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ABSTRACT 

FLOW-GENERATED DISPLACEMENT OF REINFORCED GRANULAR SLOPES USING 

THE DISCRETE ELEMENT METHOD 

The Discrete Element Method (DEM) has been used by researchers to study the behavior 

of granular material. It is based on the discrete nature of the granular media and tracks the 

displacements of individual particles and their interactions at every time-step of the simulation.  

This approach was used in this study to investigate the flow-generated displacement of 

spring-reinforced planar granular slopes. A Discrete Element (DE) code was created using 

MATLAB and FORTRAN to carry out the simulations. The code was validated by comparison of 

simulation results with analytical solutions.  

Granular slopes with particle radii ranging from 5 to 10 �� and various initial slopes were 

generated. Reinforced slopes were created by adding reinforcement, in the form of linear springs 

restraining surface particles, to the original geometry. The surface of both the original and the 

reinforced slopes was exposed to flow-generated drag forces. Various reinforcement patterns were 

modeled and the resulting flow-generated displacements were measured and studied. It was found 

that slope reinforcing can either delay or prevent flow-generated movements and the effectiveness 

of the reinforcing depends on the slope of the packing, the magnitude of the drag force and the 

pattern of the reinforcing. 
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NOTATION AND DEFINITIONS 

��  = Normal contact spring stiffness ��  = Tangential contact spring stiffness ��  = Unit vector in the normal direction �	  = 
 component of unit vector �� ��  = � component of unit vector �� ̂  = Unit vector in the tangential direction �  = Cohesion �  = Distance between the centers of two disks ∆�  = Time increment Σ��(�)  = Resultant force applied to particle � ��(�, �)  = Contact force vector applied to particle � due to contact with particle � �������(�)  = Body force applied to particle � Σ�������(�)  = Sum of the external forces applied to particle � �������(�)  = Global damping force applied to particle � �(�)  = Mass moment of inertia of particle � �(�)  = Mass of particle � 
τ (�, �) = Torque applied to particle � due to contact with particle �, positive 

counterclockwise τ�(�)  = Global damping torque applied to particle � �  = Total number of particles "��(�)  = Position of particle � #(�)  = Radius of disk � ∆$�  = Normal component of the relative velocity of contact ∆$�  = Tangential component of the relative velocity of contact �  = Time $��(�)  = Velocity of particle � %  = Global damping coefficient &  = Particle-particle and particle-wall contact damping constant '(�)  = Angular orientation of disk � 
ρ  = Particle density (  = Friction angle )(�)  = Rotational velocity of particle �, positive counterclockwise  
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1. INTRODUCTION 

Granular systems are composed of large numbers of particles that interact with one another 

and can displace independently. This results in a complex behavior that is influenced by multiple 

factors including but not limited to the number of particles, their physical properties, the particle 

size distribution of the system, and how the particles interact. 

Understanding the complicated behavior of granular media is of interest in industrial, 

engineering, and natural applications. A better understanding of the mechanics of granular 

material, such as sand, gravel, aggregates, rock-fills and fractured rock, is useful in improved 

selection and preparation of construction sites, better management of undeveloped land, settlement 

and stability of structures, and mining operations (Sitharam, Dinesh and Shimizu 2002). Modern 

numerical tools such as DEM are able to simulate large mass movements and can be utilized to 

evaluate the risks of geotechnical failures such as a landslide (Soga et al. 2016). The analysis of 

discrete particulate systems also helps in the design of protective measures against hazards 

associated with slope movements such as debris avalanches (Salciarini, Tamagnini and Conversini 

2010). Furthermore, improvements in the design of machinery and equipment used in the handling 

and storage of agricultural products, such as grains and fruits, can be achieved through a better 

understanding of the dynamic behavior of particulate systems (Abbaspour-Fard 2000). Other 

applications include design of different types of granular mixing vessels, cold compaction of metal 

powders, and processing of mine tailings.  

Behavior of particulate systems can be studied with experimental investigations, analytical 

models and numerical techniques. Although demanding the most time and cost, experimental 

investigations provide the most valuable information about the macro-behavior of particulate 
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systems. Analytical techniques are based on the assumptions of material continuity and material 

homogeneity and therefore have limited applications. Alternatively, computer simulations are 

flexible and can be used in modeling a variety of granular behaviors and are the method of choice 

in the present work. 

Experimental investigations provide valuable information and are used to calibrate or 

validate analytical and numerical models. However, experiments are frequently expensive, time-

consuming and sometimes dangerous. Furthermore, internal stresses and displacements of 

individual particles cannot be measured in tests on real granular material such as sand and must 

usually be estimated. Contact forces and displacements of particles can only be determined if 

particles are made of photo-elastic material, but this type of analysis is especially time-consuming 

(Cundall and Strack 1979). Extrapolation of results from laboratory experiments to full scale can 

also be challenging. 

Analytical techniques, based on the assumption that the aggregate particle geometry acts 

as a continuum, combined with numerical solution techniques such as the finite element method, 

the finite difference method and the boundary element method, have been successfully used to 

model soils, rocks, and other granular media. Constitutive relationships based on continuum 

mechanics principles are frequently used to model granular behavior. Although geotechnical 

analysis methods can predict geotechnical failure criteria, they are not as helpful in understanding 

the post-failure behavior (Soga et al. 2016). In addition, there are some aspects like non-

homogeneity issues and behavior under low confining stresses that are difficult to model using 

continuum mechanics principles. This limits the insight offered by this method into behavior of 

granular material (Sitharam, Dinesh and Shimizu 2002).  
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The alternative approach is to model granular material as an assemblage of particles and 

examine granular behavior at the particle scale level. DEM, also sometimes referred to under 

certain conditions as the Molecular Dynamics (MD) model and originally developed by Cundall 

and Strack (1979), has been used for decades in the research of particulate behavior. DEM is based 

on the discrete nature of the granular media and tracks the micro displacements of the individual 

particles to get the macro behavior of the entire packing. It simplifies the problem to the 

equilibrium of individual particles that interact with one another at contact points. 

Unlike conventional continuum approaches, numerical methods such as DEM can model 

and track individual particle dynamics and particle interactions at any stage of the simulation. 

Computer simulations demand less cost, are flexible, and can incorporate variability in size, 

properties, and distribution of the particles.  Although numerical simulations can be time 

consuming to set up and are limited by computational resources, advances in computer processing 

speed and parallel processing techniques have made numerical models powerful tools in the 

analysis of particulate systems. 

There are two common types of DE models dedicated to either hard particle or soft particle 

approach. In the hard particle model, particles are assumed to be perfectly rigid and a sequence of 

instantaneous collisions is processed (Zhu et al. 2007). In the soft particle approach, particles can 

experience multiple contacts simultaneously, and undergo minute deformations at the points of 

contact. 

The hard particle model assumes that rigid particles follow an undisturbed motion until an 

instantaneous collision occurs (Luding 2008). An Event-Driven (ED) simulation method is used 

which discretizes the sequence of collisions. To relate the velocities after the collision to the 

velocities just before the collision, a collision matrix is often used which is derived from 
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momentum conservation and energy loss rules. Since the hard particle model ignores the details 

of the contact and assumes that the collisions happen one at time, it is valid when binary collision 

dominates and multi-particle contacts are rare (Luding 2008). The hard particle method is therefore 

typically used in modeling rapid granular flows (Zhu et al. 2007). 

In the soft particle approach, typically used in modelling quasi-static systems, collisions or 

contacts happen during a series of time-steps and particles can experience multiple contacts 

simultaneously. It is assumed that as contact occurs, particles deform at the points of contact and 

develop contact forces. The deformations are used to calculate contact forces, using a force-

displacement law. The velocities of the particles are assumed to be constant over a time-step, and 

the particles are allowed to displace. The contact forces of particles are then updated based on the 

changes in the displacements. The resultant force acting on each particle is then calculated and 

used to calculate the new particle velocities. This calculation cycle of force-displacement law and 

Newton’s second law of motion is repeated in every time-step for every particle. 

DE models can be modified to better represent a specific particulate system by selection of 

the appropriate particle shape and size distribution. The selected shape of the particles should be 

as close as possible to the actual shape of the particles under consideration since contact forces 

that govern the velocities and the positions of the particles are directly affected by the particle 

shapes. On the other hand, as the particle shape gets more complicated, the algorithms required for 

contact detection and contact force calculation will get much more sophisticated. This results in 

significant computational overhead.  

The simplest DE models are planar assemblies of circular particles, also called disks. 

Contact detection and contact force calculations are very simple for such particles, since there is 

always one type of inter-particle contact. These models cannot represent the interlocking action 
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between the particles and frequently overestimate particle rotation since the normal forces do not 

affect the moment acting on the particle and frictional forces are the only forces resisting rotation.  

Since almost all particulate systems in reality are three dimensional, planar models have 

been extended to three dimensions to account for the effect of the particle interaction in the third 

dimension. Three-dimensional simulations require a larger number of particles to be modeled, 

which calls for greater computing capacities. 

Non-circular particles have been modeled in both planar and three-dimensional 

simulations. Typical complex shapes used to represent particles are polygons (Mirghasemi, 

Rothenburg and Matyas 1997), ellipses (Ng 1994), and clusters of several circular particles that 

have been bonded together (Abbaspour-Fard 2000). Utilization of mathematical functions to 

describe particle outlines, such as super-quadric particles (Cleary and Hoyer 2000), is also typical. 

