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Coupled Nonlinear Equations with Exact Solutions 

by 

F. Baer and T. J. Simons 

Colorado State University 

ABSTRACT 

A general numerical integration formula is presented which 
i 

generates many of the co~monly used one-dimensional finite- 

difference schemes. A number of these schemes are tested on a 

simple wave equation; three implicit and three explicit are 
. - 

chosen for further analysis with a nonlinear set of equations C' 
with known solutions. A seventh method of the implicit type 

not requiring iteration is also tested. A transformation is 

developed which allows the removal of linear terms from the 

nonlinear equations, thereby avoiding truncation of the linear 

terms. The results of the analysis show that energy components 

may have large errors when the total energy shows essentially 

none, and phase errors may be quite serious without indication 

from linear analysis. By treating the uncoupled linear terms 

exactly (no truncation), significant improvement in the numer- 

ical solutions ensues. The multi-level implicit schemes give 

superior results and are to be recommended if computing time 

is not a criterion. Great care must be taken in interpreting 

the linear stability criterion; to avoid sip-ificant truncation 

errors, especially for long time integrations, the critical 

truncation increment should be considerably reduced. 



. I n t r o d u c t i o n  

The problems o f  computat ional  s t a b i l i t y  and t r u n c a t i o m  e r r o r s  

a r e  by no  means r e c e n t  i n  o r i g i n .  Indeed, few phys ica l  p r ~ b l e m s  

a r e  so s i m p l e  as t o  y i e l d  mathematical  r e p r e s e n t a t i o n s  w h i s h  lend  

themselves t o  a n a l y t i c  s o l u t i o n s .  More o f t e n  than  no t ,  t h e  appro- 

p r i a t e  equa t ions  a r e  n o n l i n e a r  and must be so lved  n u m e r i c a l l y  with 

l i t t l e  i n s i g h t  i n t o  t h e  e x a c t  s o l u t i o n s .  To f u r t h e r  c o m p l i c a t e  

c l a r i f i c a t i o n  o f  t h e  e r r o r s  a r i s i n g  from numerical  computa t ion ,  

one i s  g e n e r a l l y  conf ron ted  with p a r t i a l  d i f f e r e n t i a l  e q u a t i o n s .  

Desp i te  t h e s e  seemingly overwhelming o b s t a c l e s ,  s i g n i f i c a n t  

p r o g r e s s  i n  s t u d i e s  o f  computat ional  s t a b i l i t y  have been made ,  

exempl i f ied  by t h e  work o f  Richtmyer (1957). The t r a d i t i o n a l  

approach t o  such s t u d i e s  is t o  l i n e a r i z e  t h e  n o n l i n e a r  e q u a t i o n s  

and then  compare t h e  exac t  s o l u t i o n s  o f  t h e  l i n e a r  system t o  t h e  - - -  - - -  - .- - - .  

s o l u t i o n  o f  t h e  corresponding f i n i t e - d i f f e r e n c e  equa t ions .  For 

d i f f e r e n t  t r u n c a t i o n  procedures t h e  approximations may be e v a l u -  

a t e d  i n  terms o f  t h e  t r u e  s o l u t i o n .  For i n i t i a l  va lue  prob lems  

where t h e  l i n e a r i z i n g  assumption may no t  be v a l i d  f o r  a l l  t i m e ,  

l i t t l e  may be s a i d  excep t  f o r  t h e  c r i t e r i o n  o f  c o m p u t a t i o n ~ ~ l  

s t a b i l i t y .  Moreover, s i n c e  f i n i t e - d i f f e r e n c e  o p e r a t i o n s  must 

g e n e r a l l y  be app l ied  i n  bo th  space  and t ime,  h i g h l y  i n v o l v e d  - 
r e l a t i o n s h i p s  between t h e  t r u n c a t i o n  i n t e r v a l s  evolve.  

With r e f e r e n c e  t o  problems concerning atmospheric  f l o w ,  t h e  

f e a s i b i l i t y  o f  conver t ing  t h e  a p p r o p r i a t e  n o n l i n e a r  p a r t i a l  

d i f f e r e n t i a l  equa t ions  t o  a  f i n i t e  s e t  o f  o r d i n a r y  n o n l i n e a r  

f i r s t - o r d e r  d i f f e r e n t i a l  equa t ions  i n  t ime  (termed " s p e c t r a l "  

e q u a t i o n s )  has  been e s t a b l i s h e d .  Such e q u a t i o n s  a r e  g e n e r a t e d  

by assuming t h e  space  dependence t o  b e  given by  a  s e r i e s  o f  

known polynomials and s o l v i n g  f o r  t h e  t ime  dependent c o e f f i c i e n t s  

through i n t e g r a t i o n  over  t h e  e n t i r e  space  domain. The t e c h n i q u e  

seems t o  have been a p p l i e d  f i rs t  by Silberman (1954) and d i s -  

c u s s e d  i n  d e t a i l  by Platzman (1960). On t h e  assumption t h a t  t h e  

s e r i e s  t r u n c a t i o n  does n o t  c r e a t e  s e r i o u s  e r r o r s  (a q u e s t i o m  n o t  



yet investigated in detail), or that the finite set of equations 

is an exact representation of the physical system, one is left 

with the considerably simpler problem of determining time trunca- 

tion alone. 

The investigation of ordinary differential equations by 

numerical methods has also not been neglected; see for example, 

Henrici (1962), or Hildebrand (1956). Again, however, when non- t 

linear equations are involved, little can be said about truncation 

errors of initial value problems. Moreover, if wave type solu- 

tions exist, error estimates of linear equations may be cast into 

doubt. Fortunately there exist some nonlinear systems of spectral , 
equations which have analytic solutions. Such systems were first 

used to describe atmospheric flow by Lorenz (1960). Clearly a 

comparison between the finite-difference solution of the equations 

of such a system when compared to the analytic solution will give 

information on truncation errors as a function of time. Studies 

with various time differencing schemes have been made on this basis 

by Lilly (1965) and Young (1968). 

A number of finite-differencing schemes have been utilized 

for integrating ordinary differential equations, and many are a 

composite of ingenious techniques which have occurred to various 

scientists and proved useful. In order to test the utility of 

such schemes, however, it seems worthwhile to generate them in 

some systematic fashion, thereby establishing a hierarchy of 

schemes with (we hope) increasing accuracy. One such systematic 

approach would be to assume that the function to be integrated can 

be represented by a polynomial which is exact at its known point 

values. The degree of accuracy of such a polynomial will then be 

established by the number of known points utilized. We shall show, 

moreover, that the most popular schemes can be represented by this 

approach. 

To avoid the problem of being overwhelmed by an unmanageably 

large number of schemes, the schemes were tested by application to 

a first-order linear wave equation. If a scheme was not able to 



give good results for this equation, we assume it would not be 

satisfactory for a more complex system of equations. In this way 

we were able to reduce the number of schemes to a manageable size. 

