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ABSTRACT 
 
 
 

DEVELOPMENT OF ELECTROCHEMICAL ASSAYS AND BIOSENSORS FOR 

DETECTION OF ZIKA VIRUS 

 
 

 Zika virus (ZIKV) emerged as a significant public health concern after the 2015-2016 

outbreak in South and Central America.  Severe neurological complications and birth defects in 

adults and children respectively underscore the need for quick and accurate diagnosis so that 

proper medical observation and intervention can be done.  Electrochemical assays and biosensors 

are attractive as alternative diagnostic tools due to their sensitivity and ease of miniaturization.  

This dissertation describes three novel electrochemical assays and biosensors to detect ZIKV 

specific nucleic acid, antibodies, and virus particles. 

 A nuclease protection ELISA (NP-ELISA) was developed for nucleic acid detection by 

enzymatic readout.  The assay was validated using synthetic complementary oligos for 

absorbance, chemiluminescence, and electrochemical enzymatic readout.  Two horseradish 

peroxidase substrates, 3,3',5,5'-Tetramethylbenzidine (TMB) and hydroquinone, were 

characterized electrochemically and compared for electrochemical assay use.  Electrochemical 

TMB readout demonstrated better sensitivity compared to all tested detection modalities with a 

limit of detection of 3.72×103 molecules mL-1, which compares well to the amount of ZIKV 

RNA in clinical samples and to other approved assays like the CDC’s Trioplex assay.   

For serological analysis, a capacitive microwire biosensor was developed and validated 

using immunized mouse sera to detect a ZIKV antibody response.  Measurements were taken 

through a wide serial dilution range of 1:1018 to 1:103 and two dilutions (1:1012 and 1:106) were 

used for analysis for optimal sensitivity.  A statistically significant immune response was 
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detected four days after immunization at a 1:1012 dilution and was specific for ZIKV when 

compared with Chikungunya virus (CHIKV).  These results indicate that serological analysis can 

be performed four days earlier with the wire sensor compared to ELISAs using ultra-dilute 

samples.  The sensor also was used to differentiate between IgG and IgM antibodies and 

compared well with ELISA results.   

Lastly, an impedance array sensor was designed and validated for detection of ZIKV 

particles.  The array allows for simultaneous handling of many electrodes, which increases 

throughput compared to other biosensor designs.  The sensor demonstrated good sensitivity with 

an LOD of 22.4 focus forming units (FFU) which compares well to other reported sensors.  In 

addition, it was optimized for specificity and tested using Sindbis virus (SINV) as a negative 

control.  These novel platforms comprise new advancements in biosensor technology by 

simplifying existing assays, increasing sensitivity, and providing a new platform for handheld 

measurements.   
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CHAPTER 1 - LITERATURE REVIEW 
 
 
 

Introduction 

Flaviviruses are positive-sense RNA viruses with a ~50 nm enveloped particle and a ~11 

kb genome.  The flavivirus genus is composed of 71 antigenically related viruses and includes 

clinically relevant viruses such as yellow fever virus (YFV), West Nile virus (WNV), dengue 

virus (DENV), Japanese encephalitis virus (JEV), tick borne encephalitis Virus (TBEV), and 

Zika virus (ZIKV).  The name flavivirus is derived from the latin word, flavus, for yellow and is 

a reference to the genus type species, YFV.  Although they were originally classified under the 

Togaviridae family in 1974, flaviviruses were determined to be sufficiently different from other 

Togaviridae members (e.g. alphaviruses) such that they were classified under a separate family, 

Flaviviridae, in 1984 (1). Because most flaviviruses are arthropod-borne viruses (arboviruses), 

areas of active transmission are based on the geographical distribution of their respective vectors 

and animal reservoirs (2).  Within the genus, the flaviviruses are classified into clusters based on 

their vector (mosquito, tick, or no known vector) (3).  They are additionally classified into 

serocomplexes based on cross-neutralization of the viruses with polyclonal sera (4) with cross-

neutralization between serocomplexes being possible (5), but rare (4).  ZIKV, the primary focus 

of this review, is a member of the Spondweni Virus (SPOV) serocomplex which contains only 

ZIKV and SPOV, its closest relative (6).  However, a super serogroup containing at least DENV 

and ZIKV was recently classified using antibodies against a previously unknown quaternary 

epitope (7).  Three genetic lineages of ZIKV have been identified: East African, West African, 

and Asian (8). 

ZIKV is typically transmitted by a bite from Aedes Aegypti or Aedes Albopictus 

mosquitos, though vertical transmission from mother to fetus may also occur.  It is unique among 
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arboviruses in that it can also be transmitted sexually.  The virus typically causes a mild, self-

limiting, febrile illness and may include symptoms of rash, conjunctivitis, arthralgia, retro-orbital 

pain, myalgia, and headache (9–11).  Vomiting and diarrhea have been reported but are less 

common (12–14). 

Virion Structure and Neutralization 

 Like other flaviviruses, the mature ZIKV particle is 50 nm in diameter with a 

nucleocapsid core, lipid membrane envelope, and protein shell composed of E and M proteins 

(15).  The E protein forms 90 antiparallel dimers that lay flat against the surface and cover the M 

protein.  Three sets of dimers are arranged into 30 “rafts” that form a herringbone-like array.   

The E protein monomer consists of three structural ectodomains, two stem helices, and 

two transmembrane helices.  Ectodomain I (DI) sits in the middle of the monomer and connects 

ectodomain II (DII) and ectodomain III (DIII) with flexible hinges.  It acts like a bridge to help 

to stabilize the structure of the E protein and also carries the protein’s glycosylation site, Asn154 

(15).  Some earlier African strains of ZIKV, however, have a mutation at this residue that 

precludes glycosylation.  Comparison with other strains from this time period suggests that this 

mutation may be a result of passaging the virus in a laboratory environment (16).   

DI is connected to DII by four polypeptide chains.  DII is an elongated, finger-like 

domain that is involved in hydrophobic dimerization of the two monomers (17).  It also contains 

the hydrophobic fusion loop that inserts into the endosomal membrane during fusion (18).  In the 

homodimer conformation, the fusion loop of one monomer is hidden by DI and DII of the second 

monomer (19). Structural rearrangements in the acidic endosome expose the fusion loop and 

allow it to insert into the membrane.  DIII is connected to the other end of DI by a single 

polypeptide linker.  It is an immunoglobulin-like domain at the C-terminus of the protein that 

extends out slightly from the smooth surface of the mature particle (20).  Its immunoglobulin-
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like structure as well as mutagenesis studies have revealed that DIII is involved in attachment 

and interactions with cell receptors for entry (20).  DIII is connected to two C-terminal stem 

anchor domains that anchor the ectodomain to the viral membrane by interactions with two co-

linear transmembrane domains. These transmembrane domains do not extend past the 

membrane, nor do they interact with the nucleocapsid (NC) (21). 

The human humoral response against ZIKV and other flaviviruses is dominated by 

broadly flavivirus-reactive antibodies against the E protein (22–26), though antibodies may also 

be elicited against the prM/M (23), C (27), and NS1 (28) proteins.  The flavivirus E protein has 

numerous type-specific and cross-reactive epitopes that are classified into four groups by the 

potency of neutralization and the degree of cross-reactivity: fusion loop epitopes, envelope dimer 

epitopes, DIII epitopes, and quaternary epitopes (reviewed in (29, 30)). Antibodies against fusion 

loop epitopes make up the largest proportion of anti-E protein antibodies (31, 32).  These cross-

reactive epitopes are poorly neutralizing and are implicated in antibody dependent enhancement 

(ADE) of flavivirus infection (33, 34).  Envelope dimer epitopes represent another class of cross-

reactive epitopes that are comprised of residues across both dimer subunits.  Epitopes along the 

lateral ridge of DIII are type-specific and potently neutralizing.  While these epitopes are 

immunodominant in mice, they make up only a small proportion of the human antibody 

response.  Quaternary epitopes are also type-specific and are comprised of residues across 

different dimers in the virion structure.  Antibodies against these epitopes only recognize E 

protein in the context of the virion structure and do not recognize soluble recombinant E protein.  

RNA Genome Structure 

 The flavivirus genome is a single stranded, positive sense RNA with a singular open 

reading frame (ORF) and a type I 5’ cap.  At either end of the ORF lie the 5’ and 3’ untranslated 
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regions (UTRs).  Both UTRs have significant conserved secondary structure that functions to 

cyclize the genome into a panhandle shape and is also essential for replication and host evasion.  

The 5’ UTR of the ZIKV genome is about 107 nucleotides in length (35).  Although the 

sequence may vary between species, the secondary structure is highly conserved (36).  It consists 

of two stem loop structures, that are separated by poly(U) sequences.  Stem loop A (SLA) is a Y-

shaped structure that is ~70 nucleotides in length.  It contains the promoter region that directly 

interacts with the NS5 polymerase to initiate synthesis of the negative sense template at the 3’ 

end (37, 38).  The presence of SLA is required for cap formation and removal of this region 

completely kills viral replication (39).  Stem loop B (SLB) is somewhat shorter than SLA at 30 

nucleotides in length and terminates at the AUG start codon.  This stem loop contains the 5’ 

upstream AUG region (UAR) that is one of three flavivirus cyclization elements.  These 

elements facilitate long-range interactions between the 5’ and 3’ UTRs that are essential for 

cyclization and replication of the genome (40).  Just downstream of the 5’ UTR is the second 

cyclization element termed the 5’ conserved sequence (CS) (35, 41).  It lies within the capsid 

gene and, together with the UAR sequence, the 5’ CS hybridizes with its complementary 3’ CS 

to cyclize the genome and form a panhandle shape. 

The 3’ UTR varies by species from 400-600 nucleotides in length and comprises of three 

domains.  Domain I lies immediately after the stop codon of the ORF.  It consists of two stem 

loop structures termed stem loop (SL) 1 and 2 (or alternatively known as xrRNA1 and xrRNA2) 

(36).  The tops of SL1 and 2 interact with motifs just downstream of the respective loop to form 

pseudoknots (PK1 and PK2) that are resistant to degradation by host exonuclease XRN1 (35, 

42).  As the enzyme moves down the strand to degrade it, it stalls as it hits SL1 (42, 43).  This 

stalling process inactivates the enzyme and causes it to fall off the RNA.  In doing so, 

flaviviruses reduce XRN1 exonuclease activity which subsequently reduces degradation of viral 
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RNA.  The remaining intact RNA, about 0.5kb, is known as subgenomic flavivirus RNA 

(sfRNA).  In addition to dysregulating the mRNA decay pathway by inhibiting XRN1, sfRNA 

acts as an immune antagonist (discussed below) (42).    

Domain II of the 3’ UTR consists of the dumbbell structures (DB) 1 and 2.  In some 

species of flaviviruses DB1 and DB2 contain the repeated conserved sequence 2 (RCS2) 

(DENV, JEV) and conserved sequence 2 (CS2) (DENV, WNV, JEV) respectively (36).  The 

dumbbell structures also interact with downstream sequences to form PK3 and PK4.  Although 

the mechanism is not yet clear, DB1 and DB2 have been shown to be essential for replication 

and translation (44).  Domain III is the most conserved structured region of the 3’ UTR and 

contains the CS1 sequence immediately upstream of a short hairpin (sHP) structure.  It also 

contains the 3’ stem loop (3’SL) wherein lies the 3’CS and 3’UAR sequences that are involved 

in cyclization.  The 3’SL is essential for viral replication and deleting the region completely 

abolishes replication (45). 

