
THESIS

A DOMAIN-PROTOCOL MAPPING BASED MIDDLEWARE FOR DISTRIBUTED

APPLICATION DEVELOPMENT

Submitted by

Sai Pradeep Mandalaparty

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Spring 2014

Master’s Committee:

Advisor: Robert France

Sanjay Rajopadhye
Peter Young

Copyright by Sai Pradeep Mandalaparty 2014

All Rights Reserved

ABSTRACT

A DOMAIN-PROTOCOL MAPPING BASED MIDDLEWARE FOR DISTRIBUTED

APPLICATION DEVELOPMENT

Distributed systems such as Internet of Things, Sensor Networks and Networked Control

Systems are being used in various application domains, including industrial, environmental,

medical and energy management domains. A distributed application in these domains may

need to access data from different devices, where they may all be of the same type or a combi-

nation of different types. In addition, these devices may communicate through standardized

protocols or proprietary interfaces. The development of such a distributed application may

also require a team of developers with expertise in different disciplines. Therefore, the appli-

cation development that involves heterogeneous devices and multidisciplinary teams can be

made more effective by introducing an interface layer that shields developers from aspects

of software and hardware heterogeneity.

This work proposes a ‘domain-protocol mapping’ technique that is implemented as a mid-

dleware framework. The proposed mapping method maps the application data schema rep-

resented as object-oriented domain object to the appropriate communication protocol packet

data and also updates the domain object from the response packet data. The middleware

provides APIs for the domain experts to read the data from the device or to write the data

to the device. The marshalling and unmarshalling process of the domain objects are hidden

from the domain expert who may or may not be a software engineer. The use of the devel-

oped middleware is illustrated in two case-studies, one involving a simulation of distributed

network controls for power system and the other involving integration of different types of

power meters in power monitoring application.

ii

ACKNOWLEDGMENTS

First and foremost, I am extremely grateful to my supervising advisor, Professor Robert

France, who provided knowledge, guidance, and support through some of the tough and

challenging times. I am also grateful to the members of my dissertation committee Profes-

sor Sanjay Rajopadhye and Professor Peter Young for their comments and suggestions in

critiquing the final draft of this dissertation.

In particular, I would specifically like to thank Mr. Jerry Duggan for helping me out with

different aspects of the distributed application development problems and guiding me all the

way through the completion of my research. His patience and expertise have helped me a

great deal in designing the Middleware framework. I would like to thank all the faculty and

staff of the Computer Science Department for making my graduate study pleasant.

I wish to thank my friends in Fort Collins, who I regard as family, for making my stay

a memorable one. Finally, I would like to express my gratitude to my family members for

their unconditional love and support and for giving me courage and motivation through the

difficult and enjoyable times.

iii

TABLE OF CONTENTS

1 Introduction . 1

1.1 Problem Overview . 1

1.2 Overview of the solution . 3

1.3 Organization of the Thesis . 6

2 Literature Review . 7

2.1 Middleware approaches . 7

2.2 Model Driven Engineering(MDE) approaches 10

2.3 Summary . 11

3 Middleware High level Design Model . 12

3.1 Key concepts . 12

3.1.1 Key Protocol Concepts . 12

3.1.2 Key Middleware concepts . 14

3.2 Middleware High Level Design Model . 15

3.2.1 Sequence Diagram for TransactionManager’s Read Operation 18

4 Case Studies . 22

4.1 First Case Study: Software Client in a NCS for Simulated Power System 22

4.1.1 Domain Background . 22

4.1.2 Modbus Protocol . 24

4.1.3 Middleware-Detail Design class model for Modbus enabled devices 28

4.1.4 Case study - logical sample code walk through 31

4.1.5 Other distributed client communication . 39

4.2 Second Case Study: A scenario in Building energy management 40

4.2.1 Domain Background . 40

4.2.2 ION and ETON Power Meters . 40

4.2.3 Case study scenario description . 41

4.2.4 Domain Object, protocol mapping and type conversion illustration 43

5 Conclusion and Future Work . 44

iv

5.1 Future work . 45

References . 47

A Sample device metadata specification code snippets for power meters . . 50

A.1 Sample Protocol mapping code snippets for power meters 50

v

LIST OF FIGURES

1.1 Block diagram of the Middleware architecture 5

3.1 Ethernet Packet Frame . 13

3.2 Midleware: High Level Class Model . 15

3.3 TransactionManager Read operation Sequence Diagram 19

3.4 TransactionManager Read operation Sequence Diagram 21

4.1 Distributed Networked Control Framework for a Microgrid [1] 23

4.2 Modbus over TCP Frame Format . 25

4.3 Modbus Transaction [2] . 26

4.4 Modbus Read request/response packet format [2] 27

4.5 Modbus Write request/response packet format [2] 27

4.6 High level view of the Middleware Application Architecture 28

4.7 Middleware Detail Level Design Package Abstraction 29

4.8 Metadata package . 29

4.9 Marshaller package . 30

4.10 Transaction Management package . 31

4.11 Endpoint package . 31

4.12 Marshalling output of the InverterRead Object 34

4.13 Unmarshalling output of the InverterRead Object 35

vi

4.14 Marshalling output of the InverterWrite Object 36

4.15 Unmarshalling output of the InverterWrite Object 37

4.16 Block diagram of Multi-Client Single-Server Model [1] 39

4.17 Phase voltage representation in Modbus enabled ION and ETON meters 41

4.18 Power Monitoring scenario description . 42

vii

Chapter 1

Introduction

1.1 Problem Overview

Advances in distributed computing have led to the emergence of several distributed systems

such as Internet of Things (IoT) [3], Sensor Networks (SN) and Networked Control Systems

(NCS) [4]. These distributed systems are being used in various industrial applications,

environmental applications, medical and energy management applications. Such distributed

systems comprises physical systems, sensors, actuators and control systems. Sensors and

actuators operate on the physical systems and the control systems maintain or control the

physical systems indirectly through sensors and actuators. These entities are equipped with

varying computing power, sensing and communication capabilities. They measure different

physical/simulated conditions such as temperature, pressure, motion, humidity and power.

These measured conditions are processed by domain applications which react, for example,

by implementing post-processing algorithms, triggering alarms, activating the actuators or

by applying business rules. Hereafter, in this thesis, IoT, SN, NCS will be referred to as

distributed systems and devices refer to things, sensors, actuators and control systems.

Use of entities such as ‘things’ in IoT, ‘sensors’ in SN and ‘sensors, actuators and control

systems’ in NCS come with new computer science challenges [5]. In particular, a given

application may need to access different types of devices or devices of the same type, but

managed by proprietary software and communicate through standard/proprietary protocols.

The former is referred as device heterogeneity and the latter as software heterogeneity. To

develop the applications which address device and software heterogeneity in distributed

systems, there is a need to understand the following device characteristics:

• Device capabilities can range from very simple, limited resource sensor nodes to very

capable and expensive systems.

1

• Based on the level of hardware/software accessibility of the devices, they can be classi-

fied as Open or Closed. Open devices allow the user to develop/modify the device func-

tionality (i.e., the firmware) and the data exchange communication protocol, whereas

closed devices do not allow modification of their functionality but provide access to the

functionality through a fixed set of standard data exchange communication protocols

and proprietary interfaces.

• Commercial Off-The-Shelf (COTS) devices, by definition, are closed devices. Vendors

seek to differentiate their device functionality, yet seek to minimize investment by pro-

viding the access to the device functionality through standard communication protocols

like Modbus [6], DNP3 [7] and SNMP [8] to query application data schema. In this

context, application data schema corresponds to the data provided by the device.

Along with these device characteristics, the development of few distributed applications

can also need a team of developers with different expertise. For instance, in the case of a mul-

tidisciplinary team investigating ‘Distributed Networked Controls for Power System (NCS)

application [1]’. The team consists of Electrical Engineers, Power Systems Engineers, and

Software Engineers. The nature of the software written by the team consists of data capture

from multiple devices, the control algorithm implementation, and validation of the control

algorithms on simulated power systems. The domain experts, in this context, the power sys-

tem engineers or electrical engineers, may not be specialized to implement different aspects

of the above-mentioned device characteristics in the NCS application. Therefore, there is

a need to separate the concerns of a multidisciplinary team by providing the appropriate

APIs (Application Program Interfaces) between different roles in a distributed application

development process.

Application development which involves support for heterogeneous devices and multidisci-

plinary teams can be simplified by careful separation of application data schema and device

communication logic via protocol adapters by introducing an interface layer, referred to as

2

middleware in the literature. A protocol adapter provides APIs to transform an application

data schema to a protocol packet or update an application data schema from the protocol

packet. In the context of this work, the challenges such a middleware should address are as

follows:

• Leverage the investment in protocol adapter development among many applications.

• Separate the concerns of application developers (domain experts)from that of the pro-

tocol adapter developers (protocol engineers).

• Provide a mechanism to represent the application data schema in an abstract manner

and to query the data from the devices via standard/proprietary protocols.

This work proposes a ‘domain-protocol mapping’ method that is implemented as middle-

ware framework, to address the above-described challenges in distributed application devel-

opment involving multidisciplinary teams and heterogeneous devices. The developed mid-

dleware is demonstrated by two case-studies, in the first case-study the middleware is used

as a software layer in multiple client communications in ‘Distributed Networked Controls for

a Power System Case Study [1].’ The second case study describes a scenario in building en-

ergy management, where the application data schema is fixed, and the middleware provides

access to the ION [9] and ETON [10] power meter devices via a standard protocol. Security,

privacy, device discovery aspects of the middleware are out of the scope of this thesis.