It should be noted that if more points on the time axis are used 

to develop the interpolation polynomial than there are orders of 

derivatives in the differential equations, spurious solutions will 

result--frequently denoted as "parasitic" solutions --which must 

be handled with great care so as not to obscure the true physical 

solution. 

The remaining schemes (those which gave satisfactory results 

with the wave equation) were then tested on a low-order spectral 

system of the type used by Lilly and Young. The system used here 

however (Baer, 1968) has the added flexibility of involving both 

linear and nonlinear terms in the first-order system of equations; 

it furthermore allows for time dependent phase changes which were 
.- - 

constrained in previous experiments. Since linear contributions 

to differential equations may be determined without truncation, 

their jnf luence has been investigated. Of the techniques which 

proved most accurate, multi-step methods were included, despite 

the presence of parasitic solutions. Previous calculations suggest 

.that integral constraints of the system (say, energy or vorticity) 

were adequate indicators of truncation error when observed during 

calculation. This conclusion does not seem to be borne out. We 

shall see that slight phase errors will create amplitude errors 

in the individual dependent variables which have a tendency to 

cancel when the integral properties are evaluated. Thus, although 

the integral constraints will yield a good indication of computa- 

tional stability (which is also available from linear theory), 

truncation errors can only be investigated from the detailed be- 

havior of all the dependent variables in the system. 



2. Truncation Schemes 

As we have indicated, the spectral equations applicable to 

the atmosphere may be represented quite generally by a nonlinear 

set of first-order differential equations in time for which ana- 

lytic solutions are not available unless the set is highly trun- 

cated. --The dependent variables, which are the expansion coeffi- 

cients of the space dependent polynomials, may be represented by 

a vector 'Y such that 

and the general set of equations may be written as 

... -- -- -- - 
where F is a vector operator andthe dot notation signifies time 

differentiation. Suppressing indices, we may also state that the 

scalar equation for any expansion coefficient will be 

Because exact solutions in time are not available for (2.1), based 

on the complicated nature of the functions f, we may expect to 

know Y only at discrete points on the time axis. For simplicity 

let us assume \Y (and therefore F) known at equal time increments 

Over a given interval in time, we may establish by an interpolation 

formula a continuous function of time which corresponds to the 

known values at the discrete points given by (2.2). If we con- 

sider the continuous variable in time to be given as 



t h e n  by Newton's backward i n t e r p o l a t i o n  polynomial (see M i l n e ,  

1949),  

I n  (2 .4) ,  t h e  q u a n t i t y  i n  b r a c k e t s  i s  a  binomial  c o e f f i c i e n t  

f u n c t i o n  of s ,  t h e  s u p e r s c r i p t  on f  denotes  t h e  increment i n  t ime 

a t  which t h e  func t ion  should  be eva lua ted  (from (2 .2)  t h e  f u n c t i o n  
k is  known a t  t h e  t ime T ) ,  and A r e p r e s e n t s  t h e  backward d i f f e r e n c e  - 

o p e r a t o r  a p p l i e d  k t imes and has  t h e  v a l u e ,  

Although we have s p e c i f i e d  t h a t  f i s  known a t  T + 1 p o i n t s ,  we 

need  n o t  u t i l i z e  a l l  t h e s e  va lues  i n  e s t a b l i s h i n g  o u r  polynomial  

(2.41, and hence we choose merely t h e  l a s t  n p o i n t  va lues .  We 

may determine how t h e  i n t e r p o l a t i o n  polynomial depends on t h e  

d i s c r e t e  p o i n t  v a l u e s  by s u b s t i t u t i n g  (2 .5)  i n t o  (2 .4)  a n d  n o t i n g  

t h e  fo l lowing  i d e n t i t i e s ;  

and 

The polynomial becomes, 



If we wish to establish the value of f at the point T + 1, it 

would be necessary to extrapolate from (2.6); therefore we have 

used the subscript notation E. We could, however, assume the 

function known at T + 1 and write an equation similar to (2.6) 

which would then allow an interpolation to the. point r + 1 and 

would read, 

n-j 

a~ j 
k=o 

1 

To establish the value of J, (~+1) we may now substitute either 

(2 .6)  or ( 2 . 7 )  into (2.la) and integrate. The integration may go 

over any sub-interval of the interpolation polynomial, but clear- 

ly not from a time preceding the point T-n. Selecting the integer 

p (p<n) at which point the function is known and integrating to 

r+l, we have, 

It is interesting to note that use of the extrapolating polynomial 

yields an Explicit solution for +T+l, whereas the application of 

the interpolating polynomial leads to an Implicit solution, because 

the unknown function fT'l still exists on the right-hand side of 



7 

the equation. rf we define the integrals over s, 

1 
uEj (slds 0 (PI E j 

where the integrals may be evaluated by noting that the integrals 

are factorial polynomials in s which may be converted to poly- 

nomials in s by use of Sterling's numbers of the first kind (Milne, 

1949), we may express the general finite-difference extrapolation 

formulas as follows: 

Explicit: E 
P" 

Implicit: I 
Pn 

We see from (2.10) that a wide variety of finite-difference 

integration schemes may be selected, and in a systematic fashion. 

As we increase p and n, we arrive at higher order schemes (more 

"steps1') with the consequent expected increase in accuracy but also 

additional parasitic roots. Most of the standard numerical inte- 

gration schemes fall into the classification given by (2.10). For 

example, the schemes Eon and Eln are generally associated with 

Adams-Bashforth and Nystrom respectively, whereas the schemes 

Ion, Iln are referred to as Adams-Moulton and Milne-Simpson re- 

spectively. The more involved predictor-corrector or multi-corrector 



Table 1. Values o f  t h e  c o e f f i c i e n t s  (p) ,  iEj (p) f o r  d i f f e r e n t  i n t e g r a t i o n  schemes E 1 t h e i r  
1 j pn '  pn'  

names ( i f  known) and t h e  t r u n c a t i o n  e r r o r  basied on T a y l o r ' s  s e r i e s  a n a l y s i s .  
------_I--__ ----- ----- PA 

Scheme 
(p,n)  Name j =O j = l  j = 2  j = 3  j-4 j=S  T r u n c a t i o n  E r r o r  

Eo 1 3/2 -1/2 1 5 / 1 2 ( ~ t )  3$(3)  1 
EO2 Adams -Bash f o r t h  23/12 -4/3 5/ 12 1 3 / 8 ( ~ t ) ~ $ ( ~ )  1 
E0 3 55/24 -59/24 37/24 -9/24 1 1 / 3 ( ~ t )  5$(5) ( 

E~ 4 1901/720 -2774/720 2616/720 -1274/720 251/720 1 1 / 5 ( ~ t ) ~ $ ( ~ )  1 
E l l  Leapfrog 2 o 1 1 / 3 ( ~ t ) ~ q ( ~ )  

'512 7/3 -2/3 1 / 3  1 1 / 3 ( ~ t ) ~ $ ( ~ )  ) 
E33 Milne P r e d i c t o r  a/ 3 -4/3 8/ 3 0 11/3 (At) 5$(5) 1 

101 E u l e r  T r a p e z o i d a l  1/2 1/2 1 1 / 1 2 ( ~ t ) ~ $ ( ~ )  1 
102 5/12 8/12 -1/12 

I 0  3 Moulton C o r r e c t o r  9/24 19/24 -5/24 1/24 

'04 251/720 646/720 -244/720 106/720 -19/720 

113 Milne C o r r e c t o r  1 / 3  4/3 1 / 3  0 

I14 29/90 124/90 24/90 4/90 -1/90 
135 Milne I1 C o r r e c t o r  14/45 64/45 24/45 64/45 14/45 

1 1 / 3 ( ~ t ) ~ $ ( ~ )  1 
11/120 (At) 7$ (7) 1 



schemes would require a sequence of schemes describkd by (2.10). 