Flavivirus Replication Cycle 

 As mentioned previously, the flavivirus genome consists of a 5’ cap, the 5’ and 3’ UTR, 

and an open reading frame that encodes a singular polyprotein.  This polyprotein is later cleaved 

into three structural proteins (C, M, E) that are involved in NC assembly and seven nonstructural 

proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) that function in translation, 

replication, modulation of host cell processes. 

Attachment and Entry 

 The replication cycle begins with attachment and entry of the virus into the cell. 

Attachment and recognition of the virus is poorly understood but involves interactions between 

cell receptors and the E glycoprotein on the virion surface.  Glycosaminoglycans (GAGs) like 

heparin-sulfate proteoglycans are thought to act as an initial low-affinity co-receptor for 
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attachment (3).  These long polysaccharide chains are linked to serine residues on surface 

proteins called proteoglycans and are present on all cell types in mammalian tissues.  Because 

GAGs are sulfated molecules, they present a dense, negatively charged surface that is typically 

involved in binding protein ligands at the cell surface (46).  Similarly, positively charged GAG-

binding motifs of the E protein interact with the negative sulfate groups of the GAG to facilitate 

adhesion of the virus particle (47, 48).  

 Besides the GAG co-receptor, several putative cell attachment factors have been 

identified and may be used in combination to promote entry into the cell (reviewed in (49)).  Of 

these, three receptor families are the best characterized for flavivirus entry.  C-type lectin 

receptors (CLRs) and phosphatidylserine (PS) receptors will be described below.  Entry of 

opsonized virus by Fcγ receptors will be discussed in a later section.     

 CLRs are a class of pathogen recognition receptors (PRRs) that are expressed in innate 

immune cells such as macrophages and immature dendritic cells (DCs).  They use carbohydrate 

recognition domains (CRDs) to bind carbohydrate moieties present on the surface of various 

pathogens, including flaviviruses (50). Mammalian CLRs like DC-SIGN  have been shown to 

bind flaviviruses at the conserved glycosylated Asn154 in the protein (or Asn153 in DENV) (51–

57).   Mannose receptor (MR) is additional mammalian CLR that has been shown to bind to 

glycosylated Asn67 of DENV (58, 59).  Likewise in mosquitos, mosGCTL-1 is a CLR involved 

in WNV entry in Culex mosquitos (60) and mosGCTL-7 was recently reported as a CLR for JEV 

entry in Aedes Aegypti (61).  

Typically, binding of a virus to CLRs will induce internalization, degradation, and 

processing for antigen presentation.  However, the acidic environment of the lysosome promotes 

fusion with the endosomal membrane, allowing the flavivirus to subvert the cell’s degradation 

mechanisms.  Furthermore, two recent reports demonstrated that cells expressing internalization-
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deficient DC-SIGN could still support infection with JEV (51) and DENV (62).  These data 

suggest that CLRs may not act as the main entry receptor but function as an attachment factor or 

co-receptor.  

As shown for Vaccinia virus which also obtains its membrane from the ER (63), 

flaviviruses are thought to acquire an apoptotic-like membrane as they bud into the ER.  Because 

the luminal-facing membrane is enriched in PS, the virus membrane will likewise have large 

quantities of PS like that found on the plasma membrane of apoptotic cells, a phenomenon 

termed apoptotic mimicry (64).  TIM and TAM transmembrane proteins represent two families 

of receptors for PS or phosphatidylethanolamine (PE) which are involved in clearance of 

apoptotic cells and also play a role in regulating the immune response (64).  TIM (T-cell 

immunoglobulin and mucin domain) proteins bind PS or PE on apoptotic cell membranes 

directly through a conserved metal ion-dependent ligand-binding site (MILIBS) (65). These 

proteins have been shown to bind PS or PE present in the WNV (66, 67) and DENV (68, 69) 

membrane.  Likewise, TAM (TYRO3, AXL, and MER) proteins are receptor tyrosine kinases 

(RTKs) that bind PS indirectly through bridging molecules like Gas6 (70) or ProS (71).  Both 

DENV (68) and ZIKV (72–76) have been shown to associate with AXL via Gas6 or ProS 

bridging.  However, two recent reports demonstrated that ZIKV infection occurs even in the 

absence of TAM receptors (74, 77).  These results suggest that PS receptors may act, like CLRs 

or GAGs, as an attachment factor to concentrate the virus on the cell surface where it can engage 

its bona fide entry receptor.  This entry receptor has yet to be found.   

Although TIM and TAM receptors may not be the bona fide entry receptor for 

flaviviruses, the fact that they bind to PS or PE on the virion surface is intriguing.  Mature 

flavivirus particles have a smooth surface covered in E protein that is thought to prevent access 

to the envelope membrane (78) and raises the question of how TIM and TAM receptors access 
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the underlying lipids.  As one possible explanation, dynamic motion of the flexible surface E 

proteins may briefly expose the membrane and allow cell receptors to bind (79).  This 

phenomenon is known as virus breathing (30).  Alternatively, the cleavage of prM during particle 

maturation is known to be inefficient and “spiky” regions of partially mature particles may 

provide access to the membrane (49).  Or lastly, many structural studies grow virus at 28˚C in 

mosquito cells, which produces the smooth virions that are thought to infect human cells (80).  

However, DENV virions were recently shown to have a bumpy surface when grown at 

physiological temperatures of 37˚C that exposes the membrane underneath (79).  This likely 

explains how the viral membrane is exposed to bind to TIM and TAM receptors.   

Fusion 

Once the virion is internalized by clathrin-mediated endocytosis, the acidification of the 

endosome causes a conformational change from its metastable pre-fusion structure to its post-

fusion stable structure.  The anti-parallel homodimers of the E protein initially dissociate into 

monomers and subsequently form parallel homotrimers in an irreversible manner (81, 82).  This 

configuration forces EDII outward from the surface where the fusion loop is inserted into the 

endosomal membrane.  The E protein then folds back onto itself and brings the two membranes 

into close proximity for fusion (83, 84).   

Translation 

After fusion, the nucleocapsid is released into the cytoplasm, where it dissociates from 

the RNA genome.  The dissociation process is poorly understood, but it does not require the 

capsid to be degraded (85).  Garcia-Blanco et al have proposed that elongating ribosomes may be 

responsible for dissociating the RNA from the capsid, but they concede that other pH-dependent 

mechanisms and/or ribosomal interactions may be important (86).  The genome is then localized 

to the rough ER where it acts as an mRNA for host-driven translation of the polyprotein.  There, 
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eIF4E recognizes the 5’ cap and recruits the 43S pre-initiation complex (87).  The 5’cHP 

secondary structure guides this complex to the start codon (88) where it binds the 60S ribosomal 

subunit and forms the full 80S complex for elongation.  

The open reading frame is translated directly onto the ER membrane as a single 

polyprotein that anchors itself in the membrane with multiple transmembrane helices.  Signal 

peptides throughout the polyprotein translocate the NS1, prM, and E proteins into the ER lumen 

while the C, NS3, and NS5 proteins are translocated into the cytoplasm.  The polyprotein is then 

post-translationally cleaved into its structural and nonstructural proteins by host signalase in the 

lumen and viral NS2B/3 protease in the cytoplasm (78).   

Replication 

Once cleaved, NS1, NS4A, and NS4B cooperatively induce membrane rearrangements in 

the ER and form vesicle packets (VPs) (89–91).  There, the NS proteins all associate with one 

another to form the replication complex (RC).  The NS2B and NS4B transmembrane proteins 

anchor the RC to the VP membrane by interactions with the NS3 protease and helicase domains 

respectively (92).  NS5 subsequently associates with the anchored RC by interactions between 

the NS5 RNA-dependent RNA polymerase (RdRp) domain and the NS3 helicase domain (92).   

Replication starts with synthesis of the negative sense strand from the positive sense 

genome.  The NS5 RdRp recognizes the 5’SLA promoter region and starts de novo RNA 

synthesis at the 3’ end of the cyclized genome (93, 94).  Once synthesized, the negative strand 

remains based paired with the positive strand to form a double stranded intermediate (95).  This 

intermediate is then unwound by the NS3 helicase, releasing the positive strand for translation or 

packaging.  The 3’ end of the negative strand binds to the template channel of the NS5 RdRp to 

start synthesis (92).  Afterwards, the new double stranded product is released for further rounds 

of replication.   
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The single stranded positive sense RNA is modified post-transcriptionally with a type I 

cap as it is released from the unwound double stranded product.  NS3 triphosphatase activity 

removes the γ phosphate from the triphosphate at the 5’ end of the positive strand (96).  

Afterwards, the NS5 methyltransferase (MTase) domain binds a GMP molecule and transfers it 

to the new diphosphate group (97).  The MTase then uses AdoMet as a donor for methyl groups 

that are transferred sequentially to the N7 position of the guanine and the ribose 2’O position of 

the first nucleotide.  The RNA may also be methylated internally at the N6 position of adenosine 

(m6A) by cellular MTases (35, 98, 99).  m6A methylation is common in eukaryotic mRNA and is 

also commonly found as a modification towards the 3’ end of DENV and YFV genomes.  In 

ZIKV, m6A methylation may be used by the host to suppress replication (99). 

Assembly and Maturation 

During translation, the prM and E proteins form heterodimers (100) that then group into 

trimeric spikes.  These trimers associate with C protein bound to a single RNA genome and bud 

into the ER lumen by undefined processes (78). This process is likely coordinated between the C 

protein and the membrane proteins, E and prM (101). The resulting immature particle is slightly 

larger than its mature counterpart at 60nm in diameter and is composed of 60 trimeric spikes.  At 

the tip of each heterodimer, the pr domain of the prM protein covers the fusion loop (102).  This 

prevents irreversible, pH-dependent conformational changes that may inactivate the virus.  The 

immature particle is transported through the trans-Golgi network (TGN) where the surface 

proteins are glycosylated.  As the acidity increases, the trimeric spikes rearrange and rotate into 

flat, anti-parallel homodimers of E protein.  This rearrangement opens the cleavage site for prM, 

allowing it to be cleaved by host endoprotease, furin.  The pr peptide continues to protect the 

fusion loop until the mature particle is released into the neutral extracellular matrix to restart the 

cycle. 
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The History and Emergence of Zika Virus as a Human Pathogen 

Zika virus (ZIKV) was first isolated by Dick et al in 1947 from a rhesus monkey during a 

yellow fever (YFV) surveillance program (103).  The program was implemented in a small forest 

called Zika in southern Uganda where caged rhesus monkeys were placed in the canopy and 

monitored for signs of illness.  When blood from a pyretic rhesus monkey was injected into an 

uninfected monkey, serum from the inoculated monkey neutralized the isolated viral agent.  

Blood was also injected intracerebrally or intraperitoneally into mice.  Mice that were injected 

intraperitoneally showed no signs of illness while those that received intracerebral injections 

developed symptoms.  ZIKV was isolated again almost a year later in a series of mosquito 

catches in the same area (103) and both of these isolated strains were then passaged in mice 

(104).  As the virus adapted to the mice, the frequency of neurological symptoms such as motor 

weakness and paralysis increased.   These mice demonstrated histopathological changes in the 

central nervous system including neural degeneration.  These data suggested early on that ZIKV 

is neurotropic.  Furthermore, infant mice exhibited more pronounced pathology than their adult 

counterparts providing early evidence that ZIKV infection is harmful to neurological 

development.  

