THESIS

ENERGY EXPENDITURE PREDICTION VIA A FOOTWEAR-BASED PHYSICAL ACTIVITY

MONITOR: ACCURACY AND COMPARISON TO OTHER DEVICES

Submitted by
Kathryn Dannecker

Department of Health and Exercise Science

In partial fulfillment of the requirements
For the Degree of Master of Science
Colorado State University
Fort Collins, Colorado

Summer 2011

Master’s Committee:
Advisor: Raymond Browning

Matthew Hickey
Laura Bellows



ABSTRACT

ENERGY EXPENDITURE PREDICTION VIA A FOOTWEAR-BASED PHYSICAL ACTIVITY

MONITOR: ACCURACY AND COMPARISON TO OTHER DEVICES

Accurately estimating free-living energy expenditure (EE) is important for
monitoring or altering energy balance and quantifying levels of physical activity. The use
of accelerometers to monitor physical activity and estimate physical activity EE is
common in both research and consumer settings. Recent advances in physical activity
monitors include the ability to identify specific activities (e.g. stand vs. walk) which has
resulted in improved EE estimation accuracy. Recently, a multi-sensor footwear-based
physical activity monitor that is capable of achieving 98% activity identification accuracy
has been developed. However, no study has compared the EE estimation accuracy for
this monitor and compared this accuracy to other similar devices. PURPOSE: To
determine the accuracy of physical activity EE estimation of a footwear-based physical
activity monitor that uses an embedded accelerometer and insole pressure sensors and
to compare this accuracy against a variety of research and consumer physical activity
monitors. METHODS: Nineteen adults (10 male, 9 female), mass: 75.14 (17.1) kg, BMI:
25.07(4.6) kg/m? (mean (SD)), completed a four hour stay in a room calorimeter.

Participants wore a footwear-based physical activity monitor, as well as three physical



activity monitoring devices used in research: hip-mounted Actical and Actigraph
accelerometers and a multi-accelerometer IDEEA device with sensors secured to the
limb and chest. In addition, participants wore two consumer devices: Philips DirectLife
and Fitbit. Each individual performed a series of randomly assigned and ordered
postures/activities including lying, sitting (quietly and using a computer), standing,
walking, stepping, cycling, sweeping, as well as a period of self-selected activities. We
developed branched (i.e. activity specific) linear regression models to estimate EE from
the footwear-based device, and we used the manufacturer’s software to estimate EE for
all other devices. RESULTS: The shoe-based device was not significantly different than
the mean measured EE (476(20) vs. 478(18) kcal) (Mean(SE)), respectively, and had the
lowest root mean square error (RMSE) by two-fold (29.6 kcal (6.19%)). The IDEEA
(445(23) kcal) and DirecLlife (449(13) kcal) estimates of EE were also not different than
the measured EE. The Actigraph, Fitbit and Actical devices significantly underestimated
EE (339 (19) kcal, 363(18) kcal and 383(17) kcal, respectively (p<.05)). Root mean square
errors were 62.1 kcal (14%), 88.2 kcal(18%), 122.2 kcal (27%), 130.1 kcal (26%), and
143.2 kcal (28%) for DirectLife, IDEEA, Actigraph, Actical and Fitbit respectively.
CONCLUSIONS: The shoe based physical activity monitor was able to accurately
estimate EE. The research and consumer physical activity monitors tested have a wide
range of accuracy when estimating EE. Given the similar hardware of these devices,
these results suggest that the algorithms used to estimate EE are primarily responsible
for their accuracy, particularly the ability of the shoe-based device to estimate EE based

on activity classifications.
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CHAPTER |
INTRODUCTION

Adult and child obesity rates continue to rise despite a nationwide initiative to
lower overweight and obesity levels (U.S. Department of Health and Human Services,
2001). Over 60% of the United States population is currently overweight, and concerns
of the health risks associated with overweight and obesity are pervasive (Flegal, Carroll,
Ogden, & Curtin, 2010). Low levels of physical activity and sedentary lifestyles are
generally associated with weight gain because a lack of physical activity can resultin a
positive energy balance, where daily energy intake exceeds energy expenditure. Energy
intake consists of the calories we consume in the food we eat, whereas energy
expenditure (EE) includes the various ways that our bodies use energy (i.e. digestion,
organ function, physical activity). The magnitude of positive energy balance that results
in gradual weight gain may be as small as 25-100 kcal/day (Hill, Wyatt, Reed, & Peters,
2003). Changes to total daily energy expenditure (TEE) can be made primarily through
changes in physical activity energy expenditure (PAEE), either via exercise or non-
exercise activity thermogenesis (NEAT). NEAT consists of the energy expenditure
associated with all active, non-exercise activities (i.e. standing, walking, and other
activities of daily living) (Levine, 2002).

The benefits of regular physical activity for weight maintenance and weight loss

are well known (Hill & Wyatt, 2005), and recent data shows that prolonged sitting and
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sedentary lifestyles may increase the risk of common chronic diseases (Owen,
Sparling, Healy, Dunstan, & Matthews, 2010; Tremblay, Colley, Saunders, Healy, &
Owen, 2010). As a result, individuals attempting to lose or maintain weight are
recommended to modify their diets to reduce energy intake, sit less and increase
physical activity to increase EE. However, most methods to estimate free-living EE have
limitations that may prevent weight management success. Subjective measures of
energy intake and expenditure (i.e. self-report surveys) can increase energy balance
awareness but individuals typically under-report energy intake and over-report physical
activity (Corder, Ekelund, Steele, Wareham, & Brage, 2008; Walsh, Hunter, Sirikul, &
Gower, 2004). Objective EE assessment techniques include the gold-standard methods
of indirect calorimetry and doubly labeled water, but these methods are restricted to
research settings because they are expensive and/or require specialized technical
equipment. Therefore the best option for estimating EE is to use objective but minimally
obtrusive devices that accurately quantify NEAT and exercise PAEE. Objectively
measuring physical activity may help individuals make changes to their posture
allocation (e.g. reduce time spent sitting) and time spent engaged in physical
activity/exercise which may increase daily EE.

Accelerometers are a common sensor to measure the duration and intensity of
PA as they can measure acceleration of the body in up to three planes of motion. New
technology has resulted in small, relatively unobtrusive accelerometers, making them
appealing to both researchers and consumers. Accelerometers typically use validated

algorithms to estimate EE, achieving moderate to high accuracy at estimating PAEE in a



research setting (SE between 7.4% and 48.1% (Bonomi, Plasqui, Goris, & Westerterp,
2010; Crouter, Churilla, & Bassett, 2006)). However, accelerometers are less successful
when used in free-living environments (Plasqui & Westerterp, 2007a) as they tend to
underestimate PAEE and TEE (Crouter, Churilla, et al., 2006; Leenders, Sherman,
Nagaraja, & Kien, 2001). Additionally, non weight-bearing activities such as cycling are
poorly estimated using accelerometers (Hendelman, Miller, Baggett, Debold, &
Freedson, 2000). While there are several brands of accelerometers that are currently
used in research or are available to consumers, no study has examined the EE
estimation accuracy of these devices in a single study against a gold-standard measure
such as indirect room calorimetry.

Multi-sensor devices which consist of a combination of accelerometers, heart
rate monitors, gyroscopes, global positioning systems and/or other movement sensors
are successful at gathering information about the body’s position (i.e. posture) and level
of physical activity. These devices generally attain greater EE estimation accuracy than
single sensor devices. For example, accelerometers combined with heart rate provide
better estimates of energy expenditure especially at higher physical activity intensity
levels (Brage et al., 2004; S. E. Crouter, Albright, & Bassett, 2004). Zhang, Pi-Sunyer, and
Boozer used a device that included five motion sensors located on the chest, thighs and
feet (Zhang, Pi-Sunyer, & Boozer, 2004) and Hustvedt et al used a combination of
motion sensors, tilt switches and heart rate monitoring to estimate energy expenditure

with an accuracy of at least 90% (B.-E. Hustvedt et al., 2004). However, with the



addition of more sensors, these devices also tend to be obtrusive and may be
impractical for free-living use.

To further improve estimates of PAEE using an objective measuring tool, new
devices and algorithms that have the ability to detect posture and type of activity have
recently been developed. These devices/algorithms are able to more accurately
estimate PAEE as they can distinguish between activities that have different metabolic
rates (e.g. stand vs. walk) and use activity specific energy expenditure relationships
(Bonomi, Plasqui, Goris, & Westerterp, 2009; Staudenmayer, Pober, Crouter, Bassett, &
Freedson, 2009; V. van Hees & Ekelund, 2009). For instance, a neural network
developed by Staudenmayer et al. improved the activity specific root mean squared
error of the Actigraph accelerometer by up to 1.19 MET compared to the Freedson
regression equation (Staudenmayer, et al., 2009).

We have recently developed a footwear-based physical activity monitor that was
intended to do three things: classify activity, measure weight, and estimate energy
expenditure. In previous work, we demonstrated that this device is able to classify 6
major postures and activities (sitting, standing, walking, ascending stairs, descending
stairs and cycling) with 98% accuracy (Sazonov, Fulk, Hill, Schutz, & Browning, 2011). In a
follow-up study, activity classification was used to develop accurate activity-specific EE
estimation (Sazonova, Browning, & Sazonov, 2011) but other physical activity monitoring
devices were not tested simultaneously. Additionally, in order to improve the practicality
of this device for weight management, a new prototype has been developed that has

new accelerometry hardware and a new method of wireless communication with a



mobile phone. Therefore, this study aimed to validate the use of this footwear-based
physical activity monitor to estimate EE, while simultaneously estimating EE using
research and consumer devices. We hypothesized that the footwear-based device
would be able to estimate EE with 95% accuracy compared to room calorimetry by
classifying activities using pattern recognition techniques and applying activity-specific
EE models. Additionally, we hypothesized that research and consumer physical activity

monitoring devices would not be capable of achieving such accuracy at estimating EE.

Statement of Problem
The primary purpose of this study was to determine if a shoe-based device with
integrated pressure sensors and accelerometer is capable of accurately estimating
energy expenditure and posture allocation. A secondary purpose was to compare the
relative accuracies of consumer and research physical activity monitoring devices with

this prototype device.

