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Computational Stability and Time Truncation of

Coupled Nonlinear Equations with Exact Solutions

by

F. Baer and T.J. Simons

Colorado State University
ABSTRACT

A general numerical integration formula is presented which
generates many of the commonly used one-dimensional finite-
difference schemes. A number of these schemes are tested on a
simple wave equation; three implicit and three explicit are
chosen for further analysis with a nonlinear set of equations
with known solutions. A seventh method of the implicit type
not requiring iteration is also tested. A transformation is
developed which allows the removal of linear terms from the
nonlinear equations, thereby avoiding truncation of the linear.
terms. The results of the analysis show that energy components
may have large errors when the total energy shows essentially
none, and phase errors may be quite serious without indication
from linear analysis. By treating the uncoupled linear terms
exactly (no truncation), significant improvement in the numer-
ical solutions ensues. The multi-level implicit schemes give
superior results and are to be recommended if computing time
is not a criterion. Great care must be taken in interpreting
the linear stability criterion; to avoid sigrificant truncation
errors, especially for long time integrations, the critical

truncation increment should be considerably reduced.
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1. Introduction

The problems of computational stability and truncatiom errors
are by no means recent in origin. Indeed, few physical problems
are so simple as to yield mathematical representations whi<h lend
themselves to analytic solutions. More often than not, the appro-
priate equations are nonlinear and must be solved numerically with
little insight into the exact solutions. To further complicate
clarification of the errors arising from numerical computaion,
one is generally confronted with partial differential equa@ions.

Despite these seemingly overwhelming obstacles, signifficant
progress in studies of computational stability have been mzade,
exemplified by the work of Richtmyer (1957). The traditiomal
approach to such studies is to linearize the nonlinear equzations
and then compare the exact solutions of the linear system to the
solutiAon“o.f the c;)rresponding finite-difference equations. For
different truncation procedures the approximations may be evalu-
ated in terms of the true solution. For initial value prob»lems
where the linearizing assumption may not be valid for all time,
little may be said except for the criterion of computational
stability. Moreover, since finite-difference operations mest
generally be applied in both space and time, highly involve d
relationships between the truncation intervals evolve.

With reference to problems concerning atmospheric flow , the
feasibility of converting the appropriate nonlinear partial
differential equations to a finite set of ordinary nonlinear
first-order differential equations in time (termed '"spectra 1"
equations) has been established. Such equations are genera ted
by assuming the space dependence to be given by a series of
known polynomials and solving for the time dependent coeffi cients
through integration over the entire space domain. The techmique
seems to have been applied first by Silberman (1954) and dis-
cussed in detail by Platzman (1960). On the assumption tha—t the

series truncation does not create serious errors (a questiom not
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yet investigated in detail), or that the finite set of equations
is an exact representation of the physical system, one is left
with the considerably simpler problem of determining time trunca-
tion alone.

The investigation of ordinary differential equations by
numerical methods has also not been neglected; see for example,
Henrici (1962), or Hildebrand (1956). Again, however, when non-
linear equations are involved, little can be said about truncation
errors of initial value problems. Moreover, if wave type solu-
tions exist, error estimates of linear equations may be cast into
doubtj Fortunately there exist some nonlinear systems of spectral
equations which have analytic solutions. Such systems were first
used to describe atmospheric flow by Lorenz (1960). Clearly a
comparison between the finite-difference solution of the equations
of such a system when compared to the analytic solution will give
information on truncation errors as a function of time. Studies
with various time differencing schemes have been made on this basis
by Lilly (1965) and Young (1968).

A number of finite-differencing schemes have been utilized
for integrating ordinary differential equations, and many are a
composite of ingenious techniques which have occurred to various
scientists and proved useful. In order to test the utility of
such schemes, however, it seems worthwhile to generate them in
some systematic fashion, thereby establishing a hierarchy of
schemes with (we hope) increasing accuracy. One such systematic
approach would be to assume that the function to be integrated can
be represented by a polynomial which is exact at its known point
values. The degree of accuracy of such a polynomial will then be
established by the number of known points utilized. We shall show,
moreover, that the most popular schemes can be represented by this
approach.

To avoid the problem of being overwhelmed by an unmanageably
large number of schemes, the schemes were tested by application to

a first-order linear wave equation. If a scheme was not able to
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give good results for this equation, we assume it would not be
satisfactory for a more complex system of equations. In this way
we were able to reduce the number of schemes to a manageable size.
It should be noted that if more points on the time axis are used
to develop the interpolation polynomial than there are orders of
derivatives in the differential equations, spurious solutions will
result--frequently denoted as 'parasitic' solutions--which must
be handled with great care so as not to obscure the true physical
solution.

The remaining schemes (those which gave satisfactory results
with the wave equation) were then tested on a low-order spectral
system of the type used by Lilly and Young. The system used here
however (Baer, 1968) has the added flexibility of involving both
linear and nonlinear terms in the first-order system of equations;
it furthermore allows for time dependent phase changes which were
constrained in previous experiments. Since linear contributions
to differential equations may be determined without truncation,
their influence has been investigated. Of the techniques which
proved most accurate, multi-step methods were included, despite

the presence of parasitic solutions. Previous calculations suggest

,that integral constraints of the system (say, energy or vorticity)

were adequate indicators of truncation error when observed during
calculation. This conclusion does not seem to be borne out. We
shall see that slight phase errors will create amplitude errors

in the individual dependent variables which have a tendency to
cancel when the integral properties are evaluated. Thus, although
the integral constraints will yield a good indication of computa-
tional stability (which is also available from linear theory),
truncation errors can only be investigated from the detailed be-

havior of all the dependent variables in the system.



