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1.0. RESULTS FROM PRIOR NSF SUPPORT

Summary

The Central Plains Experimental Range long Term Ecological Research
project, begun in 1982, has focused on the spatial and temporal patterns of
ecosystem structure and function in the shortgrass steppe. We have addressed
research in 5 areas: water dynamics; pattern and control of primary
production; populations chosen to represent trophic structure; organic matter
accumulation and nutrient dynamics; and disturbance. Since the inception of
LTER, we have produced exciting results in each of these 5 areas. For LTER
III, we propose to continue to study the origin and sustainability of shortgrass
steppe ecosystems.

W. K. Lauenroth is the principal investigator on the current LTER grant "long Term

Ecological Research Program: Shortgrass Steppe" (BSR#8612105). The award was for the

period Jan. I, 1987-Dec. 31; 1990 in the amount of $1,676,573. The objectives of this

work were to investigate the origin and long-term maintenance of spatial pattern in

shortgrass steppe ecosystems at a variety of scales (Fig 2.1), and to investigate rules for

transforming information at a particular spatial or temporal scale to the next higher

scale .

The Central Plains Experimental Range long Term Ecological Research project

(CPERILTER) began in 1982. Throughout the 8 years our research has focused on the

spatial and temporal patterns of long-term processes within the context of the 5 LTER

core topic areas. This section will provide an overview of that research by highlighting

specific results. The remaining sections of the proposal comprise detailed results and

accomplishments as a context for proposed future research. A complete list of

publications can be found in Appendix 1.

The Central Plains Experimental Range (CPER) is a 6500-ha research site

administered by the USDA/Agricultural Research Service (ARS) (Fig. 1.1). The site was

established in 1939 and has been in operation continuously since that time. The site was

also the location of an enormous amount of field research during the U.S. International

Biological Program (IEP) in the late 1960s and early 1970s . The historical and ongoing

work by ARS scientists, as well as the experience and database built during the IEP

project, has been a tremendous resource for the CPERILTER project.

1



Figure I.l a A typ ical summer thunderstorm at the Centra l Plain s Expe ri me ntal Range . A large
fr act ion of the growing seaso n rainfall is received as convec tive storms.



1.1 The Five Core Areas

Since LTER I, we have used a slightly modified set of 5 core areas to focus our effort

at the CPER. Linkage of nutrient dynamics with soil organic matter (SOM) is so close in

grasslands (Parton et al. 1988b) that our approach has treated core topics 3 and 4 as a

single issue. In addition, we have added a new core area, Water Dynamics, a research

area that we consider to be fundamental for understanding the structure and function of

the shortgrass steppe. Below, we describe several of the key results of our research in

each of these core areas.

1.1.1 Water dynamics

Because ecosystems in semiarid regions are largely controlled by water, understanding

the temporal variability in precipitation inputs is critical to interpreting the significance

of ecosystem responses (Noy-Meir 1973, Lauenroth et al. 1978). The LTER project began

during a 6-year period in which annual precipitation was above the long-term mean for

the site (Fig. 1.2). This 6-year period was preceded by a 9-year dry period in which 7 of

the years had annual precipitation below the mean. Mean annual precipitation for the 8

years of the LTER project was 354 mm, 9% above the long-term mean of 324 mm . The

first 3 of the LTER years were above the long-term mean and the last 5 have been below

the mean. It is clear from the 47-year record of annual precipitation that the 8 years of

the LTER project represent only a fraction of the observed variability in water inputs. It

is also clear that it will be difficult to say when we have observed a representative

sample of the range of variability. Research being conducted under this topic is described

in Section 3.1.5.

1.1.2 Pattern and control of primary production

Net primary production (NPP) in shortgrass steppe ecosystems is an important and

sensitive system response to interannual and annual variation in water availability

(Lauenroth et al. 1978). The relationship between aboveground net primary production

(ANPP) and annual precipitation has often been reported to be linear over the range of

precipitation received at the CPER (Lauenroth 1979, Webb et al. 1978, Sala et al. 1988b)

2



Figure 1.1b A typ ical mod erately graz ed pastu re at the Ce ntral Plains Experimen tal Range.



(Fig. 1.3). Part of our LTER effort on primary production involves annual estimation of

ANPP at a variety of sites including a grazing exclosure that was also sampled during

the IEP project from 1970-1975 (Fig. 1.4). Although the relationship between ANPP and

annual precipitation is well established, it does not always provide a clear and simple

explanation for the observed variability in the data. This is clearly shown by the spread

of data around the regression of ANPP on precipitation (Fig. 1.3) and the apparent

contradictions in the exclosure data (Fig. 1.4), in which ANPP is high during several dry

years and low in two of the wet years. The explanation is likely related to both the

effects of time lags and other variables such as nitrogen availability. Additional

descriptions of research and results for primary production can be found in Section 3.1.1.

1.1.3 Spatial and temporal distribution of populations chosen to represent
trophic structure

The trophic structure of shortgrass ecosystems is dominated aboveground by grasses ,

cattle, and macroarthropods such as grasshoppers, and belowground by grasses ,

nematodes, fungi , bacteria, and protozoans (Lauenroth and Milchunas 1990). Ecosystems

at the CPER have an asymmetric trophic structure typical of semiarid regions , where

greater species and functional group diversity is found belowground than aboveground

(Scott et al. 1979). Our work to date has focused on 2 groups of populations, plants and

herbivores. As an example, population dynamics of 3 important perennial plant species

clearly indicate the year-to-year variability characteristic of the shortgrass steppe (Fig.

1.5). These results also illustrate that plant populations do not necessarily respond

similarly to the same environmental signal. Additional detail about our research on this

core topic can be found in Section 3.1.2.

1.1.4 Pattern and control of organic matter accumulation and of inorganic
inputs and movements of nutrients

SOM is the single best indicator of ecosystem status at the CPER (Yonker et al . 1988)

and in semiarid regions in general (Parton et al . 1987, Burke et al . 1989). Our work on

these topics has included the important long-term effects of geomorphic and pedologic

processes. During LTER I, we concluded that even though the CPER landscape has been

3
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shaped by fluvial processes, the presence of deflation basins, relic dunes , and paleosols

developed in loess, combined with the lack of low order stream channels, suggest that

eolian processes played a dominant role in shaping the modern landscape. Work under

LTER II funding has resulted in a detailed map of surficial geology (Fig. 1.6), a field

installation for long-term observation of eolian sediment transport, and a detailed

investigation of 137CS as an index of mid-term (20 years) soil redistribution patterns.

Additional research on SOM and nutrient dynamics is described in Section 3.1.3 .

1.1.5 Patterns and frequency of disturbance to the site

Disturbance research associated with the CPERILTER project began with a broad

definition of disturbance (e.g., Rykiel 1985) and included long-term grazing (Milchunas et

al . 1989) and additions of nitrogen and water (Lauenroth et al. 1978). During LTER II

we began to sharpen our focus and our definition of disturbance. The overwhelming

importance of Bouteloua gracilis in shortgrass ecosystems lead us to initiate a line of

research at a small spatial scale that focused on individual plants and the consequences

of events that resulted in their death (Fig. 1.7) (Coffin and Lauenroth 1988). Finally our

interests in the regional significance of our research caused us to begin to evaluate large

spatial scale processes including the mosaic of landuse in the region surrounding the

CPER (Fig. 1.8). Our continuing research includes all 3 scales of disturbance (small,

large, and regional) and is discussed further in Section 3.1.4.

1.1.6 Synthesis and intersite activities

The past three years have been particularly important for synthesis and intersite

efforts for CPERILTER scientists. A number of these are completed products; others are

in progress. Perhaps one of our most successful areas of synthesis is in the development

and application of simulation models with relevance to all core topic areas. The

CENTURY ecosystem model is one of our major contributions in this area (Fig. 1.9)

(Parton et al . 1987, 1988b) (Section 3.6.2). The conceptual framework for SOM and

nitrogen (N) represented in CENTURY has gained significant support in the ecological

4
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community, and is being adopted as a general construct across many ecosystems (Parton

et al. 1989).

With funding from the LTER supplemental program, we began a new synthetic,

in tersite effort that involves application of the CENTURY ecosystem model to a spatial

database for a box transect from the CPER to the Konza LTER site. We are using

Advanced Very High Resolution Radiometer (AVHRR) data as an independen t model to

corroborate regional simulations using the CENTURY model (Fig. 1.10). Our other

synthesis, modeling, and intersite work is described in detail in Sections 3.5 and 3.6.

1.1.7 Data management

During the 8 years of the CPERJLTER project , we have developed a data management

program for accurate entry, storage, security, and easy access of long-term data (Section

3.3 and 3.4). In addition, we are developing a spatial database management system

using a geographic information system (GIS). The GIS will be used for storing the

location of past and current experiments , for maps of natural and artificial features of

the site, and for aiding in site planning and research.

1.2 Continuity of Approach

The objectives of our proposed research for LTER III follow from our efforts over the

past 8 years. This proposed work, in addition to continuing to add to long-term core

data sets, will build upon our most exciting past results on patterns of variability in

fundamental ecosystem properties and their important biotic and abioti c controls. Just as

the theme for our LTER II research was directly related to, and a refinemen t of, the

theme for LTER I, the overall theme for LTER III is a further re finem en t of our concepts

of the origin and maintenance of spatial pattern in shortgrass steppe ecosystems .

In Section 2 of the proposal, we describe our developing conceptual framework of the

biotic and abiotic controls over ecosystem structure and function in the shortgrass steppe.

We then present our current research framework that encompasses prior work and allows

us to focus on new elements in our research. Finally, we propose a research plan to

5
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address key questions within the research framework, including field experimentation,

modeling and synthesis, and regional analysis.

In Section 3 we review the important componen ts of the CPERILTER research

program, those aspects that make our research program distinctive in its contribution to

ecological research in grasslands, and an active participant and leader in the national

LTER program. We describe our research in each of th e core areas, and the long-term

experiments, data sets, archives, and data management protocols that are an in te gral

part of the program. Synthesis, modeling, and intersite activities a re described, as are

our interactions with related research projects . Las t, we discuss the new projects an d

technologies that the CPER re search program is using to address proble ms of long-term

significance.
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Figure LID. Top two panels: Simulated aboveground net primary production (NPP) in the central
Great Plains for 1986 and 1988. The CENTURY ecosystem model was driven by a geographic
information system (GIS) containing information on soil texture, precipitation, and temperature.
Lower two panels: Integrated Normalized Difference Vegetation Index (NDV!) from the
Advanced Very High Resolution Radiometer (AVHRR) for 1986 and 1988. NDVI provides an
independent model of aboveground production. The correlation between CENTURY and NDVI
was significant for both years (p < 0.00I).



2.0 CONCEPTUAL FRAMEWORK AND RESEARCH PLAN

Summary

The semiarid Great Plains of North America is an extensive area, and has
particular importance for natural resource production. The Central Plains
Experimental Range (CPER) has an excellent location in the central Great
Plains to represent the important long-term ecological issues of consequence for
much of the region. Our concept for long-term study of the shortgrass steppe
is that the major controls over ecosystem structure and function are climate,
geomorphology, and landuse management. Each of these controls has
important spatial and temporal heterogeneity across a range of scales, and
exerts its influence at a particular combination of levels. We hypothesize that
the most important controls at the site level of the CPER are soil texture and
landuse. Soil texture is a major influence over soil water availability, and
thus vegetation structure, net primary production, and decomposition. Landuse
sets the equilibrium state of ecosystems by controlling. potential production and
soil organic matter reserves. We propose to continue current work and initiate
new studies to further examine the influence of soil texture and landuse over
shortgrass ecosystem structure and function using field experimental research,
simulation, and regional analysis.

Introduction

The semiarid Great Plains of North America comprises a mosaic of native grassland

and cropland adjacent to the eastern face of the Rocky Mountain chain. Motivation for

careful evaluation and monitoring of this region at the end of the 20th century comes

from 2 sources. First, the Great Plains contains the major wheat producing areas for the

entire continent, in addition to important grazinglands for livestock. Second, current

models of atmospheric circulation indicate that climatic change, as a result of increased

greenhouse gases, will be relatively larger here than in most other parts of temperate

North America (Kellog and Zhao 1988). The combination of socio-economic importance

and vulnerability of the region to both climatic fluctuations and climate change make it

essential that we expand our understanding of long-term ecological relationships,

particularly climate-landuse-ecosystem interactions.

Tt _ Central Plains Experimental Range (CPER) has an excellent location in the

central Great Plains to represent the important long-term ecological issues of consequence

for much of the region. The CPERILong Term Ecological Research (LTER) project

benefits not only from the location of the CPER, but also from the presence of long-term

field facilities and experiments, and from the availability of historical data.

7



LTER LTER LTEII
I II III

HIERACHICAL LEVEL

INDIVIDUAL
PLANT I GAP

PATCH

TOPOSEQUENCE

PHYSIOGRAPHIC UNIT

CENTRAL GREAT PLAINS

CENTRAL PLAINS EXPERIMENTAL RANGE

CENTRAL GRASSLAND REGION

,-'-'-'1
j i .! - -

~-._-- ..
. "'.

I
I

~C-
PRECIP

SHORTGRASS
STEPPE



Figure 2.1 Nested hierarchy of spatial pattern, representing the multiple spatial scales of our
CPER/LTER research effort. Characteristic temporal scales are associated with each of the
spatial scales. In general there is a positive relationship between large spatial scales and long
temporal scales. Shading of the vertical bars indicates our relative research effort at each level
during LTER I and II, and our proposed allocation of effort for LTER III. (I) Central Grassland
Region: 1.8 x 106 km2 of grassland and cropland derived from grassland in the Great Plains and
Central Lowlands physiographic provinces of the United States. (2a) Shortgrass Steppe: 2.8 x 105

km2 of grassland and cropland in the west central section of the Great Plains ph ysiographic
province. (2b). Central Great Plains: 3.0 x 105 km2 of grassland and cropland, whose boundary is
defined by state boundaries. (3). The Central Plains Experimental Range (CPER): 70 km2 of
grassland in the northern portion of the Shortgrass Steppe. (4). Physiographic Unit: a geomorphic
unit defined by the activity of long-term fluvial and eolian processes on a geologic template.
Physiographic units range from .25 to 10 km2. (5). Toposequence (catena): a 2-dimensional
representation of a landscape within a physiographic unit, generally conceived as an elevational
cross -section to focus on slope processes. Generally about 100 m in length. (6). Patch: a discrete
spatial pattern at the scale of several ind ividual plants or bare soil areas, I to 100 m2• (7).
Individual plant/gap: a single plant and the volume in resource space that it influences.



The CPERILTER project represents the continuing development of a research tradition

that began with the USIIBP Grassland Biome project in the late 1960s, the time at

which ecosystem science was formally recognized as a sub-discipline in ecology. Research

at the CPER over the past 20 years has had an important interactive relationship with

the development of ecosystem science. The Grassland Biome project focused on the issue

of productivity of natural ecosystems. Grasslands were conceptualized as homogeneous

entities, appropriately described by an average square meter. The transition from the

IBP project in the early 70s to the LTER project in the early 80s involved important

change in our thinking about the role of spatial variance. Our involvement in the LTER

program (LTER I 1982-1986) began with spatially explicit ideas and questions about the

importance of landscape structure, particularly the classic soil catena model (Gerrard

1981), in the long-term development and maintenance of shortgrass steppe ecosystems.

In the second phase of the project (LTER II 1987-1990) we expanded our thinking about

long-term processes to include the origin and persistence of spatial patterns at a range of

spatial scales (Fig. 2.1). This work included substantial questioning of the generality of

the catena model at the CPER and in the shortgrass steppe region. Our proposed work

for LTER III builds upon LTER I and II and expands the depth of our investigations into

interactions between spatial and temporal patterns in ecosystem structure and function.

2.1 Objective and Conceptual Framework

The overall objective for the CPERJLTER project is to improve our

understanding of the long-term processes responsible for the origin and

sustainability of shortgrass steppe ecosystems. To achieve this objective, we will

evaluate the climatic, geomorphic, and human-induced controls over ecosystem structure

and function across a range of temporal and spatial scales, extending from intra-oasonal

variation to geologic periods, and from individual plants to the central grassland region

(Fig 2.1). We propose to accomplish this through:

1. Continuation of our current, long-term observational and experimental research
begun under LTER I & II.
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2. Continuation and extension of our CPER synthesis and simulation modeling work.

3. Continuation and extension of our intersite and cross-site research and synthesis .

4. Development of new field and simulation experiments .

The conceptual framework for our LTER research in shortgrass steppe ecosystems is

that the major controls over structure and function are climate, geomorphology, and

landuse management. Each has important spatial and temporal heterogeneity across a

range of scales, and exerts its influence at a particular combination of levels (Fi g.2.1).

How do these controls interact to influence spatial variation in system structure and

function at any particular scale? How does interaction affect prediction at the next

higher scale? The next lower? Below, we describe the complexity inherent in these

questions for the shortgrass steppe.

Weather and its statistical representation, climate, is a major driving force for

biological processes, constraining the kinds and numbers of organisms that can survive,

compete; and reproduce, determining overall ecosystem structure and potential

productivity, and altering the dynamics of ecosystem processes. Climate exerts major

control at the regional level, accounting for most of the observed spatial variation in

many ecosystem attributes (Sala et al . 1988b, Burke et al . 1989). Interactions of climate

with landform and topographic position cause spatial patterns in microclimate at

landscape scales. In the shortgrass steppe, interannual variability in precipitation is a

key control over annual NPP. Within a growing season, pulse precipitation events create

important short-term spatial variation in biological activity.

Long-term geomorphic processes in the central grassland region are responsible for the

structure and stability of the landform and soil as a template for ecosystem development

and sustainability. Over geologic time, the interaction of the geologic template with

climate--wind, precipitation, temperature --drives weathering and fluvial and eolian

redistribution of sediments across landscapes and regions. At the scale of decades to

centuries, erosional and depositional processes at the toposequence and physiographic unit

spatial scale may be important in shaping landform via redistribution of material (Fig.

9



2.1). The shortgrass steppe and other semiarid regions are particularly vulnerable to

erosion during droughts, especially when subjected to intensive management such as

cropping, as was apparent in the Dust Bowl of th e 1930s .

Landuse in the central grassland region has an important impact on system status

(Russel 1929, Tieszen et al. 1982, Bauer et al. 1987, Elliott and Cole 1989). Climatic

zones establish regional patterns in landuse, with greatest cropping in tensity in high

rainfall areas. Within a region, geomorphology determines spatial patterns in landuse,

with the most productive lands . generally those on loamy soils • all under cropping, and

grazing on less productive sites. Weather variability among years, commodity prices, and

current status of land determine the temporal variation in landuse.

The relative importance and impacts of climate, geomorphology, and landuse on

patterns in ecosystem properties changes across scales. This is an important reason why

conducting research across spatial scales can significantly improve our understanding of

controls over system behavior. Our understanding at a particular scale is limited to the

range of conditions we have observed; the realm of inference is thus limi ted to the same

range of conditions. For example, a study of soil organic matter (SOM) on a particular

toposequence at the CPER suggests that slope position is an important control over

carbon accumulation (Schimel et al. 1985). Expansion to the scale of physiographic units

(multiple toposequences [Fig. 2.1]) suggests that spatial pattern in SOM is controlled by

soil texture, parent material, and grazing history, as well as slope position (Yonker et al.

1988 and unpubl. data). Finally, spatial pattern in SOM at a regional scale is most

closely related to mean annual temperature and precipitation, modified by soil texture

and landuse history (Parton et al. 1987, Burke et al. 1989). What are the rules for

generalizing spatial pattern among scales? Can we use rules ba-v -i on spatial variation

to make predictions about temporal variation?

All of our current and proposed work at the CPER focuses on how climate,

geomorphology, and landuse impact spatial and temporal patterning of ecosystem

properties and processes. The scope of such an undertaking dictates that multiple

10



,,,,
I,

at Plains',

~;

, I
I I

" ""- .'

Figure 2.2 Map of the U.S.central grassland region. showing the extent of the Great Plains and
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research approaches be used; we are studying these in teractions using long- and short

term experiments, simulation models, and regional analysis . Experiments allow us to

test and improve our understanding at a limited set of spatial and temporal scales,

confined by feas ibility to single or multiple locations and from weeks to decades. LTER

is fortunate to have the mandate to extend the temporal scale of experiments beyond

standard research projects. Simulation models are important tools that allow us to test

and improve our understanding across a range of temporal scales. Modelin g is especially

important in the study of climate change, allowin g us to extend beyond the bounds of

observed conditions. Finally, regional analyses allow us to extend our spatial domain

beyond the bounds of our experiments and observations .

We propose to continue our work within the framework of a nested hierarchy of

spatial and temporal scales. We will focus a new effort at the CPER on the interactions

between landuse and soil texture at the site level, within the context of th e temporal

variability of climate. These two forces -- landuse and soil texture -- exert the most

interesting and important controls over past and current development of sho rtgrass steppe

ecosystems.

2.2 Research Framework

Semiarid regions account for 11% of the land area of the ea rth and 8% in North

America, including the Great Plains (Bailey 1979) (Fig. 2.2). Regardless of their location,

ecosystems in these regions are shaped by 2 important forces : availability of soil water

and landuse (Noy-Meir 1973 and 1974, Hall et al. 1979). Low and variable avail ability of

soil wate r is associated with low and variable precipitation (PPT), and accounts for a

large fraction of observed temporal and spatial patterns in ecosystem structure and

function (Sala et al. 19138b). Landuse introduces additional variabili ty, part of which can

be explained by the interaction with water availability (Senft et al . 1986).

Landuse in the Great Plains is divided between grazing by cattle and cropland.

Approximately 60% of the land area remains in native vegetation and is us ed as

grazingland. The long evolutionary history of grazing by large herbivores in the central
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North American grasslands, and particularly the Great Plains portion, appears to have

had a substantial impact on the response of steppe ecosystems to grazing by domestic

herbivores (Mack and Thompson 1982, Singh et. al 1983, Milchunas et al. 1988b ).

Changes in plant communities induced by domestic livestock grazing are smaller per unit

of grazing intensity for Great Plains ecosystems than for most other ecosystem types

(Milchunas et al . 1988b).

The important impacts of water availability and landuse on ecosystems in semiarid

regions provides a strong argument for using them as independent variables to organize

research. Water availability at a particular location is controlled by precipitation and soil

texture. Soil texture is important because of its relationship with soil hydraulic

parameters (Clapp et al. 1983, Cosby et al. 1984). At the scale of an individual site,

spatial variability in precipitation may be small; soil texture is then the major variable

explaining the spatial variability in water availability. We propose to organize our field

observations and experiments around the variability induced in steppe ecosystems by soil

texture and landuse. Both soil texture and landuse vary significantly at the site, and

may be used as experimental variables.

2.2.1 Soil texture as a control over ecosystem structure and function.

The justification for organizing our LTER research around texture is that it is one of

the dominating influences on ecosystem structure and function in semiarid regions such

as the shortgrass steppe. At the CPER, soil texture has an identifiable and quantifiable

spatial distribution.

Among the surface properties controlled by geomorphology, soil texture provides the

most important connections among landform, eolian processes, hydrology, soil water,

ecological processes, and lauduse. Because soil texture exerts major control on many of

the processes important to our understanding of how climate, geomorphology, and landuse

interact to influence structure and function of shortgrass steppe ecosystems, we plan to

use soil texture as one of the key factors in field, laboratory, and simulation studies.

12
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Figure 2.3 Soil texture classes, expressed as sand content classes for a nested h ierarchy
including the central G~at !lains, northeastern Colorado, and the CPER. Spatial 1cale
decreases from 3.0 x 10 km for the central Great Plains (upper panel), 9000 km for
northeastern Colorado (center panel), to 70 km2 f o r the CPER (lower panel). Decreasing
spatial scale is associated with i n c r e a s i ng levels of r esolution. Data are stored in our
regional and site level Geographic In formation Systems . Legend: white and orange (sand <
2 0%) : green and dark blue, ( 20 % < sand < 50 %) : and light blue and purple, (sand> 50%).



