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ABSTRACT 

 

 

OPTIMAL HIGHER ORDER MODELING METHODOLOGY BASED ON METHOD 

OF MOMENTS AND FINITE ELEMENT METHOD FOR ELECTROMAGNETICS 

 

General guidelines and quantitative recipes for adoptions of optimal higher order 

parameters for computational electromagnetics (CEM) modeling using the method of 

moments and the finite element method are established and validated, based on an 

exhaustive series of numerical experiments and comprehensive case studies on higher 

order hierarchical CEM models of metallic and dielectric scatterers. The modeling 

parameters considered are: electrical dimensions of elements (subdivisions) in the model 

(h-refinement), polynomial orders of basis and testing functions (p-refinement), orders of 

Gauss-Legendre integration formulas (numbers of integration points – integration 

accuracy), and geometrical orders of elements (orders of Lagrange-type curvature) in the 

model. The goal of the study, which is the first such study of higher order parameters in 

CEM, is to reduce the dilemmas and uncertainties associated with the great modeling 

flexibility of higher order elements, basis and testing functions, and integration 

procedures (this flexibility is the principal advantage but also the greatest shortcoming of 

the higher order CEM), and to ease and facilitate the decisions to be made on how to 

actually use them, by both CEM developers and practitioners. The ultimate goal is to
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close the large gap between the rising academic interest in higher order CEM, which 

evidently shows great numerical potential, and its actual usefulness and application to 

electromagnetics research and engineering applications. 
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1. INTRODUCTION AND MOTIVATION OF THE WORK 

 

1.1.  Problem Statement 

Traditional computational electromagnetics (CEM) tools are low-order techniques (also 

referred to as small-domain or subdomain) – the electromagnetic structure is modeled by 

volume and/or surface geometrical elements that are electrically very small and with 

planar sides, and the fields and/or currents within the elements are approximated by low-

order basis functions, which results in very large requirements in computational 

resources. An alternative which can greatly reduce the number of unknowns for a given 

problem and enhance the accuracy and efficiency of the CEM analysis is the higher order 

(also known as the large-domain or entire-domain) computational approach, which 

utilizes higher order basis functions defined in large geometrical elements [1]. Relatively 

recently, the CEM community has started to very extensively investigate and employ 

higher order surface and volume elements and higher order basis functions,  mostly in the 

frame of the method of moments (MoM) [2-22], the finite element method (FEM) [2], 

[5], [23-36], and hybrid approaches [37-43]. 

However, the principal advantage of higher-order techniques, their flexibility in terms 

of the size and shape of elements and spans of approximation functions, is also their 

greatest shortcoming – in terms of dilemmas, uncertainties, and so many open, equally 

attractive, options and decisions to be made on how to actually use them. In other words, 
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the additional flexibility can be also considered a drawback in the sense that a user has to 

handle many more parameters in building an EM model, which requires a much deeper 

knowledge and understanding of the technique, as well as a great deal of modeling 

experience and expertise, and possibly considerably increases the overall simulation 

(modeling plus computation) time. 

 

1.2. Overview of Previous Research  

In terms of previous research toward the development of general guidelines and 

quantitative recipes for adoptions of higher-order parameters for CEM modeling, the 

following works provide some insightful information about typical orders of large-

domain polynomial basis functions and numbers of unknowns, and the maximum 

electrical dimensions of elements used in the models. A 1970 paper [44] shows that the 

current along a thin straight wire dipole that is one wavelength () long can be accurately 

calculated using MoM with entire-domain polynomial basis functions of the fourth order 

along each of the dipole arms. In [9] and [45], it has been shown that with the Galerkin 

testing procedure, which is found to be an optimal choice for testing, and polynomial 

basis functions, as few as only three to four unknowns per  suffice for an accurate MoM 

analysis of wires, and that this type of approximation outperforms all of the alternative 

approximations. In an entire-domain MoM analysis of a × large metallic plate scatterer 

[10], polynomial orders of 6 to 9 yield almost identical solutions for the surface currents, 

with an eighth-order solution being adopted as a benchmark. Polynomial approximation 

of the eighth order provides an optimal solution for the volume current distribution in the 

MoM analysis of a 2 long rod-like dielectric scatterer [46]. A large-domain 1-D FEM 
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numerical study [47] demonstrates that polynomial bases of orders 8 and higher can yield 

unstable results in single precision and that the optimal order of 1-D elements (with 

respect to the minimal number of unknowns for the prescribed 1% [0.04 dB] accuracy of 

the RMS of the scattered electric field) is about seven in single precision, with five 

unknowns per . Works on a higher order MoM in the framework of the surface integral 

equation (SIE) approach, FEM, and hybrid FEM-MoM techniques [7], [24], [25], [37] 

demonstrate examples using 2-D and 3-D elements that are about 2 in each dimension. 

In terms of previous research toward the optimal selection of numbers of integration 

points within MoM and FEM elements, which as well is an important part of this present 

study, an excellent and extremely comprehensive mathematical survey of integration 

formulas can be found in [48]. In addition, in CEM, the accuracy and efficiency of 

numerical integrations are tightly coupled to singularity cancellation and extraction 

techniques [1], [46], [49], [50]. However, as we deal in this study with elements of 

various electrical sizes (up to very large ones), we seek rules and guidelines that would 

relate the number of integration points (Nintegration) to the order of basis functions (Nbasis) in 

each direction in the element. The few available pieces of information on this topic are by 

no means consistent nor complete and provide no clear guideline for CEM 

implementations. In [46], the formula Nintegration=Nbasis+1 in the context of the Gauss-

Legendre quadrature is found to be an optimal choice in a higher order MoM solution to a 

volume integral equation, and the same formula is used in [3], where it is also reported 

that the minimal number of integration points, needed by the Galerkin method, often 

approaches the number of unknowns. In the low-order FEM technique [51], a constant 

five-point Gauss-Legendre formula is utilized. In the higher order FEM technique [24], 
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the Gauss-Legendre integration formula in Nintegration=Nbasis+10 points is implemented. 

In [52], 2(p+1)+1 Gaussian points, where p is the element order, are employed in each 

direction for the semi-analytical integration scheme in an electromagnetic scattering 

code. Finally, in the higher order MoM technique with Lagrange-type interpolatory 

polynomial basis functions [6], a 12-point Gaussian quadrature is used for the third-order 

basis functions on curvilinear triangles, as it is found that such a quadrature yields a well-

conditioned matrix. 

 

1.3. Research Goals 

This work develops – through very extensive numerical experiments and studies using 

higher order MoM-SIE and hybrid FEM-MoM techniques [7], [37] – as precise as 

possible quantitative recipes for adoptions of optimal (or nearly optimal) higher order and 

large-domain parameters for electromagnetic modeling. The parameters considered are: 

the number of elements or electrical dimensions of elements (subdivisions) in the model 

(h-refinement), polynomial orders of basis functions (p-refinement), which are the same 

as the orders of testing functions (we use the Galerkin method for testing), orders of 

Gauss-Legendre integration formulas (numbers of integration points – integration 

accuracy), and geometrical orders of elements (orders of Lagrange-type curvature) in the 

model. All these parameters can, theoretically, be arbitrary. By optimal parameters we 

mean the values of parameters that ideally (for simple problems) yield an accurate 

solution employing the least possible computational resources, or (for complex problems) 

provide a firm initial model (starting point) that can be further refined in a 

straightforward fashion, and the results can be checked for convergence. This is the first 
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such study of higher order parameters in CEM. The ultimate goal of this work and the 

continued future work in this area is to reduce those dilemmas and uncertainties 

associated with the great modeling flexibility of higher order elements and basis and 

testing functions, and to ease and facilitate their use, by both CEM developers and 

practitioners. The goal is to establish and validate general guidelines and instructions in 

order for the higher order CEM modeling methodology to be an easily used analysis and 

design tool, with a minimum of expert interaction required to produce valuable results in 

practical applications.  Simply speaking, it is believed that this and similar future studies, 

including those on associated efficient higher order meshing techniques and algorithms 

(which are not discussed in this work), are the best, if not the only, way to close the large 

gap between the rising academic interest in the higher order CEM, which clearly shows 

great numerical potential, and its actual usefulness and use in electromagnetics research 

and engineering applications.  

A partial objective of this work is the development of a parallelization procedure in 

order to reduce the computational time of the numerical calculations. Namely, MoM and 

FEM simulations at different frequencies are carried out in parallel on a small computer 

cluster. For this purpose, the previously developed parser based on the internet protocol 

(IP) has been adapted. Extensive modifications of the IP parser code have enabled the 

desired control over the input parameters and file transfers needed for the MoM and FEM 

simulations on the cluster. 

Another research objective and an integral part of this work is the development and 

implementation of a higher order technique for an indirect time-domain FEM analysis – 

namely, finding the time-domain response of a microwave passive structure based on the 
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FEM analysis in the frequency domain combined with the discrete Fourier transform 

(DFT) and its inverse (IDFT). The frequency-domain technique is a higher order large-

domain Galerkin-type FEM for 3-D analysis of waveguide structures with discontinuities 

implementing curl-conforming hierarchical polynomial vector basis functions in 

conjunction with Lagrange-type curved hexahedral finite elements and a simple single-

mode boundary condition [5], and it is coupled with standard DFT and IDFT algorithms. 

The goal is to demonstrate that, with a highly efficient and appropriately designed 

frequency-domain FEM solver, it is possible to obtain extremely fast and accurate time-

domain solutions of microwave passive structures performing computations in the 

frequency domain along with the DFT and IDFT. Hence, the investigations and 

optimizations of modeling parameters may include simulations in the time domain as 

well.  

 

1.4. Organization of the Dissertation 

The dissertation is organized as follows. Chapter 2 briefly presents the mathematical 

background and main numerical components of the higher order MoM-SIE, FEM, and 

hybrid FEM-MoM techniques, and defines all modeling parameters that are to be studied. 

Chapter 3 proposes and discusses a systematic analysis procedure and strategy for 

determining optimal parameters through numerical experiments. In Chapter 4, an 

exhaustive series of simulations and  comprehensive case studies on higher order models 

of metallic and dielectric scatterers is performed, through which a set of general 

guidelines and instructions and quantitative recipes for adoptions of  optimal simulation 

parameters is established and validated. Chapter 5 summarizes the main conclusions of 
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the study, and puts them in a broader perspective of current and future CEM research and 

practice. The work described in Chapters 3, 4 and 5 forms the basis of the paper ―Optimal 

Modeling Parameters for Higher Order MoM-SIE and FEM-MoM Electromagnetic 

Simulations‖ [53], which is currently under review for publication in IEEE Transactions 

on Antennas and Propagation.  In Chapter 6, a computational technique is presented for 

efficient and accurate time-domain analysis of multiport waveguide structures with 

arbitrary metallic and dielectric discontinuities using a higher order finite element method 

(FEM) in the frequency domain coupled with standard DFT and IDFT algorithms; the 

work described in this chapter forms the basis of the paper ―Efficient Time-Domain 

Analysis of Waveguide Discontinuities Using Higher Order FEM in Frequency Domain‖ 

[54]. Finally, Chapter 7 outlines some directions for future work in the area of the present 

work.  
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2. HIGHER ORDER METHOD OF MOMENTS, FINITE ELEMENT METHOD, 

AND HYBRID FEM-MOM 

 

2.1. Higher Order Method of Moments   

The surface integral equation (SIE) method, in which electric and magnetic surface 

currents are set over boundary surfaces separating homogeneous portions of the structure, 

and surface integral equations based on the boundary conditions for the electric and 

magnetic field intensity vectors are solved for the unknown current density values, is one 

of the most general approaches for analyzing metallic and dielectric structures.  The 

method of moments (MoM) [55] can be used to discretize these SIEs, thus resulting in the 

development of MoM-SIE modeling techniques [56-58].  Overall, the MoM-SIE method 

is a robust and adaptable numerical method for simulations of electromagnetic fields 

within antenna and scattering applications involving both absorbing (dielectric and linear 

magnetic) and perfectly conducting materials.  This section of the dissertation describes 

the higher-order Galerkin-type MoM-SIE technique for 3-D electromagnetics which is 

described in detail in reference [7].  This modeling method is based on higher-order 

current modeling and higher-order geometrical modeling, and is consequently referred to 

as a double-higher-order method. 

Consider an electromagnetic system that is being excited by a time-harmonic 

electromagnetic field of complex field-intensities Ei and Hi, with angular frequency ω; 
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this field may be the aggregate of an impressed field from one or more concentrated 

generators or from incident plane waves.  Within the electromagnetic system, there are an 

arbitrary number of variously shaped metallic and dielectric objects.  Using the surface 

equivalence principle (generalized Huygen‘s principle), we are able to break the system 

up into subsystems, each containing one of the dielectric regions (domains) found within 

the system, together with the metallic surfaces, with the homogenous surrounding space 

existing as its own domain (subsystem).  Within each domain, the scattered electric and 

magnetic fields, E and H, can be formulated in terms of the equivalent (artificial) surface 

magnetic current, of density MS, and of the equivalent (artificial) surface electric current, 

of density JS, that are placed on the boundary surface for the domain with the intention of 

having zero field transfer from the domain into the surrounding space.  It should be 

mentioned that only the surface electric currents, JS, exist on metallic surfaces, as these 

are actual currents, and MS = 0.  