2. Truncation Schemes

As we have indicated, the spectral equations applicable to
the atmosphere may be represented quite generally by a nonlinear
set of first-order differential equations in time for which ana-
lytic solutions are not available unless the set is highly trun-
cated. -The dependent variables, which are the expansion coeffi-
cients of the space dependent polynomials, may be represented by
a vector ¥ such that

¥ = (v,); 1sisN

o

and the general set of equations may be written as
¥ = F(¥,t) = (£,) (2.1)

where F is a vector operator and the dot notation signifies time
differentiation. Suppressing indices, we may also state that the

scalar equation for any expansion’coefficient will be
b= £(¥,1) (2.1a)

Because exact solutions in time are not available for (2.1), based
on the complicated nature of the functions f, we may expect to
know ¥ only at discrete points on the time axis. For simplicity

let us assume Y (and therefore F) known at equal time increments

t = tg + jAt
j =10,1,2 saat (2.2)

Over a given interval in time, we may establish by an interpolation
formula a continuous function of time which corresponds to the
known values at the discrete points given by (2.2). If we con-
sider the continuous variable in time to be given as

-nSst1

= . 2.3
t=tg+ (t4s)8t 5 < (2.3)

\

\
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|
|
|
|



then by Newton's backward interpolation polynomial (see Milne,
1949),

n
£1) = 1 X(E) e (2.4)
k=0

In (2.4), the quantity in brackets is a binomial coefficient

function of s, the superscript on f denotes the increment in time
at which the function should be evaluated (from (2.2) the function
is known at the time 1), and Ak represents the backward di fference

3

operator applied k times and has the value,

af' = £7- £771
(2.5)

Although we have specified that f is known at t + 1 points, we
need not utilize all these values in establishing our polynomial
(2.4), and hence we choose merely the last n point values. We
may determine how the interpolation polynomial depends on the
discrete point values by substituting (2.5) into (2.4) and noting

the following identities;

The polynomial becomes,



n
£(s) = J an(s)fT J
j=0
(2.6)
S nJ k
- - i ..S..J
ag; () = (7] kéo( ()

If we wish to establish the value of f at the point T + 1, it
would be necessary to extrapolate from (2.6); therefore we have
used the subscript notation E. We could, however, assume the
function known at 1t + 1 and write an equation similar to (2.6)
which would then allow an interpolation to the point 1 + 1 and

would read,

n
£ = ] an(5)f1+1-J
j=0
2.7
o 1
—5+1 sl
ey = O3 Tt 05

To establish the value of ¥ (t+l) we may now substitute either
(2.6) or (2.7) into (2.la) and integrate. The integration may go
over any sub-interval of the interpolation polynomial, but clear-
ly not from a time preceding the point t-n. Selecting the integer
p (pin) at which point the function is known and integrating to
t+1, we have,

i)
T = P [, £ (2.8)

It is interesting to note that use of the extrapolating polynomial
yields an Explicit solution for wT+1, whereas the application of
the interpolating polynomial leads to an Implicit solution, because

the unknown function fT+1 still exists on the right-hand side of
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the equation. If we define the integrals over s,

!
QI.

1
[, op;(s)ds = og; ()

P
(2.9}

1}

3
f_ an(s)ds alj(p)

P

where the integrals may be evaluated by noting that the integrals
are factorial polynomials in s which may be converted to poly-
nomials in s by use of Sterling's numbers of the first kind (Milne,

1949), we may express the general finite-difference extrapolation

formulas as follows:

Explicit: Epn

n

T+l T- -
L N .Z anf
J=0

=3

(2.10)

Implicit: I

pn

n -

WT+1 £ P & 4t Z &I.fT+1-J
=0

We see from (2.10) that a wide variety of finite-difference
integration schemes may be selected, and in a systematic fashion.
As we increase p and n, we arrive at higher order schemes (more
"steps') with the consequent expected increase in accuracy but also
additional parasitic roots. Most of the standard numerical inte-
gration schemes fall into the classification given by (2.10). For
example, the schemes Egn and Ejn are generally associated with
Adams -Bashforth and Nystrom respectively, whereas the schemes
Ion, I;n are referred to as Adams-Moulton and Milne-Simpson re-

spectively. The more involved predictor-corrector or multi-corrector



Table 1. Values of the coefficients &Ij(p), &Ej(p) for different integration schemes Epn’ I .» their

names (if known) and the truncation error based on Taylor's series analysis.,

Scheme
(p,n) Name j=0 j=1 j=2 j=3 j=4 j=5 Truncation Error

Eg) 3/2 -1)¥ [s/12(at)3y(3)
Eg2  Adams-Bashforth 23/12 -4/3 5/12 [3/8(at) 4y (4] |
Eg3 55/24  -59/24  37/24 -9/24 [1/3(at) 54 (57
Bk 1901/720 -2774/720 2616/720 -1274/720 251/720 11/5(at)by(6) |
Ey; Leapfrog 2 0 l1/3(at)3p(3) !
s 7/3 -2/3 1/3 [1/3(at) 4y ()|
Ez3 Milne Predictor 8/3 -4/3 8/3 0 1173 (at) Sy (5) !
101 Euler Trapezoidal 1/2 1/2 Il/lZ(At)3¢(3)|
o2 5/12 8/12 -1/12 l1724 (at)4p(4) |
Iy3 Moulton Corrector 9/24 19/24 -5/24 1/24 [1/36(at)5y(5) |
L 251/720  646/720 -244/720  106/720 -19/720 [1/53(at)bp(8) |
I3 Milne Corrector 173 4/3 1/3 0 [1/90(at) 5y (5) |
Tig 29/90  124/90  24/90 4/90  -1/90 |1/3(at)6y(8) |

I35 Milne II Corrector  14/45 64/45  24/45 64/45  14/45 0 [1/7120(at) 7y (7) |




schemes would require a sequence of schemes described by (2.10).

