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I, THE SAMPLE SIZE PROBLEM

One of the most important statistical problems is estimating the

value of an unknown parameter in a given frequency function<> If a

point estimate is desired and the sample size is not fixed in advance

then the experimenter must decide how large a sample should be taken»

For most problems the cost of an experiment increases with the sample

size^ This increase in cost may be in financial terms or perhaps in

terms of time or effort» On the other hand, a decrease in sample size

may increase the variance of the estimate (loss of precision) or

decrease the "closeness" of the estimate to the true value of the

parameter, i„en, the probability that the estimate is within a given

distance of the true value decreases. Thus the problem is to devise

some procedure for determining the smallest sample size which still

allows the experimenter to obtain an estimate of the parameter with

certain restrictions on precision, closeness, or some other criterion.

An experimenter may prefer to obtain an interval estimate of the

unknown parameter. The desirability of small sample size is the same

as in the point estimation case. For interval estimation a reduction

in sample size will in general increase the width of the interval or

decrease the confidence coefficient. The problem is to obtain the

smallest sample size possible with certain restrictions, determined

by the experimenter, on the width or confidence coefficient of the

interval estimate.



When the experimenter has limited financial resources or time, it

is possible that he might be forced to relax desired restrictions to

reduce sample size. In this case the experimenter must evaluate

relative losses between increased sample size and decreased usefulness

of the results. This indicates that the quality of results in experi

ments is often related to financial resources and time restrictions.

Dantzig [12] in 1940 was the first to show that not all sample

size problems can be solved by a one-step procedure. In particular,

Dantzig's results showed that a one-step procedure cannot be devised

to test "student's" hypothesis such that its power function is inde

pendent of the variance.

For the class of all distributions for which the mean exists,

Bahadur and Savage [3] have shown that a purely sequential sampling

scheme is not sufficient to provide a universal procedure for interval

estimation of a mean with specified width and confidence coefficient.

Also it has been shown by Farrell [14] that for estimation of the

median, within the class of distributions possessing a unique median,

a purely sequential scheme is both necessary and sufficient.

Sequential tests of statistical hypotheses as discussed by Wald

[32], are described as "any statistical test procedure which gives a

specific rule, at any stage of the experiment (at the nth trial for

each integral value of n), for making one of the following three

decisions; (1) accept the hypothesis being tested (null hypothesis),

(2) to reject the null hypothesis, (3) to continue the experiment by

making an additional observation," Thus, after each trial in a

succession of trials one of three decisions is made. Either decision



(1) or (2) is made, terminating the procedure, or (3) is made and

another trial is performed. Some of the work in this field is con

tained in the set of references [2], [7], [11], [22], [23], [24], [25],

[31], and [32],

Even though a sequential procedure may result in the smallest

sample size possible for a given problem, the sequential method does

present certain difficulties. It is not always possible or practical

to sample from a population at an indefinite number of different times

as must be done with this method. The same population may not be

available to take more than a limited number of samples or it may be

too costly to take samples at different times.

For certain problems it is possible to find a one-step procedure.

The advantage of taking only one sample is obvious. Greenwood and

Sandomire [20] have solved one such problem which is amenable to this

type of sampling procedure. Their procedure gives the sample size

required such that a confidence interval can be placed on the standard

deviation of a normal population within lOGp percent of the true

value. Given p and a , their method determines the sample size n

such that

P[| a - a|<pa]>l-a
'  n I —

where

- 2 1/2
a  = [KX. - X) / (n - 1)]
n  1

and the X^ are n independent observations from a normal density

with mean y and variance „ Graybill and Connell [17] give a



one-step procedure to obtain sample sizes such that the ratio of

variances from two independent normal populations can be estimated

within lOOp percent of the true ratio with specified confidence

coefficient. Similarly Epstein [13], using a one-step procedure,

has estimated the mean in the exponential distribution within 10G6

percent of its true value with specified confidence coefficient.

In many common densities it is possible to construct a one-step

procedure to estimate a parameter within a given percent of its true

value.

A two-step sampling procedure for estimation of an unknown

parameter can be defined as a procedure for computing an estimate,

under certain desired restrictions, based on a sample of size n,

where n is determined by a first or preliminary sample. Some

writers use the terms two-stage sampling, two-sampling, or double

sampling to mean the same as two-step sampling.

Blum and Rosenblatt [9] give sufficient conditions for the

existence of a two-step procedure for constructing confidence inter

vals of prescribed widths and confidence coefficients. Let G be a

family of distribution functions and let 0(.) be a real-valued

functional defined on G« It is desired to make an interval estimate

of e(F) based on a sample from F e G. For each positive integer

k  let F denote the product distribution function on Euclidean

k-space induced by F. The corresponding probability measure is

denoted by Pp . Let G(m, Y, «) = CF ^ G ' Y, <5) > m] where
n

in(F, Y» iS) is the smallest positive integer such that for all

n > m(F, Yi <5) we have



Pr, C I 6 (X.,.,,,X ) - e(F)l <6 ] > 1 - o.
r ' n i n — —
n

Using this notation, Blum and Rosenblatt give the following theorem;

Suppose there exists a decreasing sequence [Nj] of Borel

subsets of such that

(i) N = and lim [H.] = 0 for every F e G,

and

(ii) There exists y a) and for each integer j

a positive integer n^ such that

inf Pp [N.] > (1 - a)/(l - y).
F e G(nj,Y,6) k

Then there exists a two-stage procedure with k observations

in the first stage for constructing a confidence interval for

9(F), of length 26 and confidence 1 - a.

A generalization of this theorem is also given for sufficient conditions

which require an n-step procedure» Sufficient conditions for the

existence of a two-step procedure for constructing confidence intervals

of preassigned widths and confidence coefficients using only one obser

vation in the first step are given by Abbott and Rosenblatt [1].. .

The first two-step procedure was given in 1945 by Stein [30] for

estimating the mean y from a normal population. In this procedure

d, m, and a are specified and the sample size n is determined

from a preliminary sample of size m such that

P[|y-y |_<d~^l-a (1.1)



where p is the mean of the combined sample. He also generalizes his

method to confidence regions for means of several normal populations

with equal but unknown variance.

Four years after the publication of Stein's article Ruben [28],

working in ignorance of Stein's [30] results and using a different

type of argument, rediscovered them, Ruben's results were achieved

more simply and directly and have the advantage that the method

generalizes quite naturally to deal with the more difficult problem

of sampling from normal populations with unequal and unknown variances.

Procedures to determine the preliminary sample size in Stein's

procedure have been given by Seelbinder [29] and Moshman [25], These

methods require some estimate of the range for the variance of

the population and are concerned with minimum expected sample size.

In Stein's two-step procedure to estimate the mean of a normal

population the experimenter specifies d and 1 - oi in (1,1) in

advance and the total number of observations is a random variable. In

this case the cost of the experiment is not predetermined and may ex

tend beyond the experimenter's resources. To exercise some control

over cost Wormleighton [36] generalizes Stein's procedure so that a

first sample can be taken to give an estimate of the variance after

which the experimenter can decide on the total number of observations

and the number of units the estimate of the mean may differ from the

true value with a given confidence coefficient. Using Wormleighton's

procedure the experimenter is still able to use all his data in making

the estimate. Stein's results are extended by Chapman [10] to test

hypotheses concerning the ratio of means of two normal populations



with power independent of the unknown variances. To do this. Stein's

procedure is used for each population, under certain restrictions

dependent upon the hypothesized ratio, and a test involving the differ

ence of two student's t-variables is given. Also Chapman uses Stein's

technique to test the hypothesis

H  : b = b
o

in the regression problem where the are independent random varia

bles with unknown and

E(Y.) = a + bx. .
1  1

In this case the power is shown to be a function of (b'-bQ)(x^-X2)/'^5~z',

where b' is the true value of b, Xj^ and x^ are the x values

at the ends of the range which are used in the first step of Stein's

procedure, and z can be chosen to obtain any prescribed power given

b' , This power function is independent of Cy as desired.
i

Healy [21] also extends Stein's results and gives two-step proce

dures to construct simultaneous confidence intervals of prescribed

widths and confidence coefficients for the following! (1) all

normalized linear functions of means, (2) all differences between means,

and (3) means of k independent normal populations with common unknown

variances, A partial generalization of (2) has been given by Ghurye

and Robbins [15], The method estimates the difference between means

from normal populations with different variances. The second sample

size, restricted by a cost constraint, is determined on the basis of

the size of the preliminary sample and estimate of variance. The



variance of the estimate is given and is shown to be asymptotic to the

minimum variance which would be obtained if the variances were, known,

Bechhofer, Dunnett, and Sobel [5] give a two-step procedure to

rank several normal populations according to their means vfhen these

populations have equal but unknown variance. This method is similar

to Stein's, They also extend their solution to the more general case

where the variances are unequal but the ratios are known. For the

case of known variances Bechhofer [4] gives a single-sample multiple

decision procedure,

Weiss [33] gives a two-step procedure for obtaining a confidence

interval of preassigned width and confidence coefficient for quantiles

of a continuous distribution. The only assumption is that the density

function is unimodal,

Graybill [16] gives sufficient conditions for two-step estimation

in certain parametric cases. The sample size is determined such that

the probability is that the width of a confidence interval, with

prescribed confidence coefficient 1 - a, will be less than some

preassigned value d, Graybill's theorem is as follows:

Let the chance variable X be the width of a confidence

interval on a parameter y based on a sample of size n.