Early serological studies suggested that ZIKV infection in humans was common in 

Uganda (105, 106) and was also present in other areas of the world such as India (107), Malaysia 

(108), and the Philippines (109).  In 1954, a case of febrile illness in humans was reported by 

Macnamara (110) and was misidentified as ZIKV infection (111–113).  Three patients were seen 

in a rural Nigerian clinic during an outbreak of jaundice purportedly caused by YFV.  The virus 

was isolated from one patient and identified as ZIKV by a neutralization test with monkey sera 

against a range of viruses.  The other two patients were diagnosed by seroconversion against the 

isolated virus.  Their symptoms included fever, headache, joint pain, retro-orbital pain, and mild 
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diarrhea.  Two patients also had evidence of jaundice, though the possibility of co-infection 

could not be ruled out.  Although these patients were the only confirmed diagnoses, the author 

noted the prevalence of other, similar cases during the jaundice epidemic.  This led Macnamara 

to suggest a link between ZIKV infection and hepatitis.  To test this relationship, Bearcroft 

inoculated himself with the virus isolated by Macnamara (114).  He experienced symptoms of 

headache, fever, and malaise that resolved within a week, but showed no evidence of jaundice.  

Although a conclusion could not be drawn from these isolated cases, it is likely that the 

relationship between the isolated virus and jaundice was a result of a co-infection.   

Macnamara’s isolate that Bearcroft injected himself with was later identified as 

Spondweni virus (SPOV) (111–113), the closest viral relative to ZIKV (115).  Therefore, the 

first ZIKV infection in man was actually reported ten years later by Simpson in 1964 (111).  

Simpson became ill while doing laboratory research on ZIKV in Uganda.  He reported no break 

in lab technique and had visited Zika Forest three weeks prior where he was bitten by mosquitos.  

He reported similar symptomology to that described by Bearcroft with headache, fever and 

malaise but also developed a macropapular rash that covered his upper body.  The virus was 

identified as ZIKV using anti-sera against different viruses, including SPOV.  Simpson’s 

recovery time was also shorter than Bearcroft’s with symptoms resolving within five days 

instead of seven.   

After the re-identification of Macnamara’s isolate as SPOV, two strains of ZIKV were 

isolated in Lunyo Forest (near Zika Forest in Uganda)  from Aedes africanus mosquitos in 1958 

by Weinbren et al (116).  These strains were identified as ZIKV using anti-sera to a variety of 

viruses, though cross-neutralization to SPOV was not tested.  Mice that were inoculated with this 

virus showed similar neuropathological changes as those reported by Dick et al including neural 

degeneration and brain softening (104). Other pathological changes like myocarditis and skeletal 
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myositis (viral infection of the heart and skeletal muscle tissues respectively) were also reported 

in infant mice.   

ZIKV continued to be regularly isolated during the 1960’s from only A. africanus 

mosquitos in Zika Forest (117).  For the first time in 1969, ZIKV was isolated outside of Uganda 

in a mosquito other than A. africanus.  It was isolated from Aedes aegypti mosquitos in Malaysia 

(118), supporting the serological evidence that ZIKV was circulating at this time in Malaysia in 

addition to other parts of Southeast Asia including Thailand and Vietnam (119).  

A laboratory acquired ZIKV infection was reported in 1973 (120), almost ten years after 

Simpson’s illness.  The infectious agent was identified as ZIKV by hemagglutination inhibition, 

complement fixation, and neutralization tests.  Symptoms included fever, chills, retro-orbital 

pain, and joint pain and they completely resolved in a week.  The course of illness in this report 

was like that described by Bearcroft (114), with no evidence of a rash.  Although ZIKV infection 

has been described without rash (121), the authors did not test for cross-neutralization with 

SPOV nor did they describe isolated agents being used in the laboratory at that time.  Because 

the symptomology of SPOV and ZIKV are extremely similar, it is unclear if this lab infection is 

a true case of ZIKV or if it is another instance of SPOV infection misdiagnosed as ZIKV. 

For the next several decades, isolated cases and serological evidence of ZIKV infection 

were reported in Nigeria (122, 123), Indonesia (124, 125), Uganda (126), and Pakistan (127).  By 

2007, only 14 confirmed cases of ZIKV infection were reported in the literature (111, 120, 122, 

124, 128).  This changed in 2007 when a ZIKV outbreak occurred on Yap Island in Micronesia 

(129). During this time, an increase in febrile illness was noted by local physicians that included 

symptoms of fever, rash, conjunctivitis, and joint pain.  A few of these patients tested positive for 

Dengue virus (DENV) IgM, but the differences in clinical presentation from previous DENV 

outbreaks, which normally does not present with rash, raised suspicion of a different causative 
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agent. Samples tested for viral RNA by RT-PCR tested positive for ZIKV and an in-depth 

analysis revealed that an estimated 5005 individuals (73% of the population) had been infected 

with ZIKV.  Not only was this outbreak the first instance of ZIKV transmission outside of Africa 

or Asia, it was also the first report of a large outbreak of ZIKV. 

During the next six years, only six other cases of ZIKV infection were reported (130–

133).  In one report, two scientists became infected with ZIKV in 2008 during field work for a 

mosquito study in Senegal (133).  One of these patients transmitted the virus to his wife, who 

had not traveled recently.  Although the evidence was circumstantial, the authors suspected 

sexual transmission as none of the other family members became ill.  This report represents the 

first known instance of human sexual transmission of ZIKV or any other arbovirus.     

In 2013, another ZIKV outbreak was reported in French Polynesia with an estimated 

19,000 suspected cases (66% of the total population) (134, 135).  Phylogenetic studies revealed 

that the etiological agent was most closely related to the Cambodia 2010 strain of ZIKV, 

indicating the spread from Asia into the Pacific Islands (134).  Notably, this outbreak represented 

the first documented case of neurological manifestations of ZIKV infection in humans.  A 

woman with serological evidence of a recent ZIKV infection developed Guillan-Barré syndrome 

(GBS) (136).  GBS is an autoimmune disorder that can be triggered by infection or vaccination 

and is characterized by ascending muscular weakness and/or paralysis that develops days to 

weeks after an infection (137).  Furthermore, a retrospective study of the 2013 outbreak found a 

link between ZIKV infection in pregnant women and microcephaly in infants (135).  

Microcephaly is a congenital abnormality characterized by a small head circumference that is at 

least 2 standard deviations smaller than the average and it is often accompanied by other birth 

defects, abnormalities, or cognitive impairments.  The incidence of microcephaly is usually very 

low (~2 cases per 10,000 births (138)), but this study estimated that pregnant women who are 
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infected with ZIKV in their first trimester give birth to microcephalic infants at a rate of 95 cases 

per 10,000 births. 

Before the end of the French Polynesian outbreak, 26 cases of ZIKV were imported to 

New Caledonia by travelers (139).  These cases led to autochthonous transmission (14) that 

started an outbreak which lasted for more than six months (139).  About a month after the New 

Caledonia ZIKV outbreak was declared, another outbreak was announced in the Cook Islands in 

early 2014 (140).  Over the course of the next year, ZIKV continued to spread by imported cases 

to other Pacific islands including Easter Island (141), Vanuatu (142), the Solomon Islands (143), 

and Fiji (144).  In March 2015, an outbreak of febrile, dengue-like illness was reported in Bahia, 

Brazil (145).  Differential diagnosis was done by testing sera from 24 individuals with RT-PCR 

for DENV, WNV, ZIKV, CHIKV, and Mayaro virus. Almost a third of the patients tested 

positive for ZIKV.  Researchers initially thought that the virus was introduced to Brazil during 

the 2014 soccer World Cup (146), but no countries with reported ZIKV transmission participated 

in the World Cup and it is more likely that it was introduced into Brazil in August 2014 from one 

of the Pacific Islands during the Va’a World Sprint Championship canoe race (147).   

After the initial outbreak in Bahia, ZIKV continued to spread to other Brazilian states 

causing over 64,000 confirmed cases in Brazil alone by the end of 2016 (148).  Additionally, 

approximately six months after the start of the outbreak, public health officials reported an 

increase in the incidence of microcephaly from 0.6 case per 10,000 lives births to 2.8 cases per 

10,000 live births (149).  By the end of November, 2015, the incidence had increased to almost 

10 cases per 10,000 live births (150). This twenty-fold increase in incidence led the World 

Health Organization (WHO) to declare a public health emergency of international concern 

(PHEIC) on February 1, 2016 and allocate over $50 million to surveillance and research on 

ZIKV (151).  The virus continued to spread over the next few years throughout Central and 
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South America (152, 153), the Caribbean (154), Pacific Islands (142, 155), Southeast Asia (156–

158), and Africa (159). The 2015-2016 PHEIC was officially declared over on November 18, 

2016 (160), but endemic transmission and its large burden on public health remains a large 

concern. 

Zika Virus Clinical Appearance and Pathogenesis 

Up to 80% cases of ZIKV infection are asymptomatic (129) and symptomatic infection 

typically presents as a mild, self-limiting illness that may cause a fever, macropapular rash, 

myalgia, and conjunctivitis, arthralgia, retro-orbital pain, and headache (9–11).  Vomiting (12) 

and diarrhea (13, 14) are rare but may also occur.  Laboratory findings often note mild 

thrombocytopenia (low platelet count) or leucopenia (low white blood cell count) (9, 10), but 

severe thrombocytopenia leading to subcutaneous bleeding has also been reported (12, 161). 

Treatment is supportive as there are currently no antivirals or vaccines available and the infection 

typically clears within a week of symptom onset. 

Neurological Complications in Adults 

For approximately 1% of symptomatic ZIKV patients, the illness manifests with severe 

neurological complications (162).  Reported neurological sequelae include Guillan Barré 

syndrome (136, 157, 163–165), transverse myelitis (162, 166, 167), encephalitis (168–170), and 

optic neuritis (171, 172).  Guillan Barré syndrome (GBS) is a rare neurological disorder that 

arises from autoimmune damage to the peripheral nervous system.  There are several clinical 

variants but acute motor axonal neuropathy (AMAN) and acute motor sensory axonal neuropathy 

(AMSAN) are the two that are associated with ZIKV infection (173).  It is still unclear how 

ZIKV induces GBS, but the proposed mechanism is that molecular mimicry of ZIKV antigens, 

generate cross-reactive anti-carbohydrate antibodies that bind to axonal membrane elements like 

gangliosides and induce macrophage-mediated damage (174).  The damage to these components 
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disrupts nerve conduction and causes an ascending paralysis that starts in the legs and may last 

months or even years.  Furthermore, the condition can become fatal if the autonomic nervous 

system is affected and causes organ failure with mortality rates ranging from 3% - 7% (175).  For 

ZIKV-induced GBS, an increased prevalence of facial weakness and paresthesia, difficulty 

swallowing, shortness of breath, and pain are reported compared to GBS with other etiologies 

(176).  Transverse myelitis (TM) is a similar autoimmune condition characterized by immune-

mediated damage to the spinal cord which causes weakness in the legs and sometimes the arms.  

It is not known whether ZIKV causes TM by viral infection or inflammation-mediated damage 

or whether it involves molecular mimicry or superantigens (173). 

