture out of billions of possibilities is not only highly likely to
be sub-optimal due human error and biases, but also highly inefficient. The problem is even worse
for domains such as time-series and text-based problems, which do not have a repository of well
defined architectures as image-based tasks do. For such tasks, the architecture design is a slow
trial-and-error based procedure. These problems are alleviated by architecture search algorithms.

Various architecture search algorithms, developed in the last 4-5 years, have been able to tackle
large datasets such as ImageNet and Penn Tree Bank and achieved better performances, often
state-of-the-art performance, than most human designed network [Zoph and Le, 2016, Zoph et al.,
2017, Pham et al., 2018, Liu et al., 2017]. But, the recent field has been facing its own set of
challenges. While the search cost has been reduced to tens of GPU hours from fens of thousands
of GPU hours, most algorithms utilize a controller, hypernetwork or surrogate network to generate
architecture encoding, predict performance or weights for sampled architectures. Despite their
success, these controllers and hypernetworks themselves might require optimal architectures when
deployed on new tasks from different domains. This optimization is done manually and thus the
problem of architecture search is not really solved.

Differentiable Architecture Search (DARTS) [Liu et al., 2018] alleviates this problem. They
make the search space continuous which allows it to be represented by parameters and thus be

optimized by gradient descent methods while still keeping the search cost low. The experiments in



this thesis employ DARTS on CheXpert dataset, a new test domain, and study its performance on
the task and its search efficiency. The experiments successfully replicated the original findings on
CIFAR-10 dataset and discovered a cell in under 12 hours which achieved 97.35% test set accuracy.
On CheXpert dataset, the best model obtained 0.8832 4 0.002 mean AUC on the validation set as
compared to 0.8752 by the human-designed baseline model. The results also provide evidence that
the architectures learned on one dataset are transferable to other datasets.

This text is organized in the following chapters. Chapter 2 presents relevant background for
the task of network architecture search. It provides an overview of some recent search algorithms
and describes how they address various components of the search problem along with their per-
formance on various datasets. Chapter 3 discusses DARTS algorithm and provides details about
the subtleties in the algorithm during network search and evaluation. Chapter 4 presents DARTS’s
application on CIFAR-10 dataset to replicate the original study and to explore the effects of various
hyperparameters on network search and evaluation. The experiments and results also demonstrate
DARTS’s successful application on CheXpert dataset. Finally, Chapter 5 concludes by summariz-
ing the results of the experiments and discusses the advantages and disadvantages of the DARTS
algorithm. Directions for future research on the topic and further experiments are also described

in the chapter.



Chapter 2

Background

This chapter presents a very brief overview of the problem of Neural Architecture Search by
breaking it down to its parts. Then it describes some recent works that have advanced the field.
These works present diverse ideas and techniques that work towards solving the efficiency issues
faced by the field to make using such algorithms practical.

There are three major components to the architecture search problem. The first component is
the search space. It describes the structure for architectures which can be represented and searched
for by the algorithm. For example, its capacity to represent architectures may range from sim-
ple fully connected feedforward networks to feedforward convolutional networks, like AlexNet
[Krizhevsky et al., 2012], to convolutional networks with branching, like GoogleNet [Szegedy
et al., 2014] and FractalNets [Larsson et al., 2016]. The second component is the search space
exploration method. Various methods such as reinforcement learning, evolutionary methods and
back propagation have been used for exploring search spaces. The final component of the problem
is the evaluation of architectures in the search space. This is done to relatively rank the architec-
tures to select the optimal one. A variety of techniques such as training the architectures from
scratch, weight prediction and weight reuse have been used for this aspect of the problem. The
remainder of this section describes how the three components mentioned above are tackled by
different algorithms along with other challenges encountered in the task of architecture search.

Neural Architecture Search (NAS) [Zoph and Le, 2016] is based on the idea that network
architectures can be encoded as a sequence of tokens. So, a controller may be trained using rein-
forcement learning to generate such strings. The search space includes feedforward convolutional
networks and may include skip connections, pooling and batch normalization operations. An auto-
regressive recurrent neural network (RNN) controller is utilized to generate encoding for child
architectures which are then created and trained for a fixed number of epochs. The validation

set performance is used as a reward signal to update the controller using the REINFORCE al-



gorithm [Williams, 1992] so that the controller learns to generate better child architectures over
time.

The searched architectures achieved near state-of-the-art performance on CIFAR-10 dataset —
4.47 % test set error with 7.1 M parameters and 3.65 % test set error with the same network but
with more filters on each layer. But, the algorithm is extremely inefficient. They trained 12,800
child networks before selecting the final architecture and the total search process required 22,400
GPU hours. Again the algorithm can search for RNNs and CNNs without branching structures.

Deep Architect [Negrinho and Gordon, 2017] introduced a compositional and modular lan-
guage for representing search spaces. The language is capable of representing tree-based search
spaces for convolutional networks and covers architectures like AlexNet [Krizhevsky et al., 2012],
VGG [Simonyan and Zisserman, 2014] and ResNet [He et al., 2015]. They used Monte Carlo Tree
Search (MCTS) [Browne et al., 2012] and Sequential Model Based Optimization (SMBO) [Hutter
et al., 2011] to explore and search the space. They evaluate the models by training the child archi-
tectures and rank them based on their performance on the validation set. Although the algorithm
requires fewer resources than NAS, it resulted in poorer 11% error on the CIFAR-10 test set.

One of few major drawbacks of NAS [Zoph and Le, 2016] is that even with a large search space
it isn’t capable of representing tree-based architectures which allow computation branching. Also,
exploring large search spaces is computationally expensive. So, to reduce the size of the search
space in an effective way, NASNET [Zoph et al., 2017] following the ideas of inception module
like structures from GoogleNet [Szegedy et al., 2014], used computation units called cells as the
building blocks of the network. The goal of the search is to discover cell(s). The final architecture
is composed by repeatedly stacking the learned cells. This approach solves the above mentioned
issue in the original work — the search space is smaller yet it is capable of representing tree-based
architectures.

During search an RNN controller, which uses proximal policy optimization [Schulman et al.,
2017] for updates, is trained to sample cells. The child architecture is constructed by stacking the

cells one after another. Validation set performance of the child architecture is used as a reward



signal to update the controller. Once the controller is trained, the top performing cell is used to
create the final architecture and it is trained from scratch. The cells in the final architecture share
the same structure but have different weights.

In addition to reduced search space, this approach also has other benefits. First, the cells found
in one setting, on a particular dataset with a certain image size, generalize better to other problems
— other datasets with different input image size — because the complexity of the architecture is no
longer dependent on the depth and the size of input image. For example, in the paper the authors
demonstrate the transferability of the cell learned on CIFAR-10 dataset. The learned cell was also
able to achieve state-of-the-art performance on ImageNet and COCO datasets. Second, the search
is faster due to the reduced search space. Finally, it is easy to modify the architecture design,
by varying the number of cells and filters, as per the performance requirements and computation
demands. But, the algorithm suffers from another major drawback, the search requires tens of
thousands of GPU hours.

Architecture search using Reinforcement Learning with Q-Learning has been studied in Block-
QNN [Zhong et al., 2017]. Their search space is restricted to convolutional networks. They were
able to achieve comparable performance on CIFAR-10 as compared to original NAS but were
poorer than NASNET. The algorithm also suffers from inefficient searching and requires tens of
thousands of GPU hours for search.

Historically, architecture search using genetic methods has been studied as a sub-field of neuro-
evolution [Holland, 1992, Stanley and Miikkulainen, 2002, Miller et al., 1989, Floreano et al., 2008,
Yao and Liu, 1997]. Some of these methods used genetic methods for both exploring the search
space and evaluating the evolved architectures, but struggled at scale. Some recent works [Xie and
Yuille, 2017,Miikkulainen et al., 2017] tried tackling large tasks but weren’t able to get comparable
performances to the best human-designed models.