1.2 Overview of the solution

The proposed ‘domain-protocol mapping’ technique based middleware is conceptually sim-

ilar to that of the hibernate [11] object-relational mapping (ORM) solution for Java. Hiber-

nate provides APIs to map Java classes to database tables that also involve type conversion

between Java and SQL data types, which relieve the software developer from common data

persistence related programming tasks. Similarly, the proposed middleware maps application

data schema, represented as object-oriented domain objects, to appropriate communication

3

protocol packet data. Moreover, the middleware updates the domain objects from the re-

sponse packet data relieving the domain experts from addressing numerous device and the

communication protocol implementation details. An overview of the mapping technique

based middleware architecture is illustrated in Fig 1.1. The layers of the architecture are

described below:

Domain Object Layer: The Domain Object layer is responsible for defining the appli-

cation data schema, which is represented as object-oriented domain objects. These objects

encapsulate the data that a domain user wants to read from a device or write to a device.

Protocol Adapter Layer: The Protocol Adapter layer is responsible for encoding and

formatting the domain objects into specific protocol packets based on protocol specific for-

matting rules. This layer also has additional components to process the received protocol

packets and update the domain objects.

Device Metadata Layer: The Device Metadata layer describes the meta-information

about the data provided by a device. The meta-information includes the type and the

encoding format of the data, address location (memory map) of the data or the byte offset

of the data in the protocol packet, and the description of the data provided by the device.

Mapping Layer: The Mapping layer is responsible for providing mapping specification

between the domain object and the device meta-data. This mapping specification is used by

a protocol adapter to transform the domain objects into the protocol packets and to update

the domain objects from the protocol packets. The mapping is specific for a device-protocol

combination.

Application Layer: The Application layer consists of different domain applications

which queries the concerned application data schema from the domain object layer and

act on the data accordingly by computing post-processing algorithms.

4

Device
Metadata

Layer

Devices

Domain Object Layer

Protocol Adapter Layer

Mapping Layer Domain ExpertDomain Expert

Protocol EngineerProtocol Engineer

Application Layer

Operating System

Figure 1.1: Block diagram of the Middleware architecture

Finally, the operating system provides run-time support to transmit the protocol packets

over a network to the device and receive packets from the device. The protocol adapter layer

processes the received packets, and the domain objects are updated with the knowledge of

mapping information.

The benefits of the proposed middleware which address the above explained middleware

challenges are as follows:

• Device heterogeneity can be isolated in the mapping layer by providing a high level

mapping between the domain object and the device.

5

• Developed protocol adapters are reusable across different applications.

• Modifications to the domain objects (to include a new data point) can be made by the

domain experts, and do not require changes to the protocol adapters.

• Domain experts can focus on the concepts that are relevant, and can ignore protocol

and device communication implementation details.

1.3 Organization of the Thesis

The thesis is organized into five chapters as follows:

• Chapter 2: This chapter presents a review of existing approaches addressing different

challenges in distributed application development.

• Chapter 3: This chapter describes abstract protocol adapter requirements and the

middleware’s key design concepts followed by a description of the high level design

model of the middleware framework that includes the class model and sequence dia-

grams.

• Chapter 4: This chapter describes the case studies implementing the high-level design

model illustrated in chapter 3. The case studies include a detailed description of the

domain model and the communication protocol used for data exchange along with

sample code snippets.

• Chapter 5: The final chapter highlights the important features of the proposed mid-

dleware and scope of future research.

6

Chapter 2

Literature Review

This chapter reviews the existing methods which address the application development

challenges described earlier. The reviewed work mainly highlights middleware and model

driven engineering approaches.

2.1 Middleware approaches

Middleware can be defined as software that acts as an intermediary between other software,

applications, and/or devices [12]. Middleware was first introduced in the context of enterprise

systems, in which it was used for integrating the disparate and heterogeneous computing

systems across multiple units. It is also being used in the contexts of distributed systems,

mobile computing and embedded systems [13].

Middleware offers common services for the applications and eases the application develop-

ment process. Middleware for distributed systems facilitates development and deployment of

many applications in the areas of industrial, environmental, medical and energy management

domains. However, it presents a number of challenges [14, 15]. The challenges addressed

in this study are device heterogeneity, software heterogeneity, abstract specification of the

application data schema and re-usability of protocol adapters across many applications. A

variety of sensor middleware that address these challenges are described in the literature.

They can be classified into following three categories according to the nature of the deployed

devices, application domain and the place where data query is processed.

• Wireless Sensor Network management

• Data Stream Management

• Hybrid Approaches

7

Middleware solutions in Wireless Sensor Networks (WSNs) usually act as controllers that

provide functionality for programming global behavior in different sensor nodes [16]. The

data query is processed in purely distributed manner. Milan (Middleware Linking Appli-

cations and Networks) [17] focuses on high-level concerns by providing an interface mainly

characterized by applications that actively affect the entire network. Milan lets sensor net-

work applications specify their quality needs and adjusts the network characteristics to in-

crease application lifetime while still meeting those needs. Mires [18] proposes an adaptation

of a message-oriented middleware for traditional fixed distributed systems. Mires provides

an asynchronous communication model that is suitable for WSN applications, which are

event driven in most cases. It adopts a component-based programming model using active

messages to implement its publish-subscribe based communication infrastructure. However,

in WSNs middleware solutions, the support for device and software heterogeneity is very

limited because the deployed sensor nodes are homogeneous, and they implement the same

communication and data exchange protocols. Since these solutions require a version of the

middleware to run on the device itself, there is no support for COTS devices.

Data Stream Management Systems (DSMS) middleware solutions such as Aurora [19] and

STREAM [20] uses central servers to evaluate continuous queries on data streams issued by

sensors. Queries are formulated by using declarative query languages like CQL [21]. DSMS

solutions are ideal for applications in which data processing time is critical, for example,

financial applications. However, device and software heterogeneity including support for

COTS are not explored in DSMS solutions and the application data schema is supposed to

be in a format comprehensible by the DSMS middleware.

Middleware solutions in Hybrid approaches aim to take advantage of WSNs and DSMS

categories while supporting device heterogeneity. Sstreamware [22] provides a simple data

schema that allows data representation of different types of sensors in a common generic

way. It also handles device and software heterogeneity by proxies and adapters. Brito

et al. [23] proposed a hybrid middleware that supports the integration of heterogeneous

8

medical devices which are by default COTS devices. This middleware also provides support

to run simple data pre-processing algorithms as services. It can be invoked from Matlab 7.x,

which enables researchers to test the developed algorithms with the data acquired from any

supported sensor in real-time. However, the authors don’t mention any reference as to how a

domain user can specify the application data schema in an abstract manner. Another hybrid

middleware, GSN [24], is conceived for rapid and simple deployment of applications that need

integration of data from heterogeneous sensors. The idea of ’Virtual Sensors’ was introduced

to abstract the sensors from the physical implementations and provide a homogeneous view

of sensor data. A ’Virtual sensor’ description includes a description of the application data

schema and wrapper/adapter information. However, in GSN based applications, support for

COTS devices is not discussed.

NCS is a system which consists of entities such as sensors, actuators, and control systems

distributed over a network, and their corresponding control-loops are formed through a net-

work layer. Kim et al. [25] discuss the general features and challenging issues of NCSs and

propose a value of design and implementation of a middleware as a solution to address the

challenges of NCSs. The value of abstractions, architecture, middleware, services in NCSs

are discussed by Baliga et al. [26] and a message-oriented middleware called ’Etherware’

was proposed. Etherware provides interfaces for the creation, upgrade, and migration of

components. It allows local/remote components to communicate through compatible proto-

cols. The architecture of Etherware is based on the micro kernel concept [27]. The Kernel

represents the system invariant whose only function is to manage components and deliver

messages between them. However, in Etherware, the remote components communicate via

fixed set of protocols that limits the support for proprietary protocols and also there is limited

or no support for COTS devices since the remote devices should be aware of Etherware.

9

2.2 Model Driven Engineering(MDE) approaches

Model Driven Engineering (MDE) technologies are used to raise the level of abstraction

in application data schema specification and automate distributed application development

process. MDE technologies use models at different levels of abstraction in application de-

velopment process. An increase of automation in application development is achieved by

using executable model transformations. Higher-level models are transformed into lower-

level models until the model can be made executable, by using code generation or model

interpretation tools. A model is often specified in some notation or language. Since mod-

eling languages are mostly tailored to a particular domain, such language is often called a

Domain-Specific Language (DSL).

Doddapaneni et al. [28] proposed an MDE framework for architecting and analyzing

wireless sensor networks. This MDE framework proposes three modeling languages to model

the software architecture of the WSN, the hardware specification of sensor nodes and the

physical environment where the nodes are deployed. These models are linked together by

using weaving models to generate the simulation scripts which are used to analyze the energy

consumption of the modeled application. However, the software model components are

physically deployed on hardware node components which limits the support for COTS devices

and other proprietary protocols.

Di Marco et al. [29] proposed a UML based model driven approach that allows modeling

of existing middleware Agilla agents [30] providing an easy way to design and implement

a WSN application for non-expert programmers. This UML based approach also automat-

ically generates middleware agents code from UML models using Model-to-Code transfor-

mations, where the generated code is adapted without service interruptions through agent

substitutions. This study focus on providing an abstraction for non-expert programmers for

an existing middleware approach, where device and software heterogeneity is addressed by

underlying middleware.

10

Fleurey et al. [31] proposed a Domain-Specific Modeling Language called ThingML to

support efficient development of IoT applications over heterogeneous WSNs. ThingML aims

at promoting software engineering best practices for the specific case of resource-constrained

systems. Application program interfaces (APIs) for serialization and deserialization of the

communication messages between the devices are fully generated from the ThingML de-

scription by underlying model transformations. Even interactive simulators are generated to

enable fast and early testing of the software development cycle. However, the communication

protocol is fixed between the devices and the support for COTS devices is not addressed in

the paper.

2.3 Summary

The literature review describes the existing methods such as middlware and MDE to

address the application development challenges for distributed systems. Advantages and

limitations of different categories (WSNs, DSMS, Hybrid) of middleware and MDE solutions

are discussed. The proposed mapping technique between application data schema and device

meta-data is implemented as middleware framework is explained in the next chapter.