A few case reports have documented ZIKV-associated encephalitis (169, 170), 

meningoencephalitis (168), and cerebellitis (177).  For a virus to cause neurological disease, it 

must be neuroinvasive (the ability of the virus to enter the central nervous system, CNS) and 

neurotropic (the ability of the virus to infect and replicate in neuronal cells). Neuroinvasiveness 

and neurovirulence are properties of many flaviviruses like WNV and JEV that cause 

encephalitis and other neurological complications (178).  The neuropathogenesis of these viruses 

is poorly understood but mechanisms of flavivirus neuroinvasiveness are thought to include 

hematogenous transport (i.e. during viremia, the virus infects the CNS via the circulatory system 

by crossing a cytokine-induced permeabilized blood-brain barrier) (179) and retrograde axonal 

transport (i.e. the virus infects peripheral nerve cells and travels to the CNS) (180).  The E 

protein, particularly DIII and DII, is thought to be a major determinant of neurotropism and 

although the identity of neuronal flavivirus receptors remains elusive, heat shock protein 70 

(Hsp70) and membrane glycoproteins have been shown to mediate JEV and WNV entry 

respectively in vitro (181, 182).  Damage to the CNS tissue occurs mainly through apoptosis, 

necrosis, and bystander damage resulting from the CD8+ T-cell response (178).  Although it may 
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be reasonable to hypothesize that ZIKV may cause encephalitis in adults by similar means, these 

manifestations are rare in adults and ZIKV is more commonly associated with autoimmune 

conditions like GBS and TM.  Furthermore, while WNV and JEV show tropism for mature 

neuron cells, astrocytes, and glial cells (178), ZIKV has been shown to readily infect 

proliferative brain regions that are prevalent in the developing fetus (183–188), though some 

conflicting reports suggest enhanced virulence in differentiated neuronal brain cells (189) and the 

presence of ZIKV in cerebrospinal fluid in adult macaques - perhaps due to passive spillover 

from high viremia in immunosuppressed mice (190).  These data, combined with the rarity of 

encephalitic and similar case reports in the literature suggest that ZIKV neuropathogenesis is 

unlikely to occur readily in adults and likely occurs by mechanisms related to its role in ZIKV 

congenital syndrome such as infection of adult multipotent neural stem cells (191). 

Congenital ZIKV Syndrome 

ZIKV infection in pregnant women is linked to severe birth defects including 

microcephaly (174–176), ocular abnormalities (195–198), brain calcifications (199), and 

intrauterine growth restriction (200, 201) that are collectively known as congenital ZIKV 

syndrome.  Microcephaly is caused by disorders that induce cell death and cause failure to divide 

and differentiate of neural progenitor cells (202) and ZIKV has been shown in vitro to 

dysregulate cell growth and proliferation (183, 186) and inhibit differentiation (203).  In vitro 

work has shown that ZIKV may do this by inhibiting the Akt-mTOR pathway in neural 

progenitor cells which is essential for brain development and regulating autophagy (204).  These 

data agree with the virus’s ability to induce autophagy in umbilical vein endothelial cells (205).  

ZIKV has also been shown to induce neurological disease in mouse (187, 206, 207) and non-

human primate fetuses (208–211).  These reports suggest involvement of glial cells and 

upregulation of microRNAs, but the mechanism of neuropathogenesis remains unclear.  
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Furthermore, the incidence of ZIKV-associated microcephaly differs between regions with a 

nine-fold increase in microcephaly in Brazil and a four-fold increase in Columbia following 

respective outbreaks.  These data imply the involvement of additional considerations such as 

socioeconomic factors on the incidence of ZIKV-associated microcephaly (212). 

Antibody Dependent Enhancement of Flavivirus Infection 

Antibody-dependent enhancement (ADE) is a phenomenon characterized by enhanced 

viral entry and infection of cells via non-neutralizing antibody.  It was first observed in 1930 

(213) and the first experiments on ADE of viral infection were done in the 1960’s (214, 215).  

Since then, the phenomenon has been well established for DENV (216–224) and it is 

hypothesized to be responsible for the development of a severe form of dengue fever (DF) 

known as dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS) (225, 226).  Although 

still not entirely understood, many of the underlying molecular mechanisms have been 

elucidated.  After a primary DENV infection with one of the four serotypes, ADE occurs during 

a secondary infection with a different serotype (187).  When a secondary DENV infection 

occurs, memory B cells from the primary infection dominate the immune response, which is a 

phenomenon known as “original antigenic sin” (228, 229).  These B cells are activated to 

produce antibody that is cross-reactive and will bind to the secondary serotype with low affinity 

but will not neutralize the virus. This immune complex can then interact with the Fcγ receptor 

(FcγR) of an FcγR-bearing cell (230–233) (e.g. monocyte, dendritic cell, or macrophage), and is 

internalized via clathrin-coated pits (234–236).  This mechanism increases the number of 

infected cells and is termed extrinsic ADE (237, 238).  Inside the endosome, the acidic pH 

allows the viral E protein to initiate membrane fusion with the endosomal membrane (81, 239, 

240).  Once in the cytoplasm, the virus suppresses type I interferon signaling, blocking the innate 

antiviral response (241).  This increases viral replication in the cell, a process is termed intrinsic 
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ADE (237, 242).  Extrinsic and intrinsic ADE together lead to higher viremia and altered levels 

for cytokines such as IL-10, IL-12, IFN-γ, and TNFα (242–248).  Further cell signaling increases 

vascular permeability and leads to fluid loss into the surrounding tissue and DHF (242).  The 

corresponding drop in blood volume results in DSS marked by hemoconcentration and 

hypotension that can lead to hypovolemic shock and death (249–251).   

However, research has demonstrated that DENV infection can be enhanced by sera 

against other flaviviruses, including ZIKV (214, 221, 252, 253).  Recently, a research group 

showed that ZIKA antibodies could enhance DENV infection in mice (31) and ZIKV 

enhancement was also recently shown to occur in the presence of DENV antibodies (33, 254–

256).  Recent work analyzed the reactivity and specificity of ZIKV and DENV antibodies and 

they found that antibodies reactive to the DI/DII domains of the E protein were cross-reactive 

between the ZIKV and DENV E proteins, but DIII-reactive antibodies were not (257).  

Furthermore, mice that were previously injected with DI/DII-reactive antibodies showed 

enhanced mortality and weight loss when infected with DENV.  Collectively, these studies 

suggest that heterologous ADE may occur during human infection and could be responsible for 

many complications that arise from DENV infection. Enhancement of ZIKV infection is also 

suspected to be involved in the onset of neurological complications (258). Given the large 

burden of DENV and ZIKV complications, heterologous enhancement between ZIKV and 

DENV has major implications for public health and further research is necessary to elucidate the 

role of ADE in ZIKV and DENV pathogenesis.   

Diagnosis of Zika Virus 

Because complications associated with ZIKV infection are so severe, it is critical that 

patients are quickly and accurately diagnosed to facilitate proper monitoring and medical 

intervention.  There are no FDA-approved diagnostic tools yet available for laboratory ZIKV 
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testing but there are currently ten assays that can be used for clinical diagnosis of ZIKV infection 

under Emergency Use Authorization (EUA) (259).  For early diagnosis (<14 days after symptom 

onset), the CDC recommends nucleic acid testing (NAT) on serum and urine (260).  Typically, 

this is done with real time RT-PCR assays such as the Trioplex Assay, which can test for ZIKV, 

DENV, and CHIKV simultaneously.  While the Trioplex assay demonstrates good specificity 

and is very sensitive (limit of detection (LOD) equals 2.45×103 genome copy equivalents 

(GCE)/mL) (261), the assay is very technical and requires the design of three sequence-specific 

probes in conserved regions of the ZIKV genome with expensive fluorescent and quenching tags 

(261).  Because PCR cannot detect RNA directly, a reverse transcription step must also be 

included to detect RNA viruses such as ZIKV.  This increases assay time, labor, and reagent 

cost.  Besides the reagent requirements, the instrumentation for real time PCR is also expensive 

(~$15k USD), making it inaccessible in resource-poor areas where the virus circulates (262, 

263). 

Alternative NAT methods that have been developed in the last two years to increase 

assay simplicity while maintaining high specificity and sensitivity mostly include CRISPR-based 

diagnostics and loop-mediated isothermal amplification (LAMP) based assays.  Two CRISPR-

based diagnostics have been described by Gootenberg et al (264) and Myhrvold et al (265) that 

employ a SHERLOCK (specific high-sensitivity enzyme reporter unlocking) platform.  The 

SHERLOCK platform uses Cas13a-mediated cleavage of collateral reporter-RNAs for specific 

detection of an RNA target.  The assay was designed to be instrument-free by Myhrvold et al for 

use as a point-of-care assay and demonstrated attomolar RNA detection in clinical samples in 

under two hours.  Two LAMP assays have been developed by Castro et al (266) and Guo et al 

(267) that respectively use real time analysis and fluorescence analysis to monitor the RNA 

response in clinical samples.  Although sensitive, both assays require expensive instrumentation.  
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A point-of-care colorimetric LAMP assay was developed by Calvert et al (268).  As the nucleic 

acid is amplified, it releases protons which reduce the pH as detected by a colorimetric pH 

indicator.  The reported limit of detection was 2-3×103 copies/mL which compares well with the 

CDC’s Trioplex assay. 

If the patient sample is collected >14 days after symptom onset or if the sample tested 

negative by NAT, serological testing is recommended.  This is typically done with the CDC’s 

Zika MAC-ELISA which detects anti-ZIKV IgM (269) and positive or inconclusive results are 

confirmed using plaque reduction neutralization testing (PRNT) (270).  Besides the CDC MAC-

ELISA, other ZIKV immunoassays have been developed by public health and commercial 

bodies.  An evaluation comparing commercial immunoassays by Euroimmun, Abcam, Novatech, 

and InBios found that while the assays had decent specificity, most had poor sensitivity ranging 

from 37% to 65% (271).  Another report compared immunoassays developed by the CDC and 

Centro Nacional de Diagnóstico y Referencia (CNDR) and found that the CNDR immunoassay 

had higher sensitivity than the CDC MAC-ELISA (94.5% vs 70.1%) as well as better specificity 

(85.6% vs 82.8%)  (272).  The improved performance of the CNDR assay compared to the 

CDC’s is attributed to its use of an antibody against DIII of the ZIKV E protein which has higher 

neutralization capacity and has higher specificity.   

The performance of ELISAs are generally limited by poor sensitivity (271), poor 

specificity due to cross-reactivity with other flaviviruses (273), and long processing times (272).  

A prominent need for improved diagnostics has galvanized the development of new techniques 

for ZIKV serological testing.  Several fluorescent techniques have been published recently.  An 

indirect immunofluorescence (IIF) assay developed by De Ory et al was used to test 

characterized serum samples and showed high sensitivity (96.8%), but it suffered poor specificity 

(72.5%) and is also limited to use with expensive fluorescent microscopes (274).  Wong et al 
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developed a multiplex microsphere immunoassay (MIA) based on fluorescence that used seven 

ZIKV antigens in a single well format to combine the sensitivity of anti-E protein detection with 

the differential power of detecting virus-specific antibodies against the NS proteins (275).  This 

assay demonstrated good sensitivity and had a fast turnaround time of less than four hours.  

Although there was extensive cross-reactivity for most of the antigens used, the combination of 

seven antigens in a single assay increased diagnostic power.  To increase the throughput of the 

classical PRNT, Koishi et al developed a fluorescent neutralization test using quantitative 

immunofluorescence to measure the amount of neutralizing antibody in a serological sample 

(276).  The fluorescence assay compared well to the classical PRNT, increased throughput, and 

demonstrated half the cross-reactivity with DENV than the MAC-ELISA but could not 

differentiate between acute and past infections and required specialized laboratory equipment 

and space to perform.   