2.2.1.1 Spatial distribution of texture

Pedogenically, texture is a very slowly changing soil attribute in semiarid regions.

Geomorphically, fluvial and eolian processes are the primary agen ts of movement of

material at toposequence to regional scales (Fig. 2.1) and are therefore the principal

forces behind differences in soil texture.

Investigations of both pedogenic and geomorphic influences on toposequences and

landscapes have been a focus of the CPERILTER project for the past 8 years (Section

3.1.3). The spatial distribution of soil texture at the CPER is dependent on the scale of

observation. In maps of soil series, the distribution of texture is a complicated mosaic.

Combining soil information into broad textural classes results in a relatively smooth

picture of the dis tribution of texture at the CPER (Fig.2.3). The underlying property

upon which textural classes are based, particle size distribution, is continuously

distributed in space. Grouping the particle size data into classes imposes a spatial scale.

This allows us to be efficient in detecting differences using a stratified desi gn that has

clear ecological significance.

2.2.1.2 Effects of Texture

At the CPER, soil texture is the dominant influence on infiltration. Because slopes are

gentle and PPT is low, coarse soils seldom produce runoff. By contrast , fine soils

frequently produce runoff even with moderate rainfall intensities (Pilgrim et al . 1988).

Texture significantly influences the availability of water to plants in semiarid regions.

Coarse soils allow more water to penetrate beyond the depth of evaporation than do fine

soils. The result is that in semiarid regions, on an annual basis, coarse soils tend to

provide more water for plants than fine soils; this is referred to as the inverse texture

effect (rsoy-Meir 1973).

The most important control over ANPP in semiarid regions is annual PPT (Lauenro th

1979, Sala et al. 1988b ). The impacts of soil texture on infiltration and water

availability significantly affect the relationship between ANPP and PPT, and have

important consequences for individual plants, populations, and community structure.
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Noy-Meir (1973) predicted that the balance point for the inverse texture effect should

occur between 300 and -500 mm annual PPT; below this point, coarse soils should be

more productive than fine soils. Sala et al. (1988b) analyzed a spatial data base of

ANPP for the central grassland region and found the balance point between fine and

coarse soils at 370 mm. The CPER falls below the balance point, therefore fine soils

should have less water available for transpiration and consequently lower production than

coarse soils . Our results to date are not clear on this issue (Liang et al. 1989).

The interaction between soil texture and PPT may be an important control on species

and lifeform composition. Because of the high infiltration rates and low water holding

capacities of coarse soils, deep-rooted plant species may have an advantage over shallow

rooted species. Grasses possess finely branched, dense root systems that allow them to

obtain the largest part of their water and perhaps nutrients from the upper layers of the

soil (Fig. 2.4). Shrubs have an extensive root system with coarse roots that extend far

into the soil, thus penetrating a much larger soil volume but less densely (Fig.2.4). Our

observations at the CPER suggest that there is a pattern in lifeform and species

composition with soil texture, but that this pattern is complicated by interactions with

grazing (Liang et al 1989).

Soil texture may play an important role the development of patterns of microrelief at

the CPER. The configuration of the ground surface on a small scale is uneven.

Individual plants are often surrounded by micro-depressions. It is unclear whether this

surface irregularity is a result of soil erosion between plants, or net accumulation around

and within plants. In addition, small-scale disturbances that kill individual plants expose

bare soil to wind and water erosion. Freezing and thawing, especially in these small

disturbed areas, loosens the upper l'''rer of soil increasing its vulnerability to wind and

water. Such ephemerally loose soil may playa role in the genesis of micro-relief and

slope movement processes.

SOM accumulation is closely related to soil texture in grasslands (Parton et al. 1987,

Aguilar and Heil 1988, Burke et al. 1989). SOM quantity represents the balance of
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primary production and decomposition, both of which are influenced by soil texture

(Sorenson 1981, Paul 1984, Sala et al. 1988b). Burke et al. (1989), in an analysis of the

central grassland region, found that for a given precipitation zone, SaM was lowest in

coarse soils; this suggested that with respect to SaM, the influence of texture and water

availability on NPP was not as significant as its effects on decomposition.

Water availability is the most frequent control on decomposition and nutrient

mineralization in the shortgrass steppe (Schimel and Parton 1986) . Since soil texture

influences hydraulic properties of soil, it also influences decomposition through its effects

on water availability, with coarse soils most likely to maintain high decomposition rates

for long periods of time. The direct effects of soil texture on SaM are the result of the

chemical and physical properties of clay particles. Clay protects SaM from decomposition

by adsorption and aggregation, slowing turnover and effectively increasing SaM

(Jenkinson 1977, Sorenson 1981, Paul 1984). The positive relationship between fine soil

texture and SaM accumulation in shortgrass steppe soils can be mostly attributed to

physical and chemical protection from decomposition (Paul and Van Veen 1978, Schimel

et al. 1985, Parton et al. 1987). Redistribution of SaM along with clay particles may

also contribute to the covariance between SaM and texture.

Nutrient availability is linked to both soil texture and SaM in grasslands (Schimel

1986). Total soil nutrient content, like SaM, is highest on fine soils . Recent studies

suggest that N mineralization is highest on fine soils, but that the magnitude of the

increase compared to coarse soils is not proportional to the size of the total SaM pool

(Schimel et al. 1985a,b, Burke 1989). Total C and N turnover rates on fine soils are

slower than on coarse soils, suggesting that more of the SaM is in resistant pools and

not available for decomposition or mineralization (Tisdale and Oades 1982, Schimel et al.

1985b, Parton et al. 1987, 1988b). The net effect of soil texture on nutrient availability

to plants must be a balance between substrate availability and immobilizing potential.

15



- 0- _

Figure 2.5 Aerial photograph of the LTER headquarters at the CPER showing grazingland and
adjacent cropland.



Key Questions • texture:

1. What is the relationship between the temporal vari ability in PPT and the temporal
variability in ANPP? Does including soil texture in the rela tionship for the CPER
significantly improve predictability? Are coarse-textured soils at the CPER more
productive than fine soils? How does texture interact with nutrient supply rate and
water availability to infl uence productivity?

2. How does soil texture interact with PPT to affect species and lifeform composi tion?
Are deep-rooted species more successful on coarse soils than on fine soils? Are plant
communities on coarse soils more stable than those on fine soils? Can we predict
species composition given soil texture, and can we use this kno wledge to manage
species composition? How does soil texture influence forage quality?

3. Is the dominant process that generates microrelief fluvial , eolian, freeze-thaw, or a
combination of more than one geomorphic agent? What role does small-scale
disturbance play in generating micro-relief? How does microre lief affect the
distribution of snow, organic matter, and seeds? How does soil texture influence
processes that affect microrelief? What is the role of grazing in creating or influencing
these small-scale pat terns?

4. How does soil texture interact with water content to control C inputs and outputs via
NPP and decomposition? How im portant is the protection of SOM by clay to carbon
accumulation in these soils? How important is soil eros ion in infl uencing the
relationship between SOM and soil texture? How do pul se precipita tion events
in teract with soil texture to control short-term N availa bility?

Section 2.2.2 Landuse as a control ove r ecosys tem structure and func tion

Shortgrass ecosystems are subject to both natural and human-induced disturbance, or

landuse. Landuse represents a planned change in ecosystem structu re and behavior,

while disturbances are most frequently stochastic interruptions. Common natural

disturbances in the shortgrass steppe include grazing above- and belowground by large

and small herbivores including arthropods , digging by mammals , fecal deposition by large

herbivores, and nest-building activities by ants (Laue nroth and Milchunas 1990, Coffin

and Lauenroth 1988) . We expe ct shortgrass ecosystems to show adaptations to these

disturbances, since they are a part of its development (Holling 1978, Lauenroth et al .

1978).

Grazing by cattle and row-crop agriculture are the predominant landuses in the

shortgrass region (Fig. 2.5) (Lauenroth and Milchunas 1990). Because of a long

evolutionary history of grazing by large generalist herbivores , we have hypothesized that

shortgrass ecosystems are well adapted to withstand the effects of grazing by cattle
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Figure 2.6 Photograph of ca ttle grazing in a swale. Grazin g int ensit ies on swale posit ions along
topo sequences are typically 3 tim es grea ter than upland and slope posit ions.



(Milchunas et al. 1988b and 1989). By contrast, cropping is different from anything in

the developmental history of the shortgrass steppe. Both the intensity of the disruption

and the spatial scale are novel.

The spatial pattern of landuse at regional scales is controlled by climate. At local

scales, soil and landform conditions are prominent among the decision criteria. The most

important limitations on the suitability of a particular location for row-crop production

are slope, soil depth, and texture. Steep slopes are avoided regardless of soil depth and

texture. Shallow soils are seldom worth the ' investment required for cultivation.

Practically, among the sites have high potential for cropping, the decision is made on the

basis of soil texture. Very sandy soils and those with high clay contents are avoided.

Silt content is perhaps the single most important tex tural consideration. In general, the

dominant landuse on sites with shallow soils , steep slopes , or extreme textures is grazing.

The remaining sites are used for row-crop production.

The temporal pattern of landuse may be the result of either climatic-ecologic or

sociologic-economic factors . Conditions that affect either productivity or markets can

initiate a change in landuse. Sustained periods of drought have historically led to

cropland abandonment and a return to grazing systems. Climate change scenarios that

include either an increase in temperature or a decrease in precipitation for the center of

the North American continent will have a large on impact landuse patterns in the

shortgrass steppe.

2.2.2 .1 Effects of landuse - grazing

Domestic cattle have direct and indirect effects on both the structure and function of

ecosystems (Fig. 2.6). They impact structure via this influence on species and lifeform

composition, canopy architecture, and the distribution of carbon above- and h~lowground.

At the functional level, cattle may cause changes in net primary production, SOM

turnover, and nutrient availability.

The response of shortgrass plant communities to long-term heavy grazing and long

term protection is unusual compared to other grassland types. The response is unusual
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because of the small number of detectable changes associated with grazing, and because

of the kinds of differences we have observed between the grazed and protected locations

at the CPER (Milchunas et al. 1989, Milchunas et al. submitted). Long-term heavily

grazed locations had increased cover of all plant species, including B. gracilis, less litter,

and more bare ground than protected locations (Milchunas et al. 1989). By contrast,

long-term protection was associated with higher densities of introduced weedy species

than the grazed locations. Based upon these results and a comparison with grasslands

worldwide, we hypothesized that the high relative resistance of shortgrass communities to

grazing was based upon their long evolutionary history of grazing and the convergent

selection pressures of grazing and semiaridity (Milchunas et al. 1988b).

The traditional method of assessing the condition of a grazingland is to evaluate the

species composition and aboveground plant cover (Lauenroth and Laycock 1989). Based

on the results from our analysis of species composition, we concluded that long-term

heavy grazing was not causing an important decrease in condition. However, results of

recent studies, including some of our own research, suggest that we may have

misinterpreted the response of the system to grazing.

Bauer et al. (1987) reported greater organic C in protected compared to grazed

grasslands, and the opposite trend for organic N. They also found a significant effect of

texture with largest losses of C associated with sandy soils. A recent study at the CPER

initiated during LTER II provided results that support those of Bauer et al (1987) and

conflict with our previous conclusions about the sensitivity of shortgrass ecosystems to

grazing based upon species composition. Analyses of soil samples over several grazed and

ungrazed toposequences indicated that heavily grazed locations have 26% less C and 35%

less N than exclosures after 50 years (Fig. 2.7). A single year's data for ANPP indicate a

substantial decrease in end-of-season yield for long-term grazed locations compared to

ungrazed (Fig. 2.8) (Milchunas and Lauenroth in prep.), If the differences in C and N

between the grazed and ungrazed locations represent losses as a result of grazing, they
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exclosures and heavily-grazed ecosystems may be due to aggradatio n of exclosures, as well as
degradation under grazing.



are comparable in magnitude to losses reported for similar periods of cul tivation (Haas et

aI. 1957, Aguilar et aI. 1988).

Studies of the effects of grazing on SOM and nutrient availability are not common in

the literature. Our ability to interpret results for the CPER is limited by our lack of

knowledge about initial conditions. We can not be sure whether the grazed locations are

losing C and N, or the protected areas are gaining (Fig. 2.9). Even if we assume that

ecosystem status before grazing by cattle was at equilibrium, we have no quantitative

information about that condition. Studies that address long-term effects of grazing have

taken advantage of exclosures to make comparisons between un grazed and grazed

locations, and make inferences about long-term effects (Bauer et aI. 1987). We have

hypothesized that some level of grazing is the natural state of shortgrass ecosystems, and

that protection from grazing represents a system disturbance (Milchunas et aI. 1988b).

Thus, it is possible that grazing exclosures have been aggrading, and that our estimates

of grazing responses of C and- N are overestimates .

Dynamics of change. How does soil texture influence the rate of change under

initiation of grazing, and the final state? To examine the potential effects of grazing

intensity and soil texture on shortgrass ecosystem properties and processes, we ran the

CENTURY ecosystem model (Parton et aI. 1987) to steady-sta te for moderate grazing

intensity, then imposed 50 years of heavy grazing on both fine and coarse soils .

Simulated ANPP decreased immediately (Fig. 2.10), since the response of ANPP to

grazing is an input (Holland et aI. submitted). Simulated soil C decreased during the

whole time period, with the largest drop during the first 25 years. Simulated absolute

soil C losses were similar for both soil textures, with largest relative losses in the sandy

loam soil (37%). These simulated losses are comparable to tl,~se we have estimated at

the CPER (Milchunas et aI. in prep.), Most of the decreases in soil C for both soils came

from the slow SOM pool (Fig. 1.9). The net N mineralization rate increased with grazing

because of decreased inputs of shoot and root plant residue into the soil (Holland et al.
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submitted). These lower C inputs to the soil reduced N immobilization during

decomposition of plant residue.

Can a decrease in the intensity of management reverse the above trends, and result in

recovery of biomass and soil? We hypothesize that total plant biomass production should

increase, resulting in increased ecosystem stores of C and other nutrients. Release from

grazing in the CENTURY simulations resulted in increased soil C, but decreased N

mineralization because of higher N immobilizing potential compared to the grazed system

(Fig. 2.10). Simulated ANPP was suppressed during this recovery phase because of N-

limitation. This effect was most pronounced on fine soils because of higher levels of

SOM stabilization in the fine soils .

Such trends in nutrient availability after release from grazing may play an important

role in determining the recovery responses of individual plants and NPP. Experiments at

the CPER indicated that water and nitrogen availability separately, and in concert,

influence NPP and species composition (Lauenroth et al. 1978). We hypothesize that the

availability of N during recovery from grazing influences aboveground production and

species dynamics, and depends upon the intensity of prior grazing and soil texture.

Key Questions . grazing:

1. What is the relationship between changes in plant community structure caused by
grazing and changes in SOM and nutrient availability? Is the relationship the same
for a recovering ecosystem as it is for a degrading one? How are these relationships
influenced by soil texture?

2. What are the relative contributions of NPP and decomposition to changes in SOM
under grazing? Is the relationship the same for above- and belowground? Is it the
same for aggrading as for degrading ecosystems? How are these relationships
influenced by soil texture?

3. How does grazing affect long-term nutrient availability? Are nutrients more available
during the degrading than the aggrading phase of ecosystem response? Is increased
aboveground nutrient yield under grazing an indication of a long-term trend in
nutrient loss? How are these relationships influenced by soil texture?

2.2.2.2 Effects of landuse . cropping

We are. interested in evaluating the short- and long-term effects of release from

cropping. Short-term economic, political, and climatic variation can result in significant
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changes in landuse. Historically, large areas in the shortgrass steppe region have been

converted from cropland to rangeland since settlement. The drought of the 1930s

resulted in the abandonment of more than 100,000 ha of farmland in NE Colorado.

Much of this is now managed by the Forest Service as the Pawnee National Grassland.

The CPER was part of the Land Utilization Project that preceded the national

grasslands. Although most of the CPER was not plowed, we have several abandoned

fields that have been recovering for approximately 50 years. A new agricultural program

in the Great Plains, the Conservation Reserve Program (CRP), will result in large areas

of cropland being converted back into grassland in the 1990s (Joyce and Skold 1987).

Little research has been done on the direction and magnitude of ecosystem response to

release from cropping.

The abandonment of agricultural fields and their subsequent recovery to native

grassland have been important to successional ideas for the shortgrass steppe. Until

recently, most successional concepts for the shortgrass steppe were developed from

research associated with abandoned cropland (Judd and Jackson 1939, Costello 1944,

Judd 1974). The resulting descriptions of succession suggested a 30- to 50-year time

frame for recovery of shortgrass plant communities after abandonment (Judd and

Jackson 1939) (Fig.2.11).

Recent studies, in some cases 40 to 50 years after abandonment, found results

different from those predicted by the early models (Hyder et al. 1975). Reichardt (1982)

evaluated recovery on a field in the Pawnee National Grasslands abandoned for 40 years .

Similarity in species composition between the abandoned cropland and unplowed areas

was less than 50%, and the climax dominant, B. gracilis, made up a very small fraction

of the species composition. These results, alorv- with lab and greenhouse evaluations of

conditions required for germination, seedling establishment, and tillering, led to the view

that B. gracilis does not recover following disturbance in the shortgrass steppe region

(Hyder et al . 1971, Briske and Wilson 1977, 1978). The result of the lack of support for

the old-field model by recent observations has created two very different concepts of
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succession in the shortgrass region. One group persists in thinking in terms of old-field

succession; the other considers B. gracilis a relict species.

During LTER I and II, we investigated an alternative conceptualization of succession

based on the importance of spatial processes to th e recovery of B. gracilis. Field studies

and simulation analyses suggest that recovery time is dependent on the size of the

disturbance relative to the dispersal distance of B. gracilis seeds (Coffin and Lauenroth

1989a). In addition, soil texture is an important control on recovery because it affects

germination and establishment of B. gracilis seedlings (Coffin and Lauenroth 1989c).

Cultivation of grassland soils results in depletion of SOM and reduced site fertility

(Russel 1929, Tieszen et al . 1982, Aguilar et al. 1988, Elliott and Cole 1989). Tillage

increases both erosion and decomposition, leading to decreased SOM and a decrease in

the ability of soil to retain mineral nutrients. Reductions of up to 50% in SOM have

been reported for long-term cultivation (Haas et al. 1957 , Burke et al. 1989). The

magnitude of losses depe nds upon interrelationships am ong intensity and duration of

cultivation, fertilization, susceptibility to wind and water erosion, soil texture, and parent

material. Losses of mineral nutrients are proportional to losses of soil C, but with

perhaps greater relative losses of C than N and P to the extent that oxidation is

important. Increased decomposition and mineralization, combined with decreasing SOM,

induce conditions that increase N availability for an unknown length of time (Schimel

1986).

Dynamics associated with the loss in SOM from cultivation are not well-documented.

For example, how important are element interactions to nutrient availability and

production during the degradation phase? How rapid are losses in SOM? How do they

inuuence N availability? How important is soil texture in controlling absolute and

relative losses, and rate of loss?

We ran the CENTURY model for 50 years of a standard wheat-fallow cropping

sequence on fine and coarse soils for CPER climatic conditions to evaluate these

questions (Fig. 2.12). Simulated SOM declined immediately upon cultivation, with the
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most rapid decrease during the first 25 years. Absolute magnitude of simulated losses

were similar among soil textures, but the relative losses were much greater for sandy

soils (40% for sandy loam vs. 25% for the clay loam) . Simulated N mineralization

increased during the initial phase of cropping due to rapid decline in SOM and

immobilization potential. The N mineralization rates remained higher in the clay loam

soil because level of SOM in the slow pool (Fig. 1.9) is much higher for the clay loam

soil. The results show that higher N mineralization rates for the clay loam soil produced

substantially higher grain yields (Fig. 2.12) for the clay loam soils.

During the last 50 years of the simulation (Fig. 2.12) we simulated the growth of a

grassland following 50 years of cultivation. The results showed that soil C level, plant

production and N mineralization rates all increased with time, however, plant production,

soil C and N mineralization are substantially lower than the pre-cultivation levels. Plant

production after 50 years was slightly higher for the sandy loam soil, while soil C

stabilization rates were higher for clay loam soil.

Results from these simulations suggest a number of questions relevant to the response

of processes in shortgrass ecosystem to intensive landuse and provide a focus for our

interests in the recovery of abandoned agricultural lands.

Key Questions • cropping:

1. What is the observed variability in successional dynamics for abandoned croplands of
different characteristics? How do soil texture , precipitation, temperature, and size of
field influence rate and direction of recovery--both of species composition and of NPP?
How are successional dynamics influenced by nutrient availability?

2. How do cropping intensity, type, and duration influence the rate and magnitude of
SOM losses? How have apparent losses in SOM been influenced by precipitation,
temperature, and soil texture? What is the regenerative capacity of soils in abandoned
fields recovering to native grassland, and how is this modified by precipitation,
temperature, and soil texture? How does N availability change during recovery?

The landuse soil-texture framework provides a powerful conceptual structure for our

new research proposed for LTER III. In addition, this framework fits within the

comprehensive conceptual model for our continuing CPERJLTER research program. For

the shortgrass steppe and over long temporal scales, climate, geomorphology, and landuse
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are the major controls over spatial and temporal variation in ecosystem structure and

function. At the site level, soil texture is the specific geomorphic control on structure

and processes and together with landuse provides the basis for a collection of specific

questions that we will use to guide our new research. In the next section, we describe a

plan for our new research to address many of our key questions about landuse and

texture interactions.

2.3 Research Plan

The experiments we are proposing for LTER III represent what we consider to be the

most exciting and important new ideas for field research on shortgrass steppe ecosystems.

The scope of our proposed research is very ambitious, to the extent of raising questions

about whether we can accomplish all of it in the next 6 years . We fully recognize the

magnitude of the tasks we are setting for ourselves. In planning this work we

consciously chose to follow our vision of important ecological problems rather than

develop a conservative research plan. This strategy served us well during LTER II. By

setting an ambitious, integrated scope of work we are confident that we accomplished

more than we would have with a conservative plan.

2.3.1 Field Experiments

Our proposed field experiments represent an approach to evaluate the individual and

interactive effects of soil texture and landuse on ecosystem structure and function. The

development of these ideas relies upon the key questions from the Research Framework

(Section 2.2) to define the rationale and the 5 core topics to organize the presentation of

the work. The descriptions are necessarily general. We rely heavily upon the literature

and our past work to communicate the details associated with measurements.

2.3.1.1 Texture effects on ecosystem
structure and processes

The objective of this research is to- evaluate the controls exerted by soil
texture on structure and processes under moderate summer grazing by
cattle. [Key Questions • Texture, Section 2.2.1)
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Moderate summer grazing by cattle is the most common landuse at the CPER and is

one of the most common grazing management practices throughout the shortgrass steppe.

Approximately 90% of the area of CPER has been moderately grazed for the pas t 50

years . Further, moderate summer grazing is a more representative control conditi on for

shortgrass steppe ecosystems than is protection from grazing (Milchunas et at. 1988b,

Milchunas et al . 1989, Milchunas et al . 1990).

Within the constraints of a single grazing treatment and a sin gle macroclimate we

hypothesize that the most important explanatory variable for temporal and spatial

patterns in ecosystem structure and processes is soil texture . Modera tely grazed pastures

at CPER span a range of textures from sandy loam to clay loam providing an excellent

experimental environment to investigate the effects of texture on ecosys te m (Fig. 2.3).

Patterns of primary production. The inverse texture hypoth esis predicts higher

NPP on coarse soils than sites on fine soils (Noy-Meir 1973). Analysis of regional data ,

averaged over many sites, supports the inverse texture hypothesis (Fig. 2.14). The

distribution of soil textures over moderately grazed pas tures at th e CPER will provide th e

opportunity to design a replicated (pas tures) study of texture effects on ANPP (Fig. 2.13).