AmoebaNet [Real et al., 2018] is an image classifier based on evolutionary methods. NASNET
search space, represented as a directed acyclic graph, is explored by applying mutating operations

such as changing parents (incoming data such as latent activation maps) and changing operations



(eg. convolution in place of pooling) within each cell. Tournament selection is used for evalu-
ating the sampled architectures with a key change—after each iteration the oldest architecture is
discarded instead of the worst one. They claim that the concept of aging allows the algorithm
to explore more search space and thus leads to good architectures. Each evolved architecture is
trained for 25 epochs. They demonstrate that Evolution is faster than Reinforcement Learning in
the initial stages of the search, i.e., models perform better, and may be useful in a resource con-
strained environment. Both search methods—reinforcement learning and evolutionary search—
eventually approach the same performance. While their best network is able to achieve 3.34% test
error with 3.2M parameters on the CIFAR-10 dataset, the experiments employed 450 GPUs for 7
days which, again, is tens of thousands of GPU hours.

The primary reason behind the enormous computation cost for these algorithms is that each
sampled architecture is trained from scratch only to throw them away once the validation accuracy
has been used either to update the controller or to rank them. This results in a lot of discarded
learned information and a lot of computation is wasted. The following works have targeted this
problem and have approached it with different and interesting perspectives.

SMASH [Brock et al., 2017] introduced One-Shot model to overcome this problem. They
trained a bandit-based hypernetwork to transform an architecture’s binary encoding to weight
space. In other words, they used the hypernetwork to generate the weights for newly sampled
architectures instead of training them and this reduces the overall search time significantly. The
authors provide empirical evidence that there is a good correlation between the true validation error
and SMASH validation error for 50 randomly sampled architectures.

While the search space is capable of discovering architectures like ResNet [He et al., 2015],
FractalNets [Larsson et al., 2016] and DenseNets [Huang et al., 2016], it is incapable of discovering
wholly new structures by itself. The performance on CIFAR-10 is poorer than NAS with 5.53%
test set error with 4.6 M parameters and 4.03% error with 16M parameters.

A similar, but slightly different, approach along the same line of not training each child archi-

tecture is Progressive NAS [Liu et al., 2017]. The algorithm uses NASNET search space. They use



a surrogate model to predict the performance of sampled cells instead of training them. The cells
in the search space can be imagined to be composed of simpler structures, called blocks, starting at
depth zero. At depth zero, the blocks are simple operations like convolution, pooling, etc.. Blocks
at level ¢ are composed of blocks at one level below, i.e., 7 — 1.

Then, to explore and search through the search space, they construct all possible blocks at level
1 and use them to train a model to predict performance of blocks at level ¢ + 1. The process is
repeated till the cell of desired depth is found. While the correlation between predicted and actual
performance of the cells does not seem to be great, the performance of the final model, PNASNET-
5, is comparable to NASNET and AmoebaNet [Real et al., 2018] on both CIFAR-10 and ImageNet
datasets.

Efficient Architecture Search [Cai et al., 2017] has addressed the problem in a yet another way.
They argue that once a child network is trained, a lot of information has been learned and that these
learned weights should be reused instead of wiping the slate clean and starting again. Their search
space contains feedforward convolutional networks without branching and skip connections. Once
a child network has been trained, they use its current structure to create new architectures using
function preserving Net2Net transformations [Chen et al., 2015]. This can create a deeper or
wider network by reusing the weights of the old architecture. Their approach requires 2 meta-
controller actor networks which use REINFORCE [Williams, 1992] policy update. This method
reduced the search time to approximately 240 GPU hours and their best network obtained 3.44%
test error on CIFAR-10 dataset with 10.7M parameters and additional regularization strategies such
as Cutout [DeVries and Taylor, 2017] and Dropout [Huang et al., 2016].

To overcome the shortcomings of a simple search space, which does not include branching and
skip connections, the authors extend the work by introducing path-level network transformations
[Cai et al., 2018a]. This allows branching to be included in the search space. The search can be
initialized with different tree-cell bases such as DenseNet [Huang et al., 2016] and PyramidNet
[Han et al., 2016]. To tackle the challenge of encoding the architectures with branching they use

tree-structured LSTMs [Tai et al., 2015] for exploring the search space. The controller was trained



on 500 child networks for 20 epochs each. The searched models achieve 2.49% and 2.30% test
error with 5.7M and 14.3M parameters, respectively. The search took approximately 200 GPU
hours.

Another interesting approach to reduce search cost is taken up in Efficient Neural Architecture
Search [Pham et al., 2018]. The central idea of the work is to create an over parameterized network
(one-shot model) which can represent the whole search space in itself and the goal of the search is
to find the optimal subgraph within this large graph. The efficiency comes from the fact that the
weights are shared between all sampled subgraphs. This counter-intuitive idea that sharing weights
could work for all child architectures is supported by observations in multitask learning and trans-
fer learning which suggest that weights learned for one architecture on a particular problem are
reusable in other settings without many changes. [Razavian et al., 2014, Zoph et al., 2017, Luong
et al., 2015].

They define a thorough tree-based search space capable of searching for both convolutional
neural networks (CNNs) and recurrent neural networks (RNNs). In the case of CNNs, there is an
option to search for the full architecture (macro search) or search for cells (micro search). The
search space can represent 1.6 x 10%° and 1.3'! unique architectures for macro and micro search,
respectively, for CNNs and about 101 architectures for RNNs. Their experiments show that micro
search performed better on CIFAR-10 with 3.54% and 2.89% test error with 4.6M parameters for
macro and micro search, respectively. ENAS is 1000 times faster than NAS.

In the next section, we’ll look at a similar algorithm called Differentiable Architecture Search
(DARTYS) in detail. It also uses a One-Shot model as a single over-complete model but uses back
propagation to discover the optimal subgraph. Due to this reason the algorithm does not require
additional controllers or hypernetworks. This is crucial because it is not reasonable to assume
that the hyperparameters, e.g., number of layers and units, for controllers and surrogate networks
mentioned in respective works will work optimally for a new task or dataset. They require tuning

themselves and so the problem becomes recursive.



Chapter 3
Methods

This chapter provides a detailed description of the search and evaluation procedure of Differ-
entiable Architecture Search (DARTS) Algorithm [Liu et al., 2018]. During search, this method
starts out with a single large network, which represents the complete search space, and utilizes
gradient descent to discover the optimal subgraph. The absence of additional hypernetwork or

controller makes the DARTS algorithm appealing.

3.1 DARTS

DARTS, similar to architectures like GoogleNet [Szegedy et al., 2014] and NASNET [Zoph
et al., 2017], considers computation units called cells as the basic building blocks of the architec-
ture. The final architecture is composed of the learned cell. For example, convolutional networks
are constructed by repeatedly placing the cells one after the other till the desired depth is achieved.

This perspective of architecture design offers a few advantages. First, the search space is re-
duced significantly because the cells share structure. There are two types of cells in this algorithm,
as we shall learn later, and the cells of the same type share structure in the final architecture. So the
goal of the search in its essence is to find one cell of each type which performs best on the objective
on the validation set. Second, the reduced search space is also efficient in terms of GPU hours.
Third, cells discovered on one dataset for a particular task have been shown to be transferable to
other datasets and problems. Finally, it is simple to change the capacity of the model by updating
the number of cells and filters according to resource limitations.

Previous works [Brock et al., 2017,Liu et al., 2017,Cai et al., 2017,Cai et al., 2018a,Pham et al.,
2018, Real et al., 2018] consider the search space to be discrete, so the architectures are treated as
black-boxes during search. DARTS, on the other hand, provided a continuous representation of the
architecture space, thereby allowing it to be represented by parameters. This enabled the authors to

explore the search space using gradient descent. Additional hypernetworks, controllers, surrogate



models for performance predictions, etc., are not required for this approach. This viewpoint of
search space exploration makes the algorithm efficient and requires orders of magnitude fewer
resources while still delivering state-of-the-art performance.

The following sections describe these aspects of the algorithm: (1) the search space, (2) op-
timization and approximate architecture gradient, (3) deriving discrete cell architectures, (4) as-
sembling searched architecture, and (5) summary of the complete process. Please note that the
following description has been catered to simplify understanding for DARTS’s application for

CNNs. Please refer the original work for RNNs.

3.1.1 Search Space

Cells are an ordered sequence of B nodes connected to form a directed acyclic graph, where B
is a hyperparameter. Intermediate hidden data representation, for example, feature maps, form the
nodes z) of the graph. Operations such as pooling or convolution represent edges. An operation
07 takes () as input and computes 07 (z(®).