 Using realistic particle sizes and a reasonable ratio of sample size to particle size is 

important in obtaining a realistic simulation. This is particularly important in modeling soil 

particles. When realistic soil grading is used, many small particles must be simulated for every 

large particle.  Modeling these smaller particles significantly increases the degrees of freedom and 

also requires a smaller time-step to ensure stability of the system. However, the number of particles 

modeled in DE simulations are limited by the computational capacities. Around 10,000 particles 

are typically modeled in 3D simulations (Huang et al. 2014). Therefore, the use of real particle 

sizes in models for some of the granular media, such as soils, is generally not feasible due to 

computational limitations. Almost all discrete element models of soils reported in the literature 

have used particles that are larger than their actual sizes (Shmulevich 2010). Consequently, the 

particle properties should be modified to account for the difference in the particle size. 
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1.1 Objectives 

The purpose of this study was to investigate the flow generated displacements of a planar 

assembly of disks using the DEM. One specific application of this work is to be able to model the 

mechanics of soils following the changes that can occur after a surface-level fire. This changes the 

level of plant-fiber and soil particle interaction and can dramatically influence the run-off 

mechanics in storms following these fires. Specific objectives were to: 

•  Review the existing literature on DE modeling of particulate systems 

•  Develop an accurate and feasible DE program to run the simulations 

•  Validate the DE model by comparing the results to analytical solutions 

•  Simulate run-off conditions for packings with various initial slopes and reinforcing patterns 

•  Study the flow-generated displacements and the effectiveness of the slopes reinforcement 
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2. LITERATURE REVIEW 

The DEM was originally developed by Cundall and Strack (1979) as a numerical method 

for describing the mechanical behavior of assemblies of disks and spheres. A linear spring-dashpot 

model together with Coulomb friction law was used to model the particle interactions at contact 

points. Energy dissipation was modeled using global damping, friction and viscous contact 

damping so that the system could reach a state of equilibrium. The model was validated by 

comparison of output force plots with the corresponding plots obtained from a photo-elastic 

analysis applied to an assembly of disks. 

The variety of the literature published on DE modeling can be generally classified into 

studies on DEM algorithm properties, validation of DE simulations and DEM applications. 

2.1 DEM Algorithm Properties 

A wide range of studies published on DEM are regarding DEM algorithm attributes, such 

as the contact force model, the contact detection algorithm, the specimen generation method, and 

the particle and boundary properties. These are briefly reviewed below.  

2.1.1 Contact Force Models 

Schafer, Dippel and Wolf (1996) discussed the properties of the force laws most commonly 

used in DEM and compared their results with experiments on the impact of spheres. Linear-spring 

dashpot, Hertz, Hertz-Kuwabara-Kono and Walton-Braun models for the normal contact force 

were studied. For the tangential contact force, Coulomb friction, viscous friction, linear tangential 

spring, Walton-Braun variable tangential spring and Brilliantov slip-stick models were reviewed. 

Generic problems of DEM and the criteria for the right choice of the force law parameters were 

also discussed.  
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Luding (1998) discussed instantaneous and not-instantaneous collision models. In the 

instantaneous model, also known as the hard particle model, the velocities of the particles just 

before and just after the collision are of interest. This is in contrast to the not-instantaneous 

collision models, also known as the soft particle and DE models, which follow the trajectories of 

the particles during collisions by solving Newton’s equation of motion and the use contact force 

laws. Luding explained in detail the linear spring dashpot model, the general non-linear spring 

dashpot model and hysteretic spring model used for modeling the normal contact forces. The 

viscous friction model, Coulomb friction and elastic spring models for the tangential force were 

also discussed. 

It was shown by Luding (1998) that cluster particles more accurately model the geometry-

dependent behaviors, such as particle interlock and rolling. As a result, use of cluster particles 

significantly reduced the excessive particle rotations and increased the shear strength of the 

system. Overall behavior of the system was found to be qualitatively similar to experiments 

involving round and angular sands. 

Di Renzo and Di Maio (2004) investigated the influence of the different contact-force 

models on the accuracy of DEM simulations of collisions in granular flow. Elastic collision of a 

sphere with a flat wall was simulated using three contact-force models. A linear force-

displacement model, a non-linear model for the normal direction together with a no-slip model for 

the tangential direction, and a non-linear model with hysteresis were used. Results were compared 

with experimental data in macroscopic scale, and to analytical solutions in the microscopic scale. 

It was shown that no significant improvement is attained using complex force models regarding 

the velocities after the collision. The linear model, with precisely evaluated parameters, was often 

equivalent with the non-linear hysteresis model and gave better results than the no-slip model. In 
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addition, the time evolution of the tangential forces, velocities and displacements predicted by the 

linear model were closer to the theoretical solution. 

Kruggel-Emden et al. (2007) focused on the normal contact models and reviewed a wide 

range of commonly used normal force schemes based on macroscopic and microscopic parameters 

such as the coefficient of restitution, collision time, force, displacement and velocity. The study 

then compared the results obtained from extended linear and non-linear force models with the 

experimental data on collisions of different metal alloys, ice and marble spheres reported in the 

literature and evaluated the accuracy and applicability of the results. 

Luding (2008) described and compared the two approaches used in DE modeling of 

granular material based on MD methods; the soft particle and the hard particle methods. Basic 

force models were presented including elasto-plasticity, adhesion, viscosity, static and dynamic 

friction, and rolling and torsional resistance. Hard particle ED methods were also presented with 

an attempt to link the ED and DEM approaches in the dense limit where multi-particle contacts 

become important. Two- and three-dimensional simulations were discussed concerning bi-axial 

shearing, cylindrical shearing, and clustering in granular gases of dense assemblies, in order to 

illustrate the micro-macro transition towards continuum theory. The study concluded that DEM is 

a helpful tool in qualitative predictive modeling of the complex granular behavior. 

2.1.2 Contact Detection Algorithm 

Cundall (1988) introduced a technique to detect contact between particles of arbitrary 

shape in a three-dimensional DE model. Particles considered were either convex or concave with 

faces that consisted of arbitrary plane polygons. Contact detection identified pairs of particles that 

were in contact and the geometric characteristics of the contact, such as whether faces, edges or 

vertices were involved and the direction of potential sliding. An efficient data structure was utilized 
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to allow rapid calculations for a system involving several hundred particles on a personal 

computer. 

Munjiza (2004) explained the No-Binary Contact Search (now widely referred to as the 

Munjiza-NBS) method, originally developed by Munjiza in 1995. The NBS method divides the 

domain into cells and instead of checking every two particles for contact, only checks particles 

that are in neighboring cells. The cells are sized to be large enough to contain the largest particle, 

so that only particles from neighboring cells can have contact. The algorithm uses singly connected 

linked lists to map the particles into rows and columns of cells and is efficiently structured to 

optimize RAM and CPU requirements. The total contact detection time for the Munjiza-NBS 

algorithm was found to be proportional to the number of particles in the system and independent 

of the number of rows or columns. This is the method used for contact detection in this study and 

is explained in detail in Chapter Methods. 

2.1.3 Specimen Generation 

A variety of methods have been used to generate particulate assemblies for two- and three-

dimensional simulations including, but not limited to, random generation, radius expansion, 

gravitational approaches, triangulation and advancing front type algorithms. Each method has its 

own advantages and there is no agreement in the literature on which method is the optimum 

approach. 

In the random generation approach, a random number generator is used to assign random 

sizes and locations to particles. Contact detection is used to reject a particle if it overlaps with the 

existing ones. As the domain becomes more populated, more particles will be rejected and it 

becomes time consuming to add new particles. A series of DEM simulations are then carried out 

on the system to make it denser, such as compressing the system by moving the boundaries toward 
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the particles. The random generation approach imposes a large computational cost for contact 

detection and for the iterations required to densify the system. Another disadvantage is that the 

particle size distribution and void ratio of the assembly cannot be controlled. 

The radius expansion approach is a random non-overlapping system in which the radii of 

particles are expanded by a factor to achieve a certain porosity. Then a series of DEM simulations 

are carried out to rearrange the system and bring it into equilibrium. 

Gravitational methods run DEM simulations and allow a random or a prearranged non-

overlapping layout of particles to fall under a body force. Zhou et al. (2002) used a gravitational 

settling process on a random arrangement of spheres, followed by a discharging process, in which 

the spheres were dropped from the sides of the sample under gravity. In most cases, a large number 

of iterations are required to reach equilibrium under gravitational forces and this can result in a 

high computational cost. In addition, there is no control over the void ratio of the specimen created 

and it is difficult to create a dense sample in a pre-defined boundary such as simulating a laboratory 

test on a soil sample in a specific container. 

Feng, Han and Owen (2003) introduced an advancing front approach to fill planar domains 

with disks with different radii. The advancing front algorithm was implemented in open and closed 

forms. The radii of the disks were randomly determined based on a size distribution function. In 

the closed form, the “front” is an oriented polygon obtained by joining the centers of the outermost 

disks. The initial front is a triangle and new disks are generated so that they are in contact with the 

existing disks. As the new disks are added, the front advances gradually and the specimen grows 

spirally outwards until it fills the domain. Since the boundaries are almost always rectangular, the 

major disadvantage of this method is that it leaves large gaps around the boundary. In the open 



 

12 

 

form, the initial assembly is a layer of disks along the bottom boundary, the front is open and the 

disks are added layer by layer until the domain is filled. 

Jodrey and Troy (1985) developed an iterative algorithm for generation of random close 

packings of uniform spheres from a random distribution of points. An inner and an outer sphere 

were created at each point. The inner diameter defined the true density of the packing, which was 

initially very small. The outer diameter represented the nominal density and was given an arbitrary 

initial value. In each iteration, the inner diameter was set to the minimum center-to-center distance 

between any two spheres. The algorithm eliminated the largest overlap of the outer spheres by 

moving the particles in each step. It also slowly shrank the outer spheres until eventually the true 

and nominal densities matched at which point and the process was terminated. 

Cui and O’Sullivan (2003) proposed a new triangulation based approach for generating a 

particulate specimen in two or three dimensions. The method was based on creating a triangular 

mesh within the boundaries and inserting the particles as the in-circles of the triangles. A mesh of 

tetrahedral and in-spheres were used in three-dimensions. The sensitivity of the behavior of the 

generated particulate system to the topology of the triangular mesh was discussed. The method 

was compared with the algorithm proposed by Itasca for planar systems, a modified version of the 

algorithm developed by Lin and Ng (1997), and the algorithm developed by Jodrey and Troy 

(1985) for three-dimensional systems. Relative simplicity of the algorithm and small 

computational cost are the advantages of the triangulation method. However, it was not as effective 

in creating dense three-dimensional assemblies as the other typically used approaches. 

2.1.4 Particle and Boundary Properties 

Jensen et al. (1999) investigated the effects of surface roughness and particle shape in DE 

simulations of granular media-structure interface. Several simulations of the ring shear test were 



 

13 

 

carried out with varying normal loads, roughness of the shearing surface, and particle types 

(clustered and non-clustered). Particles of general shape were modeled by combining several 

smaller circular particles into clusters that act as a single large particle. Periodic boundaries were 

used in the simulations to increase computing efficiency and avoid deleterious boundary effects. 