Suppose that X depends on n and on an unknown parameter

6(0 may be the parameter y). Suppose also that there exists

a function of X, 0, and n, say g(X; 0, n), such that if

Y = g(X; 0, n), then the distribution of Y does not depend

on any unknown parameters except n. Let f(n) be a function

of n such that



P[Y < f(n)] = g for any 0 < g < 1 ,

Let the solution of the equation g(x; 0, n), = f(n) for

X be x=h(0,n), and suppose the following are true for

X > Os

(a) g(x; 0, n) is raonotonic increasing in x for

every n and 0 ,

(b) h(0, n) is monotonic increasing for every n,

(c) h(0,n) is monotonic decreasing in n for every 0,

(d) z is random variable which is available from step

one of the procedure such that P[t(z) > 0 ] = g

for 0 <g <1, where t(z) is a function of z

which does not depend on any unknown parameters or

on n.

Let d and g be specified in advance. Then if n is such

that the equation

hCt(z), n] < d

is satisfied [t(z) is known] then the following inequality is

true:

P(X ̂  d) > g2

This is a two-step procedure which is applicable for many common distri

butions. In particular, this procedure is applied to the variance of a

normal distribution by Graybill and Morrison [19],

Bimbaum and Healy [8] attacked the sample size problem by giving

rules for sampling in two steps so as to obtain an unbiased estimator
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of a given parameter, having variance equal to, or not exceeding, a

prescribed bound. They assume conditions satisfied by many distribu

tions, It is applied to the means of the binomial, Poisson, and

hypergeometric distributions, scale parameters in general and of the

gamma distribution in particular, the variance of a normal, and a com

ponent of variance. This procedure can be applied to problems of

interval estimation in two-steps by the use of Tchebycheff*s inequality,

Graybill and Connell [18] give a two-step procedure to estimate

the parameter in the uniform density,

f(u) = 1/0 1 o < u _< 0 ,

within d units of the true value with specified confidence coeffi

cient, This procedure is shown to give smaller sample sizes than that

possible with Bimbaum and Healy's method using Tchebycheff' s inequal

ity.

Another type of sample size problem has been solved graphically

by Bimbaum and Zuckerman [6], To determine the smallest sample size

for which the minimum and the maximum of a sample are the 100 6 %

distribution-free tolerance limits at the probability level a, one

has to solve the equation

- (N-l)6^ = 1 - a

given by Wilks [34], The graph presented makes it possible to solve

this equation with sufficient accuracy for almost all useful values

of 8 and a .

The preceding is a resume of the type of work that has been done

in the sample size problems. In this dissertation two estimation
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problems will be solved with two-step procedureso In Chapter III a

two-step procedure will be given to estimate the variance of a normal

distribution within d units with a specified confidence coefficient

using an inequality derived in Chapter II, With minor modifications,

the results of Chapter III can be extended to estimate the mean of the

gamma distribution, A two-step procedure derived by a different type

of argument will be given in Chapter IV to estimate the mean of a

Poisson distribution within d units with a specified confidence

coefficient. The results in both Chapters III and IV are compared

with Bimbaum and Healy's [8] method using Tchebycheff's inequality.

It is anticipated that the techniques used in this dissertation can

be applied to other similar types of problems. Chapter V presents

some of the sample size problems whicn have not yet been solved and

discusses some of the problems which are associated with the solutions

in Chapters III and IV,



II, A TCHEBYCHEFF TYPE INEQUALITY FOR GAMMA

2.1 Introduction

A Tchebycheff type inequality is useful in many situations in

statistics, but for certain densities it may be improved upon. For

example, in Chapter III it's desirable to sharpen the inequality some

what for the gamma density. The purpose of this chapter is to find

an inequality that is an improvement of Tchebycheff's inequality for

a random variable that is distributed as gamma with parameters r and

X.

X(xX)^"^
Let f(x) = e , X > © „

r(r)

= o I ^ ̂  o »

The problem is to prove that

P( I X - r/X I < a r/X ) > 1 - e ^ 2r 1/ /it

for all a > o, r ̂  1/2, and X > o. Let v = Xx/r, r = n/2.

Then the problem is equivalent t© showing that

/ fj^(v) dv > i-e"®'^'' ̂  (2.1)
1-a
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for all a > © and n ̂  1, where f^(,) is the density of a chi-square

divided by n, its degrees of freedom« Also, the inequality in (2.1)

will be compared with

■1+a
f (v) dv > 1 - 2/sr^

r l+a

j .-a1-a

which is Tchebycheff's inequality for this problem. We shall assume

n  given. In the proof we shall use y z to mean yz > ©,

2.2 Solution

By definition

(n/2 ^f  . 1I__ ^(n/2)-l ^-(n/2)v ^ ^ ^
^  r(n/2)

= 0 ,-a> <V^©,

Let

/ n-1
f«(v) = exp [ - I v-l| / n-1/ /T ] ,-»<v <".

2/7

Define h(a) by

r l+a
h(a) = I [ fj^(v)-f2(v) ] dv, a ^ o, n ^ 1.

1-a

Thus (2.1) is true if

h(a) > o for all o < a < <» and n > 1, (2.2)
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From Wilton [35] we obtain

r(m+l) < /2 ir (m+1/2)'"''"^'^^ ^-(m+1/2) ^ ^ ̂

If we let m = n/2 - 1 we find that

(n/2)n/2
e-"/2 >

r(n/2) 2/T
n > 1 (2.3)

Let

gj_(v) = Cfj^(l-v) + f^(l+v) ] /2f2(l+v), V ̂  o

From (2.3) we obtain

g^(©) >1 , n ̂  1 ,

Equation (2,2) is true, which implies (2,1) is true, if there exists

a  such that

— g,(v) /
dv

> ©, o < y

£o,
(2.4)

since

— h(a) g^(a) - 1 , o < a < ~
da ^

and

h(<») = © ,
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We shall show that a exists such that (2.4) is true. By

definition

gl(v) = <
r[(l-v)P"^ t (l+v)P-l ], o < v < 1

r(l+v)P"^ e(^"p)'^ ^ 1 ̂  V < «

where p = n/2, q = /n-1/ /T , r = pP e~P/q T (p) .

Thus

d  e-<iv d

— g- (v) (v)
dv r  dv

= <

[(q+1) - (p+q) V ] (1-v)^ ̂  e^^

P~2 -ov
+ C(q-l) - (p-q)v ] (1+v) e ̂  , o ̂  v < 1

C(q-l) - (p-q) V ] (1+v)^ ̂  e ,  1 ̂  V < "

By definition p > q which implies

(q+1) / (p+q) > (q-1) / (p-q) , n ̂  1 .

Therefore

gi(v) < o , V > (q+1) / (p+c)
dv

(2,5)

To show the existence of such a v^ in (2.4) we have proved (2.5)

that v^ must be less than or equal to (q+1) / (p+q). To find v^

we shall discuss three cases.



16

Case (i) ! 4 < n <

Let

g2(v) = [(1-v) / (1+v)]

g„(v) = e"^P^ [(q-1) - (p-q) v] / C(q+1) - (p+q) v] ,

Hence

^g^(v) -v g2(v) + g3(v) , o < V < (q+1) / (p+q) (2,6)
dv

Differentiating we obtain

i_g2(v) = (p-2) [(1-v) / (1+v)] P-3 [ -2/(1+v)2 ] < o .
dv

and

d

dv

g3(v) = -2p g3(v) - e (p-q) / [(q+D - (p+q) v ]

+ e"^^^(p+q)[(q-l) - (p-q)v] / [(q+1) - (p+q)v]^

-p[(q-l) - (p-q)v] [(q+1) - (p+q)v] - p + q^

= -p(p^ - q^)v^ + 2pq(p-l)v - q^(p-l)

< -p(p^ - q^) [q(p-l) / (p^ - q^)]^

+ 2pq(p-l) [q(p-l) / (p^ - q^)] - q^(p-l)

o

-p + q < o .
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Using (2.5), (2.6), and the knowledge that

g^(o) + £3(0) > 0

and

d

— [ go(v) + g,(v) ] < o, o < V < (q+1) / (p+q) ,
dv

we see that there exists ® (q+D / (p+q) such that (2,U) is

true, implying (2,1) is true for this case.

Case (ii) : 1 n 2

In this case it can be shown that (2.4) is true for v, = 1,
A.

implying (2,1) is true.