Hypotheses
1. Ashoe-based physical activity monitoring device can estimate energy
expenditure with 95% accuracy as defined by a total error of less than 5%.
2. Consumer and research devices will have a range of accuracies lower than that

of the shoe-based device



Delimitations, Limitations and Assumptions

Subject selection was limited to lean to moderately obese individuals (BMI 18-35
kg/mz) between the ages of 18 and 45 years old. Participants were sedentary or
moderately active and participated in less than six hours of physical activity per week.
Exclusion criteria included pregnant or lactating women, individuals who smoke, report
alcohol or substance abuse, or report the use of pharmacologic steroids or obesity
pharmacotherapeutic agents. Subjects did not need to wear orthotics or have
orthopedic, psychologic or neurologic impairments that prevent physical activity. It was
assumed that if used properly, all calorimetry instrumentation gives valid and reliable

measures of metabolic rate.



CHAPTER Il

LITERATURE REVIEW

Childhood and adult obesity rates have continued to rise throughout the United
States and show no indication of improvement from year to year (Ker, 1999). In addition
to the increasing prevalence of obesity, recent studies suggest that Americans are
becoming more sedentary and the combination of obesity and sedentary lifestyles are
likely leading to increased incidence of diseases such as diabetes, heart disease,
hypertension and cancer (Bray, 2004). This is an extremely costly problem for the United
States, leading to about $90 billion spent annually in medical expenses (Friedman &
Fanning, 2004). A ten year initiative, Healthy People 2020, developed by the Department
of Health and Human Services began in the year 2010 called and provides nationwide
goals for the primary health concerns in the United States. Healthy People 2010 aimed
to reduce obesity rates to less than 15% in adults and less than five percent for children
by the year 2010. This goal was far from being achieved (Smith & Martin, 2007) as 68%
of adults and 17% of children are currently overweight (Nguyen & El-Serag, 2010).

Weight gain can be attributed to a positive energy balance, in which more
energy is being consumed than is being expended. Individuals attempting to lose weight

and lower their body mass index (BMI) are instructed to adjust their diets and



incorporate physical activity into their daily lives to increase energy expenditure (EE).
Measurements of posture allocation (i.e. time spent sitting and standing) are thought to
be good indicators of obesity, as obese individuals tend to be more sedentary (Levine et
al., 2005). Many people are unsuccessful at losing or maintaining weight, possibly due to
a lack of simple, objective and direct ways to track their posture allocation and activity
levels throughout the day. Simple, single sensor devices such as a pedometer, heart rate
monitor, global positioning system, and accelerometer can be used to measure physical
activity but are unable to reliably and accurately measure EE over a wide spectrum of
physical activities. Weight management monitors that incorporate a combination of
these single sensors may be better suited to accurately determine physical activity by

identifying the type of activity and making estimations of EE.

The obesity epidemic

Consequences of overweight and obesity

Overweight (BMI 25-30 kg/m?) and obesity (BMI > 30kg/m?) are some of the
most significant risk factors for many of our societies’” most prevalent diseases. Obesity
is caused by an accumulation of fat stores in the body which contributes to an increased
fat cell size and total body mass. An increase in fat mass can affect a person both
emotionally and physically, as it contributes to an unfavorable social stigma,
osteoarthritis, metabolic diseases, and disorders such as sleep apnea. (Bray, 2004)

The metabolic consequences of excess fat cells can lead to liver disease, gall

bladder disease, cardiovascular disease (CVD), diabetes and cancer. The Office of the



Surgeon General reported 80% of individuals with type 2 diabetes are considered
overweight or obese, and that modest weight gains of 11 to 18 pounds can result in a
two fold increase a person’s risk of developing type 2 diabetes over those who have not
gained weight (Freedson et al., 2008). The American Heart Association recognizes that
the obesity epidemic is a major contributor to increased incidence of coronary heart
disease (Eckel & Krauss, 1998). Meanwhile diabetes is one of the largest health risks and
fastest growing disorders in an overweight population (Boyle, Thompson, Gregg, Barker,
& Williamson, 2010).

Obesity is among the leading factors of preventable deaths in the United States.
The Office of the Surgeon General warns that obese individuals have a 50 to 100%
increased risk of death from all cause mortality compared to a healthy weight individual
(Freedson, et al., 2008). The risk of obesity-related death is positively correlated with
BMI, as Allison et al estimated that 80% of the obesity-attributable mortality occurred in
individuals with a BMI greater than 3Okg/m2 (Allison, Fontaine, Manson, Stevens, &
Vanltallie, 1999). Flegal and colleagues investigated the leading causes of mortality
associated with obesity in 2004 and determined that obesity-related mortality is most
commonly due to CVD, kidney disease or diabetes and cancer (Maclntyre, Hill, Fellows,
Ellis, & Wilson, 2006). Furthermore, obesity is linked to diseases that decrease life-span
as well as quality years of life. In a 33-year follow-up study, older obese individuals had
an equivalent risk of death due to coronary heart disease (CHD) as non-obese

hypertensive men. Additionally, younger obese individuals with low systolic blood



pressure had an increased risk of CHD mortality, and all obese individuals were among

those with the greatest risk for cancer death (Carmelli, Zhang, & Swan, 1997).

Physical activity and inactivity

As obesity levels have risen in recent years, physical activity levels have declined.
Similarly to obesity, physical inactivity is a modifiable condition that if left untreated
may lead to death from the advanced stages of diseases such as diabetes, CVD,
hypertension, stroke and cancer (Danaei et al., 2009). Danaei and colleagues estimated
that the death of one in ten individuals could be attributed to obesity, lack of physical
activity or high blood glucose, and many thousand more deaths to diseases associated
with other indicators of poor nutrition that often accompany weight gain (Danaei, et al.,
2009). However, there is strong evidence supporting the inverse relationship between
physical activity and cardiovascular risk factors such as blood pressure, diabetes and
obesity (Kokkinos, Sheriff, & Kheirbek, 2011). In addition to the role of physical activity
in preventing early death, disease and obesity, the benefits of physical activity include
strengthening bones and muscles, improving mental health and mood, and improving
the quality of life as we age (Physical Activity and Health, 2011).

There is an emerging body of literature linking sedentary lifestyles to
cardiovascular risk factors (Owen, et al., 2010; Tremblay, et al., 2010). Regardless of
time spent in moderate-to-vigorous physical activity, individuals who participate in more
sitting time are at higher risk of all-cause mortality (Patel et al., 2010) and greater waist

circumferences (Healy, Wijndaele, et al., 2008). Recently, Stamatakis and colleagues
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reported a direct relationship between television viewing hours and increased mortality
and CVD risk regardless of exercise participation. This relationship was partially
explained by inflammatory and metabolic risk factors which were thought to be a
consequence of prolonged sitting (Stamatakis, Hamer, & Dunstan, 2011). Furthermore,
frequent interruptions to sedentary time may have a positive effect, as Healey et al
measured periods of interrupted sedentary time using objective tools and concluded
that breaks in sedentary time correlate to fewer metabolic risk factors (Healy, Dunstan,

et al., 2008).

Preventing Obesity

The energy gap

Determining the cause of disease and mortality is complicated by the fact that
weight gain and physical inactivity have interacting effects explained by the energy
balance. Weight loss results from a “negative” energy imbalance when energy intake
(El) is equal to or less than energy expenditure (EE). Energy intake is the calories we
consume in the food we eat. Total energy expenditure, TEE, is comprised of several
measures: basal metabolic rate, more commonly measured as resting metabolic rate, is
the rate of energy expenditure associated with vital functions; thermic effect of food
which is the energy required to eat, digest, absorb, transport, metabolize and sort
unusable forms of energy consumed from food; and physical activity, which is the

energy associated with contracting skeletal muscles to move the body. Physical activity
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is the only modifiable contribution to TEE and can vary significantly within and between
individuals. (Keim, Blanton, & Kretsch, 2004)

The EE associated with physical activity can further be attributed to planned
exercise and lifestyle physical activity, also called non-exercise activity thermogenesis
(NEAT). NEAT is the energy expenditure not associated with sleeping, eating or planned
exercise (Donnelly et al., 2009), or in other words the energy expended to, walk, sit,
stand, perform household and other lifestyle activities. Measuring NEAT when
considering daily EE is important because it is estimated to account for a considerable
amount of total EE (Levine, Melanson, Westerterp, & Hill, 2001).

Sedentary lifestyles often result in a positive energy balance, where El exceeds
EE because fewer calories are being burned daily compared to the calories consumed.
Hill defined the energy gap as “the required change in energy expenditure relative to
energy intake necessary to restore energy balance.” In other words, it is the excess of
calories consumed, or deficiency in physical activity that need to be adjusted for in order
to maintain weight. Assuming a modest yearly weight gain, Hill estimated that a median
of just 15 Calories per day is consumed in excess, and 90% of the population could
overcome weight gain by increasing energy expenditure or reducing energy intake by
just 100 calories per day (Hill, et al., 2003). Others have estimated this number to be
more on the order of 300-400kcal per day (Swinburn et al., 2009), and there is currently
disagreement over the accuracy of both these estimates (Hall & Chow, 2010;

Heymsfield, 2009; Millward, 2010); however, the public health message is similar:
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increasing energy expenditure and/or decreasing energy intake by relatively small

amounts each day may prevent the weight gain that leads to overweight and obesity.

Behaviors contributing to obesity

Various behaviors unique to today’s society create an environment where EE
must occur by more intentional means, and opportunities for El are abundant. We are
therefore at risk of living a more sedentary and unhealthy lifestyle. Many communities
lack sidewalks and bike paths, or are designed having poor access to many locations by
foot. This discourages people from walking or biking, and averts children from playing
outside. As a result, the majority of Americans own a car and drive it to travel even a
short distance. People also rely on equipment or technology to do many of the jobs that
were once done using physical labor (Peters, 2006), thereby eliminating the need to be
active at work. Individuals who are required to be active at work are more likely to reach
publicly promoted physical activity recommendations, such as 10,000 steps per day
(McCormack, Giles-Corti, & Milligan, 2006). McCormack, Giles-Corti and Milligan
discovered that those most likely to meet the 10,000 steps per day recommendation
were individuals who walked in the workplace, did vigorous activity at work, or were
employed in a blue-collar occupation, while both older and obese men and women were
least successful at meeting the daily step goal. Despite a decrease in the norm regarding
physical activity, the abundance of inexpensive energy-dense foods has only increased

(Drewnowski, 2007; Hill, et al., 2003; Peters, 2006). Also, food portions have gotten
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larger (Steenhuis & Vermeer, 2009) and convenience food and supermarkets have

utilized the popular marketing of “more for less” (Hill, et al., 2003).