On the boundary surface between any two adjacent dielectric domains (domains 1 and 

2), the boundary conditions for the tangential components of the total (incident plus 

scattered) electric and magnetic field vectors yield [7]   

tang22SStangitang11SS )],,,([)()],,,([  MJEEMJE  ,        (2.1) 

tang22SStangitang11SS )],,,([)()],,,([  MJHHMJH  ,       (2.2) 

where we are making the assumption that the incident (impressed) field is present only in 

domain 1.  We should also note that the boundary conditions (2.1) and (2.2) reduce to 

(Etot)tang = 0 on conducting bodies, so, for metallic surfaces in domain 1, we find [7] 

0)()],,,([ tangitang11SS  EMJE  .          (2.3) 
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In a region of complex permeability, μ, and complex permittivity, ε, we express the 

scattered electric field in terms of the electric and magnetic current densities as follows 

[7]: 

)()( MJ SS MEJEE  ,         (2.4) 

  AJE j)(J S ,         (2.5) 

FME 


1
)(M S ,         (2.6) 

while the scattered magnetic field is expressed as [7] 

)()( JM SS JHMHH  ,         (2.7) 

US  FMH j)(M ,         (2.8) 

AJH 


1
)(J S          (2.9) 

where Φ and U are the electric and magnetic scalar potentials, and F and A are the 

electric and magnetic vector potentials, respectively.  The potentials are obtained as [7] 


S

SgdSJA  ,       (2.10) 


S

SgdSMF  ,       (2.11) 

 
S

Sgd
j

SS J


,       (2.12) 

 
S

SgU d
j

SS M


.       (2.13) 

In the above expressions, S is the boundary surface of the domain under consideration, 
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and g is the Green‘s function for the unbounded homogeneous medium of parameters μ 

and ε [7],          

R
g

R





4

e -

 ,       j ,       (2.14) 

with R being the distance from the source point to the field point, and γ being the 

propagation coefficient in the medium.  Keeping in mind the integral expressions for 

fields E and H in (2.4)-(2.13), (2.1)-(2.3) represent a system of coupled electric/magnetic 

field integral equations (EFIE/MFIE) which can be discretized and solved using the 

method of moments in order to find the unknown values for JS and MS.   

   We can make the assumption that all dielectric and metallic surfaces within a system 

can be approximated by some number of arbitrary surface elements.  We can then 

approximate the surface electric and magnetic current density vectors, JS and MS, over 

each element in the model using an appropriately selected set of basis functions having 

unknown complex current-distribution coefficients.  In order to solve for these 

coefficients, the EFIE/MFIE system in (2.1)-(2.3) is tested using the Galerkin method, 

i.e., the same functions are used as were selected for the current expansion.  The four 

types of generalized Galerkin impedances, which appear as system matrix elements, 

correspond to the four possible combinations of electric and magnetic current testing 

functions, JSm and MSm, defined on the m
th

 surface element, Sm, and the electric and 

magnetic basis functions, JSn and MSn that are defined on the n
th

 element in the model 

given by [7] 

m

S

nmmn SZ

m

d)( SJS

ee

  JEJ ,       (2.15) 

m

S

nmmn SZ

m

d)( SMS

em

  MEJ ,       (2.16) 
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m

S

nmmn SZ

m

d)( SJS

me

  JHM ,       (2.17) 

m

S

nmmn SZ

m

d)( SMS

mm

  MHM .       (2.18) 

The generalized voltages which appear as excitation column-matrix elements are 

similarly evaluated as [7] 

m

S

mm SV

m

diS

e

  EJ ,       (2.19) 

m

S

mm SV

m

diS

m

  HM .       (2.20) 

Substituting (2.5) into (2.15), expanding  nmS SJ , and then applying the surface 

divergence theorem results in the following expressions for the electric/electric Galerkin 

impedances [7]: 









mmm

mm

c

mmnm

S

mmSn

S

mnm

S

mnSm

S

mnmmn

lSS

SSZ

dddj

ddj

SSS

SS

ee

nJJAJ

JAJ





 ,     (2.21) 

where nm is the outward normal to the boundary contour cm for the surface Sm.  When the 

divergence-conforming current expansion on boundary elements is implemented, either 

the two contributions of elements sharing an edge exactly cancel each other out in the 

final expression for generalized impedances or else the normal components of testing 

functions JSm are zero at the element edges, thus resulting in the final term of (2.21) 

having zero value.  Then, by formulating the potentials in (2.21) in terms of the electric-

current basis function JSn over the n
th

 surface element, Sn, we obtain [7] 

   

m nm n S

m

S

nnSmS

S

m

S

nnmmn SSgSSgZ dd))((
j

ddj SSSS

ee
JJJJ


 .    (2.22) 



13 
 

In a similar manner, starting from (2.6) and (2.11), expanding  gnM , and then 

performing a cyclic permutation of the scalar triple product, the electric/magnetic 

generalized impedances in (2.16) can be expressed as [7] 

  

 





m nm n

m nm

S

m

S

nmn

S

m

S

nnm

S

m

S

nnm

S

mnmmn

SSgSSg

SSgSZ

dd)(dd)(

dd)(d
1

SSSS

SSS

em

JMMJ

MJFJ


.                                   (2.23) 

Using duality, the magnetic/electric and magnetic/magnetic generalized Galerkin 

impedances in (2.17) and (2.18) can be seen to have the same respective forms as the 

electric/electric and electric/magnetic generalized Galerkin impedances shown in (2.22) 

and (2.23), and are given by [7] 

em

SS

me dd)( mn

S

m

S

nmnmn ZSSgZ

m n

   MJ ,       (2.24) 

   

m nm n S

m

S

nnSmS

S

m

S

nnmmn SSgSSgZ dd))((
j

ddj SSSS

mm
MMMM


 .   (2.25) 

The impedance equations (2.22)-(2.25) give general expressions for MoM generalized 

impedances for solving the EFIE/MFIE system in (2.1)-(2.3) using any set of divergence-

conforming basis functions and any kind of surface discretization in the context of the 

Galerkin method. 

   In this higher order MoM-SIE technique, dielectric and metallic surfaces of an 

electromagnetic structure (antenna or scatterer) being simulated are modeled using  

Lagrange-type generalized curved parametric quadrilaterals of arbitrary geometrical  

orders  Ku  and Kv  (Ku, Kv  1),  seen  in  Fig. 2.1 and analytically described as [7] 


 


u v

vu

K

k

K

l

K

l

K

kkl vLuLvu
0 0

)()(),( rr ,   1,1  vu ,       (2.26) 
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where ),( lkkl vurr   are position vectors having M=(Ku+1)(Kv+1) interpolation nodes 

and uK

kL  represent Lagrange interpolation polynomials given by [7] 



 




u

u

K

ki
i ik

iK

k
uu

uu
uL

0

)( ,       (2.27) 

with iu  being the interpolation nodes along the interval 11  u  (note that uK

kL  is unity 

for kuu   and zero at all other nodes), with )(vL vK

l  
being similarly defined.  

 

Fig. 2.1. Generalized curved parametric quadrilateral defined by (2.26), with the square 

parent domain [7]. 

 

In Fig.2, the most simple generalized quadrilateral is shown; this quadrilateral, known 

as the bilinear quadrilateral, is defined by Ku = Kv = 1.  It is determined entirely by M = 4 

interpolation points – its 4 vertices (arbitrarily positioned in space), so that (2.26) 

becomes 
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uvvu

vuvuvuvuvu

11011000

4321 )]1)(1()1)(1()1)(1()1)(1([
4

1
),(

rrrr

rrrrr




.   (2.28) 

 

The edges and coordinate lines for the quadrilateral are all straight, while its surface is 

slightly curved (inflexed).  We should notice that these quadrilaterals afford equal or 

improved flexibility for geometrical modeling of general electromagnetic objects as 

compared to commonly used elements such as flat triangular and rectangular patches, 

while using generalized quadrilaterals of higher (Ku, Kv > 1) geometrical orders, of 

course, result in additional modeling flexibility and accuracy.       

 

Fig.2.2.  A bilinear quadrilateral (the simplest generalized quadrilateral, defined by Ku = 

Kv = 1) [7]. 

 

For higher-order geometrical elements, we use an equidistant distribution of interpolation 

nodes along each coordinate in the parametric space.  For example, a quadrilateral of the 

4
th

 geometrical order, having Ku = Kv = 4, M = 25, is given by 



16 
 

44

44

43

34

42

24

4

14

4

04

4

40

3

30

2

201000

25

2

1

...

)5.0()5.0)(1)(5.0()5.0)(1(
9

4

...)1)(5.0()5.0)(1)(5.0()1(
9

16

)1)(5.0()5.0)(1)(5.0()5.0(
9

4
),(

vuvuvuuvvuuuu

vvvvuuuu

vvvvuuuu

vvvvuuuuvu

rrrrrrrrrr

r

r

rr









, 

1,1  vu .       (2.29) 

   The electric and magnetic surface current density vectors, Js and Ms, over every 

generalized quadrilateral in the model are approximated by means of divergence-

conforming hierarchical-type vector basis functions consisting of simple power functions 

(P) in parametric coordinates u and v [7], 
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where P̂  denotes the modified (divergence-conforming) power functions [7], 
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{} and {} are the unknown current-distribution coefficients,  Nu and Nv (Nu, Nv  1) are 

the adopted orders of the polynomial current approximation in the u- and v-direction, 

respectively, which are entirely independent from the element geometrical orders (Ku and 
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Kv,), and  is the Jacobian of the covariant transformation, which is found from the 

unitary vectors au and av along the parametric coordinates [7], 

|| vu aa  ,      uu  ra ,      vv  ra ,        (2.32) 

with r given in (2.26). It should be noticed that the limits of the sum in (2.30) 

corresponding to the variations of a current density vector component in the direction 

across that component are smaller by one than the orders corresponding to variations in 

the other parametric coordinate.  This mixed-order arrangement has been found to be an 

excellent general choice for modeling of surface currents as it ensures equal 

approximation orders for surface charge densities corresponding to the u- and v-directed 

current basis functions. 

Polynomial degrees in the current expansions (Nu and Nv) can be high, which allows us 

to use electrically large boundary elements. Doing so greatly reduces the overall number 

of unknowns for a given problem and significantly enhances the accuracy and efficiency 

of the technique, as compared to traditionally used low-order basis functions. These basis 

functions automatically satisfy continuity boundary conditions for the current 

components normal to the quadrilateral edges shared by adjacent elements in the structure 

(divergence-conforming functions).  

The basis functions defined in (2.31) are hierarchical functions – every lower-order set 

of functions is a subset of all higher-order sets. These functions enable using different 

orders of current approximation in different elements, which allows for a whole spectrum 

of ―regular‖ and ―irregular‖ shapes and element sizes, with the corresponding current 

approximation orders, to be used simultaneously within a single simulation model of a 

complex structure. They also enable a very efficient p-refinement of the model, where the 
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accuracy of the solution is improved through the optimal selection of polynomial orders 

of the basis functions within the same geometrical elements, which is done without 

changing the geometrical discretization of the structure. Hierarchical basis functions, on 

the other hand, typically have poor orthogonality properties, which results in MoM 

matrices with large condition numbers. However, the MoM matrix condition number can 

be lowered by modifying the basis functions in a way that causes a strong mutual 

coupling between the pairs of higher-order functions defined on the same (electrically 

large) quadrilateral patch to be reduced. For example, higher-order basis functions 

constructed from ultraspherical and Chebyshev orthogonal polynomials on bilinear 

quadrilaterals result in the reduction of the MoM matrix condition number by several 

orders of magnitude [24], [59].  

Properties of the basis functions in (2.31) allow the connection of any two (or more) 

quadrilateral elements regardless of their adopted geometrical orders, current-expansion 

orders, or the local orientations of parametric coordinates. The only requirement that 

must be satisfied is the geometrical compatibility of the edges between adjacent 

quadrilaterals in a junction over which the current-continuity boundary condition is 

adjusted. Basis functions containing the terms P0 and P1 in an arbitrary quadrilateral 

serve for adjusting the boundary condition at the corresponding quadrilateral edges 

(u,v=±1; the remaining basis functions are zero at the quadrilateral edges and serve for 

improving the current approximation over the surface. In the assembly procedure in [7], 

the geometrical interpolation nodes associated with two quadrilaterals that govern the 

geometry of a common edge are ordered in a way that ensures a symmetrical or 

antisymmetrical variation of the corresponding parametric coordinates. The continuity of 
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the normal surface current density components across a common edge is enforced by 

equating the corresponding normal-component current coefficients associated with the 

quadrilaterals, with additional corrections related to possibly different element 

orientations. For elements with different current-expansion orders, the normal-component 

current coefficients are matched only up to the lesser of the corresponding orders and are 

set to zero for the remaining normal-component current basis functions. This order 

reduction pertains to the common edge only and does not affect expansions over the 

remaining surfaces of the elements. In situations when more than two quadrilaterals share 

a common edge, the overall adjustment of the continuity boundary condition across the 

edge is accomplished by cyclically performing the assembly procedure for element pairs 

(1,2), (2,3), …, and (L–1,L), where L is the number of quadrilaterals in the junction [7].  