ANPP will be estimated by harvesting quadrats protected from grazin g during the year of

sampling (Lauenroth et al. 1986b). In terannual variation in weather will all ow us to

evaluate the interactions between water availability and texture as th e influence on

ANPP. Because estimation of BNPP is much more difficul t than ANP P, we will not be

able to balance our efforts above- and belowground in this experimen t. Our major new

initiative on BNPP will be associated with the new texture-Ianduse interaction

experiment described in Section 2.3.1.3.

Population ,:J·'namics. Soil texture has such a profound effect on the dynamics of

water and nutrients that it is an important ul timate variable controlling plant population

dynamics. B. gracilis is the most important plant species in the trophic structure of

shortgrass ecosystems and perhaps the most important species re gardless of kingdom.

Recruitment, growth and mortality of B. gracili s is closely related to water and mineral
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nutrient availability and therefore soil texture. Simulation of population processes

provides a clear indication of the potential importance of soil texture (Coffin and

Lauenroth 1989a,b,c). Recruitment of B. gracilis is dependent upon availability of seeds

and favorable soil water conditions and perhaps nutrient conditions for germination and

establishment. First-year seed production data from a long-term population study

(Section 3.2.2) indicated a large effect of soil texture on reproductive effort (Fig.2.15).

Preliminary plant size data from the same study suggest control of tiller demography by

soil texture (Fig. 2.16). Average plant size was 50% larger on a site with a coarse

texture soil than one with fine texture.

We plan to design a replicated study of tiller dynamics (vegetative reproduction) , plant

establishment (sexual reproduction), and plant mortality for B. gracilis over the texture

gradient. Our current understanding of the demography of B. gracilis is built into an

individual-plant-based simulation model called STEPPE (Coffin and Lauenroth 1989a,b,c).

The results of this experimental work, in addition to incrementing our understanding of

the population biology of B. gracilis, will provide much needed data to test several of the

key processes in the model.

SOM and nutrient turnover. Texture has several direct and indirect effects on

SOM and nutrient turnover. There are at least 3 processes that are responsible for the

pattern of high SOM on fine soils that we have observed at the CPER and at the

regional level: protection of SOM from decomposition by clay; interaction of soil water and

texture controlling decomposition rates; selective movement of SOM with clay from

erosion via wind and water.

We are interested in separating the individual effects of soil texture on decomposition,

so that we can better model and predict long-term processes. To accomy'tsh this, we will

conduct litter decomposition studies across a textural gradient. We will construct

litterbags with above- and belowground plant litter, bury these to several depths, and

assess the decomposition rate by collecting bags periodically during the next 10-20 years,

with samples collected frequently during the first 5 years . We will use intact soil cores
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underlain by resin bags (Binkley 1984) to estimate seasonal integrated N mineralization

across the textural gradient each year. In addition, we will conduct laboratory

incubations of litter in soils of different textures, and estimate N mineralization and

decomposition rates through the evolution of CO2, Such incubations will allow us to

separate the effects of texture and substrate quality from those of microclimate on

decomposition.

Disturbance. The conspicuous effect of root grazing by Phyllophaga larvae on B.

gracilis is to kill individual plants in small to large patches (Fig. 3.6). Our current

effort, based upon patches killed in 1977, spans a portion of the texture gradient (Section

3.2.1.1). Our plan is to initiate another set of plots over an explicit soil texture gradient.

These plots will be selected from patches in which B. gracilis began dying during the

summer of 1989. Early in 1990 we will confirm the presence of Phyllophaga before

locating patches to be studied. We will permanently mark and map the patches, and

take initial soil, individual plant, and vegetation samples in the spring of 1990. Analysis

of samples and vegetation data will occur when the new funding cycle begins. These

patches and the ones initiated in 1977 will be sampled periodically for several decades.

Soil water. Intraseasonal dynamics of soil water provide important control

information for our field research (Parton et al. 1981), and provide important data for

analysis of water availability (Sala et a1. in prep). We are currently sampling soil water

dynamics over a variety of sites and soil textures on upland patches and at multiple

locations along toposequences (Section 3.1.5). The important missing element of our soil

water research is an assessment of temporal dynamics in the 0-15 cm layer. Essentially

all of our soil water data have been collected using a neutron probe. The important

positive attribute of this method is that it allows for repeated estimates at the same

location. In the past several years, time domain reflectometry (TDR) has matured as a

technology with high potential for repeated estimates of soil water with automated and

continuous data acquisition, particularly in the surface layers (Topp and Davis 1982). We

plan to install TDR probes at each of the locations at which we are collecting soil water
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data, as well as at locations associated with the new SOM-nutrient turnover and

population dynamics research.

2.3.1.2 Landuse effects on ecosystem
structure and processes

The objective of this research is to evaluate the effects of grazing intensity
by cattle on the long-term dynamics of structure and processes. [Key
Questions • Grazing. Section 2.2.2 .11

Despite the years of research that have been devoted to understanding the response of

ecosystems to grazing by large generalist herbivores, a remarkable number of effects of

grazing on ecosystem structure and function are not understood (Section 2.2.2.1). The

LTER research project and the long-term grazing treatments at CPER provide an

exceptional opportunity to evaluate a number of key questions associated with the

responses of ecosystems to grazing.

Patterns of primary production. The CPER provides a grazing intensity gradient

from ungrazed (by cattle) for the past 50 years to light, moderate, and heavy grazing for

50 years (Section 3.2.3). We plan to estimate ANPP using the harvest method, and

BNPP using a combination of 13C labeling (Section 3.1.1) and minirhizotrons (Taylor 1987)

over the range of grazing treatments. The 13C tracer studies will allow us to estimate

average BNPP over several years (Milchunas and Lauenroth in prep) and the

minirhizotron studies will provide relative root dynamics data to help us understand

intra- and interannual variability in BNPP.

Population dynamics and disturbance. Grazing by cattle can have important

effects on habitat suitability for other animals. Our work with Phyllophaga larvae and

adults is described in Sections 3.1.2 and 3.2.1.1. We plan to sample small birds and

mammals over the grazing intensity gradient. Some of this work was begun during the

IEP project and has continued at a low frequency. We plan to increase the frequency of

sampling during LTER III. The key question for the bird work is: What is the long-term

effect of summer cattle grazing on habitat utilization by migrant and resident bird
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populations? The key question for the small mammal work is : What are the long-term

effects of summer grazing by cattle on small mammal density and species composition?

Soil water. Grazing by cattle has large potential effects on the water balance of

individual plants as well as entire communities. This is confirmed by observations of

changes in above- and belowground spatial patterns of plants, basal cover, plant

demography, and production (Section 3.1.4). We currently have no specific work on water

balance across grazing treatments. Using a spatially explicit sampling design with short-

and long-term measurements, we plan to address both within- and between-patch

dynamics of soil water, and the integration of these dynamics into community level

responses. At time steps of a day, we will examine potential interactions of precipitation

size class with grazing on soil water dynamics. At an annual time step, we will relate

soil water to ANPP and nitrogen-yield to address the issue of water-use efficiencies. At

longer time steps, our focus will be on rates and directions of changes in structure and

function with long-term grazing.

2.3.1.3 Effects of interactions between texture and
landuse on ecosystem structure and processes

The objective of this research is to evaluate aggradation and degradation of
ecosystem structure and function in response to long-term grazing by cattle.
[Key Questions· Grazing, -Texture, Sections 2.2.1.2 and 2.2.2.1]

Comparison of system structure and function between areas heavily grazed for 50

years and areas protected from cattle has shown several interesting differences.

Vegetation structure was not significantly different between grazed and ungrazed pastures

(Section 2.2.2.1). By contrast, carbon and mineral element cycling were substantially

changed. Our current data represent net results after 50 years and provide no indication

of the developmental pathway of the changes. We cannot tell, for instance, whether the

aggradation of the protected location exceeded the degradation of the heavily grazed

location (Fig. 2.9). We cannot separate the two processes with current data or

experiments. Therefore we propose a new experiment to restart the processes and follow

the development of protected and grazed ecosystems.
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When the CPER was established in 1939, researchers constructed a .5-1 ha grazing

exclosure in each of the pas tures. These areas have remained protected from grazing for

the past 50 years. The remaining areas have been grazed for the past 50 years. This

collection of pastures and exclosures provides an extraordinary opportunity to reinitiate

grazing and protection, and evaluate the balance between degradation and aggradation.

We propose to rearrange fences and expose areas to grazing that have been protected for

the past 50 years, and protect areas from grazing that have been grazed for 50 years.

We will do this across grazing intensity treatments and soil textures. The modification

will not compromise the long-term value of the exclosures. The combinations of grazing

conditions across soil textures are:

1. Long-term protection

2. Long-term grazing (ligh t, moderate, heavy)

3. 50 years of protection followed by grazing

4. 50 years of grazing followed by protection

Patterns of primary production. We have evidence that suggests that 50 years of

heavy grazing has decreased ANPP; we expect that BNPP may also have decreased.

(Section 2.2.2.1). We will establish a series of sampling locations across soil textures and

grazing treatments and exclosures to evaluate At'fPP and BNPP. Our approach to

estimating ANPP and BNPP is described in Section 2.3.1.2.

Population dynamics. The areas previously excluded from grazing are too small to

allow us to ask questions about populations of mobile organisms. Thus population level

work associated with this experiment will focus on plants. We will concentrate on the

most abundant species over all textures, B. gracilis and Opuntia polyacantha. Both

species are clonal; B. gracilis is a bunchgrr-ss and O. polyacantha is a pricklypear cactus.

Neither shows large changes in abundance as a result of long-term grazing, but the

structure of clones and populations of both species is affected by grazing and soil texture.

80M and nutrient turnover. Previous work indicates that SaM los'ses from

cultivation and from grazing interact with soil texture (Aguilar and Heil 1988 , Bauer et
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al. 1987). We hypothesize th at during SOM degrada tion, N avail ability increases due to

decreased BNPP and depressed N immobilization potentia l. Addit ionally, N

mineralization should be significantly reduced during recovery because of increased

belowground C inputs (Fig 2.7). This reduced N availability may cause reductions in

ANPP, BNPP, and N yield.

We will initiate a long-term, 13C - 16N double-label experiment to assess th e

incorporation of C and N into various fractions of SOM, the linkages between C and N in

these soils, controls over N availability, and th e turnover of SOM pools. This experiment

will be conducted across both grazing and texture gradients . The long-term fate of 13C

and tsN will be traced in plants, SOM, and fractio ns of SOM through long-term

laboratory incubations of soils collected periodically. The design of this experiment is

similar to the long-term 15N study (Section 3.2.5), but will yield much more information

on the linkages between C and N in aggrading and degrading systems.

We plan to continue monitoring eolian sediment transport using our network of

samplers (Section 3.2.7). Although not entirely appropriate, redistribution of snow by

wind does serve as an analog to eolian sediment deposition and furthe rmore, provides

valuable information about th e spatial variability of soil moisture. We propose to use

both direct and indirect observa tions and time-lapse video techniques to determine

patterns of snow redistribution. Fin ally, we plan to initiate a series of small-scale

studies of microrelief. Experiments including textural analysis of the soil, wind tunnel,

and rainulator observations will be used to evaluate geomorphic processes operating at a

small scale and their interaction with vegetation at the CPER.

Disturbance. The grazing exclosures provide an oppor tunity to evaluate interactions

between grazing effects and disturbances. The frequency of occurrence of smal l

disturbances , in particular pocket gopher mounds , is higher within exclosures than in the

adjacent, grazed pasture. The reason for the increase in small mammal activity is

unknown, but the result is disturbed areas of various sizes in the exclosures that can be

evaluated for plant recovery. More importantly, we expect pocket gopher activity to occur
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in new exclosures. Typically, it is difficult to evaluate the effects of naturally-occurring

disturbances, especially those that occur infrequently or have a patchy distribution (Coffin

and Lauenroth 1988). In this case, we will have specific information about the pocket

gopher mounds, such as their size and when the activity occurred; therefore we will be

able to evaluate the relationship between the characteristics of the disturbance and

effects on the plant community, and in particular B. gracilis. We will also have the

opportunity to evaluate mortality of B. gracilis plants caused by pocket gopher activity.

2.3.1.4 Effects of cropland abandonment and soil texture
on ecosystem structure and processes

The objective of this research is to evaluate recovery of ecosystem structure
and function across a range of soil textures after cropland abandonment.
[Key Questions · Cropping, Section 2.2.2.2].

We recently initiated a research program to identify a network of abandoned cropland

sites within northeastern Colorado (section 3.6.1.2). We plan to establish a number of

sites on cropland, native rangeland, and abandoned cropland in th e region, located across

several soil textural classes. We will set up a sampling protocol for annual or periodic

estimation of simple attributes of ecosystem structure, species composition , plant cover,

and soil organic matter. In addition, we will estimate selec ted ecosystem processes,

ANPP and integrated net N mineralization rates on an annual basis .

We are interested in assessing the two-way interactions between the recovery of the

vegetation, especially B. gracilis, and the recovery of SOM and N availability. To

accomplish this, we will sample species composition and collect soil cores across a range

of abandoned fields. The fields will be chosen to represent a landuse and soil texture

gradient. We will conduct laboratory incubations of the soil cores, and estimate potential

net N mineralization and decomposition from incubated soils (Schimel et al. 1985b).

Combining such field and laboratory with simulations will allow us to improve our

understanding of the interactions between vegetation structure and soil processes in

aggrading systems.
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2.3.2 Intersite research

Representatives from the 7 sites submitting renewal proposals met several times in the

past 4 months to discuss prospects and commitment to intersite research. Appendix 2

contains a common statement of commitment and interest in intersite research by the 7

LTER projects.

The CPERILTER project is involved in most of the activities listed in Appendix Table

1. We are part of the network wide litter bag experiment being coordinated by M.

Harmon. Two of the PIs on the vegetation dynamics modeling project, W.K. Lauenroth

and W.J. Parton, are in the CPERILTER group. The CPERILTER group, especially

through our connection with the ARS Hydroecosystem group headed by D.G. DeCoursey,

will be very interested in contributing to the cross-site hydrologic modeling project when

it begins. The CPERILTER group participated in the space-time workshop and will

continue to be involved in the development of manuscripts. The CPER is one of the sites

being sampled by Tilman and Zak for their environmental gradient project.

2.3.3 Synthesis

LTER projects have unique opportunities and responsibilities among research projects

with respect to synthetic activities. Not only are LTER projects unique with respect to

synthesis but PIs of LTER projects have special responsibilities for encouraging and

supporting synthetic activities. A missing component in regular NSF funded research

projects are the time and perspective to address large scope questions that cut across

either project elements or across ecosystem types. LTER projects must have the

perspective and responsibility to find the time for such activities.

Synthesis activities, especially simulation modeling, have been an important strength of

the CPERILTER group. We recognize that simulation is an important category of

synthesis activities, but certainly not the only important one. Our plans for synthesis are

presented in 3 categories: writing, simulation, and regional analysis.
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2.3.3.1 Writing

The shortgrass steppe synthesis volume that we planned to complete during LTER II

is not finished and is unlikely to be so before the end of the project. We are still

committed to the idea and the plan even though the time schedule will be extended.

The plant-herbivore interaction research, conducted largely by D.G. Milchunas over the

past 8 years, has reached a point where the next logical step is a book that integrates

and synthesizes past work. We expect this to be completed during LTER III.

2.3.3.2 Simulation

The CPERILTER group is involved in two important sim ulation efforts, each associ ated

with a particular representation of ecosystem dynamics. D.P . Coffin an d W.K. Lauenroth

are workin g with individual-plant based models of ecosystem dynamics with the objective

of explaining the long-term response of shortgrass steppe plant communities to

disturbances (Coffin and Lauenroth 1989b). W.J. Parton and others have developed a

carbon and nutrient element model of ecosystem dynamics (CEN TURY) with the objective

of explaining the carbon and nitrogen turnover at the scale of decades to centuries

(Parton et al . 1987). Both groups plan to continue working with the mode ling approach

to improve the performance of their models.

The individual-based model (STEPPE) will be rewritten in the next 2 years to achieve

3 objectives: (1) represent the depth distribution of roots of each individual explicitly,

(2) use a daily time step soil water model to calculate annual growth modifiers based

upon the integration of daily soil water and weather data, and (3) represent the effects of

grazing by cattle on individual plants .

The most exciting activity associated with our modeling work is an effort to link

STEPPE and CENTURY. The result will be an ecosystem simula tion model in which

vegetation structure and soil processes interact . Under separate NSF funding

(BSR#8807881) we developed a new method to combine th e information contained in two

or more simulation models without combining th e computer code. The method employs

concurrent execution of the models under UNIX. Network communication functions are

34



used to exchange information at each time step. The method is sufficiently flexible that

the models can either run on the same machine or on two different machines connected

by a TCP/IP network (Section 3.10).

2.3.3.3 Regional analysis

The objective of this work is to simulate regional patterns in ecosystem stru cture and

function as they respond to spatial and temporal variation in geomorphology, climate, and

landuse. We plan to continue to develop our current effort in regional analysis and

simulation, in cooperation with several other research projects at CSU (Appendix 3). Our

approach involves development of regional databases and simulation models, and the

application of these models to address questions of regional relevance. Our new

simulation models , described above (Section 2.3.3.2), will give us the capability to

simulate regional dynamics across a wide range of levels of biological, spatial, and

temporal resolutions.

We are obtaining regional databases for soil texture, hi storical and present climate

(te mporally as well as spatially resolved), and present and past landuse . We plan to

continue to obtain databases for several regions of interest (Fig.2.1) with an inverse

relationship between the size of the area and the resolution of the database. The data

are being entered into a GIS, which will interact with simulation models for many

applications.

There are two classes of questions that we will address with our regional simulation.

First, we will use regional simulations to test our ideas about patterning in grassland

ecosystem structure and function. Which variables best explain the current spatial

distribution of vegetation structure in the central grassland region? Soil organic matter?

Net primary production? Landuse? What do our simulations indicate about the long

term results of climate change? Second, we plan to conduct sensitivity analyses of our
.

regional models to climate variables to provide an indication of the regional response to

climate change.
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We will use 3 ecosystem simulation models for this work: a model with high resolution

in plant processes but low resolution in vegetation structure and soil processes (SPUR), a

model with low resolution plant processes but high resolution soil processes (CENTURY),

and a new class of combined plant process-soil process models (Section 2.3.3.2). We plan

to simulate current and future conditions for a stratified collection of driving variable-soil

property cells in the rangeland portion of the grassland region.

Paleoecological analysis. We plan to initiate paleoecological reconstruction of the

CPER, northeastern Colorado, and the shortgrass steppe. We will map and sample

paleosols to establish their relationship to geomorphic properties of the site and the

region. This will allow us to infer geomorphic processes that resulted in formation of

paleosols and it will provide information about landform evolution. The stable isotope

composition of paleosols provides a record of vegetation (carbon isotope ratios of

phytoliths and carbonates), temperature (oxygen isotope ratios in phytoliths and

carbonates), and paleocarbon budgets. We will also apply carbon dating and possibly

thermoluminescence dating to establish the chronology of vegetation and climate changes.

This reconstruction will enrich our current concepts of landscape evolution and climate

change. The addition of E.F. Kelly to the CPERILTER project provides the impetus and

expertise for development of this new research area. In addition, this work complements

a new intersite project by Tieszen and Schimel (Section 3.7).

Remote sensing. We hope to expand the LTER long-term monitoring initiative to the

regional scale. We are fortunate to have R.M. Hoffer as a new investigator on the CPER

project to lead research in this area. Consistent, periodic acquisition and analysis of

remote sensing imagery will allow us to monitor spatial and temporal patterns in land

cover as they respond to interannual or longer term variation in climate. In addition, we

will assess changing patterns in land management strategies over regional extent. As

with the LTER site-level monitoring, such an initiative will provide a valuable set of data

for long- and short-term analysis of system change.
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Remote sensing analysis will be conducted at two levels of spatial resolution for

monitoring purposes. First, we hope to obtain high spatial resolution imagery for a

region at least as large as northeastern Colorado. Thematic mapper (TM) data are most

desirable, but other data sources may be necessary. These data will be obtained at least

once a year at mid-growing season, assuming availability. We have recently been

successful in using TM prints to discern land management types (cropland vs. rangeland)

and potentially range condition for this area (Fig.Ld), and hope to be able to continue in

this direction. In addition, we recently discovered a historical dataset of Multispectral

Scanner (MSS) data for our region; with this we will be able to pursue studies of recent

historical changes in landuse.

At a second level of resolution, we will obtain low resolution data for the central

grassland region from the Advanced Very High Resolution Radiometer (AVHRR) . These

data will serve both as a historical record of production across the region, and as a test

against independent predictions of regional variables described above. We have recently

contacted the USGS EROS Data Center about collaborative research , and the prospects

for continuous acquisition of these data are good.
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3.0 ELEVEN SPECIFIC TOPICS

Summarv

The CPERILTER project comprises both a coheren t se t of res earch
activities focused on LTER core areas and a diverse set of scien tists with
broad interests in long-term research. The objective of this section is to
review and highlight the important compone nts of the CPERILTER
research program, those as pects that make it dis tinctive in its
contri bu tion to ecological research in grasslands , and an active
participant and leader in the national LTER program. We describe our
research in each of the 5 core areas, long-term experime nts, da ta sets,
archives, and data management protocols th at are an integral part of the
program. Synthesis, modeling, and inter site activities are described, as
are our interactions with related research projects. Las t, we discuss the
new projects and technologies that the CPER research program is using
to address problems of long-term significance.

3.1 The Five Core Areas

3.1.1 Pattern and control of primary production.

The key result from our work to date is tha t both patterns in and apparen t controls

on net primary production are entirely dependent upon the choice of spa tial and tempora l

scale of study (Sala et al . 1988b). Our approach to this topic has em phasize d the full

range of spatial and temporal scal es from individual plants to the central grassland

region, and from within seasons to among years. Extensions of our interests beyond the

CPER and into the recent past were possibl e because of the availabili ty of his torical an d

collaborative data. See Section 3.5.1.5 for discussions of the large spa tial and long time

frame results.

Aboveground. Estimation of aboveground net primary production (AJ.~PP) was

initiated in 1983 on 3 locations along a moderately grazed toposequence and within an

exclosure (Fig. 3.1 ). Estimates are based upon end-of-season harvests from qu adrats not

grazed the year of sampling (Lauenroth et al . 1986b ). In 1986, 4 addi tional sites were

added to represent a soil texture gradient \Fig. 3.2) (Liang et al . 1989). Our current

effor t includes 6 locations each year. Because interannual variability in the am ount and

timing of precipitation is highly correlate d with ANPP, a recording rain ga ge is located at

each site . We plan to continue this sam pling scheme in LTER III.
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Belowground. Belowground net primary production (BNPP) has proven to be one of

the most difficult processes to estimate in ecology. Estimates th a t are consisten t with

the carbon balance of ecosystems have been difficult to obtain (Singh et al. 1984, Sala et

al . 1988a ). Our work on BNPP began in 1985 and includes a combination of harvest and

" C tracer techniques (Milchunas et al . 1985, Milchunas and Lauenroth in prep). This

work produced 2 very important results. First, harvest sam pling over a 4-year period

clearly showed the existence of multi-year tre nds in belowground biomass (Fig. 3.3).

Belowground biomass decreased from 1985 to 1988 corresponding with a decreasing trend

in annual precipitation (Fig. 1.1). Second, estimates of BNPP using "C su ggested a

turnover time of 7-8 years (Fig. 3.4), a value that is considerably lower than preVIOUS

estimates for shortgrass ecosystems (Sims and Singh 1978).

We plan to expand our efforts during LTER III to include es timates of BNPP across

soil texture and landuse gradients. We will continue to use a combination of methods

including the addition of minirhizotrons, We will change th e tracer method slightly,

substi tuting the stable isotope 13C for the radioactive "C.