A number of schemes whose proper t ies  w i l l  be inves t igated  

a r e  l i s t e d  i n  Table 1. Certain omissions w i l l  be noted. The E o o  
scheme, which is termed the  "Euler forward" i s  always unstable i n  

terms of f i c t i t i o u s  amplification and is consequently of no in -  

t e r e s t .  Similarly,  the  "Euler backward", Ioo  gives fictitious 

damping and is therefore  ignored. Schemes with p=2 have been 

shown t o  y i e l d  r e s u l t s  not appreciably super ior  t o  those f o r  p=l  

and t h e i r  discussion would thus be redundant. For the  impl ic i t  

schemes, the  coe f f i c i en t s  i13 ( l ) ,  i15 (3) vanish, and consequently 

the  lower order forms 112, 134 which require  as much calcula t ion 

as IL3, 135 have been ignored. 

The schemes described by (2.10) may be subject  t o  Taylor 's  

s e r i e s  expansion about the  point  T; f o r  a given truncation (p,n) 

the re  w i l l  be an e r r o r  of  order ( ~ t ) " ' ~  times the  same order  of 

time der ivat ive  of 9, l i s t e d  i n  Table 1. When applying these 

techniques t o  wave type equations, however, such e r r o r  est imates 

may be misleading. 

3 .  Linear S t a b i l i t y  Properties 

If the  schemes l i s t e d  i n  Table 1 do not show adequate s t a b i l -  

i t y  proper t ies  when applied t o  a l i n e a r  d i f f e r e n t i a l  equation, we 

nay an t i c ipa te  t h e i r  f a i l u r e  with regard t o  nonlinear d i f f e r e n t i a l  

equations. We s h a l l  therefore  t e s t  them on the  simple l i n e a r  wave 

equation, 

which could be generated from (2.10) by l inea r i za t ion  and neglect-  

ing  coupling terms. Note t h a t  $ is a complex var iable ,  but  l e t  us 

assume p t o  be r e a l .  The t r u e  so lu t ion  of (3.1) shows only one mode 

which moves about the  uni t  c i r c l e  i n  the  complex plane with period 

2n/p beginning a t  uni ty  when t = . I f  we now define coe f f i c i en t s  
P 



- 
' ~ , j + l  

"~,j+l = 0 for j=n 

a , : { -  J . - 
U~ j a E j = 0 for j = -1 

we may write both the implicit and explicit finite-difference 

schemes ( 2 . 1 0 )  after substitution of (3.1) for the values of the 

derivativesat the known discrete points by the single relation, 

( 3 . 2 )  

The solutions to ( 3 . 2 )  may be determined in a number of ways, but 

they must all satisfy the characteristic equation 

where the roots of ( 3 . 5 )  represent the solutions of (3.2). Since 

we have specified p:n, there uill be n+l solutions to ( 3 . 2 ) ,  only 

one of which corresponds to t h e  real "phy~ical~~ mode. The computa- 

tional or parasitic modes (n of 'them) are distributed as follows 

at At=O; n-p roots begin at the origin, and p+l roots are distribu- 

ted equally about the unit circle with the physical mode at X=l. 

As At is increased from zero, the roots will change from their 

initial points. 

If the first root, A O ,  represents the "computed physical mode", 

we may compare it with the true solution. So long as its amplitude 

remains near unity, their will be no spurious damping or amplifica- 

tion. However, its phase, say B O ,  must also remain near the true 

phase for accuracy; i.e., we should observe that -eO/pbt remains 

close to unity. The remaining n solutions are parasitic and enter 

only to disturb the physical solution. So long as their amplitudes 

remain less than unity (i.e., within the unit circle), they will be 

damped. If they go outside the unit circle, they will cause ampli- 



f i c a t i o n  and may be c l a s s i f i e d  a s  "unstable"  s o l u t i o n s .  I f  t h e y  

remain on t h e  u n i t  c i r c l e ,  by s u i t a b l e  choice o f  i n i t i a l  condi-  

t i o n s  t h e i r  e f f e c t s  can b e  made innocuous. 

A l l  t h e  schemes l i s t e d  i n  Table 1 have been t e s t e d  on ( 3 . 1 ) .  

T h e i r  c h a r a c t e r i s t i c  e q u a t i o n s  may be e a s i l y  determined by s u b s t i -  

t u t i o n  o f  t h e  t a b u l a r  c o e f f i c i e n t s  t o g e t h e r  with t h e  l i m i t s  ( p , n )  

i n t o  ( 3 . 3 ) .  The r o o t s  o f  t h e s e  c h a r a c t e r i s t i c  equa t ions  have 

been determined f o r  v a r i o u s  v a l u e s  of p A t  and t h e  ampli tudes o f  

a l l  modes f o r  each scheme have been p l o t t e d  a g a i n s t  p a t  ( a b s c i s s a )  

i n  Fig.  1. Pursuant  t o  t h e  p rev ious  d i s c u s s i o n ,  wherever a  mode 

exceeds u n i t y  on t h e  o r d i n a t e ,  it w i l l  y i e l d  an u n s t a b l e  s o l u t i o n .  

C l e a r l y  t h e  b e s t  schemes w i l l  b e  those  f o r  which a l l  r o o t s  remain 

s t a b l e  f o r  t h e  l a r g e s t  v a l u e  o f  p a t .  

We may be cons iderab ly  more p r e c i s e  about t h e  behavior  o f  t h e s e  

schemes by i n v e s t i g a t i n g  t h e  computat ional  phys ica l  mode i n  more 

d e t a i l - - b o t h  i ts  ampli tude and phase.  On F ig .  2 we have p l o t t e d  

f o r  a l l  schemes t h e  ampli tude o f  t h e  computational phys ica l  mode 

(and ampli tudes o f  p a r a s i t i c  modes when they  a r e  wi th in  t h e  o r d i -  

n a t e  s c a l e )  on t h e  upper  graph and t h e  r a t i o  -0o/pAt on t h e  lower 

graph a g a i n s t  p a t  on t h e  a b s c i s s a .  Here we may i s o l a t e  t h e  b e s t  

schemes. Whereas from Fig .  1 we might have thought  t h a t  scheme 

1 0 1  was b e s t  because it is s t a b l e  f o r  a l l  va lues  o f  ~ t ,  we s e e  from 

F i g .  2 t h a t  t h i s  scheme ( t r a p e z o i d a l )  h a s  s e r i o u s  phase e r r o r s  f o r  

reasonable  va lues  o f  pAt. 