Biosensors, as reviewed in Chapter 2, are attractive as new diagnostic tools due to their 

high sensitivity and ease of miniaturization for point-of-care measurements.  In the past year, 

several groups have reported biosensor designs to diagnose ZIKV infection.  Cabral-Miranda et 

al used a screen-printed carbon electrode modified with carbon nanotubes (to enhance 

conductivity) with immobilized anti-ZIKV DIII to detect an anti-ZIKV serological response 

(277).  Their sensor was 10,000 times more sensitive than the compared ELISA and exhibited no 

cross reactivity when tested with DENV+ serum.  Furthermore, the sensor could differentiate 

between IgM and IgG using a secondary antibody.   

Biosensors are also commonly developed to detect antigen during the acute phase of 

infection.  Afsahi et al designed a graphene-based field effect biosensor to detect ZIKV NS1 

protein and demonstrated a limit of detection of 0.45 nM and good selectivity when compared to 

JEV NS1 (278).  The sensor was not compared to relevant cross-reactive agents such as DENV 
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and it is unclear whether the sensor could be used for differential diagnosis in regions where 

ZIKV and DENV co-circulate.  A paper-based sensor by Draz et al labeled target ZIKV with 

platinum nanoprobes to measure the impedance signal from virus lysate (279) and is an 

inexpensive approach amenable for point-of-care detection.  

Although new diagnostics tend to improve one or a few parameters (e.g. sensitivity, 

specificity, portability, cost-effectiveness), integrating these properties remains a challenge.  The 

ideal diagnostic tool will demonstrate high sensitivity and specificity balanced with 

miniaturization, portability, and inexpensiveness.  Subsequent chapters will describe proofs of 

concept for electrochemical assays and biosensors with large potential as point-of-care tools. 
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CHAPTER 2 - ELECTROCHEMICAL BIOSENSORS AND ASSAYS: AN INTRODUCTION 
FOR BIOLOGISTS (280) 

 
 

  
Purpose 

 Clinical diagnostics is becoming an increasingly interdisciplinary field that requires 

extensive collaboration between molecular biologists, analytical chemists, electrochemists, 

engineers, materials scientists, and computer scientists.  To facilitate effective development of 

new diagnostic tools, a basic understanding of these disciplines is required.  Because this 

manuscript is written for a biological audience, the purpose of this chapter is to introduce the 

basic principles of electrochemistry, electrical engineering, surface chemistry, and 

nanotechnology as it pertains to electrochemical biosensor and assay development.  Many 

excellent introductory materials exist for these topics, but they are often mathematically dense 

and contain extraneous information not pertinent to biosensor development.  The goal of this 

chapter is to introduce the biologist to electrochemical biosensors and assays from a streamlined, 

conceptual perspective.  

Basic Sensor Concepts 

 According to the International Union of Pure and Applied Chemistry (IUPAC), a 

biosensor is a device that converts a biorecognition (e.g. affinity binding such as that between an 

antibody and antigen) or biocatalytic (e.g. an enzymatic reaction) event into an analytical signal 

proportional to the target concentration (281).  A biosensor consists of an analyte, bioreceptor, 

transducer, signal processor, and display (282) (Figure 2.1).  Analyte refers to the target 

molecule that is being detected while the bioreceptor is a biomolecule such as an antibody that 

binds the analyte.  The bioreceptor is usually immobilized onto the transducer which converts 

energy from the biorecognition event into a quantifiable signal.  The signal processor conditions 
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the signal, subtracting noise and amplifying the signal which can then be displayed through a 

user interface.   

 All biosensors share six properties that reflect the quality of its operation (282).  

Selectivity refers to the bioreceptor’s ability to distinguish between and bind to the analyte versus 

other components in the matrix.  The concentrations of analyte that produce a linear change in 

signal response are collectively defined as the linear range (283).  The sensitivity of the 

biosensor refers to the slope of this linear range (284), or the smallest change in analyte 

concentration that stimulates a signal change.  Related to the sensitivity is the limit of detection 

(LOD) or the lowest concentration of analyte that can be detected (285).   

A biosensor’s ability to generate the same signal response for the same analyte 

concentration under different conditions is its reproducibility (286).  Finally, stability is the 

consistency of a signal in response to environmental or kinetic influences such as temperature or 

dissociation of the bound analyte (282). 

 Biosensors are very diverse and can be categorized according to the bioreceptor or the 

transduction method.  Bioreceptors used in biosensor research include enzymes (287), antibodies 

(288), antigen/substrate, DNA (289), aptamers (290), and even whole cells (291).  Most 

biosensors employ either electrochemical (292) or optical (293) transduction techniques, though 

acoustic biosensors have also been reported (294).  Electrochemical biosensors and assays will 

be the focus of this review.   

Electrochemical Principles 

 Electrochemistry is the study of the flow and transfer of electrons between chemical 

species and the factors that affect this process (295). This electron transfer typically occurs as a 

result of chemical changes involving the oxidation or reduction of species (296).  These reactions 

are termed redox reactions and each half of the reaction (e.g. the oxidation or reduction) is 
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termed a “half-cell”.  The movement and flow of these electrons and charges is termed current. 

Many different techniques exist that analyze such electrochemical processes and characteristics, 

but most of these techniques employ common equipment and principles (295).   

Most electrochemical reactions are analyzed in an electrochemical cell consisting of three 

electrodes and an electrolyte (Figure 2).  The working electrode (WE) is the electrode that drives 

the electrochemical reaction of interest by applying a potential relative to the reference electrode 

(RE). Potential refers to the available electron energy that can drive reactions and the amount of 

work required to move a test charge from one electrode to the other (297).  Physically, the 

magnitude of the potential results from charge present in excess to the metal’s innate amount of 

charge.  This is driven by an external power supply that drives electrons into or out of an 

electrode (298). Potential was historically termed electromotive force and is thus denoted with 

the letter E.   

Because E measures the work to move charges from one point to another, measuring this 

electron energy is, by definition, done relative to a reference point. The reference electrode is 

made of stable components that exist in equilibrium.  For example, the standard hydrogen 

electrode (SHE) is made of inert platinum with adsorbed hydrogen gas.  The SHE lies in a 

contained solution of hydrogen ions and it undergoes a half-cell reaction at equilibrium (299). 

2𝐻$(𝑎𝑞) + 	2𝑒, 	↔ 	𝐻.	(𝑔) 

By convention, the potential of the entire redox reaction is reported in terms of the reduction 

half-cell potential (295).  The potential of the half-cell reaction at the SHE has been arbitrarily 

assigned a potential of 0 V and it is stable over time and across temperature (300).  This fixed, 

stable potential between the electrode and electrolyte acts as a reference that can be used to 

measure the relative potential of the other electrodes (296). Other common reference electrodes 

have a different half-cell potential relative to the SHE.  For example, a silver-silver chloride RE 
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is made of a silver wire coated with AgCl and is contained in a KCl solution.  The equilibrium of 

this half-cell reaction 

𝐴𝑔𝐶𝑙	(𝑠) +	𝑒, 	↔ 	𝐴𝑔	(𝑠) + 𝐶𝑙,	(𝑎𝑞) 

occurs at 0.222V vs SHE RE (299).  It is thus common to denote the potential in terms of the 

reference electrode used (e.g. one might say 1.7V vs Ag/AgCl), but the potential of any given 

half-cell with respect to a given RE can be converted to terms relative to SHE by subtracting the 

potential of the RE half-cell potential relative to SHE.  

Redox reactions involving the reduction or oxidation of a species cause a direct transfer 

of charge across the electrode/electrolyte interface (Figure 2.3).  Reduction involves an electron 

transfer from the electrode to the chemical species in solution whereas oxidation transfers an 

electron from the species back to the electrode.  This type of electrochemical current is known as 

Faradaic current and it is driven by the difference in potential between the WE and RE.  The 

potential difference between the WE and RE is known as the cell potential and it influences the 

direction and rate of charge transfer across the electrode/electrolyte interface.  Chemical 

reactions subsequently occur at the WE surface due to the potential difference between the 

electrode and electrolyte (e.g. the interfacial potential difference) (295). For current to flow, we 

must have a complete circuit.  The counter electrode (CE) serves this purpose.  As a reduction 

occurs at the WE, a complementary oxidation happens at the CE, creating a full electrical circuit 

that allows current to flow (296) (Figure 2.2). 

However, the interfacial potential does more than drive redox reactions.  It also causes 

charges to accumulate or move out of the interfacial region without transferring across to the 

electrode (301).  The accumulated charge at the electrode-electrolyte interface behaves like a 

capacitor that stores charge and is called double layer capacitance (302). Like a capacitor, the 

composition and length of the double layer influences the amount of stored charge or capacitance 
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as well as the rate of charge transfer.  Unlike a capacitor, however, as the potential changes, so 

too does the structure of the double layer.  At positive potentials, anions in solution accumulate 

at the interface whereas cations accumulate when negative potentials are applied to the electrode.  

As charges move in or out of the double layer, a non-Faradaic current flows (Figure 2.4). This 

capacitive or charging current seeks to equilibrate the double layer and may be transient or 

continuous (303).  If a single change in potential occurs, the charging current will dissipate over 

time as the double layer equilibrates.  On the other hand, a continuous change in potential will 

produce a continuous charging current. 

Common Electrochemical Techniques 

Voltammetry 

Amperometry is a technique that measures the current over time at a fixed potential.  

Voltammetric methods like cyclic voltammetry are a subset of amperometry that measure the 

current response as the WE is scanned through a defined range of potentials.  This scan is known 

as a potential sweep.  For a given redox couple, as the electrode is scanned toward lower 

potentials, it will drive the reduction of the species.  As the electrode is scanned back towards 

higher potentials, the species will be oxidized again.  The potentials where reduction and 

oxidation occur generate respective peaks in current and produce the characteristic “duck-

shaped” voltagramm shown in Figure 2.5 using ferricyanide (Fe(CN6)3-) and ferrocyanide 

(Fe(CN6)4-) as a model redox couple.  Starting from point A, the potential is scanned towards 

lower potentials and Fe(CN6)3- begins to reduce to Fe(CN6)4-.  The current increases as Fe(CN6)3- 

is continuously reduced until it reaches a peak at point C.  This peak occurs because Fe(CN6)3- is 

depleted from electrode surface and buildup of Fe(CN6)4- limits mass transport of Fe(CN6)3- to 

the electrode surface (296).  During this time, the current decreases until the potential reaches 

point D, known as the switching potential (Eλ).  The scan then reverses direction and begins to 
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sweep towards higher potentials.  With plenty of newly formed Fe(CN6)4- at the electrode 

surface, the current again steadily increases in the same manner until the species is depleted at 

point F.  Here the current becomes limited by mass transport again and begins to fall off until the 

scan is completed.  The potential where the peak current (ip) occurs is known as the peak 

potential (Ep).  The difference between the two peak potentials (ΔEp) provides information about 

the reversibility of the redox reaction.  An ideal, reversible system will have a ΔEp of 59mV, 

though in practice this value is closer to 70-80mV. When a reaction is quasi-reversible or 

irreversible, more energy is required to complete the reaction, causing reduction to happen at 

increasingly negative potentials and oxidation at increasingly positive potentials.  This results in 

a larger ΔEp.  Halfway between the two Ep lies the half-wave potential, E1/2.  This corresponds to 

the potential where the concentrations of the oxidized and reduced species at the electrode 

surface are the same and the reaction lies in equilibrium.  E1/2 is typically close to the formal 

potential, E0’, which corresponds to the potential that is measured when the concentrations of the 

reduced and oxidized species are equal (295). 