Case (iii) : 2 < n < 4

By similar, though tedious, manipulations it can be shown that (2,4)

is true for some in the interval (q/p» (q+D / (p+q)) .

Thus (2,1) is true for all n ̂  1,

2,3 Comparison With Tchebycheff's Inequality

Let the density of v be fj^(.), a chi-square divided by n,

its degrees of freedom. By Tchebycheff's inequality

2
P C I v-1 I < a ] ̂ 1 - 2/a n , (2,7)

In this chapte,r, by (2,1), the corresponding inequality is

P [ 1 v-1 I < a ] > 1 - , (2.8)
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Consider the ratio of e'® 'T^ and 2/a^n, i»eo

k(n, a) = o5a^ne~® ^n-1/ ^ o<a<», l_^n< <» «

If k(n, a) < 1, then (2o8) provides a better (larger) lower bound than

(2o7)o We shall show the values of a and n where k(n, a) < 1 and

hence where the method described in this chapter is better than

Tchebycheff's inequality for the gamma density^ Figure 2^1 shows that

k(n, a) > 1 only in a limited region. For instance k(n, a) < 1 for

n ̂  7 and o < a < » . Also, ,k(n, a) < 1 for o < a < 1.36 and

1 < n < « 0

(2, 5.79)

6 -

5 -

3 -

2 -

(3, 3o95)

1 - (2, lo55) (3, 1.1+6) (4, 1.40) (5, 1.37) (6, 1.37)

1,49

e^-2Tr

T"

4

k(n, a) > 1

1  ̂

6  7

k(n, a) < 1

n

Figure 2.1



Ill, SAMPLE SIZE REQUIRED FOR ESTIMATING

THE VARIANCE WITHIN d UNITS OF THE TRUE VALUE

3.1 Introduction

The problem of estimating the variance (o^) of a normal popula

tion arises in many experimental situations, J. A, Greenwood and

M, M, Sandomire [20] have presented a means of obtaining the sample

size required to estimate the variance of a normal population within

a given per cent of its true value. An investigator may prefer to

estimate the variance within a given number of units. This chapter

will provide the sample size required to' solve that problem.

Assume a preliminary sample of size m; Zj^,Z2,,.. ,z^, is taken

from a normal density with variance c^. The unbiased estimator of

the variance, s^, is computed by the formula = (m-1) Z(z^-z)'^ ,

and d and 1 - a are specified in advance. It is desired to

determine n, on the basis of the preliminary sample, such that

PE l s^ , -a2| <d]>l-a (3.1)
n+1

— 2where s^ , is equal to (1/n) Z (y. - y) and where
n+1 ^ 1

y^, y2»"«*»yn+i ^ random sample of size n+1, from a normal

density with variance o^.
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The tables in section 3.3 provide the sample size ntl| such

that (3.1) is true, for

1-a = .90, .95, ,99

m = 5(5)20(10)50(25)150(50)300(100)500(250)1000.

s^
— = .33, .5, .67, 1(1)5(5)20, 30.
d

The only other known method for solving this problem is given in

[8] which requires the use of Tchebycheff's inequality. It can be

shown that the method presented in this chapter provides a significantly

smaller sample size than does [ 8 ]. For some comparisons with [ 8],

see Table 3,'+.

3.2 Solution

Equation (3,1) may be written as

P[ 1 s^ - I < d] = E { P[(l-a) < v < (1+a) [ n]}
n+1 ' n

(1+a)
dv dn

r  r vx+a;

=  I g(n) I f-,(v)
J  J (1-a)

fwhere E^^ is expectation with respect t© n; a = — . v =
(j2 q2

g(.) is the density of n, and f2^(,) is the density of a

chi-square variable divided by n, its degrees of freedom. We shall

restrict n such that n ̂  1. By definition

n

^(v) . IIL^ - 1) ̂ -(n/2)v _ Q < V < 00

n2
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= 0 ,-«<v_<© ,

In Chapter II it was shewn that

■ 1+a! r 1+a/i+a, r xta
f,(v) dv > I f2(v) dv , for all a > 0, n ̂  1.

1-a J 1-a

where

/ n-1 - I v-1 1
/It

2 /T
f2(v) = ^e ^-oo <v< '»

and

/
1+a a

f (V) dv = 1 - e-
1-a ■

If a were known, we might let n be equal to

2TT log a

2
a

+ 1.

since in that case we would have

/1+a
f2(v) dv

1-a

= 1-a .

Because a is assumed unknown let

n = IT log^a k^s*^ + 1 (3.2)
2  ™
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R"

+ 1

where k is some constant, independent of a, such that

It a

f-(v) dv > =1-0,

and where

/IT j log a I
R = k

m-1

/T log(l/a)

m-1

and

u

(m-1) s
m̂

The density of u is chi-square with m-1 degrees of freedom; that is

1  (m-1) _ 1
^  ̂ 2 -(l/2)ufgCu) = u e » u > o

m-1 m-1

But

a(n-l)
1/2

u =

Thus
,(m-l)/2

g(n) =
mtl m-1

2  2 „
2  R r

(n-1)
(m-l)/4 - 1 -(a/2R)(n-l)1/2

m-1
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|/n
= E <il-e

n

^ n-l
/T ®

,(in-l)/2

1 -
mtl m-1 (m

2  2 2
2  R *

ij:(n-l)
(m-l)/'+ - 1

a(n-l)^'^^ a(n-l)^'^^

2R /V
dn

= 1
m-

1  f
Vf

1 mzl . / o

(m-l)/2 - 1 -(1/2R+1/ /7)w

2  2 rlm-I
2  R

dw

= 1 -
m-1 m-1 m-1

2R /It

2  -(m-l)
= 1 - [1 + log(l/oi)k] 2

(m-1)

If we set

(m-1)
k =

2

.(m-1)
(l/o) - 1

log (1/a)
(3.3)

we have

-1+a

"n \ I ^2^^^ ^ = 1 - a.
1-a
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Thus if we substitute k in Equation (3.3) into Equation (3.2) we get

IT

n+1 = —

4

2

.. . .(m-l) .
(1/a) - 1

2

(m-1)^ — + 2 (3.4)

We have proved that if the sample size n+1, given in Equation (3,4)

is used for the second step sample, the following inequality is

satisfied;

PC I s - 0^ I <d] > 1-a.
n+1

The expected sample size in Equation (3,4) is

E (n+1) = —
n  4

(1/ct)^'""^^ - 1
2

(m-l)(m+l) + 2

d^
C3,5-)

3,3 Sample Size Tables

The sample size n+1 as given in Equation (3,4) insures that

2  2(3,1) is true. To find the sample size, compute s^^/d, where s^

is available from the preliminary sample of the procedure and d is the

desired allowable deviation from the true variance, and use Table 3,1 ,

3,2 , or 3,3 depending on the appropriate 1-a level (m is the

2
sample size on which s is computed in the preliminary sample),

m

2
To find n+1 for values of s /d other than those in Tables

m

4  23,1 , 3,2 , and 3,3 use Table 3,4 as follows. Compute •

multiply by the entry in Table 3,4 which corresponds to the appropriate

1-a level and m, and add 2,
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Table 3.5.shows some comparisons between the sample size given

in and the sample size obtained in [8]. The quantities tabled

are

h(m,a) = = —a(m-3)(m-5)C(l/a)^''^™ ^ - 1]^ ; m > 6
n'-l 8

where n+1 is given in (3.i+) and n' is the sample size given in

C 8]. It is noted that

E(n-l)
h(m,a) =

E(n'-l)