Periodic boundaries allow particles to pass out of the boundary on one side and reappear on the 

opposite boundary. It creates an infinite control volume and removes boundary effects. This is 

particularly helpful when the number of particles simulated are limited due to computing capacity. 

Ferellec and McDowell (2010) introduced a new method to model complex irregular 

particle shapes in DE models using overlapping spheres. The effects of the parameters used on the 

accuracy of shape reproduction and the number of particles involved were discussed. Since 

overlapping spheres cause a non-uniform density in the particle, a method to reduce the error in 

the principal moments of inertia of the particle was also discussed. Pullout tests were then 

simulated to analyze the interaction between ballast and geo-grid and it was found that the ballast 

geo-grid interlocking is better simulated using the proposed method than using simpler particle 

shapes. 

Huang et al. (2014) studied the effect of sample size on the response of the DEM 

simulations when a realistic particle grading was used. Four DE simulations of tri-axial 

compression tests with an identical initial void ratio and stress state were used. Three differently 

sized samples with rigid cylindrical boundaries were compared with a sample with periodic cubic 

boundaries. The number of particles in the samples ranged from 6,783 to 20,164. It was shown 

that the rigid boundaries resulted in an inhomogeneity in the density of samples whereas the 

application of periodic boundaries may be beneficial as it yielded a more homogeneous sample 

and was more likely to represent real material response. The study concluded that when rigid 
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boundaries are used, the sample size should be large enough so that the boundary constraint does 

not affect the overall behavior of the system. 

2.2 Validation of DE Simulations 

Ting et al. (1989) validated the planar disk-based DE approach by simulating standard 

geotechnical laboratory tests, including the one dimensional compression, direct simple shear, and 

tri-axial tests. Reduced scale models were used for simulating full scale bearing capacity and 

lateral earth pressure tests to overcome computational limitations. The geotechnical centrifuge 

modeling principles were used to ensure stress-strain-strength similitude between the model and 

the prototype. It was shown that although the planar DE model overestimated the effect of the 

individual particle rotation, it could simulate non-linear stress-history-dependent soil behavior 

realistically if individual particle rotation were inhibited. 

Li, Xu and Thornton (2005) carried out DE simulations of sand-piles and assessed model 

validation by comparing the profile and the angle of repose with laboratory experiments. 

Simulations were carried out for quasi-two-dimensional and axisymmetric three-dimensional 

arrangements. The contact force model was based on Hertzian theory for normal contacts and was 

based on the Mindlin–Deresiewicz theory for tangential contacts1. Polydisperse glass beads were 

used for the experiments. Simulations and experiments were also carried out for three-dimensional 

conical piles of smooth monodisperse steel balls. To ensure consistency of the simulations with 

physical experiments, sliding friction was measured experimentally and the resulting value of the 

friction coefficient was used for the particle-particle and particle-wall interactions in the DEM 

                                                           
1 The Hertz-Mindlin and Deresiewich model is based on the application of the elastic theory to the contact between 

two elastic spheres. It consists of a non-linear elastic normal force-displacement relationship developed by Hertz 

together with Mindlin and Deresiewich’s modification to Hertz’s theory in the tangential direction. 
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simulations. It was shown that the simulation results were in good agreement with the 

experimentally determined profiles and the measured angle of repose. 

Hungr (2008) verified simplified models of spreading flow against controlled laboratory 

experiments using dry granular materials. Results of simulations with alternative assumptions, 

regarding the distribution of earth pressure in the material, were compared with the results of a 

series of dam-break experiments with different slope angles and bed materials. It was shown that 

assumptions regarding internal friction of particles, typically used in previous works, could cause 

substantial errors and modifications to the assumptions that were proposed. 

Grima and Wypych (2011) developed and validated calibration methods for DE modeling. 

Results of DEM simulations for cohesion-less and cohesive granular materials were checked 

against experimental slump and hopper discharge tests to validate static and rolling coefficients of 

friction and the coefficient of restitution. Single particle properties were measured to develop an 

appropriate particle shape representation and size distribution. Simulations that modeled the 

experiments were carried out to replicate the flow mechanisms and a trial-and-error process was 

conducted by altering dependent parameters such as rolling friction and cohesion energy. 

2.3 DEM Applications 

Campbell and Brennen (1983) simulated Couette flows of granular materials using a planar 

unidirectional flow model of inelastic disks. The collisions were assumed to be instantaneous and 

departing velocities were calculated based on the incident velocities and a coefficient of restitution 

was use to represent the inelasticity of the collisions. Interstitial fluid and gravitational effects were 

neglected. Results were compared with theoretical constitutive models and with experimental 

results. 
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Matuttis, Luding and Herrmann (2000) studied DEM simulations of heaps made of 

spherical and non-spherical particles. Quasi-static granular assemblies were modeled using smooth 

spherical and polygon particles. The piles were either constructed layer-wise or from a point 

source, in a so-called wedge sequence, which is similar to depositing granulates from a conveyor 

belt. The distribution of the stress under the heaps, arching phenomenon and stress chains were 

observed in the simulations. It was found that for spherical particles, the structure of the contact 

network and orientation was correlated to the stress state. Also for smooth particles, regardless of 

the contact-force law or the particle shape, small variations in boundary conditions or particle sizes 

could lead to arching or formation of a dip. For polygonal particles with friction, it was shown that 

the angle of repose depends on the construction history and the polydispersity of the material. 

Isotropic compression and tri-axial static shear tests under drained and undrained stress 

paths were modeled by Sitharam, Dinesh and Shimizu (2002) using a three-dimensional DE model. 

Poly-disperse 1000-particle assemblies of loose and dense spheres were modeled and periodic 

boundaries were used to represent an infinite three-dimensional space. The evolution of the 

internal variables such as average co-ordination number and induced anisotropy during 

deformation were studied. The macroscopic behavior of the assemblies in drained and undrained 

shear tests were investigated. It was found that the DEM simulations were capable of realistically 

reproducing the behavior of the granular assemblies. Although numerical simulations highlighted 

the effect of the inter-particle friction on the behavior of the granular media, the results clearly 

indicated a non-linear correlation between the specific volume and the logarithmic mean principle 

stress. It was also observed that at a given density, shearing or change in the stress ratio results in 

loss of contact and therefore there appears to be a constant limiting value of contact anisotropy 

that a given system can sustain. 
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Zhou et al. (2002) studied the angle of repose of granular materials using a modified three-

dimensional DE simulation incorporating a rolling friction model. The effect of the different 

variables related to the particle, material and geometric properties on the angle of repose were 

studied. It was shown that sliding and rolling friction were the primary factors affecting the 

formation of sand-piles. Particle size and container thickness were found to significantly affect the 

angle of repose, while density, Poisson’s ratio, damping coefficient and Young’s modulus were 

found to have less influence. The particle-particle and particle-wall interaction mechanisms that 

underlie these behaviors were discussed and empirical equations that relate the affecting variables 

to the angle of repose were suggested for engineering applications. 

Liu (2006) simulated the Direst Shear Box Tests (DST), a common experiment for 

determining the shear strength of soils, using DEM. Loose two-dimensional samples of 3259 

particles were modeled. The numerical data of the simulations were used to interpret the angle of 

internal friction and a planar stress-dilatancy equation for the mobilized plane in the system. The 

study addressed the intrinsic drawbacks involved in performing and interpreting the conventional 

DST, such as the influence of the frictional force between the inside surface of the upper shear box 

and the sample on the measured shear strength. 

Shmulevich (2010) explained DEM in general and provided state of the art modeling of 

soil-tillage interaction using two- and three-dimensional DE simulations. The applicability of 

DEM for use in the optimization of soil-tillage interaction was presented by several case studies 

and the limitations and advantages of the method were discussed. 

Use of particulate DEM in geotechnical research was reviewed by O’Sullivan (2011). The 

background of the method, evolution of the use of DEM in geomechanics, the general principles 

of the algorithm, calculation of contact forces, formulation of boundary conditions, interpretation 



 

18 

 

and post-processing of results, validation approaches, and application to field-scale problems were 

discussed. The article gave a comprehensive overview of the application of DEM to researchers in 

geomechanics interested in adopting the method in their studies. 

Marketos and O’Sullivan (2013) proposed a new method for analyzing wave propagation 

through granular material using DEM. A two-dimensional un-damped assembly of uniformly sized 

circular particles was modeled and a linear spring contact scheme was used. The stiffness and mass 

matrices of the granular sample were created and used to calculate its modes of vibration, natural 

frequencies and its transfer function. 

There are a host of other applications that have been the subject of DEMs, but those cited 

here are the most relevant to the present study. There have been very few, if any, studies of 

particulate media in which the particles have been reinforced with other structural elements while 

being subjected to hydraulic forces. Both of these features are prominent additions to existing work 

and form much of the novelty of the results that follow.  
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3. THEORY OF THE DISCRETE ELEMENT METHOD 

DEMs simulate the behavior of granular systems by tracking movements of individual 

particles. It is a dynamic or transient simulation based on equilibrium of particles which evolves 

over discrete time increments during which the acceleration of particles is assumed to be constant. 

DEM calculations are based on the application of a force-displacement law and Newton’s 

second law of motion. A small amount of overlap is typically allowed at contact points that 

represents particle deformations. The magnitude of this overlap is related to a contact force using 

a force-displacement law and a time-dependent numerical solution of Newton’s equation of motion 

is then carried out to calculate particle movement. 

The theory of DEM is presented in this chapter. The basic assumptions, time-stepping and 

the calculation cycle of the DEM algorithm, and the required time increment are all discussed. 

After that, the scheme used in this study is explained including the use of spherical particles, the 

contact force model, energy dissipation, and the application of Newton’s law of motion. 

3.1 Assumptions 

Most DE models follow the approach of Cundall and Strack (1979) and are based on the 

following basic assumptions for both two- or three-dimensional packings and regardless of the 

selected particle shapes, particle size distribution, contact force model, and boundary conditions. 