When redox reactions are not taking place, background current can still flow between the 

electrodes and corresponds to the capacitive non-Faradaic current (296). When analyzing low 

quantities of redox species, this non-Faradaic current may interfere with accurate measurements 

of Faradaic current (303). Pulse voltammetry techniques like square wave voltammetry (SWV) 

increase sensitivity to Faradaic currents by subtracting background capacitive currents (304).  

Briefly, SWV applies a staircase series of forward and reverse potential pulses of a fixed length 

of time.  Current is measured at the end of each pulse, after charging currents have dissipated, 

and the difference in current is plotted against the difference in potential between the forward 

and reverse pulses.   
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Conventional electrodes are typically an insulator-enclosed wire with an exposed disk 

ranging from 1 – 10 mm in diameter (305).  Microelectrodes, with a diameter of less than 25 µm, 

exhibit different electrochemical behavior and have several advantages compared to 

conventional electrodes.  Diffusion of a species to the planar surface of a conventional electrode 

is almost entirely linear and imposes limits on the current to yield peak currents in the 

voltagramm (Figure 2.6). In contrast, the planar surface of a microelectrode is significantly 

smaller and radial diffusion to the edges of the disk have a much larger contribution (306).  This 

“edge effect” creates a hemispherical region from which species can diffuse and increases the 

transport rate of species to the electrode surface (305, 306) (Figure 2.6c).  Thus, the redox 

species diffuses to the electrode surface as quickly or even faster than electron transfer can occur. 

The current is not limited by mass transport in this case and does not fall off, which produces a 

steady-state voltagramm (Figure 2.6d).  Just as reversibility can be determined by ΔEp of a 

traditional voltagramm, the slope of the sigmoidal steady-state voltagramm should approximate 

60mV for a reversible system (295).  E1/2 can be determined by the potential of half the steady 

state current (iss).   

Electrochemical Impedance Spectroscopy 

Direct current (DC) flows in a single direction in response to a uni-polarity potential (i.e. 

positive and negative potentials do not switch back and forth).  Alternating current (AC) flows 

back and forth as a sinusoid as it moves forward and is generated using an alternator.  

Simplistically, if you place a circuit between two poles of a magnet as shown in Figure 2.7, a 

potential difference, or voltage, will be electromagnetically induced between the two coils.  This 

voltage drives current flow.  As you rotate the circuit, the voltage across the circuit will change 

until it reaches the opposite polarity.  The resulting sinusoidal voltage waveform generates a 

complementary sinusoidal or alternating current response.  When the frequency is non-zero (as is 
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the case for AC current), these voltage and current sine waves are typically not in sync or in 

phase with each other.  The degree to which current is shifted in time compared to voltage is 

termed phase, θ.  The θ provides useful information about which component contributes most to 

total impedance at a given frequency.  For example, as the θ approaches -90˚, the circuit is 

mostly capacitive.  As it approaches 0˚, the circuit is mostly resistive.     

Electrode kinetics, reaction rate, diffusion, etc are all parameters that hinder the flow of 

charge in an electrochemical cell and they can be modeled as components of an AC circuit (307).  

These equivalent circuit models, discussed more below, can be used to describe the behavior of 

an electrochemical cell. The closer the calculated response of the model is to the measured 

response, the better the model is said to represent the actual physical processes at the interface 

(308).  The analogous resistors and capacitors (inductors are also included in this category but 

will not be discussed in detail here) have a given impedance.  Impedance (Z) is the opposition to 

current flow and is a measure of how difficult it is to move charge through a given circuit at a 

specific frequency when a voltage is applied.  

It is formally defined as the ratio of the voltage-time function and the current-time 

function:  

Equation 1. 𝑍 = 	
6(7)

8(7)
=	

69:;<	(.=>7)

89:;<	(.=>$?)
 

where V0 and Io are the amplitude of the voltage and current respectively, f is the frequency in 

degrees, and φ is the phase shift of the current sinusoidal with respect to the voltage sinusoidal 

(309, 310).  A system’s impedance can therefore be calculated by measuring the current response 

after applying a sinusoidal voltage function with a small amplitude, V0 (309).  This oscillation 

amplitude is typically smaller than 10 mV to facilitate a pseudo-linear relationship between 

current and voltage (311).  At larger voltages, the relationship becomes nonlinear and increases 

the complexity of analysis.  Furthermore, higher voltages as seen in amperometric techniques 
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may damage the biorecognition layer by exerting a force on charged biomolecules like proteins 

and nucleic acid (312).   

Electrochemical impedance spectroscopy (EIS) is a technique that characterizes the 

electrode-electrolyte interface by sampling the impedance throughout a range of frequencies and 

creating an impedance “spectrum” (309). The current I(t) at a given frequency may differ from 

the AC voltage V(t) by both amplitude and phase (Figure 2.8a), which makes the resulting 

impedance a complex number.  Its real component consists of resistance while capacitance and 

inductance compose the imaginary component. Impedance can thus be described in terms of its 

magnitude and phase or its real and imaginary components.  EIS data can therefore be 

represented in two different formats.  A Nyquist plot (also known as a Cole-Cole plot) plots the 

imaginary part of the impedance at each frequency against the corresponding real part (Figure 

2.8c).  A Bode plot plots the phase and absolute impedance |Z| on the y-axes against the log of 

the frequency of the x-axis (Figure 2.8d).  The values of several parameters can be extracted 

from this graph including the solution resistance, charge transfer resistance, and the double layer 

capacitance (307).  EIS may be used to investigate Faradaic or non-Faradaic systems.  

Impedance biosensors generally refer to Faradaic systems that measure impedance through a 

range or even a single frequency, while non-Faradaic impedance measurements are typically 

used in capacitive biosensors that investigate changes in the double layer capacitance at a single 

frequency.   

EIS data can be fit using a circuit model.  For a Faradaic system, the Randles-Ershler 

equivalent circuit is the most commonly employed circuit model of an electrode-electrolyte 

interface (313) (Figure 2.9) and is based on the work of Randles (314, 315) and Ershler (316) in 

1947.  It places the non-Faradaic charging current in parallel with the simultaneous flow of 

Faradaic current from a redox reaction.  As mentioned previously, various electrochemical 
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processes impede current and are analogous to circuit components like capacitors and resistors 

(308).  The charging current of the double layer is modelled as a capacitor (CDL).  Likewise, the 

Faradaic current must overcome both a charge transfer resistance (Rct), also known as the 

polarization resistance (Rp), and the Warburg impedance (ZW). Rct represents the resistance of a 

species to be oxidized or reduced at a given potential (317).  Stated another way, Rct is the 

difficulty of achieving an electron transfer between the electrode and the redox species at the 

electrode interface.  How quickly reactants diffuse to the electrode interface (and how quickly 

products diffuse away) can affect how much charge transfer occurs (i.e. how much Faradaic 

current there is).  This impedance from mass transport is known as Warburg impedance (ZW).  

Both the Faradaic and non-Faradaic currents must overcome an electrolyte or solution resistance 

(Rs), which results from the ions’ limited ability to conduct electrons (312) and is placed in series 

with the two parallel currents.  These electrochemical processes (and their corresponding circuit 

components) are influenced by the frequency of the applied sinusoidal potential.  At high 

frequencies, capacitors act as a short circuit (i.e. negligible impedance) causing the current to 

preferentially flow through that half of the circuit.  Thus, the current is only impeded by the in-

series solution resistance (Rs) as the frequency increases causing Rs to dominate the impedance 

equation.  At low frequencies, capacitors have high impedance and begin to act as an open 

(broken) circuit as the frequency approaches 0 Hz.  Thus, at these low frequencies, the current 

will predominantly flow through the Faradaic circuit components (including the solution 

resistance) which offer less impedance (295).  In this case, the total impedance is dominated by 

ZW because reactants must diffuse farther at low frequencies.  At intermediate frequencies, the 

total circuit impedance has contributions from both the Faradaic and non-Faradaic components 

For a non-Faradaic system (i.e. one without redox reactions), the circuit model is very 

similar to the Randles equivalent circuit.  However, the series combination of ZW and Rct is 
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instead replaced with a leakage resistance, Rleak  (312) .  Ideally, Rleak should be infinite for a non-

Faradaic system which contains no redox species, causing all current to flow through CDL.  In 

practice, a small amount of current may leak across the interface and is thus accounted for in the 

circuit model. 

Field Effect Transistor Biosensors 

 A field effect transistor (FET) is a semiconductor device with three electrode terminals 

that controls the current through the device with an electric field.  Two of the electrodes, the 

source and drain, are connected by a semiconductor channel. The gate electrode acts as a control 

electrode.  It is placed near the channel, where it generates an electric field that alters the 

conducting properties of the channel.  Any change in the gate’s voltage creates a correspond 

change in the current flow through the channel.  Field effect transistor biosensors (BioFETs) use 

a biorecognition surface at the gate electrode to control the current (318, 319).  When an analyte 

binds to this surface, it changes the electrical surface charge (i.e. voltage) of the gate electrode 

which is then detected by the corresponding change in the channel current (320). 

Electrochemical techniques that measure changes in voltage are termed potentiometry.  

Surface Functionalization and Chemistry 

Immobilization of a biorecognition probe to a transducer surface is a fundamental 

property of biosensors. The transducer surface properties, the properties of the individual probe, 

and the immobilization method all affect the probe’s behavior and orientation at the interface.  

These behavior profiles are still poorly understood but directly influence biosensor performance 

including its sensitivity, specificity, and reproducibility.  Although approaches to immobilize 

nucleic acid probes employ similar principles, this discussion will focus on immobilization 

strategies for protein-based biosensors.  Such methods include adsorption, covalent coupling, and 

affinity-based immobilization (321, 322).   
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Adsorption of Biorecognition Probe 

Adsorption is a non-covalent, spontaneous process by which a molecule adheres to a 

surface through hydrophobic, electrostatic, and/or van der Waals interactions (323).  The process 

is commonly used in molecular biology techniques to immobilize probe molecules or block 

surfaces.  The example that molecular biologists would be most familiar with is the adsorption of 

protein to a polystyrene plate through mostly hydrophobic interactions for an ELISA assay (324).  

The adsorption process is affected by many parameters including the protein characteristics (size, 

charge, rigidity), surface characteristics (surface energy, charge, hydrophobicity, roughness), and 

the environmental characteristics (bulk protein concentration, temperature, pH, ionic strength, 

and buffer composition) (325, 326).   

The surface and environmental characteristics may affect a protein differently depending 

on its inherent traits such as rigidity.  To interact with a hydrophobic surface, proteins often must 

undergo conformational changes to expose their hydrophobic core (324).  Hard proteins have a 

more stable molecular structure that does not readily change conformation.  Thus, even when 

adsorbed to a surface, hard proteins tend to maintain their structural integrity.  In contrast, soft 

proteins like IgG or BSA are flexible and easily change conformation (327).  As a result, as a 

soft protein “relaxes” on a surface, the protein spreads out to maximize contact points with the 

surface and takes on a denatured conformation.  Temperature may differentially influence 

adsorption of hard or soft proteins either kinetically or thermodynamically (328).  Kinetically, 

higher temperature can increase the rate of protein diffusion to the surface by increasing the rate 

of diffusion. However, mildly high temperatures may also cause partial desorption of hard 

proteins which maintain structural integrity and thus molecular mobility.  In contrast, soft 

proteins demonstrate resistance to heat-induced desorption because they tend to denature at the 

surface. Thermodynamically, at temperatures higher than the protein’s denaturation temperature, 
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the adsorption of a hard protein may increase as the protein in solution denatures.  The newly 

exposed hydrophobic surfaces of the denatured protein readily facilitate adsorption to a 

hydrophobic surface.  