Methods of achieving physical activity for weight loss and weight maintenance

Increasing physical activity is one of the most frequently prescribed regiments
for losing and maintaining weight because it is safe and accessible to most people
("Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and
Obesity in Adults--The Evidence Report. National Institutes of Health," 1998). Physical
activity increases muscular demand to utilize the energy from calories consumed,
thereby reducing the positive energy imbalance that leads to weight gain. Since physical
activity is also one of the best predictors of successful prevention of weight gain and
maintenance of weight loss (Goldberg & King, 2007), it is common, if not routine to
incorporate changes in physical activity alongside diet changes when weight loss is the
goal. For instance, walking is a popular and common form of exercise, and literature
shows support for walking as a method to achieve physical activity recommendations
and to promote weight loss and overall health (Morris & Hardman, 1997). Schneider et
al assessed the effect of 10,000 steps per day on sedentary, overweight and obese
adults. Those who adhered to the regiment showed improvements in body weight, BMI,
body fat percentage, waist and hip circumference (Schneider, Bassett, Thompson,
Pronk, & Bielak, 2006).

The current public health recommendation is 30 minutes of moderate-to-

vigorous intensity exercise per day for adults and 60 minutes per day for children
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(Freedson, et al., 2008). Various state-based programs for increasing physical activity are
largely based around the recommendations put forth by the Centers for Disease Control
(CDC). The CDC would like to promote more physical activity by requiring 150 to 225
minutes per week of physical education in schools, increasing opportunities for
extracurricular activities, improving access to outdoor recreation facilities, and
improving infrastructure to support bicycling and walking (Smith & Martin, 2007). The
Office of the Surgeon General recommends adding bouts of physical activity into every
day, and using short bouts of walking to bridge the energy gap. Closing the energy gap
by 100 calories per day could be achieved by just walking an extra mile per day (Hill, et
al., 2003). Unfortunately, the vast majority of individuals do not achieve the
recommended amount of moderate-to-vigorous physical activity each week (Metzger et
al., 2008). It is estimated that only 3.2% of U.S. Americans are meeting the public
recommendation, and this figure is even lower for individuals who are obese (Tudor-
Locke, Brashear, Johnson, & Katzmarzyk, 2010).

While traditionally, physical activity was recommended in long bouts at
moderate-to-vigorous intensity, recent research indicates the success of participating in
either short or long duration physical activity. For instance, in a study of middle-aged
women, individuals participating in multiple short bouts of exercise on a treadmill
experienced more long term weight loss than groups either doing a single long or short
bout per day over an 18 month intervention (Jakicic, Winters, Lang, & Wing, 1999).
Similarly, Strath and colleagues interpreted objectively measured physical activity levels

form the National Health and Nutrition Examination Survey (NHANES), and determined
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that those who received that recommended daily level of moderate-to-vigorous physical
activity in bouts lasting less than 10 minutes, were more likely to have a lower waist
circumference and BMI (Strath, Holleman, Ronis, Swartz, & Richardson, 2008). On the
other end of the duration spectrum, a study by Jakicic showed that a combination of
exercise and dietary intervention improves weight loss but is dependent on the intensity
and duration of exercise. Vigorous intensity and high duration activity showed the
greatest improvement in weight loss and BMI improvements (Jakicic, Marcus, Gallagher,
Napolitano, & Lang, 2003).

Recent evidence linking sedentary time to cardiovascular risk factors leads to the
conclusion that health, even overweight can be improved by decreasing sedentary time.
Literature supports this idea of non-exercise physical activity contributing substantially
to weight loss and non-sedentary time throughout the day. Levine and colleagues
examined the effect of NEAT on obesity by measuring posture allocation (time spent
laying, sitting and standing) throughout the day. They determined that moderately
obese individuals spent 164 more minutes seated per day and 158 more waking minutes
lying down. It was estimated that if these moderately obese individuals had acquired
the posture allocation as healthy weight individuals, they would have expended an
additional 352 average calories. Promoting NEAT as a weight management initiative may

trigger weight loss even if energy intake is unchanged (Levine, et al., 2005).
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Measuring and estimating energy expenditure

Energy Expenditure can be compared to El to determine if a personisin a
healthy energy balance, however individuals need accurate and reliable ways to
measure EE (Melanson & Freedson, 1996). Quantifying the EE associated with physical
activity is important because even small modifications to EE over the course of the day
may significantly contribute to weight loss and prevent weight regain (Bobbert, Alvarez,
van Weeren, Roepstorff, & Weishaupt, 2007; Hill & Wyatt, 2005). Additionally,
researchers need accurate methods in order to appropriately track trends and make
associations between physical activity and disease. There are a variety of ways to either
measure or estimate EE. These methods range from research and clinical methods,
which are validated and highly precise, to consumer and epidemiologically suitable
methods which are only approximations and are commonly reported to be relatively
inaccurate at measuring EE. A common observation is that highly accurate methods for
measuring EE may not be portable or are limited in that they are expensive or require
laboratory test equipment, while devices which are more convenient may have less
accuracy (Melanson & Freedson, 1996).

EE measurement and estimation techniques can be either subjective or objective
in nature. Five general classes of techniques exist, including calorimeters, doubly labeled
water, observations, physiological measurements, and motion or movement related
(kinematic) recordings, (Jequier, Acheson, & Schutz, 1987). An important attribute to
make EE measurements of value for health monitoring is the ability to estimate EE in

what can be described as a “free-living” environment, meaning outside of a research or
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clinical setting so as to capture EE as we go about our normal daily routines. In the
laboratory or clinical setting, highly precise calorimeters, either can use a direct or
indirect methods to measure TEE. The “gold standard” method to accurately quantify
TEE over longer periods of time is the doubly labeled water technique, and physical
activity monitors used in the research setting or for personal use are routinely validated

using calorimetry or doubly labeled water (Westerterp, 2009).

Direct and indirect calorimetry

Direct calorimetry works based on the fact that all EE eventually ends up
released from the body as heat, and so the rate at which heat leaves the body can be
directly measured. Large, whole room direct calorimetry set-ups can be costly and
difficult to use, which is why this method is not often employed for validation studies of
calorie counting devices. Additionally, the response time of this method is relatively
slow, however the result is highly accurate (Brychta, Wohlers, Moon, & Chen, 2010).

Room calorimeters and metabolic carts are two widely used methods of indirect
calorimetry used to measure EE. This method is based on the fact that food energy in
the presence of oxygen will convert to carbon dioxide. EE is calculated from an equation
based on a volumetric measurement of oxygen taken in and carbon dioxide produced.
This method is accurate to within 2% and has a fast response time. The difference
between the room calorimeter and the metabolic cart approach is the container used to
collect the gas exchange between oxygen and carbon dioxide. A room calorimeter is a

moderately sized chamber, which tests the composition of the air as it enters and leaves
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the room. It is ideal for measuring total EE because an individual can remain in the room
for up to several days. Since this apparatus may limit human movement and confines
researchers to a simplified environment, portable metabolic carts are customarily used
for short-duration free-living studies. The metabolic cart is worn as a facemask and
analyzes gas as it passes through a mouthpiece. For research purposes it can be
configured into being somewhat “portable” because the power supply and gas analyzer
are worn on the back. Still, this method restricts individuals from speaking clearly and

eating so it is not practical for day-to-day consumer use. (Brychta, et al., 2010)

Doubly labeled water

The doubly labeled water technique is a novel approach that was developed to
solve the limitations of calorimeters. It is considered the “gold standard” for measuring
free-living EE. This method requires an individual to drink water tagged with the stable
isotopes of ’H and 0. The ingested ’H,0 will be converted to 2HZO, H,*®0 or c*®0,
within the body and all water is assumed to be tagged as it is eliminated in the urine or
saliva. The difference in the rates that H and *®0 are eliminated indicates the rate of
CO, expired. Total EE over the course of several days to weeks can be determined from
the calculated rate of expired CO,. For this reason, doubly labeled water is the method
of choice by metabolic researchers for determining free-living EE over long periods of
time. However, this method has many limitations that make it impractical for consumer

use. For one, it cannot determine EE on a minute-by-minute basis and EE attributed to
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specific activities cannot be resolved from TEE. In addition, the isotopes are expensive

and costly to analyze (Brychta, et al., 2010; Jequier, et al., 1987).

Subjective measures of physical activity

Subjectively reporting physical activity levels is common for personal weight
management, as well as in research, but these strategies are likely to contain errors of
the true measurement of EE (Keim, et al., 2004). Subjective methods include keeping a
weight loss diary, self-reported daily physical activity and using questionnaires to assess
large groups of people. These methods tend to have poor outcomes as free-living EE and
the contribution of NEAT to TEE is difficult, if not impossible, to quantify using subjective
measures.

Tracking diet and physical activity patters subjectively has been an integral part
of professional programs for years. In a cross-sectional study of 629 female and 155
male subjects who had successfully lost weight (average of 29% weight loss), 55%
reported using the help of a formal program or professional assistance such as Weight
Watchers, Overeaters Anonymous or a dietitian to track weight goals. Most of these
individuals lost weight by using a combination of diet restriction and increased physical
activity combined. After their successful weight loss most subjects continued to use self-
report strategies (Keim, et al., 2004). Fujimoto and colleagues reported that obese
individuals who maintain documentation of their weight loss progress several times
daily were more successful at losing weight and maintaining weight loss for years

(Fujimoto et al., 1992). On the other hand, monitoring body weight with an electronic
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scale cannot determine the physical activity contributors to weight loss, and scales are
not always available when a person leaves his or her house. Overall, self-reporting
seems to allow individuals to be more aware of overeating and to make appropriate
lifestyle changes.

When accuracy of tracking EE or posture allocation patterns is the goal,
subjective measures of physical activity are not ideal. As Jakicic et al demonstrated,
inaccuracy and inconsistency are two of the major limitations to using subjective
measures to quantify physical activity. In this study, some overweight women who self-
reported exercise had discrepancies between reported duration of exercise and
accelerometry data recording real duration of exercise. These women were less likely to

lose weight at the end of a 20 week intervention. (Jakicic, Polley, & Wing, 1998)

Objective measures of physical activity
Pedometer Based Devices

A pedometer is a low cost physical activity monitor which is easy to use and
inexpensive to produce. A conventional pedometer estimates EE by counting the steps
that a person takes, but an alternative approach is a pedometer that estimates EE by
measuring the length of time that the foot is in contact with the ground (Tharion,
Yokota, Buller, DelLany, & Hoyt, 2004). To most people, steps counts, or steps per day, is
a logical measurement which makes pedometers good tools for generalizing the amount
of walking that has been done in a day. Correlating the number of step counts with EE is
less well understood. Pedometers are useful tools to encourage movement (Chan, Ryan,

& Tudor-Locke, 2004; Clarke et al., 2007); however, traditionally pedometers cannot
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track the intensity or duration of physical activity, which are key parameters to forming
reliable estimations of EE. Companies such as Nike (Nike+ Sportband) and New Balance
(VIA pedometer) have also created their version of a calorie counting pedometer,
although these devices have not been validated for accuracy.