Based on F ig .  2 ,  we have s e l e c t e d  t h r e e  schemes i n  t h e  ex- 

p l i c i t  group and t h r e e  i n  t h e  i m p l i c i t  group f o r  f u r t h e r  s tudy .  

Choosing pAtc.4, we s e e  t h a t  E O 3 ,  E l l  and E33 a r e  t h e  b e s t ,  

whereas f o r  t h e  i m p l i c i t  schemes, t h e  obvious choices a r e  I O 1 ,  

1 1 3 ,  1 3 5 .  Scheme Io l  was s e l e c t e d  because o f  t h e  s t r o n g  s t a b i l i t y  

p r o p e r t y  o f  i t s  ampli tude and a l s o  because o f  i t s  genera l  popula r -  

i t y ,  a l though  i t s  phase c h a r a c t e r i s t i c s  a r e  l e s s  d e s i r a b l e .  

An i n t e r e s t i n g  s i d e l i g h t  t o  t h e  s e l e c t i o n  o f  s u i t a b l e  f i n i t e -  

d i f f e r e n c e  schemes is exempl i f ied  by F ig .  3 .  Suppose one would 

l i k e  a  scheme no g r e a t e r  t h a n  two-step f o r  which t h e  c o e f f i c i e n t s  
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I 0  

5 I 1.5 

'13 '14 I 35 

Fig .  1 e p l i t u d e s  of the roots of the simple l inear wave 
equation I = ipq, for various truncation schemes, plotted 

against p A t  on the abscissa.  
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Fig. 2 Amplitude (upper) and phase (lower) of the physical 
root of the truncated linear wave equation plotted against 

pAt. The phase is given proportional to p A t .  



Instabi l i ty  
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Fig. 3 Phase errors for a class of two-level truncation 
schemes in terms of the true phase including the leapfrog, 

trapezoidal and Milne schemes. 



could be varied such that the most favorable properties may be 

chosen. Let the scheme be represented in terms of the arbitrary 

coefficients (a,B) 

and test it on the equation 4 = -iv$. Fig. 3 shows, for various 

combinations of a,B that the phase properties in the stable range 

(where both the real physical and the parasitic roots have ampli- 

tude unity) are effectively bounded by the error curves for the 

leapfrog (L-Ell) on the one hand, and the trapezoidal (T-IoI) on 

the other. The Milne scheme (M-113) is undoubtedly one of the 

best which satisfies the criteria of (3.4). 

4. Multi-Component System 

The coupled set of nonlinear first-order differential equa- 

tions on which the six schemes which survived the linear analysis 

of the last section will be tested is part of the group of low- 

order spectral systems which were systematically developed by 

Platzman (1962) for the barotropic vorticity equation, but which 

also have applicability for baroclinic problems. The system 

under consideration involves an arbitrary zonal flow interacting 

with a single planetary wave composed of two complex components 

(describing its latitudinal variability) in a rotating atmosphere 

with spherical geometry. Details of this system, including the 

exact solutions (elliptic functlolih~ have been presented by Baer 

(1968). If the zonal coefficients (real) are denoted as $ (t) 
Y 

where y = 2m+l, m < M, and the complex wave coefficients are des- 
cribed by the terms $,(t), $I (t), the differential equation for 

0 
the zonal terms may be written, 



it: 

Gl = ia im + o q l ;  

Y 

%r: zonal coefficients can be solved in terms of one coefficient 

$n, ::y integration of the above equation. The time relationship 

thus developed between the zonal coefficients is unaltered if the 

integration is performed by numerical means, whereby we find that 

JIY 
= (a /a )I) +s . The system to be integrated therefore involves 

y n n y  
only three variables, lln, $,, dB and is, 

i,5 = - i p  @.+ih ) fig ) 9 +ig ) ) 
S a  B a a  6 6116 B a n a  

where p z v . In ratrix notation we find, 
a,$ s , ~ -  h m , ~ ~  

; @ real scalar n 

where the tilde denotes transposition. fie physical significance 



of the  constants which depend on spectrum truncation and i n i t i a l  

condit ions may be found i n  the  paper by Baer (1968). Three 

d i f f e r e n t  s e t s  of conditions were used i n  t h i s  study, and the  

numerical values o f  the  var iables  may be found in  the  Appendix. 

System (4.2) involves both l i n e a r  and nonlinear terms; the  

uncoupled l i n e a r  e f f e c t s  a re  denoted by the  matrix Al, and the  

pure ly  coupled l i n e a r  terms by the  matrix A p .  The term J ,~DJ '  

represents  the  nonlinear e f f e c t .  The l i n e a r  terms may be removed 

from t runcat ion i n  a numerical in tegra t ion by recognizing t h e i r  

exact  influence.  Let us therefore  def ine  the vector 

such t h a t  t h e  second d i f f e r e n t i a l  equation of  (4.2) becomes 

where G i s  a matrix which we s h a l l  allow t o  take on the  three  

poss ib le  values: 

(a) G = 0 : (TL) 

@) G = A1 : (TC) 

(c) G = A : (EL) 

I f  w e  now i n t e g r a t e  (4.4) and the  f i r s t  of  (4.2) by the  d i f f e ren t  

allowed schemes (see Section 3),  we see  t h a t  when G = 0 we ;run- 

c a t e  a l l  l i n e a r  terms, when G = A we rruncate  t h e  s u p l i n g  terms, 

and when G = A we deal  with the  exact l i n e a r  solut ion.  - - 
We have seen from the  l a s t  sec t ion t h a t  one level  impl ic i t  

schemes a re  always s t a b l e  and do not add p a r a s i t i c  modes. They 

have the  disadvantage, however, o f  requir ing an i t e r a t i o n  process 

f o r  ca lcula t ion with an unspecified convergence r a t e .  We have 

consequently added another scheme t o  our s e t  of s i x  (3-implici t  

and 3-expl ic i t )  which is i n  ef fec t  an impl i c i t  scheme which can 
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be solved without iteration. Consider the fallowing two 1mp1icj.t 

techniques applied to the first of (4.2). 

If ue now combine these two schemes by taking the first twice and 

subtracting the second, we find, 

Or, r k e  hc-..+tloc t h n t  the quantities Ji ,$, $* are known at time t, n 
( 3 . 5 :  is Ilr:eiir ir! the terms at t+At and ozay ttaus, in combination 

.*-it:: ; Sifl'elunce f3m 3f the type ( 4 . 5 )  used on (4 .4) ,  be solved 

f o ~  ~ : ? e  v;1.ri&ies a? ;-:I. In terms of the vector X (5 elements) 

cefixeri G 

the non-iterative implicit scheme (IM) may be represented as follsws, 

where the matrices R1 and R2 are written, 



Before proceeding to a discussion of the numerical calculations 

of the different schemes, let us consider the linearized coupled 

equations and the finite-difference solution to these equations. 