A number of schemes whose properties will be investigated
are listed in Table 1. Certain omissions will be noted. The Egg
scheme, which is termed the "Euler forward" is always unstable in
terms of fictitious amplification and is consequently of no in-
terest. Similarly, the "Euler backward', Iy, gives fictitious
damping and is therefore ignored. Schemes with p=2 have been
shown to yield results not appreciably superior to those for p=1
and their discussion would thus be redundant. For the implicit
schemes, the coefficients ay3(1), ays(3) vanish, and consequently
the lower order forms I,,, I3, which require as much calculation
as I3, I35 have been ignored.

The schemes described by (2.10) may be subject to Taylor's
series expansion about the point 7; for a given truncation (p,n)
there will be an error of order (At)™*? times the same order of
time derivative of y, listed in Table 1. When applying these
techniques to wave type equations, however, such error estimates

may be misleading.

3. Linear Stability Properties

If the schemes listed in Table 1 do not show adequate stabil-
ity properties when applied to a linear differential equation, we
may anticipate their failure with regard to nonlinear differential
equations. We shall therefore test them on the simple linear wave

equation,
V= -ipy (3.1)

which could be generated from (2.10) by linearization and neglect-
ing coupling terms. Note that ¢ is a complex variable, but let us
assume p to be real. The true solution of (3.1) shows only one mode
which moves about the unit circlezin the complex plane with period
mm

2n/p beginning at unity when t = If we now define coefficients
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a = 0 =
% % 341 0 for j=n

0. = b= 5 = i = -
j dﬁj an 0 for j 1
we may write both the implicit and explicit finite-difference
schemes (2.10) after substitution of (3.1) for the values of the
derivatives at the known discrete points by the single relation,
1 2 j
» + - 3 -
(1+1u.19At)~¢T =y P ipat Z uij J
j=0
(3.2)

o

The solutions to (3.2) may be determined in a number of ways, but

they must all satisfy the characteristic equation

n )
(Ieiaeez 2650 = = P doue ] ajxn'J
j=0
(3.3)

where the roots of (5.3} represent the solutions of (3.2). Since
we have specified pin, there will be n+l solutions to (3.2), only
one of which corresponds to the real '"physical' mode. The computa-
tional or parasitic modes (n of them) are distributed as follows

at At=0; n-p roots begin at the origin, and p+l roots are distribu-
ted equally about the unit circle with the physical mode at A=I.

As At is increased from zero, the roots will change from their
initial points.

If the first root, iy, represents the "computed physical mode"
we may compare it with the true solution. So long as its amplitude
remains near unity, their will be no spurious damping or amplifica-
tion. However, its phase, say 6y, must also remain near the true
phase for accuracy; i.e., we should observe that -8(/pAt remains
close to unity. The remaining n solutions are parasitic and enter
only to disturb the physical solution. So long as their amplitudes
remain less than unity (i.e., within the unit circle), they will be

damped. If they go outside the unit circle, they will cause ampli-
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fication and may be classified as '"unstable' solutions. If they
remain on the unit circle, by suitable choice of initial condi-
tions their effects can be made innocuous.

All the schemes listed in Table 1 have been tested on (3.1).
Their characteristic equations may be easily determined by substi-
tution of the tabular coefficients together with the limits (p,n)
into (3.3). The roots of these characteristic equations have
been determined for various values of pAt and the amplitudes of
all modes for each scheme have been plotted against pit (abscissa)
in Fig. 1. Pursuant to the previous discussion, wherever a mode
exceeds unity on the ordinate, it will yield an unstable solution.
Clearly the best schemes will be those for which all roots remain
stable for the largest value of pAt.

We may be considerably more precise about the behavior of these
schemes by investigating the computational physical mode in more
detail--both its amplitude and phase. On Fig. 2 we have plotted
for all schemes the amplitude of the computational physical mode
(and amplitudes of parasitic modes when they are within the ordi-
nate scale) on the upper graph and the ratio -6¢/pAt on the lower
graph against pAt on the abscissa. Here we may isolate the best
schemes. Whereas from Fig. 1 we might have thought that scheme
Ip; was best because it is stable for all values of At, we see from
Fig. 2 that this scheme (trapezoidal) has serious phase errors for
reasonable values of pAt.

Based on Fig. 2, we have selected three schemes in the ex-
plicit group and three in the implicit group for further study.
Choosing pAt<.4, we see that Egz, Ey; and Ez; are the best,
whereas for the implicit schemes, the obvious choices are Ig,
I13, I3s5. Scheme Ip; was selected because of the strong stability
property of its amplitude and also because of its general popular-
ity, although its phase characteristics are less desirable.

An interesting sidelight to the selection of suitable finite-
difference schemes is exemplified by Fig. 3. Suppose one would

like a scheme no greater than two-step for which the coefficients



1-———~/ 74\ |
% s T s o 5 ) s '
Eon Eoz Eos Eoa
/\ f \ ' 4 roots / 2 roots
00 ? T 5 o] -] () 4.‘50 5 IL
El Eis E, Ey E..
1 1 1
co ; : 5 AIL o 5 1 ] lﬁ ]
ol 02 Io; Ios
' 2 roots / 1 \ 4 roots Jz roots
e
OO 5 1 5 o 43 U () S 1 15
1IB IIQ 135
Fig. 1 Amplitudes of the roots of the simple linear wave
equation ¢ = ipy, for various truncation schemes, plotted
against pAt on the abscissa.