Literature suggests that the ability of a Pedometer to estimate EE is limited, yet
the device is more successful when used to quantify step counts. A thorough review of
pedometers by Kumahara and colleagues confirmed the poor accuracy of estimating EE
in the light-to-moderately vigorous physical activity range suggesting that they would be
poor tools to use as weight management devices (Kumahara, Tanaka, & Schutz, 2009).
The accuracy of different pedometers methods to estimate EE was examined in a
comparison study of three pedometers: Omron HF-100 piezoelectric pedometer;
Accusplit spring-levered pedometer; Stepwatch™ dual-axis accelerometer pedometer
(Foster et al., 2005). This study determined that prediction equations that used body
weight and step count had a 10-24% error compared to indirect calorimetry during a
walking-only task. Similar studies confirm the findings that pedometers are relatively
accurate tools for quantifying step counts, but much less accurate at estimating EE (S. E.
Crouter, Schneider, Karabulut, & Bassett, 2003). The concept of pedometers was used
uniquely by Tharion et al (2004) who created regression equations to estimate EE from
pedometers which were capable of measuring foot-contact time. They determined that
the device was accurate in measuring TEE in the range of 9-15MJ per day, but
underestimated greater TEE (Tharion, et al., 2004). Generally it can be concluded that

traditional pedometers, while suited for behavior modification, should not be relied
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upon for measurement of daily EE. Additionally, the concept of using foot contact time

as a parameter for making EE estimations is promising.

Inclinometers

Inclinometers are tilt sensors which can be mounted to the body and have been
used to monitor posture allocation and the contribution from NEAT to EE. Levine and
colleagues used two sensors which were sensitive to horizontal and vertical orientations
to determine if a subject was laying, sitting or standing (Levine, Melanson, Westerterp,
& Hill, 2001). They could also use these devices to determine how many transitions
were made. Measured EE from metabolic cart data was used to create regression
equations that could determine EE associated with altering posture. An inclinometer
alone is not practical to calculate total energy expenditure because it cannot distinguish

between activities done while standing (such as walking or jogging).

Heart Rate Monitors

Heart rate information is valuable for estimating EE because it is directly related
to oxygen consumption, however it is dependent on several biological factors unique to
each individual (Brage, et al., 2004). Therefore, individual calibration may be beneficial
for using heart rate to estimate EE. At high intensity heart rate is relatively accurate, but
not at low-to-moderate intensity activity where elevations in heart rate may be due to

other physiological factors. Considering most of the population spends their day only in
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low-to-moderate intensity activities, heart rate is often used alongside accelerometry to
make more robust estimates of EE throughout the day.

Polar® heart rate monitors are one of the most popular brands of commercially
available heart rate monitors. In an experiment to validate the accuracy of the Polar
S410 heart rate monitor for estimating EE, this heart rate monitor was shown to be only
moderately accurate at counting calories. For medium to high intensity activities in
males, the Polar® heart rate monitor had a mean error of 2-4%, which equated to .1-.4
kcal/min. In females, the mean error was 12-33%, or .7-2.4 kcal/min (S. E. Crouter, et al.,
2004). The intensities of the activities in these studies ranged from about 11 to 18
kcal/min. Therefore these overestimates, especially in females in this study, highlight
the potential error to using heart rate for long durations to estimate EE. The literature
provides insight into heart rate monitors during planned exercise, but considering that
non-exercise EE is a major contribution to daily EE, heart rate monitoring is not a
practical tool to use long-term. Additionally, reliable heart rate monitoring requires an
individual to wear a chest strap which maybe uncomfortable for day-to-day wear.
(Brage, et al., 2004; S. E. Crouter, Churilla, & Bassett, 2008; Strath, Bassett, Swartz, &

Thompson, 2001)

Global Positioning System
A global positioning system (GPS) determines an individual’s location relative to
satellites above the earth, and can be used to determine the speed and distance of an

individuals’ activity (Maddison & Mhurchu, 2009; Townshend, Worringham, & Stewart,
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2008). It is also practical for free-living situations, especially outdoor activities. The main
challenge of GPS is that it is not reliable on its own to estimate total EE throughout the
day because it cannot correlate the speed and distance of an activity with the type or
intensity of the body’s movements. It also has other serious limitation such as an
inability to function inside buildings or structures which block the satellite connection
(Schutz & Herren, 2000). No study has concluded that a GPS is a feasible device to
measure physical activity or EE on its own (Maddison & Ni Mhurchu, 2009). However,
investigators have assessed the potential for GPS to be used in combination with
accelerometry (Troped et al., 2008) or heart rate (Duncan, Badland, & Schofield, 2009)
to provide more information about physical activity levels. When used in combination
with a uniaxial accelerometer (ActiGraph), a GPS device (GeoStats Wearable
Geologger™) was capable of about 90% accuracy in activity classification which was a
slight advantage over using an accelerometer alone (Troped, et al., 2008). This finding
was valuable because activity classification is emerging as a technique to improve
estimations of EE using objective tools. However, activity classification from GPS is still

not a highly accurate method to determine individual EE.

Accelerometer Based Devices

Accelerometers mounted on the back, hip, wrist or ankle, have become well
recognized means of studying human movement and progress is being made towards
using these tools to classifying activities as well (Bonomi, et al., 2009; Wong, Webster,

Montoye, & Washburn, 1981). They can be used independently or in conjunction with
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previously mentioned devices as multi-sensor physical activity monitors. Accelerometers
measure acceleration of the body in up to three planes depending on whether the
device is uni-, bi-, tri-axial or omnidirectional. If the accelerometer is uniaxial the
technology within the device can detect accelerations in just one plane such as side-to-
side movements, and it may miss activities with high vertical accelerations. Biaxial and
triaxial accelerometers can pick up accelerations in two and three planes respectively
(vertical, horizontal or lateral), and an omnidirectional accelerometer is sensitive to
accelerations in all directions (Sabatini, Solari, & Secchi, 2005). The advantage of using
an accelerometer based device rather than other types of physical activity monitors is
that it produces a measure of the time series data in terms of an “activity count.”
Therefore it can determine the frequency, duration and intensity of many common
activities. During activity, acceleration is detected by the sensor as a voltage signal. This
signal is averaged over an epoch, or predetermined length of time. The greater the
average acceleration is, the higher the activity count. Acceleration is typically
proportional to intensity for a given activity, thus it is generally accepted that activity
counts from an accelerometer are a better predictor of EE and more meaningful than
step counts from a pedometer (Kumahara, et al., 2009). Either activity counts or raw
acceleration data can be converted by algorithms which have been experimentally
derived to relate acceleration output into EE estimations.

In research, accelerometers have been used to assess children of preschool age
to the elderly and in healthy, diseased and pathological populations. Many studies have

assesed the validity of using commercially available accelerometers and their prediction
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equations to measure EE in both laboratory and free-living conditions. In a review of
eight brands of accelerometers, only the Tracmor® triaxial and Actigraph uniaxial
accelerometer had data to support a correlation with EE measured using the gold-
standard doubly labeled water technique (Plasqui & Westerterp, 2007b). However, in
validation, these devices both have at least an average 8% error (Sarbassov, Guertin, Ali,
& Sabatini, 2005; Staudenmayer, et al., 2009). Others have reported single
accelerometers significantly under-estimated EE by more than 50% (Welk, Blair, Wood,
Jones, & Thompson, 2000).

The Actical and Actigraph accelerometers are two well studied physical activity
monitors that utilize accelerometry. Several regression equations have been developed
for these devices in recent years as they have become common research tools;
however, few are valid for a range of free-living activities which limits the effectiveness
of these tools in the field. Crouter and colleagues investigated several published
regression equations for the Actical and Actigraph accelerometers and reported the
accuracy of each equation during a mixed protocol of sedentary to vigorous activities. In
general, each regression equation tends to work best for the activities with which it was
calibrated (Crouter, Churilla, et al., 2006; Crouter, Clowers, & Bassett, 2006). The Actical
single regression equation (Heil, 2006) tended to accurately estimate sedentary
activities and slow running, while overestimating walking and underestimating all other
activities. The most accurate equation for the Actigraph was the Freedson equation
(Freedson, Melanson, & Sirard, 1998), but this algorithm underestimated most activities

except for walking. The Actigraph (CSA/MTI) has been reported by other investigators to
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significantly underestimate TEE compared to doubly labeled water. Leenders and
colleagues reported an underestimate of 59% in estimating PAEE over seven days, which
accounted for 20 to 47% of TEE (Leenders, et al., 2001).

Some devices that were developed and well documented in the literature have
also become consumer devices. One such accelerometer is the DiretLife activity monitor
which is based off the Tracmor triaxial accelerometer (Westerterp & Bouten, 1997), and
now sold with software that simplifies the interpretation of physical activity EE from
count values so that it is easy for a consumer to use. Tracmor (Philips Research,
Eindhoven, The Netherlands) was able to achieve high correlation between device
output and EE, with SE values between 0.7MJ per day and 1.0MJ per day (Plasqui,
Joosen, Kester, Goris, & Westerterp, 2005). This is equivalent to 167 to 239kcal per day,
which is on par or better than other accelerometry-based devices. Bonomi et al
reported the 14-day accuracy of DirectLife compared to double labeled water (Bonomi,
et al., 2010) and reported a standard error of the estimated TEE of .9MJ per day, or 7.4%
of the measured TEE. When only physical activity EE was considered, the standard error
was .87MJ per day, representing 22% of the measured PAEE. Therefore, the device
performed more poorly at estimating the EE associated with movement, highlighting the
limitation of accelerometers to capture some movements which may contribute greatly
to PAEE over the course of several days, but which may not produce large accelerations
to a hip-mounted device.