A user may choose various operations such as max pooling, convolution, identity, dilated con-
volution, etc., with varying filter sizes, if applicable, to be the set of candidate operations. At the
beginning of the search, each operation of the cell is a mixed operation, represented by different
colored edges between each pair of nodes in Figure 3.1a'. A mixed operation 6(*7) is composed
of all the candidate operations as visualized in Figure 3.1b. Softmax is applied over all operations
to obtain the output of the mixed operation as shown in equation 3.1, where « are the parame-
ters for the mixed operations. This relaxation of the choice of the operations makes the search
space continuous and, therefore, allows « to be optimized by gradient descent to find the optimal

operations.

(i.9)
69 () = exp(aw ™) o(z) G.1)

0€® Zéeo exp(ag’j))

'Figure used from [Liu et al., 2018].
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Figure 3.1: Cells diagrams represented as a directed acyclic graph: (a) Cell Structure during search where
each mixed operation contains 3 candidate operations. (b) Mixed Operation between a pair of nodes which
contains 3 operations, all of which are applied to the incoming data to compute the output of the operation
as shown in equation 3.1.

Each cell has two inputs, the cell at layer [ takes input from previous two layers, i.e., layers
[l — 1 and [ — 2. The first cell in the network uses the image on both input nodes. The outputs
of intermediate nodes are calculated as shown in the equation 3.2. The outputs of all intermediate
nodes are combined by applying a reduction operation, such as concatenation or addition, to get

the output of the cell.

20 = 37 569 (a0 (3.2)

i<j
There are two variants of the cells —normal and reduction cells. Normal cells differ by reduc-
tion cells in two ways. First, the size of the activation maps remain constant when processed by

normal cells. On the other hand, the reduction cells reduce the size of the output activation maps

11



to half the input size. This is achieved by setting stride as two for the operations adjacent to the
input nodes. Second, the number of output filters also remain constant as input filters in normal
cells while they double for reduction cells.

For search, a large network is created by stacking the normal and reduction cells. This place-
ment of normal and reduction cells is manual. The original work uses normal cells as the major
chunk of the network and puts two reduction cells at 1/3™ and 2/3™ depth of the network, where
depth is another hyperparameter. Additional downsampling operations may be inserted at the be-
ginning of the network to reduce the size of the input image or feature maps.

During search, all normal cells and reduction cells share parameters for their mixed opera-
tions on edges (normar ANd Qeduce, TESpectively. The task of searching is to discover the optimal

parameters for normal and reduction cells

3.1.2 Optimization and Approximate Architecture Gradient

The goal of the architecture search is reduced to learning operations on edges which are rep-
resented as a set of continuous variables o = {a,}. A vector a(®9), of size |O|, parameterizes
the operation mixing weights for a pair of nodes (i, j). A cell is thus encoded by a. y0rmq and
Qreduce together represent the complete encoding of the architecture. When the search terminates,
each mixed operation 6(7) gets replaced by the operation with the maximum weight in a9, i.e.,
00) = argmaz,co (al?)

The task, now, is to learn the architecture weights « and the network weights w for each mixed
operation simultaneously. o* are found by minimizing the validation loss £, (w*, &*) and mini-
mizing the training loss gives the network parameters w*, i.e., w* = argmin, Liqqin(w, a®). It is
interesting to note that both training loss (L,.i,) and validation loss (L,,;) are functions of w and
a.

This is a bi-level optimization problem [Colson et al., 2007]. The architecture parameters o

serve as the upper-level variable and the network parameters w is the lower-level variable.

12



min L, (w*(a), ) (3.3)

s.t. w*(a) = argming Liyqin(w, ) (3.4)

Evaluating the inner optimization is expensive and it restricts the ability to calculate the exact
gradient. To overcome this problem, the following approximation scheme has been proposed by

authors:

Vo Loa(w* (@), ) (3.5)

~ va Eval (U) - £vw£train(wa C(>7 CY) (36)

where w represent the current state of network weights and ¢ is the learning rate of inner optimiza-
tion. To bypass the requirement to solve equation 3.4 completely, the architecture weights o and
network parameters w are updated alternatively. First, « are updated by descending V,, L, (w —
&V wLirain(w, @), ). Then weights w are updated by descending V., Lyqin(w, ). This alterna-
tive update is repeated till the network has been trained to convergence. When ¢ > 0, the gradient
approximation is referred to as Second Order Approximation.

When ¢ = 0, V,, Ly (w,a) gives the gradient for the architecture parameters « under the
assumption that w*(«) is same as w. This strategy will be referred to, in the following chapters, as
First Order Approximation. Please check the original work [Liu et al., 2018] for details about

the optimization.

3.1.3 Deriving Discrete Cell Architecture

During training, the weights of the mixed operations get updated and the operations which
result in lower validation set loss start to win out. Once the network training is complete, the next
task is to derive discrete architecture for the cells by replacing the mixed operations with the most

likely operation in cells.
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This is done by keeping the top-k strongest operations from distinct previous nodes in the cell,

where k is a hyperparameter. Softmax applied to the weights «, for a mixed operation defines
e:vp(a(oi’j))
2sco 6$P(aéi’j)) .

work, used k = 2 in the experiments to control for comparison with NASNET [Zoph et al., 2017],

its strength, and is given by the following expression The authors, in the original
AmoebaNet [Real et al., 2018] and ProgressiveNAS [Liu et al., 2017]. All experiments in this text
also use k = 2.

These discrete cell architectures can be represented as an encoding called a genotype. Geno-
types are a list of (operation, parent_node) tuples for k inputs x B-1 nodes (input and inter-
mediate) and the reduction operation, which calculates the output of the cell, for both normal and
reduction cells. The cells discovered by the authors on CIFAR-10 have been visualized in the Fig-
ure 3.2. The green nodes are the input nodes for the cells and they get their values from the output
of the previous two cells. The blue nodes represent the intermediate nodes, each has K=2 parents.
The output of these nodes are computed by, first, applying the operations, marked on the edges,
to the output of their respective parents and then adding them together. The output of the cell,
the yellow node, is computed by depthwise concatenation of the outputs of the blue intermediate

nodes.

3.1.4 Assembling Final Architecture From Learned Cells

Once the search has completed, the genotypes discovered from search for normal and reduction
cells are used to create a new final architecture. The cells, as described earlier, are stacked manually
to achieve the desired depth. Although the decision to arrange normal and reduction cells is a free
setting, there has been a trend in the literature to use one reduction cell after every N normal cells.
The authors insert a reduction cell at 1/3™ and 2/3" depth of the network. This new network, once
assembled, is trained on the task again with randomly initialized weights. It is easy to modify the
capacity of the model by simply changing the depth of the model. Please refer to the Figure 3.4 to

check the architecture design.
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Figure 3.2: Best cells from original Study for CIFAR-10

3.1.5 Summary of the Search Process
The following set of steps are taken to discover a new architecture for a dataset. The exper-
iments in Chapter 4 use the same steps to search for architectures on CIFAR-10 and CheXpert

dataset.

e Over-parameterized Network: The search process starts by constructing an over parame-
terized network assembled by manually stacking cells, with mixed operations, of two kinds
— normal and reduction cells. Two reduction cells are used and are placed at 1/3 and 2/3"
depth of the network. Other settings are, of course, possible. The cells of same type share

architecture weights o during training.
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e Search: The goal of the search is to reduce mixed operations to the most likely operations
within each cell type. Please refer to Figure 3.3 2 for an overview. The output of the search

is an encoding called a genotype that represents both normal and reduction cells.

(a) (b)

Figure 3.3: Overview of DARTS search: Initially (a) the operations between the edges are unknown. (b)
The search starts with equal weights for all operations in the mixed operation. (c) During search, the optimal
operations start to win out. Finally (d), the strongest operations are used to create discrete cell architectures.

e Assemble and Train Final Architecture: The searched genotype, which encodes both nor-
mal and reduction cell, is used to construct a new architecture of desired depth. Please note
that the depth is usually increased when creating the final architecture when compared to
depth of architectures during search. This is due to higher memory consumption of mixed
operations during search and it forces use of smaller networks. The arrangement of cells is
similar to the first step. The network is trained from scratch on the target dataset. An aux-
iliary classifier may be placed in the network as visualized in the Figure 3.4. This network

structure used in CIFAR-10 evaluation experiments in Section 4.1.3.