In (2.30), the unknown coefficients, {} and {}, are found by solving the EFIE/MFIE 

system of with the generalized Galerkin impedances in (2.22)-(2.25), which are 

specialized for the use of hierarchical divergeance-conforming polynomial vector basis 

functions of arbitrary current-approximation orders, (2.31), and generalized curved 

quadrilateral elements of arbitrary geometrical orders, (2.26).  Without losing generality, 

we can consider only the u-components of the basis and testing functions.  Moreover, we 

can consider the functions in a simplified form, as follows [7]:  

u

vu

vuJ

vu
vu

ij

ij





),(

),(

),(
),(

r
f ,       (2.33) 

where  are the simple two-dimensional power functions,  

ji

ij vuvu  ),( .       (2.34) 

The impedances for any higher-order set of basis functions of divergence-conforming 
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polynomial type can be constructed as a linear combination of the impedances 

corresponding to the simple power functions in (2.33) and (2.34).  An interesting example 

of this are the higher-order basis functions with improved orthogonality properties 

composed of ultraspherical and Chebyshev polynomials [59].  Consequently, the 

generalized Gelerkin impedances corresponding to the basis functions in (2.31) can be 

formulated as a linear combination of those corresponding to the simplified forms in 

(2.33) and (2.34).     

Subsequent to the substitution of (2.33) into (2.22), the electric/electric impedances 

corresponding to the basis function defined by the indices in and jn on the n
th

 quadrilateral 

and the testing function defined by indices im and jm on the m
th

 quadrilateral become [7] 
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where Nu
(n)

 and Nv
(n)

 are the orders of the n
th

 quadrilateral along the u- and v-coordinate, 

respectively, and Nu
(m)

 and Nv
(m)

 are the current-approximation orders of the m
th

 

quadrilateral along the u- and v-coordinate, where the integration limits for both 

quadrilaterals are u1 = v1 = 1 and u2 = v2 = 1.  The source-to-field distance, R, is 

calculated as 

|),(),(| nnnmmm vuvuR rr  .       (2.36) 

If we consider the parametric representation of the quadrilateral surface element, (2.26), 

we can then obtain the final expression [7]:  
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where rkl
(n)

 are the geometrical vector coefficients in the polynomial expansion for the n
th

 

quadrilateral, )(n

uK and )(n

vK  are the geometrical orders along its u- and v-coordinates, 

respectively, )(m

uK , )(m

vK and rkl
(m)

 are the corresponding parameters of the m
th

 

quadrilateral, and  is the basic Galerkin potential integral given by [7] 
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In a similar manner, using (2.33) and expanding the gradient of Green‘s function, the 

electric/magnetic impedances in (2.23) become 
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Using (2.26) then results in [7] 
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, where  is the basic Galerkin field integral evaluated as [7] 
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We should note that only two types of basic scalar Galerkin integrals,  and  in (2.38) 

and (2.42), are necessary for the entire Galerkin impedance matrix.  Additionally, only -

integrals are needed for purely metallic objects.  

   The numerical integration is performed using the Gauss-Legendre integration formula. 

For example, the four-fold integration formula for the quadruple integrals  in (2.38) has 

the form [7] 
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where um,p, vm,q,  un,s, and vn,t are arguments (zeros of the Legendre polynomials), NGLmu, 

NGLmv, NGLnu, and NGLnv are the adopted orders, and Ap, Aq, As, and At are weights of 

the corresponding Gauss-Legendre integration formulas. Of course, since the integrand 

contains Green‘s function, in (2.14), it is not a polynomial (in parametric coordinates), 

and the well-known accuracy characterizations of the quadrature formula, if applied to 

integrals of polynomials, are not applicable. Efficient algorithms for recursive 

construction of the generalized Galerkin impedances are used in order to avoid redundant 
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operations related to the indices for basis and testing functions (e.g., indices i and j in 

(2.30)), for geometrical representations (e.g., indices k and l in (2.26)) within all of the 

interactions in the MoM/FEM solution, and for the summation indices within the 

integration formulas (e.g., indices p, q, s, and t in (2.42)) [7]. 

The final system of linear algebraic equations having complex unknowns {} and {} 

can then be solved classically, using Gaussian elimination.  By post-processing using the 

calculated coefficients, the fields E and H in any dielectric region, including the far field, 

and the currents JS and MS over any generalized quadrilateral in the simulation can be 

found. 

 

2.2. Higher Order Finite Element Method  

   Our FEM begins with the curl-curl electric-field vector wave equation [24] 

0r

2

0

-1

r  EE  k ,    (2.43) 

where E is the electric field complex intensity vector, which must be tangentially 

continuous as all material interfaces,  is the angular frequency of the implied time-

harmonic variation,           is the free-space wave number, and r and r are the 

complex relative permeability and permittivity for the inhomogeneous medium, 

respectively.  Even though all derivations in this section have been given in terms of the 

E-field formulation, they can also be modified for discretization of the magnetic-field 

wave equation (H-field formulation) using duality.  A more extensive treatment of this 

method is given in references [24] and [60].     

   The Langrange-type interpolation generalized hexahedron, shown in Fig. 2.3, is the 

basic building block for volumetric FEM modeling.  This hexahedron is a volume (3-D) 
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generalization of the quadrilateral patch in Fig. 2.1, and, consequently, can be expressed 

as a generalization of (2.26), as is discussed by [24], [25], [37], and [60],    
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Fig. 2.3. Generalized curved parametric hexahedron defined by (2.44); cubical parent 

domain is also shown [24-26], [61].  

 

   In Fig. 2.4(a), the first-order element (Ku = Kv = Kw = 1), called the trilinear hexahedron 

[24], is shown with visible coordinate lines [60] [62-67].  We can see that it is entirely 

determined by M = 8 interpolation points, or vertices, so that (2.44) can be expressed as 

[60, p. 33] 
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All edges and coordinate lines for the element are straight, while its sides are composed 

of bilinear quadrilateral surfaces, as in Fig. 2.2 [66].  Notice that these generalized 

hexahedra afford equivalent or improved flexibility for geometrical modeling of general 

electromagnetic structures when compared to more frequently used elements such as 

bricks, triangular prisms and tetrahedra.  For triquadratic hexahedron, which is the second 

order element, having Ku = Kv = Kw = 2, M = 27, shown in Fig. 2.4(b), the 3-D 

interpolation polynomials in (2.44) can be given as [60]: 

8/)1()1()1(),,(1 wwvvuuwvup  ,  node at )1 ,1 ,1( r ;  

4/)1()1()1)(1(),,(2 wwvvuuwvup  ,  node at )1 ,1 ,0( r ; …,  

)1)(1)(1)(1)(1)(1(),,(14 wwvvuuwvup  ,  node at )0 ,0 ,0(r ; …, and 

8/)1()1()1(),,(27 wwvvuuwvup  ,  node at )1 ,1 ,1(r .  

                         (2.46) 

Comparable expressions hold for parametric bodies of higher (Ku, Kv, Kw > 2) 

geometrical orders. Geometrically higher-order elements clearly allow better flexibility 

and accuracy in modeling of complex curved structures. For a simple example, 

Figs.2.4(a) and 2.4(b) show a sphere modeled by 1000 trilinear hexahedra and a single 

triquadratic hexahedron, respectively. Just by looking at these models, we can see that a 

single hexahedral finite element of the 2
nd

 geometrical order provides an equal or better 

approximation of the sphere as compared to one thousand elements of the first 

geometrical order.  However, using flexible higher-order curved elements is 

computationally worthwhile only if they are electrically large, which generally requires 
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that higher-order field expansions also be used with the elements.  Additionally, if we are 

to implement the modeling of realistic structures in an optimal manner, it is ideal to have 

the ability to use elements of different orders and sizes within the same mesh.  If these 

requirements are to be achieved, selecting hierarchical-type higher-order polynomial 

basis functions for the approximation of fields is the correct choice. 
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 (a)      (b) 

Fig.2.4.  Two simplest generalized hexahedra described by Eq.(2.44): (a) trilinear 

hexahedron (Ku = Kv = Kw = 1), and (b) triquadratic hexahedron (Ku = Kv = Kw = 

2) , [37], [60].  
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(a)        (b) 

Fig.2.5.  A sphere modeled by (a) 1000 trilinear hexahedra of Fig. 2.4(a) and (b) 

a single triquadratic hexahedron of Fig. 2.4(b), [60].     



27 
 

   The electric field vector, E, inside the FEM hexahedra is approximated by curl-

conforming hierarchical vector expansions obtained as a curl-conforming 3-D version of 

divergence-conforming 2-D bases in (2.30) [24],  
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where ua  , va  , and wa  are reciprocal unitary vectors, and {} are the unknown field-

distribution coefficients. As a matter of course, the field expansions satisfy continuity 

boundary conditions for tangential fields on surfaces shared by adjacent hexahedra in the 

structure (curl-conforming functions).   

   Using the Galerkin testing procedure, weighted residuals of (2.43) are formulated as 

[24] 

0d d 
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rji
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rrji
VkV EfEf  ,                    (2.48) 

where 
rji ˆˆ̂f  can be any of the testing functions for the u, v and w field components, 

respectively and V is the volume of a generalized hexahedron.  The vector analogue to 

Green‘s first identity can be used to modify the first integral in (2.48) in order to obtain a 

weak form representation of (2.43) that is suitable for numerical solution [24]:  
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where S is the boundary surface of the hexahedron, dS=ndS, and n is the outward unit 

normal. Using Maxwell‘s first equation, the term on the right-hand side of (2.49) can be 

represented as [60, p. 51] 

 
S

rjirji
SkG d )(j

ˆˆ̂00ˆˆ̂ Hnf ,         (2.50) 

where 0 is the free-space intrinsic impedance. Substituting the field expansion given by 

(2.47) into (2.49) on the left-hand side of the equation, only, yields the following FEM 

matrix equation [60, p. 52]:  

}{}{) ][][ ( 2

0 GBkA   .    (2.51) 

Matrices [A] and [B] are given by [60, p. 52] 



















][][][

][][][

][][][

][

WWAWVAWUA

VWAVVAVUA

UWAUVAUUA

A , 



















][][][

][][][

][][][

][ 

WWBWVBWUB

VWBVVBVUB

UWBUVBUUB

B ,  (2.52) 

where the elements of the corresponding submatrices have the form [60, p. 52] 
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with analogous expressions for the elements of other submatrices of [A] and [B]. All 

integrals over the volume of a generalized hexahedron are integrated numerically in the 

wvu   domain as [24] 

   
u v wV

wvuwvufVwvuf ddd  ),,(d ),,( ,       (2.55) 
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where integration is carried out using the Gauss-Legendre three-fold integration formula, 

as in (2.50). Note that, as is the case with the MoM integrals in (2.38) and (2.41), the 

integrands of FEM integrals are not polynomials in u, v, and w, either. 

   Due to the continuity of the tangential component of the magnetic field intensity vector, 

nH, in (2.50) across the interface between any two finite elements in the connected 

FEM model, the right-hand side terms {G} in (2.51) for the connected model contain the 

surface integral over the overall boundary surface of the entire FEM domain, but not over 

the internal boundary surfaces between the individual hexahedra in the structure. The 

tangential component of H over the boundary surface of the FEM domain is determined 

by boundary conditions imposed at the surface. This provides a foundation for a 

numerical interface between the FEM domain and the remaining space for the modeling 

of unbounded problems (e.g., antennas and scatterers), i.e., for implementing mesh 

termination schemes based on absorbing boundary conditions, artificial absorbers, and 

integral equations [1], [24], [37], [60] all leading to different versions of hybrid FEM 

methodologies.  Alternatively, in the analysis of metallic cavities, boundary conditions 

require that the tangential component of the electric field intensity vector, E, vanish near 

the cavity walls, which is an example of the simplest mesh termination technique.  

 

2.3. Higher Order Hybrid FEM-MoM  

Hybrid finite element-boundary integral (FE-BI) techniques introduce exact BI 

terminations to numerically truncate and circumscribe the computational modeling 

domain for unbounded problems (antennas and scatterers) utilizing the finite element 

method (FEM).  Doing so divides the problem into interior and exterior regions.  The 
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electromagnetic field in the interior region, which generally contains inhomogeneous 

materials, is modeled using an FE differential-equation formulation.  The field in the 

exterior region, which filled with a homogeneous material (usually free space), is 

represented by some type of BI equations.  Then, the fields can be coupled across the FE-

BI interface using the appropriate boundary conditions.  The system of coupled 

differential and integral equations is solved using FE and BI numerical discretizations.  

Since the computational methodologies for the BI correspond to solving surface integral 

equations (SIEs) based on the method of moments (MoM), the hybrid methods are also 

known as FEM-MoM techniques.          

This section describes the higher order Galerkin-type hybrid FEM-MoM technique for 

3-D electromagnetic analysis of arbitrary antennas and scatterers in the frequency domain 

which is described in detail in reference [37]. The solution in the interior region of the 

problem is obtained by means of the higher order FEM described in Section 2.2, while 

the solution in the exterior region is based on the higher order MoM described in Section 

2.1, with the two methods being coupled together at the boundary of the interior (FEM) 

region via boundary conditions.  