3

19 5 i % 5 i % 5 i 8 5 '
Eo Eoe Eos Eoa
1.0t 1.01¢
1.00 100 |4 rocts 2 roots
.
.Qbﬁg——d K- | S
1 0 5 |
. E,. Es, E, unstable
1.2 | o—-—\
T 9
) IR o
I.Ou 5 1 .80 S 1
Ell E 33
o 102 l N
1 r oz 1,00 ~—
IDD[’—.oo 1.01 1ol 99
2% 5 ~1400g: 5 7 109 5 [ 3
0.0-\ I.O——-——\ ] I( Iip
9 9 10 — ) e
e . g -
*o 5 i Ho 5 1 % s ) s i
Ty Loz Tos loa
1o1r 101 10Ir
100| 2 roots {'_ 5 4 roots jv
2% ] [ i g Ty Mgy
1 /o e
10 10 10 =
~—
o n y o L ;9 .
(9 s 1 5 ) s (] 5 i s
s Tia Ly

Fig. 2 Amplitude (upper) and phase (lower) of the physical
root of the truncated linear wave equation plotted against
pAt. The phase is given proportional to pAt.
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Fig. 3 Phase errors for a class of two-level truncation
schemes in terms of the true phase including the leapfrog,
trapezoidal and Milne schemes.
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could be varied such that the most favorable properties may be
chosen. Let the scheme be represented in terms of the arbitrary

coefficients (a,8)

WT+1 - wr—l % At(u@T-1+B$T+a@T+1)
(3.4)
20 + B = 2
and test it on the equation & = -ivy. Fig. 3 shows, for various

combinations of o,8 that the phase properties in the stable range
(where both the real physical and the parasitic roots have ampli-
tude unity) are effectively bounded by the error curves for the
leapfrog (L-Ej;) on the one hand, and the trapezoidal (T-I;,) on

the other. The Milne scheme (M-I;3) is undoubtedly one of the

best which satisfies the criteria of (3.4).

4. Multi-Component System

The coupled set of nonlinear first-order differential equa-
tions on which the six schemes which survived the linear analysis
of the last section will be tested is part of the group of low-
order spectral systems which were systematically developed by
Platzman (1962) for the barotropic vorticity equation, but which
also have applicability for baroclinic problems. The system
under consideration involves an arbitrary zonal flow interacting
with a single planetary wave composed of two complex components
(describing its latitudinal variability) in a rotating atmosphere
with spherical geometry. Details of this system, including the
exact solutions (elliptic functions; have been presented by Baer
(1968). If the zonal coefficients (real) are denoted as wY(t)
where y = 2m+1, m S M, and the complex wave coefficients are des-
cribed by the terms wa(t), we(t), the differential equation for

the zonal terms may be written,



The zonal coefficients can be sclved in terms of one coefficient
Yy by integration of the above equation. The time relationship

1

thus developed between the zonal coefficients is unaltered if the

integration is performed by numerical means, whereby we find that

wY = (ay/an)wn+sy. The system to be integrated therefore involves
only three variables, wn’ wu’ ¢B and is,

¢n = zan Im-wawé

d’:x = _iouwu*ihu8¢8+iguuwnwa+iga8wn¢8 (4.1)
¥y = ~loghatihg 8 +iggg ¥gtigg Vyly
where Pu.8 = Va,é’ hﬂm’sa. In -atrix{notatlon we find,
v, = y*Hy N real scalar
v = (A + wnD)w ; ¥ = we
4.2)
ig (t)
A=A1+A2 s ¥ =—18 (t) asB
a,B Jz ,B
e © 0 huB s % €aa BaB
Al = -1 5 & s Az =1 b 5 2 gBG gSB
B Ba

where the tilde denotes transposition. The physical significance
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of the constants which depend on spectrum truncation and initial
conditions may be found in the paper by Baer (1968). Three
different sets of conditions were used in this study, and the
numerical values of the variables may be found in the Appendix.
System (4.2) involves both linear and nonlinear terms; the
uncoupled linear effects are denoted by the matrix A;, and the
purely coupled linear terms by the matrix A,. The term wan
represents the nonlinear effect. The linear terms may be removed
from truncation in a numerical integration by recognizing their

exact influence. Let us therefore define the vector
x = ey 4.3)
such that the second differential equation of (4.2) becomes
X = e'Gt(A-G+¢nD)thx (4.4)

where G is a matrix which we shall allow to take on the three

possible values:

(a) G=0 : (TL)
®) G=A : (T0)
(¢c) G=A : (EL)

If we now integrate (4.4) and the first of (4.2) by the different
allowed schemes (see Section 3), we see that when G = 0 we trun-
cate all linear terms, when G = A we truncate the coupling terms,
and when G = A we deal with the exact linear solution.