It can be demonstrated that

h(m,a) < h(m,a^)
'  ' o

< lim h(m,a )
o

= 2TTe"^

^ ,85

jjj_5 (m-l)/2
where = . This shows that the sample size using

m-1

(3,'+) is never more than 85% of the sample size obtained by using the

method in [8].
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TABLE 3.1

Sample Size n+1 such that P[ | s - | '^ d] > 1-a
n+1

1-0 = .90

m

5

10

15

20

30

40

50

75

100

125

150

200

250

300

400

500

750

1000

m

5

10

15

20

30

40

50

75

100

125

150

200

250

300

400

500

750

1000

OC OC «.
5

,6
7

,
1

1,3
3
2 3

8,4
0

86,
61

73,
82

60,
75

29.5
01

10,7
32

87,0
35

5,0
9

9,0
9

14,
74

93,
03

52,
22

85,5
11

65.7
52

45,
4

7.8
3

84,
21

53,
52

43,
30

14.
59

81,2
12

23,
4

OC OC «11,
57

23,
32

27,
93

13,
78

193,
96

4,1
3

6,8
9

10,
78

65,
12

06,
63

80,
25

178,
07

4,0
4

6,6
9

10,
42

67,
02

91,
53

77.
06

98,0
71

3,9
9

6,5
7

12,
01

13.
02

94,
43

75,
24

08,6
61

3,9
3

34,
6

9,9
5

37,
91

63,
33

29,
27

85,1
61

3.9
0

6,3
6

9,8
3

54,
91

78,
23

71,
81

159,
07

3,8
8

23,
6

67,
9

82,
91

85,
23

51,
17

157,
59

6,2
9

17,
9

81,
91

93,
23

70,
72

156,
62

6,2
6

56,
9

40,
91

51,
23

81,
07

155,
42

42,
6

16,
9

 ,8
1

96 10,
23

78,
96

154,
70

6,2
2

9,5
9

19,
81

29,
13

69,
65

154,
23

12,
6

65,
9

DC OC I—
•

08,
13

93,
96

46,3
51

6,2
0

45,
9

18,
81

37,
13

69,
24

153,
29

81,
6

25,
9

18,
75

31,
64

30.
96

38,2
51

81,
6

9,5
1

37,
81

95,
13

39,
86

152.
59

 4̂ 5 10 15 02 30

94
2

17
41

778
5

132
22

305
32

528
80

45
6

71
2

248
2

19
36

063
11

955
52

67
3

58
6

233
7

525
'^

934
3

020
12

34
3

53
5

531
2

_08
4

853
4

191
98

51
3

19
4

85
91440
4

828
7

016
71

30
2

17
4

187
9

, 42
24 750
8

168
91

29
5

46
0

183
3

221
4

732
6

164
82

28
6

44
5

577
1

299
3

709
5

069
51

18
2

43
8

747
1

929
3

389
6

157
09

27
9

43
4

137
1

298
3

691
7

265
51

77
2

43
2

172
0

868
3

478
6

564
51

27
5

42
8

707
1

838
3

128
6

443
51

27
3

42
6

996
1

028
3

678
9

152
73

27
3

42
5

496
1

808
3

867
6

152
26

27
2

42
3

168
7

397
3

247
6

761
51

17
2

42
2

168
3

.37
84

672
6

151
32

07
2

42
1

876
1

377
3

607
6

580
51

27
0

42
0

167
5

376
7

596
6

260
51
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TABLE 3o2

Sample Size n+1 such that P[ | | < d] > 1-a

1-a = o95

m

^m
\d.

OC
OC

9

,5

CO
e

1, 1,33 2 3

5 18.49 39,87 70,00 153,49 269,98 607,98 1365,47
10 8.19 16,22 27,55 58.91 102,68 229,67 514,26

15 6,78 12.97 21,71 45,91 79,68 177,66 397,25

20 6.24 11.74 19,49 40,96 70,92 157,87 352,70
30 5.78 10,69 17.61 36,78 63,53 141,15 315,09

40 5,58 10,23 16.78 34,94 60,26 133,76 298,46
50 5,47 9,97 16.32 33,90 58,42 129,60 289,10

75 5.33 9,64 15,73 32,58 56,10 124,35 277,29

100 5.26 9,49 15,45 31,96 55,00 121,84 271,65

125 5,22 9,39 15,28 31,59 54,35 120,38 268,35

150 5.19 9,33 15,17 31,35 53,92 119,41 266,19
200 5,16 9,26 15,04 31,05 53,40 118,23 263,52

250 5,14 9,22 14,96 30,88 53,08 117,52 261,93

300 5.13 9.19 14,91 30,76

Cn

9

00
00 117,06 260,89

400 5,11 9,15 14,84 30,62 52,62 116,48 259,58

500 5.10 9.13 14,80 30,53 52,47 116,13 258,81

750 5,09 9,10 14,75 30,42 52,27 115,68 257,78

1000 5,08 9,09 14,73 30,36 52,17 115,45 257,27

in

Sm
4 5 10 15 20

5 2426 3789 15152 34089 60601

10 913 1425 5694 12809 22769

15 705 1100 4394 9883 17569

20 625 976 3899 8770 15589

30 559 872 3481 7829 13917

40 529 826 3296 7414 13178

50 512 800 3192 7180 12762

75 491 767 3061 6884 12237

100 481 751 2998 6743 11987

125 476 742 2962 6661 11840

150 472 736 2937 6607 11744

200 467 728 2908 6540 11625

250 464 724 2890 6500 11555

300 462 721 2879 6474 11508

400 460 718 2864 6442 11450

500 459 715 2855 6422 11416

750 457 713 2844 6397 11370

1000 456 711 2838 6384 11348
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TABLE 3.3

I  2 2
Sample Size n+1 such that ~ ̂

l-c* = o99

< d] > 1-a

m

OC OC o 0,
5

,6
7
11,3

3
2

5112.
84

256,
46

458,
92

1019
,871802
,524073
,51

0
124,
0152,
5392.
74

204,
14

359,
57

810,
58

5
116,
52

OC OC ni OC61,
85

135,
34

237,
86

535,
36

0
2

14,
01

29,
58

51,
52

112,
32

197,
14

443,
28

3
012,
0525,
0743,
43

94,
30165,
27

371,
21

1+
0

11,
2323,
1940,
05

86,
76

151,
94

341,
06

5
010,
7822,
16

38,
19

82,
64

144,
64

324,
56

5
710,
22

20,
88

35,
9177,
55

135,
64

304,
21

00
1

9,9
6

20,
29

34,
8475,
17

131,
43

294,
69

52
1

9,8
1

49,
91

34,
22

73,
79129,
00

81,9
82

~150
9,7

2
19,

72
33,

82

>
o

OC o 127,
40

285,
58

00
2

9,6
0

19,
4433,
3371,
79125,
45

281.
17

25
0

9,5
2

19,
2833,
03

71,
14124,
30

278,
57

30
0

o -
p
0
0 19,
17

32,
8470,
71

123,
55

276,
86

40
0

9,4
2

19,
0432,
60

70,
18

122,
61

274.
73

50
0

9,3
9

18,
9632,
46

69,
86

122,
05

273,
47

05
7

43,
9

18,
86

32,
2769,
45

121,
31

08,1
72

100
0

9,3
2

18,
8132,
18

69,
24

120,
94

270,
97

10 15

5 9162,90 16288 25449 101790 229025

10 1821,30 3236 5056 20217 45485

15 1202,07 2135 3336 13336 30004

20 994,88 1767 2760 11034 24824

30 832,73 1479 2310 9232 20770

40 764,89 1358 2121 8479 19074

50 727,76 1292 2018 8066 18146

75 681,98 1211 1891 7557 17002

100 660,57 1173 1831 7319 16466

125 648,16 1151 1797 7182 16156

150 640,07 1136 1774 7092 15954

200 630,14 1119 1747 6981 15706

250 624,29 1108 1731 6916 15559

300 620,44 1101 1720 6874 15463

400 615,65 1093 1707 6820 15343

500 612,82 1088 1699 6789 15273

750 609,06 1081 1688 6747 15179

1000 607,19 1078 1683 6726 15132
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TABLE 3.^

Entries are (■n'/4)[(l/a)^/^®"^^-l]^(m-l)^

10 15 20 50 100 200 500 1000

58.75 28,^+0 23.35 21.33 18.31 17.45 17,05 16.81 16.73
151.50 56.92 43.92 38.97 31.90 29.96 29.06 28.53 28.36

1017.88 202.14 133.34 110.32 80.64 73.17 69.79 67,87 67.24

TABLE 3.5

Comparison of sample size: n+1 given in (2.3), n' given in [1]

n-1 E(n-l)
h(m,a) =

m \o

10

100

1000

,01 .05 .10

.437

.344

.334

.615

,704

.705

.613

,820

.832



IVo SAMPLE SIZE REQUIRED TO ESTIMATE THE PARAMETER
IN THE POISSON DISTRIBUTION

4^01 Introduction

In this chapter some two-step procedures will be presented to estimate

the Poisson Parameter within d units with a specified confidence coeffi

cient » The Poisson density is

_A,x
e  A

P(xjA) = , X = 0,1,2,, (4,1)
x!

Let m, d, and 1-e be specified in advance and let x^^,X2,,,, (X^^^ be

a preliminary sample of size m from P(,}A), The problem is to deter

mine n, the size of a second sample y^^»y2• • lyn P(,jA), based

on the values of the first sample, as m, d, and 1-e, such that

PrClA - A I < d] > 1 - e (4,2)
'  n '

where A^^ is some function of the second sample. If n were fixed the

maximum likelihood estimator of A is y^ i "the mean of the second sample<

Since n is a random variable the maximum likelihood estimator of A

depends on the density of n. In this chapter n is not defined in

explicit terms and the actual maximum likelihood estimator cannot easily

be found. Theorem 4,1 shows that

A„ = 7 (4,3)
n  'n
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is an unbiased estimator of X. Equation (4-.3) will be used as the

A

definition of throughout the remainder of this chapter. Theorem

4.1 assumes n is a proper random variable whose range consists of

all the positive integers. Later in this chapter n will be a contin

uous random variable, but by letting the second sample size be the next

largest integer for fractional values of n, a new random variable is

defined replacing n. In this case, equation (4.2) will be true if it

Was true for n.