DEM traces movements of individual particles of an assembly by calculating equilibrium 

contact forces. A disturbance, caused by a displacement of boundaries or application of external 

forces to particles, propagates through the granular medium from particle to particle. It is assumed 

that the time-step chosen is small enough and disturbances can only spread from one particle to its 

immediate neighbors during a single time-step. 
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Particles are assumed to deform at points of contact with other particles or the boundaries. 

Deformations are represented by overlap of the boundaries and are assumed to be small in relation 

to particle sizes. There are no plastic deformations that remain after the complete separation of 

particles, so that particle shape is conserved throughout the simulation. In other words, particles 

are assumed to collide through a new un-deformed contact point every time a new contact occurs. 

In reality, particle-particle or particle-boundary contacts occur over a finite surface area. 

Most DEM approaches assume that the contact area is small compared to the surface area of the 

contacting bodies and that contact occurs at a point at the centroid of the contact surface. The 

contact forces and torques are point loads acing at the contact point. 

In the numerical integration of Newton’s law of motion, it is assumed that particle 

velocities and accelerations are constant during a time-step. It is also assumed that no new contact 

is assumed to develop during a time-step, and the contact forces acting on each particle only result 

from the contacts detected at the beginning of the current time-step. 

3.2 DEM Algorithm and the Calculation Cycle 

An overview of the sequence of calculations in a DEM algorithm is presented in Figure 

3.1. Once the initial geometry of the particulate system is defined, the simulation goes through a 

series of time-steps. For every time-step a cycle of calculations is completed to update the position 

and velocity of the particles. The cycle starts with contact detection between neighboring particles. 

Next, for every pair of contacting bodies the relative velocities and contact overlaps are calculated 

and the contact force is determined based on a force-displacement law. After this has been 

accomplished for all contacts, the resultant forces for each particle are calculated. Assuming that 

the accelerations are constant during the time-step, Newton’s law of motion is applied to update 
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the particle position and velocity and the calculation cycle is complete. The cycle is repeated for 

the next time-step beginning with contact detection.  

3.3  Time Increment 

The choice of an appropriate time increment is important in the execution of a DE 

simulation. The time increment should be small enough to ensure stability and accuracy of the 

numerical simulation and justify the assumption of constant velocity and acceleration (See Section 

3.2). On the other hand, a larger time increment means fewer time-steps and increases 

computational efficiency. 

Cundall and Strack (1979) required the time increment to be taken as a fraction of the 

critical time-step of 2+�/- to ensure stability of the numerical scheme, where � is the mass of 

the particle and - is the stiffness of the spring representing the contact force. The critical time-step 

proposed is 1/. of the period of oscillation for an un-damped single degree-of-freedom spring-

mass system, which is 2.+�/-. 

For many DE simulations the time increment is chosen so that a typical collision consists 

of 10 to 20 time-steps (Shmulevich 2010). Schafer, Dippel and Wolf (1996) argued that there is 

no intrinsic time-scale to collisions and the choice of the time increment depends on the maximum 
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Figure 3-1 DEM algorithm 
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relative velocities expected during the simulation and recommended 100 time-steps during a 

collision to ensure numerical accuracy. A time step of 100123� was used in the present study, 

equal to 0.003+�/- for the smallest particle, to ensure stability of the system and maintain 

precision of calculations. 

3.4 Spherical Particles 

Spherical particles have been used in many DE simulations with various contact force laws. 

The dynamic behavior of large granular assemblies can be modeled reliably using spherical 

particles, and qualitative and quantitative agreement with experiments have been reported. 

The primary advantage of using spherical particles is the straightforward contact detection, 

which is simply comparing the distance between the center of the particles and the sum of their 

radii. The numerical efficiency due to the simple contact detection allows simulating larger 

granular assemblies with more particles and more detailed numerical investigations, such as 

variation of material properties, boundary conditions, and other parameters.  

One disadvantage of this approach is that spherical particles do not interlock as most real 

angular particles do. Particle interlocking contributes to tangential contact forces that are 

specifically important in modeling of quasi-static systems. Therefore, to effectively model static 

phenomenon using spherical particles, tangential force parameters, such as damping constants, 

should be determined by comparison of simulation results with experiments (Poschel and 

Schwager 2005). 

3.5 Contact Models 

One of the most important characteristics of a DEM simulation is its contact model, also 

called the contact constitutive model, which determines the force-displacement relationship 
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between contacting bodies. The contact model should be chosen to closely represent the behavior 

of the simulated material. 

Many contact force schemes have been suggested and used in DE simulations. Contact 

forces are nearly always decomposed into normal and tangential components with respect to the 

contact surface. The contact force models used for normal contact can be generally classified into 

linear spring-dashpot model, non-linear viscoelastic models, and hysteretic spring models. The 

normal force is associated only with the translational motion of the contacting particles, whereas 

the tangential force is associated with the rotational motion of the particles in addition to the 

translation motion.  

The tangential contact force is mainly determined by the surface properties of the particles 

and the inter-locking of the small surface asperities. It is typically modeled in DE simulations using 

sliding and rolling frictions. Therefore, it is also closely related to energy dissipation of the system, 

which is essential to the equilibrium of quasi-static simulations.  

The simulations carried out for this study were based on the contact models used by 

Cundall and Strack (1979). A no-tension linear spring-dashpot model is used in the normal 

direction and a linear spring-dashpot model, combined with Coulomb friction law is used in the 

tangential direction. Figure 3-2 schematically shows the contact model used.  

Figure 3-2 Contact force model 
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The following discussion explains in detail the contact force calculations for two contacting 

disks that are referred to as disks � and �. A similar approach is used in the case of a disk contacting 

a wall. A complete list of the notation used in this section and their definitions is presented on page 

viii. The superscripts represent the time associated with the variable and the subscripts represent 

vector components. For instance, 6�	7 is the 
 component of the vector 6� at time �. 

The disks are in contact if the distance between the centers of the disks, �, is smaller than 

the sum of the disks’ radii: 

� = 9"��(j) − "��(�)9 
� < #(�) + #(�) 

where "��(�) is the position vector of disk �, and #(�) is the radius of disk �. 
The normal unit vector �� is defined as the unit vector pointing from the center of disk � to 

the center of disk �, which is given by 

�� = "��(j) − "��(�)�  

In the case of contact of particle � with a wall, the wall is considered as a particle with infinite 

radius and �� is the unit vector perpendicular to the wall and pointing away from the particle. The 

tangent unit vector ̂ is defined as the 90∘ clockwise rotation of ��, or 

̂ = (�� , −�	) 

Here �	 and �� are the 
 and � components of ��, respectively. 

The normal relative velocity of disk � with respect to disk �, ∆$�, is calculated as 

∆$� = [$��(j) − $��(�)]. �� 
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where $��(�) is the velocity of particle �. The tangential relative velocity at the point of contact ∆$� 

results from both the relative translational velocity of the disks and their rotational velocities. This 

is given as 

∆$� = E$��(j) − $��(�)F. ̂ + )(�) r(i) + )(�) #(�) 

where )(�) is the rotational velocity of particle �. Figure 3-3 shows the contribution of the 

individual particle velocities to the relative normal and tangential velocities.  

During a time-step, the relative velocity causes a relative displacement increment. The 

components  ∆$�� and ∆$�� are the displacements of disk � with respect to disk � , during the 

time-step, in the normal (��) and tangential (̂) directions respectively. These displacements result 

in contact force increments which are calculated using the force-displacement law. Using a linear 

spring-dashpot model gives the contact force increments of 

∆�� = -� ∆$� ∆� 

∆�� = -� ∆$� ∆� 

Here ∆�� and ∆�� are the contact force increments applied to disk � by disk �, respectively in the 

normal and tangential directions, -� and -� are respectively the normal and tangential spring 

stiffness representing the contact force, and ∆� is the time increment. 

Figure 3-3 Contribution of particle velocities to relative normal and tangential velocities 
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The contact force at time �, ��7, has components in the normal and tangential directions 

which are ��7 . �� and ��7 . ̂ respectively. The contact force increments are added to the contact force 

components at the beginning of the time-step, in order to get the contact force components at the 

end of the time-step. This gives 

��7H∆7 = ��7 . �� + ∆�� 

��7H∆7 = ��7 . ̂ + ∆�� 

Unlike the spring contact force which is developed incrementally, the contact damping 

force is independent of the time-step and is directly proportional to the relative velocity of contact. 

It is calculated using the contact damping coefficients & �� and & �� in the normal and tangential 

directions, respectively. These are given as 

I� = & �� ∆$� 

I� = & �� ∆$� 

where I� and I� are respectively the normal and tangential contact damping forces. The damping 

coefficients are proportional to the spring stiffnesses  �� and  �� using the proportionality factor 

&. The tangential damping coefficient, & ��, is not related to any experimentally measurable 

material property and is adjusted by adjusted by comparison of simulation results with experiments 

(Poschel and Schwager 2005). 

The total tangential force of the contact is then compared with the maximum allowable 

tangential force, which is the sum of sliding friction and cohesion. Sliding friction is calculated 

based on Coulomb law, using a friction coefficient of tan(φ), or 

|�� + I�| ≤ |�� + I�| tan(φ) + � 

where φ is the friction angle and � is cohesion. 
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Finally, the normal and tangential components of the contact forces are added together to 

get the total contact force vectors 

�� = �� �� + �� ̂ 

I��� = I� �� + I�  ̂ 

where �� and I��� are respectively the spring and damping contact forces applied to particle � due to 

contact with particle �. The contact torque is calculated from the tangential forces, as well and is 

given as 

τ(�, �) = −[�� + I�] #(�) 

where τ(�, �) is the torque applied to particle � due to contact with particle �. 

The final contact forces and torque applied to disk � by disk � are therefore summarized as 

��(j, i) = −��(�, �) 

I���(j, i) = −I���(�, �) 

τ(�, �) = τ(�, �) #(�)#(�) 

3.6 Energy Dissipation and Global Damping 

A fraction of the kinetic energy of the system transforms into other forms of energy and 

ultimately to heat. This mainly occurs through friction and plastic deformation or viscoelasticity 

of the granular material. In DE simulations, energy is dissipated through friction, contact damping 

and global damping.  