We have seen from the last section that one level implicit
schemes are always stable and do not add parasitic modes. They
have the disadvantage, however, of requiring an iteration process
for calculation with an unspecified convergence rate. We have
consequently added another scheme to our set of six (3-implicit

and 3-explicit) which is in effect an implicit scheme which can
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be solved without iteration. Consider the fellowing two implicit

techniques applied to the first of (4.2):

teAt_t

v b= gar(rag) b e (pray) BT
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b= dat (PP Y (AT

If we now combine these two schemes by taking the first twice and

subtracting the second, we find,

. Bl t At t+At = t
T T e S [T e ety

(4.5)

On the assar-tion that the quantities wn,w, Y* are known at time t,
{4.37 is limezTr in the terms at t+At and may thus, in combination

with z difference form of the type (4.5) used on (4.4), be solved

for the variables at t-'t. In terms of the vector X (5 elements)
X4tz (4.6)
1 * /
the non-iterative implicit scheme (IM) may be represented as follows,

t+Lt

X = R7IR,X" (4.7)

where the matrices R; and R, are written,



Ry

( 1 - 2 ot
At
Y piinl
At |t 2 At £
- _7'Dw e - —7-(A-G+wnD)
At o, Lt
- S5 D*y 0
N
[ 0
5
0 e + = (A-G)
0 0

2ot
0
At
- ‘*—
=7 st ot
e - 55 (Ar-Grey DY)
rd
N\
0
0
At
G*—-
e 2 + A_TZ- (A*-G*) J

Before proceeding to a discussion of the numerical calculations

of the different schemes, let us consider the linearized coupled

equations and the finite-difference solution to these equations.

- The linearization of (4.2) may be accomplished by assuming that

wn+$n=constant where it multiplies either wa or wB in the second

equation of (4.2).

as,

The linearized equation may thus be expressed

(4.8)

where the elements of G can be established from the definitions

given in (4.2).

the form of the model matrix S, where

The roots of G are listed in Table 2 together with
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and A is the root matrix of G. The solution to (4.8) may be written

formally as,

W) = eCty(t=0)

(4.9)

EeiAt§‘1w(t=0)

If the roots of G are pure imaginary, no physical amplification
will take place and computational stability can be easily defined.
The physical stability condition implied in G has been discussed
by Baer (1968) and need not be repeated here. We shall concern

ourselves with physically stable situations.

Table 2. Values of the roots and model
matrices for various forms of G.

G [ A S
0 " 0 I
A 7 Pur Pg I
P _*p ' pL¥A o, +A
~1y] _Fa"B . 2 3 7B Pt
A s~1y — E[(pa_pB) +4hthBa) -1y h
Ba Ba
n,¥vi n,+vao
n_+n | [ B
N (- = -2 B i((n -n )2+ §, )P 1|-i |4 -
V1,2 > *((n, ng) +4GusGsa) 116 G
Ba Ba
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Let us now apply the leapfrog scheme to (4.8) with the option
that some of the linear terms may be extracted, as we have done in
(4.4). The appropriate form of (4.8), using the transformation
(4.3), becomes
x = et E-6)y

(4.10)

Xt+At - Xt-At + 2At e_Gt(C—G)wt

Here G may take on any of the three values 0, A;, A. Since we wish
to compare the solutions of the second of (4.10) with (4.9), we
returﬁ (4.10) to the variable y. Noting now that we may establish

the roots of G and write a root matrix A,

G = Sins~! (4.11)

where the roots and the model matrix for different matrices G are
listed in Table 2, we find for (4.10) using (4.11) and (4.3),

(PO G2IMAL T-At o coipg gyt
(4.12)

et =5yt

Since the elements of ¢ are a linear combination of the elements
of ¢, they will have the same solutions (roots). By the usual
method of establishing an amplification matrix for multi-step
equations (Richtmyer, 1957), we define the vector £ as

t+At t
£ - g

and we get the solution to (4.12) in the form,
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e
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(4.13)
where I is the unit matrix. The root equation for the amplifica-
tion matrix in (4.13) is given as

2iat(S"18R8715-4) - Al glaitk

I © -2l

(4.14)

which is, in general, a 4th order equation in the roots. Two of
these roots are physically real, and the other two are parasitic.

The real roots should be compared with the roots of the exact

Toalt

solution, e So long as 't remains within the limits of com-
putational stability, the roots will have amplitude of unity and
we may therefore consider only the phase angles. Thus if the

roots of (4.14) are,
Y, =@ 3 (4.15)

we may compare the phase angles for the finite-difference solution
to those of the exact solution by the ratio, eAj/v'At' These
ratios are shown for each of the approximations G = 0, A; , A on
Fig. 4, plotted against the non-dimensional time unit At, where
time has been non-dimensionalized by the earth's rotation rate.
The data used in determining the roots was taken from case CA

and is given in the appendix. The values of the frequencies

V1,2 are,

v = .310 vy = .042
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We shall have occasion to compare these values to the exact fre-
quencies of the nonlinear solution in the next section.
The phase errors for the approximation G = 0 may be readily

determined since (4.14) reduces to the equation,

A2 - ZiAtvjA -1=0

from which we see that the phase angles exj (4.15) are given by

8,. = sin”! (v.at
AJ : J y

a result identical to the one arrived at in Section 3 for uncoupled
systems. The stability criterion and phase error at the stability

point are

el (2 -
T V.4t =
J J critical

Returning to the discussion of Fig. 4, we see that removal of
the uncoupled terms (G = A;) leads to a much more stable calcula-
tion with considerably lower errors in phase. Total truncation
(G = 0) is clearly the worst case, whereas including an exact
treatment of the coupling terms in A, does not improve the sta-
bility or phase errors; in fact, the extraction of more exact
information in this case creates larger truncation errors. It
should be noted that these results refer to a particular set of
initial conditions, and are subject to change for different con-
ditions. However, we may conclude with some confidence that the
exact treatment of uncoupled linear terms will yield solutions
to the nonlinear equations with less error for a given truncation
element, At. We shall not consider the linearized equations for
the other truncation schemes but proceed directly to the numerical

calculation of the nonlinear equations.