Consider an electromagnetic system composed of variously shaped metallic and 

dielectric objects.  This system should be excited by a time-harmonic electromagnetic 

field of complex field intensities E
inc

 and H
inc

 with angular frequency ω.  This field may 

consist of a combination of impressed fields from one or more lumped generators, for an 

antenna structure, or of incident plane waves, for a scattering structure.  As the first step 

of the analysis, the system is decomposed into two sections, as shown in Fig. 2.6:  a 

MoM exterior region, called region a, and a FEM interior region, called region b.  
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Generally, multiple FEM and MoM objects can exist within the overall MoM 

environment.  Consequently, homogeneous dielectric domains can be modeled as parts of 

the FEM region or as MoM objects (using the surface equivalence principle).  Similarly, 

metallic objects, like wires or plates, in the external medium (generally air) can either be 

modeled as MoM objects, through the use of surface electric currents, or else can be 

enclosed in a virtual dielectric (air) domain and considered to be a FEM sub-region.            
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FEM
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PEC
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n

+

PEC
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Fig. 2.6.  Decomposition of an electromagnetic structure into a MoM (exterior) and a 

FEM (interior) region, denoted as regions a and b, respectively [37].  

 

The total electric and magnetic field intensity vectors within region a, 
a

E  and a
H , are 

formulated in terms of the equivalent surface magnetic current density, MS, and the 

equivalent surface electric current density, JS, that are located on the outer boundaries, 

surface S, of all of the scatterers in region b, and the impressed or incident field vectors as 
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is here shown [37]: 

inc

SMSJ )()( EMEJEE a ,        (2.56) 

inc

SMSJ )()( HMHJHH a ,        (2.57) 

where ME  and MH  stand for the scattered electric and magnetic field vectors due to 

current MS, while JE  and JH  are the scattered fields due to JS, and they are computed 

using (2.5)-(2.14). Fields a
E  and a

H  are coupled to corresponding field vectors within 

region b, b
E  and b

H , by means of boundary conditions for the tangential field 

components on the surface S [37],  

tantan )()( ba
EE  ,       (2.58) 

nJHH  Stantan )()( ba ,       (2.59) 

where n is the outward unit normal from S.  Combined with (2.1) and (2.2), we find that   

tan

inc

tantanSMtanSJ )()()]([)]([ EEMEJE  b ,       (2.60) 

tan

inc

StanSMtanSJ )()]([)]([ HnJMHJH  ,       (2.61) 

which provides the computational interface between the  FEM and MoM regions, where 

the field  b
E  within region b (the FEM region) and the currents JS and MS over S are 

unknowns [37]. 

In the FEM-MoM discretization procedure, JS and MS are represented as in (2.30), with a 

total of MoM2N  unknown current-distribution coefficients {} and {} on the FEM-MoM 

interface, and b
E  is given by (2.47), with a total of FEMN  unknown field-distribution 

coefficients {}. Since there is such an exact compatibility between volume and surface 

geometrical elements, as well as field and current approximations, the hybridization of 

the two methods is occurs in a true higher order fashion, in regards to both field/current 
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and geometrical modeling in both the FEM and MoM regions.  Additionally, the 

modeling flexibility and computational efficiency of the hybrid method is further 

enhanced by the hierarchical nature of both techniques. 

To solve for the coefficients {} in the FEM region of the model, the matrix form of the 

FEM equation is found by substituting the expansion (2.47) into (2.49) [24], on its left-

hand side, and (2.9) and the first expansion in (2.30) into (2.50), namely, on the right-

hand side of (2.49), so which results in [37] 

}]{[}]{[ jkjlkl CFEM   ,    ][][][ 2

0 BkAFEM   ,       (2.62) 

where the elements of matrices [A] and [B] are those in (2.52)-(2.54). The matrix ][C  in 

(2.62) is given by [37] 

],[j][ S00 
jkkj kC je ,       (2.63) 

where the inner product of the FEM and MoM basis functions is 

 
S

kk S
jj
d , SS jeje .       (2.64) 

On the other side, the Galerkin discretization of (2.48) and (2.49), together with the 

testing and basis functions in (2.30), results in a SIE matrix equation over the FEM-MoM 

interface (surface S) [37],   
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which can be represented as [37] 
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In (2.66), all of the terms can be readily solved for with the exception of )( S j

b
jE , which 

we can obtain as follows using (2.47) and (2.62) [37]: 
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1ˆ
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j

l CFEM  ,       (2.68) 

where (2.67) and (2.68) are computed for all values of ĵ  from 1 to MoMN , and }{
ĵk

C   

(with a fixed jj ˆ ) stands for the ĵ -th column of ][ kjC  . 

Hierarchical higher order basis functions in (2.47) have poor orthogonality properties, 

which results in FEM matrices, in (2.68), having large condition numbers, as well as 

related problems, particularly when using iterative solvers.  However, there is often an 

order of magnitude reduction in the number of unknowns between high and low order 

FEM matrices.  Consequently, as the higher order FEM matrices are much smaller than 

their low order counterparts, they can be effectively factored using direct sparse 

factorization techniques and sparse storage algorithms, which are not so sensitive to 

matrix condition numbers [24], [26].  Note also that [FEM] in (2.68) only needs to be 

factored once, following which the coefficients in (2.68) and fields in (2.67) can be 

calculated one by one using a fast back-substitution procedure. Overall, direct 

factorization of the FEM matrix provides an effective solution in the context of the higher 

order discretization. On the other hand, if the matrix equation is to be solved by an 

iterative procedure and there is a very large number of unknowns, alternative higher order 

hierarchical basis functions with improved orthogonality and conditioning properties 

constructed from Legendre polynomials [24-25] may be utilized to accelerate the solution 
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procedure.  Finally, note that, provided that r  and r  are frequency independent 

(dispersionless media), the FEM matrix elements in (2.24) depend on frequency only 

through 2

0k . This allows the elements of the matrix to be calculated only once, valid for 

the entire frequency range of interest, and then stored separately as matrices [A] and [B], 

from which [FEM] can be reconstructed, according to (2.24), for any given frequency. If 

r  and r  are frequency dependent, but are also spatially constant within any given FEM 

element (homogeneous medium in the element), they can be moved in front of the 

integrals in (2.25) and a similar algorithm can be applied. Using multifrequency solution 

acceleration procedures such as this significantly reduces the overall computational time 

by allowing the global FEM matrix to be filled only once, at the expense of requiring a 

considerably larger storage space be allocated, since matrices [A] and [B]  must be stored 

separately; this is a worthwhile tradeoff given that the sparse storage scheme is 

employed, that the numbers of unknowns are generally small, and that, when necessary, 

matrices can be stored out-of-core without a significant recovery time loss. 

Once all )( S j

b
jE  terms are calculated, the MoM matrix in (2.66) can be completed and 

the system solved for the unknown current distribution coefficients {} and {}, that is, 

by way of expansions (2.30), for the MoM surface currents JS and MS on S. Exterior 

fields in the MoM region can then be found using (2.4)-(2.14). Finally, the FEM field 

coefficients {} can be obtained using (2.62) [37],  

}]{[][}{ 1

jkjkll CFEM   ,       (2.69) 

and the interior electric field (within the FEM region) can be evaluated by means of its 

expansion (2.47). 
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3. PROCEDURE FOR DETERMINING OPTIMAL HIGHER ORDER 

MODELING PARAMETERS THROUGH NUMERICAL EXPERIMENTS 

 

   We investigate the behavior of higher order MoM-SIE and FEM-MoM numerical 

solutions by running an exhaustive series of electromagnetic simulations of several 

canonical models of metallic and dielectric scatterers, in which we systematically vary 

the key higher order modeling parameters:  number of elements in the model, M (h-

refinement), or, equivalently, numbers of subdivisions per edge, Hu, Hv, and Hw, of 

initially used elements, polynomial orders of basis (and testing) functions, Nu, Nv, and Nw 

in (2.30) and (2.47) (p-refinement), orders of Gauss-Legendre integration formulas, i.e., 

numbers of integration points, NGLu, NGLv, and NGLw in (2.42) to solve integrals in 

(2.38) and (2.41) (integration accuracy), and geometrical orders of elements, namely, 

orders of Lagrange-type curvature in the model, Ku, Kv, and Kw in (2.26) and (2.44) 

(when curved elements are employed). 

However, the combinatorial space of the adopted key parameters is enormously vast 

and technically ungraspable, particularly when one takes into account that all of the 

parameters can generally be changed anisotropically along the element (quadrilateral or 

hexahedron) edges. Hence, in the study, we limit this space by using only elements with 
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isotropic polynomial orders, Nu=Nv=N for MoM quadrilaterals and Nu=Nv=Nw=N 

for FEM hexahedra, and similarly NGLu=NGLv=NGL for quadrilaterals and 

NGLu=NGLv=NGLw=NGL for hexahedra, as well as Ku=Kv=K and 

Ku=Kv=Kw=K, respectively. In addition, meshes in all examples are refined 

isotropically in all directions: the initial, roughest, geometrical mesh is equally 

subdivided along all edges in the h-refinement process (Hu=Hv=Hw=H). Finally, the 

same set of parameters is adopted (and then equally varied) in all elements in a model. 

These restrictions impose the utilization of simple symmetric structures to be analyzed as 

EM models for the given purpose. Hence, the structures to be modeled and simulated are 

chosen to be metallic and homogeneous dielectric cubical and spherical scatterers, 

respectively. Nonetheless, the number of simulations (and obtained results) with 

systematically varying (i) the number of edge divisions from H=1 to H=3, (ii) 

polynomial orders of basis (and testing) functions from N=1 to N=10, and (iii) orders 

of Gauss-Legendre formulas from NGL=2 to NGL=20, as well as (iv) using the 

curvature orders (for spheres) of K=2 and K=4, respectively, is still extremely large 

and entirely sufficient for drawing the desired conclusions. 

In higher order computational models, we define the model mesh complexity by 

referring to the number of quadrilateral patches on the structure side, E=H×H. For 

instance, a cube or a sphere modeled by only one patch per side is defined by E=1×1, 

which results in a total of 6×1×1=6 patches (and 1×1×1=1 FEM element in the FEM-

MoM model). The refined mesh determined by E=2×2 is the one with initial side 

patches divided into 2×2 quadrilaterals, yielding a total of 6×2×2=24 patches (the 

corresponding number of FEM elements in such a mesh would be 2×2×2=8). Similarly, 
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an E=3×3 model has 6×3×3 patches. Additionally, cube side length and sphere radius 

for the considered scatterers are both set to a=1m and the relative dielectric permittivity 

of dielectric scatterers is adopted to be r=4 in all examples and experiments. When 

referring to the electrical size of the model, we consider a/0 for metallic and a/ for 

dielectric scatterers, where 0 and  are the wavelengths in free space and in the dielectric 

of the object, respectively. Finally, we adopt only single machine precision for all 

computations, having in mind, however, that this is one of the key limiting factors for 

both accuracy and convergence with h-, p-, and integral accuracy refinements, and that 

quantitative recipes for adoptions of optimal higher order modeling parameters would be 

different in double (or higher) precision. 

Cubical scatterers (metallic and dielectric) are excellent benchmarking choices because 

their geometry can be modeled exactly, thus eliminating the geometrical error from the 

numerical solution. They are attractive for evaluation of numerical methods also because 

of their sharp edges and corners, in the vicinity of which the fields and currents exhibit 

singular, and challenging to model and capture, behavior. Although analytical solutions 

do not exist for these models, experimental results and highly accurate numerical 

solutions (carefully checked for convergence in a considered frequency range), obtained 

by one of the industry‘s leading commercial software tools for full wave EM analysis – 

WIPL-D, is used for validations and comparisons. Spherical scatterers, on the other hand, 

are excellent evaluation and benchmarking models because the analytical solutions for 

them exist in the form of Mie‘s series, allowing exact validation of numerical solutions 

and rigorous judging of the numerical accuracy. Additionally, they are objects with 

pronounced curvature, which is always a challenge for modeling from the geometrical 
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point of view (in fact, spheres are customarily taken as examples of difficulties with 

modeling of curvature by many researchers). Spherical scatterers are therefore convenient 

for analysis of higher order solutions involving curved large-domain Lagrange-type 

quadrilaterals and hexahedra. 

The direct solution to EM (scattering) problems analyzed by the MoM-SIE technique is 

the (equivalent) surface current distribution on the scatterer surface(s). The quality of the 

solution can thus be most naturally (from the mathematical point of view) judged by 

examining an error associated with the current distribution (e.g., in an average or an RMS 

sense). However, in this study, we take a more practical approach and adopt the radar 

cross-section (RCS), which is most frequently the quantity of interest that is measured 

and simulated in real EM scattering applications, to be the quantity of choice for our 

assessment of the solution accuracy. We also construct a simple metric, the absolute RCS 

error in dB, for error evaluation. We evaluate the absolute RCS error in FEM-MoM 

computations as well. 

To cope with the still abundantly large number of possible parameter variations and 

experimentation scenarios, we adopt the following systematic analysis procedure and 

strategy. In all examples, we start with the simplest model (E=1×1) and analyze (a) the 

absolute monostatic RCS error, computed as |RCSnumerical‒RCSreference| in dB, for a fixed 

high NGL (NGL=20) vs. the model electrical size and (b) the average absolute RCS 

error, averaged over multiple electrical sizes of elements in a reasonable frequency range, 

where the elements are electrically small enough to yield accurate solutions, vs. NGL. 