11

Chapter 3

Middleware High level Design Model

This chapter describes the key concepts underlying the proposed middleware design,

which is followed by the description of the middleware’s high-level design model (that includes

class model and sequence diagrams).

3.1 Key concepts

The middleware design model is based on the following key concepts.

3.1.1 Key Protocol Concepts

For this work, some popular communication protocols (Modbus, DNP3) were analyzed,

and the following common protocol concepts were identified.

3.1.1.1 Packet Frame:

A packet frame is the structure of data in a protocol packet. The structure of a packet

depends on the protocol packet type. A packet typically has a header and a payload. The

header maintains transmission-related details and the overhead information about the packet.

The payload is the data it carries. For example, Figure 3.1 shows an Ethernet packet frame.

3.1.1.2 Data Format:

Data format determines the manner in which the data in a protocol packet is interpreted.

For example, the first 4 bytes in a protocol packet are interpreted as a UINT32 (un-signed

32-bit integer) number, and the packet is encoded in Big Endian format, where the most

significant bytes of the data is stored at the lowest storage address.

12

Destination MAC
6 Bytes

Source MAC
6 Bytes

Type
2 Bytes

Data
46 – 1500 Bytes

Frame Check Sequence
4 Bytes

Figure 3.1: Ethernet Packet Frame

3.1.1.3 Object Identity:

The main purpose of a communication protocol is to transfer data between two devices.

The device should be accessible and addressable in-order to communicate via the protocol.

Every device/object in a network that uses a communication protocol has a unique identity

for the purpose of identification and addressing.

3.1.1.4 Transaction Management:

A transaction is a sequence of information exchanged through the protocol packets be-

tween two computing entities. A transaction identifier which can be a ’Unique Sequence

Number’ is used to keep track of the protocol packet in a specific transaction. Each transac-

tion in a communication serves a particular purpose, which is identified by the transaction

type. Based on the semantics of transactions, they can be categorized into different trans-

actional models. In the context of communication between the application and a device, we

have ’Request-Reply’ and ’Push’ transactional models. This work focuses on ’Request-Reply’

model.

Request-Reply vs. Push transactional models: A Request-Reply transactional model has

two steps. Firstly, the application sends a request to the device and awaits a response, and

then the device sends a reply in response. Usually there is a series of such interchanges

until the complete message is sent. In Push transactional model, a transaction is issued

without its corresponding request. A push transaction without a request is a unidirectional

transaction which is useful for sending updates, readings and notifications of error conditions

periodically from the device.

13

3.1.2 Key Middleware concepts

The following are key middleware concepts that underlie the approach described in this

thesis.

3.1.2.1 Domain Object:

A domain object is an encapsulation of the application data schema that is read from a

device or written to the device by a domain expert.

3.1.2.2 Device Metadata:

Device metadata describes the meta-information about the data provided by a particular

device. The meta-information includes the type and the encoding format of the data, address

location (memory map) of the data or the byte offset of the data in the protocol packet,

and the description of the data provided by the device. This information also acts as data

formatting rules for supported communication protocols.

3.1.2.3 Domain Map:

A domain map specifies the mapping between the domain object and device metadata.

The mapping information is useful in translating the domain object into specific communi-

cation protocol packet and in updating the domain object from the protocol packet appro-

priately.

3.1.2.4 Protocol Adapter:

A protocol adapter provides interfaces to format the domain object into a protocol packet

and update it from the packet.

3.1.2.5 End Point:

An end point provides appropriate interfaces for underlying network/serial communica-

tion to the physical device.

14

-Name

DeviceMetadata

+newTransactionDescriptor(in transType, in objectid, in transId)
+marshall(in TransactionDescriptor, in DomainObject, in buffer)
+unmarshall(in TransactionDescriptor, in buffer, in DomainObject)
+discover(in TransactionDescriptor, in buffer)

ProtocolMarshaller

+isReplyRequired()

-byteCount
-objectId
-transactionId
-transactionType

TransactionDescriptor

+Read(in DomainObject)
+Write(in DomainObject)
+connectClient(in ipAddress, in port)

TransactionManager

+read(in size)
+write(in buffer)

EndPoint

-Name

PointDefinition

DomainObject

+getMetadata(in domainObj : object)

DomainMap

-domain*

-metadata*

-marshaller1

-manager 1

-devicemetadata1

-pointdef*

-mapping

1

-endpoint1

-descriptor

*

Figure 3.2: Midleware: High Level Class Model

3.2 Middleware High Level Design Model

In this section, the high-level design model of the middleware and the transaction man-

agement design issues are discussed. Figure 3.2 shows the high level design class model of

the middleware. It describes the middleware’s abstract entities and their corresponding in-

terfaces. These entities must be specialized to provide core functionality for specific devices

and their respective communication protocols.

The PointDefinition, DeviceMetadata, EndPoint, ProtocolMarshaller, DomainMap and

TransactionDescriptor classes are abstract. Their specializations are responsible for the

concrete device metadata and protocol implementations.

The PointDefinition abstract class is responsible for maintaining meta-information of a

particular data point provided by the device, such as, type and format of the data point,

data point address location, and the description of the data point provided by the device.

The DeviceMetadata abstract class is composed of PointDefinitions and is responsible for

providing an interface to access them. The EndPoint abstract class provides interfaces for dif-

ferent concrete network/serial endpoints which are responsible for opening a network stream

or serial connection between the application and the physical device. The DomainObject

15

class represents the encapsulation of the data that is read from an EndPoint or written to

an EndPoint by the domain expert.

A protocol specific adapter is implemented by specializing the ProtocolMarshaller abstract

class. This class is responsible for marshalling and unmarshalling of the domain object. It

defines the ’marshall’ and ’unmarshall’ abstract operations, and the onus is on the Protocol-

Marshaller’s specialized classes to implement them. The ’marshall’ operation transforms the

domain object to a protocol specific packet, and the ’unmarshall’ operation processes the

packet data and updates the domain object. The ’marshall’ and ’unmarshall’ operations use

the mapping information provided by the DomainMap class to transform the domain data

to packet data and vice versa.

The DomainMap abstract class represents the logical mapping between domain objects

and device metadata. A protocol specific mapping is implemented by specializing the ab-

stract DomainMap class. The mapping information maps the domain objects and the device

metadata that is helpful in formatting the domain object into protocol specific packet data.

The TransactionDescriptor class represents an abstract notion of a transaction and main-

tains important properties of a transaction such as its unique identifier, number of bytes of

data in the transaction, transaction type (read-request/response and write-request/response)

and device identity (object id). The TransactionDescriptor class can be specialized to main-

tain additional protocol specific properties.

The TransactionManager class is responsible for the transaction management process and

it provides ’Read’ and ’Write’ operations. These operations are used by the domain expert

to read or write the domain data to the device using specialized ProtocolMarshaller class as

a protocol adapter. The ’Read’ and ’Write’ operations abstracts complete marshalling and

unmarshalling of the domain object from a domain expert point of view. The interactions

involved in ’Read’/’Write’ operations are illustrated in the next subsection. The Transac-

16

tionManager class is also responsible for creating and managing the transactions (also known

as TransactionDescriptors) between the domain applications and the devices.

3.2.0.6 Transaction Management design concerns:

The important design concerns in managing transactions such as packet completeness

and packet identification are described below:

Packet Completeness: During ’Read’ or ’Write’ operations, while the TransactionManager

is waiting to process the response for the requested data, the TransactionManager queries

the EndPoint interfaces for the response packet. The received packet might be a partial

response packet in which case, the TransactionManger has to continue the querying process

until the packet is complete enough for unmarshalling process.

Packet Identification: The packet identification process involves identifying the received

packet type from an EndPoint i.e. whether the received packet is of response-read or

response-write or incomplete transaction type. The knowledge of the packet type is required

for unmarshalling process of the packet data.

TransactionManager addresses packet completeness and packet identification concerns by

calling ProtocolMarshaller’s ’discover’ method. This method identifies the packet type based

on the protocol knowledge by processing the received packet and updates the TransactionDe-

scriptor’s properties (like transacitonid, transactiontype and bytecount). For an ’incomplete’

transactiontype, the packet data is not complete enough for unmarshalling process to update

the domain object. Therefore, the TransactionManager continues to query the underneath

EndPoint stream until the transactiontype is not ’incomplete’.

If many ’Read’ or ’Write’ queries are issued to the EndPoint, there is a need to identify and

map many responses to its source requests. To handle this, the TransactionManager class

maintains a hash map of the issued transactions with transactionid as the key and domain

object as its value. Whenever, a response is received, and its packet completeness and packet

17

identification processes are successfully completed, the TransactionManager queries the hash

map based on the updated transactionid to get the source transaction domain object. The

queried domain object is updated by the ProtocolMarshaller’s ’unmarshall’ method from the

response packet data.

3.2.1 Sequence Diagram for TransactionManager’s Read Opera-
tion

The TransactionManager’s ’Read’ and ’Write’ operations are used by the domain experts

to read the data from the device and to write the data to a device respectively. In this

section, the interactions involved in ’Read’ operation are illustrated. The interactions for

the ’Write’ operation are similar with the exception of a change in state/value of parameters.

3.2.1.1 Read operation in Synchronous transaction

Figure 3.3 illustrates the interactions involved in simple a case of ’Read’ operation. The

domain expert calls the ’Read’ operation with the domain object as a parameter. The

interactions involved in Fig 3.3 are described below (with particular sequence numbers as

shown in the diagrams):

1 A TransactionDescriptor instance is created by calling the ’newTransactionDescrip-

tor’ method of ProtocolMarshaller class with transaction type as ReadRequest. The

TransactionDescriptor instance is created to maintain transaction particular attributes

as explained earlier. It is also used to pass the hints (protocol specific control informa-

tion) during marshalling/unmarshalling process.

2 The ProtocolMarshaller’s ’marshall’ method translates the domain object into a pro-

tocol request packet.

3 The request buffer from the ’marshall’ method is sent to the device over the network

by calling the ’write’ method of EndPoint class.