Sliding friction acts when the tangential contact force reaches a maximum value. Some 

studies, such as Zhou et al. (2002), have also used a rolling friction force that is proportional to the 

rotational velocity of the disk and the normal contact force.  



 

28 

 

While friction mechanisms affect individual particle dynamics and contact stability, the 

use of damping is necessary for the equilibrium of the system. Particulate systems would not be 

able to reach equilibrium, if no damping is included and instead, they would continue small elastic 

adjustments in position. Contact damping is provided by the normal and tangential dashpots and 

operates on the relative velocities of contacts. Global damping, also known as background friction, 

operates on the absolute translational and rotational velocities of the particles. Global damping 

force and torque are calculated as 

������� = −% � $�� 

τ� = −% � ) 

where % is the global damping coefficient, � is the mass of the particle, and � is the mass moment 

of inertia of the particle. 

3.7 Application of Newton’s Law of Motion 

Once all the contact forces of the system are calculated, the resultant force and torque 

applied to each disk is calculated by summing all applied loads, including body force, contact 

forces and torques, and external loads. 

�(�) $��O (�) = PE��(�, �) + I���(�, �)F�
QRS + �������(�) + �������(�) + P �������(�) 

I(i))O (i) = P τ(�, �)�
QRS + τ�(�) 

where �������(�) is the body force and ∑ �������(�) is the sum of the external forces applied to disk �. 
∑ E��(�, �) + I���(�, �)F�QRS  and ∑ �(�, �)�QRS  are respectively the sum of contact forces and torques 

applied to particle �. Based on the assumption that the particle acceleration is constant over a time-

step, Newton’s equations of motion are integrated to calculate the new particle velocities and 



 

29 

 

positions. The central finite difference method, used by Cundall and Strack (1979), is used for this 

time integration. The resultant force/torque is assumed to act on the disk from time � − ∆7V  to � +
∆7V  and results in 

$��WH∆7V = $��W0∆7V + Σ�������7�  ∆� 

)WH∆7V = )W0∆7V + ΣτW�  ∆� 

Here $�� and ω in the global damping equation are evaluated as 

$��7 = $��70∆7V + $��7H∆7V2  

)7 = )70∆7V + )7H∆7V2  

Substituting and solving for $���H∆XY  and )�H∆XY  yields 

$��WHZ7V = $��W0Z7V + ∑[�� + I���\ + ������� − % � $��70Z7V + $��7HZ7V2 + ��������  ∆� 

)WHZ7V = )W0Z7V + ∑ τ + −% � )70Z7V + )7HZ7V2�  ∆� 

which is simplified to 

$��7H∆7V = ]1 − % ∆�2 ^ $��70∆7V + ∑[�� + I���\ + ������� + ��������  ∆�
1 + % ∆�2   

)7H∆7V = ]1 − % ∆�2 ^ )70∆7V + Στ�  ∆T
1 + % ∆�2   

These new velocities are used to update the position, "��, and angular orientation, ', of the disks 
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"��7H∆7 = "��7 + $��WH∆7V  ∆T 

'7H∆7 = '� + )WH∆7V  ∆� 

This concludes the calculation cycle for the time step from time � to � + ∆�. The new 

particle positions are then used for the next calculation cycle, starting with contact detection (See 

Figure 3-1). The time-stepping cycle continues until the simulation end time. 
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4. METHODS 

4.1 Specimen Generation 

The geometry of a particulate system is defined by the boundary conditions and the particle 

shape, size, orientation, and layout. Particle shape selection is the first step in setting up a DE 

model, since it governs the contact detection and contact force calculating algorithms. Once the 

appropriate boundary conditions and particle shapes are chosen, the next step is to place the 

particles in the domain to create the initial assemblies for simulation. 

Most engineering problems that are studied using the DEM consist of dense particle 

packings. This is certainly the case in most geomechanics applications, where the particulate 

systems are initially in equilibrium under gravity and have relatively high densities. In order to 

obtain a dense packing, an initial arrangement of non-overlapping particles was generated and then 

was allowed to settle under gravitational force. This is true for all packings used in this study. 

The initial arrangement of particles was created using a triangulation approach based on 

the method proposed by Cui and O’Sullivan (2003). Figure 4-1 shows the consecutive steps in 

creating a packing of 340 particles, using the triangulation method. A random number generator 

was used to produce random points within the domain. A mesh of triangles was then created using 

Delaunay triangulation of the set of random points. Delaunay triangulation of a set of points, is 

creating a triangular mesh by connecting the points such that no point is inside the circumcircle of 

any triangle in the mesh. This was carried out in MATLAB using the “DelaunayTri” command. A 

triangulation refinement was then carried out to break any large triangles into smaller ones so that 

the resulting particle radii was bound between 5 to 10 ��. Once the triangular mesh was finalized 

(Figure 4-1a), the first set of particles were inserted as the incircles of the triangles (Figure 4-1b). 
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Since the area surrounding the vertices are not covered by the incircles, a second set of particles 

were added at the vertices of the triangles, so that the radius of the disk was equal to the minimum 

clear distance to the adjacent incircles (Figure 4-1c). Lastly, a third set of particles were inserted 

in the remaining area of triangles between the incircles and the vertex circles (Figure 4-1d).   

Once the initial specimen of non-overlapping particles was finalized, a DE simulation was 

run to allow the particles to settle under gravity and form a stable heap. Figure 4-2 shows snapshots 

of the settling simulation for the specimen shown in Figure 4-1. The simulation was run for 4 b
101 time-steps over a period of 4 seconds to allow complete stagnation of the system. The model 

parameters listed in Table 4-1 were used in the simulations. 

Figure 4-1 Specimen generation steps, (a) triangular mesh based on Delaunay triangulation of random points, (b) 

incircles of the triangles, (c) vertex infilling, (d) secondary incircles 
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The ten packings created using the triangulation approach with varying slopes and 

number of particles are shown in Figure 4-3 with the surface particles highlighted. The total 

number of particles in the packings range from 170 to 350 particles, and the slope of the 

packings range from 7.6° to 16.5°. The surface slope was calculated using a simple linear 

regression of the surface particle coordinates. These packings have random particle size 

distributions. Figure A-1 in Appendix A shows the corresponding particle size distribution for 

each packing. 

To control for the effect of the particle size distribution in the behavior of the particulate 

systems, three packings with the same particle size distribution but also with varying slope were 

created. To generate these packings, the initial specimen used to produce the packing shown in 

Figure 4-3(j) was used and a body force in the positive 
 direction was added to the gravitational 

settling simulation to create the two other packings with lower slopes. 

Figure 4-2 Settling of particles under gravity 
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Figure 4-3 Particle packings with varying initial slopes, created using the triangulation method 
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The three packings with the same group of particles and the corresponding particle size 

distribution are shown in Figure4-4 and Figure4-5. The void ratio of the three packings were 

found to be about 0.12. 

To create the 12.9° slope, a body force in the 
 direction was added to the particles above 

the line y = −0.24x + 12. The body force was linearly increased from zero to 0.25m(i)g  during 

 = 0 to t = 1sec and then linearly decreases back to zero during t = 1 to t = 2 sec. No body 
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Figure 4-4 Packings with an identical particle group and varying slope 

Figure 4-5 Particle size distribution of 350 particle packings 
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force in the 
 direction was applied from t = 2 to t = 4 sec and the particles were allowed to 

redistribute internal forces and reach equilibrium. To create the 8.7° slope, the same approach 

was used, with the only differences being that the body force was applied to particles above the 

� = −0.28
 + 14 and the body force was increased up to 0.57m(i)g. This method was 

arbitrarily selected and the body force in the 
 was adjusted from trial and error to create the 

desired slopes.  

4.2 Munjiza NBS Contact Detection 

The Munjiza No-Binary Contact Search (i.e. Munjiza-NBS) algorithm, originally 

developed by Munjiza in 1995, was used to optimize RAM and CPU time requirements. The NBS 

contact detection method divides the space into rows and columns and as it proceeds row by row, 

it checks the particles of each cell with the ones in the neighboring cells for contact. The cells 

should be large enough to contain the largest particle, so that only particles from neighboring cells 

could have contact. The particles are mapped into each row using a loop in ascending order. This 

results in a descending list of the identification numbers of the particles in each row. These linked 

lists are concisely stored in only two arrays. An array 6 of size ��, where �� is the number of rows 

and array m of size �, which is the total number of the particles.  

For element � in array 6, the array contains the identification number of the last particle 

mapped into row �. Therefore, the fourth element of array 6, for instance, contains the 

identification number of the last particle mapped into the fourth row, which would be the largest 

identification number of the particles in that row. If a row contains no particles, a negative value 

in stored in the corresponding element. 

Element � of array m contains the identification number of the particle that comes next in 

the row lists after particle �. So if a row contains particles 5, 18 and 9, the list for that row would 
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be 18→9→5 and m(18) = 9 and m(9) = 5. If particle � is the one with the smallest identification 

number in a row, it would be the last particle in the row list and a negative value is assigned to 

m(�). 

Figure 4-6 demonstrates the method with an example. Figure 4-6a shows a domain, which 

is divided into 5 rows and 5 columns of cells, and the 10 particles that are within the domain. For 

each row, the descending list of the identification numbers of the particles within the row is written. 

Figure 4-6b shows the arrays that store the row lists and also shows, as an example, how the list 

for the second row, can be obtained from the arrays.  

 After mapping particles into rows, particles in each row are mapped into individual cells 

using a similar approach. To be able to check contact of discrete elements in neighboring rows, 

two adjacent rows are mapped into cells. Finally, particles mapped into each cell are checked for 

contact with the ones mapped into the same and neighboring cells. 

4.3 Surface Reinforcement 

Vegetation has been found to improve slope stability and reduce erosion, through 

mechanical and hydrological effects. Mechanically, the interaction of the soil and the roots results 

Figure 4-6 Example of particle mapping using the NBS method, (a) for each row of cells, the ascending list 

of the particle numbers  is created (b) the lists are stored in arrays A and B as linked lists 
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in a composite behavior, reinforcing the soil, and increasing its strength (Cazzuffi, Cardile and 

Gioffrè 2014). Reinforcements of the slope surface, in the form of springs connecting surface 

particles to each other or to particles under the surface, were implemented to represent the effect 

of vegetation roots.   