Both analyses are carried out for a series of polynomial orders N, and respective families 

of curves are generated. In analysis of the error vs. the model size [analysis (a)], we seek, 
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for every N, the a/ (or a/0) limit for which the model yields a solution with an error not 

significantly higher than 0.1dB (in graphs, we truncate the error curves when the error 

becomes much higher than 1dB – for the clarity of the graph) and note how this limit 

increases with increasing N (p-refinement). In analysis of the average error vs. NGL 

[analysis (b)], we seek the optimal N, for which the average error is small enough (below 

0.1dB) and does not improve much with further p-refinement, and the corresponding 

NGL. We consider the accuracy of RCS simulation results with an error lower than 

0.1dB to be excellent in terms of practical relevance, since the minimum uncertainty 

(error) in RCS measurements and calibrations is almost never at or below the 0.2dB level 

[68-70], and the errors lower than 0.1dB are practically undetectable. In other words, 

based on the obtained results, we draw conclusions about the convergence of the results 

with increasing N (p-refinement), maximum electrical size of the elements, e (in terms of 

 or 0), that can be analyzed using sufficiently high N (beyond which h-refinement 

should be performed), the highest N that can be reasonably used, and the optimal N and 

NGL. We then h-refine the model mesh and repeat the procedure. For spheres, we go 

through the same steps using curved Lagrange-type elements with fixed K=2 and K=4, 

respectively. Finally, we perform higher order RCS analysis of the NASA almond [71], 

which is an EMCC (Electromagnetic Code Consortium) benchmark target and one of the 

most popular benchmarking examples for both research and commercial CEM codes. 
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4. NUMERICAL RESULTS AND DISCUSSION: OPTIMAL MODELING 

PARAMETERS AND PARAMETER LIMITS 

 

4.1. Optimal Higher Order Modeling Parameters for MoM-SIE Scattering Analysis 

of a Metallic Cube 

   We first present the higher order MoM-SIE scattering analysis of a metallic (PEC) cube 

(with a=1m), starting with the simplest model (E=1×1) of the scatterer. Based on the 

results in Fig. 4.2, we conclude that the model is accurately simulated up to a limit of 

a/0=2 (element edge size amounts to e= 20) using N=6 or (depending on the desired 

accuracy level)  up  to  a/0=3  with  N=7, and that even  a  model  as large as 

a/0=3.5 in electrical size of the element edge may be considered to be usable (for some 

engineering applications) if N=8 is employed. From Fig. 4.3, where, for the average 

error, we take into account the conservative maximum element size (before h-refinement) 

of e= 20, we realize (looking at the ―knee‖ points of the curves) that NGL=N+2 is 

optimal for all orders N (N=5,6,7,and8) providing very accurate results (error smaller 

than 0.1dB). Orders N>8 are not recommended as they do not yield better results – they 

neither significantly increase the analyzable model size nor improve the average accuracy 

of the solution in the reasonable frequency range. Based on all of the above, we select the 

overall optimal choice of parameters to be N=6 and NGL=8 (for e= 20), and compute 
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and plot the normalized RCS in Fig. 4.4, where we also plot the results for N=8 and 

NGL=10 for the less conservative maximum element size (e= 30), as well as the 

measured RCS [72]. If elements smaller than optimal have to be used, which may be 

mandated by the geometrical or material complexity of the structure under consideration, 

the optimal polynomial orders are reduced by one for every reduction of the element size 

by 0.50; for instance, based (preliminary) on Fig. 4.2, N=5 is optimal for 

0<e≤1.50 while N=4 is the best choice if 0.50<e≤0 (this will be explored more 

in studies with hp-refinements). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1. Higher order MoM-SIE scattering analysis of a metallic cube with E=1×1 

(K=1). 
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Fig. 4.2. Higher order MoM-SIE scattering analysis of a metallic cube with E=1×1 

(K=1): absolute RCS error for NGL=20 and a series of orders N (p-refinement) vs. the 

model electrical size. 
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Fig. 4.3. Higher order MoM-SIE scattering analysis of a metallic cube with E=1×1 

(K=1): absolute RCS error averaged over multiple values of a/0 in a frequency range 

corresponding to reasonable model sizes, a/0≤2 (conservative maximum model size), 

with a series of N values vs. NGL. 
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Fig. 4.4. Higher order MoM-SIE scattering analysis of a metallic cube with E=1×1 

(K=1): the optimal solution (N=6 and NGL=8 for e= 20), along with the results for 

N=8 and NGL=10 (for e= 30) and measured data [72].  

 

 

We then h-refine the cube model mesh to E=2×2 and repeat the procedure. From the 

results in Fig. 4.6, we see that the model is accurately analyzed up to a/0=4 (e= 20) 

using N=6, and even to a/0=6 (e= 30) with N=8. Based on Fig. 4.7, we conclude 

that – for N=5,6,7,and8 – NGL=N+2 is optimal (―knees‖ of curves‖), as well as 

that the optimal polynomial orderis again N=6 (with NGL=8), while orders N=9 and 

higher are not recommended. The normalized RCS for the more conservative (N=6, e= 

20) and less conservative (N=8, e= 30) optimal solutions is shown in Fig. 4.8. 
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Fig. 4.5. MoM-SIE analysis of a metallic cube with E=2×2. 

 

 

 

Fig. 4.6. MoM-SIE analysis of a metallic cube with E=2×2:  RCS error for NGL=20 

and p-refinement. 
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Fig. 4.7. MoM-SIE analysis of a metallic cube with E=2×2: average RCS error for 

reasonable model sizes, a/0≤4, with p-refinement vs. NGL. 
 

 

Fig. 4.8. MoM-SIE analysis of a metallic cube with E=2×2: (c) the optimal solution for 

both N=6 (e= 20) and N=8 (e= 30). 
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Finally, for E=3×3, the results in Fig. 4.10 tell us that the model is accurate up to 

a/0=6 (e= 20) for N=6, and even higher (for N=7). From Fig. 4.11, NGL=N+2 is 

optimal, for N=5,6,and7,  and the optimal N, for e= 20, comes out to be N=6 (with 

NGL=8). Fig. 4.12 shows the optimal solution for both e= 20 and e= 30. In addition, 

Fig. 4.13 tells us that if elements up toe=0.50 in size are used, orders N=2 or 3 

provide accurate results, N=3 or 4 suffices, based on Fig. 4.14, for e≤0, and N=4 or 

5 should be used if the maximum element size in the model is e=1.50, Fig. 4.15, where, 

in all cases, NGL=N+2 (―knee‖ points of the curves) is the optimal choice. 

 

 

 

 

 

 

 

 

Fig. 4.9. MoM-SIE simulations of a metallic cube with E=3×3. 
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Fig. 4.10. MoM-SIE simulations of a metallic cube with E=3×3: RCS error vs. a/0 

(NGL=20). 
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Fig. 4.11. MoM-SIE simulations of a metallic cube with E=3×3: RCS error averaged 

over reasonable model sizes up to a/0=6 or e= 20 (conservative choice). 
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Fig. 4.12. MoM-SIE simulations of a metallic cube with E=3×3: the optimal solution 

(for both e= 20 and e= 30). 

 

0 2 4 6 8 10 12 14 16 18 20
1E-3

0.01

0.1

1

10

A
v
e

ra
g

e
 R

C
S

 E
rr

o
r 

(u
p

 t
o

 a
/

0
 =

 1
.5

) 
[d

B
]

NGL

 N = 2

 N = 3

 N = 4

 N = 5

 N = 6

 

Fig. 4.13. Average RCS error in the MoM-SIE analysis of a metallic cube with E=3×3 

for e≤0.50. 
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Fig. 4.14. Average RCS error in the MoM-SIE analysis of a metallic cube with E=3×3 

for e≤0. 
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Fig. 4.15. Average RCS error in the MoM-SIE analysis of a metallic cube with E=3×3 

for e≤1.50. 
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General conclusions for the higher order MoM-SIE scattering analysis of a metallic 

cube are that the optimal (or nearly optimal) choice of polynomial orders of basis and 

testing functions and orders of Gauss-Legendre integration formulas is given by N=6 

and NGL=8, respectively. The mesh should be h-refined if the element edge size 

becomes greater than e= 20 (conservative option). If elements smaller than optimal are 

to be used, the optimal polynomial orders are N=2 for e≤0.250, N=3 for 

0.250<e≤0.50, N=4 for 0.50<e≤0, N=5 for 0<e≤1.50, and N=6 for 

1.50<e≤20. Hence, the minimum average total number of unknowns [the number of 

coefficients {} in (3), for the whole model] per wavelength for accurate RCS analysis 

amounts approximately to 11.3 if N=2 is used, to 8.5 if N=3, to 5.7 for N=4, to 4.7 

for N=5, and to 4.2 if N=6 is implemented in the model. Orders N>8 are not 

recommended to be used (h-refinement should be performed instead). It is generally 

optimal to use NGL=N+2 for any N. It is generally not recommended to increase NGL 

any further, except in order to verify the solution stability. 

 

4.2. Optimal Higher Order Modeling Parameters for MoM-SIE Scattering Analysis 

of a Dielectric Cube 

Next, we carry out the numerical investigation of higher order modeling parameters in 

the MoM-SIE analysis of a dielectric cube scatterer (with a=1m and r=4). For the 

simplest model (E=1×1), results in Fig. 4.17 indicate that the computation is accurate 

up to a/=2 (element edge size is e= 2) using N=5 or 6, while adoption of a larger N 

can extend the analyzable size even further. According to Fig. 4.18, we realize that the 
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polynomial orders N=5 or 6 are optimal, for NGL=N+2 (see the ―knee‖ points of the 

curves), while orders N=7 and higher are not recommended. The normalized RCS of the 

cube using the optimal set of parameters N=6 and NGL=8 is shown in Fig. 4.19. 

 

 

 

 

 

 

Fig. 4.16. Higher order MoM-SIE computation of a dielectric cube scatterer with 

E=1×1. 

 

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R
C

S
 E

rr
o

r 
[d

B
]

a/

 N = 2

 N = 3

 N = 4

 N = 5

 N = 6

 N = 7

 

Fig. 4.17. Higher order MoM-SIE computation of a dielectric cube scatterer with 

E=1×1: absolute RCS error for NGL=20 and p-refinement vs. the model electrical 

size. 
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Fig. 4.18. Higher order MoM-SIE computation of a dielectric cube scatterer with 

E=1×1: absolute RCS error averaged over multiple reasonable model sizes, a/≤2, 

with p-refinement vs. NGL. 
 

 

Fig. 4.19. Higher order MoM-SIE computation of a dielectric cube scatterer with 

E=1×1: the optimal solution (the results are shown also beyond the reasonable range, 

i.e., up to a/=3).  
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For the mesh with E=2×2, the results in Fig. 4.21 are accurate up to a/=4 (e= 2, 

again) for N=6. Using N=7 increases this range up to a/=4.5. From Fig. 4.22, we 

conclude that NGL=N+2 is consistently optimal, as well as that the optimal polynomial 

orderis again N=6, while orders N=7 and higher are not recommended. The optimal 

solution is presented in Fig. 4.23. We also see, in Fig. 4.21, that N=2 or 3 is optimal for 

e≤0.5a/≤1), N=4 is the best choice for 0.5<e≤, and N=5 should be adopted 

for <e≤1.5

Results in Figs. 4.25–4.27 for the model of the dielectric cube scatterer with E=3×3 

yield identical conclusions as those in Figs. 4.21–4.23.  

 

 

 

 

 

 

 

 

Fig. 4.20. MoM-SIE simulations of a dielectric cube with E=2×2. 
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Fig. 4.21. MoM-SIE simulations of a dielectric cube with E=2×2: RCS error vs. the 

model electrical size (NGL=20). 
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Fig. 4.22. MoM-SIE simulations of a dielectric cube with E=2×2: average RCS error 

for reasonable model sizes, a/≤4, vs. NGL. 
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Fig. 4.23. MoM-SIE simulations of a dielectric cube with E=2×2: the optimal solution 

(shown within the reasonable range and above it, up to a/=5.5).  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Fig. 4.24. MoM-SIE analysis of a dielectric cube with E=3×3. 
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Fig. 4.25. MoM-SIE analysis of a dielectric cube with E=3×3: RCS error (NGL=20). 
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Fig. 4.26. MoM-SIE analysis of a dielectric cube with E=3×3: average RCS error for 

reasonable model sizes up to a/=6. 
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Fig. 4.27. MoM-SIE analysis of a dielectric cube with E=3×3: the optimal solution 

(shown across and beyond the reasonable range). 