4 The ’read’ method of the EndPoint class is queried for the response packet from the

device.

18

pm: ProtocolMarshallertm: TransactionManager

Read(Object)

ep: EndPoint

marshall(InTd,Object,sendbuffer)

updated sendbuffer

write(sendbuffer)

newTransactionDescriptor(TransactionType.RequestRead)

returns the TransactionDescriptor(InTd)

read(bufSize)

receivebuffer

unmarshall(receivebuffer, Object)

updated domain object

1

2

3

4

5

Figure 3.3: TransactionManager Read operation Sequence Diagram

5 The ProtocolMarshaller’s ’unmarshall’ method is invoked. The response packet is

processed, and the domain object’s data members are updated.

In reality, there is a need to address the transaction management implementation concerns

such as packet identification, packet completeness and handling multiple ’Read’ requests, as

discussed earlier. Figure 3.4 illustrates the ’Read’ operation interactions, which address these

implementation concerns. The interactions involved are described below (with particular

sequence numbers).

1 This interaction is similar to the first step in Fig 3.3. A new TransactionDescriptor’s

19

instance is created by calling the ’newTransactionDescriptor’ method of ProtocolMar-

shaller’s class with transaction type as ReadRequest.

1a Update the TransactionDescriptor (InTD) instance data members such as transac-

tionid, transactiontype and objectid.

1b Add the TransactionDescriptor’s (InTD) transactionid as a key and domain object

as a value to the transaction dictionary which is queried before ’unmarshall’ method

(interaction-9)

2 This interaction is similar to the second step as Fig 3.3, ProtocolMarshaller’s ’marshall’

method translates the domain object into a protocol request packet (buffer).

3 This interaction is is related to the third step in Fig 3.3, the updated request packet

(buffer) is sent to the device over the network by calling the ’write’ method of EndPoint

class.

3a A new TransactionDescriptor instance is created by calling the ’newTransactionDe-

scriptor’ method of ProtocolMarshaller’s class. This transaction descriptor is used for

the packet identification process.

4 This interaction is similar to the fourth step in Fig 3.3 where, the ’read’ method of the

EndPoint class is queried for the response packet from the device.

4a The ProtocolMarshaller’s ’discover’ method is invoked to determine the completeness

of the response packet. Step 4 and step 4a are run in a loop until the TransactionDe-

scriptor’s (OutTd) transactiontype property is not ’incomplete’.

5 The transaction dictionary is queried for the domain object based on the Transaction-

Descriptor’s (OutTd) transactionid data member. The response packet is processed,

and the domain object data members are updated by ’unmarshall’ method of the con-

crete ProtocolMarshaller’s class.

20

pm: ProtocolMarshallertm: TransactionManager

[Lookup into Transaction hash table for the domain object]

Read(Object)

ep: EndPoint

marshall(InTd,Object,sendbuffer)

updated sendbuffer

write(sendbuffer)

newTransactionDescriptor(TransactionType.RequestRead)

returns the TransactionDescriptor(InTd)

Update TId, ObjectId data members of TransactionDescriptor instance

Loop if OutTd.TransactionType
== Incomplete

newTransactionDescriptor(TransactionType.Incomplete)

returns the TransactionDescriptor(OutTd)

read(bufSize)

receivebuffer

discover(OutTd,receivebuffer)

updated OutTd datamembers

unmarshall(OutTd,receivebuffer, Object)

updated domain object

Add the Tid,Object to the transaction hash table

1

1a

1b

2

3

3a

4

4a

5

Figure 3.4: TransactionManager Read operation Sequence Diagram

21

Chapter 4

Case Studies

This chapter describes the case studies implementing the high-level design model illus-

trated in chapter 3. The case studies include a description of the domain, the communication

protocol, detail-level design class model of the middleware for Modbus enabled devices and

the code samples.

4.1 First Case Study: Software Client in a NCS for

Simulated Power System

The middleware, which is proposed and implemented in this study has already been

successfully adapted as a software layer for multiple client communications in [1].

4.1.1 Domain Background

Jain [1], proposed and implemented a distributed network control framework (illustrated

in Figure 4.1) for a power system simulation. The power system (or micro-grid) simulation

runs on an Opal-RT real time simulation system [32] (acting as a server) with its devices

including a photo-voltaic (PV) system and over-current (OC) relays communicates with the

distributed clients for control data. One such client is termed as a ’software controller’, which

sends the control data (duty cycle) by computing Maximum Power Point Tracking (MPPT)

algebraic algorithms to the inverter of a PV system in a feedback loop [33]. The MPPT

controller is used to derive the maximum possible power from semiconductor devices like a

photo-voltaic panel, in which the current does not vary linearly with voltage. The MPPT

controller can use different algorithms to optimize the power output of a PV system.

The algorithm used in the software controller is most widely used algorithm The Perturb

& Observe Method (P&O) [34]. The P&O method ensures maximum power output from

22

OrionLX
Substation

Automation
Platform

Modbus/TCP
--CLIENT (IP4)--

--CLIENT (IP3)--
--CLIENT (IP2)--

--SERVER—
(Future Work)

--SERVER (IP1)--

OPAL-RT
Real-Time
Simulator

(Microgrid)

C Code Layer C# Code Layer
C# Code Layer

MATLAB
Layer

Lua Code Layer

SCADA
System

(Integrid)

Simulink
Controller
(IC MPPT
Control)

Physical (HIL)
Controller
(Substation

Control)

Software
Controller

(PandO MPPT
Control)

TCP/IP

TCP/IP

TCP/IP

Physical
Systems

Multiple PV
Controllers

Multiple PV
Controllers

--CLIENT (IP5)--

C# Code Layer
Software

Data source
(Spreadsheet
PV Irradiance)

TCP/IP

Figure 4.1: Distributed Networked Control Framework for a Microgrid [1]

the photo-voltaic panel by modifying its output operating voltage or current. In a paper

by Jain [1], the implemented P&O algorithm takes voltage, current and time as input and

generates duty cycle control data as output. The voltage and current input parameters are

used to compute the control data (duty cycle), while the input parameter time is used for

time-synchronization of various clients. In the context of this work, the domain data used

are voltage, current, time and duty cycle. The domain data is processed by application level

algorithm (P&O), and the data is communicated to the Opal-RT server (PV simulation).

Modbus TCP/IP is used as the communication protocol to exchange the data between the

application and the server. The Opal-RT server has a layer of C code that contains socket

programming, as well as Modbus/TCP implementation.

23

4.1.2 Modbus Protocol

Modbus is an application layer communication protocol originally published by Modicon

(now Schneider Electric) in 1979 for use with its programmable logic controllers (PLCs)

and it has since become popular with industrial automation devices. Modbus allows for

client-server communication between several devices connected over the network. There are

different versions of this protocol [6]. The version implemented in this thesis is Modbus

TCP/IP, which uses request-response transactional model for message passing mechanism

between the application and the server.

4.1.2.1 Modbus Frame

Figure 4.2 illustrates the Modbus request/response frame format over TCP/IP. A typical

Modbus TCP packet frame is composed of protocol data unit (PDU) and application data

unit (ADU). In general, an application layer communication protocol defines a simple PDU

independent of the underlying communication layers. Subsequently, when the protocol is

mapped to a specific network, some additional fields are introduced, which constitutes to

the application data unit (ADU). All the fields in the Modbus frame are encoded in Big-

Endian byte ordering notation.

A dedicated Modbus header is used over TCP/IP network communication to identify the

Modbus ADU. It is called MBAP header (Modbus Application Header). The length of

Modbus TCP/IP ADU = PDU (253 bytes) + MBAP (7 bytes) = 260 bytes. The MBAP

header contains the following fields:

• Transaction Identifier: This field is used for Modbus request/response transaction

pairing between client and server. The transaction identifier is assigned by the client

initiating the request and is recopied by the server in its response packet.

• Protocol Identifier: This field is used for intra-system multiplexing. The Modbus

protocol is identified by the value ’0’ and this field has been reserved for future protocol

24

MBAP Header
(7 bytes)

Function
Code

(1 byte)

Data
(N bytes)

Transaction Identifier
(2 bytes)

Protocol Identifier
(2 bytes)

Length
(2 bytes)

Unit Identifier
(1 byte)

ADU

PDU

MBAP Header

Figure 4.2: Modbus over TCP Frame Format

extensions. It is also assigned by the initiating client and is recopied by the server in

response.

• Length: This field contains the byte count of ’Unit Identifier’ and PDU fields. It

is assigned separately by both the client and the server where they indicate their

respective number of bytes.

• Unit Identifier: This field is used for intra-system routing. It is typically used to

communicate to a Modbus serial line slave through a gateway between an Ethernet

TCP/IP network and a Modbus serial line. This field is set by the Modbus client in

the request and must be returned with the same value in the response by the server.

Since the Unit ID is only 1 byte long, the maximum number of clients that can be

connected to a single server, without modifying the protocol format is 255.

The Modbus PDU comprises of function code and data fields. Function code indicates

the transaction type issued between the client and the server. The data field contains the

information exchanged between the server and the client. The PDU fields are explained

25

Figure 4.3: Modbus Transaction [2]

below [2]:

• Function Code: This code indicates to the server as to what function to perform with

respect to a request from the client that is illustrated in Fig 4.3. With the size of 1 byte,

function codes range from 1-255, where the codes 128-255 are reserved for exception

handling. This work is focused on few of the function codes explained below:

1. 03: Read Holding Registers: This function code is used by the client to indicate

that it intends to read the contents of a contiguous block of holding registers from

the indicated device.

2. 06: Write Single Register: This function code is used to write a single holding

register in the remote device.

3. 16: Write Multiple Registers: This function code is used to write to a block of

contiguous holding registers in the remote device.

• Data: The data field of the PDU contains additional information that the server uses to

take the action defined by the function code. The content in this field varies based on

the transaction type as shown in Fig 4.4 and Fig 4.5, where the format of read request

packet and read response packet, write request packet and write response packet are

different from each other respectively.