Although yjj is computed on the basis of a randotn sample of size

n, the unconditional distribution of the random variable yj^ is

independent of n. For convenience the subscript n has been added.

Theorem 4.1; Let second sample y^,y2»• •»»yjj

from P(«;A). Then

= A

Proof;

By definition

Thus

E(An) = E(7„)

E(An) = I n)]

= E„CA]

= A

It is further noted that y^ given the value of n is the

traditional estimator for A, It is the minimum variance unbiased

estimator and also is a squared error consistent estimator of A,
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Let

tj_(n;X,d) = PrC I ̂  ~ ^ I < d I n]

[nA+nd] e'^^^CnA)^
I

v=[nA-nd]+l v! (4-,4)

where [k] means the integral value of k„ The density of ny^j given

n  is P(,jnA), ioSo , ny^ given n is Poisson with parameter nA.

Thus

PrC|^ " ̂ 1 < d] = ^n^^^n^n " ̂ 1 < d | n]}

= Ejj{Pr[ I ny - nA | < nd | n]}

= E^{t^(n;A,d)}, (4,5)

In Section 2 we shall prove certain monotonic properties of t^ and a

generalization of t^^ which will lead to a determination of n, the

size of the second sample.

Sections 3, 4, 5 and 6 present various methods for determining n.

The procedure in Section 3 is the easiest to use and demonstrates the

basic technique employed in this chapter to determine n. Section 4 gives

a second solution which leads to a smaller sample size n but the confi

dence coefficient is not predetermined. This difficulty is removed by a

similar solution in Section 5, This solution allows for a preassigned

confidence coefficient and reduces sample size compared with the solu

tion in Section 3 but is more difficult to use. The basic solution is
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further generalized in Section 5 but the confidence coefficient is not

preassigned.

In Section 8 some comparisons of the results of Sections 3 and 5 are

made with the solution to this problem which can be obtained by Bimbaum

and Healy's [8] method using Tchebycheff's inequality« These comparisons

show a significant reduction in sample size.

To apply the results of this chapter some exar^ples are given in

Section 9 along with sample size graphs for procedures developed in

Sections 3 and 5, Also Section 7 shows how to use this chapter's

methods to estimate the mean in a Poisson stochastic process.

In the remainder of this chapter the following definitions for z,

X I and H will be used:
m*

z = mx^ ,
m *

where k is the mean of the preliminary sample, and
m

-CZ. vV
z  e (cz)

H(ciz) = Z (^+.5)
v=o vl

Also,

a 'V' b

will mean that a and b have the same sign,

4'.2 Mcnotonic Properties

Equation (4-.4) can be rewritten as

[nX+nd]
t,(n;A,d) = Z P(v;nX) (4,7)

v=CnA-nd]tl
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where P(vjnX) is defined by (4,1). Consider

h^(v) = P(v+l;nX)/P(v;nX)

= nX/(v+l)

/

>1, V < nX - 1

<1, V > nX - lo

Thus, for integral values of v, the function PCvjnX) is inonotonic

increasing in v for v>CnX] and is monotonic decreasing for v>[nX],

Thus the mode of P(,;nX) is [nX], If nX is an integer, then

P(,jnX) is bimodal with modes at nX-1 and nX since

e'^^CnX)"^**^
P(nX-l;nX) =

Let

where

(nX-D!

e'"^(nX)"^

(nX)!

P(nXjnX) ,

nX+nd-,5

tCnjXjd) = I f(vjnX)dv (4.8)
nX-nd+,5

f(v;X) = (l-v+[v])P(Cv];X)+(v-Cv])P(Cv]+l;X)

and it is assumed that nd is greater than or equal to 2, Othen^ise

let t be zero. The following two theorems show the relationship of
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t(n;X,d) to tj^(n;X,d) and some monotonic properties of t essential

to the determination of n.

Theorem 1.2; Let t^ and t be defined by (4,7) and (4,8) respectively.

Then

Ej^{t(njA,d)} > 1 - e

implies equation (4,2) is true, i.e.,

Pr[|X„ - X I < d] > 1 - e.

Proof! From (4,8) we observe that f(vjnX) consists of straight lines

joining the values of P(v;nX) at adjacent integral values of v.

Therefore

■k+1r'I  f(vjnX)dv = ,5{P(l<;;nX)+P()<:+l;nX)}
J k

for integral values of k. Also,

r[nX-nd+1,5]
I  f(v;nX)dv = ,5{CnX-nd+l,5]-(nX-nd+,5)}{f(nX-nd+,5inX)

nX-ndt,5

+P([nX-nd+1,5]jnX)},

Thus, if [nX-nd+1.5] = [nX-nd+1], then

r[nX-nd+l.S]
I  f(v;nX)dv<,5(,5){f(nX-ndt,5 jnX)tP([nX-nd+l]jnX)}

J  nX-nd+,5

25{f([nX-nd+1]jnX)tP([nX-nd+l]^nX)}

= .5 P(CnX-nd+.l] }nX),
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since f(vjnX) is monotonic increasing for v less than [nX]., Otherwise

[nX-nd+lo5] = CnX-nd+2], which implies

X[nX-nd+lo5] ^[nX-nd+2]
I  f(v;nX)dv < | f(v;nX)dv
J  nX-nd+o5 J [nX-nd+1]

< ,5{P([nX-nd+2];nX)+P([nX-nd+l];nX)}

Similarly,, if [nX+nd-o5] = [nX+nd], then

/nX+nd-o 5
f(v;nX)dv = o5{(nX+nd-o5)-[nX+nd-<,5]}{P(CnXtnd-,5];nX)

[nX+nd-o 5]

+f(nX+nd-«5;nX)}

< «5(„5){P([nX+nd];nX)+f(nX+nd-,5|nX)}

_< „25{P(CnX+nd] ;nX )tf ([nX+nd] ;nX)}

=  «5 P([nX+nd];nX),

since f(v;nX) is monotonic decreasing for v greater than [nX]o In

the case where CnX+nd-=„5] = [nX+nd-l], then

nX+nd-o5 ^[nX-nd]/II AtIiQ* 0 O LH j
f(v;nX)dv ̂  | f(v;nX)dv

[nX+nd-o5] J [nX+nd-l]

<  o 5{P([nX+nd-l];nX)+P([nX+nd];nX)}<
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Therefore /nXtnd-, 5
f(v;nX)dv

nX-nd+.5

[nX+nd]
<  Z P(v;nX)

v=[nX-nd]+l

tj^(n;X,d)<.

Hence

PrClx^ - X 1 < d] = E^{tj_(njX,d)}

> Ej^{t(n;X,d)},

If nd is less than 2,then the inequality is still true which completes

the proof0

Theorem ^o3; Let t(n;X,d) be defined by Then assuming nd ̂  2,

we have

(a) > 0
ad

(c) > 0 0
an

Proof;

(a) Differentiating t with respect to d we obtain

—I. = nf(nX+nd-o5;nX)+nf(nX-nd+«5;nX)
ad

> 0 0
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(b) Also

^n,\+nd-,5
.~ = nf(nX+nd-,5;nl)-nf(nX-nd+,5;nX)+/ ^(v;nX)dv,

J nX-nd+.S ̂

where

I^CvinX) = (l-v+Cv])|P([v];nX)+(v-[v])^(Cv]tljnX).

But

^(vinX) = -n)P(vinX)

= nP(v-l;nX)-nP(v;nX),

Thus

^(vinX)=n(l-v+[v])P(Cv]-l;nX)+n{-(l-v+Cv])+(v-Cv])}P([v];nX)
-n(v^[v])P([v]+linX)

=n{(l-vt[v])P([v]-ljnX)+(v-Cv])P(Cv];nX)}-n{(l-v+Cv])P([v];nX)

+<v-[v])P([v]+l{nX)}

=nf(v-l;nX)-nf(vjnX),

Therefore

^ nX+nd".5
^ = nf(nX+nd-.5;nX)-nf(nX-nd+.5;nX)+n/ {f(v-l;nX)-f(v;nX)}dv
^  J nX-nd+,5

^nX-nd+o5 ^nX+nd-,5
= -nf(nX-nd+,5jnX)+n| f(vinX)dv -n/ f(vjnX)dv+nf(nX+nd-.5;nX)

J nX-nd-.5 J nX+nd-1.5

< 0

since fCvjnX) is monotonic increasing for v in the interval
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(nX-nd-,5, nX~nd+„5) and is monotonic decreasing in the interval

(nX+nd-lo5, nX+nd~.5)o

(c) Finally, differentiating with respect to n we have

^nX+nd-«5
—H. = (X+d)f (nX+nd-,5 jnX)-(X-d)f(nX-ndt„5 ;nX)+j _Lf(v;nX)dv,

J nX-nd+,5 9ii

where

^(v;nX) = Xf(v-l;nX)-Xf(v;nX)
Sn

since n appears everywhere X does in f(v;nX) and from part (b)