The linearization of ( 4 . 2 )  may be accomplished by assuming that 

$,+$ =constant where it multiplies either J, or eg in the second n 
equation of ( 4 . 2 ) .  The linearized equation may thus be expressed 

as, 

where the elements of e can be established from the definitions 
given in ( 4 . 2 ) .  The roots of G are listed in Table 2 together with 
the form of the model matrix 3 ,  where 



and is the root matrix of 6. The solution to  (4 .8)  may b e  written 

formally as, 

If the mots of 6 are pure imaginary, no physical amplification 
will take place and computational stability can be easily defined. 

' The physical stability condition implied in E has been discussed 
by Baer (1968) and need not be repeated here. We shall concern 

ourselves with physically stable situations. 

Table 2. Values of the roots and model 
matrices for various forms of G. 



Let us now apply the leapfrog scheme to (4.8) with the option 

that some of the linear terms may be extracted, as we have done in 

(4.4). The appropriate form of (4.8), using the transformation 

(4.3) , becomes 

Here G may take on any of the three values 0, A1,  A.  Since we wish 

to compare the solutions of the second of (4.10) with (4.9), we 

retuk (4.10) to the variable $. Noting now that we may establish 

the roots of G and write a root matrix A ,  

where the roots and the model matrix for different matrices G are 

listed in Table 2, we find for (4.10) using (4.11) and (4.3), 

Since the elements of 6 are a linear combination of the elements 

of #, they will have the same solutions (roots). By the usual 

method of establishing an amplification matrix for multi-step 

equations (Richtmyer, 1957), we define the vector 6 as 

and we get the solution to (4.12) in the form, 



which i s ,  i n  g e n e r a l ,  a  4 th  o r d e r  equa t ion  i n  t h e  r o o t s .  Two o f  

t h e s e  r o o t s  a r e  physicall!. r e a l ,  and t h e  o t h e r  two a r e  p a r a s i t i c .  

The r e a l  r o o t s  should be :ozpared ~ i t h  t h e  r o o t s  o f  t h e  e x a c t  .': 
s o l u t i o n ,  el..". 50 lor.% as :: remains w i t h i n  t h e  limits o f  com- 

p u t a t i o n a l  s t a b i l i t y ,  t h e  r o o t s  x i 1 1  have ampli tude o f  u n i t y  and 

we may t h e r e f o r e  c o n s i d e r  only t h e  phase a n g l e s .  Thus i f  t h e  

r o o t s  o f  14.14) a r e ,  

( )  = ( ~ A ( S - ~ & ) - ~ A  e 

I  0 i :it 
(4.13) 

where I i s  t h e  u n i t  m a t r i x .  The r o o t  e q u a t i o n  f o r  t h e  a m p l i f i c a -  

t i o n  m a t r i x  i n  (4.13) is g iven  a s  

we may compare t h e  phase ang les  f o r  t h e  f i n i t e - d i f f e r e n c e  s o l u t i o n  

t o  t h o s e  of t h e  e x a c t  s o l u t i o n  by t h e  r a t i o ,  8 . /v .At .  T h e s e  
AJ 1 

r a t i o s  a r e  shown f o r  each o f  t h e  approximations G = 0, A 1 ,  A on 

F i g .  4 ,  p l o t t e d  a g a i n s t  t h e  non-dimensional t ime u n i t  A t ,  where 

t i m e  h a s  been non-dirnensionalized by t h e  e a r t h ' s  r o t a t i o n  r a t e .  

The d a t a  used i n  determining t h e  r o o t s  was t a k e n  from c a s e  CA 

and is  given i n  t h e  appendix. The v a l u e s  o f  t h e  f r e q u e n c i e s  

v1,2 a r e ,  

2iAt ( S - ' S ~ ~ - ' S - ~ I )  - XI e 
2iAAt 

I  * -11 

= 0 

(4.14)  
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Fig. 4 Phasc errors for the coupled system using the leapfrog 
scheme and she thres linear truncation methods: TL, TC, EL. 



We shall have occasion to compare these values to the exact fre- 

quencies of the nonlinear solution in the next section. 

The phase errors for the approximation G = 0 may be readily 

determined since (4.14) reduces to the equation, 

i2 - 2iAtv.X - 1 = 0 
J 

from which we see that the phase angles fl (4.15) are given by 
Xj 

a result identical to the one arrived at in Section 3 for uncoupled 

systems. ?he stability criterion and phase error at the stability 

point are 

= a/2 

' critical 

Returning to the discussion of Fig. 4, we see that removal of 

the uncoupled terms (G = Al) leads to a much more stable calcula- 

tion with considerably lower errors in phase. Total truncation 

(G = 0) is clearly the worst case, whereas including an exact 

treatment of the coupling tens in A;, does not improve the sta- 

bility or phase errors; in fact, the extraction of more exact 

information in this case creates larger truncation errors. It 

should be noted that these results refer to a particular set of 

initial conditions, and are subject to change for different con- 

ditions, However, we may conclude with some confidence that the 

exact treatment of uncoupled linear terms will yield solutions 

to the nonlinear equations with less error for a given truncation 

element, At. We shall not consider the linearized equations for 

the other truncation schemes but proceed directly to the numerical 

calculation of the nonlinear equations. 



5. Nwaerical Calculations 

Three different sets of initial conditions were used to test 

the truncation schemes and they are listed in the appendix, denoted 

respectively as cases CA, CB, CC. Since the exact solutions to 

(4.2) are known, any variable determined from a nmerical integra- 

tion will -be xqxesented wraulized by its exact value. For each 

case of initial data, the three methods for dealing with the linear 

terms were applied (TL, TC, EL) and three different time increments 

(~t) were used; the scales of the time increments were determined 

from the characteristic frequencies of the cases. All seven trun- 

cation schemes discussed in Section 3 as having satisfactory linear 

properties were tested, and are listed in Table 3. 

Let us now concentrate our attentions on the features of case 

CA, which was integrated numerically in excess of 51 days. Since 

this case has an exact nonlinear exchange period of 3.452 days, 

the integration period should be long enough to highlight important 

errors. The exact frequencies, and there are two because two wave 

components J I ~ ,  $B exist, are v l  = .309, vz  = .0192. The first of 

the two frequencies calculated by linear theory (see Section 4) 

compares remarkably well with the first exact frequency, but the 

second is more than twice as large. However, because of the dif- 

ference in magnitude of these frequencies, the first (larger) 

frequency will essentially determine the stability criterion. 

Using the first frequency and the linear (uncoupled) solutions 

for the different schemes developed in Section 3, we list in Table 

3 the stability condition, At which the linear theory would 

indicate. 