26

Figure 4.4: Modbus Read request/response packet format [2]

Figure 4.5: Modbus Write request/response packet format [2]

4.1.2.2 Modbus Data Model:

The data model is based on a series of tables, which include discrete input, coils, input

registers and holding registers. These tables are word addressable data items, and they

do not imply any application behavior. The protocol allows selection of 65536 data items

for each of the tables and the read/write operations to these tables are dependent on the

function code as stated earlier. The mapping between the Modbus data model and the

device application is totally vendor specific, which adds a layer of complexity to develop a

generic Modbus protocol marshaller for all Modbus devices. Since the registers are 16 bit

(word) addressable units, the data can be spanned across the registers. The 32 bit value

27

Middleware

.Net supported Applications

Domain Object

.Net Framework

Devices

Operating System

Figure 4.6: High level view of the Middleware Application Architecture

is spanned across two registers, and it can be represented as an integer or floating point

number. Encoding these values into the register map is vendor specific. In most cases, the

vendor provides a description of protocol-device (registers/coils) mapping, which describes

the attributes addressed by device metadata.

4.1.3 Middleware-Detail Design class model for Modbus enabled
devices

The middleware is implemented using .NET 4.5 framework [35] and C# programming

language. A high-level view of the application architecture is illustrated in Fig 4.6, where the

28

Metadata Marshaller TransactionManagement Endpoint

Figure 4.7: Middleware Detail Level Design Package Abstraction

-name : String

Metadata

+ModbusMetadata()
+getPoint(in name : string) : ModbusPointDefintion
+addPoint(in pd : ModbusPointDefintion)

-_map : Dictionary<String, ModbusPointDefinition>

ModbusMetadata

+Register() : int
+Type() : DataType
+Scale() : int
+ModbusPointDefinition(in name : string, in type
: DataType, in register : int, in scale : int)
-lookupSize(in dt : DataType) : int

-type : DataType
-register : int
-scale : int

ModbusPointDefinition

+Name() : String
+PointDefinition(in name : string)

-name : String

PointDefinition

+MODInt16
+MODUInt16
+MODInt32

+MODUInt32
+MODInt64

+MODUInt64
+MODFloat

+MODDouble
+Undefined

«enumeration»
DataType

-metadata

0..1

-pointdef

*

Figure 4.8: Metadata package

domain objects in the applications are defined in .NET compatible languages. The middle-

ware’s high-level design class model (Fig 3.2) explained in the previous chapter is specialized

for Modbus devices. Figure 4.7 represents the detail-level design package abstraction which

contains the Metadata, Marshaller, TransactionManagement and Endpoint packages. Fig-

ure 4.8 (Metadata Package), Fig 4.9 (Marshaller Package), Fig 4.10 (TransactionManagement

Package) and Fig 4.11 (Endpoint Package) represents the concrete classes and their asso-

ciations and dependencies among their respective packages. The device metadata classes

for Modbus protocol supported devices are specialized in metadata package illustrated in

Fig 4.8. Modbus protocol specific marshaller classes are illustrated in Fig 4.9. The Transac-

tionManager and concrete endpoint classes are illustrated in Fig 4.10 and Fig 4.11.

29

+marshall(in td : TransactionDescriptor, in domainObj : object,
in buf : ProtocolBuffer) : void
+unmarshall(in td : TransactionDescriptor, in domainObj :
object, in buf : ProtocolBuffer) : void
+discover(in td : TransactionDescriptor, in buf : ProtocolBuffer)
: void
+newTransactionDescriptor(in transaType : TransactionType, in
objectId : int, in transactionId : int) : TransactionDescriptor
+isFixedBuffer(in td : TransactionDescriptor) : bool
+AbstractMarshaller(in md)

AbstractMarshaller

+ModbusMarshaller(in md)
+ModbusMarshaller(in classType : Type)
-calculateStartRegAndCount(in domainObj : object, out
startRegister : int, out endRegister : int) : void
-registerToByteOffset(in register : int) : int
+discover(in td : TransactionDescriptor, in buf : ProtocolBuffer, out
startAddr : int, out numReg : int, out byteCount : byte, out
errorCode : byte, out exCode : byte) : void

-FC_OFFSET : int = 0
-FC_LEN : int = 1
-STARTADDR_OFFSET : int = 1
-NUMREG_OFFSET : int = 3
-NUMREG_LEN : int = 2
-READREQ_LEN : int = 5
-WRITERESP_LEN : int = 5
-STARTADDR_LEN : int = 2

ModbusMarshaller

+BasePoint() : int
+ModbusType() : DataType

+Scale() : int

-basePoint : int
-modbusType : DataType

-scale : int

ModbusAttribute

+TransactionID() : int
+ProtocolID() : int

+Length() : int
+UnitID() : byte

+MBAP(in tid : int, in pid : int, in
length : int, in unitID : byte)

-transactionId : int
-protocolID : int

-length : int
-unitID : byte

MBAP

+marshal(in td : TransactionDescriptor, in obj : MBAP, in
buff : ProtocolBuffer) : void

+unmarshal(in td : TransactionDescriptor, in obj : MBAP,
in buf : ProtocolBuffer) : void

+discover(in td : TransactionDescriptor, in buf :
ProtocolBuffer) : void

-TID_OFFSET : int = 0
-TID_LEN : int = 2

-PID_OFFSET : int = 2
-PID_LEN : int = 2

-LENGTH_OFFSET : int = 4
-LENGTH_LEN : int = 2
-UID_OFFSET : int = 6

-UID_LEN : int = 1
-MBAP_LEN : int = 7

MBAPMarshaller

+fromType(in buf : ProtocolBuffer, in index : int,
in dt : Type) : object

+toType(in obj : object, in destType : Type, in
pdef : PointDefinition) : object

+ModbusTypeToType(in mdType : Type) : Type

ModbusTypeConvertor

+ProtocolBuffer(in cap : int, in len : int, in offset :
int, in endian : EndianDesc)

+ProtocolBuffer(in storage : Byte[], in offset : int, in
len : int, in endian : EndianDesc)

+ProtocolBuffer(in source : ProtocolBuffer, in offset
: int, in len : int, in endian : EndianDesc)

+alloc(in size : int) : void
+trim(in size : int) : void
+grow(in size : int) : void

+moveOffset(in offset : int) : void
+bufEqual(in buf : Byte[]) : bool

+popFront(in numBytes : int) : void
+get(in index : int) : byte

+set(in index : int, in value : byte) : void
+getU16(in index : int) : UInt16

+getU32() : UInt32
+getFloat(in index : int) : float

+getDouble(in index : int) : double
+set(in index : int, in value : double) : void

-endian : EndianDesc
-store : Byte[]

-offset : int
-length : int

ProtocolBuffer

+BigEndian
+LittleEndian
+Unspecified

«enumeration»
EndianDesc

-name : String
Metadata::Metadata -metadata

1

Figure 4.9: Marshaller package

4.1.3.1 Domain object Mapping and device metadata specification

The mapping 1 between the domain object and device metadata is achieved by .NET

reflection and the device metadata is specified as C# attribute features. The .NET frame-

work’s reflection API provides interfaces to access an object’s attributes, properties and

methods at run-time. An attribute is an object that represents data which can be associated

to an element in the program.

In this work, the device metadata is specified in an implicit manner by decorating the

domain object data members by the C# attributes. For example, ModbusAttribute class

illustrated in Fig 4.9 is decorated around the domain object data members which are pro-

1Note: In the current version of the middleware, the mapping is implemented in an implicit manner
rather by specializing the DomainMap class.

30

+Read(in domainObj : object) : void
+Write(in domainObj : object) : void

-processReply() : void
-userOperation(in domainObj : object, in td :

TransactionDescriptor) : void
+connectClient(in ip : string, in port : int) : void

+disconnectClient() : void

-transDic : Dictionary<int, Object >
-objectDic : Dictionary<Object, int>

TransactionManager

+isReplyRequired() : bool

-transType : TransactionType
-objectid : int

-transactionId : int
-byteCount : int

TransactionDescriptor

-startingAddress : int
ModbusTransactionDescriptor

+RequestRead
+ResponseRead
+RequestWrite

+ResponseWrite
+AsynchData
+Unknown

+Incomplete
+Invalid

«enumeration»
TransactionType

-manager

0..1

-desc

*

+marshall(in td : TransactionDescriptor, in domainObj :
object, in buf : ProtocolBuffer) : void

+unmarshall(in td : TransactionDescriptor, in domainObj :
object, in buf : ProtocolBuffer) : void

+discover(in td : TransactionDescriptor, in buf :
ProtocolBuffer) : void

+newTransactionDescriptor(in transaType : TransactionType,
in objectId : int, in transactionId : int) : TransactionDescriptor

+isFixedBuffer(in td : TransactionDescriptor) : bool
+AbstractMarshaller(in md)

Top Package::Marshaller::AbstractMarshaller

-marshaller 1

Figure 4.10: Transaction Management package

+Connect() : bool
+Disconnect() : void

+Read(in buf : ProtocolBuffer, in size : int) : int
+Write(in buf : ProtocolBuffer, in size : int) : void

Endpoint

+NetworkEndpoint(in host : string, in port : int)
+NetworkEndpoint(in stream : NetworkStream)

-host : String
-port : int

-stream : NetworkStream

NetworkEndpoint

+Read(in domainObj : object) : void
+Write(in domainObj : object) : void

-processReply() : void
-userOperation(in domainObj : object, in td :

TransactionDescriptor) : void
+connectClient(in ip : string, in port : int) : void

+disconnectClient() : void

-transDic : Dictionary<int, Object >
-objectDic : Dictionary<Object, int>

TransactionManagement::TransactionManager

-endpoint

1

Figure 4.11: Endpoint package

cessed during run-time via reflection. The ’name’ of the data member and the decorated

attribute information represents device metadata information. The ’domain - protocol map-

ping’ is achieved by querying the device metadata information (Basetype and ModbusType)

based on the ’name’ of the domain object’s data member during run-time using reflection.