3.1.2 Spatial and temporal distribution of populations selected to represent
trophic structure

Physiognomy as well as trophic structure of shortgrass steppe ecosystems is dominated

by th e perennial bunchgrass , B. gracilis. Our plant popula tion work has focuse d on the

in teractions of disturbance size, frequ ency, and type, with recruitment and mortality of

B. gracilis (Fig. 1.7) (Coffin and Lauenroth 1988, Coffin and Lauenroth 1989a ,b,d,e), as

well as biotic and abiotic controls over demographic variables. Establishment of

opportunist plant species on long-term ungrazed treatments was as large as on

trea tments where vegetation had previously been killed with herbicide, but was very low

on long-term grazed treatments (Table 3.1). Subsequent mortali ty was heavily influenc ed

by the presence of othe r plants, but only slightly influenced by cur re nt-year defolia tion.

The indirect effects of herbivores on the spatial distribution of B. graci lis and
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Table 3.1. The number of seedlings establishing in early June, monthly death rate, and
monthly proportion of deaths for the June cohort. Means within a date not sharing a
common subscript are significantly different.

(A) June Cohort of Seedlings (# per plot)

long-term grazed/uridefoliated
long-term grazed/defoliated
long-term ungrazed!undefoliated
vegetation killed/undefoliated
plowed/undefoliated

Kochia scoparia
12.7a
12.6a
77.2c
34.6b

142.8d

Salsola iberica

5.4a
7.6a

26.6b
27.8b
69.3c

(B) Monthly' Death Rate of June Cohort
(slope of survival numbers)

Kochia scoparia

July Aug. Sept.

Sa lsola iberica

,Julv Aug. Sept.

long-term grazed/uridefoliated
long-t erm grazed/defoliated
long-term ungrazed/undefoliated
vegetation killed/undefoliated
plowed/undefoliated

-11.2b
. 9.0b
·34 .2d
- 4.1a
-18.3c

- 1.5'
. 1.7a
-11.8b
- 2.0a
-16.1b

- 1.3'
-13.4b
- 2.4a
-56.Ie'

-3.7a
-2.1a
-7.0b
. 1.7a
-8.1b

·0.6'
-l .4a
-4.6b
-0.5a
-4.0b

- 0.1'
- 2.9ab
. 4.9b
- 0.3a
-29.0c'

(C) Monthly' Proportion of Deaths of June Cohort
(percent of previous month's population)

Kochia scoparia Sa lsolo iberica

Julv Aug. Sept. Julv Aug. Sept .

long-term grazed/uridefoliated 88a lOa' 84a 91a ioo-
long-term grazed/defoliated 71a 46a 69a 28b 23b 67a
long-term ungrazed/undefoliated 43b 27b 40b 26b 23b 32c
vegetation killed/undefoliated 12c 7c 8d 6c 2c 1d
plowed/undefoliated 13c 13d 51b' 12c 7c 52b'

'From previous month to month indicated.
' High va lue due to senescence after flowering rather than pr emature death.
'Not included in statistical analyses due to large number of zeros.
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characteristics of the microenvironment were more important for establishment and

survival than direct effects of injury through defoliation.

Our consumer work has included grasshoppers (Capinera and Thompson 1987),

Ph vllophaga sp . (June beetles) (Wiener and Capinera 1980), and birds; the ARS has a

large research program on cattle. June beetles (Phvllophaga sp.) represent one of th e

most important populations of herbivores in the shortgrass ste ppe. Th eir importance is

the result of their effect on the system rather than th eir abundance. The larval stage of

Phvlloohaga feeds on roots of B. gracilis, which during particular years results in

widespread but patchy death of individuals (Wiene r 1979). Our approach to indexing

fluctuations in numbers of larvae involves sampling the numbers of adults with a light

trap (Fig.3.5). We do not yet understand the relationship between numbers of adults

captured and the appearance of patches of dead ~. gracilis. The ARS initiated a study of

32 selected patches in 1977 in grazed pastures and long-term exclosures (Fig. 3.6). LTER

is now following the recovery of those patches; sampiin g for th e fourth time will occur in

1990. A large number of patches with dead ~. gracilis appeare d in 1989. We plan to

verify the presence of Ph vllophaga larvae and initiate a set of long-term plots during

1990.

We plan to expand our work with small mammals and birds during LTER III. The

addition of John Wiens and Beatrice Van Horne to the list of LTER investigators will

enhance this work. The initial efforts will focus on interannual variability in both small

mammals and birds. In 1990 we will initiate a cooperative project with Jim Forwood of

the ARS on the interactions of forage quality with cattle grazing behavior.

3.1.3 Pattern and control of organic matter accumulation in surface layers
and sediments. Pattern of inorganic inputs and movements of nutztents
through soils, groundwater, and surface v.'~ ~ers.

In semiarid regions , th e inputs and movements of nutrients are closely tied to the

inputs and fate of soil organic ma tter, therefore, our approach is to deal with them

together. Our work on these topics has spanned spatial sca les from single patches to the

central grassland region (Schimel et al. 1985, Yonker et al . 1988, Burke et al. 1989). We
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Table 3 .2 De s c r i p t i on of physiographic units at the CPER
(Yonker et al. 1988) .

Physiogr aphic Surficial Bedrock
unit Topography Landform Subgro up deposit geology t H.

Nearly leve l to Uplands Us to llic Haplar gids Allu viu m and 1898
gentl y 910ping An die Argiu stolis eolian

2 Near !... leve l to Uplands Andie Argiu stolls Alluvi u m and 530
moderately sloping eolian

3 Gent ly to s t rongly s loping Dissec ted uplands Ustollic Harl argids Alluvium . 353
gravelly alluvium

4 Mod er at ely slop ing Upland hills An die Argius tolls Alluvium Shale 1472
Ridge s Usti e T orriorthents
Sides lopes UstoWc Ha plargide

5 :-Jearly level to Upland hills Andie ArgiustoUs Alluvi um Shale 1';'1
ge ntly sloping Ridges Usti e To rriorthents

Sides lopes Ustollic Hap lar gids
6 Mod erately slo ping Upland hills UstoWc Haplargids Alluvi um S ands tone. 8-·,.

Ridges Usti e Tcrriort hems shale
Sideslopes Us toWc Hepl er gide

7 Near ly level Floodplain Us tic Torrifl uven ts Silty alluvi um 130
8 Gently to st rongly s loping Uplands Us tc llic Haplargid s Alluviu m. 1028

An die Argi ue tc lle gr avelly alluvium
Ustc llic Calciorthids

9 Near ly level Floodplain Ustic Torrifhrven ta Alluvium :!O6
6660

r Noted only if influential on soil de velopment or behavior.

Table 3 . 3 Total quantit ies of o rganic carbon ( OC ) to 1 m,
calculated a ccording to t h e aerial extent of each
s lope position within each physiographic unit
sampled (Yo nk e r et al. 1988)

Lowland Slope Upland
PU total

% of PU % of PU % of PU
PU OC OC toto! OC OC toto! OC OC total OC

kg m" kg 10' kg mO' kg 10' kg m" kg 10' kg 10'

1 8 % 1 ('" 2 850 2 6 % 1 (5) 10 260 8 6 % 2 141 108 096 9<J 121 206
2 8 :I: 4 121 2106 8 6 111 5 700 20 5 • 1 15) 19992 72 27798
4 9 :t:: 2 151 "2 861 40 7 :I: 1 (3) 54855 52 4 III 9 064 8 106 780
5 6 :I: 2121 3 180 29 5 11 1 1 104 10 7 % 1 121 6 580 51 10 864
6 6 :I: 2 (4) 24 375 41 5 111 16796 28 11 11) 18 618 31 59 789
9 7 III 10640 89 2 111 1 350 11 11 990

i 7.3 5.2 6.6
Totala 86 012 9<J 065 162 350 338 427
% of grand te t a! 25 27 48



PU
§~ I
f:::,,~c:q 2
_3
I ::: :~ :,,::~:: ::d 4
t:i:::1 5
1:~16

CJ7
f!;f-~7~71 8
I ·;.~..::~;I 9

f igure 3.7 Three-dimensional projection of the CPER with an ove rlay of ph ysiographic units
(Yonker et al. 1988). Grid interval is 400 m.



have benefited substantially from both historical and collaborative research on this topic.

Collaboration with the Great Plains project (BSR-8605191) and the ARS has been

especially productive.

During LTER I we established that on selected catenas, soil organic matter (Sa M),

total N and P, and clay content were higher in toeslope positions than in midslope or

summit positions (Schimel et al. 1985). This pattern, in part, causes and is caused by

higher net primary production in toes lope positions (Section 2.2.1.2). In LTER II, an

extensive survey indicated that spatial patterns in SaM are more complex at the site

level than the simple catena model could explain (Yonker et al. 1988) (Fig. 3.7, Table

3.2). On many parent material types, fluvial erosion is apparently not the dominant

force in redistributing fine soil particles or SaM (Table 3.3). Patterns in SaM and

nutrient availability are the result of patterns in parent material and geomorphic control

over eolian as well as fluvial movement. We have invested significant effort into

understanding the relationships among geologic, geomorphic, and pedologic processes in

controlling SaM accumulation (Yonker et al. 1988, Davidson 1988).

In addition to investigations of processes that control current SaM distributions , we

have begun to address SaM patterns over long time scales. Approximately 400 pedons

have been described at the CPER. Paleosol distribution is extensive; buried soils are

found at all landscape positions except the most convex portion of hillslopes. We

estimated that as much as 17% of the total soil organic C budget for the site is Holocene

"paleocarbon" (Yonker et al. 1988). "Carbon dates for 3 paleosols indicated at least two

soil-forming episodes since the end of the Pleistocene (Yonker et al. 1988 Gould et al.

1979). Opal phytoliths extracted from one of the paleosols were representative of

tallgrass species (Kelly et al., work in r~"gress). Further evidence of paleoclimatic

instability found in an analysis of Holocene sand dunes in northeastern Colorado

suggested periodic Holocene drought (Muhs 1985).

Studies during LTER I indicated that patterns in nitrogen availability are concomitant

with those in SaM; highest potential and in situ mineralization rates are found in
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toeslope positions (Schimel et al. 1985). Labora tory and field incuba tions indicated that

highest N-mineral iza tion ra tes occur in the surface 20 em of soil, and correspond with

periods of high soil-wa te r content (Schimel and Parton 1986). These two studies indicate

that N availabili ty is contro lled by substr ate availability and soil microclimate (Section

2.2. 1.2). We are continuing our study of how these con trols infl uence the spatial and

temporal pa tterns of nutrient availability. We ini tiated a long-term, 15N tracer study to

evaluate the influence of topographic position and grazing on the incorpo ration of N into

active and recalcitrant fractions of SOM, and hence the long- term availa bili ty of N

(Section 3.2.5).

3.1.4 Patterns and frequency of disturbance to the r esearch site.

Most of our disturbance work can be placed into 2 broad categories, large and small

spatial scales. The large-scale category deals with recovery of hectare-size areas from a

variety of disturbances , ranging from long-term (50 years ) heavy grazing by ca ttle to

several years applica tion of water and ni trogen fertilizer (Milchunas et a!. submitted).

Shortgrass steppe plant communities are less sensi tive to grazing than many othe r

grassland typ es (Milchunas et a!. 1988b). In an analysis of plan t community structure

after 47 years of heavy grazing, we found an increase in basal cover of B. graci lis, a

decrease in litter, and interactions among precipitation , grazing, and topography in

determining the abundance and pa tterns of species (Milchunas et al. 1989). Extending

the analysis to the response of belowground plant biomass to long-term heavy grazing, we

found only small changes in the amount and vertical distribution of belowground biomass,

but large differences in the hori zontal distribution of biomass (Fig. 3.8) (Milchunas and

Lauenroth 1989 ).

Plant popula tions at the CPER do not necessarily respond simila rly to the same

envi ronme ntal signal (Section 1.1.3). An interesting rela ted question is: Does a plant

species respond consistently to environmental signals when growing in different

communiti es? Th e response of plant communities to water and nitrogen trea tments

produced a number of different mixtures of plant popul a tions (Laue nroth et al 1978).
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Whereas some species track environmental signals similarly regardless of different

neighbor species (Fig. 3.9), others display time lags in response to abiotic signals modified

by the biotic community (Fig. 3.9). Major time lags were also observed with respect to

changes in community composition between the treatment period (1970-1976) and the

beginning of LTER. In many cases, population changes were greater during the 5 years

immediately following the treatments than they were by the end of the 5-year treatment

interval.

The second category of disturbance research focuses on the responses of individual

plants to disturbances at scales of 0.1 to lOs of m', and uses gap dynamics concepts to

explain the response of shortgrass plant communities to disturbances (Coffin and

Lauenroth 1989a,b). Simulation analysis of the time required for fl.. gracilis to recover

from a disturbance suggests that the availability of a seed source, the size of the

disturbance, the soil texture of the disturbed site, and the weather following the

disturbance have important effects on recovery time. A number of our long-term

experiments address these issues (Section 3.2.1).

3.1.5 Soil water dynamics

Inputs, storage, and losses of water from soils at the CPER and in semiarid regions in

general is of such importance that we chose to make this a separate topic in organizing

and reporting our LTER work. We deal with the dynamics of water at the individual

plant, patch, and toposequence scales.

At the individual plant scale, we are beginning to collect data on the effects of single

individuals of B. gracilis on the availability of water to other plants. At the patch scale,

we have relatively long-term (10-15 years) data, and 3-5 years of data at the catena

scale .

Patch-scale soil water dynamics are determined by soil hydraulic properties and

precipitation patterns. Toposequence-scale soil water dynamics depend on processes and

controls at the patch scale as well as on redistribution by overland and subsurface

horizontal flows. On most dates, toposequence-scale water dynamics can be treated as a
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series of isolated patches (Fig. 3.10). Infrequently, a large or high intensity rainfall event

will result in important horizontal flows of both water and material (Fig 3.11 ).

A new experiment was initiated by the ARS in cooperation with our LTER project to

provide information about run-off and run-on of water along catena segments of varying

length (Section 3.2.6). This work is beginning to provide information about the conditions

required to generate water flows along toposequences and the magnitude of those flows

over segments of the slope . Results for 2 rainfall events, one resulting in 86 mm of rain

in 1.5 hours and the other producing 40 mm of rain in 8 hours, illustrate the variability

in runoff and infiltration that can occur as a function of intensi ty and duration of

rainfall, aspect, and the length of the toposequence segment over which runoff was

measured (Fig. 3.11).

3.2 Long.Term Experiments

3.2.1 Effects of and recovery from disturbance

Shortgrass steppe ecosystems are subject to a variety of disturbances, each with a

particular temporal and spatial scale. Our definition of a disturbance is broad (e.g.,

Rykiel 1985) and includes a range of events that reduce changes in ecosystem structure

or function. At the smallest spatial scale (Fig. 2.1) we define a disturbance as any event

that kills at least one individual of the dominant species, B. gracilis (Coffin and

Lauenroth 1988). This definition is based on the following: B. gracilis is the most

drought resistant and grazing resistant grass at CPER, and on the basis of productivity

and basal cover, it is the dominant plant species for 95% of the research site. B. gracilis

has a similar status for most of the 2.8 x 105 km' of the shortgrass steppe. Additionally,

conditions for reproduction of B. gracilis from seed are infrequent. Estimates of return

times for reproductive evc -ts range from 8 to 100 years (Coffin and Lauenroth 1989b,c).

Therefore, any event that kills at least 1 individual of B. gracilis has the potential for a

very long-lasting impact on the ecosystem (Coffin and Lauenroth 1989b,c).
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3.2.1.1 Dis turbance experiments

Recoverv from additions of water and nitrogen. The temporal dynamics of plant

populations and communities have been sam pled for 13 yea rs on hectare-size plots th at

had water and/or nitrogen fertilizer added during the fiP project (Lauenroth and Sims

1976, Lauenroth et al. 1978) (Section 3.1.4 ). The objectives are to eval uate trajectories

and rates of recovery of the vegeta tion in relation to undisturbed conditions , and to

examine stability properties of perturbed and unperturbed grassland in relation to shor t

and long-term climatic variability.

Effects of Phyllophaga sp. larvae. In 1977, researchers at the CPER observed a

large number of patches, ranging in size from 2 to 50 m' (Fig. 3.6) in which all of the

individual s of B. gracilis were dead. Investigation implicated root herbivory by

Phyllophaga larvae as the cause. An experiment was designed to follow th e recovery of

16 grazed-ungrazed pairs of patches. The objecti ve was to in ves tigate t he recovery of

vegetation and the time required for B. gracilis to dominate each patch. We plan to

follow the recovery of these plots for the next several decad es .

Small scale disturbance. A field experimen t was started in 1984 to evaluate the

effects of disturbance size, date, and type on recovery of vegetation from small-scale

disturbances (Coffin and Lauenroth 1989d, 1990). Circular plots ranging from 0.2-1.8 m'

were cleared of vegetation at 4 times of the year corresponding to times of highest

probability of disturbance at a location with fine-textured soil and another with coarse

textured soil . The number of individuals, their size and location have been assessed

periodically for each plot. Plant recovery on Western harvester ant mounds (Coffin and

Lauenroth 1990) and small animal burrows of different sizes and abandoned at different

times of the year have been sampled with methods similar to those used on the

manipulated plots.

Cattle fecal pat disturbances. This experiment was begun in 1987 as a result of

simulation analyses that indicated cattle fecal deposits may be a substantial source of

mortality for B. gracilis (Coffin and Lauenroth 1988). Pats were permanently marked,
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mapped, measured, and photographed at 5 locations chosen to represent the variability in

topographic position and grazing intensity at the CPER. The number and identity of

plants killed by each pat were recorded in the first year. Plant recovery information has

been recorded in the subsequent years as well as inform ation about the status of each

pat to evaluate its decay over time.

3.2.2 Population dynamics of B. gracilis

A field · study was begun in 1989 to evaluate the population dynamics of B. gracilis.

Ten locations were chosen to represent a gradient in soil texture and grazing intensity at

the CPER. Initial data collection was limited to reproductive effort on an individual

plant basis. Number, weight, and height of flowering culms, number of inflorescences,

viable seeds, and plant size were collected on an individual basis for 96 plants at each

site (Fig. 2.15 and 2.16). Plans for 1990 include establishment of permanent plots at

each site for demographic analyses.

3.2.3 Long-term grazing by cattle

Light, moderate, and heavy grazing treatments and ungrazed exclosures were

established at the CPER in 1939 and have been maintained (Klipple and Costello 1960,

Milchunas et al. 1989). The treatments have a long history of observation ranging from

arthropod and vertebrate population dynamics, plant community structure and

productivity, to cattle weight gain and applied range management practices. Currently,

the grazing treatments are central to our research on plant-animal interactions, gap

dynamics modeling (Section 3.10.2), soil organic matter turnover, and nutrient cycling

(Section 3.1.3). The plant-animal interaction work has: (1) examined plant. community

composition in relation to grazing, landscape structure, and precipitation, and has

established a long-term sampling protocol (Milchunas et al. 1989); (2) assessed effects of

grazing on the horizontal and vertical distribution of plant biomass across topographic

gradients (Milchunas and Lauenroth 1989); (3) compared grazing treatments to other

large-scale disturbances in terms of successional status and stability (Milchunas et al.

submitted); and (4) developed a global-scale conceptual model of the effects of grazing on
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grassland community structure (Milchun as et al. 1988). Work in progress includes effects

of grazing on demography of opportunistic species, and AIfPP and water- and nitrogen

use efficiency (Sections 1.1.5 and 3.1.4).

3.2.4 Belowground net primary production and carbon dynamics

Our objectives for this work are to ass ess litter, crown, root, and soil carbon turnover

by "C dilution (Milchunas et al . 1985), " C turnover , and harvest (F igs. 3.3 and 3.4). In

addition, we are examining the incorporation of carbon into soil organic matter, and its

interactions with micro-and macro-soil aggregates. Eight plots (9 m2
) were labeled with

"C02 in 1985. The plots have been sampled on 11 dates over the pas t 5 years.

Sampling will continue annually for the next several years then change to 5-year

intervals (Section 3.1.1).

3.2.5 Nitrogen turnover

We began a long-term, landscape-scale experiment in 1987 to investigate nitrogen

turnover (Section 3.1.3). The design included a large addition of 15N to pai red plots on

either side of a grazed-ungrazed boundary that traverses 3 ridgetops and lowlands.

Periodically, we sample for N distribution in above- and belowground plant biomass , an d

in several soil pools (tota l N, available N, and microbial biomass). Long-term laboratory

incubations of soils collected from the plots allow us to track the partitioning of 15N

among labile and recalcitrant soil organic matter pools (Section 3.1.3). Because a large

amount of 15N was added to the plots, we can continue to collect data for up to 30 years.

3.2.6 Hydrology

The objective of the hydrology research being conducted by the Hydro-Ecosystem

Research group of the ARS at CPER in cooperation with the CPERILTER project is to

validate a spatially explicit hydrologic simulation model for a seI:"" ~rid grassland, and to

provide long-term observation of hillslope hydrologic processes . The research involves both

natural runoff plots and rainfall simulation studies (Section 3.1.5).

The field experiment is designed to sam ple 2 dissimilar topos equences to represent

much of the variability of soil properties at th e CPER. Since the soils are not uniform
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and slopes are quite variable, runoff, infiltration, and soil water are also variable. Runoff

can be produced at upper slope positions and infiltrate at lower slope positions so that

although runoff reaching the bottom of a hillslope is minor, substantial redistribution of

water may occur (Section 3.1.5). To characterize the spatial patterns of run-off, run-on,

infiltration, and resulting soil water dynamics, we are using 2 series of successively

longer microwatershed plots with automated instrumentation (Fig. 3.11). This approach,

which allows us to estimate process rates in each of four slope segments without isolating

each segment from upslope influences, is probably unique internationally. Four rain

gages and a complete micromet station are located within the hydrology experiment area.

Observations of natural rainfall events are being supplemented with simulated rainfall

events using small (22 by 7 m) plots representing individual slope segments.

3.2.7 Wind erosion patterns and rates

The objective of this work is to determine the prevailing direction, rates of movement

on various slope elements, and temporal distribution of sediment transport. Forty-eight

BSNE (Big Spring Number Eight) wind-horn-sediment samplers have been deployed

adjacent to the hydrology plots. The samplers have been in place since summer 1985.

They are installed at three heights and are located on different slope elements and

aspects. Two sets are installed at each location to evaluate precision at a station.

3.3 Long.Term Data Sets

The CPERJLTER long-term data sets include data collected during the 8 years of

LTER as well as data collected by CSU and ARS researchers prior to the beginning of

LTER (Table 3.4). A goal for data management at the start of the CPERJLTER project

was to recover as much of the previous data as possible. The constraint on this activity

was that the data be sufficiently well documented so that we could clearly define its

quality and utility.