A comon procedure for establishing stability and truncation 

errors is to investigate the development in time of some integral 

property of the system--generally conservative--as was done by 

both Lilly (1965) and Young (1968). For simple atmospheric flow 

problems, energy is the logical choice although Young also in- 

cluded the vorticity. To indicate the behavior of the total energy 



Table 3 ,  Tota l  energy normalized by t h e  exact  value f o r  case  CA a f t e r  51.77 days f o r  seven schemes 
t h r e e  d i f f e r e n t  time s t e p s  and d i f f e r e n t  treatment of  l i n e a r  terms toge the r  with t h e  l i n e a r  s t a b i l i t y  

c r i t e r i o n .  In case  o f  o s c i l l a t i o n ,  range i s  t abu la t ed .  
- 

E0 3 
A t  5 5 h r s .  

Scheme TL TC 

E33 
A t  5 5 h r s .  

EL 

I 

S t a b i l i t y  A t=(h r s . )+  2.07 4.14 8.28 2.07 4.14 8.28 12.07 4.14 8.28 

.998 .988 
l . O O O  1.001 1.006 

E l l  

.999 overflow 1 .998 .988 overflow .878 overflow 
l .OOO 1.002 (8 days)  1.013 (32 days) 1.409 (50 days) 

.999 .968 .889 
1.003 1.045 81.881 

.999 .991 .I134 

.993 .822 overflow 
( I  1 Jays )  

A t  5 12 h r s .  1.001 l . O O ( 7  1.098 

.989 .855 
1-000 -991 .857 

I13 
A t  5 21 h r s .  

I35 
A t  5 16 h r s .  

.979 .801 
'999 .980 .812 

I 

1.000 1.000 
999 

-999 1.000 1,000 .003 

1 .ooo 1.000 1 .ooo 

1.000 1.000 l.ooo .999 

.999 1.000 1 .ooo .ooO 

.999 
1 .ooo 1 .ooo l.ool 



of our so lu t ion  (case CA) with time, we have prepared Table 3 i n  

which we descr ibe  t h e  t o t a l  energy (conserved i n  the exact solu- 

t i on )  f o r  the  d i f f e r e n t  t runcat ion schemes, d i f f e ren t  t runcat ion 

i n t e r v a l s  A t  = 2.07, 4.14, 8.28 hours, and d i f f e ren t  treatment of 

the  l i n e a r  terms. The energies have been l i s t e d  a f t e r  51.77 days 
. - 

unless an o s c i l l a t i o n  occurs,  i n  which case i t s  range i s  tabulated.  

As indi-cated-above,-we-have a l so  l i s t e d  the  s t a b i l i t y  condit ion 

based on l i n e a r  theory.  

Unquestionably, the  s t a b i l i t y  proper t ies  a re  well described 

by the  t o t a l  energy and correspond t o  those ant ic ipated  from 

l i n e a r  theory. Where damping is predic ted ,  as i n  scheme E03, the  

t abu la r  values a r e  i n  agreement. Where p a r a s i t i c  o s c i l l a t i o n s  

a r e  an t i c ipa ted  (E l l ) ,  they appear i n  the  t a b l e .  Further expected 

r e s u l t s  show t h a t  t h e  solut ions  d e t e r i o r a t e  f o r  increased a t  and 

t h a t  impl i c i t  schemes a r e  generally super ior  ( fo r  given At) than 

e x p l i c i t  ones. A f u r t h e r  observation,  not previously inves t iga ted ,  

is the  improvement of  the  solut ion from TL t o  TC; i . e . ,  when the  

uncoupled l i n e a r  terms a r e  t r ea t ed  exact ly .  I f ,  however, one pro- 

ceeds t o  t r e a t  a l l  l i n e a r  terms exactly (EL) , the  r e s u l t s  appear 

somewhat l e s s  s t ab le ,  a s  expected from the  l i n e a r  ana lys i s  (Sec- 

t i o n  4). 

The above information i s  indeed valuable;  however, it must 

be emphasized t h a t  t h e  behavior of the  t o t a l  energy wi th  time i s  

not  necessar i ly  an ind ica to r  of the  behavior of  the  d e t a i l e d  

character  of  t h e  solut ion.  As we s h a l l  s e e ,  the  individual  am- 

pl i tudes  of  the  wave components may be ser ious ly  i n  e r r o r  with 

no indicat ion from t h e  t o t a l  energy. Moreover, the  phase angles 

and wave v e l o c i t i e s  of the  components from the  t runca ted  calcu- 

l a t i o n s  may have no r e l a t i o n  t o  the  t r u e  solut ion,  al though the  

t o t a l  energy is well conserved. To es t ab l i sh  t h i s  f a c t ,  among 

others ,  we s h a l l  proceed t o  a  de ta i l ed  discussion of t h e  calcu- 

l a t ions .  

The component amplitudes which make up the  t o t a l  energy in  

our equations may be represented when we describe the  t r u n c a t e d  
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Fig.  5 Energy i n  the zonal and a- and f3-waves as a function of time in  days 
(abscissa) normalized by the ir  exact values for  the seven schemes which had 
favorable l inear properties.  S o l i d  curves represent TL condition and dotted 

curves are for  TC, both for  A t  = 4 hrs .  
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value normalized by the exact value from (4.1), as 

A Energy -I: 2c 3 $* (truncated)/Zc $ $*(exact) 
a a a  a a a 

B Energy 5 2c J, J,* (truncated)/Zc J1 $*(exact) 0 0 0 B B B  

Z Energy Cc q2 (truncated)/Cc Q~ (exact) 
.- -- 

(5.1) 
Y I Y Y 

T En_ers : Total Energy - --- --- 

The time variation of the three energy components presented in 

(5.1) have been plotted for t = 4.14 hrs. for all seven schemes 

listed in Table 3, for both the TL and TC conditions based on 

data from case CA in Fig. 5. We have selected to discuss the TL 

condition because it is by far in most common usage, and the TC 

condition for comparison. From a superficial view of Fig. 5, 

one is imediately impressed with the sizeable errors in some of 

the schemes, a fact not established from Table 3. These errors 

have a regular period which is given by the first (largest) fre- 

quency, v l  = .309. One must conclude, therefore, that the energy 

components cancel their errors on summation. A further observa- 

tion is t h e  remarkable improvement in the calculations (reduction 

in error) by use of the TC condition. Although this condition 

has been in computational use with higher-order systems for some 

time (Baer, 1964), its virtues had not been investigated in any 

detail. 

Of the explicit schemes tested, E33 is by far the best with 

regard to truncation, showing almost no errors during the entire 

integration period for At = 4 hrs. However, in terms of its 

utility as a computation scheme, we must refer back to Table 3 

which elucidates its limited stability region (At 5 5 hrs.). 

Scheme E03 shows errors in excess of 50% in the energy components 

and describes the anticipated damping with time, but only in the 

a-wave. The leapfrog scheme also shows large error excursions, 

but they are cut back dramatically by the TC condition. 
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Fig. 6 Component energies calculated using the leapfrog 
scheme with A t  = 4 h r s . ,  showing the difference between 
the TC (exact noncoupled) and EL (exact l inear) methods. 