2Figulre used from [Liu et al., 2018]
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Chapter 4

Experiments and Results

To test DARTS and its parameters in various settings, during search and evaluation, numerous
experiments are performed and discussed in this chapter. The experiments in the first section are
the replication of the original study on the CIFAR-10 dataset. The following section presents
experiments to test DARTS in a new setting — on CheXpert dataset. The experiments are written
in the Python programming language using the PyTorch deep learning framework [Paszke et al.,

2017] . The original GitHub repository> was forked* to add documentation and new experiments.

4.1 CIFAR-10 Replication

The aim of this set of experiments is to test the effects of various search hyperparameters on
cell performance and to check the reproducibility of the results. We start with discussing the
preprocessing and augmentation applied to the dataset. Searching for new cells with different
search hyperparameters is discussed in the second subsection. Finally, the genotypes discovered

by search for various hyperparameters are evaluated and compared to the original study.

4.1.1 Dataset Preprocessing and Augmentation

The CIFAR-10 dataset contains 50,000 training and 10,000 test labeled images for 10 classes
. The image size is 32 x 32 pixels. The following set of operations are applied on images before
they are processed by the networks.

For training data, the images are upscaled to 40 x 40 by adding zero padding. Then, a patch of
32 x 32 pixels is randomly cropped. The next operation in the chain is random horizontal flipping
which is applied to the 32 x 32 patches from the previous step. Additional regularization in the

form of Cutout [DeVries and Taylor, 2017], which is a hyperparameter, is also used to augment

3https://github.com/quark0/darts

“https://github.com/sharmaskartik/darts_fork
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training data. Finally, the images are mean centered and normalized per channel (not per pixel).
For test data, only mean centering and normalization is applied to the images.

It is important to note that dataloaders in pyforch apply the transformations dynamically, i.e.,
only when the batch is requested. This means that the same training images, for a particular batch
in subsequent epochs, are highly unlikely to be exactly the same because of the randomization
in cropping and flipping operations which are applied on the fly. In other words, the network is

trained with different training images each time.

4.1.2 Search

To discover new normal and reduction cells, DARTS is applied to the CIFAR-10 dataset. We
begin by creating a large network that represents the complete search space. Over-parameterized
cells with mixed operations as edges and B = 7 nodes are created and stacked repeatedly. All o’s
are initialized to a small random value to allow all operations to be chosen with equal probabilities,
allowing more exploration in the initial phases of the training. The normal and reductions cells use
the same Qprmar aNd Qequetion, Tespectively. The output of the cell is generated by applying
depthwise concatenation to the outputs of all intermediate nodes. All operations are stride one, if
applicable, except for the operations adjacent to the input nodes in the reduction cells, which are

stride two. The following operations are used to create the mixed operations in cells:

e 3 x 3 and 5 x 5 Depthwise Separable Convolutions [Chollet, 2017]: This is a variant of
standard convolution operation in which the operation is divided into two stages — depth-
wise convolution stage followed by a pointwise convolution stage. For example, suppose
that the input image has M channels and N filters are desired of 3 x 3 x M size. The first
stage has M filters of 3 x 3 x 1 size, one for each image channel, and the second stage has
N filters of 1 x 1 x M size. So, the overall size of the output activation maps is the same as
it would be for using N filters of 3 x 3 x M size with standard convolution operation. But,
depthwise separable convolutions reduces the number of multiplications and the number of

weights as compared to the standard convolution.
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e 3 x 3 and 5 x 5 Dilated Separable Convolutions [Yu and Koltun, 2015]: This is another
variant of the standard convolution operation in which zero rows and columns are inserted in
the filter. This increases the receptive field of the kernel, but keeps the number of parameters
in the kernel low. For example, a 5 x 5 dilated kernel can be created with 9 parameters (3 x
3), instead of 25 parameters, by introducing zero rows and columns in the second and fourth

positions.

3 x3 Max Pooling

e 3 x 3 Average Pooling

Identity (also called skip-connect)

Zero (no connection)

Following [He et al., 2016], convolution operations are applied in ReL.U-Conv-BatchNorm
order. The separable convolutions are applied twice. Two settings for depth (number of cells) of
the network is tested — 8 and 12. For an 8 layer network, the 3™ and 6™ cells are reduction cells,
while 5™ and 10" cells are reduction cells for the 12 layer network. A 2-dimensional adaptive
average pooling layer is put after all the cells and connects to an output linear layer. Softmax is
applied to the output of the network and cross entropy loss is computed.

The 50,000 training images are split into two equal non-overlapping portions to be used as
training and validation set for all search experiments. Please note that the test set is held out
for this experiment and is used only for evaluation. The data augmentation and preprocessing
described for the training data in Section 4.1.1 is applied to both training and validation data.

The network is initialized with 16 filters at the first cell and the number of filters are doubled
at every reduction cell. At the same time, the activation maps are downsampled to half the size at
the reduction cells. The network is trained on image classification task on the 10 classes for 50
epochs. The training set is randomly sampled with a batch size of 64. For each training batch, the
validation loss, computed on a new validation batch, is used to update architecture parameters o

and training loss is used to update the network parameters w.
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To control for hyperparameters, in this replication study, the following settings are exactly the
same as in the original work. The Adam optimizer [Kingma and Ba, 2014] is used to update
the architecture parameters o’s with § set to (0.5,0.999). The initial learning rate 7, is set to
3 x 10~* and additional weight decay regularization 103 is applied. The network parameters w are
updated using Stochastic Gradient Decent (SGD) with 0.9 momentum and with an initial learning
rate 7, of 0.25 which is decayed to a minimum learning rate of 103 using Cosine Annealing
Schedule [Loshchilov and Hutter, 2016]. Weight decay of 3 x 10~ is used for the SGD optimizer.
The authors do not discuss why two different types of optimizers, Adam and SGD, were used.

Due to resource constraints a sequential comparison was done instead of an exhaustive grid
search; i.e., when one hyperparameter setting is found to work better on an experiment, then the
same setting is used in all subsequent experiments. For example, once it is found that using cutout
regularization makes the validation performance worse, it is not used in subsequent experiments
when testing other hyperparameters. For the same reason, the results are compared on single runs
and do not capture variability.

The first set of search experiments, Genotype 1 and 2, were conducted with layers = 12 and first
order gradient approximation (please refer to Section 3.1.2) and the free variable is cutout regu-
larization with width 16. The validation accuracy and execution time for all search experiments are
summarized in Table 4.1. It can be observed that the model without cutout regularization performs
better on the validation set than the one that uses it. So, as described earlier, cutout is removed

from consideration for the next set of experiments.

Table 4.1: Validation accuracy and execution time for CIFAR-10 search experiments.

Genotype Layers Cutout Gradient Validation Execution Time
ID Approximation Accuracy (GPU hours)
1 12 True First Order 86.15% 11.51
2 12 False First Order 89.22% 10.56
3 12 False  Second Order 87.93% 71.72
4 8 False First Order 88.50% 7.66
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Next, search is performed using Genotype 3 with 12 layers, no cutout regularization and the
gradient is computed using the second order method. In Table 4.1, we find that while Genotype
3 performs better than Genotype 1, its validation accuracy is poorer than Genotype 2. So, First
Order gradient approximation works better than Second Order gradient approximation. Finally,
with Genotype 4 as the normal and reduction cells, the last search experiment is conducted with
8 layers, no cutout and first order approximation. The validation accuracy is second best only to
Genotype 2 and it does better than other two genotypes that use 12 cells during search. As noted
earlier, these experiments are conducted on single runs and may vary with repeated runs.

Also in Table 4.1, in terms of time, in GPU hours’, the search takes to finish, we find that the
second order approximation method takes noticeably more time requiring almost 72 hours to finish.
While Genotype 4 takes the least time to complete the search requiring 7.66 hours to finish. The
best genotypes can be selected based on this information. But, to compare the relative rankings of
the genotypes on validation set during search and the actual performance of their final architectures
on test set, the selection is delayed until all genotypes have been evaluated on the test set. We’ll

look at these experiments in the next section.

4.1.3 Evaluation

All four genotypes searched in the previous section are evaluated in this section for the clas-
sification task on CIFAR-10 dataset. The aim is to check if the genotypes rank in the same order
on test set accuracy during evaluation as they did on validation set during search. The complete
dataset, all 50,000 training and 10,000 test images, are used for the evaluation experiments. Data
preprocessing and augmentation is done exactly as described in Section 4.1.2.