^(v;nX) = nf(v-l;nX)-nf(v;nX)„

Thus

/nX-nd+o5 ^nX+nd-.5
f(v;nX)dv-X| f(v;nX)dv,

nX-nd-o5 J nX+nd-1,5

Let

L = nX ,

D = nd ,

and

_  — f ° ̂
S  = + (L;^D)f(L+D+,5;L)+ L _ f(v;L)dv
1 " " J L+D-1+,5

Therefore

S_^ + S

Let s^ = L+_D+ o5-[Lj^D + c5]<



40

For convenience the subscript on s will be deleted below. Hence

= +(L+D){(l-s)P([L+D+.5];L)+sP(CL+Dt,5]+liL)}

TL{,5(l-s)f(L+p-l+,5;L)+,5(l-s)P(CL+^DT.5]iL)

+ ,5sP([L+D~„ 5]jL)+.5sf(LtD+. 5;L)}

= +,5L(l-s)^P([LH^D+,5]-l;L)

+ {(Lj^D)(l-s)-„5L(l-s)s-,5L-<,5Ls(l-s)}P([L+D+.5];L)

+{(L+D)s-o5Ls^}P(CL+D+,5]+1;L)o

But

Hence

CL+D+.5]

P([L+D+,5]-l;L) = P([L+D?,5];L)

(L^D+o5-s)
-P(CL+D+,5];L),

= +{-(L+D+.5-s)(1-s)^+2(L+D)(1-s)-2Ls(1-s)-L}P(CL+D+,5];L)

+{2(L+p)s-Ls2}P(CL+D+.5]+l;L)

(2S^)L/P(CL+D+„5]+1;L)

= +{(-2s+s2)L+(1-s2)D+(s+,5)(1-s)2}(l+D+.5+1-s)

+{(2s-s^)L+2sD}L
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LD+(o5+s+s^)L+(1-s2)d2

+{l+s~(3+l)s^+2s^}D+(s+.5)(l-s)^(l-s+.5)

= LD+{.5+s(l-s)}Lt(l-s)(l+s)D2+s(l-s)D

+(l-s)(l+s-2s^)D+(l-s)^(s+o5){l-(s+,5)}

> LD+o25L-d2".,25

= (L-D)D+c25(L-l)

> 0

Therefore

i:! S. + S
9n —

> 0

which completes the proofs

4o3 One Point Solution

Let m, d, a and 3 be specified in advance and observe a pre

liminary sample x^,X2 ,o a . Define nj_ such that

t(ni;X,d) = 1 - o (4«9)
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(note Figure 4.1).

t(njX.d)

Figure 4,1

Determine the value n of the random variable, the size of the second

sample, such that

tCnjcsT ;d) = 1 - a (4,10)
Tu

where t is defined by (4,8), H by (4,6), and C is defined by

H(ciz) = 6 . (4,11)

From (4.9) and (4,10) we have

t(nj^jX,d) = t(njcxJn,d)< (4,12)

Thus, using Theorem 4.3 (c) and (b), we obtain

Pr(n > nj^) = PrCt(n;X,d) > t(nj^;X,d)]

PrCt(niX,d) > t(n;cxjj|,d)]

= Pr(X < cxj„) . (4.13)

Theorem 4.4; Let H(c;z) be defined as in (4,6). Then

Pr(X < ox ) = 1 - H(c;z).
m
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Proof; The random variable mx^ is distributed as Poisson with mean

m. Therefore

Pr(Xj^ > = 1 - S ,

where is defined such that

v=0 v!

This implies that

Pr(l < A') = 1-0

where X' is defined by

,.-mX'

v=0 v!
E™ e""*^ (iqXT = e .

Hence

Pr(X < ox ) = 1 - Z e "'^^mCmcXj^))
®  Tr= n V t

= 1 - H(ciz),

since X' and 0 are in a one to one correspondence with each other,

thus completing the proof.

Therefore, from (4,11), (4,13) and Theorem 4.4, we obtain

Pr(n > nj^) = 1 - H(c;z)

=1-3 (4.14)
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From Theorem 4.3 (c) we obtain

jo , 0 < n < nj_
t(n;A,d) ̂  /

t(n^;A,d), n ̂

which is depicted by the shaded area in Figure 4.1. Thus, by choosing

n  as defined in (4.10), we obtain

Ejj[t(n;A,d)] > 0 • Pr(0 < n < n^^) + t(n2;X,d)Pr(n ̂  n^)

= (1 - a)(l - e),

by (4.9) and (4.14), From Theorem 4.2 we conclude that

Pr[ I An - ̂  1 < d] > 1 - e ,

where

1 - e = (1 - a)(l - e).

Graphs are given in Section 9 to find n for various values of

m, d, and 1 - e .

4.4 Two Point Solution;

Let m, d, a, 3, and 5 be preassigned and let ' • •''m

be a preliminary sample. Define nj^,n2 such that

(a) t(niiA,d) = yd - a)
d.l6)

(b) t(n2;A,d) = 1 - a

where y is calculated by (4.19) (note Figure 4.2).
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1

Yd

t(njA,d)

n. n.

(1+.17)

Figure M-.2

Define <=1122 such that

(a) H(c2;z) = (1 - 6)B

(b) H(c2iz) = 6.

Determine the value n of the random variable, the size of the second

sample, such that

t(niC2Xj^,d) = 1 - a (1+.I8)

and calculate y using

t(n;cj^x^,d) = y(l - a). (4.19)

Proceeding as in Section 3 and using (4,16), (4,18) and (4,19) we have

t(n^;A,d) = t(n;c£Xj^,d), i=l,2,

Thus, by Theorem 4,3(c) and (b), we obtain

Pr(n > n^^) = Pr[t(n;X,d) > t(ni;X,d)]

= PrCt(n;X,d) > t(n;c£X^,d)]

= Pr(X < CiX ), i=l,2
1 m '
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Hence, by (4,17) and Theorem 4,4, we have

PrCn > nj^) = 1 - (1 - 6 )B (4.20)

and

Pr(n > n«) =1-6

which implies that

Pr(ni < n < n«) = l-(l-6)6-(l-6)

= 66 (4,21)

From Theorem 4,3 (c) we obtain

0  < n _< nj_
t(n;X,d) ̂  < t(nj^;X,d), nj_ < n < n2

t(n2;A,,d), n > n2

This is represented by the shaded portion in Figure 4,2, Thus by (4,16),

(4,20) and (4,21) we conclude that

Ejj[t(njX,d)] ̂  0 . Pr(0 < n ̂  n^) + t(n2;X,d)Pr(n2 < n _< n2)

+ t(n2iX,d)Pr(n > n2)

= y(1 - oi)66 + (1 - a)(l - 6)

= (1 - a)(l - 6 + y66) .

By Theorem 4,2 this implies

where

Er,C|Xj^ - X I < d] > 1 - e

1 - e = (1 - a)(l - 6 + Y<S3) ,
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The value of n is determined by (4.18) and it is observed that this

would result in the same value as determined in the one point solution

assuming a and B are the same. The value of 1 - e, the confidence

coefficient, is increased however. The amount of increase depends upon

Y  which is calculated after the value of n is determined. Thus the

confidencS coefficient is not preassigned as would normally be desired.

Section 5 shows one way to avoid this difficulty.

i+,5 Two Point Solution with Preassigned Confidence Coefficient

Specify m, d, and a, 6, y» ^ such that (1 - a)(l - 8 + v5S)

equals some prescribed value, say 1 - e. Let x^,X2,c.. ,Xju be a

preliminary sample. Define as in (4.16) and ^1*^2

(4.17). Determine the values n',n" of two random variables such

that

(a) t(n';cj^^,d) = y(1 - a)

(b) t(n"iC2Xjjj,d) = (1 - a).

From (4,16) and (4,22) we have

(a) t(n, ;A,d) = t(n'ic^jT ,d)
m

(b) t(n2;A,d) = t(n" jCjxJn.d)

Thus, by Theorem 4,3(c) and (b) we obtain

(a) Pr(n' > nj_) = PrCt(n';A,d) > t(nj_;A,d)]

= Pr[t(n'jA,d) > t(n';cj_Xjjj,d)]

(4,22)

(4,23)
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= Pr,(X <

(b) Pp(n" > Hg) = Pr,[t(n" ;X,d) > t(n2iA,d)]

= Pr,[t(n";X,d) > t(n"jCo5r ,d)]
^ m

Pr(X < coX ) .
m

Hence, by (4,17) and Theorem 4,4, we have

(a) Pr.Cn' > n^) = 1 - (1 - 6)0
(4.24)

(b) Pr(n" > nj) = 1 - 6.