Although Table 3 i nd ica t e s  no s i g n i f i c a n t  e r ro r s  fo r  the  

imp l i c i t  schemes, Fig.  5 c l e a r l y  does not corroborate t h i s  i n t e r -  

p r e t a t i o n .  Scheme I01 has e r r o r s  a s  la rge  a s  50% i n  the  components 

f o r  t he  TL condit ion;  they a r e ,  however, almost completely el imi-  

na ted  hen the TC method i s  applied.  An unfortunate and unexpected 

r e s u l t  o f  t h e  -- t e s t s  is the  poor qua l i t y  of the IM computation. 

While the  TL r e s u l t s  a r e  not  ava i l ab le ,  t he  TC r e s u l t s  suggest t h a t  

t h i s  scheme is i n f e r i o r  t o  the  o thers  described on Fig. 5 (another 

observation no t  an t i c ipa t ed  from the  t o t a l  energy information of 

Table 3 ) .  Schemes I13 and I35 have been p lo t t ed  on the same char t  

s i n c e  ne i the r  has any mgasurable e r r o r  i n  t h e  energy components 

over t he  t o t a l  i n t eg ra t ion  period f o r  A t  = 4 h r s .  They a r e  c l ea r -  

l y  super ior  schemes, but  I13 should be prefer red ,  both because of 

i ts  b e t t e r  s t a b i l i t y  condit ion (Table 3) and i t s  ease of computa- 

t i o n .  

A s  indica ted  above, a s t r i k i n g  f ea tu re  described by Fig.  5 

is the  improved computation f o r  t he  TC condit ion.  Because t h i s  

involves t h e  exact treatment of p a r t  of  t he  l i n e a r  cont r ibut ion ,  

one might a n t i c i p a t e  t h a t  t h e  exact treatment of  a l l  the  l i n e a r  

terms (EL) might f u r t h e r  improve the  ca lcula ted  r e s u l t s .  That 

t h i s  reasoning i s  inco r rec t  has already been suggested by the  

de t e r io ra t ion  o f  t h e  s t a b i l i t y  c r i t e r i o n  f o r  t he  leapfrog scheme 

us ing  the  EL condit ion,  seen from the  t o t a l  energy i n  Table 3 .  

Since E l l  shows t h i s  f ea tu re  most s t rongly  o f  a l l  t he  schemes, 

we descr ibe  on Fig.  6 t h e  d i f f e ren t  energy components with time 

f o r  E l l ,  A t  = 4.14 h r s .  using both the  TC and EL condi t ions ;  

t h e  comparison of TL.to TC i s  evident from Fig.  5 .  None o f  t he  

schemes show improved computation using the  EL method, bu t  most 

g ive  r e s u l t s  comparable t o  t h e  TC ca l cu la t ion .  Most remarkable 

is t h e  i n s t a b i l i t y  which is s e t  up i n  the  E l l  scheme using the 

EL method, a r e s u l t  no t  an t i c ipa t ed  from the  l i n e a r  ana lys i s  of  

Sect ion  4 (Fig. 4 ) ,  wherein t h e  s t a b i l i t y  condit ion f o r  t h e  EL 

ca l cu la t ion  was super ior  t o  the  TL method. We f ind  here ,  there-  

fo re ,  a  purely nonlinear phenomenon, not  predic table  by l i n e a r i -  
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Fig. 7 Component energies calculated using the E l l  and I01 schemes 
with the TL condition, showing the e f fec t  of increasing At. 



zation.  However, t h i s  observation i s  not systematic with regard 

t o  a l l  t h e  schemes, and does not appear f o r  E03. - 
The e r r o r  i n  the  energy components as a function of ~t is 

described by Fig.  7. Here we show both E l l  and I01 using the  TL 

method f o r  the  th ree  t imes,  A t  = 2.07, 4.14, 8.28 h r s .  We have 

chosen E l l  and I01 because they a re  the  most frequently used 

schemes i n  t h e  e x p l i c i t  and impl i c i t  groups, respectively.  Never- 

the le s s ,  a l l  schemes tend t o  show a s imi la r  de ter iora t ion of the  

r e s u l t  with increased A t ,  although the  higher level  impl ic i t  

schemes (I13 and 135) have extremely small e r ro r s  f o r  A t  = 8 h r s .  

The f a i l u r e  of  the  t o t a l  energy t o  ind ica te  the  er rors  i n  the*  

components is p la in ly  evident from t h i s  f igu re .  An in t e res t ing  

f ea tu re  of the  leapfrog scheme which is apparent f o r  A t  = 8 is 

the  l a r g e r  e r r o r  period,  a modulation e f f e c t  caused by the  para- 

s i t i c  mode; t h i s  phenomenon has been observed and discussed i n  

t h e  pas t  (see, f o r  example, Baer, 1961). An indicat ion of the  

component e r r o r s  seen on Fig.  7 may be avai lable  from l i n e a r  theory 

through the  phase e r ro r s .  Referring t o  Fig.  3, when A t  = 2 the  

phase e r ro r s  a re  almost indetec table ,  whereas when A t  = 8 

(vAt = 2/3), both the  leapfrog and t rapezoidal  schemes show the  

s i zeab le  phase e r r o r s .  I t  is i n t e r e s t i n g  t o  note t h a t  f o r  the  

l a t t e r  t runcat ion the  Milne scheme (113) has almost no l i n e a r  

phase e r r o r  and correspondingly no nonlinear computational e r r o r s .  

Despite the  appearance of  large  e r r o r s  i n  the  energy compo- 

nents,  t he re  e x i s t  per iodic  times a t  which t h e  computed solut ions  

descr ibe  the  exact  so lu t ion  with great  accuracy. One might thus 

be l e d  t o  the  conclusion t h a t  the  numerical in tegra t ions  w i l l  give 

s a t i s f a c t o r y  r e s u l t s  a t  s e l ec ted  times (periodic) f o r  a l l  time, 

t o  be determined by the  highest  c h a r a c t e r i s t i c  mode of o s c i l l a t i o n  

(avai lable  from l i n e a r  theory).  Such reasoning, i n  analogy with 

the  conclusions drawn from the  behavior of  the  t o t a l  energy only, 

i s  based on incomplete information and is unfortunately incorrect .  

The missing information a re  the  phase angles of the  a-  and B-waves, 

both of which a r e  time dependent; t h e i r  time dependence may be 





described by the  r e a l  'part  of the  stream components $ $ and we 
a' 0 

present  them as ,  

A-wave - Re $a ( t )  

~-wave r RE $ ( t )  
B 

In Fig.  8 we show the  phase proper t ies  f o r  the  E l l  and I01 schemes 

f o r  the  time s t eps  A t  = 4.14, 8.28 h r s . ,  using the  TL method. By 

comparing the  computed values of the  two wave components as given 

i n  (5.2) t o  the  exact  values,  we see  t h a t  a f t e r  50 days the  A-wave 

i s  s i g n i f i c a n t l y  out of  phase with the  exact  value.  For A t  - 8 h r s . ,  

t he  phase e r r o r  is almost 180" i n  both schemes, whereas the  e r r o r  

i n  the  B-wave is negl ig ib le .  This e r r o r  grows with time, and the  

consequent so lu t ion  therefore  becomes l e s s  and l e s s  r e l i a b l e .  