Since accelerometers are sensitive to the direction and magnitude of

acceleration during movement, the location and directionality of the sensor matters. For

28



instance, unidirectional accelerometers will be most accurate when measuring activities
with little or no vertical acceleration (Bassett et al., 2000), and hip mounted
accelerometers may miss movements of the limbs that do not require the torso to move
such as fidgeting, or cycling (Levine, et al., 2001) Additionally, accelerometers have a
limited ability to estimate RMR from activity counts (Dellava & Hoffman, 2009). The
benefits and limitations of using an accelerometer often compliment the weaknesses
and strengths of other sensors. Therefore they are often a key component to multi-

sensor devices.

Multi-sensor devices

There is evidence that when used in conjunction with each other, the previously
mention stand-alone devices can more accurately estimate EE and type or intensity of
physical activity. For example, heart rate data alone are highly variable and cannot make
reliable estimations of EE, but when heart rate is combined with accelerometers it
makes estimations of EE with less than 5% error during a limited set of activities (Brage,
et al., 2004). The ActiReg® device combines heart rate with two motion sensors which
record the presence of movement, and two tilt switches which record body position
(Hustvedt et al., 2004). This multi-sensor device is incorporated with computer software
to interpret the signals from the sensors. ActiReg® classifies activity levels in low,
moderate and high intensity and makes relatively accurate estimates of EE. However,
this device is not practical for the consumer because it is expensive, difficult to use, and

inconvenient to wear out of a research setting.
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Accelerometry and GPS is another combination used to make more meaningful
interpretations of physical activity data. In a study by Troped et al, physical activity
classification was made using an Actigraph accelerometer alone and together with a GPS
device. The authors desired to determine if there was a difference in ability to classify
physical activity, and revealed that more accurate classification was made using a
combination of GPS and accelerometry recordings. Together the devices had an
accuracy of 91% or greater in all validation tests (Felson et al., 2007).

Others have incorporated several sensors of the same type into a multi-sensor
device. For instance, Zhang et al acquired foot-based pressure sensor data from 32
sensors placed in the in-sole of a shoe and an artificial neural network was created
which was capable of mathematically determining the characteristics of the physical
activity performed based upon pressure sensor data (Zhang et al., 2005). The device was
capable of measuring duration, frequency, type and intensity of locomotion with high
accuracy, but activities of daily living were not addressed and the device did not
calculate TEE. This study does however show that artificial neural networks can make
accurate predictions of physical activity measures which can be expanded upon in
future studies.

Recently, the Intelligent Device for Energy Expenditure and Activity (IDEEA,
MiniSun, CA) has gained popularity because of its high accuracy. It is capable of
measuring the type, onset, duration, intensity and frequency of physical activity by
means of five sensors placed around the body and sophisticated algorithms. Zhang and

colleagues estimated TEE with an average accuracy of 95% during a 23-hour room
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calorimeter stay (Zhang, et al., 2004). The success of this device appears to be the
accuracy with which it assigns specific EE algorithms to different activity classes. An
early study determined that the IDEEA device could identify postures and limb
movement type with 98.9% accuracy, and gait type with 98.5% accuracy (Zhang,
Werner, Sun, Pi-Sunyer, & Boozer, 2003). The authors highlighted limitations to accuracy
such as an inability to measure arm movements, over or underestimation of the EE
during transitions, and the underestimation of EE due to fidgeting (Zhang, et al., 2004).
In addition to these limitations, the device is composed of several sensors and wires
mounted to the chest, thigh and foot, and it is therefore unlikely to be a marketable

device for individuals attempting to monitor their activity with little obtrusiveness.

The trend to classify

As such is the case with the IDEEA device, a recent trend in activity monitoring
whether it be single accelerometers or multi-sensor devices, is to classify activities with
different metabolic requirements in order to more accurately estimate EE over a wide
range of activities. Methods for classification range from simple such as multiple linear
regressions, to complex such as artificial neural networks (ANN). Investigators have used
the Actigraph and Actical accelerometers in a similar fashion to create two-regression
equations. All published Actigraph and Actical two-regression equations, although
differing slightly in accuracy, have been developed for the same basic function: to make
better estimations of PAEE by distinguishing between activities with distinct metabolic

demands, namely sedentary behavior, walking/running, and lifestyle activities. Crouter
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et al developed a two-regression equation for the Actigraph accelerometer which can
more accurately estimate EE from the Actigraph, and then improved upon this equation
in future work (Crouter, Churilla, et al., 2006; Crouter, Kuffel, Haas, Frongillo, & Bassett,
2009). Likewise, the two-regression method has been used to more accurately estimate
EE from the Actical (Crouter & Bassett, 2008; Crouter et al., 2010). Both use similar
technology to measure the duration and intensity of physical activity, however the
devices have differences, such as filter type and epoch length that prevent the
algorithms developed on one device from being used on the other (Crouter & Bassett,
2008). Therefore, unique regression equations have been developed for each to relate
counts per minute to METs.

The most recent two-regression method specific to the Actigraph uses a
threshold value of the coefficient of variation of the signal to determine which
regression equation to apply to each 10-second interval of data. This method was a
significant improvement over the previous single regression equation because it
considered the different energetic demands of a lifestyle activity compared to more
vigorous activities such as walking or running. Recently, Crouter’s two-regression was
validated against 24-hour room calorimetry as well as doubly labeled water. It
overestimated the rate of EE by 10.15 (£11.42)%, but this was reduced to 2.72 (£10.9)%
after applying a low-pass filter to the data. Validation against the doubly labeled water
technique similarly revealed an overestimation using the two-regression equation alone,
but an improvement with the low-pass filter model. (Rothney, Brychta, Meade, Chen, &

Buchowski)
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The most recent Actical specific two-regression equations developed by Crouter
and Bassett (2008, 2010) examine 15-second epochs and apply a regression equation
based on achieving a minimum count threshold and/or a coefficient of variation
threshold. The two-regression equations developed by Crouter and Bassett (2008, 2010)
and Klippel and Heil (2003) were validated against six-hour indirect calorimetry over a
wide range of sedentary to vigorous activities. The equations estimated EE within .2
METs which was slightly greater than previously reported estimations under different
testing conditions which were within .1 METs. The two-regression method improved
upon the previous single regression method (Crouter & Bassett, 2008; Crouter, et al.,
2010).

An additional consideration is the significant contribution of NEAT to TEE as it
includes the EE associated with laying, sitting, standing, leisure activities such as
walking, and occupational or household activities. However, activity counts alone will
tend to under-estimate the EE associated with many of these postures (Levine, 2007).
Methods have been employed using single accelerometers to identify and distinguish
between low-to-moderate activities that contribute to NEAT (Midorikawa et al., 2007; V.
van Hees & Ekelund, 2009; Westerterp, 2009), and also to classify a wide range of
activities from sedentary to vigorous (Bonomi, et al., 2009; Staudenmayer, et al., 2009).
Midorikawa et al. classified activities, such as sitting, standing, housework work and
walking, by using threshold values of the ratio between vertical and horizontal
acceleration. Regression equations were then developed to estimate total EE within 4.4

(+-6.2)% difference (Midorikawa, et al., 2007). Similarly, van Hees and colleagues
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expressed activities such as laying, sitting, standing and walking in terms of movement
intensity of the acceleration signal (van Hees & Ekelund, 2009). This method significantly
overestimated EE over 23 hours. Neither study reported the accuracy of the
classification scheme.

Others have used multiple features of the acceleration signal to classify activities
ranging from those that contribute to NEAT to those which are common for exercise.
For instance, Bonomi and colleagues used classification tree model applied to the raw
acceleration signal from a Tracmor accelerometer to distinguish between up to six
different activity types. The classifications were used to estimate EE based on
compendium MET values for each classification. This model was better able to estimate
EE than using accelerometer counts alone (Bonomi, et al., 2009). Staudenmayer and
colleagues used artificial neural networks applied to Actigraph accelerometer data to
estimate EE as well as classify activities into four categories: low level, household,
locomotion and sports (Staudenmayer, et al., 2009). The developed algorithm for EE had
a lesser bias, standard error, and root mean square error than the algorithms developed
by Crouter et al. (Crouter, Clowers, & Bassett, 2006), Swartz et al. (Swartz et al., 2000),
and Freedson et al. (Freedson, et al., 1998). In the studies by Bonomi et al. and
Staudenmayer et al., algorithms achieved relatively high overall classification accuracy
which ranged from 69 to 100% and 90 to 97% respectively. The limitation to these
methods was that low level activities, such as standing and cycling were most likely to

be misclassified.
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Correct classification is central to achieving high EE estimation accuracy. While
single accelerometers mounted to the waist tend to be less obtrusive, one main
limitation of using a single accelerometer is the classification accuracy of the detection
algorithms during activities with little to no trunk movement (i.e. standing and cycling)
(van Hees & Ekelund, 2009). The IDEEA device achieves impressive classification
accuracy (Zhang, et al., 2004); however it is bulky and not practical for daily wear. In the
future, devices which are minimally obtrusive, while being able to classify activity and
estimate EE accurately will be critical contributions to the field of physical activity
monitoring. Better physical activity monitors will aid individuals in justifying the positive

energy balance that leads to eventual weight gain.
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CHAPTER 1l

METHODS
Subjects

Nineteen subjects (10 male, 9 female) were recruited from Colorado State

University, as well as the Fort Collins and Denver communities to participate in this
study. The protocol was approved by the Colorado State University Institutional Review
Board and participants gave written informed consent prior to beginning the study.
Subjects completed a physical activity and health-history questionnaire (Franklin,
Whaley, & Howley, 2000), and were determined to be in good health by a physician.
Based on self-report, subjects were sedentary to moderately active (less than six hours
of physical exercise per week), not taking any medications known to alter metabolism,

and weight stable over the past six months.

Study design

Each subject completed one 4-hour stay in a room calorimeter following a 4-
hour fast. Prior to data collection we measured each subject’s height and weight.
Subjects wore six physical activity monitoring devices: one prototype shoe device (pair
of shoes), three devices used in research, and two consumer devices. Metabolic data
was collected while each individual performed a series of randomly assigned postures

and activities. Prior to entering the room calorimeter, subjects were instructed in how
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to use the equipment available to them in the room. Data collection began with a 30-
minute equilibration to assure that gas exchange within the room was representative of
the current subject. This period of data collection was not used in our analysis. The
remaining three and half hours of data collection consisted of 20 minutes of lying quietly
in the supine position, 20 minutes of sitting and watching TV, 20 minutes of sitting with
computer use, 10 minutes of quite standing and 10 minutes of active standing. Subjects
were then asked to perform six of eight randomly assigned activities for 10 minutes
each, which included walking on a treadmill at 2.5miles per hour, walking at 3.5 miles
per hour and walking at 2.5 miles per hour at an incline of 2.5%, stepping, sweeping,
pedaling a cycle ergometer (75W), standing, and sitting. The last hour of data collection
consisted of free-living activities of the individual’s choice. The remaining ten minutes of
data collection was reserved for transition between the various activities.