 

 

Overall, the conclusions are practically the same as in the analysis of metallic scatterers, 

that N=6 and NGL=8 constitute the optimal (or very close to optimal) choice for 

MoM-SIE expansion polynomial orders and numbers of Gauss-Legendre integration 

points, respectively, that the mesh should be refined for elmements larger than e= 2 in 

edge length, which corresponds to the conservative maximum element edge length 

selection for metallic scatterers of e= 20, that the optimal orders N are reduced by one 

for every reduction of the element size by 0.5 if elements smaller than optimal have  to  

be  used,  and  that  setting  NGL=N+2  is generally optimal for any N.  
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4.3. Optimal Higher Order Modeling Parameters for MoM-SIE Scattering Analysis 

of a Dielectric Sphere 

The next example is a dielectric spherical scatterer (with a=1m and r=4) analyzed 

using the higher order MoM-SIE technique, and the first geometrical model is 

characterized by E=1×1 and K=2. From the results in Fig. 4.28, we realize that the 

solution accuracy is limited by the accuracy of the geometrical model, and that it cannot 

be improved by p-refinement. For an h-refined model with E=2×2 and K=2, we 

observe, in Fig. 4.29, that the model enables accurate simulations up to a/=1 or d/=2 

(d is the diameter of the sphere), with the elements being about e= 0.8 across, for N=2, 

and up to a/=1.75 or d/=3.5 (e= 1.4 ) for N=3, while, based on Fig. 4.30, 

NGL=N+1 is an optimal choice. High-order basis functions (N≥4) cannot be 

efficiently used due to the geometrical inaccuracy of the model. 

We then increase the element geometrical orders in the E=1×1 model of the sphere to 

K=4 and repeat the procedure.  Results in Fig. 4.32 indicate that  the  model  can now be 

accurately simulated up to at least a/=1.3 or d/=2.6 (e= 2) with N=6. According 

to Fig. 4.33, the average RCS error is very small (0.068dB) for N=4 and NGL=6, and 

does not improve much with further p-refinement, due to small geometrical inaccuracy 

(e.g., setting N=6 and NGL=8 yields a 0.057dB error), while generally optimal orders 

of Gauss-Legendre integration formulas are (observing the ―knees‖ of the respective 

curves) NGL=N+2 (for any N). It turns out that we can now take advantage of high-

order basis functions due to significantly higher geometrical accuracy of the model than 
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Fig. 4.28. Higher order MoM-SIE analysis of a dielectric spherical scatterer with K=2: 

average RCS error for E=1×1 and p-refinement (unsuccessful) vs. NGL. 

 

 

Fig. 4.29. Higher order MoM-SIE analysis of a dielectric spherical scatterer with K=2: 

RCS error for E=2×2, NGL=20, and two lower values of N vs. the model electrical 

size. 
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Fig. 4.30. Higher order MoM-SIE analysis of a dielectric spherical scatterer with K=2: 

RCS error for E=2×2 averaged for multiple reasonable model sizes, d/≤2, vs. NGL.   

 

 

with K=2. However, orders N≥8 are not recommended, since they do not yield better 

average errors. The optimal solution, for N=6, is given in Fig. 4.34. Note that all 

conclusions are essentially the same as for the dielectric cube. Note also that the same 

conclusions are obtained for a metallic (PEC) spherical scatterer as well. 

 

 

 

 

 

 

Fig. 4.31. MoM-SIE scattering computation of a dielectric sphere with E=1×1 and 

K=4. 
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Fig. 4.32. MoM-SIE scattering computation of a dielectric sphere with E=1×1 and 

K=4: RCS error vs. the model electrical size (NGL=20). 
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Fig. 4.33. MoM-SIE scattering computation of a dielectric sphere with E=1×1 and 

K=4: average RCS error for reasonable model sizes up to d/=2.6 vs. NGL. 
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Fig. 4.34. MoM-SIE scattering computation of a dielectric sphere with E=1×1 and 

K=4: the optimal solution (shown within and above the reasonable range). 

 

4.4. Optimal Higher Order Modeling Parameters for FEM-MoM Scattering 

Analysis of a Dielectric Cube 

We next conduct a numerical study of higher order modeling parameters in the hybrid 

FEM-MoM scattering analysis of a dielectric cube (a=1m and r=4), adopting the 

simplest model possible, with E=1×1 (one FEM and six MoM elements). We sweep 

polynomial orders for FEM field expansions from NFEM=3 to 11 and for MoM current 

expansions from NMoM=2 to 13, keeping a conservative choice of orders of Gauss-

Legendre integration formulas given by NGLMoM=NMoM+4 (higher than optimal 

according to the MoM-SIE studies) and adopting the same choice for the FEM part, 

NGLFEM=NFEM+4. Fig. 4.35 shows that the minimal order sums NFEM+NMoM (thick 
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gray curve) for any given error are achieved when parameter NFEMNMoM equals 1 or 2. 

However, we realize that NFEM is the accuracy limiting factor (light yellow areas), and 

hence the choice that gives the minimal order sum is NFEMNMoM=1 (green curve). 

Note that the light yellow ribbons (constant NFEM) are depicted for the first 5 curves only 

(excluding the blue and magenta curves). These ribbons would be shifted higher (larger 

error) for the NFEMNMoM =+2 curve and even higher for the NFEMNMoM =+3 curve. 

So, the conclusion is that the optimal order separation between NFEM and NMoM is unity. 

This can be attributed to the fact that dominant FEM-MoM inner products are normally 

those between FEM and MoM basis functions in the same direction, whose maximal 

orders are offset by one in the mixed-order arrangement for curl-conforming functions in 

(7) with respect to that for divergence-conforming functions in (3). 
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Fig. 4.35. Higher order FEM-MoM scattering analysis of a dielectric cube with E=1×1: 

RCS error averaged for multiple reasonable model sizes, up to a/=2, for different 

polynomial orders NFEM and NMoM. 
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Finally, to determine the optimal NGL and N in the FEM-MoM analysis, we simulate 

the same dielectric scatterer employing the optimal NFEMNMoM=1 and systematically 

varying NFEM from 5 to 10, and plot the graphs in Figs. 4.36 and 4.37. To reduce the 

number of combinations and computations, we also adopt NGLFEMNGLMoM=1. Based 

on Fig. 4.36, we conclude that the cube can be very accurately analyzed up to a/=2 

(e= 2) using NFEM=7and NMoM=6. From Fig. 4.37, on the other side, we obtain that 

the generally optimal NGLFEM (―knees‖ of the curves) is NGLFEM=NFEM+1 for any 

NFEM (but higher NGLs can be used as well), and that the overall optimal orders come out 

to be NFEM=7, NMoM=6, NGLFEM=8,and NGLMoM=7. This conclusion is consistent 

with conclusions drawn for the same scatterer analyzed by the MoM-SIE technique, 

where NMoM-SIE=6 and e= 2 is the optimal choice as well. 

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R
C

S
 E

rr
o
r 

[d
B

]

a/

 N
MoM

=4, N
FEM

=5

 N
MoM

=5, N
FEM

=6

 N
MoM

=6, N
FEM

=7

 N
MoM

=7, N
FEM

=8

 N
MoM

=8, N
FEM

=9

 

Fig. 4.36. Higher order FEM-MoM scattering analysis of a dielectric cube with E=1×1: 

absolute RCS error for a series of values for NFEM (NFEMNMoM=1) vs. the electrical 

size of the scatterer (NGLFEM=20 and NGLMoM=19). 
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Fig. 4.37. Higher order FEM-MoM scattering analysis of a dielectric cube with E=1×1: 

and average RCS error for reasonable model sizes, a/≤2, with p-refinement vs. NGL 

(NGLFEMNGLMoM=1). 

 

4.5. Computational Time  

To further emphasize the importance of knowing and using the optimal (or nearly 

optimal) N and NGL in a higher order computational EM model, and thus not adopting 

their values in an ad hoc manner and higher than reasonable or necessary, Fig. 13 

provides the graphs of the computational times for the MoM-SIE simulations of the 

simplest model of the dielectric cube scatterer. It is apparent from the figure that 

increasing N beyond 6 or 7 and NGL beyond 10 can be very costly. We also see that, for 

the generally optimal choice of N=6, the simulation time is 31% longer if NGL=N+4 

is used instead of the generally optimal NGL=N+2. If a ―brute-force‖ adoption of 

NGL=20 is employed, the simulation time is 742% longer. Hence, optimizing both N 
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and NGL is more than worthwhile and justified as far as the computational time is 

concerned. In addition, using geometrical orders higher than K=4 also results in a large 

increase of computational time, and is thus not recommended. 
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Fig. 13. Computational time for the MoM-SIE scattering analysis of a dielectric cube 

(E=1×1) in 100 frequency points as a function of modeling parameters N and NGL. 

 

4.6. Higher Order MoM-SIE RCS Analysis of the NASA Almond 

As the last example, we perform higher order MoM-SIE RCS analysis of the NASA 

almond, a benchmark target established by the Electromagnetic Code Consortium 

(EMCC) [71]. The length of the almond is d = 9.936 inches (25.24 cm). Its geometry is 

defined by the following equations [71] in terms of the Cartesian coordinate system as in 

Fig. 4.31:       

for 041667.0  t  and   t  

dtx  inches                                                                                                                   (4.1) 

cos
416667.0

1193333.0

2











t
dy                                                                            (4.2)
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sin
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1064444.0
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
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t
dz                                                                            (4.3) 

 

for 58333.00  t  and   t  

 dtx  inches                                                                                                                 (4.4)
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
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t
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First, we analyze the almond at a frequency of f=1.19GHz (0=25.21cm).  Fig. 4.31 

shows a model of the almond built [based on geometrical equations (4.1)-(4.6)] using 

M=56 quadrilateral curved elements with K=2, N=2, and NGL=4 (all elements are 

in the e≤0.250 range), resulting in a total of only 448 unknowns (with no use of 

symmetry). The higher order simulation results for the RCS of the almond are compared 

in Fig. 4.32 with the results obtained by WIPL-D and FEKO [73], respectively, as well as 

with measurements [71]. We observe an excellent mutual agreement of the three sets of 

numerical results and their good agreement with the measurements – for the parameters 

in the higher order model selected exactly according to the established recipes for 

adoption of higher order modeling parameters for elements smaller than optimal. 
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Fig. 4.31. Higher order MoM-SIE scattering analysis of the NASA metallic almond at 

f=1.19GHz [71]: geometrical model with M=56 curved (K=2) quadrilateral 

elements.  
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Fig. 4.32. Higher order MoM-SIE scattering analysis of the NASA metallic almond at 

f=1.19GHz: comparison of the simulation results for the RCS of the almond as a 

function of the azimuthal angle (the elevation angle is zero) for the horizontal (HH) and 

vertical (VV) polarizations, respectively, with the numerical results obtained by WIPL-D 

and FEKO [73], as well as with the results of measurements [71]. 
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     Next, we analyze the NASA almond at a frequency of f=7GHz (0=4.29cm). Here, 

we use two geometrical models, both with K=2 and M=56 (226 interpolation nodes): 

the first model is the one shown in Fig. 4.31 (all elements are now in the e≤1.50 range), 

while the second one ensures a more uniform distribution of interpolation nodes at the 

expense of having an edge (shared by adjacent patches) along the lateral perimeter of the 

almond – as depicted in Fig. 4.33. We observe in Figs. 4.34-4.37 an excellent 

convergence of higher order MoM-SIE results with p-refinement, namely, with 

increasing Nfrom N=2 to N=7 (NGL=N+2 in all cases), as well as an excellent 

agreement of all results with measurements. However, we also realize that the 

geometrical model in Fig. 4.33 performs better, when compared to experimental results, 

than the model in Fig. 4.31 for azimuthal angles from 0 to 20 degrees for the HH 

polarization and for 80 – 100 degrees for the VV polarization.   
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Fig. 4.33. Second geometrical model with M=56 and K=2 of the NASA almond, used 

at f=7GHz: the model ensures a more uniform distribution of interpolation nodes, while 

having an edge (shared by adjacent patches) along the lateral perimeter of the almond. 
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Fig. 4.34. Higher order MoM-SIE scattering analysis of the NASA metallic almond at 

f=7GHz using the geometrical model in Fig. 4.31: comparison of the simulation results 

for the RCS of the almond for the horizontal (HH) polarization with the numerical results 

obtained by WIPL-D and with the results of measurements [71].  
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Fig. 4.35. Higher order MoM-SIE scattering analysis of the NASA metallic almond at 

f=7GHz using the geometrical model in Fig. 4.31: comparison of the simulation results 

for the RCS of the almond for the vertical (VV) polarization with the numerical results 

obtained by WIPL-D and with the results of measurements [71].  
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Fig. 4.36. Higher order MoM-SIE RCS analysis of the NASA almond at f=7GHz for 

the HH polarization using the geometrical model in Fig. 4.33: comparison with the 

numerical results obtained by WIPL-D and with the experimental results [71].  
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Fig. 4.37. Higher order MoM-SIE RCS analysis of the NASA almond at f=7GHz for 

the VV polarization using the geometrical model in Fig. 4.33: comparison with the 

numerical results obtained by WIPL-D and with the experimental results [71].  
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5. CONCLUSIONS: OPTIMAL MODELING PARAMETERS AND PARAMETER 

LIMITS 

 

The previous two chapters have investigated and evaluated the behavior of higher order 

hierarchical MoM-SIE and FEM-MoM numerical solutions to electromagnetic scattering 

problems by running an exhaustive series of simulations and systematically varying and 

studying the key higher order modeling parameters and their influence on the solutions. 