5. Numerical Calculations

Three different sets of initial conditions were used to test
the truncation schemes and they are listed in the appendix, denoted
respectively as cases CA, CB, CC. Since the exact solutions to
(4.2) are known, any variable determined from a numerical integra-
tion will be represented normalized by its exact value. For each
case of initial data, the three methods for dealing with the linear
terms were applied (TL, TC, EL) and three different time increments
(At) were used; the scales of the time increments were determined
from the characteristic frequencies of the cases. All seven trun-
cation schemes discussed in Section 3 as having satisfactory linear
properties were tested, and are listed in Table 3.

Let us now concentrate our attentions on the features of case
CA, which was integrated numerically in excess of 51 days. Since
this case has an exact nonlinear exchange period of 3.452 days,
the integration period should be long enough to highlight important
errors. The exact frequencies, and there are two because two wave
components wu, wB exist, are vy = .309, v, = .0192. The first of
the two frequencies calculated by linear theory (see Section 4)
compares remarkably well with the first exact frequency, buf the
second is more than twice as large. However, because of the dif-
ference in magnitude of these frequencies, the first (larger)
frequency will essentially determine the stability criterion.

Using the first frequency and the linear (uncoupled) solutions

for the different schemes developed in Section 3, we list in Table
3vthe stability condition, At max’ which the linear theory would
indicate.

A common procedure for establishing stability and truncation
errors is to investigate the development in time of some integral
property of the system--generally conservative--as was done by
both Lilly (1965) and Young (1968). For simple atmospheric flow
problems, energy is the logical choice although Young also in-
cluded the vorticity. To indicate the behavior of the total energy



Table 3. Total energy normalized by the exact value for case CA after 51.77 days for seven schemes
three different time steps and different treatment of linear terms together with the linear stability
criterion. In case of oscillation, range is tabulated.

Scheme I TL TC EL

Stability At=(hrs.)—» 2.07 4.14  8.28 2.07 4.14  8.28 2.07 4.14  8.28
|

E11 | oo 991 934 | o 998 988 999  .968  .889
At < 12 hrs. {0 1.001  1.006  1.098 . 1.001 1.006 |1.003 1.045 81.881
E03 5, overflow .989 .855 .979 .801
At < 5 hrs. oI BEE o1y dawsy | TP wey L asy 999 980 812
E33 1.000 .999 overflow .998 .988 overflow .878 overflow

At < 5 hrs. : 1.002 (8 days) |1.002 1.013 (32 days)|1.409 (50 days)

™ ) ) i Logo 1:000  1.000 999  .995  .982
At < w : 1.002 1.007 |1.000 1.000 1.000
101 Logo 1000 999 | 1.000 .99 999  .998  .999
At < @ ' 1.001  1.005 . 1.001 1.003 |1.000 1.001 1.011
113 .999 .999
X % 2 b 1.000  1.000 o’ |1.000 1.000 1.000 |1.000 1.000 500
155 1.000  1.000 .°2%2 l1.000 1.000 .22 l1.000 1.000 ‘999

At < 16 hrs. 1.003 ’ : 1.000 ' 1.001

9z



of our solution (case CA) with time, we have prepared Table 3 in
which we describe the total energy (conserved in the exact solu-
tion) for the different truncation schemes, different truncation
intervals At = 2.07, 4.14, 8.28 hours, and different treztment of
the linear terms. The energies have been listed after 51.77 days
unless an oscillation occurs, in which case its range is tabulated.
As indicated above, we have also listed the stability condition
based on linear theory.

Unquestionably, the stability properties are well described
by the total energy and correspond to those anticipated from
linear theory. Where damping is predicted, as in scheme E03, the
tabular values are in agreement. Where parasitic oscillations
are anticipated (E11), they appear in the table. Further expected
results show that the solutions deteriorate for increased At and
that implicit schemes are generally superior (for given At) than
explicit ones. A further observation, not previously investigated,
is the improvement of the solution from TL to TC; i.e., when the
uncoupled linear terms are treated exactly. If, however, one pro-
ceeds to treat all linear terms exactly (EL), the results appear
somewhat less stable, as expected from the linear analysis (Sec-
tion 4).

The above information is indeed valuable; however, it must

be emphasized that the behavior of the total energy with time is

not necessarily an indicator of the behavior of the detailed

character of the solution. As we shall see, the individual am-

plitudes of the wave components may be seriously in error with
no indication from the total energy. Moreover, the phaSe angles
and wave velocities of the components from the truncated calcu-
lations may have no relation to the true solution, although the
total energy is well conserved. To establish this fact , among
others, we shall proceed to a detailed discussion of the calcu-
lations.

The component amplitudes which make up the total emergy in

our equations may be represented when we describe the truncated
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value normalized by the exact value from (4.1), as

= * o NERUL]
A Energy = anwuwa (truncated)/anva,a(exact)

B Energy = ZcB¢B¢E (truncated)/ZcBwaE(exact)
(5.1)

it

Z Energy = Echi (truncated)/chwi (exact)

T Energy = Total Energy

The time variation of the three energy components presented in
(5.1) have been plotted for t = 4.14 hrs. for all seven schemes
listed in Table 3, for both the TL and TC conditions based on
data from case CA in Fig. 5. We have selected to discuss the TL
condition because it is by far in most common usage, and the TC
condition for comparison. From a superficial view of Fig. 5,

one is immediately impressed with the sizeable errors in some of
the schemes, a fact not established from Table 3. These errors
have a regular period which is given by the first (largest) fre-
quency, v; = .309. One must conclude, therefore, that the energy
components cancel their errors on summation. A further observa-
tion is the remarkable improvement in the calculations (reduction
in error) by use of the TC condition. Although this condition
has been in computational use with higher-order systems for some
time (Baer, 1964), its virtues had not been investigated in any
detail.