Most of the previous data in the CPERJLTER data management system were collected

during the 1970s under IBP funding. In most cases, it was possible to contact the

person who collected the data before incorporating them into the data system.
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Tabl e 3.4. CPER/ lTER Data Set s. Belowground tempera t ure dat a include minimum, maximum and average soi l tempera t ures at 8 dept hs . The CR-21X wea t her dat a are
pr ec ip it a t ion amount s measured on 15 minute interva ls. The hygro th ermograph data are standard st rip chart data. Hi s tor ic al weather dat a are records f rom
standard weather s t ati ons . The CPER Sta ndard ~eather dat a suppl ement, historica l weath er dat a by inc ludi ng mini mum and maximum pan evapora tion, wind
t r avel, and sol ar radiat ion in addition to minimum and max imum ai r t emperatures, wet and dry bulb temperatures, and precipit a t ion measurement s .
Aboveground herbage data inc lude es ti ma t ed and cl iPPed plot biomass values by species assi gned to categor ies of live , recent dead, and ol d dead. Above
and belowground inver t ebrat e data inc lud e numer ic al density and biomass es ti ma tes by spec ies- l if e stage for inver te brates. Han~l data are from smal l
mammal t r apping studies, and incl ude numerica l and biomass es tima tes by spec ie s. Avi an data are census informati on by species . Decompos i t ion data are
resu l ts from litter bag experi ment s for sur face and subsurf ace decompos it ion. lit ter data are est imates of l i t ter biomass and li t ter producti on. The
phenology data li s t phenol ogical stage by speci es. Soi l wat er estima te s are ava i lable fr om t he CPER lys imeter, f r om gravime t r ic measurements, and from
neut ron pr obe measurement s.

lTER Data Sets

ABIOTIC
CPER Belowground Temperature Data

Field data, english units 1971-1988
Summary data, metric units: 1971 -1988
Summary output tables : 1971-1988
(Data descriptions for all data sets)

Hygrothermogr aph Data
Ale f ie ld dat a 1971 - 1972
Br idger f i e ld dat a 1972
Osage fi eld dat a 1971
Pant ex fi e ld data 1972
CPER field da ta 1970- 1981
CPER dai ly max/mi n data: 1983-1985
(Data descript ions - none)

Hi stor ical ~eat her Data
Cheyene data 1969·1974
CPER prec ipit ati on data : 1940-1970
CPER temperature data : 1948-1970
CPER weather data, engl ish units: 1940-1973
CPER weather data , metr ic units: 1940-1973
Grover precipitation dat . 1937-1966
Grover t emperature data 1946-1967
Kauffman precipitation data : 1937-1966
Kauffman temperature data : 1945-1967
ARS rain gauge data : 1940-1968
(Data descriptions - none)

CPER St andard ~eather Data
Field dat a , english units 1969-1988
Sun~ry data, metric uni ts : 1969-1988
Summary output ta bl es 1969-1988
(Dat a descript ions for 69-86 data sets)

1978
1970-1977

1977-1978
1969-1976

1974 -1976
1971 -1972
none)

IlAMlAl
Bison fiel d dat a : 1970
Bridger f ield data : 1970
Cott onwood fiel d data : 1970
Dickson f ield data 1970
Jor nada fie ld da ta 1970
Nevada fie ld data 1970
Osage f ie ld data 1970
Pant ex fi eld da ta 1970, 1972
CPE R f ie ld da ta 1971-1975
San Joaquin f iel d dat a:1 973-1974
(Data des criptions - none)

PHENOlOGY
Cottonwood fie ld dat a : 1970, 1972
EPA monta na f i ~l d dat a : 1975-1977
CPER fie ld dat a 1972-1977
(Descr iptions for a l l CPER dat a se t s and for
most EPA dat a se ts )

LITTER
EPA f ield data
CP ER field and summary dat a:
(Data desc r ipt ions - none)

BElWGROUNO HERBAGE
EPA f i e ld data
CPER field and summa ry data
(Dat a desc riptions - none)

DEa»IPOS IT1011
EPA field data
CPER sUilnary dat a
(D ata descriptions

se ts)

1970- 1973
1970-1974
1970-1972
1970-1975
1970-1972
1968- 1973

1977·1978
1969·1978
1969-1978

CPER field data

ABOVEGROUND INVERTEBRATES
Ale f ie ld and summa ry dat a 1972·1973
Bridger f ie ld dat a 1972
Cott onwood field and summary dat a: 1970-1972
EPA fi el d and sUilnary dat a 1974-1977
Jor nada fi e ld and summary data 1970- 1972
Osage fi e ld and summa ry data 1970-1972
Pant ex field and sun~ry data 1970- 1972
CPER field and summary data 1970- 1974
San Joaqu in f ield and summary da ta: 1973-1974
(D escr ip t ions for mos t CPER field data sets)

AVIAN
Ale f iel d data
Cottonwood fie ld data
Jornada f ield dat a
Osage f ie ld da t a
Pant ex f ie ld dat a
CPER fie ld da ta
(Data descr ipt ions - none)

ABOVEGRl1JND IlERBAGE
EPA f ield data
CPER field data
CPER sUilnary data
(Descriptions for most

5/30/86-1989
5/30/86-1989
5/30/86-1989

86-88 data set s )

CPER CR -21X ~eather Data
Summary daily data
Summary hourly data
Summary 15-min data
(Data descriptions for



Table 3.4 (Continued)

SOIL MACROARTHROPODS
CPER field and summary data
(Data descriptions - none)

SOIL MICROARTHROPODS
CPER field and summary data
(Data descriptions - none)

SOIL ~TER - GRAVIMETRIC
Cottonwood field data
EPA field data
CPER field data
(Descriptions for CPER data

SOIL ~TER - LYSIMETER
CPER field and summary data
(Data descriptions - none)

SOIL ~TER - MICR~TERSHED

CPER field and summary data
(Data descriptions - none)

1970-1975

1971-1975

1970-1972
19n-1978
1972, 1975-1976

sets)

1972-1978

1969-1978

LTER Data Sets

SOIL ~TER - NEUTRON PROBE
CPER field data 1978-1988
(Data descriptions - none)

VEGETATION
CPER field data : 1983
(Data descriptions - none)



3.4 Data Management

The goal for data management is to store the data in a historically accurate, secure,

and retrievable form. Data collected using field forms are entered and verified by a

professional keypunch operator. Data collected electronically and recorded on computer

accessible media are transferred to UNIX computer systems for entry into the archives .

When possible, data are checked for validity using special purpose programs. The final

step in quality assurance is to ask the investigator to check and verify the data.

Our approach to assure the data will be available 10, 20, or even 100 years from now

is to store the data redundantly on 4 different types of media: (1) hard disk on a Sun

workstation for easy and fast access , (2) standard nine track tapes , (3) high -density 8-mm

cartridges, and (4) original data forms are copied to microfilm for long-term storage.

Copies of the 8-mm cartridges and the microfilm are stored in 2 different buildings. In

addition, we plan to move a copy of the data to optical disk in the near future.

Data are stored as sequential access ASCII files because this is a standard format

expected to be used over the next several decades. The physical format of the magnetic

tapes is likely to become obsolete over the next decade as media densities increase.

However, disks and tapes are rewritten every 2-3 years to avoid deterioration of the

media. Changes in storage technology will be accommodated as required.

The sequential access format ensures long term access to data, but is more difficult to

use than a relational (or other) database. Our solution to this problem is to provide

support between primary data files and investigators that consists of programmers and a

collection of software tools to access and format data. These tools rely on a set of data

file descriptions that can be read by humans and computer programs. The data

descriptions are one of the most important products of the project. These descriptions

document the format for data, default variable names for each data field, the type (real,

integer, alphanumeric, or logical) of the field, its location in the data record, and a

description of the variable. Data descriptions also contain information about who
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collected the data, who to contact for access to the data, problems or other notes , such as

other sources of documentation.

Our software tools can read data descrip tions and gene rate either new file form ats or

code for specialized programs. For example, the curren t software can read th e data

description, extract selec ted da ta , and create an ASCII format that is easi ly read by PC

spreadsheet or database programs, or a binary format that can be read us ing locally

produced graphics software. Another tool reads the data description and produces a f:tle

for input to the UNIX 'troff formatting system. The output from 'troff produces a

typeset quality da ta summary.

The CPERILTER data management staff consists of a Ph.D. level scie ntist, T.B.

Kirchner, and a professional programmer. Dr. Kirchner provides direction for the data

management effort. Dr. Kirchner is also involved in our simulation modeling activities.

3.5 Synthesis and Modeling

Scientists associated with the CPERILTER project have been involved in a number of

important synthesis activities over the 8 years of the project. Some of these are in the

form of work in progress, while many are specific products that are refereed publications

or book chapters. These are described briefly below. Publica tions from CPE RILTER are

lis ted in Appendix l.

3.5.1 Products

3.5.1.1 Shortgrass region

Lauenroth and Milchunas 1990.

This book chapter is a synth esis of scien tific information about the shortgrass steppe

in North America. Major topics addressed include climate, vegetation, he terotrophs, and

landuse management. It brings together in a single source most of the avai lable

inform ation published before the beginning of the CPERILTER project in 1982.
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3.5.1.2 Grazing behavio r

Senft et a1. 1987.

This paper was initia ted with a meeting held at the CPER and organ ized by th e LTER

project . It resolves grazing research conducted a t the CPER with opti mal foraging theory

and hierarchy theory.

3.5.1.3 Plant community r esponse to grazing

Milchunas et a1. 1988b.

The relativel y small response of shortgrass plant communities to long-te rm heavy

grazing by cattle was the motivation for this paper. This paper unifies and exte nds

existing concepts of plant community responses to dis turbance and provides a fra mework

for reconciling contradictory results from grazing studies on a globa l basis.

3.5.1.4 Soil organic matter:
theory and regional analysis

Parton et al . 1987, Parton et al . 1988, Burke et a1. 1989.

Soil organic matter is the major source and th e best single indicator of ecosystem

stability in the central grassland region. These 3 papers blend theory, data, and

simulation modelin g to disentangle th e complex patterns and controls on SOM in

grassland soils.

3.5.1.5 Regional primary production

Sala et aI. 1988b .

This paper draws upon the same regional da tabase as th e soil carbon papers and

addresses a related issue, patterns and controls on primary production evident at th e

scale of the central grassland region. Annual precipitation and soil texture were

iden tified as the major controls OD production.

3.5.1.6 Recovery of grasslands from disturbance: theory

Coffin and Lauenroth 1989a.

Past successional concepts for the sh ortgrass steppe were th e result of research using

the old-field conceptual model (Fig. 2.11). This paper describes an individual-based gap
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model in which recruitment, growth, and death of individual plants is controlled by

interactions for belowground resource space. The model resolves a number of problems

inherent in the old-field approach.

3.5.1.7 Scaling site-process information to regions

Burke et al . (in press).

This paper was motivated by a spatially explicit issue associated with scaling

information developed at a single site--the CPER--to a region. It invol ved running a

simulation model using a GIS database of input variables to produce aggregate process

information for a region.

3.5.2 Work in progress

We have a number of synthesis projects that are being actively worked on during the

final year of LTER II . Each involves the use of or development of a simulation model to

compare ecosystem dynamics across a two or more sites. We chose to list these under

the topic of synthesis and modeling to draw attention to our activities in simulation.

With funding from NSF, W.K. Lauenroth, W.J. Parton, D.P. Coffin, and T.E. Kirchner

are working with colleagues at the University of Virginia and Kansas State University to

use combine individual-based models of vegeta tion with soil process models to compare

the dynamics of forest and grassland ecosystems (Section 3.7.8). We recently received

supplemental funding to begin a large inter-LTER site modeling comparison using the

same set of models . W.K. Lauenroth and D.P. Coffin are working on a grassland-alpine

comparison using the CPER and Niwot Ridge LTER si tes as sources of data.

I.C. Burke received funding from the LTER supplemental program to begin a regional

analysis effort that included simulation study of the 1988 drought in the central Great

Plains. This work involves comparisons of simulated ecosystcr- variables in the drought

year with the same simulated variables in an average year, 1986, and with integrated

NDVI (Sections 1.1.6 and 3.10.3) .
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3.6 Intersite and Network Activities

Researchers associated with the CPERfLTER have been prominent participants in

intersite and network activities. These have included intersite research and syntheses

with LTER and non-LTER sites as well as a variety of LTER network activities.

3.6.1 Intersite research and synthesis

3.6.1.1 LTER sites

W.K Lauenroth and W.J. Parton have an NSF-funded research project in collaboration

with H.H. Shugart at the University of Virginia to use simulation models to analyze

plant community structure across resource gradients from grassland to forest. Six LTER

sites, CPER, Konza, Hubbard Brook, Andrews, Niwot, and Coweeta represent the

locations at which the models will be tested. The objectives are to evaluate controls on

dynamics of vegetation structure in grasslands, in forests, and in the transition zone

between forests and grasslands, and to compare the responses of the vegetation at 5

LTER sites to climatic change. This research is partially supported by the CPERfLTER

grant.

D. S. Schimel and W. P. Parton have a longstanding intersite research program with

the Konza LTER. Process representations in the CENTURY model developed from

experiments at the CPER were tested at Konza. Most recently, the NASA EOS

(Appendix 3) project is focusing on remote sensing of surface biophysical properties across

a transect that crosses the CPER and Konza. This project will contribute significantly to

our understanding of the fundamental similarities and differences between shortgrass

steppe and tallgrass prairie, and will provide invaluable remotely sensed data and

analysis.

An intersite project involving D. O. Doehring (CPER) and T. Ward (Jornada) began in

1988 with objectives of comparing rates , prevailing transport directions, and temporal

distributions of sediments between the 2 LTER sites. Eight BSNE samplers from the

CPER were moved to the Jornada where they were supplemented by an additional 6

samplers. This work is being supported by the LTER grants at each site.

53



a

FACTOR
.&1
t:. 2
* J
1tA

• 5
• 6
• 10

AA. • ' +' + 16. -.1 I I)J
l6:r 14,," - - +' + 1'-.1""/ 6. -
• I"'.-.,l'-.. + ,.. + ' /\ bo'. Jl"1LP. .... '

• I,:z- + ~ bo :'l.\olD
h: ,:z-~o ~~I... "'" ~
~ rt.-~·~ I I , .....I I , l lIII/
I i". .....1. 1 , I ~oJ ' I , ...

'} f'-'" 1 loA loA loAloALa:
r-, ~I"'lr'&l~ U.

b

u
j
I

' l"h" I"", r
15 ..

• j

, I" '-".'
* '10("1 0 1 l

..... ,ACTQO I

o t-""'.......:.;------+-----=~

.,---, '1v I.e S ') v '-... S , Iv ':
5

S , I 'it ",,' ,

:C " 1

't\ 0 A N
::1 v v= V VV j

.,--_ ....

Figure 3.12 Results from a factor analysis of seasonal deviations of NDVI. Ten factors explained
97% of the spatial and temporal variability in NDVI. Four factors, each explaining 10% of the
variability , were the most important and were used to group grid cells. (a) Factor grouping of u.s.
grid cells for the 4 most important factors and 3 other factors that had high loadings on a few cells.
When 2 symbols are shown, the upper left one indicates the dominant factor. Cells ma rked '0' were
om itted from the analysis because of lack of corresponding precip ita tion data. (b) Factor time series
(factor scores) for the first 4 factors .



D.E. Hazlett initiated a network-wide comparison of exotic species in the flora of each

LTER site. The objective is detection of differences in vulnerability to invasion by exotic

plant species of a variety of ecosystem type s. This work is being supported by the

CPERILTER grant.

T.G.F. Kittel and W.K. Lau enroth initiated a continental-scale analysis of ecosystems

using normalized difference vegetation index (NDVI) da ta as a correlate of function. An

objective of this analysis was to eval ua te how well LTER sites represented the region of

which they are a part. The results suggest that interannual ecological variability at

LTER sites may represent a large portion of the variability at a regio nal scale (Fig. 3.12).

3.6.1.2 Non-LTER sites

Our results are most applicable to sites that are close to the CPER with similar

climatic conditions and for similar vegetation stru cture. Our interes t in applying our

knowledge at broad scales has lead us to spend considerable effort on non-LTER intersit e

work in either the proximity of the CPER (Burke et al . 1990), the shortgrass steppe

region (Lauenroth et al. 1986), or the central grassland region (Sala et al. 1988b, Burk e

et al. 1989). We have a continuing effort in regional an alysis that began with

supplemental funding during LTER II and will continue as part of the core program in

LTER III (Section 3.10.3).

D.P. Coffin and W.K. Lauenroth recen tly ini tiated a cooperative project with the U.S.

Forest Service to evaluate th e presen t status of agricultu ral land abandone d in th e 1920s

and 30s that is currently managed by the Forest Service as part of the Pawnee National

Grasslands. The objective of thi s work is to test successio nal concepts developed as part

of the CPERILTER project (Coffin and Lauenroth 1989a,b). This work will be funded by

the Earthwatch Foundatic-:

3.6.2 Network activities

In addition to active participation in Coordinating Committee meetings,

W.K. Lauenroth has been a member of the LTER Executive Committee for the past 2

years. The Executive Committee meets 4 times each year, twice with th e Coordinating
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Committee and twice in Washington, DC with the NSF-BSR staff. CPERILTER scientists

have been active in workshops and meetings organized by other LTER-site scientists as

well as in organizing workshops. W.K. Lauenroth organized a meeting of LTER

simulation modelers in 1989. The objectives were to assess the current status of

modeling in the network, to initiate a dialogue among simulation modelers, and to

discuss the potential for using simulation models in cross -site comparisons. The most

important outcome to date is an LTER poster session, organized by W.K. Lauenroth, to

be held at the 1990 ESA meeting. The theme of the session is simulation models for

cross-site analysis.

I.C. Burke organized a two-week geographic information system (GIS) workshop at

Colorado State University in 1989 (Fig. 3.13). The objective of the workshop was to

introduce LTER scientists to GIS concepts, potential ecological applications, and software

training. Each LTER site sent at least one representative. Table 3.5 contains a

summary of the evaluations of the workshop participants.

W. J . Parton and D. S. Schimel are working on a SCOPE international grassland

modeling project in which the objective is to adapt the CENTURY model to grasslands

around the world. We are currently testing the model using intensive site data from 16

grassland sites. The sites range from tropical grasslands in Kenya, Mexico, and West

Africa to temperate grasslands in the U.S. and USSR.

3.7 Related Research Projects

In addition to the research at the CPER, the personnel associated with the project

represent a critical resource defining our capabilities. The research effort represented by

project personnel far exceeds the work being conducted under LTER funding. The scope

of work related to the CPERILTER is broad, encompassing individual organism,

population, community, ecosystem, and regional levels . The technical issues are complex,

including integrative modeling, measurement of trace gas emissions, geographic

information systems, and remote sensing analysis. The collection of related research

projects listed below and described in Appendix 3 defines our ability to address issues
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Table 3.5. LTER-GIS Wo r ks hop Evalua t ions

category Ra n kings

l. Overall workshop
or ganization and cont e nt . E = 22 G/E = 2 G = 2

2 . I ntroduct i on t o GI S E = 20 G/ E = 1 G = 5
concepts a nd eco l ogical
a pplication. Dana Tomlin .

3 . ARC/INFO training . E = 0 G/E = 3 G = 9
G/F = 1 F = 1 2 F/P = 1

4. ERDAS train i ng. E = 5 G/E = 1 G = 1
F = 3

5 . Evening pres entations. E = 5 G/E = 1 G = 17
F = 1

6. Meals, acc ommodations . E = 16 , G = 8
G/F = 1

7 . Tra i ning facil i t y , E = 22 , G/E = 3 G = 1
t e c hnic al s up po r t staf f .



across a broad range of scales. Additionally, a proposed region al science and technology

center, CADRE, if funded , will provide an important organizing force for in tegration of

CPERILTER research into a regional context .

1. Center for Analysis of the Dynamics of Regional Ecosystems (CADRE).
2. Controlled Environmen t Climate Chan ge Study (CO,).
3. Grea t Plains Agroecosystems Project (GRP).
4. Ecology and Management for Sustained Rangeland Production in the Great Plains

(ARS).
5. Trace Gas Project (TGAS).
6. Grass/Shrub Interactions in Two Temperate Semiarid Regions (GS).
7. Community Structure Across Resource Gradients v Grassland to Forest (CSUIUVA).
8. Boundary Dynamics Approach to Studying Landscapes (BD).
9. Hierarchical Modeling Project (DOE).

10. Comparative Analysis of Soil Organic Matter with Stable C and N Isotopes
(L.L. Tieszen).

11. Earth Observing System (EOS).
12. Land Surface-Climatology Interactions (FIFE).
13. Joint Facility for Regional Ecosystem Analysis (JFREA).
14. Interdisciplinary Modeling of Climate Chan ge (SOC).

The abbreviations in the list are keyed to the project groups and topics in Table 3.7.

3.8. Archives a n d Inventories

The CPERILTER herbarium contains 650 moun ted specimens, representing 3/4 of the

known species at the CPER. An annotated plant checklist of 284 species from 53

families includes information on lifeform, origin, photosyn thetic pa th way, and hab itat.

Both have been substantially updated during LTER II. An exte nsive microarthropod

reference collection for the CPER is sto red at CSU. There are 3 soil surveys for the site:

(1) SCS Northern Weld County (1:2400) covering the entire site, (2) IBP soil survey

(1:4800) covering the northwestern 1/4 of the site, and (3) an 8·km LTER soil transect

(1:2400) at a high sample frequency, that includes SOM and texture. A new SCS soil

survey will be conducted in summer of 1990 to improve our current maps.

Plant samples from the long-term N and NPP monitorin «, and root and soil sam ples

from the long-term " C study are archived for future analyses.

The site bibliography was updated in 1989, and includes sections for journal articles,

technical reports, th eses, dissertations, and abstracts of talks. The portion of th e site

bibliography that corresponds with the LTER project is included as Appendix I.
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3.9 Leadership, Management, and Organization

The CPERILTER project is a joint effort between CSU and ARS. Three departments

at CSU are involved, Range Science, Forest and Wood Science, and the Natural Resource

Ecology Laboratory. Project direction is set by the PIs, who meet weekly during the

academic year and monthly during the summer. W.K Lauenroth is the project and site

director, and will continue to have overall responsibility for project management. I.C.

Burke (CSU·Forest and Wood Science), a new Co-PI, will share management

responsibility. She will expand her current role as an investigator to include project

leadership.

Two PIs on the project, J . Van Schilfgaarde and J .R. Forwood, represent ARS. The

Research Leader (RL) for the ARS Great Plains Systems Group has traditionally been a

Co-PI and an integral part of the CPERILTER project. Dr. J . Welsh has recently

accepted the Research Leader position and, when he arrives, he will be a Co-PIon the

project. Until his arrival, Dr. Van Schilfgaarde will be Co-PI. J .R. Forwood is the ARS

Scientist-in-Charge of the CPER, and will function as a Co-PIon LTER III .

Our approach to project management involves significant attention to team dynamics

at the leadership and project scientist level. An important member of our project is Dr.

J .E. Hautaluoma, a management scientist. Dr. Hautaluoma meets with the PIs and

scientific staff for all regular meetings, and provides help in goal setting, leadership,

team-building, and conflict resolution.

LTER I and II research has been highly integrated, maximizing cooperation and

communication among scientists involved in the LTER project and in related research

projects (Section 3.7). This extended group meets twice monthly in an informal seminar

format to share ideas and progress. The major project subgroups (Table 3.6) meet

regularly and frequently. The CPERILTER project will continue to receive substantial

support from CSU, the College of Forestry and Natural Resources, and the participating

departments. The Vice-President for Research has supported the project by agreeing to a
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Table 3.6. Structure of LTER/CPER ~rking Groups.

GrQl4l N00le

Climate/Hicroclimate

Atmosphere/Biosphere

Vegetation and NPP

Consumer Dynamics

Nutr ients/SOH

Geomorphology/Hydrology

Data Hanagement

CPER SCientists

~.K. Lauenroth , O.E. Sola,
I.C. Burke, ~.J. Parton

0 .5. Schimel, ~.J. Parton,
I.C. Burke

~.K . Lauenroth , D.P. Coffin,
D.G . Hilchunas, J.D. Hanson,
J. Forwood, O.E. Sola,
J.K . Detling, E.F. Kelly,

J.K . Detl ing, D.G. Hilchunas,
J. Forwood, J .A. ~iens,

B. VanHorne, J.D. Hanson

J.K . Detl ing, I.C. Burke, 0.5.
Schimel, ~.J. Parton, C.H.
Yonker, D.G. Hilchunas

D.O . Doehring , D.G. DeCoursey,
E. F. Ke lly, C.H. Yonker,
D.S. Schimel

T.B. Ki rchner , U.K . Lauenroth ,
I .C. Burke

Non-OPER SCientists

H.~. Hunt, N.J . Doesken
1.G.F. Kittel

1.G.F. Kittel

H.U. Hunt, H.B. Coughenour

H.~. Hunt

H.~. Hunt, C.V . Cole, E.T.
Elliott , R.G. Uoodmansee

E. Uoh l

P.~. Snook

Related Projects

NADP, ARS, LTER Coordinating
Coorni ttee, CO2

FI FE , EOS, TGAS

ARS , CSU/UVA, CO2

ARS

GRP, TGAS, CSU/UVA

CSU Experi ment Station,
L.L. Tieszen, ARS

Hodeling D.P.
U.J.
O.E.
1.B .