Based on numerical experiments and comprehensive case studies on symmetric canonical 

models that allow using elements with isotropic higher order parameters and uniform 

meshes (to limit the combinatorial space of the parameters in investigations), this work 

has established and validated general guidelines and instructions, and as precise as 

possible quantitative recipes, for adoptions of optimal higher order and large-domain 

parameters for electromagnetic modeling, within the class of CEM approaches and 

techniques considered. The modeling parameters considered (note that all these 

parameters can, theoretically, be arbitrary) are: electrical dimensions of elements 

(subdivisions) in the model, e/ (h-refinement), polynomial orders of basis and testing 

functions (p-refinement), N, orders of Gauss-Legendre integration formulas (numbers of 

integration points – integration accuracy), NGL, and geometrical orders of elements 

(orders of Lagrange-type curvature) in the model, K. In addition, higher order MoM-SIE 

RCS analysis of an EMCC benchmark target (NASA almond) has been performed. 
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Overall, the main conclusions of the study, which is the first such study of higher order 

parameters in CEM, can be summarized as follows. The MoM-SIE or FEM-MoM model 

should be h-refined if the dimensions of (flat or curved) elements become greater than 

e=2, with  standing for the wavelength in free space (0) in the case of metallic 

structures and for the wavelength in the dielectric for dielectric ones. The optimal (or 

nearly optimal) choice of orders N and NGL is given by N=6 and NGL=8, 

respectively, for both metallic and dielectric structures, with or without pronounced 

curvature. If elements smaller than optimal have to be used, due to the geometrical or 

material complexity of the structure, the optimal polynomial orders should be adopted as 

follows: N=1 for element sizes e≤0.1, N=2 for 0.1<e≤0.25, N=3 for 

0.25<e≤0.5, N=4 for 0.5<e≤, N=5 for <e≤1.5, and N=6 for 

1.5<e≤2. The minimum average total number of unknowns per wavelength for 

accurate RCS analysis amounts to about 14.1, 11.3, 8.5, 5.7, 4.7, and 4.2 if N=1, 2, 3, 4, 

5, and 6, respectively, is used in a higher order model of a PEC structure, while these 

numbers are doubled for dielectric scatterers. In hybrid FEM-MoM models, 

NFEMNMoM=1 is optimal. Polynomial orders higher than N=8 are not recommended 

to be used. It is generally optimal to use NGL=N+2 for any N. It is generally not 

recommended to increase NGL any further. For curved structures, K=2-4 is always a 

better choice than K=1; for surfaces with pronounced curvature, K=4 should be 

adopted in order to enable efficient use of high orders N on electrically large elements, 

while geometrical orders higher than that are not recommended. All conclusions are for 

computations in single precision. 
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The developed set of rules (recipes) for adopting the optimal simulation parameters in a 

typical higher order EM simulation and identified limits (perimeters) of the parameters 

for which valid and reasonable solutions of the EM problems can be obtained are meant 

to be built into a comprehensive knowledge base that should be of significant interest and 

value for MoM and FEM practitioners and application engineers using similar (or even 

not so similar) CEM software, and may result in considerable reductions of the overall 

simulation (modeling plus computation) time. For instance, computations involving 

unreasonably high or low polynomial orders of basis and testing functions and/or orders 

of Gauss-Legendre integration formulas, and unreasonable, too large or too small, 

electrical dimensions of elements in the model, as well as various unreasonable 

combinations of different choices, could result in meaningless models and simulations 

(that often cannot be refined) and/or in an unnecessarily extensive utilization of 

computational resources (e.g., orders of magnitude longer computational times). It should 

also be valuable to CEM research community in developing new higher order MoM and 

FEM computational methods and techniques, and to CEM software designers (e.g., in 

designing and building automatic or semi-automatic higher order meshes and models 

with optimally preset parameters).  

The ultimate goal of this present work and the continued future work in this area is to 

reduce the dilemmas and uncertainties associated with the great modeling flexibility in 

higher order CEM techniques in terms of the size and shape of elements and spans of 

approximation and testing functions, and to ease and facilitate the decisions to be made 

on how to actually use them, by both CEM developers and practitioners. The goal is for 

the class of approaches and techniques considered here and for the higher order CEM 
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modeling methodology in general to be an easily and confidently used analysis and 

design tool, with a minimum of expert interaction required to produce valuable results in 

practical applications. It is expected that other researchers will conduct similar studies 

with their methods and codes – to build this knowledge base further, although a 

significant overlap with the presented conclusions is expected, in both qualitative 

modeling concepts and guidelines and quantitative recipes for optimal parameters. This is 

especially important given that practically all future CEM techniques and codes will 

likely have some higher order properties, because such elements and bases exhibit 

excellent convergence, flexibility, and suitability for refinements and adaptive 

simulations. 
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6. TRANSIENT RESPONSE OF ELECTROMAGNETIC STRUCTURES BASED 

ON HIGHER ORDER ANALYSIS IN FREQUENCY DOMAIN 

 

6.1. Introduction: Time-from-Frequency-Domain FEM Solver 

The previous chapters dealt exclusively with MoM and FEM computations in the 

frequency domain, which is a much more explored and established area of CEM. 

However, time-domain analysis and characterization of electromagnetic structures and 

systems and evaluation of associated transient field and wave phenomena are also of 

great practical importance for a number of areas of applied electromagnetics, including 

wideband communication, electromagnetic compatibility, electromagnetic interference, 

packaging, high-speed microwave electronics, signal integrity, material characterization, 

and other applications. For this purpose, time-domain MoM and FEM techniques have 

recently been developed [74], allowing electromagnetic phenomena to be modeled 

directly in the time domain. In [75], for instance, the spatially and temporally varying 

electric field is approximated using interpolatory spatial vector basis functions defined on 

tetrahedral elements, with time-dependent field-distribution coefficients, which are 

determined solving the corresponding second-order ordinary differential equation in time 

by a time-marching procedure. When compared to frequency-domain solutions, time-
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domain MoM and FEM formulations enable effective modeling of time-varying and 

nonlinear problems and fast broadband simulations (provide broadband information in a 

single run), at the expense of the additional discretization – in time domain, and the 

associated numerical complexities, programming and implementation difficulties, and 

stability and other problems inherent for time-domain computational electromagnetic 

approaches.  

Here, in the realm of FEM computations, we present an alternative approach, an 

indirect time-domain analysis – namely, finding the time-domain response of a 

microwave passive structure based on the frequency-domain FEM analysis in conjunction 

with the discrete Fourier transform (DFT) and its inverse (IDFT). This approach seems to 

have not been exploited, primarily because it requires FEM solutions with many 

unknowns (unknown field-distribution coefficients to be determined) at many discrete 

frequency points, which may be very time consuming and computationally prohibitively 

costly. This chapter demonstrates exactly opposite – that with a highly efficient and 

appropriately designed frequency-domain FEM technique it is possible to obtain 

extremely fast and accurate time-domain solutions of microwave passive structures 

performing computations in the frequency domain along with the DFT/IDFT. The 

technique is a higher order large-domain Galerkin-type FEM for 3-D analysis of N-port 

waveguide structures with arbitrary metallic and dielectric discontinuities implementing 

curl-conforming hierarchical polynomial vector basis functions of arbitrarily high field-

approximation orders in conjunction with Lagrange-type curved hexahedral finite 

elements of arbitrary geometrical orders [26], coupled with standard DFT and IDFT 

algorithms. The technique appears to be the first time-from-frequency-domain FEM 
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solver. Note that a similar approach in the method of moments (MoM) framework (using 

WIPL-D code) is presented in [76]. 

 

6.2. Frequency-Domain FEM Analysis of 3-D Multiport Waveguide Structure with 

Arbitrary Discontinuities 

Consider a 3-D N-port waveguide structure with an arbitrary metallic and/or dielectric 

discontinuity shown in Fig. 6.1. In our analysis method [26], the computational domain is 

first truncated by introducing fictitious planar surfaces at each of the ports, and thus 

obtained closed structure is then tessellated using curvilinear geometrical elements  in the 

form of Lagrange-type generalized parametric hexahedra of arbitrary geometrical orders, 

shown in Fig. 6.1 and analytically described by (2.44). The electric fields inside the 

hexahedra are approximated by means of curl-conforming hierarchical-type vector basis 

functions in (2.47).   

 

Fig. 6.1.  3-D multiport waveguide structure with an arbitrary discontinuity [26]. 
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In a solution procedure, we invoke the curl-curl electric-field vector wave equation 

(2.43), a standard Galerkin-type weak form discretization of which is that in (2.49), 

where  the right-hand side term contains the surface integral only across the artificially 

introduced planar surfaces (waveguide ports). If the waveguide operates in the single-

mode regime (which is a standard assumption for practical microwave applications) and 

the ports are placed far enough from all discontinuities, it can be shown [27] that the 

boundary condition at the ports can be expressed as 

ports) (receiving

port)n (excitatio

0

)jexp(,j2
)(j)( 10100

incinc

10

10



 


zkEk

k zz

z

eEE
EnnEn , 

                                                                                                                             (6.1) 

where, for a rectangular waveguide, 22

010 )( akkz   is the wave number of the 

dominant mode (a is the larger dimension of the waveguide cross section), and inc
E  is 

the electric field of the TE10 wave, incident on the excitation port. This condition is much 

easier to implement and faster to compute than alternative multi-mode conditions. 

However, it has frequently been found to be impractical and computationally costly in 

traditional small-domain FEM models, due to the fact that placing the ports far from 

discontinuities (needed to ensure a single-mode simulation) requires a considerable 

number of additional elements to be employed, which significantly enlarges the 

computational domain and introduces a large number of new unknowns to be determined. 

On the other side, this major drawback can be very effectively overcome in the higher 

order large-domain waveguide modeling, by placing a single large element with a high 

field-approximation order in the longitudinal direction as a buffer zone between each port 

and the domain with discontinuities. The sufficient length of the buffer-element allows 
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for the higher modes excited at the discontinuity to relax before they reach the port, while 

the high-order field expansion in the longitudinal direction ensures the accurate 

approximation of the fields throughout the element, without introducing an unnecessarily 

large number of new unknowns. 

Substituting the field expansion (2.47) and the boundary condition (6.1) into (2.49) 

yields the following FEM matrix equation: 

}{j2}{) ][j][][ ( 1010

2

0 GkCkBkA zz   .                                (6.2) 

Matrix [A] is given by 
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A ,           (6.3) 

and similarly for matrices [B], [C], and [G], where the elements of the respective 

submatrices have the form  
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S

kjiuijkkji
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with analogous expressions for the elements corresponding to other combinations of field 

components. The assembly of a local system of linear equations of the form given by 
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(6.2) is repeated for each of the elements comprising the mesh, and the global connected 

system, again of the same form, solved for the unknown coefficients {}. Once they are 

known, the electric field E inside the structure in Fig. 6.1 is computed from (2.47), and 

the S-parameters of the structure are obtained as 

1
d 
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1Port
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21
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S eE ,                  (6.8) 

and so on.  

What is very important for finding the time-domain response of multiport waveguide 

structures based on the frequency-domain analysis, if the materials contained in the 

structure are dispersionless, integrals appearing in (6.4)-(6.7) are frequency independent. 

Therefore, for a multifrequency analysis of the same structure, which exactly is our case 

– where we need a large number of frequency samples of the resulting quantities (e.g., S-

parameters of the structure), these integrals can be calculated only once, conveniently 

stored, and then recalled during the problem solution for different excitation frequencies, 

since the only change in the global system is that of the wave number. This procedure 

significantly reduces the overall computational time for the time response calculation by 

allowing the global FEM matrix to be filled only once, at the expense of a considerably 

larger storage space that needs to be allocated, since matrices [A], [B], and [C] have to be 

stored separately. However, higher order large-domain FEM models of frequently 

encountered waveguide discontinuity structures require very small numbers of unknowns 

for high levels of accuracy, which makes them perfect for implementing the described 
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multifrequency solution acceleration procedure within the time-from-frequency-domain 

FEM solver.  