For all experiments in this section the networks are created by stacking 20 cells with 36 filters
at the first cell. The reduction cells are placed at 1/3™ and 2/3™ depth of the network, i.e., the

7™ and 14" cells. An additional auxiliary output layer may be used. It is placed after the second

Son NVIDIA Tesla V100 GPUs
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Table 4.2: Tuning hyperparameters on networks created using Genotype 4

Cutout Auxiliary Output Layer Test Accuracy
( Length = 16) (Weight =0.4)
True True 96.99%
True False 96.32%
False True 96.41%
False False 95.88%

reduction cell, i.e., after 14™ cell in the network. The network structure is visualized in Figure 3.4.
The training begins from scratch with randomly initialized weights.

The networks are trained for 600 epochs. The training set is randomly sampled with a batch
size of 96. Stochastic Gradient Descent with 0.9 momentum is used to optimize the network
parameters w with an initial learning rate 7,, = 0.025. The learning rate is decayed to zero using a
cosine annealing schedule. Additional regularization in the form of weight decay of 3 x 10~* and
drop path probability [Zoph et al., 2017] of 0.2 is used.

The above hyperparameter values are the same as in the original work. There are two addi-
tional hyperparameters — cutout regularization and auxiliary output layer — and they have one
additional hyperparameter each — cutout length and auxiliary weight, respectively. Cutout length
controls the size of the masked patch on the input image, while auxiliary weight controls the con-
tribution of the loss at the auxiliary layer to the total loss. These are tuned in the experiments here
using Genotype 4 (refer to Table 4.1) in a binary fashion — they are set to either on or off.

Four separate networks are trained using Genotype 4 for each combination of cutout and aux-
iliary and their test set accuracy is recorded. If used, the cutout length is set to 16 and auxiliary
weight is 0.4. The results are presented in the Table 4.2. It can be observed that the network with
both cutout and auxiliary set to true gives the highest test set accuracy of 96.99%. When only one
of them is used the test set accuracy is slightly poor. It is worse when neither of them is used. So,

both hyperparameters are set to true in the next set of experiments.
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Next, to check the relative rank of all genotypes, four new networks are created using each
genotype and trained from beginning. For each genotype, Table 4.3 lists the validation set ac-
curacy during search and the test set accuracy from this experiment. We find that, although the
validation accuracy of Genotype 4 is almost 2 points greater than that of Genotype 1, the test ac-
curacy is actually slightly poor. At the same time, Genotype 2 performs best during both search
and evaluation. So, due to a lack of patterns, a thorough investigation involving multiple search
and validation experiments is deemed appropriate to check the correlation of validation and test set
accuracy during search and evaluation, respectively. This will be considered in future work.

Table 4.3: Performance of (a) Genotypes during search (column 2) and (b) their respective networks during
evaluation using cutout: True & auxiliary: True (column 3)

Genotype Validation Accuracy Test Accuracy

(during search) (during evaluation)
1 86.15% 97.28%
2 89.22% 97.35%
3 87.93% 96.94%
4 88.50% 96.99%

We find that Genotype 2, with highest validation accuracy of 89.22% and test set accuracy of
97.35%, gives the best results in both cases. In fact, this seems better than the genotype found in
the original study, using first order gradient approximation, which achieved 97.00% =+ 0.14 test set
accuracy. While on a single run, the performance of Genotype 2 seems better than the performance
of the best cell from the study, the difference isn’t large enough to be meaningful. The cell in the
original study was found using second order gradient approximation and it gets 97.24% + 0.09
accuracy on the test set. But, it is not reasonable to make such claims about comparison without
checking the variability.

Based on its superior performance in comparison to other genotypes, Genotype 2 is selected

for the experiment to check the transferability to the CheXpert dataset. In the remainder of the text,
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Figure 4.1: Cells diagrams for Cifar Genotype (Genotype 2)

Genotype 2 is referred to as Cifar Genotype. The normal and reduction cell of Cifar Genotype are
visualized in Figure 4.1. In comparison to the cells discovered in the original study, the normal
cell discovered here is only slightly different. All intermediate nodes prefer inputs directly from
the input nodes, while the one intermediate node in the original normal cell prefers input from
a different intermediate node. For reduction cells, however, the differences in the structure are

noticeable. The cell from this study prefers average pooling operation while the cell from the
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original study prefers max pooling. The cell diagrams for the original study can be found in

Figure 3.2.

4.2 CheXpert Dataset

CheXpert [Irvin et al., 2019] is an open dataset provided by Stanford University and it contains
224,316 one-channel images of chest radiographs from 65,240 subjects. The dataset is split into
downloadable training and validation sets with 223,414 and 234 images, respectively. But the test
set is withheld for an ongoing competition. Each image has 4 classes labels — 0 for confirmed
negative, -1 for uncertain , 1 for confirmed positive and blank for missing label — for 14 observa-
tions. A variety of experiments such as search and validation on CheXpert using DARTS, baseline

using DenseNet, transferability of Cifar Genotype, etc., are discussed in this section.

4.2.1 Task Overview

Each subject may be associated with multiple studies and each study may have multiple images
in frontal or lateral view. The images are grouped by subject and study. The goal is to generate
average AUC value for five of the 14 observations — Atelectasis, Cardiomegaly, Consolidation,
Edema, Pleural Effusion — by generating probability of the positive class for each study (not
image). This is explained in Section 4.2.3. To do so, the model outputs should represent the proba-
bilities of the positive and negative class for the five observations. Table 4.4 shows the distribution
of the class labels for the five observations. We can see that the dataset is highly skewed towards
the negative class.

The presence of missing and uncertain labels increases the complexity of the task. In all ex-
periments, the missing labels are treated as negative class. To tackle uncertain labels, a number
of strategies are tried and recommended in the paper. Three of the five strategies are used in the
experiments in this chapter and they are briefly discussed next. Please refer to the [Irvin et al.,

2019] to learn more about them.
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Table 4.4: Distribution of Positive, Uncertain and Negative labels for the five tasks

Task Positive Uncertain Negative

Atelectasis 29,333 29,377 128,931
Cardiomegaly 23,002 6,597 158,042
Consolidation 12,730 23,976 150,935

Edema 48,905 11,571 127,165
Pleural Effusion 75,696 9,419 102,526

Uncertain Label Strategies

e U-Ones: This strategy simply replaces the uncertain class labels as positive class labels

before network training. The authors found this strategy to work well for Atelectasis and

Edema tasks.

U-MultiClass: treats uncertain labels as independent class during the network training, i.e.,
the networks are trained on three classes for the image classification task. During evaluation,
the three class output is converted to two class probabilities by applying softmax on the

output for the positive and negative classes.

U-SelfTrained: The final strategy is to, first, train a label predictor on just the positive and
negative labels, while keeping all the samples with uncertain labels withheld. Then, this
model can be utilized to classify the withheld images with uncertain labels to either positive
or negative class. The central intuition behind this strategy is that it doesn’t assume anything
about the uncertain labels and is expected to capture any hidden information. Because this
technique can reduce the number of uncertain labels for images which get classified with
high certainty and thereby improving the probability of better results on the main task, it is

tested in the next section.

Dataset Preprocessing and Augmentation

The following set of operations are applied dynamically before each batch is processed by the

networks. For training images, the input images are resized to 390 x 390 pixels. Then, a random
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cropping operation of size 320 x 320 pixels is applied to the resized images followed by random
flipping. The final operation in the data preprocessing chain is mean centering and normalization
which is applied on the channel.

For test set images, the resizing operation is similar as before, i.e., 390 x 390 pixels. The next
operation is center cropping of size 320 x 320 pixels instead of random cropping. Finally, the

images are mean centered and normalized as before.

4.2.2 Uncertain Label Prediction

The experiments in this section train label predictors to test U-SelfTrained strategy described
in Section 4.2.1. The experiment was conducted for Atelectasis and Cardiomegaly tasks. For each
task, the training set images for only positive and negative labels of respective tasks are used. The
original training set is split into two partitions and 75% of the images are randomly selected to be
the training set and remaining 25% are used as validation set.