Although adsorption does occur via electrostatic interactions between a charged protein 

and a charged surface, it occurs most readily at the protein’s isoelectric point (pI or IEP), which 

corresponds to the pH where a protein has an overall net neutral charge (329).  This is likely due 

to a reduction in repulsive electrostatic protein-protein interactions.  Solutions with higher ionic 

strength screen proteins from charge interactions and may cause protein aggregation, however 

the different ions may influence adsorption differently, obscuring a more general trend (330).  

Using adsorption to immobilize a probe protein has several advantages.  It uses fewer 

reagents compared to other immobilization methods and maximum surface coverage can be 

obtained in less than an hour (331).  Typically for adsorption protocols, protein concentrations 3-

10× larger than the adsorption capacity are sufficient to reach maximal coverage.  BSA, for 

example, has an adsorption capacity of 3 mg/m2 while IgG has a capacity of 2.5 mg/m2 (332). 

Most protein probes will have capacities within or near this range.  Proteins may be displaced 

from the surface by other proteins (Vroman effect), but at fixed pHs, desorption from a 

hydrophobic surface occurs so slowly as to be considered irreversible, even after buffer rinses 

(333, 334). Changes in pH induce conformational changes in the protein that cause it to desorb 

from the surface (335). 

A disadvantage of using adsorption may arise from loss of binding activity from the 

immobilized protein.  While soft proteins like IgG are especially known to denature upon 

adsorption, there has been disagreement over whether such denaturation reduces binding activity.  

Some reviews report that conformational changes upon adsorption can enhance activity (325), 

whereas some studies demonstrate reduced activity (336), and still others show no effect on 
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activity at all from denaturation (337, 338).  These discrepancies may arise from differences in 

individual protein and/or surface properties and more research is required to elucidate underlying 

mechanisms. 

Multiple studies have also shown that the effects of surface packing negatively affect 

binding activity (56, 58).  One study found increasing binding activity with increasing 

concentrations of adsorbed antibody until ~1 mg/m2 (337). At greater surface concentrations, the 

binding activity quickly declined.  This effect is likely due to steric hindrance and repulsive 

protein-protein interactions that inhibit target binding.  Because this effect has large implications 

for sensor sensitivity, it is important optimize the probe concentration adsorbed to the surface.  

Maximal density does not necessarily correlate to highest sensitivity.  The packing density is also 

influenced by environmental conditions like pH and ionic strength.  Conditions that promote 

charged interactions between adsorbed proteins (e.g. pH ≠ pI) result in a loosely packed layer 

whereas conditions that negate these charged interactions (e.g. high ionic strength or pH = pI) 

form densely packed and even multilayers (325, 329). 

Because adsorption is a non-specific process it is difficult to control the orientation of the 

probe at the surface.  Essential target binding sites may therefore be inaccessible and reduce the 

overall sensitivity of the sensor.  In the case of an antibody molecule, it can take one of four 

configurations at the surface: end-on, head-on, side-on, or flat-on.  Earlier studies on antibody 

orientation concluded that antibodies have a preference for a flat-on orientation at the surface 

(337, 340).  However, these conclusions were determined by calculating the thickness of the 

protein layer and recent research using mass spectrometry and total internal reflection 

fluorescence indicates that at lower surface concentrations, antibodies instead adopt a side-on 

configuration that transitions to an end-on configuration as protein-protein interactions increase 

with increasing concentration (334, 341). 
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Covalent Coupling 

 Covalent immobilization of protein to a surface uses chemical agents to form a covalent 

bond between functional groups present at the surface and on the protein.  Functionalization 

groups can be introduced to the surface in various ways depending on the material.  Alkanethiol 

chains (also known as alkylthiols) consist of a terminal sulfur group, a carbon chain of methylene 

groups, and a head group.  The terminal sulfur group allows the alkanethiol to self-assemble on 

electrode metals like gold, platinum, or copper (342) to form a self-assembled monolayer (SAM) 

that is stable at a wide range of potentials (0.8 V to -1.4 V) (343).  The head group consists of a 

functionalization group such as a carboxylic acid (COOH), amine (NH2), azide, aldehyde (CHO), 

or thiol (SH) group that can be used to covalently immobilize a protein.  Furthermore, long and 

short chain alkanethiols can be mixed to control the density of immobilized probe by using the 

short chain polymer as a spacer (343).  Common alkanethiols used in biosensor research include 

11-MUA (11-mercaptoundecanoic acid) (344, 345), 3-MPA (3-mercaptopriopionic acid) (346), 

MCH (mercapto-1-hexanol) (347, 348), MCU (11-mercapto-1-undecanol) (349), and lipoic 

(thioctic) acid (350, 351).  Organosilanes are like alkanethiols in their ability to form functional 

monolayers on an inorganic surface and comprise of a silicon molecule bound to a carbon spacer 

chain.  The silicon is generally attached to a reactive group that allows the chain to covalently 

bind to inorganic surfaces such as indium tin oxide (ITO) electrodes (352–354).  At the other end 

lies a functional group that can be used for bioconjugation.  For carbon-based electrodes, 

electropolymerization can be used to form a conductive polymer layer and introduce functional 

onto the surface (355).  Common reagents for this process include poly(pyrrole propionic acid) 

(pPPA) (355) or other pyrrole derivatives (356), polyaniline (PANI) (357, 358), nafion (359), 

and polytyramine (360). Alternatively, the carbon surface can be oxidized to form carboxylic 

acid functional groups (361). Once introduced to the surface, functionalized groups can be used 
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for either random or oriented immobilization of proteins depending on the composition of the 

protein.   

Affinity-based Immobilization 

Affinity tags are commonly used for site-directed immobilization which optimally orients 

the protein on the surface. Proteins with a histidine-tag (His-tag) at either terminus can be 

immobilized to conductive polymers like pyrrole (362).  The polymer is functionalized with 

nitrilotriacetic acid (NTA) which indirectly binds the His-tag via a coordinated metal ion.  

Biotinylated proteins can be immobilized to surfaces that are coated with streptavidin though the 

biotin is conjugated to amine groups spread randomly throughout the protein and this leads to 

random orientation.  Biotinylated antibodies can be oriented by site specifically conjugating the 

biotin at the sulfur bridges present in the antibody molecule (363).  Lastly, Fc binding proteins 

such as protein A or protein G are commonly adsorbed or covalently linked to the electrode 

surface first to bind the Fc fragment of an antibody and orient it in a head-on orientation. 

Affinity-based methods are used to easily orient a protein on the surface without concerns of 

denaturation or activity loss that can be associated with adsorption and/or covalent methods.  

However, these interactions are less stable which could lead to a loss of probe functionalization 

over time.  

Blocking 

Nonspecific adsorption of nonspecific target to the transducer surface can interfere with 

and mask the specific signal of the biorecognition event. Such fouling can also pose a problem 

for electrochemical assays.  As such, it is critical that biosensor design incorporate a mechanism 

to minimize nonspecific binding.  This is typically done with a blocking reagent that binds to the 

electrode surfaces to fill any pinholes left in the protein and/or SAM monolayer.  Bovine serum 

albumin (BSA) has been used as a standard blocking agent in molecular biology for decades and 
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is also commonly used to block electrode surfaces (364–366).  Although regularly used, research 

indicates that BSA is a poor blocking agent.  Most biosensor studies perform target detection in 

buffers like PBS or TBST at a neutral pH.  However, because BSA has a pI of 4.7, it carries a 

negative charge at neutral pH, and such a negatively charged surface would facilitate, not prevent 

nonspecific adsorption.  Furthermore, BSA has been shown to interact with antibody and is even 

suspected to displace up to 10% of specifically adsorbed antibody (334).   

Ethanolamine is another commonly used blocking agent (367–369) that consists of a two-

carbon chain with an amine group at one end and a hydroxyl group at the other.  After covalent 

probe immobilization, the ethanolamine binds via its amine group to unbound, activated 

carboxylic (370) or aldehyde groups (371), deactivating and blocking the surface.  However, 

because the hydroxyl group carries a negative charge, a surface blocked with only ethanolamine 

will carry an overall negative charge that facilitates adsorption.  1-dodecanethiol is an alkanethiol 

chain that is commonly used to block gold surfaces after probe immobilization (372).  Yet, 

because it is a hydrophobic molecule, it likely is also an imperfect reagent for blocking. 

Because adsorption happens most readily at charged or hydrophobic surfaces, merely 

filling pinholes in the monolayer is not sufficient to prevent nonspecific adsorption.  Reagents 

carefully chosen to design neutral, hydrophilic surface is the most efficient means of blocking 

the surface of the electrode.  Recent zwitterionic approaches have been extremely successful to 

improve antifouling capacity.  A zwitterion, also called a dipolar ion, has both positive and 

negative chemical groups with a net charge of zero.  Such approaches generate a monolayer of 

zwitterionic polymers or molecules such as carboxybetaine (373), sulfobetaine (373, 374), 

cysteine (375) or zwitterionic peptides (376, 377).  Although zwitterionic approaches 

demonstrate excellent antifouling capacity, their prohibitive cost inhibits their practical use. 

Polyethylene glycol (PEG) is a neutral, hydrophilic polymer that has seen biomedical use for 
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decades and is currently considered the gold-standard in some fields like drug delivery to reduce 

nonspecific interactions (378).  It has received much attention as a blocking reagent for biosensor 

applications (379–382).   

History of Electrochemical Biosensor Research 

 A series of scientific milestones in the 19th and 20th centuries paved the way for the start 

of biosensor research, including the ability to immobilize proteins onto a surface (383).  

Although the term “biosensor” was not coined until 1977 by Karl Cammann (384), the first 

biosensor was built in 1962 by Leland C. Clark, Jr.  Clark’s glucose enzyme electrode was 

modeled after his oxygen sensor design and measured glucose by the amount of oxygen that was 

consumed by glucose oxidase (GOx) as it catalyzed the oxidation of glucose.  Early research on 

the “enzyme electrode” (as the first biosensors were called) mainly focused on the quantitation of 

various oxidase substrates such as glucose (385–388), urea (389–391), creatinine (392), ions 

(393, 394), etc typically by electrochemically measuring the consumption of oxygen, production 

of hydrogen peroxide, or changes in pH.  Briefly, enzyme was immobilized in a polyacrylamide 

gel layer that was wrapped around the electrode surface. Substrates can diffuse through the layer 

to be catalyzed by the enzyme and products (or lack there-of) diffuse towards the electrode 

where they are detected electrochemically.  Both amperometric (386, 395, 396) and 

potentiometric techniques (389, 397–399) (which measures the corresponding change in charge 

density and thus transmembrane potential at the interface between the membrane and solution) 

were commonly employed. The first immunosensor was published in 1975 to detect yeast 

mannan (400) and was followed in the next four years by similar immunosensors for syphilis 

antibody (401), human chorionic gonadotropin (HCG) (402, 403), human serum albumin (HSA), 

and blood type (404).  These potentiometric bioaffinity sensors used membrane-bound antigen or 

antibody to detect complementary analyte with a corresponding change in charge density and 
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thus transmembrane potential at the interface between the membrane and solution.  