Four reinforcing patterns were modeled to investigate the effect of such reinforcing on 

flow-generated displacements of granular packings: 1) net reinforcing pattern, 2) 25% shallow 

reinforcing, 3) 25% deep reinforcing and 4) 50% shallow reinforcing. The net reinforcing pattern 

connects neighboring surface particles of a packing with reinforcing springs.  The 25% and the 

50% shallow reinforcing patterns, respectively connect 25% and 50% of the surface particles to 

particles beneath the surface. These reinforcing elements are shallow and do not extend deep into 

the packing whereas the 25% deep reinforcing pattern connects the same surface particles to deeper 

particles in the packing. The reinforcement is distributed evenly throughout the surface. 

The method used for the calculation of the forces applied by the reinforcement elements 

was very similar to the inter-particle normal contact force calculation. The reinforcement forces 

are zero at the beginning of the simulation and develop over time-steps incrementally. The 

reinforcement forces are part of the external forces applied to the particles and contribute to ∑ ������� 

(See section 3.7). They are assumed to be applied to the centers of the disks and therefore do not 

cause torque. The stiffness of the reinforcing springs was selected to be 0.2 ��. The reinforcing 

elements were set to remain active as long as the displacements of the connected particles were 

minimal and to break off if the absolute velocity of either of the connected particles exceeded 

2 ��/23�. This limit was arbitrarily selected and was adjusted based on simulation results so that 

the reinforcement becomes inactive when substantial movements occurs. 
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4.4 Flow-Generated Forces 

The force applied by runoff to the soil particles on the surface of a slope is influenced by a 

variety of factors, such as the geometry of the slope, runoff velocity, density and compactness of 

the soil, exposure of each particle to flow, etc. Accounting for the effect of all such factors was 

beyond the scope of this study, and therefore several simplifying assumptions were made in the 

modeling of the flow-generated forces. 

To account for the fact that the larger particles typically have a larger surface exposed to 

flow, it was assumed that the drag force applied to surface particles is proportional to the radius of 

the particles. It was presumed that the force applied by runoff to the particles is zero initially and 

then increases linearly for a period of 1 second to a maximum value of n b #(�) Newtons. The 

coefficient n was selected to be 3.2, 4.0 and 4.4 o/� in the various simulations, that correspond 

to flow velocities of 0.65, 0.73, and 0.76 �/23�. The drag equation 

�� = 12  p $V qZ6 

was used to calculate the flow velocity corresponding to the different n values, where �Z = n# is 

the drag force applied to a particle, p = 1000 �r/�s is the density of water, $ is the velocity of 

flow, qZ is the drag coefficient and is assumed to be 0.75, and 6 = 2# is the projected particle 

surface area perpendicular to flow. The drag coefficient was selected based on the drag coefficient 

of 0.5 for a sphere and 0.8 for a cube (Hoerner 1965). 

It was also assumed that the surface particles are submerged in water and that the buoyancy 

force will counteract the downward component of the drag force applied to these particles. 

Therefore, the drag force was only applied in the horizontal direction to the surface particles. 
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4.5 Model Properties 

The properties listed in Table 4-1 were used in the simulations that follow, unless noted 

otherwise. Soil particle density of 2.56 r ��s⁄ = 2560�r/�s   was assumed. The normal contact 

spring stiffness �� = 2.0 o/�� was selected in order to limit the static deflection of the largest 

particle with # = 10 �� under its self-weight to (4 b 100u)#. The tangential contact spring 

stiffness, �v = 0.2 o/��, was selected as a fraction of ��, and adjusted after iterations to create 

realistic rotational movement of particles in various simulations. Friction angle ' = 35° and 

cohesion � = 0 was selected to represent cohesion-less dry sand. Global and contact damping 

constants, % and &, were adjusted using trial and error, to achieve realistic damping behavior. (See 

section 5.1) 

Table 4-1 Model properties 

Variable Symbol Value 

Particle density p 2,560 �r �s⁄  

Normal contact spring stiffness �� 2.0 o/�� 

Tangential contact spring stiffness �� 0.2 o/�� 

Friction angle ( 35° 

Cohesion � 0.0 

Global damping constant % 3.0 

Contact damping constant & 0.15 

Time increment �� 1001 23� 
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5. RESULTS AND DISCUSSION 

5.1 DEM Validation 

Benchmark simulations were carried out to investigate the validity of the developed 

discrete element code and the accuracy of the contact model. The collision of a particle with a rigid 

wall and the collision of two particles were both simulated. The analytical solutions to the 

equations governing the particle dynamics were compared with the results of the DE model. 

Accuracy of results, stability of the simulations and energy dissipation in the system were 

investigated and considered in selection of the appropriate time-step, contact force parameters and 

damping coefficients. 

5.1.1 Collision of a Particle with a Rigid Wall 

The first simulation studied is the settling of a particle on a rigid surface under its weight. 

The particle is initially merely touching the rigid surface underneath and has no initial velocity. 

Although static equilibrium cannot be achieved in a DE model, if parameters such as the time-

step, the spring stiffness, and the damping coefficients for the contact force model are set correctly, 

a quasi-static equilibrium can be attained. As the simulation begins, the particle will slowly move 

downward in each time-step under the gravitational acceleration. The rigid surface causes the 

particle to deform, which is visualized as an overlap of the particle and the wall and as a result, a 

contact force is developed between the rigid surface and the particle. 

Figure 5-1 schematically shows all the contact and global damping force models that apply 

to a particle-wall collision. In this case, since the initial velocity of the particle is zero and the 

movement due to gravity is only in the vertical direction, the tangential forces and the global 

rotational damping force are zero. 
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When there is no global damping, the only external force applied to the particle is the 

normal contact force applied by the rigid surface. If this is modeled as a linear spring, the contact 

force is proportional to the deformation, ∆, which is the overlap developed between the particle 

boundary and the rigid surface, calculated as 

∆ =  �r-� − �() 

where � is measured from the position of static equilibrium, positive in the upward direction 

(Figure 5-2). Applying Newton’s second law, we have 

��w = −�r + -�∆ 

which simplifies to the equation of motion for an un-damped spring-mass system. 

��w = −-�� 

This is a homogenous second-order differential equation that subject to the initial 

conditions, gives the solution 

Figure 5-1 Force models for  a particle-wall collision 

Figure 5-2  ∆(t) and y(t) 
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�() = �r-�  cos()) 

which indicates a harmonic motion with the natural circular frequency of 

) = x-��  

The particle moves down into the surface until the contact force reaches its maximum value and 

the particle is pushed back up to its initial position. Since there is no energy dissipation the 

oscillations go on indefinitely. 

However, if the contact force is modeled as a linear spring-dashpot model, the oscillations 

will dissipate until the particle reaches a quasi-static equilibrium in which the contact force is 

almost equal to the weight of the particle and the velocity of the particle is almost zero. In this case 

the equation of motion is 

��w = −-�� − &-��O  
which has three different solutions based on the value of the damping coefficient. If  &-� is smaller 

than the critical damping coefficient of 

�y = 2+-�� 

the system is under-damped and will experience a declining oscillatory motion with the damped 

circular frequency of +1 − zV ). The solution to the equation of motion, subject to the initial 

conditions, is 

�() = �r-� 30{|� } z+1 − z2  sin ~�1 − z2 )� + cos ~�1 − z2 )�� 

where  
z = &-��y  
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is the damping ratio. However, if the system is over-damped and &-� > �y, the solution is 

�() = �r-� �z + +zV − 12+zV − 1 3]0{H+{Y0S^|� − z − +zV − 12+zV − 1 3]0{0+{Y0S^|�� 

which indicates non-oscillatory motion. 

In the following discussion, for all simulations a particle with # = 7.5 �� was used to 

represent the median particle size used in the packing simulations. The weight of the particle was  

4.44 b 100Vo and a normal spring stiffness of �� = 2 o/�� was used. The static equilibrium 

deformation was �r ��⁄ = 2.22 b 100V�� = 0.03 # and a time step of 100u 23� was used.  The 

critical damping coefficient was & = 0.095. Data points for every 0.02 sec were used to create the 

figures. 

Figure 5-3 shows particle deformation, ∆, over time for the different values of contact 

damping coefficient, β. As & is increased, more energy is dissipated in each oscillation, the 

amplitude of the motion is decreased and the system reaches the quasi-static equilibrium over a 

shorter period of time. Once the system was over-damped, & = 0.1, the oscillatory behavior 

disappeared and the particle settled into its quasi-static equilibrium within about 0.5 seconds.  
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Figure 5-4   shows the percent error of the simulation results over time, for the case of no 

global damping (% = 0) and under-damped spring-dashpot model with & = 0.01. Figure 5-5   

shows the percent error of the simulation results over time, for the case of no global damping (% =
0) and over-damped spring-dashpot model (& = 0.1). The percent error was calculated as  

% 3##�#() = ∆�	�y�() − ∆����������()∆�	�y�() b 100 

The simulations were carried out using three different time-step values. In all cases, the 

percent error at the beginning of the simulation is larger and decreases as the simulation goes on. 

It is shown that for each time-step value, the percent error approaches zero in a shorter period of 
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Figure 5-4 Effect of time-step on simulation error for α=0 and β=0.01 
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time when β is larger. It is also shown that in both cases of under-damped and over-damped system, 

the percent error is reduced when smaller time-steps are used. 

When global damping is applied, the simulation results cannot be directly compared with 

analytical solutions. This is due to the way global damping is integrated in the DEM algorithm. 

Global damping does not apply an external force on the particle, and is only embedded in the 

integration of the equation of motion. This was explained in more detail in section 3.7. Therefore, 

once global damping is applied, the equation of motion can only be solved numerically.  

Figure 5-6 shows the effect of global damping on particle deformation for a simple spring-

mass system with no contact damping. The global damping acted similarly to the contact damping 

and reduced the amplitude of the motion until it was negligible and the oscillatory behavior was 

eliminated (see Figure5-3). However, unlike contact damping, global damping did not affect the 

frequency of the oscillations and could not produce non-oscillatory motion.  

Figure 5-7 shows the effect of global damping on particle deformation for spring- dashpot 

systems. The contribution of global damping becomes less significant when the contact damping 

is increased. 
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5.1.2 Collision of Two Particles 

In this section, collision of two particles moving on a horizontal surface is simulated. 