Table 1: Description of Protocol

Activity Description Time
Equilibration Quiet resting, data excluded 30 min
Supine laying on bed 20 min
Sitting watching TV 20 min
performing computer work 20 min
Standing Quiet 10 min
Active 10 min
Random Walking, 2.5mph 10 min each; 60 min total
assignment; 6 of [ Walking, 3.5mph
8 possible Uphill, 2.5%, 2.5mph
activities Stepping
Sweeping
Cycling, 75W
Standing
Sitting
Free-living Any of the above activities, 60 min, or until
self-selected pace and posture | completion of 4 hours of
data collection
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Subjects were not restricted in how they performed activities. Walking activities
were performed on a treadmill (Gold’s Gym Merchandising Inc., Trainer 480 Treadmill,
Irving, TX), cycling was performed on a stationary bicycle (Lode, Corival, Groningen,
NED), and stepping was performed by stepping up and down on a single eight-inch step

(Reebok International, Reebok Step, Canton, MA).

Metabolic measurements

Oxygen consumption and carbon dioxide production were recorded using the
whole-room indirect calorimeter located in the Clinical Translational Research Center of
the University of the Colorado Hospital (Melanson et al., 2010). The accuracy and
precision of the system is tested monthly using propane combustion tests. The
expected volume of 02 and CO2 is determined based on expected production of 2.55
and 1.53 liter of 02 and CO2, respectively, per gram of propane burned (Withers, 2001).
The average 02 and CO2 recoveries over the most recent 12 month period have been
99.4+1.5 and 99.5+1.5% (mean*SD), respectively. EE and substrate oxidation are
calculated using the non-protein RQ based on the equations of Jequier et al. (Jequier &

Schutz, 1983).

Prototype device
Participants were fitted with the appropriately sized recreational walking shoes,
equipped with a pressure sensing insole and accelerometer (Figure 1). The prototype

device is explained in detail in previous work (Sazonov, et al., 2011; Sazonova, et al.,
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2011). Pressure and accelerometer data was sampled at 25 Hz by a 12-bit analog-to-
digital converter and transmitted using a Bluetooth transmitter to the computer. The
sensor system was lightweight (<40g) and created no visible interference with the

motion patterns in subjects.

b)

Figure 1: a) A pair of shoes equipped with sensors, wireless transmitter
and batteries. Arrows show Anterior-Posterior (Aap), Medial-Lateral
(AmL) and Superior-Inferior (Ag;) axes of accelerometer. b) A pressure
sensitive insole with FSRs. Py is heel pressure sensor, Pyo,Pmm,Pmi are
5th, 3rd and 1st metatarsal head sensors, respectively, and Pyx is the
hallux sensor.

Activity monitoring devices

Participants were equipped with three physical activity monitoring devices that
are used in research: Actigraph GT3X (Actigraph, LLC., Pensacoloa, FL), Actical (Phillips
Respironics, Inc., Bend, OR), and IDEEA (MiniSun, Fresno, CA). The Actigraph and Actical

are capable of measuring the intensity and duration of activity in order to estimate
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PAEE. Actigraph is a small (3.8cm x 3.7cm x 1.8cm) tri-axial accelerometer. It was set to
an epoch length of one second, which was summed each hour of the day to give an
hour-by-hour estimate of PAEE. It uses an equation developed by Freedson et al and the
factory default cutpoints to relate counts per minute to EE (Freedson, et al., 1998). The
Actical is a small (2.8cm x 2.7cm x 10cm) multidirectional, piezoelectric accelerometer.
The Actical was set to record one minute epochs. This device used a single regression
model with cut points set at .04 kcal/min/kg for the light/moderate cutpoint and .10
kcal/min/kg for the moderate/vigorous cutpoint in order to estimate PAEE (Heil, 2006).
Both devices were worn on an elastic belt directly over either the right or left hip. The
IDEEA has five sensors, which were placed under the sole of each foot, on each thigh
and over the sternum. The device is capable of classifying physical activity types as well
as estimating total energy expenditure. Each sensor is 18mm x 15mm x 3 mm and is
capable of measuring body segment angles and accelerations in two directions. EE is
estimated each second using the EE equation corresponding to the classification of the
activity at that time, and these values were summed to provide minute-by-minute EE
data at the end of the recording.

In addition to three research devices, participants wore two devices currently
marketed to consumers: The Fitbit Tracker (Fitbit, Inc., San Francisco, CA) and Directlife
activity monitor (Philips Electronics, Andover, MA). The Fitbit Tracker uses an
accelerometer to track intensity and duration of physical activity. The device is docked
to a computer which downloads the data directly to a web-based software program.

Total energy expenditure is calculated using a proprietary algorithm and reported in
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five-minute intervals based in the subject’s height, weight and activity intensity. The
Directlife activity monitor is a small (3.1cm x 3.3cm x 1.1cm) triaxial accelerometer.
Directlife also uses a web-based software program to track physical activity intensity
and calories burned. Activity energy expenditures are recorded each hour of the day as
long as a minimum threshold of activity is met. Both devices were worn on the same
elastic belt that held the research activity monitors. The EE from the consumer devices
was estimated and extracted from the web-based software provided by the

manufacturers.

Development and Validation of EE Model

Our previous work determined that an activity-specific branched algorithm using
acceleration and pressure sensors to classify activity provided the most accurate
estimates of EE (Sazonova, et al.,, 2011). In this study, we used shoes with new
accelerometer and data transfer hardware. Therefore, the energy expenditure models
were re-established using the current device. Validation of the shoe-based device was
performed using a leave-one-out validation technique in which the data used for
training were pooled from all but one subject and the model was then tested on the
validation set using the left out subject.

During each posture and activity, sensor data was collected from eight
channels/shoe at 25Hz per channel. The eight channels included three accelerometer

signals: superior-inferior acceleration (Accl), medial-lateral acceleration (Acc2),
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anterior-posterior acceleration (Acc3); and five pressure sensors: heel (Sens1), 3"
metatarsal (Sens2), 1* metatarsal (Sens3), 5" metatarsal (Sens4), and hallux (Sens5).
Resting EE was calculated from the average EE over the last five minutes of the
supine period. A lag time of two minutes between the activity that the subject
performed and the room calorimeter was determined experimentally by producing the
least error in the EE estimation. The model used a branching approach in which
recordings were classified into one of four posture/activity groups: “sit”, “Stand”,
“Walk”, and “Cycle”, using a previously developed algorithm for posture/activity
recognition (Sazonov, et al., 2011). This algorithm is capable of achieving up to 98%
accuracy using an optimized sensor set. After classification, energy expenditure was
estimated using a separate model for each of the four activities/postures.
Anthropometric measurements, accelerometer and pressure sensor signals were
used as predictors for an ordinary least squares linear regression. The Accelerometer
and pressure sensor signals were preprocessed to extract meaningful metrics to be used
in the models. For each of the eight sensors, the following four metrics were computed:
coefficient of variation (cv); standard deviation (std); number of zero crossings (zc), i.e.
the number of times the signal crosses its median normalized by the signal’s length; and
entropy H of the distribution X of signal values (ent) computed as: H(X) = — £ pi log px,
where py is the relative frequency of values fallen into the k™ interval (out of 20 equally
sized intervals) in the sample distribution of signal values. The median value of each of
the four kinds of metrics combined from all five pressure sensors was used to form a

single pressure sensor metric (med(metric)). The complete set of potential predictors
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consisted of 16 metrics: twelve (3x4) metrics from accelerometer sensors and four
metrics from pressure sensors. For each posture/activity a model was developed using
the derived metrics as possible predictors of EE using ordinary least squares linear
regression.

We used the “leave-one-out” approach for cross-validation when training and
estimating the EE for each type of activity for every subject. For every left out subject all
of the data related to this subject were removed from the training set. Model
(coefficients) computed using the rest of the subjects sample was then used to estimate
the EE for all trials of the left out subject. The best set of predictors had to provide the
best fit (by producing the maximum adjusted coefficient of determination, Rzad,- and the
minimum Akaike Information Criterion, AIC) in the training step and the best predictive
performance (the minimum mean squared error, MSE and the minimum mean absolute
error, MAE ) in the validation step.

Subjects that experienced multiple sensor failures or incomplete data were
excluded from the analysis, leaving 17 subjects with complete metabolic and sensor
data from at least one shoe. Previous work described that only one shoe is required to
get accurate EE estimation from the device (Sazonov, et al., 2011). In the “cycle” activity

group, only twelve subjects performed this activity.

Device Comparison
Total energy expenditure was calculated from the room calorimeter for the time

period that that corresponded with data collected from each device. For the Actigraph
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and Directlife, three full hours of activity could be calculated from the hour-by-hour
data. Three and a half hours of estimated EE could be calculated from Fitbit, Actical, and
IDEEA. Because some devices only calculated activity energy expenditure while others
estimated total energy expenditure, we adjusted for the difference by estimating resting
energy expenditure. Twenty-four hour room calorimeter data was not available to make
a precise estimation of basal metabolic rate (BMR), and for practical purposes,
consumers would not have this information when using any of these devices. Therefore,
to make an adequate comparison of total EE across all devices, BMR was calculated
using the Harris-Benedict equation (Harris, 1919) and then added to the EE estimated
from Actical, Actigraph and Directlife because these devices only record EE associated
with activity.

The EE estimated by the shoe-based device during validation were compared
alongside estimations made from the five other devices. The shoe-based device used
the previously described algorithms to calculate EE on a minute-to-minute basis over
the entire three and a half hours of activity.

A further comparison was made with the Fitbit device to see if manually
classifying activities via the web-based software would improve the accuracy of the
device. The activity labeling works by classifying each activity performed while wearing
the device, which then allows the software to apply to that time period a MET
equivalent based on a compendium of physical activities.

In an attempt to make a comparison of one of the research devices to the

prototype device which was validated using a group-specific model, two group-specific
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regression equations were created using the Actical as well. We plotted the average
measured EE value over the last three minutes of each activity against the average
count value associated with that time. The first regression equation included all
activities, while the second excluded cycling, as this activity was not well detected by

the accelerometer.