Having now es tabl ished an almost insurmountable obstacle t o  these  

numerical i n t eg ra t ion  schemes (the mul t i -s tep  impl i c i t  schemes 

113, 135 do not exhibi t  d iscernible  phase e r ro r s  f o r  the  time 

s t eps  u t i l i z e d ) ,  we observe t h a t  no apparent phase e r ro r s  occur 

i f  we use the  TC o r  EL condit ion.  The in t e rp re ta t ion  of t h i s  

correc t ion must be based on the  f a c t  t h a t  t h e  uncoupled l i n e a r  

terms include most of  the  high frequency phase proper t ies  and 

therefore  cannot be successful ly  truncated.  Although many of  the  

schemes exhibi t  the  phase cha rac te r i s t i c s  out l ined above, the  i m -  

p l i c i t  matrix scheme (IM) is nonconfon i s t .  With A t  = 8.28 h r s . ,  

Fig. 8 shows the  phase proper t ies  f o r  both the  TC and EL methods 

of  the  IM scheme and highl ights  the  phase e r r o r s ,  here primarily 

i n  the  long period of the  B-wave. 

To lend some credence t o  genera l iza t ions  from the  above 

observations based only on case CA, Figs. 9 and 10 describe the  

behavior i n  time of the  energy components f o r  data  from cases 

CB and CC respect ively  (numerical values t o  be found i n  the  Appen- 

d i x ) .  The r e s u l t s  described a re  based on the  TL method and the  

time increments have been se lec ted  on the  b a s i s  of  the  c h a r a c t e r i s t i c  
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frequencies (see Appendix). All the features which these figures 

can describe are similar to those discussed for case CA. Errors 

increase for increased At, total energy is well conserved whereas 

the component-errors are large, a modulation period appears in 

the leapfrog scheme, and the Milne (113) scheme is extremely ac- -" - -  - 
curate. We have found that the other features discussed in de- 

tail for case CA shows similar properties for cases CB and CC, 
I and we shall consequently not reproduce these results here; we I 

shall assert, however, based on Figs. 9 and 10, that the compu- 1 
tational properties of the different schemes tested and discussed 

in this section are applicable to a wide variety of initial 

conditions. 

6. Conclusion 

The solution of the nonlinear equations which describe at- 

mospheric flow (among others) by numerical means is today a 

commonplace event. Given a set of initial values, these equa- 

tions are frequently integrated in time for long periods. It 

is therefore imperative that an integration scheme be chosen 

which is not only stable, but also has negligible truncation 

errors, so that the true solution is not obscured. m e  develop- 

ment of the "spectral" approach allows this solution to be 

carried out in time alone, thereby bypassing the space trun- 

cation influence. Moreover, the reduction of the spectral 

equations to low-order form, with their known solutions, en- 

ables us to test directly the validity and accuracy of any 

truncation technique. 

Since a wide variety of schemes exist and have been applied, 

it is desirable to find a general method whereby such schemes may 

be systematically presented for testing. We have developed such 

a method based on finite-difference polynomial interpolation, and 

have shown that many of the more common schemes--both implicit 

and explicit--are incorporated in our presentation. A number of 



the lower level schemes have been tested on a simple linear wave 

equation and those with the most favorable qualities (best sta- 

bility condition and least truncation) have been selected for 

testing with a low-order nonlinear spectral system. Included 

in this group is an implicit method which is not a member of the 

general set, but is interesting because it does not require 

iteration. 

?he low-order system is of particular interest as it involves 

both linear (coupled and uncoupled) and nonlinear effects. Linear 

terms may be handled without truncation, and a procedure whereby 

these terms are removed from the equations may have some impact on 

the numerical solution of the remaining purely nonlinear equations 

An indication that the truncation errors are modified by such 

elimination is suggested from the solution of the linearized low- 

order equations, both exactly and with finite-difference methods. 

?he comparison of the truncated solutions to the exact ones 

yields some interesting observations. Whereas it has been common 

to estimate truncation errors of an integration from the behavior 

of conservative integral properties, our results indicate that 

only stability can be discussed .in this way. The amplitudes of 

functional variables in our nonlinear system showed wild devia- 

tions (errors) at times during the numerical integration, but the 

conservative property (energy) was well conserved; this was 

caused by a cancellation of the individual amplitude errors. 

One must conclude that the conservation of integral constants 

in a numerical calculation is not sufficient to justify con- 

fidence in the results. Furthermore, the satisfactory pre- 

diction of amplitudes is also not sufficient; one must also 

assure the accurate calculation of the phase angles. 

Linear theory seems to yield satisfactory information about 

the computational stability of our nonlinear system, as may be 

seen from the development of the conservative property, and the 

linear phase errors (for any scheme) are indication of errors in 

the amplitudes of the dependent variables. Nonlinear phase 



errors, which are pronounced for the explicit schemes, may be 

removed by the exact consideration of the uncoupled linear terms 

of the nonlinear equations; the latter technique also reduces 

the amplitude errors significantly. As might have been antici- 

pated, reduction of the truncation interval, At, will yield 

improved solutions. 

As a consequence of our calculations, it would be most ad- 

visable to select a truncation increment (At) substantially less 

than the critical one determined from linear analysis, if trun- 

cation errors are to be minimized. Moreover, to avoid phase 

errors, any uncoupled line& terms should be removed from the 

equations by a linear transformation involving the exact solution 

of such terms. Finally, if computation time is not a serious 

consideration, an implicit method should be selected in preference 

to an explicit one. Multi-step methods, although they involve 

more parasitic solutions, seem to yield superior results. If, 

for reasons of e.conomy and speed, an explicit scheme is chosen, 

a technique denoted as "restart", which begins a new calculation 

periodically from the mean data at the restart time, appears to 

reduce high frequency amplifying parasitic oscillations, but 

other truncation properties of this procedure have not been 

evaluated. 
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APPENDIX 

Constants in Eq. (4.1) 

an 

Pa 

B 

h ~ a  

gaa 

g a ~  

g ~ a  

g ~ 6  

Initial Values G* 

+a 

$8 

Solutions of Eq. (4.1) 

Case CA 

-.09788005 

-.26691770 

-.03839707 

-.09899117 

-.07127364 

-.08220212 

-.03050807 

-.I2767626 

-.01396861 

Energy variations zonal .374+. 244 

(normalized) . a-wave .402+.613 

6-wave .223+. 143 

Energy Exchange 

Period (days) 

Wave periods observed in 

exact solutions (days) 

Wave frequencies from 

linearized equations: ~ 1 , ~  

Corresponding wave periods 

(days) 

Case CB 

-.69019528 

-21502294 

.86136911 

.27432320 

-23888073 

-19160456 

.43151307 

-.41340017 

.34083072 

Case CC 

-4.8903939 

.79837156 

,38763314 

1.1105865 

-59288305 

-1.0310522 

7.2731965 

4.1460202 

3.2491569 