Particle velocities are studied and compared with analytical solutions. 

Figure 5-8 shows the contact and global damping force models that apply to a particle-

particle collision. To compare simulation results with analytical solutions, a normal collision was 

simulated, so that tangential forces were zero, and global damping was disabled. It is assumed that 

the particles are on a frictionless horizontal surface, therefore the only force applied to each particle 

in the normal contact force.  
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Figure 5-8 Force models for  a particle-particle collision 
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The first particle, with the initial velocity of 
SO (0) = 1 ��/2 and  �SO (0) = 0 ��/2 hits 

the second particle which is stationary, along the x direction. Applying Newton’s law of motion, 

we have 

�
Sw = −-�∆w − &-�∆O  
�
Vw = −-�∆w − &-�∆O  

where ∆ is the overlap developed between the particles. The relationship between 
S, 
V and ∆ is 


V − 
S − 2# + ∆= 0 

Substituting the equations of motion into the former equation, we have 

�∆w = −2-�∆ − 2&-�∆O  
With the initial conditions of ∆(0) = 0 and ∆O (0) = 1, the solution is 

∆() = S|  sin ())     if & = 0 

∆() = 30{|� 1
)�1−z2  sin ]+1 − z2 )^     if z < 1 

∆() = 1
2)�z2−1 ]3]0{H+{Y0S^|� − 3]0{0+{Y0S^|�^     if z > 1 

where 

) = x2-��  

z = &-�+2-�� 

Substituting into the equation of motion and solving for 
S(), with the initial conditions of 


S(0) = 0 and 
SO (0) = 1, 

SO () =  SV cos()) + SV   if & = 0 
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SO () =  SV  �30{|� cos ]+1 − z2 )^ − z
2�1−z2  30{|� sin ]+1 − z2 )^� + SV     if z < 1 


SO () =  Su  ��1 + {+{Y0S� 30({H+{Y0S)|� + �1 − {+{Y0S� 30({0+{Y0S)|�� + SV     if z > 1 

Figure 5-9 shows the percent error of the simulation results for 
SO  over time for various 

contact damping coefficients. It is shown that for the un-damped spring-mass system, the error 

increases during the collision, which could be due to accumulation of error. On the other hand, for 

the under-damped spring-dashpot systems, the error increases to a maximum value of 3% for & =
0.001 and 8% for & = 0.01 and then decreases to about 1%. The final error in calculating particle 

velocity after collision decreased from about 6% to 0.01% as the damping coefficient, β, increased 

from zero to 0.1. The error was the smallest when the contact force was modeled as an over-

damped spring-dashpot model, and the difference between the simulation results and the analytical 

solution was negligible, less than 0.16%, throughout the collision. 

Figure 5-10 shows the simulation results for the velocity of the two particles over time. It 

shows how momentum is transferred from the first to the second particle during the collision. The 
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simulations were carried out using various contact damping coefficients. When there is no contact 

damping, the momentum of the first particle is completely transferred to the second particle. When 

damping in applied, part of the momentum is transferred to the second particle, and the first particle 

retains part of its velocity. If the contact model is over-damped, the two particles act as a single 

joint particle and proceed with the same velocity after the collision. The figure also shows that the 

duration of contact is increased as β is increased. 

Figures 5-11 shows the percent change in the momentum of the system after collision, for 

the different contact damping coefficients. Change in momentum of the system was negligible in 

all simulations, less than 100SV%.  Figure 5-12 shows the percent change in kinetic energy of the 

system, which increased from 0% to about 50% as the contact damping coefficient, β, was 

increased from zero to 0.05. The dissipation of the kinetic energy of the system did not change as 

β increased from 0.05 to 0.1. 
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5.2 Parametric Study 

Numerous simulations were carried out to study the effect of the key parameters on flow-

generated displacements of reinforced granular packings. The key parameters investigated were 

the initial slope of the particle packing, the quantity and type of surface reinforcements and the 

magnitude of the applied flow-generated forces. The following discussions explain how the effect 

of each parameter was measured and the results obtained. 

5.2.1 Packings with Various Particle Size Distributions 

To investigate the effect of the initial slope of granular packings on flow-generated 

displacements, packings with different surface slopes were created and exposed to the same flow-

generated surface forces. Ten packing samples with slopes ranging from 7.6° to 16.5° degrees were 

modeled. Figure 4-3 shows the unreinforced packings, with the surface particles highlighted before 

flow-generated forces are applied. The model properties listed in Table 4-1 were used here and a 

reinforcing spring stiffness of -v = 0.2-� was used for all the simulations. The applied flow-

generated forces increased linearly from 0 to a maximum value of 4#(�) Newtons, from  = 0 to 

 = 1 23� and was kept constant from  = 2 to  = 3 23�. (See section 4.4) 

Figure 5-12 Percent change in kinetic energy of the 

system 
Figure 5-11 Percent change in momentum of the system 
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Figure5-13 shows the average flow-generated displacement of surface particles for each 

packing during the simulation. The average surface particle displacement at time T, ∆�����7, was 

calculated using 

∆�����7 = ∆�����70∆7 +  
S� ∑ +∆
(�)V + ∆�(�)V��RS  

where ∆�����70∆7 is the average surface particle displacement of the previous time-step and ∆
(�) 

and ∆�(�) are the displacements of particle � during the time-step in the 
 and � direction, 

respectively.  

Figure 5-13 Average flow-generated displacement of surface particles of unreinforced packings 

Figure 5-14 shows the average flow-generated displacement of surface particles for each 

packing at  = 3 23�. 
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Figure 5-15 show the average flow generated displacement of surface particles during the 

simulation for the unreinforced packings with the same particle size distribution. 

The particle packings with steeper slopes generally experienced more flow-generated 

displacements. This is understandable since generally, surface particles of lower slopes are more 

stabilized by neighboring particles and therefore are able to resist higher runoff forces before 

getting displaced. Figure 5-13 also shows exceptions to this trend, where a packing with a lower 

slope, such as the 7.6° packing, has experienced more flow-generated displacements than a steeper 
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Figure 5-14 Average flow-generated displacement of surface particles at t=3sec 
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slope, such as the 9.5° slope. This could be due to the specifics of the surface particle configuration 

on the packing and surface irregularities that are not easy to measure, but can contribute 

considerably to either stabilizing or un-stabilizing the surface particles. Such local effects, which 

are anticipated in granular media, can result in higher or lower than expected flow-generated 

displacements for a period of time during the simulation. It may also be related to the random 

nature of the initial packings. This shows the importance of investigating various particle packings 

in order to attain a governing trend in behavior. 

Several simulations with various reinforcing schemes were carried out on different 

packings, to study the effect of slope reinforcements on flow-generated displacements. “Net” 

reinforcing pattern, shallow reinforcing of 25% of surface particles, deep reinforcing of 25% of 

surface particles and shallow reinforcing of 50% of surface particles were modeled and 

investigated. In order to be able to compare the results of the simulations, the same model 

properties listed in Table 4-1 were used in all simulations. 

The net reinforcing pattern connects neighboring surface particles of a packing with 

reinforcing springs. Figure 5-15 shows the reinforced packings at t=0 23�. The reinforcing springs 

are shown with a line connecting the particles. The 25% and the 50% shallow reinforcing patterns, 

respectively connect 25% and 50% of the surface particles to the particles beneath. These 

reinforcings are shallow and do not extend deep into the packing. Whereas the 25% deep 

reinforcing pattern connects the same surface particles to deeper particles in the packing. The 

reinforcing is manually assigned and distributed evenly throughout the surface. Figures 5-16 to 5-

18 show the 25% shallow, 25% deep and 50% shallow reinforced particle packings. 
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(a) Slope=7.6° 

 
(b) Slope= 7.7° 

 
(c) Slope= 8.0° 

 
(d) Slope= 9.5° 

 
(e) Slope= 11° 

 
(f) Slope= 11.4° 

 
(g) Slope= 12.0° 

 
(h) Slope= 13.1° 

 
(i) Slope= 14.2° 

 
(j) Slope=16.5° 

 

Figure 5-16 Particle packings reinforced with the net pattern 
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(a) Slope=7.6° 

 
(b) Slope= 7.7° 

 
(c) Slope= 8.0° 

 
(d) Slope= 9.5° 

 
(e) Slope= 11° 

 
(f) Slope= 11.4° 

 
(g) Slope= 12.0° 

 
(h) Slope= 13.1° 

 
(i) Slope= 14.2° 

 
(j) Slope=16.5° 

 

Figure 5-17 Particle packings reinforced with the 25% shallow reinforcing pattern 
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(a) Slope=7.6° 

 
(b) Slope= 7.7° 

 
(c) Slope= 8.0° 

 
(d) Slope= 9.5° 

 
(e) Slope= 11° 

 
(f) Slope= 11.4° 

 
(g) Slope= 12.0° 

 
(h) Slope= 13.1° 

 
(i) Slope= 14.2° 

 
(j) Slope=16.5° 

 

Figure 5-18 Particle packings reinforced with the 25% deep reinforcing pattern 
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(a) Slope=7.6° 

 
(b) Slope= 7.7° 

 
(c) Slope= 8.0° 

 
(d) Slope= 9.5° 

 
(e) Slope= 11° 

 
(f) Slope= 11.4° 

 
(g) Slope= 12.0° 

 
(h) Slope= 13.1° 

 
(i) Slope= 14.2° 

 
(j) Slope=16.5° 

 

Figure 5-19 Particle packings reinforced with the 50% deep reinforcing pattern 
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Figure 5-20 shows the time-averaged average particle displacement of surface particles for 

the different packings with different reinforcing patterns. The packings with steeper slopes 

experienced more flow-generated displacements in general.  

Figure 5-21 shows the percent change in flow-generated displacements of granular 

packings, comparing the different reinforcing schemes with the unreinforced condition. The 

effectiveness of the reinforcing patterns in reducing the flow-generated displacements varied for 

the different packings.  