Statistical Analysis

Mean standard error (SE), root mean squared error (RMSE) and the percentage
of the RMSE with respect to the measured value (%RMSE) were calculated for each
device. Paired t-tests were used to test for significance between the measured and

estimated values. A p-value less than .05 was considered significant.
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CHAPTER IV
RESULTS
Subject Characteristics
Subject characteristics for each device are reported in Table 2. Overall, subjects
had an average mass of 75.1 (17.1) kg, and a BMI of 25.1(4.6) kg/mz(mean (SD)). During
data collection and analysis, some subjects were excluded from Fitbit, Actigraph, IDEEA
and the Shoe device results due to incomplete or missing data (see Table 2). Each device

was analyzed separately with only valid subjects.

EE Measurement
The mean measured EE for all subjects for three hours of activity was 455.4
(17.8) kcal (mean (S.E.)) and for 3.5 hours of activity was 503.3 (19.2) kcals. Table 2

shows how EE measured by the room compared each device.
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Table 2: Subject characteristics and measured energy expenditure (EE)

Subjects Age Height | Weight BMI EE Hours | EE (kcals
Device (M,F) (yrs) (m) (kg) | (kg/m?) (SE))
17 27.4 1.73m 75.7kg 25.1 3.5 478
Shoes (9,8) (6.8) (.10) (17.7) (4.8) (20.0)
19 26.9 1.73m | 75.1kg 25.1 3.0 499
DirectLife | (10,9) (6.6) (.10) (17.1) (4.6) (17.8)
19 26.9 1.73m | 75.1kg 25.1 3.5 447
Actical (10,9) (6.6) (.10) (17.1) (4.6) (19.2)
16 27.6 1.71m | 73.6kg 25.0 3.5 503
Fitbit (7,9) (7.0) (.10) (18.0) (4.0) (23.8)
16 26.8 1.73m | 73.1kg 24.3 3.0 504
Actigraph | (9,7) (7.1) (.09) (16.1) (3.8) (20.0)
18 27.2 1.72m | 75.6kg 25.2 3.5 455
IDEEA (10,8) (6.7) (.11) (17.5) (4.6) (20.3)

Values are mean (SD) except EE. EE hours is the number of hours of room calorimeter
data used in the analysis.

Energy expenditure models for Shoe device

The performance of the models used to estimate EE from the shoe-based device

compared to measured values are presented in Table 3.

Table 3: Branched model results

Branch . . . RMSE Total

model 1-min prediction model, kcal/min kcal (%) Error

Sit EE = 1.92 +0.015- Weight — 0.61-log(BMI) +1.52-10°>-Sens meqz) 45-76 (1.35)
+0.59- Acc2,:+2.05-10-Accl g +0.50-Accl, — 5.33-10Acc24q

Stand EE = 3.23+2.64-10 Weight — 1.38- log(BMI) +1.69-107>- 68.74 (8.11)
Sensmeqzct 4.29-10° Acclyq +1.83- Accl,,

Walk EE = —2.46 + 7.21-10"-Weight — 0.72-log(BMI) + 41.9- 76.88 (2.49) 455

. 0

Sensmed{std)
+10.5- Acc3,+ 2.08-10 Acc2,q

Cycle EE = 5.47 + 2.13-10>-Weight — 1.54-log(BMI) + 36.7- 71.78 (8.84)
Sensmeqstayt3.92- Acc2,,

Average 29.61 (6.19)

Metrics: zc — number of zero crossings; std — standard deviation of a signal: med(metric) is the

median metric from all pressure sensors (1 value).
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Device Comparison

The shoe device considerably out-performed all other devices. Out of the five
research and consumer devices, only IDEEA and Directlife were not significantly
different than the mean measured EE (p=.065 and .758 respectively). Table 4 presents
each device with the respective root mean squared error (RMSE) and percent RMSE.
Fitbit was the least accurate device (p<.001), however after labeling activities (Fitbit-CL),
the mean (SE) improved from 362(19) kcal to 516(13) kcal vs. 499(24) kcal, and the
RMSE was reduced to 64.25kcals (12.9%). The unlabeled estimates always
underestimated EE, while the classified values were underestimated about half of the

time, and were more accurate in all but two subjects (Figure 3).

Table 4: Mean measured and estimated energy expenditure

Measured Estimated(SE) | RMSE | %RMSE

(SE) kcal kcal (kcal)
Shoes 478.08(19.95) | 476.54(18.36) | 29.61 6.19
Fitbit 499.02(23.79) | 362.81(18.88)" | 143.24 28.70
Actigraph*» | 447.22(19.95) | 339.06(20.58)" | 122.23 | 27.33
Actical* 503.33(19.24) | 383.19(16.92)" | 130.16 | 25.86
IDEEA 504.22(20.32) | 445.26(23.16) | 88.21 17.49
Directlife*” | 455.37(17.82) | 448.52(13.10) | 62.11 13.64
Fitbit-CL 499.02(23.79) | 515.80(13.00) | 64.25 12.87

Mean room-measured and device-estimated energy expenditure, standard error (SE), root mean
squared error (RMSE) and %RMSE. * denotes Harris-Benedict equation adjustment. » denotes a
3-hour comparison. *Denotes significant difference from measured.

48



550

I Average Predicted
E Average Measured

500 ~

450 A

Energy Expenditure (kcal)

Shoes Actigraph DirectLife Fitbit Actical IDEEA

Device

Figure 2: Mean measured and estimated energy expenditure using each device. Error bars
represent standard error of the mean.
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Figure 3: Difference between estimated and measured energy expenditure for each subject
using the Fitbit device with (red) and without (orange) manual classification of activities

49



Group-specific Actical regression

Figure 4 depicts the regression equations that were developed using the subjects
from this study using the Actical device. The regressions were applied to the count
values each minute, and summed over the entire three and a half hours. Both equations
improved the estimation of EE, while the regression without cycling was most accurate.
Mean predicted EE from the models was 562.4 kcal and 498.1 for the “all activities” and
“no cycling” regressions respectively, compared to the measured value of 503.3kcal.
RMSE values improved from 130.2 kcal (25.9%) using the manufacturer’s software, to
107.2 kcal (21.3%) using the “all activities” regression and 90.4 kcal (17.6%) using the

“no cycling” regression.

10 A

Energy Expenditure (kcal/min)

© No cycling
O  All activities

O T T T T T T
0 1000 2000 3000 4000 5000

Counts

Figure 4: Results of the Actical regressions using all activities vs. all activities except for cycling.
All activity regression equation: y = 0.0018x + 2.1581 (R? = 0.5666) (black line, white and green
circles); No cycling regression equation: y = 0.0019x + 1.8228 (R? = 0.7244) (green line, green
circles)
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CHAPTER V
DISCUSSION
In this study, we aimed to validate the use of a shoe-based physical activity

monitor which incorporates insole pressure sensors and triaxial accelerometry to
classify major postures/activities and estimate EE. We hypothesized that this device
would be able to accurately estimate EE with less than 5% error compared to room
calorimetry. Additionally, we hypothesized that consumer and research devices would
not be able to estimate EE with comparable accuracy. Our results confirmed that the
shoe-based device could estimate EE within 5% (478.1 vs. 476.5 kcal), with a %RMSE of
6.19%. Furthermore, of the five consumer and research devices, only DirectLife and
IDEEA were not significantly different than the measured value. DirectLife and IDEEA
had a %RMSE of 13.64 and 17.49% respectively, which were both at least twice that of

the shoe-based device.

Subjects performed a range of activities from sedentary to moderately vigorous
intensity during a three and a half hour protocol in a room calorimeter, and measured
EE values were similar to previous reports of physical activity monitoring device
validation studies. Values of EE ranged from 96.5kcal per hour in a female subject, up to
202.8 kcal per hour in a male subject. The average EE per hour was 151.8(5.94) kcal per

hour (mean(SE)). Others have reported an average of between 80 and 115 kcal per hour
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for longer protocols which commonly consisted of sleeping as well as a greater
proportion of light intensity activities (Chen et al., 2003; Chen & Sun, 1997; Midorikawa,

et al., 2007; V. van Hees & Ekelund, 2009).

Prototype device

The values and accuracy obtained in this study using the shoe-based device are
consistent with a previous validation of the older version of the device. This leads us to
conclude that the new hardware has not changed the ability of the device or the models
to classify activity and estimate EE. Previously, the device was found to have an RMSE of
.66 MET, and when we convert the results from the current study to METs, we
determined the RMSE to be .54 MET. The current study was able to achieve slightly
higher accuracy while using a device with similar hardware, possibly owing to the length
of the current study using a room calorimeter lasting about twice as long as the previous

study using a portable metabolic cart.

This study demonstrates that an unobtrusive shoe-based physical activity
monitoring device that combines plantar pressure and accelerometry can more
accurately estimate EE than five other currently available consumer and research
physical activity monitors. The accuracy of this device is likely to be due to the EE
models being based on activity classification and the ability to accurately make these
classifications by picking up subtle changes in posture which literature shows are

contributors to NEAT. The activities with the greatest EE estimation accuracy were
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sitting (1.35 %RMSE) and walking (2.49 %RMSE), while standing and cycling were only
slightly less accurate (8.11 and 8.84 %RMSE respectively). The lower accuracy of
standing may be attributed to the wide range of activities that were included in this
classification, such as transitioning, active standing, quiet standing, and lifestyle
activities that requires only arm movement.

Each of the models developed to estimate EE utilized a different combination of
the 14 possible metrics in the linear regressions, including each channel of sensor data
as well as weight and BMI. The subject’s weight and the log(BMI) were understandably
predictive characteristics of EE in all four models, owing to the fact that an individual’s
weight is predictive of their resting metabolic rate, which contributes a substantial
amount to total EE. Pressure and acceleration sensors at the foot allow the device to
extract important information from the movement of the limbs which relate to an
individual’s specific activity. For instance, during walking activity, the number of zero
crossings (zc) of the acceleration in the anterior-posterior direction (Acc3) contributed
to the prediction of energy expenditure. As the step frequency increase with an increase
in the speed of ambulation, the number of zero crossing of the anterior-posterior
acceleration will increase and thus contribute to the prediction of EE during walking.