Coffin, U.K. Lauenroth,
Parton, J.D. Hanson,
Sala, D.G. Decoursey,
Kirchner

H .~ . Hunt , H.B. Coughenour CSU/UVA, DOE, CO2, ARS

GIS/Remote Sensing

Regional Analysis

I .C. Burke, R.H . Hoffer, J.D.
Hanson, P.U. Snook,
D.S. Schimel

D.P. Coffin, I.C . Burke, U.J.
Parton, D.S. Schimel, R.H.
Hoffer, P.U. Snook , J.D. Hanson,
U.K. Lauenroth, R.G. Uoodmansee

T.G. F. Ki tt e l

H.B . Coughenour
T.G.F . Ki t te l

JFREA, EOS, FIFE, ARS

CADRE, GRP, ARS, FIFE, EOS, DOE ,
SOC.



large reduction in the overhead rate and the departments will return their share of

indirect costs directly to the project.

With the initiation of LTER III, we will be adding several new investigators to our

research team. J .R. Forwood of the ARS is a range scientist with expertise in grazing

behavior and forage quality. J.K Detling (CSU-Range Science) will expand our ongoing

research program in plant and ecosystem responses to grazing. B. Van Home and J .

Wiens (CSU-Biology) will develop new efforts to establish long-term data collection on

small mammal and bird activity. R.M. Hoffer (CSU-Forest and Wood Science) will lead a

new remote sensing program for the CPER. E.F . Kelly (CSU-Agronomy) will initiate

paleoecological research at the CPER.

3.10 New P rojects and Tech n ologies

The CPERILTER project continues to pursue the implementation of new research tools.

We are using state-of-the-art technologies in all 3 major research areas, field research,

synthesis and modeling, and spatial analysis, to address questions of long-term and

regional relevance. Our successful application of these new tools puts us in a leadership

role in the LTER network (Section 3.5).

3.10.1 Field analysis

During LTER II, we started 2 new long-term field experiments (Secti ons 3.1.1, 3.1.3,

3.2.4 & 3.2.5) that address the distribution and turnover of C and N in plants and soils .

Both experiments use isotope dilution to estimate long- and short-term nutrient turnover

rates. The"C experiment has resulted in a new technique for estimating belowground

production, and the ISN experiment in new methods for partitioning soil nitrogen into

active, in term edia te , and stable fractions.

3.10.2 Simu"'fion modeling

Current ecosystem simulation models can be categorized as either process or structure

models . Process models attribute cause in ecosystem responses almost entirely to

processes with little importance attributed to system structure (Parton et al. 1988).

Models of ecosystem structure tend to represent the opposite conceptualization (Shugart
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1984). We plan to construct a new class of simulation models that will bridge the

process-structure dichotomy, and allow us to address questions about 2-way interactions

between processes and structures in ecosystems. These new models will combine concepts

associated with individual-based models of plant dynamics (Coffin and Lauenroth 1989b)

with models of ecosystem processes (Parton et al. 1987).

3.10.3 Hierarchical GIS and regional simulation modeling

3.10.3.1 Site Level

Through the supplemental funding program, we have begun to develop a hierarchical

spatial database organized and stored in a GIS (Fig. 3.14). The database contains long

term, site-level spatial databases on natural features (soils, geomorphology, drainages ,

elevation, and vegetation), artificial features (fences, buildings, roads ), and location of

experiments into a multi-layered GIS using the ARCIINFO software system in the Joint

Facility for Regional Ecosystem Analysis (Section 3.10). We are beginning to use the

site-level GIS as a tool for spatial pattern analysis and for location and management of

experiments. We have also begun to implement a program of continuous site monitoring

through aerial photography and satellite imagery analysis . We have a historical set of

aerial photos of the site that we are beginning to analyze using our ERDAS image

analysis system. These data will be part of the site GIS library.

In 1989 we purchased Landsat TM imagery for the site and surrounding area. We

obtained 2 types of 1985 TM data for initial analysis, an inexpensive print of a full TM

scene (185 x 185 km) that covers much of northeastern Colorado, and digital data for a

15 x 15-km area centered on the CPER. We completed a test on the print and have

been successful in scanning and analyzing it with ERDAS and classifying it into landuse

categories (Fig. 1.8). This analysis provides us with a relatively inexpe .ve method of

monitoring simple changes in landuse in a large area surrounding the site. In addition,

we are using the digital TM data to classify the local region into landuse categories, to

estimate productivity, and quantitatively estimate the representativeness of the CPER
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within the local region. We hope to regularly obtain both types of TM or other sa tellite

data in the future. Classified images will be transported into our site GIS da tabase.

3.10.3.2 Regional level

A key challenge for LTER sites is the extrapolation of site-specific information to

regions. Toward that end, we have begun a program of regional analysis , integrating

simulation models and GIS . We have obtained soils and climate data for the plains

region of Colorado, Nebraska, and Kansas, and have entere d these data in to our

CPERILTER regional GIS (Fig. 3.15). Simula tion studies have been conducted on a

portion of the parameter space as a tes t of technology and concepts (Burke et al. 1989)

(Section 3.5.1.7 ). Current work includes simulation of climate change scenarios for the

central Great Plains and comparison of results with satellite imagery (AVHRR).

3.10.4 Remote sensing at the continental scale

In addition to regional analysis of grasslands, we are using remotel y sensed da ta to

evaluate temporal and spatial variation in ecosystem function at a continental scale.

Varia tion in AVHRR data for 5 years sugges ts that biomes within the continent tend to

resp ond coherently to seasonal and interan nual variation in climate. These results have

implications for the LTER ne twork, suggesting that individual sites within biomes may

indeed represent biome-wide temporal trends in ecosystem responses to climatic varia tion.

This work is being supported by a Coordinating Committee grant (Section 3.6.1.1).

3.10.5 New projects for LTER III

In a new initiative for LTER III, we are beginning an evalua tion of the interactions

between soil texture and landuse as they control ecosystem structure and function . This

project will address all 5 core areas, and expand upon our current application of our 3

m"::>r research tools through: (1) a field evaluation of the interactions between soil

texture and landuse history as they influence the turnover of soil organic matter, water

and nutrient availability, and plant species and lifeform composition ; (2) simulation of

the influence of soil texture and landuse history on ecosystem structure and function; and

(3) regional extrapolation and analysis of the interactions between landuse, soils, and
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ecosystem status. Detailed description of this new research initiative is described in

Section 2.3.

We will use several new technologies for studying texture-Ianduse interactions in the

field. We will study the effect of soil texture and precipitation on temporal dynamics of

soil water using time domain reflectometry (Topp and Davis 1982) (Section 2.3.1). We

will use two new methods to estimate belowground primary production across a gradient

of soil textures and landuse histories. We will apply carbon isotope turnover techniques

to estimating average belowground production over a several-year period using the stable

C isotope, 13C (Section 3.1.1). In addition, we will acquire minirhizotrons for assessment

of short-term dynamics of roots (Taylor 1987). Finally, we will use soil resin cores for

measurement of seasonal dynamics of in situ net nitrogen mineralization (Binkley 1984).

3.11 Dissemination of Information

Individuals associated with the CPERILTER project regularly interact with a variety of

groups and media to communicate our research results to the public. The total number

of contacts in the past 8 years is too numerous to mention all of them. We will limit

ourselves to a few examples.

3.11.1 Conservation groups

D.E. Hazlett, the CPERILTER site manager frequently leads field trips for the

Colorado Native Plant Society. D.G. Milchunas recently lead a field trip to the CPER for

the Northern Colorado Chapter of the Sierra Club.

3.11.2 Newspapers

The Office of University Communications regularly releases bulletins about work

conducted under the CPERILTER project. In 1989, the Denver, Greeley, and Fort Collins

newspapers have run feature articles about the research site.

3.11.3 Radio and television

The Office of University Communications produced short radio and television features

on the CPERILTER project in 1989. Radio programs are released state-wide and

television programs are released to the major Denver stations. A short piece on the
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LTER project was shown on the evening news on both the NBC and ABC station

affiliates in the fall of 1989. We made special arrangement for Denver television stations

and newspapers to cover a visit to th e site by T. Lovejoy to discuss the climate change

implications of our research. This resulted in both prime-time television and newspaper

coverage of the project.

3.11.4 Other media

The Colorado State University magazine, which is distributed to all alumni, produced a

feature article on the Pawnee National Grasslands in 1989. They drew heavily upon the

CPERILTER project for information for the article.

Pruett Publishing Co. published a book by R. C. Cushman and S. R. Jones entitled

"The shortgrass prairie" in 1988. Ms Cushman, who wrote text to accompany Mr. Jones'

photography, used CPERILTER researchers as sources of information and wrote a

description of the CPERILTER project in the text including the following excerpt "Perhaps

the most important research group asking and answering questions about the shortgrass

prairie today is the 'Long Term Ecological Research Program' sponsored by the National

Science Foundation."
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APPENDIX 2

Statement of Commitment to LTER Intersite Research and Coordination, for
the LTER III Proposals of Cohort 1 Sites (Andrews, Central Plains, Coweeta,
Konza, Niwot, North Inlet, Temperate Lakes).

The seven Cohort 1 LTER Sites have prepared this statement to define our
commitment to common intersite research and coordination activities. The magnitude
of our past, present, and proposed intersite activity reflects our belief that th ese
activities produce important results in ecological science. Further, the LTER Network
makes possible collaborative research that would otherwise be extremely difficult or
impossible.

The similarities of broad themes among individual site proposals (e.g. global
change effects, ecosystem processes at multiple scales) lead na turally to identification
of these intersite projects. Perspectives gain ed from intersite comparative studies and
from pooling talent from multiple sites strengthens the research programs of individual
sites. This interplay of site- and intersite-research is pa rticularly important and
effective in long-term research.

Listed in Table 1 are intersite activities in various sta ges of development. Many
of these activities involve other (non-Cohort 1) LTER and non-LTER sites. In addition
to the relatively extensive intersite research projects listed here , our si tes participate
in approximately two dozen research projects involving several sites eac h. Details of
on-going and proposed activities are contained in individ ual site pro posals , th e
Coordinating Committee proposal, work plans, and other documents. In some cases,
the specifics have not been determined yet. Approaches to organizing and funding
these activities vary in relation to their magnitude and stage of developme nt.
Approaches include funding from sites, the Coordinating Committee grant, and other
NSF and non-NSF sources.

Given the rapid pace of change in ecological sciences , we expect that some of
the most important intersite research to be developed over the six-year grant period
are impossible to anticipate at th is time .
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Table 1. Title, leaders, and status of major ongoing and proposed re search projects involving
five or more sites.

1. Decomposition
a. Fine litter exchange experiment

Melillo (HFR), Hannon (AND - coordin ator), Parton (CPR). A 21-site litter
decomposition experiment in terrestrial systems is get ting un derway. A proposa l for further
work is in preparation.

b. Coarse woody debris
Hannon (AND), Schowalter (AND). Preliminary study of log decomposition based on

periodic destructive sampling of a collection logs which were fresh when pla ced on th e groun d
in 1985. Supported by a NSF grant. Support for a 5-site network is pending.

c. Litter decomposition in aquatic systems
Meyer (CWr). Proposal based on approach used in terrestri al fine lit ter exchange

experiment to be developed ca. 1991.

2. Modeling Vegetation Dynamics in Forests and Grasslands
Shugart (VCR), Lauenroth (CPR), Parton (CPR). Th e approa ch is to util ize sim ulat ion

models to investigate behavior of ecosystems over a range of sites in North Ame rica .
Individual-based vegetation models and soil process models will be us ed to (1) account for
existing patterns in ecosystems under a spectru m of environmental regimes a rrayed along
temperature and water gradients, and (2) to make predictions abou t the response of these
ecosystems to environmental change. Test applications began in earnest in 1989 under several
NSF grants. NSF proposal submitted 12/89 and some commitment mad e in app ropr ia te LTE R
site proposals.

3. Climate Change Effects on Site Hydrology at Plot to Landsca pe Scal es
Grant (AND), Caine (NWT). A hydrology model (probably Precipi ta tion-Run off Modeling

System (PRMS)) would be used in comparative analysis of hydrology, includ ing effects of
climate change. This would be done in cooperation with George Lea vesley (U.S. Geologica l
Survey) who developed model. Discussions of th e project have been held with USGS . Use of
PRMS is underway at AND and NWT.

4. Space/Time Variability in Diverse Systems
Magnuson (NTL), Kratz (NTL), and others. Vari ance in data from at lea st 5-yr and 5

' loca tion measurem ents of physical and biologica l variables are analyzed to cha racteri ze
contrasting systems in terms of temporal and spatial sources of varian ce. Or iginally fund ed by
senior investigator, Coordinating Committee, and site fund s. Further work plann ed based on
funding from latter two sources.

5. Ecosystem Properties Across Envi ronmental Gradients
Tilma n (CDR), Zack (CDR)··coordina tors. Ten-site-comparison of soil nu trien t dyna mics,

prod uctivity, and plant life forms across environmental gradi en ts in the U.S. Fun ded by
Coordi nating Committee and individual site grants.

6. Plant Demography, Especially Mortality
rlannon (AND), Franklin (NET), and others. A specifi c work pla n for inter site comparat ive

an alysis of existing data will be developed at the tree mortality work sh op at Ac"l D in
Apri l 1990.
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APPENDIX 3

RELATED RESEARCH PROJECTS

1. Center for Analysis of the Dynamics of Regional Ecosystems (CAD RE)

The Center For Analysis of the Dynamics of Regional Ecosys tem s (CADRE) is a
consortium of scientists and institutions, addressing issues rel a ted to climate cha nge in
semiarid regions, focusin g on th e central grassland region of the U.S. CADRE's
miss ion is to elucidate the atmospheric processes responsible for, and the ecologica l
consequences of, climate change, and to evaluate the viability of alternate strategies
for dealing with these problems. CADRE is currently proposed for funding from NSF's
Center of Excellence Program and will receive a site visit for further evaluation this
spring.

2. Controlled Environment Climate Change S tudy (CO,)

(Funded by NSF 1988-1992; Co-princi pal Investigators H.W. Hunt and E.T. Elliott,
J .K. Detling, an d J . Moore, CSU.)

A controlled environment experi men t was begu n in 1989 to ass ess the direct effects
of elevated CO, and its indirect effects via climate change on plan t an d soil processes
in the shortgrass steppe. Intact sods from th e CPER are bein g incubated in controlled
environmental chambers under varying combinations of ambient CO" tem perature, an d
water availability.

3. Great Plains Agroecosystem Project (GRP)

(Funded by NSF and USDA-ARS 1980 - 1984, 1985 - 1989, Investigators E.T .
Elliott, W. J . Parton, C.V. Cole, D.S. Schimel, H.W. Hunt, I.C. Burke, G.A. Peterson,
and D.G. Westfa ll, CSU. )

The Grea t Plains Agroecosystem Project is in its 7th year of work eval ua ting th e
impacts of cultiva tion on soil organic matter levels and the biologica l, physical , and
chemical processes controlling these levels . Integra tion between this project and the
CPERILTER al lows us to address the mosaic of grassla nds and agroecosystems across
the cen tral grasslands region in a realistic fashion.

4. Ecology and Management fo r Sustained Rangeland Production in the Great
Plains (ARS)

(Funded by th e USDA ARS - 1993, Co-Investigators C.E. Townsend, R.A. Bowma n,
J .R. Forwood, J .D. Hanson, an d J .A. Morgan.)

The objective of this project is to improve the efficiency and sustainabi lity of
rangeland managemen t systems by broadening gerr plasm, unders tanding th e
physiology an d developr nt of importan t species in rela tion to thei r environment, and
developing technologi cally advanced tools to help make economically and ecologically
sound land managemen t decisions.
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5. Trace Gas Project (TGAS)

(Funded by NASA 1989 . 1992, Co-Investigators D.S. Schim el and I.C. Burke , CSU,
A. Mosier, ARS, and J. Pastor, U. Minn. Duluth.)

This project focuses on understanding cont rols over nitrous oxide and methane
production in grassland and boreal wetland ecosystems .

6. Grass/Shrub Interactions in Two Temperate Semiarid Regions (GS)

(Funded by the National Science Foundation. 1988-1991. Pri ncipal Investigators
W.K Lauenroth, CSU and O.E. Sala, Univ. Buenos Aires , Argentina .)

The objectives are to test the applicability of the 2·layer form ulation of soil water
interactions for the mineral nutrient economy of shru bs an d grasses and to test the
utility of a biogeographic model based upon the 2· layer model to pred ict the
distribution of grasslands and shrublands in th e United States and Argentina.

7. Community Structure Across Resource Gra d ie n ts· Grassland to Fores t
(CSUruvA)

(Funded by the National Science Foundation . 1988· 1990. Principal Investigators
W.K Lauenroth, CSU a nd H.H. Shugart, Univ . of Virginia .)

The objectives of this project are: (1) To syn thesize existing da ta from a spectrum
of ecosystems as represented by various LTER site s, focusin g on the role of key
envi ronmental drivers (insolation, temperature, moistu re, nutrie nts, and disturbance
regimes ) in structuring specific ecosystems; (2) Based on t his synthesis, to imp lement a
set of computerized simulators that share a common str ucture and a common set of
dri vin g variables , and that are sufficiently general th a t they may be a pplied to a
variety of ecosystems.

8. Boundary Dynamics Approach to Studying Lan dsca pes (BD )

(Funded by the National Science Foundation. 1989-1991. Principal Investigators J .
Wiens , CSU and B. Milne, Univ. of New Mexico.)

The objective of this project is to investigate ecosystem pa tterns and processes that
depend explicit ly on the spatial patchiness of landscapes.

9. Hi erarchica l Modeling Project (DOE)

(F unded by DOE 1989 ; Principal Investigators T.G.F. Kittel and M.B. Coughenour,
CSU.)

This project focuses on linking atmospheric a nd ecologic models that operate a t
different levels of te mporal and spatial resolution to address ecologica l :uestions of
regional and global significance in grasslan.' :..
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10. Comparative Analysis of Soil Organic Matter with Stable C and N
Isotopes (L.L. Tieszen)

(L. Tieszen, Augustana College, with D. Schimel, CSU. )
The objective of this project is to understand the Holocene successional status of

North American prairies, using the relationships between soil organic matter i5 13C and
current vegetation in areas of varying soil texture , temperature, and water to address
the mesoscale diversity in grasslands.

11. Earth Observing System (EOS)

(Funded by NASA 1988-1994; Co-principal Investigators D.S. Schimel, CSU, and
C. Wessman, Univ . of Colorado.)

CPER investigators are part of a NASA Earth Observing System (EOS) project with
the goal of developing ecosystem models that can be driven by satellite data.

12. Land Surface-Cltmatology Interactions (FIFE)

(Funded by NASA 1986-1990; Co-Investigators D.S. Schimel, W.J . Parton, T.G.F.
Kittel, CSU.)

This project has the following objectives : (1) to develop methods to quanti fy land
surface properties that influence climate, and (2) to determine the utility of existing
satellite data for detection of climate- or man-induced fluctuations in the land surface.

13. Joint Facility for Regional Ecosystem Analysis (JFREA)

(Funded by NSF. 1987-1989. Principal Investigators, R.G. Woodmansee and D.S.
Schimel, CSU.)

Joint Facility for Regional Ecosystem Analysis (J FREA) is a GIS and remote sensing
facility located at the University of Colorado's Institute for Arctic and Alpine Research
and at CSU NREL. The facility at NREL compri ses hardware and software necessary
for spatial analysis and simulation modeling.

14. Interdisciplinary Modeling of Climate Change (SOC)

(Submitted to NSF Social Sciences Division, 1990, Co-principal investigators
K. Galvin, W.J. Parton, I.C. Burke, W. Knop, E. Sparling, CSU).

We recently proposed to begin to link socio-economic models of the Great Plains
region with an extant ecosystem model (CENTURY) to predict the potential human
and ecological effects of climate change for the region.
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APPENDIX 4

DESCRIPTION OF THE CENTRAL PLAI NS EXPERIMENTAL RANGE

Location

The LTER project at Colorado State University is l ocated at the Central Pla i ns
Experimental Range (CPER) in the western divis ion of Pawnee National Grassland (Fi g.
1). The western division of the Pawnee National Grassland is 42 ,700 ha and the CPER
encompasses 6,280 ha.

The CPER is 19 km northeast of Nunn , Colorado, and 40 km south of Cheyenne,
Wyoming . The Range was established in 1939 t o answer questions which we r e important
as a result of the drought of the 1930's. A number of pastures were set as ide for
long-term experiments, and a large number of scientific publications have resulted.
Twelve half-section (129 ha) pastures were assigned four each to heavy , moderate, and
light summer grazing . In 1958 two of the replicates were changed to winter grazing.
Each of these and several other pastures also bave at least one exc losure of 0.5 t o 2
ha excluding livestock grazing since 1939 . Permanent quadrats have been established
in these pastures, and in most years composition of vegetation has been measured.

All of the Central Plains Experimental Range is available for use in the LTER
Program, but some is dedicated to ongoing studies conducted by the Agricultural
Research Service (ARS) (Appendix 7). The Pawnee National Grassland, as mentioned
above, is available for extensive studies which require a great deal of land area but
do not require rigid control for experimental purposes. The LTER program will assist
investigators in securing cooperative agreements with the U.S. Forest Service for use
of these lands . The CPER, on the other hand, may be ut ilized for i nt ens i ve studies
which require greater control .

A broad form of cooperative agreement has existed between the ARS and Colorado
State University (CSU) for many years . Under this agreement CSU scientists have
cooperated in many research projects on the CPER.
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Fig. 1. Hap showing the regional location of Pawnee National Grassland .

146



Within the CPER was located the
Program (IBP) Grassland Biome study.
in ecosystem research at the CPER.

Pawnee Site of the
From 1966 to 1974

International Biological
the IBP Program was involved

In 1968 , a coope r a t i ve agreement was signed amo ng ARS , CSU, and the IBP' s
Grassland Biome Program (see Appendix 7) . The agreement permitted IBP to conduct
grassland research on a portion of the CPER and provided f or mutual cooperation . The
agreement also permitted the construction of needed facilities on the CPER. These
included an office-lab-cafeteria, storage shed, dormitory, residence , barn, and
corrals. This agreement was amended in 1975 when the IBP program was phased out and
is currently the agreement of record.

Under the auspices of the US /IBP Grassland Biome study and subsequent NSF
funding, interdisciplinary teams have analyzed the fundamental structural and
functional characteristics of the shortgrass steppe ecosystems at CPER . These studies
included measurements of the structural aspects of all trophic compartments, their
variation through time, space, and under stress (grazing , wa t e r, mineral nitrogen ,
herbicides, pesticides) as well as a broad array of studies relating to ecosystem
processes such as primary production, secondary production, energy flow, nutrient
cycling, and abiotic and biotic control.

Climate

The precipitation variability (in time and space ) is probably the outstanding
characteristic of the semiarid continental climate. The mean annual precipitat ion is
309 rom (12.2 inches) based on 30 years of data . May, June, July, and August tend to
be the wettest months. These 4 months usually account for more than 50% of the annual
precipitation. Through regression analysis it has been found that summer precipitation
explained 89% of the variance in annual precipitat ion while winter precipitation
accounted for the other 11%. This variation is explained by the frequent occurrence
of convective activity in the area during summer months. Northerly flow of maritime
tropical air combines with intense solar heating and orographic influence over the
mountains to generate thunderstorms which move in an easterly direction over the
grasslands beginning around noon each day. The winter cli~ate is dominated by the
presence of continental polar air masses and very few storms moving over the area.
Storms which pass over the Rocky Mountain region lose most of their moisture over the
mountains; ~onsequently, dry, sunny days are common in Winter. The winter storms
which do occur have little effect on the mean water balance of the region . This is so
because high insolation, moderate to high winds, and warm daily air temperatures
combine to sublimate much of the snow. Major storms, defined as greater than 2 .54 cm
(1 inch) of precipitation, account for 74% of the variance in summer precipitation and
only 16% of the variance in winter precipitation.