A number of convolutional networks were tested in the original study [Irvin et al., 2019]
and the authors achieved highest average AUC for the 5 tasks using DenseNet121. So, because
DenseNetl121 is known to work well with the dataset, it is used for these and the baseline ex-
periments. For each task, Atelectasis and Cardiomegaly, separate networks are trained on binary
classification task on positive and negative class. The experiment is repeated two and three times
for Atelectasis and Cardiomegaly, respectively, with different random seeds. Networks are check-
pointed after every epoch.

Training images are randomly sampled with a batch size of 32 . The Adam optimizer is used
with 3 =(0.9,0.999). The training starts with an initial learning rate of 10~* and is annealed down
to zero using cosine schedule. Weight decay of 3 x 10~ is used for regularization. The results are
presented in the Figure 4.2

For Atelectasis, we can observe that the validation accuracy remains constant throughout both

runs. For Cardiomegaly, there is about 1% increase in validation accuracy after 70 epochs. Al-
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Figure 4.2: Training Plots for Uncertain Label Predictors for (a) Atelectasis and (b) Cardiomegaly tasks.
Validation accuracy for Atelectasis remains constant and there is only a small improvement in Cardiomegaly.

though the experiments were scheduled to run for 100 epochs, judging by the poor performance of
the models the training was halted midway.

I think that there are a couple of reasons behind the poor performance. First, about 81% images,
for Atelectasis, are labeled negative. This is very close to the validation accuracy of about 82.4%.

So it seems that, due to the skew in the dataset, the network has learned to memorize and predict
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the negative class. Another reason, which was discovered later, could be bad hyperparameters,
especially the learning rate schedule. Cosine annealing rate decays the learning late too slowly for
the dataset. The hyperparameter tuning is discussed in Section 4.2.6.

Because of the poor performance of the label predictor, U-MultiLabel strategy is deemed unfit
to replace uncertain labels with the predicted positive or negative labels. For this reason, exper-
iments planned for other tasks were also canceled. So, as recommended by the original work,
U-Ones strategy is used for Atelectasis and Edema while U-MultiClass strategy is used for Car-
diomegaly and Pleural Effusion for all subsequent experiments on the five tasks. Even though
U-SelfTrained is the recommended strategy for Consolidation, due to the failure of this experiment

U-Multiclass is used for Consolidation as well.

4.2.3 Baseline using DenseNet121

Five separate DenseNet121 models are trained for 30 epochs from scratch on each of the five
tasks on image classification task. The training and validation dataset are augmented and prepro-
cessed as described in Section 4.2.1. Training set is randomly sampled with a batch size of 32, the
largest batch that can fit into the GPU °.

Weights of the network are updated using Adam optimizer with 8 = (0.9,0.999). The training
starts with an initial learning rate of 10~* and is decayed by a factor of 0.83 after each epoch.
Cutout regularization is used with cutout length 50. In addition, weight decay 3 x 10~ is also used
to regularize the model.

At the end of each epoch, AUC values are calculated for each task. AUC value is computed for
binary classifiers and probabilities of the positive class are required to do so. For Cardiomegaly,
Consolidation and Pleural Effusion, which use U-MultiClass strategy, one additional step is re-
quired to compute the AUC value. The three class probabilities output by the network for each
sample are converted to a two class probability by applying softmax to the output of the positive

and negative classes.

Titan X GPUs are used for the experiment.
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Table 4.5: Baseline experiment: AUC values for each task using DenseNet

Task AUC

Atelectasis 0.8117
Cardiomegaly 0.8213
Consolidation 0.8816

Edema 0.9263
Pleural Effusion 0.9352
Mean 0.8752

The tasks requires the model to generate AUC values for each study rather than for each sample.
This is achieved by, first, grouping the AUC values for all samples in each unique study. For
example, if a study contains three images, then the AUC values, for all five tasks, for these three
images are collected together, a tensor of 3 x 5 size. Then, mean value is computed for each task
and this 1s considered as the final AUC value for that task for the current study.

Network check-pointing at the end of each epoch allows reuse of the weights that produce the
best AUC values. The model generates 0.8752 mean AUC value. AUC values for each task are
listed in the Table 4.5 and these serve as the baseline for experiments using DARTS architectures.
The same experiment, but using networks discovered from DARTS, are discussed in Section 4.2.6.
A detailed comparison of all evaluation experiments on CheXpert, including DARTS models, is

described in Section 4.2.7.

4.2.4 Structural Changes in DARTS Models

Due to resource constraints, a single DARTS network is trained on all five tasks simultaneously
instead of training five separate models. This decision reduced the training time to 1/5" the time
it takes to train five models and thus allowed a more thorough exploration of the hyperparameter
space and evaluating various DARTS genotypes. Since the dataset contains images that are labeled

positive for multiple tasks a new challenge is encountered.
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The softmax output with cross-entropy loss function maximizes the output of the positive class
while decreasing the outputs of the remaining classes. This is fine when the classification problem
involves only a single task. But, cross-entropy loss with a single softmax layer isn’t designed to
be compatible with five tasks with multiple positive class labels. To overcome this challenge the
single output layer is replaced with five layers for each task. Each task has a corresponding output
layer and by working within the task the output layers don’t interfere with each other. There may
be interference through shared hidden layers though.

Atelectasis and Edema use U-ones strategy where all uncertain labels are replaced by positive
labels. So, because there are only two labels, the output layer has two components. For Car-
diomegaly, Consolidation and Pleural Effusion U-MultiClass is used, i.e., there are three classes.
This means that the output layers for these tasks also have three components each. To generate the
output of the network the output of all five layers are concatenated to create a list of 13 values. If

an auxiliary output layer is used, it has the exact same output layer structure as just described. The
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Figure 4.3: Output Layer for DARTS models on CheXpert dataset.

changes are presented in Figure 4.3.

4.2.5 Cell Search using DARTS

This section applies DARTS to discover a new genotype — normal and reduction cells — on

CheXpert dataset. A network is created with eight over-parameterized cells with mixed operations,
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parameterized by «’s and initialized to same small random value, and B = 7 nodes. a,prmq and
Qreduction are shared between the normal and reductions cells, respectively. Depthwise concatena-
tion is applied to the outputs of all intermediate nodes to attain the output of the cell. Cells in this
search also use the same set of operations as described in Section 4.1.2 and with same behavior.

The network is initialized with 16 filters. Cell placement is similar to the networks created in
CIFAR-10 search with reduction cells placed at 1/3™ and 2/3™ depths, i.e., the 3" and 6™ cells
are reduction cells, while the rest are normal cells. However, this architecture uses five output
layers for CheXpert dataset instead of a single output layer (Figure 4.3). Cross entropy losses are
computed separately for each task and summed up to calculate total loss.

The training set is split into two equal non-overlapping random partitions to serve as training
and validation partitions for the search experiment. With a batch size’ of 25, the augmented and
preprocessed training set images are used to train the network for 50 epochs. While the data
augmentation operations are the same as described in Section 4.2.1, the rescaling size is changed
to 64 x 64 from 390 x 390 pixels and the cropping size is changed to 56 x 56 from 320 x 320 pixels.
This change is forced because larger images cause out-of-memory exception on GPU because of
mixed operations during search. Please note that this change in rescaling and cropping size is for
the search experiment only and not for evaluation experiments.

For each training batch, first, the loss computed on a new validation set batch is used to update
the architecture parameters «. For this purpose, Adam optimizer is used with initial learning rate
3 x 107, B =(0.9,0.999) and weight decay 1073. Then, a different Adam optimizer is used
to optimize model parameters w with same (3’s as before and weight decay of 3 x 10~%. This
update is computed on loss on the current training batch. Cosine annealing learning rate schedule
is initialized with learning rate of 0.025 and it decays the learning rate to 10~ over the course of 50
epochs. Finally, the best setting for cutout regularization and architecture gradient approximation
found during search on CIFAR-10 (Section 4.1.2) are used here. They are set to off and first order

approximation, respectively.