Detailed code walk through of the domain objects, domain mapping, metadata, marshalling

and unmarshalling process is described in next the subsection.

4.1.4 Case study - logical sample code walk through

This section describes the code snippets of the implemented middleware to read V, I and

Time values from the PV simulation and to write the computed control data i.e. the duty

31

cycle to the PV simulation.

4.1.4.1 Domain Objects

The InverterRead and InverterWrite classes encapsulate the data read from the PV sim-

ulation or written to the PV simulation by the control engineer. The InverterRead data

members V, I and simTime represent the data to be read from the simulation. The P&O

MPPT control algorithm as described earlier in the domain background section takes In-

verterRead data members as parameters and computes the InverterWrite class data member

duty cycle (control data), which is then written to the PV simulation. The domain objects

code snippet is illustrated in listing:4.1.

Code Snippet 4.1: Domain Objects

public c lass InverterRead
{

private double V ;
private double I ;
private double sTime ;
public InverterRead (double V = 0 .0 ,
double I = 0 . 0 , double simTime = 0 . 0)
{

V = V;
I = I ;
sTime = simTime ;

}
[Modbus(BasePoint = 0 ,
MODBUSType = ModbusPointDef init ion . DataType .MODDouble)]

public double V
{

get { return V ; }
s e t { V = value ; }

}
[Modbus(BasePoint = 4 ,
MODBUSType = ModbusPointDef init ion . DataType .MODDouble)]
public double I
{

get { return I ; }
s e t { I = value ; }

}
[Modbus(BasePoint = 8 ,
MODBUSType = ModbusPointDef init ion . DataType .MODDouble)]
public double simTime
{

get { return sTime ; }
s e t { sTime = value ; }

}
}
public class Inver te rWr i te
{

private double duty ;
public Inver te rWr i te (double Star t = 0 . 0)
{

duty = Star t ;
}
[Modbus(BasePoint = 0 ,
MODBUSType = ModbusPointDef init ion . DataType .MODDouble)]

public double Duty
{

get { return duty ; }
s e t { duty = value ; }

}
}

32

4.1.4.2 Metadata specification and Mapping

It is evident from the domain objects code snippet illustrated in listing:4.1, that the data

members are decorated with Modbus attribute which contains named parameters BasePoint

and MODBUSType. The Modbus attributes and the name of the data member accounts

for device metadata. For example, consider InverterRead class code snippet, the name of

the data member V specifies the description of the data provided by the simulation i.e. V

- voltage. MODBUSTYPE = MODDouble represents the data type and BasePoint = 0

represents the data address location (memory map) (which is the starting register address).

During run-time, using .NET reflection, these Modbus attributes of the InverterRead/In-

verterWrite object’s data members are processed, and the ModbusPointDefinition’s objects

are created and added to the ModbusMetadata instance, the sample code snippet is illus-

trated in listing:4.2. Domain object-device metadata mapping for a specific data member

is achieved by querying the ModbusPointDefinition’s BasePoint and MODBUSType infor-

mation based on the ’name’ of the data member (Since the PointDefinition’s ’name’ data

member is initialized from the domain object’s data member ’name’) during run-time using

.NET reflection.

Code Snippet 4.2: Creation of ModbusPointDefintion via .NET reflection and C# attribute
features

Type runtimeObj = inverterReadObj . GetType () ;
PropertyIn fo [] a r rP rop e r t i e s = runtimeObj . GetPropert i e s () ;
foreach (PropertyIn fo p i in a r rP rope r t i e s)
{

object [] a t t r i b u t e s = pi . GetCustomAttributes (
typeof (ModbusAttribute) , fa l se) ;

foreach (Object a t t r i bu t e in a t t r i b u t e s)
{

ModbusAttribute ma = (ModbusAttribute) a t t r i bu t e ;
ModbusPointDef init ion mpd = new ModbusPointDef init ion (p i .Name,
ma.ModbusType , ma. BasePoint) ;
ModbusMetadata . addpoint (mpd)

}
}

4.1.4.3 Marshalling and Unmarshalling of Domain Objects

The interactions involved in reading the domain data from the PV simulation or writing

the domain data to the PV simulation via TransactionManager’s Read/Write operations

are illustrated in Fig 3.4. In this subsection, an overview of marshalling and unmarshalling

33

Figure 4.12: Marshalling output of the InverterRead Object

process of InverterRead and InverterWrite objects and their corresponding protocol buffer

structure is discussed.

Marshalling of InverterRead object is illustrated in Fig 4.12, by invoking ModbusMar-

shaller’s marshall method. It takes three parameters, firstly, an instance of Transaction-

Descriptor with transactiontype as RequestRead since a request to read specific values is

made, secondly, the InverterRead domain object and thirdly, an instance of ProtocolBuffer.

Based on the knowledge of the passed in parameters and its ModbusMetadata reference, the

marshall method queries the domain object’s mapping information for the byte offset (base-

point) and the data type (ModbusType). The mapping information is used to update the

instance of the ProtocolBuffer to a well formed Modbus request read packet corresponding

34

Figure 4.13: Unmarshalling output of the InverterRead Object

to Fig 4.4 along with the appropriate MBAP header.

Unmarshalling of InverterRead object is illustrated in Fig 4.13, after receiving appropriate

well formed Modbus response read packet corresponding to Fig 4.4. The received response

packet’s, packet completeness and packet identification steps are processed via ModbusMar-

shaller’s discover method (as explained in the earlier section). The ModbusMarshaller’s

unmarshall method is invoked which takes three parameters, firstly, an instance of trans-

actionDescription with transactiontype as ResponseRead, secondly, InverterRead domain

object and thirdly, an instance of ProtocolBuffer (that is the response packet illustrated

in Fig 4.13). Based on the knowledge of the passed in parameters and its ModbusMeta-

data reference the InverterRead domain object data members are updated by processing the

ProtocolBuffer instance.

35

Figure 4.14: Marshalling output of the InverterWrite Object

Marshalling of InverterWrite object is illustrated in Fig 4.14, which is achieved by invok-

ing ModbusMarshaller’s marshall method which takes an instance of TransactionDescriptor

with transactiontype as RequestWrite (since a request to write specific values is made),

InverterWrite domain object and an instance of ProtocolBuffer as parameters. Based on

the knowledge of the passed in parameters and its ModbusMetadata reference the marshall

method updates the instance of the ProtocolBuffer to a well formed Modbus request write

packet corresponding to Fig 4.5 along with appropriate MBAP header.

36

Figure 4.15: Unmarshalling output of the InverterWrite Object

Unmarshalling of InverterWrite Object is illustrated in Fig 4.15, after receiving appro-

priate well formed Modbus response write packet corresponding to Fig 4.5. The received

response packet completeness and packet identification steps are processed via ModbusMar-

shaller’s discover method (as explained in the earlier section). ModbusMarshaller’s unmar-

shall method is invoked, which takes three parameters, firstly, an instance of transactionDe-

scription with transactiontype as ResponseWrite, secondly, InverterWrite domain object and

thirdly, an instance of ProtocolBuffer (that is the response packet illustrated in Fig 4.15).

Based on the knowledge of the passed in parameters and its ModbusMetadata reference it is

verified whether InverterWrite object values are successfully written to the simulation server

or not.

4.1.4.4 Sample code work-flow of the case study from domain expert point of
view

is illustrated in listing:4.3 where the domain expert instantiates the ModbusMarshaller

and TransactionManager objects. The domain objects (InverterRead, InverterWrite along

37

with their ModbusAttribute’s information) are declared and initialized. The software client

application is connected to the PV simulation server via TCP/IP. The TrasanctionManger’s

’Read’ operation is invoked to read the InverterRead data members values from the PV sim-

ulation. The InverterWrite object’s dutycycle value is computed by calling MPPT control

algorithm PO MPPT with InverterRead object data members (V, I and simTime) as param-

eters and the computed duty cycle is written to the PV simulation via TransactionManager’s

’Write’ operation.

The middleware interfaces abstracts the Modbus protocol concepts, domain object’s mar-

shalling/unmarshalling process and underneath network transaction/communication con-

cepts from the domain expert’s point of view. The domain expert solely focuses on the

control algorithm implementation (P MPPT method implementation). In the current im-

plementation, the amount of the domain data queried (i.e. size of the domain object) from a

device in single ’Read’ or ’Write’ transaction is limited to the size of a single protocol packet.

For example, the maximum size of modbus TCP/IP packet length is 260 bytes and the size

of the domain object should be less than 260 bytes. If the domain user wants to query more

data than the size of a single protocol packet then he has to declare multiple domain objects

and invoke ’Read’ or ’Write’ operation accordingly.