The large diurnal variation in air temperatures is a notable characteristic of
the steppe climate. Average diurnal variations are between 17° and 20°C (30° and
35°F), with variations up to 34°C (60°F) possible in late summer. The lowest average
monthly maximum temperature is 7°C (44°F) (January and December) for approximately 30
years of da '3. The highest average monthly maximum temperature is 31°C (88°F) (July).
The lowest and highest average monthly temperatures are -12°C (11°F) (January) and
12°C (54°F) (July), respectively. The median frost-free period is 128 days .

Another important characteristic of the grasslands climate
moderate to high winds throughout much of the year. The period
experiences noticeably higher winds than the remaining months.
plays an important role in the redistribution of snow following
resulting winter water balance of the region.
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APPENDIX 5

Additional grassland data sets accessible through
the LTERJCPER data management system.
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abiocie data - hygrothennograph
abiocie data· hygrothennograph
abiocie data - hygrothennograph
abiocie data - weather
abiocie data - weather
abiocie data - weather
aboveground herb age
aboveground herbage
aboveground herbage
aboveground herbage
abovegrou nd herbage
aboveground herb age
aboveground herbage
aboveground herbage
aboveground herb age
aboveground herb age
aboveground herb age
aboveground herbage
aboveground herbage
aboveground herbage
aboveground herbage
aboveground herbage
aboveground herbage
aboveground herb age
aboveground herbage
aboveground herbage
aboveground herbage
aboveground herbage
aboveground herb age
aboveground herbage
aboveground herbage
aboveground herbage
aboveground herbage
abovegro und herbage
herbage
herbage
herbage
aboveground herbage
aboveground herbage
aboveground herbage
abovegroun d herb age
aboveground herbage
aboveground herbage
aboveground herbage
above ground herbage
above ground herbage
aboveground herbage

EPA aile 1975
EPA sile 1975 Max min - Tayl or Creek
EPA site 1976
Bridger sile 1969·73 Weaver Weather data (corrected)
CPER Hillorical Weather 1940-1973 (1942 miss ing)
Coctonwood sile lIistorical Weather (com:Cled) 1909-1971
Ale sile 19711rt 1,3: 7 dales
Ale sile 1972 Irt 1,3: 7 dales
Ale sile 1973 &: 1974 Irt 1,3,5,9; 6 dales
Bison site 1970 Irt 1,2; 9 dales; data
Bison site 1970 Irt 1,2; 9 dales; fonnn readable anal ysis
Bridger sile 1970 Irt 1.3,6,7; 6 daleS
Bridger sile 1972 Irtl,5 ,6,7; 6 dales
Bridge r sile 1973 1rt l, 6,7: 3 daleS
Bridge set 1972 fonnn readable analys is
Coctonwood sile 1970 Irt 1,5: 12 daleS - finalized w/standard code s
Coctonwood sile 1971 Irt 1,5,6; 13 daleS - com:cted
Coaonwood sile 1972lrt 1,5,7; 10 daleS - II if recorded on NREL~1
Dickinson s ire 1969 Irt I: 9 daleS
Dickinson s ire 1970 Irt 1,4: 9 daleS: data
Dickinson s ire 1970 Irt 1,4: 9 daleS: fonnn readable analys is
lI ays sile 1970 Irt 1,5: 15 dates: data
lIays sile 1970lrt 1,5: 15 dates: fonnn readable analysis
! ,mada sile 1970 Irt 1,5: 5 daleS
.bmada sile 1971 Irt 1,5,6: 12 dates
Jomada sile 1972 Irt 1,5: II dates
Jomada sile 19731rt 1,6: 3 daleS &: 19741rtl ; I dale
Osage site 1970 Irt 1,5: II dates
Osage sile 1971 Irt 1,5: 9 daleS
Osage sile 1972 Irt 1,5: 8 dales
Pantex site 1970 Irt 1,3,5: 9 dales
Pantex sile 19711rt 1,3; 7 dales
Paruex sile 1972lrt 1,3; 10 dales
Pawnee site 1972 ESA; 9 dates
Pawnee silel976 ESA
Pawnee silel976 ESA
Pawnee silel976 ESA
EPA site 1974 6 dales
EP, site 1975 6 dales
EPA sile 19756 dales: fortran readable analysis
EPA sjte 19766 dales: A·D , J·M
EPA site 1976 6 dales: A·D, J·M fortran readable analysis
EPA sire 1977 2 dales: A·M
EPA site 1977 2 dales; A·M fortran readable analysis
EPA site 19783 datcs ; A-M
EPA sire 19783 dales; A-M fortran readable analysis
EPA site 1975 Leaf Arca; 4 dales (June-Sepe)

abovegroun d herbag e
aboveground herbage
aboveground herba ge
aboveground herbage
aboveground herbage
aboveground herbage
aboveground herba ge
aboveground herbage
aboveground inverteb raies
aboveground invertebrates
aboveground invertebrates
aboveground invertebrates
aboveground invert ebrate s
aboveground invertebrate s
aboveground invertebrates
aboveground invertebrates
avian data
avian dua
avian data
avian data
avian data
avian d&1a
bclowground herbage
bclowg round herb age

bclowground herbage
bclowground herba ge

bclowground herbage
bclowground herbage

bclowground herb age
bclowg round herbage
bclowground herbag e

bclowground herbage

bclowground herbage

bclowgroun d herbag e

bclowground herbage

bclowground herbage

helowground herbage
bclowg round herba ge

EPA site 1976 Leaf Area Damage; 4 dales; A·D, J·M
San Joaquin site 1973-74 Irt 1,5; 8 dates each yr data
San Joaquin sile 1975 Irt 1,5: 7 dales - dala
San Joaquin site 1973 fortran readable analysis
San Joaquin sile 1974 fortran readable analYlis
San Joaquin sile 1975 fortran readable analysis
San Joaquin sile 1974 data from P quat study
San Joaquin sile 1973 data from P quat slUdy
PanleX sile 1970 fortran readable analYl is
Pawnee sile 1971 cnvironmcnla1 ll ress area
Pawnee site 1971 grazing interu ity
Pawnee site 1971 nclwork comparis on
Pawnee site 1972 fonnn readable analysis
Pawnee sile 1971 Range Plant Association Data
Pawnee sile 1971 PitTrap Invertebrate Data
Pawnee sile 1971 Sweep Net Invertebrate Data
Mel Dyer's Bird Banding Data
Cottonwood sile 196 7-71 Avian Road Count Data
Jomada sile 1970-71 Avian Road Count Dala
Ossge sile 1970·71 Avian Road Counl Data
Panlex sile 1970-71 Avian Road Count Dala
Pawnee sile 1969·70 Avian InL - Ell. Colleaion (Baldwin)
Pawnee site 4.(,.74 (SCI 4) data (prob ably contained in bhes74d)
Pawnee site 4.(,.7 4 (SCI 4) fortran readable analysis
probably containe d in bhpw74f)
Pawnee site 5-7-74 (le I 6) data (probably conta ined in bhes74d)
Pawnee site 5-7-74 (le I 6) fortran readable anAlysis
probabl y contained in bhpw74f)
Pawnee sile 15·8-74 (le I 8) data (proba bly contained in bhes74d)
Pawnee sile 15·8 -74 (SCI 8) fort ran readab le analys is
probably contained in bhpw74f)
Pawnee sile 25·g-75 dala (probab ly contained in bhes7Sd)
Pawnee sile 25·8·75 fortran readable analysis
Pawnee sile 21-5-76 (Irt D only; sci I) data
proba bly contained in bhcs76d)
Pawnee site 21-5-76 (lrt D only; sci I) fortran readable analy.is
probab ly contained in bhe.76f)
Pawnee site 1 7~-76 (tn D only: set 2) data
probably conta ined in bhes76d)
Pawnee site 1 7~-76 (Irt D only: sci 2) fortran readable analy.is
probab ly contained in bhe.7 6f)
Pawnee sile 27·7-76 (Irt D only: scI 3) data
probably conta ined in bhcs76d)
Pawnee sire 27-7-76 (tn D only; sci 3) fortran readable analysis
probably conta ined in bhcs76f)
Pawnee site 24·8 -76 (SCI 4) data (proba bly contained in bhes76d )
Pawnee sile 24·8 ·76 (SCI 4) fortran readable analysis



bdowground herbage
bdowground herbage

bdowground he rbage

bdowground he rbage

bdowground herbage

bdowground herbage

bdowground herbage

bdowground herbage

bdowgroundherbage

bdowground herbage
bdowground herbage

bdowground herbage
bdowground herbage

bdowgroundherbage
bdowground herbage

bdowground herbage
bdowground herbage
bdowground he rbage

bdowground herbage

bdowground herbage
bdowgroundherbage

bdowgroundherbage

bdowground herbage
bclowground herbage

bdowground herbage

bdowground herbage
bdowground herbage
bclowground herbage

bdowg round herba ge
bclo wground herbage

bdowground herbage
bcl owground herba ge
bcl owground he rbage
bcl owgrou nd herba ge
bdowground herba ge

probably conlained in bhpw76f)
Pawnee lile 23-5-71 (let I) dlla (probably contained in bhpw77d)
Pawnee li le 23-5-71 (let I) fortnn readable analYlia

probably COO1ained in bhpw71f)
Pawnee lile 21-6-71 (let 2, ut d) daLl (probably contained in
bhpw77d)

Pawn ee site 21-6-71 (l et 2, ut d) fort ran readable analYlil

probably contained in bhpw71f)
Pawn ee lile 20 -7 -71 (l et 3, ut d) daLl (probably contained in
lilpw77d)

Pawnee lile 20-7-71 (let 3, ut d) fortran readable analYlis
probably contained in bhpw71f)
Pawnee lile 19-8 -71 (let 4, ut d) daLl (probably contained in

lilpw77d)
Pawnee l ile 19-8-71 (let 4, ut d) fortran readable analYlil
probably conlained in bhpw71f)

Pawn ee l ile 13 19756-5-75 lei 11ItI1I-K, 25 -7-75 leI411t111 -K,
9-75 lei 5 11tI1I -K

Pawnee lile 13 6 -5-75 (let I) daLl (probably contained in bh1375f)
Pawn ee lile 13 6 -5-7 5 (let I) fortran readable analYlil
probably contained in bh1375f)
Pawnee site 13 25 -7-75 (let 4) daLl (probably contained in bh1375f)
Pawnee aile 13 25-7-75 (let 4) fortlVl readable analyl il
probably contained in bh1375f)
Pawnee aite 13 30-9-75 (let 5) daLl (probably coruaioed in bh 1375f)
Pawnee aite 1330-9-75 (let 5) Ionran readable anaIYlil
probably contained in bh1375f)
Pawnee aile 13 15-7 -76 dlla
Pawnee site 13 15-7 -76 Ionrsn rea dable analy, i,
Pawnee l ile 13 g-10-76 (lei 6) daLl

Pawnee sire 13 g-10-76 (1CI6) fortlVl read able analyli,

Ale site 197 1 UGII (no crown, MOD I)
Ale site 1973 6 dale,

Ale li le 19748 datel

8 .dger li te 1973 4 da te'
Cou oowood lile 1970 Tex Lewis Coerec tions

Couonwood site 197 1 Tex Lewis Corrections

Coaonwood she 1972 Tex Lewis Correcrions daLl
COllonwood ,ile 1972 Tex Lew i, Correcliool fOltlVl readable analy,i,
Collonwood ,ile 1971 Crown, from AGII (CVII)

COllonwood ,ile 1972 Crown, frum AGII (CVII)
COllonwood lile 1971 daLl

COllonwood , ile 1972 daLl

COllonwood , ile 1972 fOltran readable analy, i,
Dickins on' ite 197011tS 1,4; dala
Dickinson' ite 1970 Ins 1,4; fonran readable analys is
lIaYI , ile 1970 Ins 1,5; daLl

bclowground herbage

bclowground herbage
bclowground herbage

bclowground herbage
bc lowground herbage
bcl owground herbage

bclowground herbage

bclowground herbage
bc lowgroun d herbage
bcl owground herbage

bclowground herbage
bclowground herbage

bclowground herbage

bclowground herbage
bclowground herbage

bclowground herbage
bclowground herbage
bclowground herbage

bclowground herbage
bclowground herbage
bclowground herbage

bclowground herbage
bclowground herbage
bclowground herbage

bclowground herbage
bdowground herbage

bclowground bcrbage
bclowground bcrbage

bclowground herbage
bclowground bcrbage

bclowground herbage
bclowground herbage

bc lowgroond herbage
bclowgroond herbage

bclowgroond herba ge
bclowground herbl ge

bclowgroond herbage

bclowground herb l ge
bc lowg round herbage

lI aYI site 1970 IItS 1,5; fortran reada ble ana ly,i ,

Jomada site 1970
Jomada ,ile 197 1
Jomada , ile 1972 Crowns in 0 -10

O,age site 1970 Len Pour'l 8GII
Ollge site 197 1 Len Pour', 8GII
Osag e ,ile 1972 Len Pou r' , 8G11

PanlCXsite 1970
Panlex l ile 1971 8GII w/erownl MOD n
Paruex lile 1971 8GII w/crowru MOD u (pan 2)

Pantex l ile 1972 8GII w/crowns
PanlCXsite 1972 8GII w/crown' (palt 2)
San Joaquin l ile 1973 daLl (Regular)

San Joaquin lile 1973 fortran readable analy,i, (Regular)
San Joaquin l ile 1974 daLl (Regular)
San Joaquin ,ile 1974 fortran readable analy,i, (Regular)

San Joaquin ,ile 1975 daLl (Regu lar)
San Joaquin ,ile 1975 fortran readable analy,i, (Regular)

San Joaquin site 1973 daLl only "Very Clean"
San Joaquin site 1974 daLl only "V ery Clean"
EPA site 19749 dsres : 11-6 (Corrected) IItS E-II, 27 -5 ut, A-D
EPA , ile 1974 fortran readable analy,i,
El'A site II -6-74 (,el I) daLl (probably contained in bhep74d)
EPA ,ile II -6-7 4 (,el I) fortran readable analy,i,

probably contained in bhep74f)
EPA ,ile 27 -5-74 (,eI2) daLl (probably contained in bhep74d)
EPA , ile 27 -5-7 4 (,el 2) fortran read ab le analy ,i,

p robably contained in bhe:p74f)
EPA li le 10 -7-74 (,eI3) daLl (probably con ta ined in lilep74d )
EPA aite 10 -7-74 (,et 3) fortran read able ana ly, i,

p robably contained in bhc:p74f)
EPA site II -5-7 4 (,el 5) daLl (probably contained in bhep74d)
EPA site I I -5-74 (set 5) fort ran readable analy ,i,

probably contained in bhe:p74f)
EPA site 27 -7-7 4 (, el 6) data (probably con tained in bhe:p74d)
EPA ,ile 27 -7-74 (,el 6) fort ran readable analy,i,

probably contained in bhep74f)
EPA site 29 -6-74 (,eI7) daLl (probably co nta ined in bhep74d)
El'A ,ile 29 -6-74 (,eI7) fonl'lln readable analy , i,

probably conLainw in bhep74f)
El'A ,ile 26 -9 -74 ('ClIO) daLl (probably co nta ined in bhep7 4d )
EPA ,ile 26 -9-7 4 (SCI 10) fonran readable ana ly,i ,

probably cooLained in bhep74f)
EPA , ile: 19756 date' (19-4,31-5, 15-6, 13-7,7-8, 17-9) lit' A-D
only
EPA ,ile: 1975 fonran readable analys i,
EPA . ile 19-4 -75 (SCI I) dau (probably co ntained in bhep7 5d)



belowground herbage

belowground herbage
belowground herbage

belowground herbage
belowground herbage

belowground herbage
belowground herbage

belowground herbage
belowground herbage

belowground herbage
belowground herbage

belowground herbage

belowground herbage
belowground herbage
belowground herbage

belowground herbage
belowground herbage
obably contained in bhcp76t)
belowground herbage
belowground herbage
obably contained in bhcp76t)
belowground herbage
bhep76d)
belowground herbage

belowground herbage
below ground herbage
obably conta ined in bhcp76f)
belowground herbage
belowground herbage
obably contained in bhcp76f)
belowground herbage
belowground herbage
obably contained in bhcp76f)
belowground herbage
bclowground herbage

co2 evolution
co2 evolution

EPA lite 19 -4-75 (1<1 I) fortran readable analYlis
probably conlained in bhep75f)
EPA lite 31 -5-75 (1<1 2) data (probably cootained in bhcp7Sd)
EPA lite 31 -5-75 (S<1 2) fonnn readable analylis
probably contaioed in bhcp75f)
EPA lite 15 .(,-75 (s<13) data (probably cootained in bhcp7Sd)
EPA lite 15 -6-75 (1<13) fonnn readable analysis
probably conlained in bhep75f)
EPA site 13 ·7·75 (1<14) data (probably cootained in bhcp7Sd)
EPA site 13 -7-75 (S<14) fortran readable analysis
probably conlained in bhep75f)
EPA lite 7 -g-75 (let S) data (probably contained in bhep75d)
EPA lite 7 -g-75 (let 5) fortran readable analylil

probably conlained in bhep75f)
EPA lite 17 -9-75 (1<16) data (probably cootained in bhcp7Sd)
EPA lite 17 -9 ·75 (1<16) fonnn readable analysis
probably conlained in bhcp75f)
EPA site 19767 datel (21-3,20-5,15-6, 2h-7 (uncorrcctcd),10-7,
,19-9)uu A-D,J-M
EPA lite 1976 fortran readable analysil
EPA site 21 ·3·76 (S<1 I) data (probably cootained in bhcp76d)
EPA lite 21 -3·76 (S<1 I) fonnan readable analYlis
probably contained in bhep76f)
EPA lite 20 -5-76 (S<1 2) data (probably cootained in bhcp76d)
EPA site 20 -5-76 (S<1 2) fonran readable analy.is

EPA lite 15 ,(, ·76 ('<13) data (probably cootained in bhcp76d)
EPA lite 15 .(, -76 (,<1 3) fortran readable analysis

EPA lite 26 -7-76 (,<1 4) data - uncorrected (probably contained in

EPA lite 26 -7-76 ('<14) fotran readable anaylylil • uncorrected
(probably contained in bhep76f)

EPA lite 10 -7-76 ('<15) data (probably contained in bhcp76d)
E1'A site 10 -7-76 ('<15) Ionran readable analy.is

EPA site 9 -8-76 (.eI6) data (probably contained in bhep76d)
EPA site 9 -8-76 (.el 6) fortran readable analysis

EPA lile 19 -9-76 ('Cl7) dala (probably contained in bhcp76d)
EPA aile 19 -9-76 (,<1 7) fortran readable analysis

E1'A site 1977 I date (12-7) lrt. A-D, E-II, J -M (set I) dala
EI'A sire 1977 I date (12·7) tns A-D, E-II, J-M (set I) fortran
readable analysi.
E"'A .ite 1975 dala
E, A sire 1975 fortran readable analysi.

co2 evoluuon
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution

co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
co2 evolution
decomposition
decomposition
decomposition
decomposition

EPA lite 1976 data
EPA lite 1976 [ortran readable analysis
Couonwood aile 1972 In 1,4; data
Couonwood l ile 1972 In 1,4; fortran readable analysil
Couonwood lile 1972 (aU leu)
Ale lite 1971 Ir I 1,5; data
Ale lite 19711r I 1,5; fortran readable analysis
Ale lite 1972 Ir I 1,5; data
Ale lite 1972 Ir I 1,5; fortran readable analysis
Bridger site 1972 In 1,2; data
Bridger .ile 1972 In 1,2; fortran readable analylis
Bridger sire 197 3 In 1,2; data
Bridger lite 1973 In 1,2; fortran readable analYlis
Jomadasite 1972 In I; data
Jomada site 1972 In I; fonnn readable analysil
Ouge lite 1972 In 1,5; data
Ouge lite 1972 In 1,5; fortran readable analYlil
Pantex site 1972 In 1,5 (I date); data
Pante>; site 1972 In 1,5 (I date); fortran readable analylis
Pantex lile 1973 In 1,5 (I date); data
Pantex lile 1973 In 1,5 (I dale); fortran readable analYlil
Pawnee lite 1971 In 1,3,E; data
Pawnee lite 1971 In 1,3,E; fortran readable analysil
Pawnee lite 1972 In II; data
Pawnee lite 1972 In II; fortran readable analy.is
Pawnee lite 1972 In 1,4,5,6; data
Pawnee lile 1972 In 1,4,5,6; fortran readable analylis
Pawnee lite 1973 In 1,5; data
Pawnee lile 1973 In 1,5; fortran readable analYlis
Pawnee lile 1973 ESA data
Pawnee lite 1973 ESA Ionrsn read able analysil
Pawnee lite 1974 ESA data
Pawnee lite 1974 ESA fortran readable analysis
Pawnee site 1975 ESA data
Pawnee site 1975 ESA fortran read able analysis
San Joaquin site 19731rt 1,5; data
San Joaquin site 1973 Irt 1,5; Ionrsn readable arulysis
San Joaquin lite 1973 In C,I'; dal a
San Joaquin lite 1973 In C,P; fonran readable analysil
San Joaquin lite 1974 In 1,5; data
San Joaquin site 1974 In 1,5; fonran readable aruly.il
San Joaquin site 1974 In C,I'; dala
San joaquin .ite 1974 In C,I'; fortran readable analysi.
Ale sile 1971 fonran readable analy.i.
Ale sire 1972 fonran readable analysis
Cottonwood site 1970 fon ran read able analysi.
Couonwood sire 1971 fortran read able analysis



dc:c:ompos ition

decomposition
dc:c:omposition
dc:c:omposition
dc:c:omposition
dc:c:omposilion
dc:c:omposition
dc:c:omposilion
decomposition
decomposition

dc:c:omposition
dc:c:omposition

trail readable analYlil
decompos ition
decomposit ion
diet da ta

diet da..
diet da..
diet da..
diet da..
diet da ..
diet da..
diet da..

invertebrate WU, species codes

invertebrate WU, species codel

invertebrate WU, species codes

invertebrate WU, species codes
invertebrate WU, species codes
invertebrate WU, species codes
invertebrate WU, species codel
inveneb~leWU, lpeciel codel

inveneb~leWlI, lpeciel codel

invenebrate WU, lpeciel codel
inveneb~teWU, .peciel codel

invenebrale WIS, lpeciel codel

inveneb~leWlS, lpecies codel
inveneb~leWlS, lpecic. Codel

inveneb~le WIS, lpecies codel

inveneb~leWlS, . pecic. codCI

liner
liner
liner
liner
Iincr

Cononwood lile 1972 fonran readable analy. il
Ouge sire 1970 fonran readable analYlil
Ou;;~ site 1971 fonran readable analYlil
Olage lile 1972 fonran readable analylil

Panrex site 1971 fooran readable analy.il
Panlex site 1972 fooran readable analYlil

EPA lite 1974 (M aleriall) da..

EPA lite 1974 (M alerial1) fonran rudable analylil
EPA lite 1975 (M alerial 5) da ..

EPA lite 1975 (M alerial 5) fonran rudable analYlil
EPA lite 1975 (M alerials 6,1: questionable da .. - no summaries] data

EPA l ite 1975 (M aleriall 6,1: questionable da .. - no summaries]

EPA lite 1976 (M aterials 5-8) data
EPA lite 1976 (M aterials 5-8) fonran readable analylil

Cot tonwcod, Jomada, Olage, PanleX lilel Birney did slide requesu
CotlOnwood site 1972 CauJe Weighll
Pawnee aile, rev ised Lavigne diet data, box I
Pawnee lile, revised Lavigne diet da.., box 2

Pawnee lile, revised Lavigne diet da", box 3
Pawnee site, revised Lavigne diet da .., box 4
Birney did slide re quests
Lsv Phadt did bank requests
Pawnee, EPA liles loil microanhropod WIS and lrophics for
Pawnee and Montana (J. E. Leetham) .