7Set to largest value that fits in NVIDIA Titan X GPU.
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Figure 4.4: Cells for genotype discovered on CheXpert

The search took about 123 GPU hours to finish. Figure 4.4 displays the cell structures for
normal and reduction cells for this search. This genotype is named CheXpert Genotype for future
references. There are striking differences in the cells structures when CheXpert Genotype is com-
pared to the cells of Cifar Genotype. The normal cell of Cifar Genotype consists only of separable
convolution and skip-connect operations, whereas this normal cell contains max pooling and di-
lated convolution operations. The differences in the reduction cell are even more striking. Recall
that the reduction cells from the original study and Cifar Genotype consist mostly of max pool-
ing and average pooling operations, respectively. But, the reduction cell for CheXpert Genotype
contains max pooling, dilated and separable convolutions. The cell diagrams for the original study
and Cifar Genotype can be found in Figure 3.2 and Figure 4.1, respectively. CheXpert Genotype

is evaluated in the next section on the image classification task.
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4.2.6 Genotype Evaluation

This section describes the architectural details of networks created for the CheXpert dataset,
hyperparameter tuning experiments and evaluation of networks created using CheXpert and Cifar
Genotypes. The aim of the experiments is to achieve maximum average AUC value for the five
tasks.

A new architecture, with 18 layers, is created for each evaluation experiment. Following origi-
nal work for ImageNet experiments, which also has a large input image size, downsampling opera-
tions (RELU-Conv-BatchNorm), with stride set to two, are applied to the input image three times.
This scales the input image down to 1/8™ the original size. Then, the cells are stacked repeatedly
till the desired depth is achieved. All the cells except 7% and 14" are normal cells, while these
two are reduction cells. Auxiliary classifier layer is placed just after the second reduction cell. A
2-dimensional average pooling layer follows the cells which is then connected to the output layer.
Note that both normal and auxiliary classifier layers have five separate outputs for each task.

The network is initialized with 64 filters at the first cell and they double at every reduction
cells. At the same time activation maps’ sizes are halved. To calculate AUC on the validation
set, network outputs are processed in same fashion as in Section 4.2.3. The Stochastic Gradient
Descent optimizer [Robbins and Monro, 1951] is employed to update the network weights with
momentum set to 0.9. With a batch size of 32, all 223,414 augmented training set images are
randomly sampled for network training. At the end of each epoch, AUC values are calculated for
each unique study and subject combination in the 234 validation set samples (Section 4.2.3). This
is done for all five tasks and the mean AUC is computed and recorded.

While the next section discusses hyperparameter tuning in detail, some preliminary experi-
ments revealed that 320 x 320 input image size works better than 224 x 224. Also, average
validation AUC for networks trained with Cutout regularization and Auxiliary layer was found to
be better than the models that were trained without them. This observation is consistent with geno-
type evaluation on CIFAR-10 dataset, in Section 4.2.2, which revealed that the network performed

best when both cutout regularization and auxiliary classifier layer were utilized.
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Hyperparameter Tuning

When the search experiments were being implemented and executed, the hyperparameter tun-
ing experiments were started with networks created using Cifar Genotype for better resource uti-
lization. To control for network architectures, all hyperparameter tuning experiments were con-
ducted on Cifar Genotype. Once the best value for a hyperparameter has been identified, it is used
for all subsequent experiments for other hyperparameters. Please note that the experiments were
conducted once and, for some hyperparameter values, the difference in validation set accuracy
may be too small to be significant. The value that results in highest performance is picked to be
the optimal one. These are discussed below and their optimized values are summarized at the end
of the section.

1. Learning Rate, Schedule And Epochs: Learning rate and schedule were the most impor-
tant hyperparameters for CheXpert dataset. It was discovered that the first setting that the exper-
iments were started with, cosine annealing schedule with initial learning rate 10* for 70 epochs,
decayed the learning rate too slowly and the networks were overtraining. On the other hand, decay-
ing learning rate by constant multiplicative factor -y after each epoch improved the mean validation
AUC. This, as mentioned in Section 4.2.2, could be one of the reasons why uncertain label predic-
tors failed to improve their validation set accuracy.

The training and validation plots also indicated that the first 10-15 epochs are very important
during training and that the learning rate and weight decay play a very significant role. Experiments
performed for different values for  are presented in the Table 4.6. The number of epochs were
reduced to 30 because with learning becoming too small the mean AUC approaches its asymptotic

value.

Table 4.6: Optimization results for initial learning rate 79 and decay factor v with step size = 1.

Mo 1074 1074 104 1074 1074 1075 1075
0 0.77 0.79 0.83 0.85 0.87 0.89 0.91

Mean AUC 0.8777 0.8807 0.8808 0.8754 0.8793 0.8738 0.8701
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2. Auxiliary Weight controls the contribution of the loss at auxiliary classifier layer to the total

loss, i.e., L0SSiota1 = LOSSprimary + Gy X L0OSSqugzitiary- The results are listed in Table 4.7.

Table 4.7: Results for optimization experiments for Auxiliary Weight a,,.

Qy 0.3 0.4 0.5 0.6 0.7
Mean AUC 0.8718 0.8808 0.8790 0.8738 0.8735

3. DropPath Probability Regularization: When used, the paths in the network are randomly
dropped with a probability schedule that increases linearly from zero to p at the beginning of each

epoch during training. Please refer to Table 4.8 for results.

Table 4.8: Results for optimization experiments for DropPath Probability.

Probability p 0 0.1 0.2 0.3 0.4
Mean AUC  0.8865 0.8801 0.8791 0.8804 0.8831

4. Weight Decay () is a multiplicative factor applied to the network weights of a model while
computing the loss. It acts as a penalty on weights and prevents them from getting too big. The

results are presented in Table 4.9

Table 4.9: Results for optimization experiments for Weight Decay

A 1072 1073 104 1075 1076
Mean AUC 0.8043 0.8672 0.8808 0.8734 0.8724
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5. Cutout Length: Cutout regularization is a data augmentation technique in which a square
patch of input image, placed randomly, is masked to zero. Cutout length sets the size of the masked

portion in the image. The results are listed in Table 4.10.

Table 4.10: Results for optimization experiments for Cutout Length.

Cutout Length 40 50 60 70 80
Mean AUC 0.8749 0.8865 0.8853 0.8832 0.8818

Figure 4.5 visualizes the validation AUCs for Atelectasis and Edema for weight decay opti-
mization experiment. It is interesting to note that while A = 10~ performed best for Atelectasis, it
is no where near as good on Edema. Same is true for A = 10~% which performs best on Edema but
does poorly on Atelectasis. This trend is also observed for other hyperparameters. This suggests
that five separate models for each task with respectively tuned hyperparameters might be a better
approach to achieve the highest mean AUC. This experiment will be considered in future work.

Optimized values for the hyperparameters:

e Learning Rate=10"*, Schedule=StepLLR with v=0.83 and step size=1 and #Epochs=30
e Auxiliary Weight = 0.4

e DropPath Probability =0

e Weight Decay = 10~*

e Cutout Length = 50

Evaluation of CheXpert Genotype

CheXpert Genotype’s (Section 4.2.5) performance, in terms of mean AUC for five tasks com-
puted on the validation set, is tested by creating a new network using the genotype and is trained

three times from scratch with random seeds. The dataset preprocessing, network structural ar-
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Figure 4.5: Validation AUCs for (a) Atelectasis and (b) Edema tasks for weight decay tuning experiment.

rangements and augmentations and hyperparameters are used as described in Sections 4.2.1 and

4.2.6. The genotype achieves 0.8764 mean AUC with 0.003 standard deviation over three runs.

Transferability of Cifar Genotype

One feature and advantage of DARTS’s search space is that the cells learned on one dataset are

transferable to other datasets. To test this, a network, created using Cifar Genotype, is trained three
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times starting with random weights and random seed each time. This network produces 0.8832 +
0.002 mean AUC for the five tasks over three runs. The networks created using Cifar and CheXpert

Genotype are compared in the next section.

4.27 Comparison with Baseline

This section presents a comparison of the models created using CheXpert and Cifar Geno-
types with respect to the baseline. Please note that both DARTS models are controlled for data
preprocessing and augmentation, network assembly and hyperparameters. The models of each
genotype are trained from scratch with random initial weights and random seed. For the baseline
DenseNet121 model, however, there are a couple of differences. The baseline model does not use

the auxiliary classifier layer and was trained only once.