Of the explicit schemes tested, E33 is by far the best with
regard to truncation, showing almost no errors during the entire
integration period for At = 4 hrs. However, in terms of its
utility as a computation scheme, we must refer back to Table 3
which elucidates its limited stability region (At < 5 hrs.).
Scheme E03 shows errors in excess of 50% in the energy components
and describes the anticipated damping with time, but only in the
a-wave. The leapfrog scheme also shows large error excursions,

but they are cut back dramatically by the TC condition.
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Although Table 3 indicates no significant errors for the
implicit schemes, Fig. 5 clearly does not corroborate this inter-
pretation. Scheme I01 has errors as large as 50% in the components
for the TL condition; they are, however, almost completely elimi-
nated when the TC method is applied. An unfortunate and unexpected
result of the tests is the poor quality of the IM computation.
While the TL results are not available, the TC results suggest that
this scheme is inferior to the others described on Fig. 5 (another
observation not anticipated from the total energy information of
Table 3). Schemes I13 and I35 have been plotted on the same chart
since neither has any measurable error in the energy components
over the total integration period for At =~ 4 hrs. They are clear-
ly superior schemes, but I13 should be preferred, both because of
its better stability condition (Table 3) and its ease of computa-
tion.

As indicated above, a striking feature described by Fig. 5
is the improved computation for the TC condition. Because this
involves the exact treatment of part of the linear contribution,
one might anticipate that the exact treatment of all the linear
* terms (EL) might further improve the calculated results. That
this reasoning is incorrect has already been suggested by the
deterioration of the stability criterion for the leapfrog scheme
using the EL condition, seen from the total energy in Table 3.
Since Ell shows this feature most strongly of all the schemes,
we describe on Fig. 6 the different energy components with time
for E1l, At = 4.14 hrs. using both the TC and EL conditions;
the comparison of TL.to TC is evident from Fig. 5. None of the
schemes show improved computation using the EL method, but most
give results comparable to the TC calculation. Most remarkable
is the instability which is set up in the E11 scheme using the
EL method, a result not anticipated from the linear analysis of
Section 4 (Fig. 4), wherein the stability condition for the EL
calculation was superior to the TL method. We find here, there-

fore, a purely nonlinear phenomenon, not predictable by lineari-
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zation. However, this observation is not systematic with regard
to all the schemes, and does not appear for E03.

The error in the energy components as a function of At is
described by Fig. 7. Here we show both Ell and 101 using the TL
method for the three times, At = 2.07, 4.14, 8.28 hrs. We have
chosen E11 and I01 because they are the most frequently used
schemes in the explicit and implicit groups, respectively. Never-
theless, all schemes tend to show a similar deterioration of the
result with increased At, although the higher level implicit
schemes (I13 and 135) have extremely small errors for At = 8 hrs.
The failure of the total energy to indicate the errors in the’
components is plainly evident from this figure. An interesting
feature of the leapfrog scheme which is apparent for At = 8 is
the larger error period, a modulation effect caused by the para-
sitic mode; this phenomenon has been observed and discussed in
the past (see, for example, Baer, 1961). An indication of the
component errors seen on Fig. 7 may be available from linear theory
through the phase errors. Referring to Fig. 3, when At = 2 the
phase errors are almost indetectable, whereas when At = 8
(vat = 2/3), both the leapfrog and trapezoidal schemes show the
sizeable phase errors. It is interesting to note that for the
latter truncation the Milne scheme (I13) has almost no linear
phase error and correspondingly no nonlinear computational errors.

Despite the appearance of large errors in the energy compo-
nents, there exist periodic times at which the computed solutions
describe the exact solution with great accuracy. One might thus
be led to the conclusion that the numerical integrations will give
satisfactory results at selected times (periodic) for all time,
to be determined by the highest characteristic mode of oscillation
(available from linear theory). Such reasoning, in analogy with
the conclusions drawn from the behavior of the total energy only,
is based on incomplete information and is unfortunately incorrect.
The missing information are the phase angles of the a- and B-waves,

both of which are time dependent; their time dependence may be
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described by the real part of the stream components Yy WB and we

present them as,

A-wave = Re ¢y (t)
* (5.2)
B-wave = RE wB (t)

In Fig. 8 we show the phase properties for the Ell and 101 schemes
for the time steps At = 4.14, 8.28 hrs., using the TL method. By
comparing the computed values of the two wave components as given
in (5.2) to the exact values, we see that after 50 days the A-wave
is significantly out of phase with the exact value. For At = 8 hrs.,
the phase error is almost 180° in both schemes, whereas the error
in the B-wave is negligible. This error grows with time, and the
consequent solution therefore becomes less and less reliable.
Having now established an almost insurmountable obstacle to these
numerical integration schemes (the multi-step implicit schemes
I13, I35 do not exhibit discernible phase errors for the time
steps utilized), we observe that no apparent phase errors occur
if we use the TC or EL condition. The interpretation of this
correction must be based on the fact that the uncoupled linear
terms include most of the high frequency phase properties and
therefore cannot be successfully truncated. Although many of the
schemes exhibit the phase characteristics outlined above, the im-
plicit matrix scheme (IM) is nonconformist. With At = 8.28 hrs.,
Fig. 8 shows the phase properties for both the TC and EL methods
of the IM scheme and highlights the phase errors, here primarily
in the long period of the B-wave.