Code Snippet 4.3: Sample code work-flow of the case study

// I n s t a n t i a t e t h e domain o b j e c t s
InverterRead invRead = new InverterRead () ;
Inver te rWr i te invWrite = new Inver te rWr i te () ;
L ist<Type> lstDomainObj = new List<Type>() ;
lstDomainObj .Add(invRead . GetType ()) ;
lstDomainObj .Add(invWrite . GetType ()) ;
// I n s t a n t i a t e t h e ModbusMarsha l ler w i th t h e Domain o b j e c t s ”Type”
// which i n s t a n t i a t e s t h e ModbusMetadata i n s t an c e (w i th ModbusPo in tDe f in i t i on s)
ModbusMarshaller mm = new ModbusMarshaller (lstDomainObj) ;
// I n s t a n t i a t e t h e Transact ionManager
TransactionManager tm = new TransactionManager (mm) ;
//Connect to t h e s imu l a t i o n s e r v e r
tm . connectCl i ent (’XXX.XXX.XXX.XXX’ , 502) ;
for (int i = 0 ; i < 1000 ; i++)
{ tm . Read(invRead) ;

Thread . S leep (3) ;
// MPPT Contro l A lgor i thm
invWrite . Duty = PO MPPT(invRead .V, invRead . I , invRead . simTime) ;
tm . Write (invWrite) ;
Thread . S leep (3) ;

}
tm . d i s connec tC l i en t () ;

38

Simulink Platform Client
Opal-RT Real-Time Master Server

Server Side(C) Simulink

Shared
Memory

PV
Device
Objects

Relay
Device
Objects

M
O
D
B
U
S

MATLAB
Interface

Read Domain
Object

(simuink)

Write Domain
Object

(simuink)

MIDDLEWARE

M
O
D
B
U
S

Software Platform Client

Read Domain
Object

(C#)

Write Domain
Object

(C#)

MIDDLEWARE

M
O
D
B
U
S

Data Source Spreadsheet Platform
Client

Time stamped
Data

Spreadsheet
(MS Excel)

MIDDLEWARE

M
O
D
B
U
S

TCP/IP

TCP/IP

TCP/IP

Figure 4.16: Block diagram of Multi-Client Single-Server Model [1]

4.1.5 Other distributed client communication

The ’domain-protocol mapping’ approach can be extended to other platforms like simulink

[36] and excel spreadsheet. The domain objects declared in respective platform representa-

tion can be marshalled to a specific protocol packet or objects can be updated (unmarshalled)

from a specific protocol packet using appropriate mapping information. The middleware im-

plemented in this study is exported as dynamic link library (dll) and used as the the interface

layer in distributed multi-client communication, in [1]. Figure 4.16 illustrates the block di-

agram of the multi-client single server communication, where the implemented middleware

is used as an interface layer for marshalling and unmarshalling the domain objects. The

simulink platform client implements MPPT algorithm using state flow dynamic controllers

in Matlab programming language. The domain objects are defined in simulink language, and

middleware’s ’Read’ and ’Write’ operations are used to read the data from the simulation or

to write the data to the simulation. The software platform client is explained earlier. The

39

data source client performs unidirectional communication (from client to server only) and is

used to send the solar irradiance profile data values to the PV system on the server. The

data values are read from a time-stamped Microsoft Excel spreadsheet, and the middleware’s

’Write’ operations are used to write the data to the PV system on the server.

4.2 Second Case Study: A scenario in Building energy

management

In this study, the middleware developed in the previous section is used by the power

monitoring application to integrated ION [9] and ETON [10] power meters to capture the

power readings using the Modbus protocol. This section begins with a brief introduction of

the domain, the power meters and the description of the scenario. The code snippets of the

domain objects, device metadata, domain mapping and type conversion between the domain

object’s data and power meter’s data is also discussed.

4.2.1 Domain Background

The Building Energy Monitoring project was set up to monitor the power usage of a num-

ber of buildings on campus, correlating the power usage with occupant activity. Occupant

activity was measured using wireless sensors placed on the doors of the building, counting

the number of people entering or leaving the premises. The power usage was monitored using

power meters mounted at the incoming power service points. These meters were a combi-

nation of ION7500/7550 and power xpert (Eaton) power meters. This study is focused on

power monitoring aspect of the building energy project.

4.2.2 ION and ETON Power Meters

The ION and ETON power meters are COTS devices which provide enhanced functions

for monitoring power consumption and power quality. These power meters can be used in

various applications, including energy management, monitoring circuit loading, and identify-

ing power quality problems [10]. The data representation in the ION and the ETON power

40

Figure 4.17: Phase voltage representation in Modbus enabled ION and ETON meters

devices is vendor specific. The support to access the device data is provided via industry

standard protocols MODBUS and SNMP. Figure 4.17 illustrates device metadata for phase

voltage data, where the ION and ETON power meters are configured as Modbus slave de-

vices. The Modbus register map and the data representation on the ION and ETON meters

is different as illustrated in Fig 4.17.

4.2.3 Case study scenario description

Figure 4.18 illustrates a scenario, where the power monitoring application queries the

phase voltage data readings from Modbus enabled ION7500, ION7550 and Power Xpert

(Eton) power meters. The power monitoring application expects the voltage data in double

data type. However, the 3-phase voltage data is represented as UINT16, UINT32 and floating

point in ION7500, ION7550 and Power Xpert (Eton) respectively. The Modbus register

map of the voltage data varies among the meters. Therefore, the middleware that is used

by the application to query the data needs to address the device heterogeneity caused by

41

Power Monitoring Application

ION 7500 ION 7550
Power Xpert

(ETON)

MODBUS
Device
Metadata

Type: UINT16
Registers:

40011,40012,40013

Type: UINT32
Registers:

40166,40168,40170

Type: Float
Registers:

4631,4633,4635

Voltage Object
Double Va
Double Vb
Double Vc

Domain – Protocol Mapping

3- phase
circuit

Figure 4.18: Power Monitoring scenario description

integrating different types of power meters. It should also the address the type conversion

concern between domain object’s data and the data provided by the power meter. The

proposed middleware address the device heterogeneity by providing a high level mapping

between the domain object and the device metadata. The middleware provides appropriate

interfaces to address the type conversion concern, and this process is abstracted from the

domain expert, since the conversion occurs during ’Read’ or ’Write’ operation.

42

Code Snippet 4.4: Voltage domain object

class Voltage {
Double vlna ;

Double vlnb ;
Double v lnc
public Double Vlna {

get { return vlna ; }
s e t { vlna = value ; }

}
public Double Vlnb {

get { return vlnb ; }
s e t { vlnb = value ; }

}
public Double Vlnc {

get { return vlnc ; }
s e t { vlnc = value ; }

}
}

Code Snippet 4.5: Domain object - Protocol mapping for ION7500 power meter

class Voltage {
Double vlna ;

Double vlnb ;
Double v lnc
[Modbus(BasePoint = 10 ,
MODBUSType = ModbusPointDef init ion . DataType .UINT16 , Sca l e = 10)]

public Double Vlna {
get { return vlna ; }
s e t { vlna = value ; }

}

[Modbus(BasePoint = 11 ,
MODBUSType = ModbusPointDef init ion . DataType .UINT16 , Sca l e = 10)]

public Double Vlnb {
get { return vlnb ; }
s e t { vlnb = value ; }

}

[Modbus(BasePoint = 12 ,
MODBUSType = ModbusPointDef init ion . DataType .UINT16 , Sca l e = 10)]

public Double Vlnc {
get { return vlnc ; }
s e t { vlnc = value ; }

}
}

4.2.4 Domain Object, protocol mapping and type conversion il-
lustration

Listing:4.4 illustrates the voltage domain object which encapsulate the 3-phase voltage

data in double data type. The domain object - protocol mapping for ION7500 is illustrated

in Listing: 4.5. The mapping for ION7550 and Power Xpert meter is illustrated in the

appendix section. It is evident from the Listing: 4.5 that the domain object notion of the

voltage is represented in double and the data provided by the power meter is in UINT16. The

ModbusTypeConverter class illustrated in Fig 4.9 provide operations such as ’fromType’ and

’toType’, These operations use .NET’s Convert base class operations for appropriate type

conversion between domain object and the data provided by the device at run-time using

reflection. The TransactionManager’s ’Read’ operation is invoked by the power monitoring

application to read the voltage data from the power meters.

43

Chapter 5

Conclusion and Future Work

In this work, a ’domain-protocol mapping’ technique is proposed and implemented as

a middleware framework. A high level design model of the middleware is proposed, which

provides the abstract entities and their corresponding interfaces, which should be specialized

to provide core functionality for a family of devices and their respective communication

protocols. The detail level design class model of the middleware is implemented using .NET

4.5 framework and C# programming language for Modbus protocol supported devices.

The middleware provides ’Read’ and ’Write’ operations that are used by the domain expert

to read or write the domain data to the device using specialized protocol adapter. The

’Read’ and ’Write’ operations abstracts complete marshalling and unmarshalling process of

the domain object from a domain expert who may or may not be a software engineer. The

developed middleware is demonstrated by two case-studies which highlights the following

benefits of the mapping approach:

• Modbus protocol adapter is reused across distributed network control power system

and power monitoring applications.

• The domain experts makes the modifications to the domain objects (to include a new

data point) in both the case studies, and no modifications are done to the Modbus

protocol adapter.

• The device and software heterogeneity caused by integrating different COTS power

meters is isolated in the mapping layer by providing a high level mapping between the

domain object and the devices.

• The middleware is also used as an interface layer for reading or writing the domain

objects to the simulation server in other client platforms such as simulink and excel

44

spreadsheet.

• The domain expert (control engineer) focuses on MPPT algorithms implementation

rather addressing communication protocol implementation details.

5.1 Future work

Currently, the device metadata specification is performed in an implicit manner by deco-

rating the domain object’s data members by C# decorated attributes. In future work more

explicit way of specifying the device metadata can be explored by using configuration files.

In the current implementation, the amount of the domain data queried (i.e. size of the

domain object) from a device in single ’Read’ or ’Write’ transaction is limited to the size of a

single protocol packet which can be overcome by encapsulating data in multiple domain ob-

jects. However, more detailed approach for subtransaction management during marshalling

and unmarshalling process can be examined in future work.

Currently, the middleware supports Modbus protocol enabled devices and TCP/IP net-

work end point. In future work, the middleware framework can be extended to support

multiple protocols and other network end points such as serial and wireless network inter-

faces can be examined.

The case-study applications and the middleware implemented in this work is based on

single threaded model i.e. a ’Read’ or ’Write’ operation waits for a response from the device

before proceeding further. However, in more complex multi-threaded model based appli-

cations, the middleware should employ the multi-threaded model, where the independent

threads are responsible for notifying the completion of the ’Read’ or ’Write’ operations to

the user/application.

45

Finally, the ’domain-protocol’ mapping approach can be explored within an existing mid-

dleware and model driven engineering solutions to address device and software heterogeneity

challenges in distributed application development involving multi-disciplinary teams.