EPA lile soil microanhropod WU (includes both Pawnee and EPA
Monlana)

E1'A lile 1974 Monlana AG &. DG invertebrate WU and trophic levels
EPA site 1975 Muntana AG &. DG invertebrate WU and trophic levels
EPA l ile 1976 Monlana AG &. DG invertebrate WU and trophic levels
Ale site 1972 invertebrate WU
Ale l ile 1973 AG invcncb~le WIS

Bridger .ile 1972 invenebrate WIS

Cottonwood lile invencb~leWU

Jomada lile invencbrale WU
Ouge .ile inveneb~le \10'1

San Joaquin l ile invencb~te WU

San Joaquin . ile AG invertebrale wu lupplemenl
Pantex . ile 1970 AG invenebBle Wli

"anlex lile 1972 invencbrate wu
Networlc Compari.on lilel 1972 -74 loil microanh ropodl WU and lrop hic
levels
EI'A . ile 1974 dala

EPA . ile 1974 fortnon readable analy. il
EI'A .ile 1975 dala

EPA .ile 1975 fonnm read able analy.i.
EPA .ile 1976 dal a

liuer
liuer
liner
liuer
liner
liner
liner

liuer
liner
liner

liner
liner
liner

liner
liuer
liner
liner
liuer
liuer
liner
liner
liner
liuer
liner
liuer
liuer
Iiuer
liuer
liuer : ...
liner
liner

liuer
liuer .

liner
liuer

liller
liu er
Iiller
liller
liller
lin cr
lillcr
liner

liller
lillcr
Iincr
lin er

EPA lile 1976 fonran read able analYlil
Ale l ile 1971 wood; type Ida..
Ale lile 1971 wood; type 1 fonran read able analYl il

Ale lite 1971 d-vsc; type 1 da..

Ale site 1971 d-vsc; Iype : fonran readable analYlil
Ale lite 1971 hand-pic ; type 1 da ..

Ale lile 1971 hand -pic ; type 1 fonnon readable analYlis

Ale l ite 1972 wood ; type Ida..
Ale lite 1972 wood ; type I fonran rudable analYlil

Ale lite 1972 d-vsc; lype Ida..

Ale lite 1972 d-vsc; type 1 fonran readable analylis
Ale lite 1973 d-vsc; type Ida..

Ale l ite 1973 d-vsc; type 1 fonnon readable anaIylil

Ale lite 1973 wood ; type Ida..
Ale lite 1973 wood; type 1 fonnon readable analYlil

Bisonlile 1970 type 1 data
Bison site 1970 type I fonran readable analylil
Bridger lite 1970 type 1 dala
Bridger lite 1970 type I fonran readable analylil

Bridger lite 1972 type 1 data
Bridger .ite 1972 type I fonran readable analYlil
Couonwood sire 1970 lype I da..
Couonwood lite 1970 type I fonran readable analYlil
Couonwood site 1971 lype I data
Couonwood lile 1971lype I fonran readable anaIYlil

Couonwood site 1972 type 3 data
Cottonwood lite 1972 type 3 fortran readable analylil

Couonwood lile 1972 type I data
Couonwood site 1972 type 1 fortran read able analylil
Couonwood .ile 1970 I iuer component data (BW)
Couonwood aite 1971 l itter com pon enl data (BW)

Couonwood lile 19721 itter componenl data (BW)
Couonwood lile 1970 ( all dalCJ) dal a

Cottonwood . ile 1970 (all dalCJ) fonran readable anal y. il

Couonwood lile 1971 (all datCJ) dala
Cottonwood .ile 1971 (all datCJ) fonBn readable analyli.

CotlOnwood .ile 1972 (all dalCJ) dal a
Cottonwood .ile 1972 (all dalCJ) fonran readable analy.i.

Dickin.on .ite 1970 type 1 da..

Dickinlon . ite 1970 type I fonran read able an1aly.il

lI aYI lite 1970 type I dala
lI ay••ile 1970 lype I fonran read able analYl i.

Jomada . ile 1970lYpe I data
Jomada .ile 1970lype I fon~n readable analy . il
Jomada .ile 1971 lype I dala
Jomada . ite 1971lype 1 fOrlran read able analy.i.

Jomada .itc 1972 lype 1 da la



liuer
liner
!iue:r
liner
!iller
!iller
liner
lilLer
liue:r
liuer
liue:r
liuer
liue:r
liue:r
liue:r
liner
liner
liuer
liner
liue:r
litter
liue:r
liue:r
lilLer
liue:r
liue:r
liue:r
liue:r
liue:r
liue:r
liue:r
liue:r
liue:r
liue:r
liue:r
liner
liner
phenology
phenology
phenology
phenology
phenology
phenology
phenology
phenology
phenology
phenology

Jomade Ii'" 1972 lype I fonran .....dable an.lylil
Olage lile 1970 lype I dala
Ouge lil e 1970lype I fonran .....dable analYlil
Ouge lile 1910 lype 3 dala
Ol'ge lile 1970 lype 3 fonran .....dable analylil
Olage Ii'" 1970 lype 4 data
Olage Iile 1970 type 4 fonran .....dable analylil
Ol.ge site 197 I lypc I dala
Olage site 1971 lypc I fonran .....dable analYlil
Ol.ge site 197I lype 3 dala
Ouge site 197I lype 3 fonran .....dsble analYlil
Olage site I911lype 4 dala
Ouge l ile 1911lypc 4 fonran .....dsble analYlil
Ol~ • site I972lypc I data
Ouge lite 1972 lype I fonran readsble analylil
Ouge site 1972lype 3 data
Ouge site I 972lype 3 fonran .....dable analYlil
Pantex Ii'" 1970 lype I data
Pantcx site 1970 type I fonran .....dable an.lylil
Pantcx site 1971 lype I (BOGR) d.ta
Panlcx Ii'" 1911 1ype I (IlOGR) fortran .....d.b1e an.lyl il
Pamex Ii'" 19111ype I (OPI'O) dat.
Panlex Ii'" 1971 type 1 (01'1'0) fonran .....dable analYlil
Panlex Ii'" 1972lype I (BOGR) d.ta
Panlex Ii'" 1972 lype I (BOGR) fonrm .....d.b1e an.lylil
PanlCX Ii'" 1972 lype I (01'1'0) dat.
PanlCX Ii'" 1912lype I (OPI'O) fonran .....dable analYlil
P.wncc Ii'" 1972 (M.y- Ocl) fonran d.b1e analYlil
P.wncc Ii'" 1973 (M.y- Scp) fonran dable an.lylil
P.wncc Ii'" 1974 (Apr - Dec) foom. read.b1e an.lylil
P.wncc Ii'" 1975 (M.y- Aug) fonran read. b1ean_dy"i"
San Joaquin Ii'" 1973 lype I data
San Joaquin Ii'" 1973 lype I foom. read.ble .nalylil
San Joaqu in Ii'" 1974 lype I data
San Joaquin lile 1974 lype I foom. read.b1e .nalylil
San Joaquin Ii'" 1975 lype I data
San Joaquin Ii'" 1975 lype I foom. .....d.b1 e . nalylis
Osage sile 1972 data
Pantex Ii'" 1972 d.l a
Jom .da si'" 1971 6 dales
Jom.da Ii'" 1972 I I d.lel
San Joaquin sile 191 3 9 datcs
COllonwood site 1912 6 dales
P.wncc si'" I 973 15 d.les
P.wncc sile 1974 22 doles
P.wncc si'" 1975 24 d. les
P.wncc site 1976 I g dOles

phenology
phenology
phenology
phenology
phenology
amall mammal data
amall mammal d.ta
Imall mammal data
amall mammal d.ta
amall mammal d.ta
amall mammal d.ta
amall mammal d.ta
amall mammal d.ta
amallmammal d.ta
amall mammal d.ta
amall mammal d.ta
small mammal d.ta
small mammal d.ta
Im.ll mammal d.ta
Imal l mammal d.ta
amall mammal d. ta
Imall mammal d.ta
Im.ll mammal d.ta
Imall mammal d.ta
Im.ll mammal d.ta
Imall mammal d.ta
Im.ll mammal d.ta
small mammal d.ta
Im.ll mammal d.ta
Imall mammal d.ta
Im.ll mammal d.ta
Im.ll mammal d.ta
Im.ll mammal d.ta
Im.1I mammal d.ta
Im.1I mammal d.ta
Im.1I mammal d.ta
Im.1I mammal d.ta
Im.ll mammal d.ta
Im.1I m.mmal d.ta
Im.1I m.mmal d.ta
Im.1I m.mmal d.ta
Im.ll m.mmal d.ta
lo il m.eruanhropodl
soil mleruanhropods
loil ml eruanh mpods
soil m. eroonhmpodl
soil maeroanh ropod'

Pawnee Ii'" 1977 J7 date
Pawnee site 1972 Dryland Phenology (coded 10be similar 1013-76)
EPA Ii'" 1975 g seu ; UU A-II (AGII phenology)
EPA Ii'" 197624 let I; UU A-II (AGII phenology)
EPA Ii'" 197121 let I; UU A-II (AGII phenology)
Bridger site 1972 live trap data
Bridger site 1973 live lrap data
Bridger lile 1973 live trap Zippin &naly,il
Couonwood si ie 1971 live trap data
Couonwood ,i te I 972 live lrap data
C.ollonwood si te I 97 I live lrap Zippin analysis
Couonwood si te 1972 live lrap Zippin &nalylil
Couonwood Ii te 1971 mile. oCf-grid lnap \tap d.ta
Couonwood Ii te 1972 mise, oCf-grid lnap \tap d.ta
Ol.ge lite 1911 live ltap data
Osage Ii'" I 912 live ltap cit:..
Osage Ii'" I 911 live ltap Zippin &nalylil
o..ge Ii'" I 912 live ltap Zippin &nalylil
Osage Ii'" 1911 mile. off -grid map lrap d.ta
Osage Ii'" 1972 mile. off-grid Inap lrap d.ta
Jornada Ii'" 197I live lrap d.ta
Jornada Ii'" 1972 live lrap d.ta
Jornad. Ii'" 197 I mile. off-grid lnap ltap d.ta
Jornada Ii'" 1972 mile. oCf-grid lnap ltap d.ta
Pan"'x l ile 197I live ltap d.ta
Pan"'x l ile 1972 live ltap d.ta
Pan"'x l ile 1911 misc. off ·grid m .p ltap dat.
Pan"'x l ile 1972 mi'e. off -grid m.p ltap dat.
Ale Ii'" 1971 live ltap dat.
Ale Ii'" 1972 live ltap data
Ale Ii'" 1973 live ltap dat.
San Joaquin I i'" 1973 live ltap dala
San Joaq uin I i'" I 974 live ltap dat.
San Joaquin I i'" 1975 live lta p data
San Joaqoin I i'" I 973 live ltap Zippin analysis
San Joaquin I ill: 1974 live lta p Zipp in analysis
San Joaqoin I ill: 1975 live lta p Zippin . nalysis
San Joaquin I i'" I 972 misc. off -grid snap lrap data
San Joaquin I i'" I 973 misc . off -grid snap lrap data
San Joaquin I ill: 1914 misc. off -grid map Ir"p data
Osage Ii'" 1970 m.p lrap d.l.
Panlex sile 1970 snap IraI' dola
Jom .da si '" 1912 dala
Jomada si ll: 1972 fon m. readable . nalysis
Osage l ile 1912 dOla
Osage lile 1972 fonran readable I nalysis
EPA lite 1974 Monlana; dOli



•oil macroanhropods

soil rnacroarthropods

•oil rns cro arthropods
mil rnacroerthropods

soil rnacroarthropods

soil rnicroarthropods

soil m icroanhropods

soil microsrthropods

soil microarthropods

soil mieroarthropods

soil microarthropods

soil microarthropods
soil microanhropods

soil microanhropods

soil rnicroanhropods

soil microarthropods

soil rnicroerth ropods

soil microenh ropods

soil microsnhropods
soil rnicrosrthropods

soil microanh ropods

soil microsnh ropods
.oil m iCTOllnhror",h

.oil micrOllnhmrod.

.oil micrOllnhropoch
soil micrOllnhropod.

soi I m icrOllnh ropoch

soil microonhropod.
.oil micr03nhropod,

•oil micr""nhmpod,
,oil micrOllnhropod,

•oil micrOllnhropod.

.oi I m icrOllnh ropoch

soil micrOllnhropod.
!oil witter · gravimetric

!oil wllter . gravimclri
!oil wafer a gl1lvimctric
soil waler . gnlVirnelric
soil wHter • gravimetric
soil witter " gravirnclric

!oil water " gravimclric
soil watrr . gravimclric
!oil water ..gravim elric
soil waler ..gravimclric
soil waler ..gravimetric
~oil waler - gr;;tv imcui c

EPA site 1974 Mont ana : fortran readable analys]•

Ef'A slre 1975 M011!l,"a; dolO

El'A site 1975 Montana; fortran readable analysi•
EPA sire 1976 MonIAnI; dall

EPA site 1976 Montana; Iortran readable analysis
San Joaqui n lile 1973 dolo

San Josqui n sire 1973 fortran readable analy, is

Sin Joaqui n site 1974 dalO

San Josqui n site 1974 fortran read able analysis

Bridger si te 1972 dalO (uncorrected)

Bridger si te 1972 fonrsn readable analysil (uncorrected)
Jomada si ie 1972 dala (uncorrected)

Jomada si te 1972 fortran readable analysis (uncorrected)

Osage site 1971 dolO (uncorrected)

OIRge site 1971 fortran readable anal ysis (uncorrected)

O..ge site 1972 dala (uncorrected) • note that first 4 sets are

berlese separator and 1..1 3 leu are III P separator
Couonwood Iile 1972 dala

Cottonwood sire 1972 fortran readable anoly.is
EPA site 1974 Momsn a; data

EPA site 1974 MonlAna; fortran readable anal y sis

EPA site 1975 Taylor Cre ek; dala

EPA sire 1975 Taylor Cre ek; fortran readable analysis
EPA .ile 1975 C oillrip; dolO

EPA sile 1975 Cohlrip; fOOran readahle analy. is
EPA sile 1976 Taylor Creek I ; dOla

EPA sile 1976 Taylor Creek I; fonran read able analy,is

EPA sile 1976 Taylor Creek 2; data

EPA sile 1976 Taylor Cre ek 2; fonran read able analy.is
EPA .ile 1977 Taylor Cre ek I ; dala

EPA .ile 1977 Taylor Creek 1; fortran readable an alysis

EPA sile 1977 Ta ylor Creek 2; data

EPA sile 1977 Taylor Creek 2; fortran read able analysis

EPA sile 1978 Taylor Cre ek I; data (08 July)

EPA sile 1978 Ta ylor Creck I; fortran readahle analy, is (08 July)
Brid ger ,ile 1972trt 1,2 (6 dates) data

"ridger ,ile 1972lrt 1,2 (6 date,) fortran readable analy, i,

Cr<lon wood sile 1970 fortnn readahle anoly, i,

C(~lon wood ,ile 1971 fortnn reod ohle anoly,i .

COllon wood ,il c 1972 fOltnn readahle analysis

OIRge site 1972 trt 1,5 (7 dote.) dala

D IRge sile 1972 trt 1,5 (7 dales) fortmn reodable analysi,

Ponlex ,ile 1972I,t 1,3 (6 dale,) dala

Panlex , ile 19721rt 1,3 (6 dales) fm tran read ahle an al) 'si,
Pawne e . ile 1972 fort mn read ahle anal ysi,

Pa""ce sile 13 1975 fortran readahle analys is
Pawnce , ESA 1976 fort ,an , ,,,,,Iahle ana lys is

soil water .. gravimetric
soil water .. gravimetric

soil water · gravimetric
soil water » grav imetric
soil water - gravimetric
soil water • gravimetric

soi! water • gravimetric

soil wate r - gravimetric
l o it water - grav imetric

soil water · gravimetric
soil waler • gravimetric

soil water • gravimetric

soil water « gravimetric

so il water > lys imeier

soil waler · neutron probe

soil water - neutron probe

soil we ter , neutron probe

so il water • neutron probe

so il wate r- neutron probe

soil water • neutron probe
soil water • neutron prohe

soi l water- neutron probe

soil water . neutron probe
soil waler - neulron probe:
Joil ....·aler · neutron pn.h:
soil woler • neutron probe

so il waler • oeulron probe
,oil waler • oeulron probe

. oil waler • oeulron probe

. oil wale r • oeulron probe

, oil Waler . neulron rrobe

. oil waler - oeutron rrobe

.oil wate, • neutron probe

, oil water - neulron prohe

. oil water · oeutron probe

soil walcr - oeutron p rohe

soil waler • neutron probe

, oil waler - neulron probe

soil waler - neulron prol>e

, oil wal cr - neulron probe

so il waler - neulron prol>e

. oil walcr • neUlmn probe

:mil water · ncUlron prohe
soil waler - neut ron pn:Oe
soil w aler - nClltron prohe
soil water· ncutron rrt~x::

soil w ater - ncut wn prohe

S an Joaqu in site 1973 (8 dOl,, ) .lAra

S an Joaquin sire 1973 (8 dote,) fortran rea, lAhle an al)',i,

San Joaquin site 1974 (13 dales) dala

San Joaquin ,ile 1974 (13 date s} fortran ",adahle Inal)',i,

San Joaqu in site 1975 (7 dates) dala

San Joaquin sire 1975 (7 da'~.) fortran readable an lly.is

EPA site 1975 Irt A-II (20 dete s} d au

EPA Ii te 1975 tit A·II (20 dates) fortran ",adal>le Inaly, is

EPA site 1976 tit A·D, J ·M (22 da tes) dau

EPA site 1976 trt A·D, J -M (22 dates) fort ...n readable anlly,i,

S an Joaquin site 1974 ,pecill ,ampling (ad dilionol dr~h,)

San Jo aquin sire 1975 .pedll ..mpl ing

San Joaquin site 1973 doll from Paraqual stud y

Pawnee s ire 1972-76 data I)l'" 54 ; 2 different fonna"
EPA 1971 conversion to water; fortran rea dable Ina)'hi,

EPA 1971 rep summary; fort ran readable Inal y,i,

EPA 1971 trt summary; fortran readahle Inalysi,

EpA 1971 ra w neutron counts

EPA 1972 conversion 10 water; fort ...n readable In ayhi ,

Ep ..\ 1972 rep summary; fortran read abl e I nl ly . i,
EPA 1972lrt summary; fortran readable analy,i.

EpA 1972 ra w neutron cou nts

EPA 197 3 conversion 10 water; fortran read ahle Inayhi.
EPA 197 3 rep !IImmary; fortran readahle anal y. i.
EPA 1973 trt ",mmary; fortran readahle a" aly,i ,

EPA 1973 raw nculron counlS
EPA 1974 conve rsion 10 wat er; fort ran readlhle Inayhi,

EPA 1974 rep .ummary ; fort ran readahle analy. i.

EPA 1974 lrt lummary; fort ...n rea dahle analy,i,

EPA 1974 ra w neutron counlJ

EPA 1975 convenion 10 waler; fort ...n rea dahl e ana )'hi •

EPA 1975 rep .ummary; fortran rea dAhle an aly, i,

EPA 19751rt ,umma ry; fortran readahle anal y,i •

EPA 1975 raw neulron counL<

EPA 1976 con venion to ,,'aler; fortran re.adAhle Ina)'hi,

EPA 1976 rep summ ary ; fortmn readahle anal y, i,

EPA 1976 trt !1Immary; fortran readAhle analy,i,

EPA 1976 raw neUlron counlS
MWS 1971 c,,"vers ion 10 wale r; fortran read ahle a" ay l,j ,

MWS 1971 rep !1Immory; fortran ,,".. <lahle analy,i,

MWS 1971 Irt . ummary; fortmn readahle anal)',;,

MWS 1971 mw neUlron counls

MWS 1972 convers ion 10 wale r; fort m" rr ad .hle anayl< i,

MWS 19 72 rep ",mmary; foo m" read ohle ana ly ,i,
M\VS 1912 trt ~mnmary; fort ran readahle IIn 8I y ~ i ~

~1\\'S 1972 ra ....· nClltn'Wl rf' UllU

M\VS 1973 cOIl\'crsiun 10 \,I:a ICr, f" rtr :m Tc.:ulablc an:t~ ' 1ci~



soil water - neutron probe

soil water - neutron probe
soil water - neutron probe
•oil water - neutroo probe
•oil water - neutron probe
•oil water - neutron probe
•oil water - neutron probe
•oil water - neutron probe
•oil Wiler - neutron probe

soil water - neutron probe
soil water - neulron probe
soil water - neulron probe
soil water - neutron probe
soil water - neutron probe
soil water - neulron probe
stroud plant pattern data

stroud planlpallem data
stroud plRnt pall em data
stroud planl pattern data
<Imud plant pauern dala
stroud plant pattern dala
stroud plant pauern data

stroud planl pattern data
stroud 1'1 anI pauern data
stroud plant pattern date
stroud planl pauern dara
stroud plant pattern dOla
stroud plant pattern data
stroud plant pattern data
stroud 1'1 ant pauern data
stroud plant pattern data
stroud plant pattern data
stroud plant pattern data
stroud plant pauern dRra
stroud plant pattern dRta
stroud plant pauern dala
stroud plant pattern data
stroud plant p.llem data
stroud plant psuern data

stroud plant pattern data
stroud plant pauern data

MWS 1973 rep summary; fonran readable analysis
MWS 1973 In summary; fonran readable analy.i.
MWS 1973 raw neutron coonU
MWS 1974 conversion 10 water; fortran readable anaylsi •
MWS 1974 rep summary; fortran readable analy.i •
MWS 1974 In summary; fortran readable anelysi•
MWS 1974 raw neutron coonl•
MWS 1975 conversion 10 water; fortran readable anayls] •
MWS 1975 rep summary; fortran readable analysi•
MWS 1975 In summary; fortran readable analy.is
MWS 1975 raw neutron coonU
MWS 1976 conversion 10 water; fortran readable anaylsis
MWS 1976 rep .ommary; fortran readable analysis
MWS 19761n summary; fortran readable analysis
MWS 1976 raw neutron coonu
1970 - LGLO. 1-5
1970 - LGUp, 1-5
1970 - MGLO,I-S
1970 - MGUp, 1-5

1970 - IIGLO, 1-5
1970 - IIGUp. 1-5
1970 - EXpL, 1-5
1971 - LGE3,I -S
1972 - EX72.I-S
1972 - LGE3. 1-5, BOOR & BRSL
1972 - EXpL. 1-5. BOGR &: BRSL
1972 - MGUp, 1-5. BOOR & BRSL
1972 - MGLO, 1-5, BOOR & BRSL
1972 - LOLO, 1-5, BOOR & BRSL
1972 - IIGLO, 1-5, BOOR &: BRSL
1972 - IIGUp, 1-5, BOOR & BRSL
1972 - LGUp, 1-5, BOOR & BRSL
1972 - LGLO, 1-5 , OI'PO & BRSL
1972 - LGUp, 1-5, OPPO & BRSL

1972 - MGLO, 1·5,01'1'0 & BRSL
1972 - MGUP, 1-5,01'1'0 & BRSL
1972 - IIGLO, 1-5. 01'1'0 & BRSL
1972 - IIGUI', 1-5,01'1'0 & BRSL
1972 - EXI'L, 1-5. orro & BRSL
1972- LGE3,I ·S,OpPO& BRSL
1972 - EX72. 1·5. orro &: BRSL


	2013_04_25_08_49_32
	2013_04_25_08_51_56
	2013_04_25_08_52_18
	2013_04_25_08_54_48
	2013_04_25_08_56_17