5.2.2 Packings with Identical Particles 

To eliminate the effect of the particle size distribution in the behavior of the particulate 

systems, three packings with identical particles and initial slopes of 8.7°, 12.9°, and 16.5° were 
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Figure 5-20 Time-averaged flow-generated displacements of the surface particles for packings 
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also studied. The reinforcing patterns used in the previous simulations were applied. Figures 5-22 

shows the 8.7° and 12.9° packings with the different reinforcing patterns. The reinforcing patterns 

for the 16.5° slope were shown in the Figures 5-16(j) to 5-19(j).  

Figure 5-22 Reinforced packings with the same particle size distribution 
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In the first set of simulations, the surface particles exposed to the flow-generated drag 

forces were updated at each time-step to account for the changes in the surface after the initiation 

of flow. In each time-step, the two particles with the largest � within 
 < 4 �� and 
 > 48 �� 

were found and the particles above the line connecting those two particles were selected as surface 

particles and exposed to flow-generated forces. This resulted in variation of the number of surface 

particles during the simulation. This change was accounted for in the calculation of the average 

surface particle displacement at every time-step. In reality the particles exposed to the flow-

generated forces change as the flow develops and the initial surface particles start to roll over the 

surface, however it was found that selecting the surface particles based on a line connecting a high 

and low particle on the sides of the packing was inadequate, and in many cases resulted in either a 

very thin or thick layer of surface particles. n = 4.0 o/� was used in the simulations. In addition, 

simulations with 10% higher drag forces were carried out. Figure 5-23 shows the time-averaged 

average particle displacement of surface particles for the packings with the same particle size 

distribution for the different reinforcing patterns. 
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Figure 5-23 Time-averaged flow-generated displacements of surface particles of unreinforced and reinforced 

packings with the same particle size distribution 
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Figure 5-24 shows the percent change in average flow-generated displacements of granular 

packings with the same particle size distribution, comparing the different reinforcing schemes with 

the unreinforced condition. The difference between the results shown here for the 16.5° packing, 

and the results shown in Figure5-21 and Figure5-24. This is due to the different approaches for 

selecting the surface particles. 

For the 8.7° and 12.9° packings, reinforcement reduced the flow-generated displacements 

of surface particles from 2% to 24%. However, for the 16.5° packing, all reinforcing patterns, 

expect for the net pattern, increased the flow-generated displacements, compared to the non-

reinforced slope. The effectiveness of the different reinforcing patterns in reducing the flow-

generated displacements varies from one packing to another. 

Figure 5-25 shows the percent change in average flow-generated displacements of granular 

packings with the same particle size distribution due to a 10% increase in applied drag flow-

generated forces. The increase in the applied drag force has resulted in 3% to 45% increase in the 

flow-generated displacements, with the maximum effect on the lower slope of 8.7°. The 

unreinforced 12.9° packing has experienced a 7% decrease in displacements. Figure 5-26 shows 

the average surface particle displacements during the simulation of the unreinforced 12.9° slope 
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for the basic (n = 4.0) and increased drag forces (n = 4.4). It can be seen that rate of increase in 

the flow-generated displacements for the n = 4.4 simulation suddenly decreases at about  =
2 23� which has resulted in the decrease of the overall average flow-generated displacements, 

compared to the n = 4.0 simulation. This is probably due the fact that the particle layout has 

resulted in a very thin layer of detected surface particles the linear surface definition. 

Due to inadequacy of the linear surface detection algorithm, a more advanced algorithm 

was developed and another set of simulations were carried out on the three packings with identical 

particles. The more advanced algorithm detected and updated the surface particles every 0.01 23�. 
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This method was found to be considerably more accurate in selecting surface particles throughout 

the simulations and therefore improved the application of the flow-generated forces and eliminated 

the errors resulting from sudden changes in the number of surface particles. Also, the stiffness and 

strength of the reinforcement were increased to see how ultimately effective they are. A reinforcing 

spring stiffness of �v = 100 �� was used and the breaking criteria for the reinforcement was 

removed so that they would remain active throughout the simulation. Figure 5-27 shows the 

average flow generated displacement of all particles for the unreinforced and reinforced slopes for 

n = 3.2 o/�. 

Packings with higher initial slopes experienced more flow-generated displacements and 

the reinforcement was found to reduce the displacements in all cases. Figure 5-28 shows the 

percent change in average flow-generated displacements due to reinforcing. The different 

reinforcing patterns reduced the displacements from 10% to 65%, and where found to be most 

effective in the packing with the lowest slope (8.7°), causing 29% to 65% decrease in the flow-

generated displacements. The 25% deep and the 50% shallow reinforcing patterns were found to 

be the most effective pattern for the three packings. 
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Figure 5-27 Time-averaged flow-generated displacements of unreinforced and reinforced packings with the 

same particle size distribution for H=3.2 N/m 
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Figure 5-29 shows the maximum force developed in the reinforcing springs during the 

simulations that ranged from 0.24 to 0.67 Newtons.  

The same simulations were carried out with a 25% increase in drag force. Figure 5-30 

shows the average flow generated displacement of all particles for the unreinforced and reinforced 

slopes for n = 4.0 o/�. Again, packings with higher initial slopes experienced more flow-

generated displacements and the reinforcement was found to reduce the displacements in all cases. 

Figure 5-31 shows the percent change in average flow-generated displacements due to 

reinforcing. The different reinforcing patterns reduced the displacements from 11% to 64%, and 

where found to be most effective in the packing with the lowest slope (8.7°). Comparison of Figure 
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5-28 for n = 3.2 o/� and Figure 5-30 for n = 4.0 o/�, shows that the effectiveness of each 

reinforcing pattern in reducing the displacements of each packing did not change significantly with 

the increase in the drag force.  

Figure 5-32 shows the percent change in flow-generated displacements of unreinforced and 

reinforced packings, due to 25% increase in the drag force. The displacements increased from 35% 

to 96%. This shows the significance of the effect of the amount of drag force applied on flow-

generated displacements.  
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Figure 5-31 Percent change in flow-generated displacements of packings with the same particle size 

distribution for H=4.0 N/m 
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6. SUMMARY AND CONCLUSIONS 

This study investigated the flow-generated displacements of 13 planar granular packings 

with slopes ranging from 7.6° to 16.5° and with particle radii from 5 to 10 ��. The granular 

packings were simulated using the DEM. A no-tension linear spring-dashpot model was used for 

the normal contact and a linear spring-dashpot model combined with Coulomb friction law was 

used for the tangential contact. Collision of a particle with a rigid wall and collision of two particles 

were simulated and compared with analytical solutions for validation of the model. Unreinforced 

and reinforced packings, where the reinforcement was applied using several differing 

methodologies, were exposed to flow-generated forces that simulated the effects of flowing water. 

The displacements of the surface particles and the effect of the reinforcing patterns were 

investigated to determine the relative level of influence of these reinforcement schemes. The 

following summarizes the main conclusions. 

From comparison of analytical solutions with simulation results is was concluded that: 

•  The effect of global damping was found to be less significant when contact damping was 

increased. 

•  When global damping was not applied to particle collisions, kinetic energy of the system 

dissipated up to 50% as the contact damping coefficient, β, was increased to 0.1. 

•  The error in calculation of particle velocities after collision, decreased from 6% to 0.01% as 

the contact damping coefficient was increased from zero to 0.1. The error was the smallest 

when the contact force was modeled as an over-damped spring-dashpot model, and the 

difference between the simulation results and the analytical solution was found to be 

negligible, less than 0.16%, throughout the collision. 
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From the study of flow-generated displacements of the packings with varying slopes and 

reinforcement, it was concluded that: 

•  In 35 out of the 40 simulations carried out on 10 packings with various particle size 

distributions, surface reinforcement reduced the flow-generated displacements of surface 

particles. The reinforcement was found to be more effective in lower slopes. 

•  The effectiveness of the different reinforcing patterns in reducing the flow-generated 

displacements varied significantly for packings with various particle size distributions. 

•  Use of packings with the same particle size distribution and correct selection of surface 

particles exposed to the flow-generated forces was crucial to realistically model of the behavior 

and obtain reliable results. 

•  The particle packings with steeper slopes generally experienced more flow-generated 

displacements. For packings with the same particle size distribution, the average displacement 

of particles was found to increase linearly with slope and could be predicted using ∆����� = 0.52 b
slope and ∆����� = 0.74 b slope + 0.12  for flow velocity of 0.65 and 0.73 �/23� respectively. 

( ∆����� in  �� and slope in degrees) 

•  In the simulations carried out on packings with the identical group of particles and varying 

slopes, reinforcement reduced the displacements in all simulations, anywhere from 10% to 

65%. The reinforcing was found to be most effective in the packing with the lowest slope 

(8.7°), causing 29% to 65% decrease in the flow-generated displacements. 

•  For packings with the identical group of particles, the 25% deep and the 50% shallow 

reinforcing patterns were the most effective patterns and reduced the flow-generated 

displacements by 32% to 65%. 
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•  The effectiveness of the different reinforcing patterns in reducing the displacements was 

independent of the amount of drag force applied, for the two force magnitudes tested. 

•  A 25% increase in the applied flow-generated forces resulted in 35% to 96% increase in the 

flow-generated displacements of particle packings with identical particles and varying 

reinforcing patterns.  

Considering the results and the limitations of the scope of this study, the following steps 

are recommended for future research: 

•  In this study the validation of the DE model was limited to comparison of results with analytical 

results of simple cases of particle-wall and particle-particle collisions. The reliability of results 

could be improved if the parameters of the model are selected based on the comparison of 

results of the DE model with experimental tests. 

•  In this study the simulations were limited to planar assemblies and the interactions of particles 

in the third dimension were not taken into account. It is recommended that the simulations be 

extended to three-dimensional assemblies. 

•  Circular particles were used in this study whereas the real shapes of soil particles are very 

irregular. Such irregularities cause interlocking of particles and produce tangential forces that 

could affect flow-generated displacements. It is recommended that either more complex shapes 

be modeled in future studies or that the tangential contact force model is improved to better 

incorporate the interlocking effects.  

•  Due to computational limitations, the assembly used in this study was limited to 350 particles 

with radii between 5 and 10 ��. It is recommended that future studies extend to larger 

assemblies with smaller sized particles, to better represent the behavior of real soil particles. 
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APPENDIX A 

 

Figure A-1 Particle size distribution of packings shown in Figure 4-3 