46

References
[1] A. Jain, “Synchronized Real-time Simulation of Distributed Networked Controls for a

Power System Case Study,” Master’s thesis, Colorado State University, 2013.

[2] I. Modbus, “Modbus Application Protocol Specification v1. 1b3,” North Grafton, Mas-
sachusetts (www. modbus. org/specs. php), 2012.

[3] L. Coetzee and J. Eksteen, “The Internet of Things - promise for the future? An
introduction,” in IST-Africa Conference Proceedings, 2011, pp. 1–9, 2011.

[4] R. Gupta and M.-Y. Chow, “Networked Control System: Overview and Research
Trends,” Industrial Electronics, IEEE Transactions on, vol. 57, no. 7, pp. 2527–2535,
2010.

[5] V. Potdar, A. Sharif, and E. Chang, “Wireless Sensor Networks: A Survey,” in Advanced
Information Networking and Applications Workshops, 2009. WAINA’09. International
Conference on, pp. 636–641, IEEE, May 2009.

[6] I. Modbus, “Modbus Messaging on TCP/IP Implementation Guide v1. 0b,” North
Grafton, Massachusetts (www. modbus. org/specs. php), 2006.

[7] K. Curtis, “A DNP3 Protocol Primer,” DNP User Group, 2005.

[8] J. Case, M. Fedor, M. Schoffstall, and C. Davin, A Simple Network Management Protocol
(SNMP). Network Information Center, SRI International, 1989.

[9] PowerLogic, “Modbus and ION Technology,” 2014. [Online; Accessed Jan 14, 2014].

[10] EATON, “EATON Power meters,” 2014. [Online; Accessed Jan 14, 2014].

[11] J. Linwood and D. Minter, “An Overview of Mapping,” in Beginning Hibernate, pp. 77–
90, Springer, 2010.

[12] “Types of Middleware.” Available at url http://apprenda.com/library/architecture/types-
of-middleware/ (2014/01/09).

[13] S. Vinoski, “Where is Middleware?,” IEEE Internet Computing, vol. 6, no. 2, pp. 83–85,
2002.

[14] M. Molla and S. Ahamed, “A Survey of Middleware for Sensor Network and Challenges,”
in Parallel Processing Workshops, 2006. ICPP 2006 Workshops. 2006 International
Conference on, pp. 6 pp.–228, 2006.

[15] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless Sensor Net-
works: A Survey,” Computer Networks, vol. 38, pp. 393–422, 2002.

[16] B. Elen, S. Michiels, W. Joosen, and P. Verbaeten, “A Middleware Pattern to Support
Complex Sensor Network Applications,” status: published, 2006.

47

[17] W. Heinzelman, A. Murphy, H. Carvalho, and M. Perillo, “Middleware to Support
Sensor Network Applications,” Network, IEEE, vol. 18, no. 1, pp. 6–14, 2004.

[18] E. Souto, G. Guimarães, G. Vasconcelos, M. Vieira, N. Rosa, and C. Ferraz, “A Message-
Oriented Middleware for Sensor Networks,” in Proceedings of the 2nd workshop on Mid-
dleware for pervasive and ad-hoc computing, pp. 127–134, ACM, 2004.

[19] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stone-
braker, N. Tatbul, and S. Zdonik, “Aurora: a new model and architecture for data
stream management,” The VLDB JournalThe International Journal on Very Large Data
Bases, vol. 12, no. 2, pp. 120–139, 2003.

[20] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani, U. Srivas-
tava, and J. Widom, “Stream: The Stanford Data Stream Management System,” Book
chapter, 2004.

[21] A. Arasu, S. Babu, and J. Widom, “The CQL continuous query language: semantic
foundations and query execution,” The VLDB JournalThe International Journal on
Very Large Data Bases, vol. 15, no. 2, pp. 121–142, 2006.

[22] L. Gurgen, C. Roncancio, C. Labbé, A. Bottaro, and V. Olive, “SStreaMWare: a Service
Oriented Middleware for Heterogeneous Sensor Data Management,” in Proceedings of
the 5th international conference on Pervasive services, pp. 121–130, ACM, 2008.

[23] M. Brito, L. Vale, P. Carvalho, and J. Henriques, “A Sensor Middleware for Integration
of Heterogeneous Medical Devices,” in Engineering in Medicine and Biology Society
(EMBC), 2010 Annual International Conference of the IEEE, pp. 5189–5192, IEEE,
2010.

[24] K. Aberer, M. Hauswirth, and A. Salehi, “Global Sensor Networks,” EPFL, Lausanne,
Tech. Rep, 2006.

[25] K.-D. Kim and P. Kumar, “The Importance, Design and Implementation of a Mid-
dleware for Networked Control Systems,” in Networked Control Systems, pp. 1–29,
Springer, 2010.

[26] G. Baliga, S. Graham, and P. Kumar, “Middleware and Abstractions in the Convergence
of Control with Communication and Computation,” in Decision and Control, 2005 and
2005 European Control Conference. CDC-ECC’05. 44th IEEE Conference on, pp. 4245–
4250, IEEE, 2005.

[27] A. Silberschatz, P. B. Galvin, and G. Gagne, Applied Operating System Concepts. Wiley,
2003.

[28] K. Doddapaneni, E. Ever, O. Gemikonakli, I. Malavolta, L. Mostarda, and H. Muccini,
“A model-driven engineering framework for architecting and analysing Wireless Sensor
Networks,” in Software Engineering for Sensor Network Applications (SESENA), 2012
Third International Workshop on, pp. 1–7, IEEE, 2012.

48

[29] A. Di Marco and S. Pace, “Model-driven approach to Agilla Agent generation,” in
Wireless Communications and Mobile Computing Conference (IWCMC), 2013 9th In-
ternational, pp. 1482–1487, IEEE, 2013.

[30] C.-L. Fok, G.-C. Roman, and C. Lu, “Agilla: A Mobile Agent Middleware for Self-
Adaptive Wireless Sensor Networks,” ACM Transactions on Autonomous and Adaptive
Systems (TAAS), vol. 4, no. 3, p. 16, 2009.

[31] F. Fleurey, B. Morin, A. Solberg, and O. Barais, “MDE to Manage Communications
with and between Resource-Constrained Systems,” in Model Driven Engineering Lan-
guages and Systems, pp. 349–363, Springer, 2011.

[32] Opal-RT Technologies Inc., RT-LAB User Guide, ver.10.4 ed., 2007.

[33] D. Hohm and M. Ropp, “Comparative Study of Maximum Power Point Tracking Algo-
rithms Using an Experimental, Programmable, Maximum Power Point Tracking Test
Bed,” in Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-
Eighth IEEE, pp. 1699–1702, IEEE, 2000.

[34] J. J. Nedumgatt, K. Jayakrishnan, S. Umashankar, D. Vijayakumar, and D. Kothari,
“Perturb and Observe MPPT Algorithm for Solar PV Systems-Modeling and Simula-
tion,” in India Conference (INDICON), 2011 Annual IEEE, pp. 1–6, IEEE, 2011.

[35] A. Mackey, W. Tulloch, and M. Krishnan, Introducing .NET 4.5. Apress, 2012.

[36] J. B. Dabney and T. L. Harman, Mastering Simulink 4. Prentice Hall PTR, 2001.

49

Appendix A

Sample device metadata specification
code snippets for power meters

A.1 Sample Protocol mapping code snippets for power

meters

The domain object - protocol mapping for ION7550 and Power Xpert power meters is
illustrated in Listings: A.1 and A.2.

Code Snippet A.1: Domain object - Protocol mapping for ION7550 power meter

class Voltage{
Double vlna ;

Double vlnb ;
Double v lnc
[Modbus(BasePoint = 165 ,
MODBUSType = ModbusPointDef init ion . DataType .UINT32)]

public Double Vlna {
get { return vlna ; }
s e t { vlna = value ; }

}
[Modbus(BasePoint = 167 ,
MODBUSType = ModbusPointDef init ion . DataType .UINT32)]

public Double Vlnb {
get { return vlnb ; }
s e t { vlnb = value ; }

}
[Modbus(BasePoint = 169 ,
MODBUSType = ModbusPointDef init ion . DataType .UINT32)]

public Double Vlnc {
get { return vlnc ; }
s e t { vlnc = value ; }

}
}

Code Snippet A.2: Domain object - Protocol mapping for ETON power meter

class Voltage{
Double vlna ;

Double vlnb ;
Double v lnc
[Modbus(BasePoint = 4631 ,
MODBUSType = ModbusPointDef init ion . DataType . Float)]

public Double Vlna {
get { return vlna ; }
s e t { vlna = value ; }

}
[Modbus(BasePoint = 4633 ,
MODBUSType = ModbusPointDef init ion . DataType . Float)]

public Double Vlnb {
get { return vlnb ; }
s e t { vlnb = value ; }

}
[Modbus(BasePoint = 4635 ,
MODBUSType = ModbusPointDef init ion . DataType . Float)]

public Double Vlnc {
get { return vlnc ; }
s e t { vlnc = value ; }

}
}

50

	Introduction
	Problem Overview
	Overview of the solution
	Organization of the Thesis

	Literature Review
	Middleware approaches
	Model Driven Engineering(MDE) approaches
	Summary

	Middleware High level Design Model
	Key concepts
	Key Protocol Concepts
	Key Middleware concepts

	Middleware High Level Design Model
	Sequence Diagram for TransactionManager's Read Operation

	Case Studies
	First Case Study: Software Client in a NCS for Simulated Power System
	Domain Background
	Modbus Protocol
	Middleware-Detail Design class model for Modbus enabled devices
	Case study - logical sample code walk through
	Other distributed client communication

	Second Case Study: A scenario in Building energy management
	Domain Background
	ION and ETON Power Meters
	Case study scenario description
	Domain Object, protocol mapping and type conversion illustration

	Conclusion and Future Work
	Future work

	References
	Sample device metadata specification code snippets for power meters
	Sample Protocol mapping code snippets for power meters