To lend some credence to generalizations from the above
observations based only on case CA, Figs. 9 and 10 describe the
behavior in time of the energy components for data from cases
CB and CC respectively (numerical values to be found in the Appen-
dix). The results described are based on the TL method and the

time increments have been selected on the basis of the characteristic
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frequencies (see Appendix). All the features which these figures
can describe are similar to those discussed for case CA. Errors
increase for increased At, total energy is well conserved whereas
the component errors are large, a modulation period appears in
the leapfrog scheme, and the Milne (I13) scheme is extremely ac-
curate. We have found that the other features discussed in de-
tail for case CA shows similar properties for cases CB and CC,
and we shall consequently not reproduce these results here; we
shall assert, however, based on Figs. 9 and 10, that the compu-
tational properties of the different schemes tested and discussed
in this section are applicable to a wide variety of initial

conditions.

6. Conclusion

The solution of the nonlinear equations which describe at-
mospheric flow (among others) by numerical means is today a
commonplace event. Given a set of initial values, these equa-
tions are frequently integrated in time for long periods. It
is therefore imperative that an integration scheme be chosen
which is not only stable, but also has negligible truncation
errors, so that the true solution is not obscured. The develop-
ment of the "spectral' approach allows this solution to be
carried out in time alone, thereby bypassing the space trun-
cation influence. Moreover, the reduction of the spectral
equations to low-order form, with their known solutions, en-
ables us to test directly the validity and accuracy of any
truncation technique.

Since a wide variety of schemes exist and have been applied,
it is desirable to find a general method whereby such schemes may
be systematically presented for testing. We have developed such
a method based on finite-difference polynomial interpolation, and
have shown that many of the more common schemes--both implicit

and explicit--are incorporated in our presentation. A number of
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the lower level schemes have been tested on a simple linear wave
equation and those with the most favorable qualities (best sta-
bility condition and least truncation) have been selected for
testing with a low-order nonlinear spectral system. Included
in this group is an implicit method which is not a member of the
general set, but is interesting because it does not require
iteration.

The low-order system is of particular interest as it involves
both linear (coupled and uncoupled) and nonlinear effects. Linear
terms may be handled without truncation, and a procedure whereby
these terms are removed from the equations may have some impact on
the numerical solution of the remaining purely nonlinear equations.
An indication that the truncation errors are modified by such
elimination is suggested from the solution of the linearized low-
order equations, both exactly and with finite-difference methods.

The comparison of the truncated solutions to the exact ones
yields some interesting observations. Whereas it has been common
to estimate truncation errors of an integration from the behavior
of conservative integral properties, our results indicate that
only stability can be discussed ‘in this way. The amplitudes of
functional variables in our nonlinear system showed wild devia-
tions (errors) at times during the numerical integration, but the
conservative property (energy) was well conserved; this was
caused by a cancellation of the individual amplitude errors.

One must conclude that the conservation of integral constants
in a numerical calculation is not sufficient to justify con-
fidence in the results. Furthermore, the satisfactory pre-
diction of amplitudes is also not sufficient; one must also
assure the accurate calculation of the phase angles.

Linear theory seems to yield satisfactory information about
the computational stability of our nonlinear system, as may be
seen from the development of the conservative property, and the
linear phase errors (for any scheme) are indication of errors in

the amplitudes of the dependent variables. Nonlinear phase
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errors, which are pronounced for the explicit schemes, may be
removed by the exact consideration of the uncoupled linear terms
of the nonlinear equations; the latter technique also reduces
the amplitude errors significantly. As might have been antici-
pated, reduction of the truncation interval, At, will yield
improved solutions.

As a consequence of our calculations, it would be most ad-
visable to select a truncation increment (At) substantially less
than the critical one determined from linear analysis, if trun-
cation errors are to be minimized. Moreover, to avoid phase
errors, any uncoupled linear terms should be removed from the
equations by a linear transformation involving the exact solution
of such terms. Finally, if computation time is not a serious
consideration, an implicit method should be selected in preference
to an explicit one. Multi-step methods, although they involve
more parasitic solutions, seem to yield superior results. If,
for reasons of economy and speed, an explicit scheme is chosen,
a technique denoted as 'restart", which begins a new calculation
periodically from the mean data at the restart time, appears to
reduce high frequency amplifying parasitic oscillations, but
other truncation properties of this procedure have not been

evaluated.
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APPENDIX
Constants in Eq. (4.1) Case CA Case CB
a .09788005 .69019528
Py .26691770 .21502294
Pg .03839707 .86136911
haB .09899117 .27432320
hsa .07127364 .23888073
gau .08220212 .19160456
gaG .03050807 .43151307
7 .12767626 .41340017
8gg .01396861 .34083072
Initial Values wn .60497847 .80465985
" .63421748 .42852365
wB .25891820 .10713091
Solutions of Eq. (4.1)
Energy variations zonal .374+.244 .700+.271
(normalized) - a-wave .402+.613  .245+.627
g-wave .223+.143 .055+.102
Energy Exchange
Period (days) 3.452 1.470
Wave periods observed in 3.24 1.29
exact solutions (days) 52 10.3
Wave frequencies from .3097 -.6407
linearized equations: v; , .0421 -.1040
Corresponding wave periods 3:23 1.56
(days) 23.8 9.6

43

Case CC

.8903939
.79837156
.38763314
.1105865
.59288305
.0310522
.2731965
.1460202
.2491569

.28630513
.10114551
.07680246

.200~+.292
.464~.076
.336>.632

.508

+527

-1.903
.0404
.526

24.75