Overall, these results suggest that multiple sensor types located at the foot is an
effective method for estimating EE given that it allows for accurate classification.
Although this begs the question of how many classes need to be used to distinguish
between postures/activities with distinctly different metabolic demands. Currently, the

prototype shoe-based device only makes estimations of EE based on four activity classes
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(lay, sit, stand and walk). Others have used similar or more classes with moderate to
high success. For instance, Khan et al. achieved 98% accuracy at classifying 15 activities
(Khan, Lee, Lee, & Kim, 2010), while Lee et al. achieved 85% accuracy classifying seven
activities (Lee, Khan, Kim, Cho, & Kim, 2010), Bonomi et al. classified six activities with
93% accuracy (Bonomi, et al., 2009), and Staudenmayer et al. also classified four
activities with 89% accuracy (Staudenmayer, et al., 2009). Each of these groups used
single accelerometers and pattern recognition techniques for classification. This study
classified by means of a branched algorithm, as did Madorikawa (Midorikawa, et al.,
2007), while others have used two-regression equations, decision tree models (Bonomi,
et al., 2009), Bayesian classifiers (Atallah, Leong, Lo, & Yang, 2010), support vector
machines (Lau, Tong, & Zhu, 2008), and ANNs (de Vries, Garre, Engbers, Hildebrandt, &
van Buuren, 2010; Khan, et al., 2010; Lee, et al., 2010; Staudenmayer, et al., 2009) with
varying degrees of success.

There is likely to be a balance between the number of necessary activity
classifications, and maintaining high classification accuracy. Recent attempts at
classification have been employed in order to identify and distinguish between the low-
to-moderate activities that contribute to NEAT (Midorikawa, et al., 2007; van Hees, van
Lummel, & Westerterp, 2009), and also to classify a wide range of activities from
sedentary, to those which are common for exercise (Bonomi, et al., 2009;
Staudenmayer, et al., 2009). Therefore, future work to the footwear-based physical

activity monitor should examine which activities are necessary for highly accurate
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models and also practical for the function of the device as a weight management tool
(i.e. how many classifications are enough?).

Several investigators have used the Actigraph and Actical accelerometers with
pseudo-classification by using two-regression equations. All published Actigraph and
Actical two-regression equations, although differing slightly in accuracy, have been
developed for the same basic function: to make better estimations of PAEE by
distinguishing between activities with distinct metabolic demands, namely sedentary
behavior, walking/running, and lifestyle activities. These equations work by using the
variability of the acceleration signal as a classifier to determine if the timeframe in
guestion represents a locomotor or lifestyle task. Since lifestyle tasks tend to have
accelerations that have more variability around the mean, a separate regression
equation can be used to predict EE based on the intensity of these activities (Crouter &
Bassett, 2008; Crouter, Churilla, et al., 2006; Crouter, Clowers, et al., 2006; Crouter, et
al., 2009).

Generally, algorithms developed to estimate EE through classification have a
lesser bias, standard error and RMSE than estimations made by regression equations
alone (Staudenmayer, et al., 2009). However, the limitation to methods which use
accelerometers was that movements with little or no trunk movement, such as standing
and cycling were most likely to be misclassified (van Hees & Ekelund, 2009). This
provides rational for using a shoe-based device which uses multiple sensor types, and is

therefore capable of classifying standing and cycling activities with high accuracy.
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Evidence towards the importance of classification of activities was further
confirmed by our finding of an improvement in the accuracy of the Fitbit device after
classifying activities. The RMSE of the estimation dropped from 143 to 64 kcal, and the
estimation was more accurate in all but two subjects. IDEEA algorithms also have the
ability to classify activities, and we found that this device was moderately accurate and
had a lower RMSE of 88 kcal, compared to other devices which cannot classify activities
(i.e. unclassified Fitbit, Actical and Actigraph).

In addition to classifying activities, the high accuracy of the device may be due to
the nature of our leave-one-out validation technique which used the same subjects to
calibrate and validate the device. It is well known that group-specific models are most
accurate when they are applied to the same group from which they were created
(Edwards, Hill, Byrnes, & Browning, 2010). For this reason, we elected to develop two
group-based regression equations using the Actical to make a comparison of the shoe-
based device with another device that used a group specific model. The Actical
regression which used all the activities was significantly different from the mean
measured value (p=.012), but the regression which did not include cycling was not
significantly different than the mean (p=.640), and both were more accurate than using
the manufacturer’s software to estimate EE. Software that uses group-based models a
current limitation in the field of physical activity monitoring because manufacturers
supply the user with a regression based on a population of healthy, lean individuals, yet
the device may be used by individuals who do not fit this group. Future work should be

done to validate whether the current algorithms are valid on a variety of populations
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(i.e. physically active, obese, children and elderly), and possibly provide options within
physical activity monitor software as to which algorithms should be used to estimate EE.
An accurate shoe-based physical activity monitor such as this would be a
practical tool for weight management purposes. This device is minimally obtrusive as it

would fit into an existing shoe, and the software can be accessed using a Smartphone.
Individuals would be able to track their EE as well as be able to see how they are
spending their time. For instance, this device is able to pick up the changes in posture
which are contributors to NEAT such as the time spent lying, sitting or standing, and
could alert an individual to make more transitions to standing; which research shows
may have health benefits (Healy, Dunstan, et al., 2008; Kokkinos, et al., 2011). Activity
counts alone will tend to under-estimate the EE associated with many of these postures
(Levine, 2007). This device could therefore be implemented into existing weight
management programs (i.e. Weightwatchers) or be a device prescribed by physicians
under the justification that “exercise is medicine”. Future work should incorporate the
use of the shoe-based device during a longer protocol (i.e. 24-hour) in order to
represent true levels of physical activity and NEAT as they occur in an individual’s typical

day.

Research and consumer devices
The use of commercially available physical activity monitors is becoming
increasingly popular in research to objectively quantify physical activity at the individual

and group level and for personal use to monitor physical activity levels related to weight
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management and/or fitness goals. The accuracy of these devices is critical to quantifying
current and changing levels in physical activity. Of the three research-based devices,
only IDEEA was not significantly different than the mean EE, yet had a greater error than
previously reported (Zhang, et al., 2004), and a moderately high RMSE. The mean EE
estimated by the device had an 11.7% error against the room calorimeter, and the RMSE
was 88.21 kcal in three and a half hours of data collection.

Like previous investigations, we found the Actical and Actigraph significantly
underestimated EE during a protocol of sedentary to moderately vigorous activities
(Crouter, Churilla, et al., 2006; Crouter, Clowers, et al., 2006; Leenders, et al., 2001).
Actical and Actigraph devices also had high %RMSE values of 25.87 and 26.33%
respectively. Considering that the energy imbalance may be as low as 25kcal per day,

this degree of error would certainly be unreasonable for weight management purposes.

In this study, we used a range of activities, including cycling, uphill walking and
stepping, which may have been under-estimated by research and consumer devices due
to the limitations in the hardware of these devices to correctly interpret these
movement as requiring greater metabolic demand. For instance, accelerometers located
at the hip are unable to sense the limb movement during cycling, are not sensitive to
the vertical work performed during stepping and uphill walking, as these movement do
not create greater magnitude or frequency accelerations in proportion to the increase in
metabolic demand (Hendelman, et al., 2000; Swan, Byrnes, & Haymes, 1997; Terrier,
Aminian, & Schutz, 2001). Furthermore, The IDEEA device was unique among the

commercially available devices validated in this study because it uses multiple sensors
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and sensor types, and more sophisticated algorithms to calculate EE, and the higher
accuracy of this device may be due to the ability to capture more data with multiple
sensors placed at different sites on the body. While being impractical for use outside of
a research lab, the success of this device illustrates the effectiveness of multiple sensors
and types to provide the means for classifying activities. Additionally, this device was
calibrated using activities of similar intensity to those that were performed in the

current study, which may have led to a better accuracy during validation.

This study was the first to compare the accuracy of several consumer and
research activity monitoring devices together against room calorimetry, and there was
no consistent pattern to research devices outperforming consumer devices or vice
versa. Furthermore, to our knowledge it was the first validation of the Fitbit tracker, a
device marketed for consumer use. Two of the most accurate devices overall were the
consumer devices, Fitbit and Diretlife with an RMSE of 64kcal (12.9%), and 62.1kcal
(14%) respectively; However, Fitbit only outperformed all other devices after manual
activity classification, and this process was timely and requires continual documentation
which is inconvenient if not implausible for the average consumer. With respect to the
other consumer device, the DirectLife activity monitor, we found no significant
difference between measured and estimated values, which is consistent with the
literature on the accuracy of this device. Bonomi et al reported the device to be
accurate over a 14-day period using double labeled water with a standard error of the
estimated TEE to be .9MJ per day, (8.96 kcal per hour) or 7.4% of the measured TEE

(Bonomi, et al., 2010). Our results determined that the SE was .44MJ per day, or 2.9%.
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This device is minimally obtrusive because it can be configured to be worn in multiple
places (e.g. hip, chest, and pocket). On the other hand, it has important limitations. The
main disadvantage of Directlife device is the simplicity of the web-based software which
only provides information about the user’s EE when activity is observed by the device.
This software only allows a user to determine EE on an hourly basis. While the hourly
resolution may be sufficient for monitoring EE patterns over the course of several days,
it would be inconvenient for individuals attempting to track changes in EE during specific
period of the day (e.g. after work only). The time resolution also likely contributed to
the error in a shorter study such as this. Additionally individuals see only PAEE, such that
RMR needed to be estimated from a prediction equation to make similar comparisons of
TEE among all devices. In comparison, Fitbit did this process automatically for the user
within the web-based software. This evidence along with existing literature validating
the Directlife device, suggests that it would be a useful tool to consumers and
researchers alike, provided that the appropriate software was provided (Bonomi, et al.,

2010; Plasqui, et al., 2005).

Conclusion

In the current study, we present a device which is minimally obtrusive but is
capable of high classification and total EE accuracy. This shoe based physical activity
monitor estimated EE with a total error of 4.55% and a RMSE of 29.6kcal (6.19%). This

device outperformed each of the research and consumer physical activity monitors
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which had a range of RMSE values between 62.1 kcal (14%) to 143.2 kcal (28%). Only
IDEEA and DirectLife EE estimations were not significantly different than the mean.
Considering the similar hardware of these research and consumer-based devices, EE
estimation accuracy can primarily be contributed to the algorithms used to estimate EE,
which with the exception of the IDEEA device, do not rely on activity classification.
Activity classification is central to achieving the high EE estimation accuracy of the shoe

based device, and the future of physical activity monitor hinges around this function.
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