Table 4.11: CheXpert: Comparison of genotypes vs DenseNet121

DenseNet121 Cifar CheXpert

(Baseline) Genotype Genotype
Atelectasis 0.8117 0.8270 £ 0.007  0.8263 £ 0.008
Cardiomegaly 0.8213 0.8297 £0.011 0.8012 £ 0.007
Consolidation 0.8816 0.9134 £0.001 0.9143 £ 0.003
Edema 0.9263 0.9144 £ 0.007 0.9154 £ 0.004
Pleural Effusion 0.9352 0.9317 £0.002 0.9247 £ 0.003
Mean AUC 0.8752 0.8832 £+ 0.002 0.8764 £ 0.003

The validation set AUC for the five tasks are presented in Table 4.11. Both DARTS models
perform better on Atelectasis and Consolidation in comparison to DenseNet. On the other hand,
DenseNet generates better AUCs for Edema and Pleural Effusion. On Cardiomegaly, DenseNet
has similar performance in comparison to Cifar Genotype. When both genotypes are compared
against each other, the Cifar Genotype wins out over all but only because of its better performance

on Cardiomegaly and Pleural Effusion. The AUC on the other three tasks are roughly the same.
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Please note that a t-test, which would require 15-25 repetition on each model, was not performed

due to time and resource constraints.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

The experiments on CIFAR-10 dataset successfully reproduced the results of the original study.
Search time on the dataset using DARTS ranged from 10.5 to 72 GPU hours depending on which
gradient approximation method was used. The best discovered genotype (Cifar Genotype) obtained
97.35% test set accuracy as compared to 97.24 4+ 0.09 % from the original study . On CheXpert,
the search took about 123 GPU hours to discover CheXpert Genotype which achieved 0.8764 +
0.003 mean AUC on the validation set. In comparison, networks created using Cifar Genotype
got 0.8832 + 0.002 which successfully demonstrates that genotypes learned on one dataset are
transferable to other datasets. Both genotypes perform similar, if not better, than the baseline
DenseNet121 models.

While there are numerous benefits of DARTS algorithm, it is not free from certain caveats.

These are discussed below.

5.1.1 Advantages of DARTS

e Reduced Search Cost: The search on CIFAR-10 took 10.5 and 72 GPU hours® using first
and Second order gradient approximation, respectively. The original work discovered cells
in 1.5 and 4 GPU days’. This difference in search cost can be attributed to larger memory
size and faster computation processing of Tesla V100 which allowed the batch size to be
twice as big for the experiments. This is a more than three order of magnitude reduction in

search cost in comparison to original NAS [Zoph and Le, 2016].

8on NVIDIA Tesla V100 GPUs.

%on NVIDIA GTX 1080Ti GPUs.
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e Performance: In addition to results described in this document, the original paper achieved
2.76 £ 0.09% test error on CIFAR-10 with 3.3M parameters which is better than most hand
designed architectures. They also attained 55.7 test perplexity, then state-of-the-art, on Penn

Treebank (PTB).

e Optimization using back propagation: The search space is made to be continuous by relax-
ing the choice of operations. This allows the architecture parameters to be optimized using
gradient descent. This avoids the need for controllers to generate architecture encoding or
hypernetworks to generate weights or predict validation set performance for child networks.
A major drawback of using controllers and hypernetworks is that they are network archi-
tectures themselves and require optimal architecture design to search good architectures on
new datasets from different domains. The problem of finding architectures thus becomes

recursively unsolvable using algorithms that rely on controllers and hypernetworks.

o Flexibility of Micro Search: Cell based architectures have a neat advantage — to meet
performance and resource requirements, architectures of different capacity can be created by

simply varying the number of cells and filters in the network.

o Transferability of Learned Cells: Another advantage of cell based architectures is that the
cells searched for a task on one dataset are transferable to other tasks on different datasets.
The results in this work are also in line with this observation: the cells learned on CIFAR-10

produced best results on CheXpert.

e Less Reliance on Proxy Metrics: Search algorithms that treat the search space to be discrete
often reduce the number of epochs to 20-25 while training sampled architectures to reduce
the search execution time. DARTS however allows the search networks enough time during
training that the validation accuracy starts to asymptote. But, DARTS still relies on a few

proxy metrics. They are discussed next.
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5.1.2 Drawbacks of DARTS

e Memory Explosion: During search, all operations in the mixed operations are applied on the
activation maps in each cell. This increases the memory footprint and causes GPU out-of-
memory exceptions when large images are used, as discussed in Section 4.2.5. Even though
320 x 320 image size was discovered to work best for CheXpert, the images size had to be

reduced to 56 x 56 to avoid running out of memory.

The same issue also prevents the algorithm from training deeper networks during search.
While the final architectures for evaluation are composed of 20 and 18 cells for CIFAR-10
and CheXpert, respectively, the networks during search contain only 12 and 8 cells. This
means that DARTS’s application on large datasets is likely to be sub-optimal due to reduced
image sizes or training smaller networks during training. A more recent work than DARTS,
Proxyless NAS [Cai et al., 2018b], resolves the memory explosion issue. They introduce
binarization of the mixed operation, which means that only one operation, from the set of
all candidate operations, is applied at the run time. This reduces the memory footprint by an
order of magnitude and thus allows search to be executed on larger networks and datasets.
DARTS, on the other hand, applies all candidate operations on each mixed operation in the

network.

¢ Manual Effort during Search and Training A downside of micro search is that the network
assembly for search and evaluation — downsampling operations at the beginning of the
network to reduce activation map size, placement and quantity of normal and reduction cells,
operations following the cells, etc., — are done manually. While the results are competitive
this leads to a couple of problems. First, by allowing human biases to enter the architecture
design, all possibilities for optimizing the performance are not searched for by the algorithm.
Second, for a novice deep learning practitioner, the process might seem quite complex and

hard to understand. This might discourage them from using such algorithms.
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e For architecture search, the algorithm consists of a lot of hyperparameters such as the number
of nodes in a cell (N), the number of operations retained, for each intermediate node in a cell,
to select a discrete cell architecture (K), the number of cells in the network (depth) and the
gradient approximation method (first order or second order). The study does not provide any
guide on how to tune these parameters and their effects on the results. Having a wide range
of parameters that result in high variability on search performance, as described in Table 4.1,

and with no guide, makes the use of the algorithm tedious.

5.1.3 Drawbacks of the Original Study

o In the original study, the Stochastic Gradient Descent optimizer is used to optimize the net-
work parameters w and the Adam optimizer is used for updating the architecture parameters
«, during search on CIFAR-10 dataset. The study does not explain why this particular setup
was used and does not provide a comparative analysis on both optimizers. So, the optimizers

become yet another hyperparameter during search.

e The original study does not provide the measure of correlation of the performance on the
validation set during search and the performance of the searched genotype on the test set
during evaluation. So, ranking the genotypes requires multiple search and evaluation runs,
for each search hyperparameter, to select the best genotype with confidence. This is a lot of

computation.

5.2 Future Work

While DARTS offers numerous advantages as detailed in the previous section, most architec-
ture search algorithms, including DARTS, lag behind in some key areas. First, the search spaces in
all works described in the Chapter 2 are limited to discovering networks that are based on ideas de-
veloped manually, such as tree-based or fractal based structures. They are not capable of searching
for wholly new architecture styles.

Second, the hyperparameters are not searched. Hyperparameter tuning is a time and resource

consuming process. The tuning experiments in this work took thrice more computations resources
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than the search and evaluation combined. While there are packages available for hyperparameter
tuning, crucial hyperparameters, such as learning rate and weight decay which can heavily influ-
ence network performance, should be a part of the search algorithm. New algorithms should be
developed in the future to resolve these problems.

In terms of experiments, to study the correlation of validation accuracy during search and test
accuracy during evaluation for a genotype and its final architecture, respectively, the experiments in
Section 4.1.2 can be repeated multiple times. Second, because hyperparameter tuning experiments
on CheXpert revealed that each task has its own optimal hyperparameters, five separate models
may be trained for Cifar and CheXpert Genotype instead of using a single model (Section 4.2.6).
This should improve the mean AUC on the validation set. Third, the uncertain label prediction
experiments, in Section 4.2.2, can be retried with the optimal hyperparameters for the five tasks
to check if the results improve. Fourth, ProxylessNAS [Cai et al., 2018b] should allow use of
the full image size and a larger network during search, due to its memory efficiency. So, the
algorithm could be deployed on CheXpert dataset to check its performance relative to DARTS.
Finally, because DARTS is capable of designing RNNs, it may be applied and studied on text or

time-series datasets.
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