 

6.3. Time Response of a Multiport Waveguide Structure Based on Discrete Fourier 

Transform  

To obtain the transient response of the structure in Fig. 6.1, we excite one of its ports 

by a causal real signal )(0 tE  that is band-limited in the frequency domain. The signal is 

sampled at N uniformly spaced points over the total time period T, the time step thus 

amounting to NTt /   , where   t must satisfy the Nyquist sampling criterion, 

)2/(1  maxft  , i.e., the sampling rate, tf  /1s , must be at least twice the highest 

frequency in the spectrum of the signal, max f  [76].  We then compute the frequency-

domain response to this excitation, in its discrete (sampled) form, )(0 ntE , as 

)()()( 0 kkk fEfSfR  , where )(0 kfE  is the discrete Fourier transform (DFT) of )(0 ntE , 

given by 
















1

0

000

2
jexp)()()(

N

n

nk nk
N

tEkEfE


,    
N

f
kf k

s ,     1,...,1,0  Nk ,      (6.9) 

and )( kfS is the port-to-port frequency-domain transfer function (namely, an S-

parameter) of the structure, which can be defined for two different ports (e.g., 12S ) or for 

a single port (e.g., 11S ), and is obtained by the frequency-domain FEM based on (6.1)-

(6.8), (2.43), (2.44), (2.47) and (2.49), at frequencies kf  (  1,...,1,0  Nk ). In fact, 

since )()( * fSfS  , that is, )()( * kSkNS  , only 2/N  frequency points, for 0f , 
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suffice in the FEM analysis. Moreover, as the waveguides in Fig. 6.1 are assumed to 

operate in the single-mode (dominant-mode) regime, with buffer elements at the ports 

included in the FEM region ensuring the relaxation of the higher order modes, we 

implement a brick-wall band-pass filter to practically use only frequency samples within 

the dominant frequency range of the waveguide, between the cutoff frequency of the 

dominant mode and that of the next propagating mode in the structure. Finally, the 

transient response )( ntR  is evaluated as the inverse discrete Fourier transform (IDFT) of 

)( kfR , as follows: 


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N
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, tntn  ,  1,...,1,0  Nn .                (6.10) 

 

6.4. Numerical Results by the Higher Order FEM-DFT/IDFT Technique and 

Discussion 

   As the first numerical example, consider a homogeneous lossless dielectric post in a 

WR-90 rectangular waveguide [77], as shown in Fig. 6.3(a). The post is illuminated by an 

incident TE10 wave, and we calculate the modal S-parameters using the higher order 

large-domain FEM. In the analysis, we allow a certain distance between the waveguide 

ports, at which the S-parameters are calculated, and the discontinuity, as depicted in Fig. 

6.3(b), where the large-domain FEM model (mesh) is also shown. Note that only seven 

trilinear (Ku=Kv=Kw=1) hexahedral elements are sufficient to model the structure in 

this example. The polynomial field-expansion orders (Nu, Nv, and Nw) in the FEM 

simulation range from 4 to 7 in different elements and different directions. 
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(a) 

 

(b) 

Fig. 6.3. Dielectric ( 2.8r  ) post discontinuity in a WR-90 waveguide: (a) definition of 

the structure geometry ( mm 86.22a , mm 16.10b , mm 12c , and mm 6d ) [77] 

and (b) higher order large-domain FEM model (mesh) of the structure using generalized 

hexahedra in Fig. 6.2 ( mm 72.45e  and mm 24g ). 

 

   For the purpose of verification of the numerical results by an alternative computational 

technique, which is adopted in the form of a higher order method of moments (MoM) 

within the surface integral equation (SIE) approach [7], a special model is constructed, as 

shown in Fig. 6.4, where we first calculate the S-parameters between the two wire probes 
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with point-generators (ports 1‘ and 2‘), and then de-embed the modal S-parameters for 

the two-port section between ports 1 and 2 [78].  

 

Fig. 6.4. MoM-SIE model of the waveguide structure in Fig. 6.3: the model includes two 

waveguide feed sections required for the de-embedding of S-parameters. 

 

   The magnitudes of the computed S-parameters of the dielectrically loaded waveguide 

structure in Fig. 6.1 are plotted in Fig. 6.5. The results obtained by the higher order FEM 

are compared to the envelope-finite element (EVFE) results from [77] and to the results 

obtained by the MoM-SIE technique [7], and a very good agreement between the three 

sets of results is observed. Note that the results obtained by the FEM and MoM (both 

directly in the frequency domain) are practically identical in the lower half of the 

considered frequency range, while the EVFE results (extracted from a time-domain 

solution) are slightly different. The computational time required for the FEM simulation 

on a very modest laptop computer (IBM ThinkPad T60p with Intel® T7200 CPU at 

2.0 GHz) is 64 seconds for matrix filling (only once) and only 0.2 seconds for the 

solution for S-parameters per every frequency point. We consider this simulation to be 

extremely fast and suitable for large frequency sweeps necessary for the generation of 

transient responses.  
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Fig. 6.5. Frequency-domain results for S-parameters of the dielectrically loaded 

waveguide in Fig. 6.3. 

 

   We next calculate the transient response of the waveguide structure in Fig. 6.3 exciting 

it by a modulated Gaussian pulse expressed as [77] 

 V/m )(2sin4exp)( 0c
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where the carrier frequency is GHz 10c f , half bandwidth is GHz 5.2f , 

)/(4 fT   , and T 4.10 t . The parameters of DFT/IDFT calculations are as follows: 

the sampling frequency is GHz 200s f  (time step is ps 5/1 s  ft ) and the number 

of samples is 2048N ; in fact, we compute responses only at frequency points within 

the dominant frequency range of the waveguide. The obtained transient waveforms, 
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shown in Fig. 6.6(a)-(c), are in a good agreement with EVFE responses from [77], 

Fig. 6.6(d)-(f), having in mind that the two sets of results are obtained with different 

waveguide excitations – current probes in [77] (with no details provided), as opposed to 

modal excitations in this present work, as well as that no details are provided in [77] 

about the actual locations of reference planes with respect to which the responses are 

given.   
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  (d)              (e)            (f) 

Fig. 6.6. Transient waveforms of incident, reflected and transmitted waves for the structure in 

Fig. 6.3 and excitation in (6.11): (a)-(c) results obtained by the FEM-DFT/IDFT technique (note 

that rectified modulated signals are shown within the envelopes) and (d)-(f) EVFE results from 

[77]. 

 

   Based on a close analysis of the reflected wave, in Fig. 6.6(b), we realize that the two 

peaks occurring at ns 135.1refl1 t  and ns 5.1refl2 t  correspond to the waves reflected 
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from the front and rear sides of the dielectric post, respectively. Note also that, although 

the unloaded waveguide sections in front of and behind the post are equally long, the 

maximum of the transmitted wave, Fig. 6.6(c), arrives at the second port at ns 32.1trans t

, which is in between ref1lt  and refl2t . This can be attributed to the fact that the transmitted 

wave travels a slightly shorter distance (from port 1 to port 2) than the wave reflected 

from the rear side of the post (from port 1 to the rear side and back to port 1). 

Additionally, the wave reflected from the front side of the post travels only in air (hence, 

it is the fastest), the wave reflected from the rear side makes a round trip inside the 

dielectric post (which slows it down considerably), and the transmitted wave travels 

through the dielectric only in one direction (and thus its average speed is between those 

of the other two waves).   

   As the second example, consider a WR-15 waveguide loaded with a continuously 

inhomogeneous dielectric slab where 
2

r 89)( uu  , 11  u  and 1/2  czu , as 

portrayed in Fig. 6.7, where two simple large-domain FEM models are shown as well. 

The continuously inhomogeneous section can be either modeled by a single continuously 

inhomogeneous finite element or approximated by a series of piecewise homogeneous 

dielectric layers. In the former case, we use the FEM technique that implements large 

finite elements with continuous change of medium parameters throughout their volumes, 

based on Lagrange interpolating scheme for variations of medium parameters [61]. In the 

latter case, when the piecewise homogeneous approximation of the dielectric profile is 

implemented, the original slab is subdivided into lay ersN  equally thick layers with 
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individual permittivities calculated as an average permittivity of the original profile in the 

corresponding coordinate range, i.e.,  







zz

z

i

i

i

zz
z

d )(
1

rr  ,   
lay ersN
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z  ,    ziz i  )1( ,     lay ers,...,2,1 Ni  .         (6.12) 

Such piecewise constant permittivities for 3lay ersN , 5, and 7, respectively, are given in 

Table I. 

        

Fig. 6.7. Three-element higher order large-domain FEM model of a WR-15 waveguide (

mm 76.3a , mm 88.1b , and mm 5.2c ) with a continuously inhomogeneous 

lossless dielectric load (central element) whose permittivity varies quadratically in the 

longitudinal direction; five-layer ( 5lay ersN ) model of the load with piecewise constant 

approximation of the permittivity profile, according to (6.12), is also shown. 

 



92 
 

Table I. Dielectric permittivities constituting three piecewise homogeneous layered 

approximations of the continuously inhomogeneous dielectric slab in Fig. 6.7 obtained 

using (6.12).  

No. of layers 

( lay ersN ) 

Average permittivity of layers ( r ) 

L1 L2 L3 L4 L5 L6 L7 

3 5.14815 8.7037 5.14815     

5 3.77333 7.61333 8.89333 7.61333 3.77333   

7 3.06803 6.33333 8.29252 8.94558 8.29252 6.33333 3.06803 

 

   Results of the frequency-domain analysis of waveguide structure in Fig. 6.7 are shown 

in Fig. 6.8. In all the graphs, the higher order FEM solution with the continuously 

inhomogeneous model is compared to higher order FEM simulations of piecewise 

homogeneous models with 3lay ersN  and 7, respectively, and to higher order MoM-SIE 

[7] results for the 7lay ers N  approximate model (excitation/reception by wire probes and 

S-parameters de-embedding are done as in Fig. 6.4).  It is clearly seen in the four figures 

that the model with 3 layers provides a poor approximation of the continuous permittivity 

profile of the slab, yielding very inaccurate S-parameters in both magnitude and phase 

(both equally important for the accurate calculation of transient responses), and that 

seven (and more) layers are necessary to obtain a fairly good approximation of the profile 

resulting in a rather accurate S-parameter characterization. We also observe a practically 

exact match of the FEM and MoM solutions for the same 7lay ers N  model.  
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   (c)                                           (d) 

Fig. 6.8. Magnitude and phase (argument) of S-parameters of the waveguide structure 

with a continuously inhomogeneous dielectric load in Fig. 6.7.  

 

   For the transient analysis of the structure in Fig. 6.7, we employ the excitation in (6.11) 

with GHz 62c f  and GHz 15f . The sampling frequency is now GHz 1240s f       

( ps 8.0t ), whereas the numbers of time and frequency samples are the same as in Fig. 

6.6. The results of the FEM DFT/IDFT computation are shown in Fig. 6.9, where we 

conclude, as expected based on the frequency-domain results in Fig. 6.8, that the transient 
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response of the 3lay ersN  approximate model is significantly less accurate than that with 

7lay ers N , as compared to the FEM model with the inhomogeneous profile modeled 

exactly. 
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Fig. 6.9. Transient response of the structure in Fig. 6.7 computed by the FEM-DFT/IDFT 

technique: (a) incident wave, (b) reflected wave for the continuous permittivity profile, 

(c) reflected wave for the 3-layer approximation of the load (see Table I), and (d) 

reflected wave for the 7-layer approximation. 
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6.5. Conclusions: Efficient Time-Domain Analysis of Waveguide Discontinuities 

Using Higher Order FEM in Frequency Domain 

   This chapter has presented a computational technique for efficient and accurate time-

domain analysis of multiport waveguide structures with arbitrary metallic and dielectric 

discontinuities using a higher order FEM in the frequency domain. It has demonstrated 

that with a highly efficient and appropriately designed frequency-domain FEM solver, it 

is possible to obtain extremely fast and accurate time-domain solutions of microwave 

passive structures performing computations in the frequency domain along with the 

discrete Fourier transform and its inverse. The technique is a higher order large-domain 

Galerkin-type FEM for 3-D analysis of waveguide structures with discontinuities 

implementing curl-conforming hierarchical polynomial vector basis functions in 

conjunction with Lagrange-type curved hexahedral finite elements, coupled with standard 

DFT and IDFT algorithms. To close the waveguide problem, simple single-mode 

boundary condition and excitation have been introduced across the waveguide ports, with 

a large buffer finite element at each port to ensure relaxation of higher modes. The 

technique enables an extremely fast multifrequency analysis of a microwave structure, 

allowing the global FEM matrix to be filled only once and then reused for every 

subsequent frequency point, which is of great importance for the evaluation of the time-

domain response of the structure based on the frequency-domain analysis, where we need 

a large number of frequency samples of the resulting quantities (e.g., S-parameters of the 

structure). Numerical examples of waveguide structures that include homogeneous and 

continuously inhomogeneous dielectric discontinuities have validated and verified the 

accuracy and efficiency of the presented technique, which appears to be the first time-
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from-frequency-domain FEM solver. The examples have demonstrated excellent 

numerical properties of the technique primarily due to (i) very small total numbers of 

unknowns in higher order solutions, (ii) great modeling flexibility using large 

(homogeneous and inhomogeneous) finite elements, and (iii) extremely fast FEM 

solutions at multiple frequencies needed for the inverse Fourier transform.  
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7. FUTURE OBJECTIVES 

 

    Future research objectives include using the results of this research for the 

development of an improved front end for higher order large-domain techniques.  This 

front end should enable efficient and accurate modeling of practical electromagnetic 

structures with a minimum of expert interaction, which so far has not been the case in 

higher order CEM.  Specifically, from the starting point of a simulation input file, this 

front end function would find and optimize modeling parameters within the input file, 

thus removing the need for the user to determine the correct settings for those values.  

One of the main future tasks is validation and evaluation of the conclusions of this 

work in analysis of a broader range of electromagnetic structures with arbitrary 

geometries, electrical sizes, and material compositions. Generality and validity of 

established guidelines and quantitative recipes for adoptions of optimal higher order 

parameters for CEM modeling should be investigated in as many as possible different 

classes of real-world problems in antenna and scattering applications.  

   Additionally, it would be worthwhile to implement new basis functions constructed 

from standard orthogonal polynomials; candidate functions are classes of Legendre basis 

functions and Chebyshev functions.  Doing so would further expand the data set 

discussed in this dissertation, and would improve the functionality of the proposed front 

end function. 
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