Now choose the value n of the random variable, the size of the second

sample, such that

n = max(n', h"), (4.25)

Therefore, by (4,24), we have

(a) Pr(n > n^^) ̂  Pr;(n' > n^^)

= 1 - (1 - 6 )0 (4.26)

(b) Pr(n > nj) > P)?(n" > nj)

= 1-6.

Define n^ and n^ such that

(a) Pr(n > n^) = 1 - (1 - 6 )6

(b) Pr(n > n,) = 1-6,

(4.27)
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which implies that

Pr(n^ n < ng) = 66 (4.28)

comparing (4.26) and (4.27) it is seen that

(a) n2^ > n^

(b) n- > n, ,

which, by (4,16) and Theorem 4.3(c), implies

(a) t(n^;X,d) > t(n^jX,d)

= y(1 - a)
(4.29)

(b) t(n2iX,d) > t(n2;X,d)

= 1 - o.

From Theorem 4.3(c) we have

0 < n ̂  n^^

t(n;X,d) > / t(n^;X,d), n^ < n < n!^

t(n2iX,d), n > nj .

Thus, by (4.27b), (4.28), and (4.29), we obtain

Ejj[t(n;X,d)] ̂  0 • Pr(0 < n _< n^) + t(n^;X,d)Pr(n^ "2^

+ t(n2jX,d)Pr(n > nj)

> y(1 - a)6e t (1 - o)(l - 6)
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=  (1 - oi)(l - 6 t y6$)

= 1 - E.

Thus, by Theorem 4'.2, if n is determined by ('+.25) we conclude

that

PrC|A^ - X I < d] > 1 - e,

a predetermined confidence coefficient.

This solution is more difficult to work with but yields smaller

second sample sizes. In Section 9 graphs are given for various values

of m, d, jTjjj and 1 - e . Thus, in using the graphs an experimenter

does not have to specify a, 6» Y <5.

M-.e The k Point Solution

Let m, d, k, 6^ (i=l,2,,,. ,k), and Yj_ 1"® specified in

advance and define C£(i=l,2,,..,k) such that

H(c^;z) = e^, i=l,2,,,,,k. (4,30)

Determine the value n of the random variable, the size of the second

sample, by (a), and Yi(i=2,3,.., ,k) such that

(a) t(n;c-,>r ,d) = Yi
^  ̂ (4.31)

(b) t(n^^i^uj ~ "^i^ 1—2,3,#e.,k8

Further define n^(i=l,2,...,k) such that

t(nj^;A,d) = Yi » i=l,2,..,,k (4.32)

(note Figure 4.3).
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t(n;X,d)

'2 - _

♦ n

n, n. n,

Figure 4,3

From (4,31) and (4,32) it is seen that

t(n^;X,d) = t(n;c^Xjjj,d), i=l,2,,,.,k

Thus, by Theorem 4,3(c) and (b), we obtain

Pi;(n > n^) = PrCt(njX,d) > t(n^;X,d)]

PrCt(n;X,d) > t(n;c^Xjjj,d)]

= Pr(X < c.jT ), i=l,2,.o,J
1 m ' * *

Hence, by (4,30) and Theorem 4.4j we have

Pr(n > n^) = 1 - i=l,2,.,,,k

which implies that

Pr('^£ ^ ̂  '^i+l^ ~ ^i+l "" ^i* i'—l»2,,,,,k (4,33)
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where we define

"k+1 = "

and

'ktl = 1 .

From Theorem 4.3(c) it is seen that

/  0 , 0<n_fn2

t(nj_;A,d) , nj_ < n < ng

t(n;X,d) > J t(n2;^,d) , n^ < n < ng

^t(nj^;X,d) , n >

(note the shaded portion in Figure 4.3),

Thus, by (4.32) and (4.33) we have

Ejj[t(n;X ,d)] > E t(n^;X ,d)Pr(nj^ "i+1^
i=l

=  - Si'
1=1

By Theorem 4.2 this implies that

PrC| Ajj - A I <d]> 1-e

where

1 - e= E Yi(6 - 6 i) .
i=l
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Since the Yj^(i=2,3,<,., ,k) are not determined in advance, the confidence

coefficient is not predetermined in this extension of the two point

solution in Section 4-„

The Poisson Stochastic Process

In a Poisson stochastic process we have a counting process

{N(t), t ̂  0} such that {N(t), t ̂  0} has stationary independent

increments and

Pr[N(t) - N(s) = k] = e"^^^"^^[X(t-s)]^, k=0,l,2,.,,,
k!

To apply the method of this chapter to estimate X , pick some constant

T > Oo Then let the random variables Xj^, Yj , i=l,2,„.,, j = l,2,o,a be

defined such that

= N(ti+t)-N(t^), Yj = N(SjtT)-N(Sj)

where the intervals (t^, t^tx) and (Sj, Sj+x) for i=l,2,„o.,

j=l,2,c9, are disjoint. Therefore the X^ and Y^ are independent

and identically distributed as Poisson with parameter xX, Thus, to

estimate X within dj_ units use the method presented here with d=xdj_ ,

with Xj_ equal to the value of the random variable X^, and yj_ equal

to the value of the random variable Y^« Therefore we obtain

PrC|xX - Yjjl < fdj^] > 1 - e

which implies that

the desired result.

PrC [X- y^j/xl < d^] > 1 - e
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4.8 Bimbaum and Healy'a Solution

Birnbaum and Healy [8] give a two-step procedure to estimate X with

the unbiased estimator having variance not exceeding a prescribed

bound. By using Tchebycheff's inequality their method gives

P[1Xn - X I < d] > 1 - e

if

n = (4.34)

where xj^ is the mean in a preliminary sample of size m.

Table 4.1 gives some comparisons of the second sample size when

determined according to Bimbaum and Healy's solution, the one point

solution from Section 3, and the two point solution from Section 5 for

various values of 1-e, m, d, and x^. In these examples sample

sizes were reduced by varying amounts from 50 to 90%,
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TABLE i+.l

Comparisons of Second Sample Sizes

Column I gives n for Bir^baum and Healy's solution (equation 4-, 34),

Column II gives n for the one point solution (equation 4,10),

Column III gives n for the two point solution (equation 4,25),

1-e tn '^m d I II n' n" III

.90 5 100 2 205.5 78 72 73 73

.95 11 It II 501 112 98 104 104

.99 It It II 2505 196 180 178 180

.95 1 100 505 130 121 112 121
ft 2 It II 502,5 120 109 108 109
ti 5 II 11 501 112 98 104 104
ft 10 II It 500,5 108 94 102 102
If 25 It 11 500,2 104 91 100 100
11 00 II II 500 97 84 97 97

.95 5 20 l6l 26 23,5 22 23.5
II ti 50 II 251 58 53 53 53
11 It 100 It 501 130 98 104 104
II It 250 If 1251 265 233 252 252

.95 5 100 1 2004 444 400 416 416
If M It 2 501 112 98 104 104
11 It ti 10 20,04 4,4 4.0 4,2 4,2

.95 1 10 1 220 91 95 53 95
If 5 It II 204 60 55 47 55
It 10 tt II 202 52 47 46 47
It 25 tt tt 200,8 47 42 44 44
II 00 tt tt 200 40 34 40 40

.95 5 2 .1 4400 1800 1900 1230 1900
II 10 tt It 4200 1450 1440 1060 1440
II 25 tt II 4080 1160 1130 940 1130
11 00 tt II 4000 800 680 800 800

.95. 56 2,23 ,2 1125 285 250 245 250
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Second. Sample Size Graphs

To determine the second sample size, first specify m, d, and

1-e in advance. Then take a preliminary sample of size m and compute

mx„, the sura of the m observations. If mx is less than. 500 use
m' m

Figure 4.4 to find c for a one point solution or to find and C2

if a two point solution is desired. For a one point solution the lower

curve labeled c is to be used for 1-e = ,90 or ,95, Similarly the

upper curve labeled c is to be used for 1-e = ,99, If a two point

solution is desired the value of 1-e is immaterial. For mx^ greater

than 500 the same procedure applies to Figure 4,5, Next compute c^

or and C2Xjjj, Consider the one point solution. If the ratio of

c^ to d is less than 30:1 for . 1-e =,99, less than 50:1 for
m  '

1-e =.95, or less than 60:1 for 1-e =,90 use Figure 4.6, For larger

ratios it is necessary to use Figure 4,7, Plot a point of the form

(kd, kcx^), for some value of k, on the graph. The value of k chosen

is immaterial but the larger the value used the more accurate will be

the result. With a straight edge connect the plotted point with the

origin. At the point of intersection between this line and the appro

priate curve, depending upon the size of 1-e , record the value on

the horizontal axis. This value is nd and thus the second sample size,

n, is found by dividing this by d. The method to compute n", needed

for the two point solution, is identical with the above except C2 is

used instead of c. To determine n'. Figure 4,8 is used for ratios of

CiXm to d less than 33:1 for 1-e =,99, less than 54:1 for 1-e =,95,

and less than 63:1 for 1-e =,90, Larger ratios require Figure 4.9,

Again the procedure is the same as that for finding n" except C2 is
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replaced by Finally, to determine the second sample size in the

two point solution take the larger of n' and n".

As an example, consider an actual experiment in which flowers were

exposed to low level irradiation and the number of discolored sectors

per petal were counted for 56 petals.

TABLE 1+.2

Frequency Count

Observed

0 1 2 3 1+ 5 6 7

7  11 16 11 8 2 0 1

In this experiment m=56, = 2,23 and s^ = 2.22. Assuming this

follows the Poisson distribution the true value of X can be estimated

within .2 of a unit with confidence coefficient 1-e =.95 as follows.

We compute mx^ = 125, From Figure i+,i+ we see that c = 1.287 which

implies that cXjj^ = 2,87, The ratio of cXj^^ to d is 14,35:1 enabling

us to use Figure 4.6. The largest value of k possible to use is 1000,

which corresponds to the point (200, 2870), The intersection of the

straight line joining this point with the origin and the 1-e = ,95

curve has a value of nd = 57 on the horizontal axis. Thus the second

sample size for the one point solution is n=57/d=285. For the two point

solution Cj_ and C2 are read from Figure 4.4 as Cj^ = 1.377 and

Cj = 1.122 implying = 3.07 and C2xj„ = 2.50. Again setting

k = 1000 we plot the point (200, 3070) in Figure 4.8, connect it to the

origin, and the intersection with the 1-e =.95 curve is at n'd = 49

on the horizontal axis. Thus n' = 49/d = 245. Similarly, plotting the

point (200,2500) in Figure 4,6 yields n"d=50 implying n"=50/d=250.

Therefore the two point second sample size is n=250.
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To derive the graphs for the one point solution various values of

8  and a were tried for the particular case where in=5, }rjjj=100, and

d=2 such that (1-6)(l-a)=l-e. The optional values creating the

smallest sample size for l-e=.99 were 6=.0005, l-a=.9905. For

l-e=.90 and l-e=o95 the optimum values for 6 were so close that

6=.002 worked for both with negligible loss in sample size but a gain

in simplicity. The 1-a values were therefore .902 and ,952 respec

tively. These values were used in Figures 4.4-, 4.5, 4.6, and 4.7.

In the two point solution it was also necessary to optimize y

and 6 (see Section 5). Again the case where m=5, x^=100, and

d=2 was chosen to optimize. In particular, for l-e=,95 the optimum

was at l-e=,9520, 8=.1379, y=,9865, and 6=.999. This allowed the

use of the same graph as in the one point solution with l-e=.95 to

compute n". Therefore to optimize in the l-e=.90 case I set

l-a=,902 and the other values were optimized at 8=.1003, y=,9800,

and 6=.998. Finally, to optimize for l-e=,99 I set l-a=.9905 and

(1-6 )8=.0001 (in the l-e=.90 case (1-6)8 optimized at .0002 md

for l-e=.95 at ,00014), This led to the optimum values 6=.0961,

Y=.9958, and 6=,999. Because the sample size is fairly insensitive

to small changes in 8» a common value of 8=.10 was chosen.

Similarly, the same value of 6=.999 was used with negligible loss.

Thus (1-6 )8=.0001 for all three cases. This consolidation then

forced new values of y such that l-e=(1-a) (1-8+6 Y<5 ) as desired.

The new values of y were y=.981, .981, and .996 for l-e=,90, 95

and .99 respectively. These changes greatly reduced the number of

graphs involved but did not materially change the sample size.
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Figures M-.4 and M-,5 graph c versus z for given values of H(cjz)

where H(c;z) is defined by (4.6). In particular, the curves from top

to bottom represent K=.0001, .0005, .002, and .10, Figures 4.5 and 4.7

graph ncXjjj versus nd for various values of t(n;cXj^,d) which is

defined by (4.8), This type of graph is practical because

t(n;cx^,d) = t(l;ncx^,nd). From left to right the curves correspond

to t=.902, .952, and .9905. Figures 4.8 and 4.9 are similar to

Figures 4,6 and 4,7 with the curves corresponding to t=Y(l-oi) = .8849,

,9339, and ,9865 from left to right.

The computations in Figures 4.4 and 4.5 were made from existing

tables for values of z < 50, Table 4.3 displays these. For larger

values of z the normal approximation to the Poisson was used. No

loss of accuracy was evident in several examples which were checked.

The values for Figures 4,6 - 4,9 were obtained by use of the IBM 1620

computer, using a program which computed the actual values by summation

of the appropriate Poisson distribution.

mx_
m

=1

l-e=.99

1-e=.90, . 95

Table 4.3

10 20 30 40 50

2.785 2,120 1.870 1.730 1.638

2.525 1,968 1.753 1.636 1.556

2.299 1.830 1.650 1.548 1.480

1.550 1.354 1.277 1.234 1.206



V, UNSOLVED PROBLEMS

The two procedures given in Chapters III and IV clearly are an

improvement over existing methods^ These solutions, however, raise

additional problems to be investigated.

Both procedures supply a lower bound but the upper bound should

also be given consideration. There is some information on an upper

bound in the Poisson problem. For instance, in the one point solution

Pr[ 1 A-Ajj I < d] < 1 » Pr[n ̂  n2_]+(l-a)Pr[a < n^^]

= 1 • (l-6)+(l-a)6 = l-aS ,

For 1-e=,90, ,95, ,99 this gives upper bounds of ,999804, .999904,

and .99999525 respectively. These are not very useful. Since they

were obtained using the optimal values for a and B there exist

other values of a and 6 with (1-a)(1-8)=l-e, that will yield

larger sample sizes and at the same time decrease the upper bound;

l-a=l-B= \) 1-E for example. An upper bound for a large sample size

would also be an upper bound for a small sample, thus the upper bound

could be lowered. Other techniques should be investigated to put

better limits on the confidence coefficient, since a confidence coef

ficient much larger than the level desired increases sample size and

wastes resources.

Another problem left unanswered is whether or not more informa

tion can be used. For instance, both procedures described here neglect
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the first sample once it has been used to determine the size of the

second sample. Could the preliminary sample be used somehow with the

second sample in the estimator? This seems to be a complex problem.

As a starting difficulty, what estimator should be used?

An important problem to consider is that of the size of the first

sample. To determine this some knowledge is needed of the approximate

size of the parameter, A three-step procedure may be required, where

the first step would be needed to find a first, rough approximation to

the size of the parameter.

In Chapter IV, Section 7, it was shown how to estimate the param

eter in a Poisson process with a two-step procedure. It was necessary

to specify a constant t to do this. Some investigation should be

made to devise a scheme for picking the best value for t. Perhaps a

three-step solution would be necessary. The first step would be used

to find T.

The graphs in Section 9 of Chapter IV were derived by finding the

combination of a, 6, Y,<S which minimized the second sample size for

the particular values m=5, d=2, and ̂ =100, This is fully described

in Chapter IV, Section 9, If the second sample size was minimized for

each individual set of values of m, d, and xj^^, reductions would be

made in sample size. The feasibility of doing this should be investi

gated. For one indication of how good the particular optimization

procedure used is, for the two point solution, examine the difference

between n' and n". Table 4-,l shows that n' = 95 and n"=53 for

l-e = .95, m=l, Xjjj=10, and d=l, indicating the optimization was not

good for these values. In fact n is greater than the one point
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solution sample size which is 91. Similar results occur for l-e=.95,

m=5, and d=.l. It is noted though that larger values of m

reduce this difference in both cases and also decx-'ease the two point

solution second sample size below that of the one point solution.

An investigation could be made into procedures for' solving the

problems presented in Chapters III and IV by minimizing expected sample

size. This would require a different approach from those in Chapters

III and IV,

Also of interest would be a Bayes' type of solution in which various

loss functions could be considered.

The solution for the variance of a normal problem in Chapter III

can be generalized to estimate the mean in the gcJnma distribution with

little modification. To solve other problems with this technique it

would be necessary to first derive improvements on Tchebycheff's

inequality for the distribution involved. The solution for the Poisson

mean problem, in Chapter V seems to be very useful and the same technique

could be used in many problems requiring a two-step procedure. In fact,

it may result in lower sample sizes in estimating the variance of the

normal. This problem and many others should be investigated using the

technique in Chapter IV,
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ABSTRACT OF DISSERTATION

SOME TWO-STEP SAMPLING PROCEDURES

Two-step sampling procedures are presented to estimate the variance

of a normal distribution and the mean of a Poisson distribution within

d  units with a specified confidence coefficiento

The procedure to estimate the variance of a normal is based on a

Tchebycheff type inequality derived especially for the gamma distribu

tion o A different type of argument, which could be applied to many

other distributions, was used to solve the problem for the Poisson

distributionc

Sampling sizes are presented in tables and graphs to implement the

two solutions. Also, favorable comparisons are made with existing

methods.
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