Immunosensors were also combined with enzymatic signal amplification to create the first 

amperometric enzyme immunosensor in 1976 (405).  In these systems, antibody is immobilized 

in a gel membrane at the electrode surface.  Analyte competes with labeled antigen for antibody 

binding and the ratio of labeled vs unlabeled binding sites is concentration dependent (406).   

Further work on the enzyme electrode sought to combat problems such as costly 

production or instability of enzyme when electrostatically immobilized.  Thus, the first 

“microbial sensors” from the early 1980’s were effectively enzyme electrodes that measured 

substrates using immobilized microorganisms that produced the required enzyme (407–409).  

Other problems with the first generation of enzyme electrodes included a limitation to enzymes 

that could produce electroactive species.  Furthermore, the high potentials required to detect 

these species generated interfering currents from other electroactive physiological species (410).   

To mitigate these limitations, second generation biosensors used soluble redox mediators 

such as ferrocene derivatives to facilitate electron transfer between the enzyme and electrode and 

decrease the oxidation potential (411–414).  These mediated biosensors enabled non-

electroactive species to be measured for the first time (410) and also decreased interference from 

physiological species by reducing the applied potential (415). However, mediated electron 

transfer was slow and limited the sensitivity of the sensor (415).  The absorption of enzyme to 

the electrode also caused problems with stability, reusability, and reproducibility (416).  

To increase sensitivity, research for third generation of biosensors investigated the use of 

molecular transducers for direct electron transfer.  The term molecular transducer was coined by 

Ghindilis et al to refer to an enzyme that can directly interact with the electrode (417).  I.e. these 

enzymes such as cytochrome c, peroxidase, and ferredoxin (418–424) can catalyze the transfer of 

an electron directly between a substrate and the electrode without the need for a mediator like 
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ferrocene.  However, because only a small number of enzymes are capable of direct electron 

transfer, the third generation biosensors were limited in the analytes they could detect. 

Polymer films were used for the first time in the 1980’s and 90’s to immobilize probe 

protein.  Alkanethiols (343, 425), conductive polymers (426, 427), and silanes (428) were all 

introduced into biosensor research around this time to more effectively control protein 

immobilization without losing activity or to immobilize redox mediators for direct electron 

transfer (429).  These biosensors demonstrated a high range of limits of detection (LODs) from 

target concentrations of 400 pg/mL to 12 ng/mL to 1 µg/mL (428, 430, 431).  To enhance 

sensitivity, interdigitated electrodes (IDEs) were introduced in the late 1980’s and early 1990’s 

(432, 433).  IDE constitute two electrodes with comb-like fingers that are meshed together just 

µm apart into an array.  They increase current signal through a process called redox cycling.  

During redox cycling, one electrode of the IDE is biased at a cathodic potential and the other is 

biased at an anodic potential.  The species of interest will be reduced at the cathodic and 

immediately diffuses to the anode where it is oxidized.  A single molecule can therefore 

contribute repeatedly to the current signal, amplifying it (434).  Using this method, early reports 

by Morita et al and Aoki et al reported an improved LOD of ~5 pg/mL of dopamine and ~1.7 

pg/mL for catecholamines respectively (433, 435). 

The first advancements required for lab on chip (LOC) technology began in the late 

1980’s and early 1990’s with the introduction of flow-injection (FI) systems for biosensor 

analysis (413, 436, 437).  FI analysis uses a peristaltic pump to flow sample over a 

functionalized electrode.  Because FI systems minimize handling and enhance control, they 

increase reproducibility and reusability.  Semiconductor fabrication techniques like CMOS 

technology (complementary metal-oxide semiconductor) also gained popularity in the 1990’s 

and 2000’s to generate microelectrode arrays for biosensing purposes.  These microelectrode 
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arrays had numerous advantages as described by Wittstock (438).  Because the array was 

composed of ultramicroelectrodes (UMEs), edge effects increased mass transport to the electrode 

through radial diffusion and the small electrode area reduced background capacitive current.  The 

array of UMEs amplified the current signal while maintaining the properties of an UME.  The 

signal could be further enhanced by interdigitating one UME with another to allow for redox 

cycling.  Lastly, microelectrode arrays have large potential for multiplexed analysis.  Early 

arrays consisted of 64 electrodes (439, 440) though recent reports have used  256 electrodes 

(441) and even high density arrays of 8192 electrodes (442). As biosensing technology became 

increasingly miniaturized, advancements in microfluidics have allowed flow-injection systems to 

become miniaturized and are discussed in detail by Henares et al (443). 

Nanotechnology in Biosensor Development 

Since the late 1990’s to early 2000’s, the use of nanotechnology for biosensor research 

has seen explosive growth.  Nanotechnology involves the study and manipulation of materials 

that are 1-100 nm in one dimension (e.g. thin films), two dimensions (e.g. nanotubes, 

nanowires), or all three dimensions (e.g. nanoparticles, quantum dots).  Nanomaterials display 

unique properties that differ from their bulk material and result from the large ratio of surface 

area to volume as well as quantum size effects that dominate at the nanoscale (444). Surface 

effects including increased surface stress and elasticity occur because atoms at the surface of a 

material have fewer binding partners than their bulk counterparts.  Repulsion between free 

electrons forces the material to deform into a more spherical shape with a smaller surface area to 

volume ratio (compared to other possible configurations such as a cube) to minimize free energy 

(445).  Fewer binding partners at the surface also correlates to fewer stabilizing forces, giving the 

surface atoms greater elasticity.  In addition, the increased proportion of  atoms at the surface of 

the material causes the nanomaterial to become highly reactive and unstable and results in unique 
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catalytic properties that the bulk material does not possess (444).  Quantum size effects occur 

because free electrons, which freely move through the bulk material, become confined at the 

nanoscale (446).  This phenomenon of quantum confinement results in altered electrical, 

magnetic, and optical properties of nanomaterials that scale with size and can therefore be 

controlled by controlling the size of the nanomaterial.   

There are currently a wide variety of nanomaterials and nanostructures.  The most 

common nanomaterials include noble metal nanoparticles (NMNPs) (447), carbon nanomaterials 

(361, 448), metal oxide nanomaterials (449), polymer nanomaterials (450), and porous 

nanomaterials (451, 452).  An exhaustive discussion of nanomaterials is beyond the scope of this 

text, but commonly used nanoparticles will be briefly introduced below. 

Noble Metal Nanoparticles 

 As discussed above, immobilization of protein to the electrode surface can reduce or even 

inactivate bioactivity of the probe.  Because NMNPs are comparable in size to biomolecules and 

have large surface areas, biomolecules can be readily immobilized to the NMNP surface without 

denaturing and thus little to no reduction in binding or enzymatic activity; thus, they exhibit high 

biocompatibility.  Typical NMNPs are comprised of gold (AuNPs) (453), silver (AgNPs) (454), 

platinum (PtNPs) (455), palladium (PdNPs) (456), or alloys of these materials (457).  These 

NMNPs are fabricated by chemically reducing a noble metal salt in an aqueous or organic 

solvent.  AuNPs, for example, are commonly generated by chemically reducing chloroauric acid 

(HAuCl4) in aqueous sodium citrate (458).  However, due to the high surface energy that results 

from nanoscale surface effects as described above, NMNPs must be prepared in the presence of a 

stabilizer (e.g. PEG, thiolated protein, etc) that passivates the surface and prevents aggregation 

(447, 459).  These stabilizers can also be used to introduce charge or chemical groups that 

facilitate biomolecule immobilization.  Core-shell NPs that use a noble metal shell to maintain 
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biocompatibility and a metal or metal oxide core are also commonly reported in the literature 

(180, 181). 

 While the properties of NMNPs differ based on the size and makeup of the nanoparticle 

(444), NMNPs can be used in two general ways to amplify biosensor signal.  First, the NMNPs 

can be functionalized to the electrode surface where their high biocompatibility and large surface 

area allow higher densities of active probe biomolecules to be immobilized to the surface of the 

bulk electrode.  The NMNPs can be functionalized to the electrode surface via a SAM layer 

(462), layer-by-layer assembly (463), hybridization with other nanomaterials to form a complex 

nanostructure (464, 465), or using sol-gel technology (466, 467).  Furthermore, most redox 

enzymes (e.g. horseradish peroxidase, hemoglobin) cannot transfer electrons directly with the 

bulk electrode surface because the redox center, shielded by the outer protein shell, is too far 

away for direct electron transfer to the surface.  These biosensors must be supplemented with a 

redox mediator such as ferrocene.  Proteins immobilized on NMNPs, however, do not denature 

and are more dynamic in their spatial arrangement; this could facilitate contact between the 

nanoparticle and the enzyme redox center (468, 469).  Thus, NMNPs can be used for direct 

electron transfer from an enzymatic signal without the need for a mediator. 

 Second, NMNPs can also be used as an electrochemical label in which the NP is attached 

to biomolecule probe and the current from acidic oxidation of the NMNP into ions corresponds 

to the analyte concentration (447).  For example, Zhang et al conjugated bimetallic Cu@Au 

core-shell NPs to an antibody for an electrochemical immunosensor (470).  The current response 

from electrochemically oxidizing the Cu into Cu2+ correlated linearly with target concentration.  

Chen et al reported a similar sensor measuring the stripping current from the oxidation of 

Ag@SiO2 core-shell NPs into Ag+ ions (471). 
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Conclusion 

 Biosensor research is becoming increasingly sophisticated and draws on knowledge from 

many scientific and engineering fields including electrical engineering, electrochemistry, 

material science, surface chemistry, molecular biology, microbiology, protein biochemistry, and 

more.  Subsequent chapters will draw on knowledge from these fields as detailed in this chapter 

to describe the development of novel electrochemical assay and sensor platforms. 
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Figure 2.1 Biosensor.  A transducer converts the signal from a biorecognition event between 
bioreceptor and analyte into an electrochemical signal that is processed by a signal processor.  
These results are then shown on the display.  Zika virus structure adapted from (15). 
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Figure 2.2 Three electrode system. 

 

Figure 2.3 Faradaic current.  Faradaic current is generated as an electron is transferred to or 
from the working electrode during a reduction or oxidation reaction at a given potential, E. 
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Figure 2.4 Charging or capacitive current.  At any given potential, charge will accumulate at 
the electrode surface creating a double layer capacitance (CE1).  Upon a change in potential (ΔE), 
the charges will move to re-equilibrate the double layer.  As these charges move, a current flows 
that dissipates over time as the system reaches equilibrium (CE2). 
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Figure 2.5 Cyclic voltammetry.  A) Voltagramm of ferricyanide and ferrocyanide analysis.  
The potential is scanned towards lower potentials starting from point A.  At sufficiently low 
potentials, ferricyanide is reduced to ferrocyanide producing an increase in current signal. The 
half-wave potential, E1/2, is reached at point B where the concentrations of ferricyanide and 
ferrocyanide become equal.  As ferricyanide is depleted at the electrode surface, the current 
reaches its peak current, ip,cathodic, and falls off until the potential reaches the switching potential, 
Eλ, at point D.  The scan is then reversed in the opposite direction towards higher potentials.  At 
sufficiently high potentials, ferrocyanide will begin to oxidize to ferricyanide.  It reaches its E1/2 
at point E and as ferrocyanide is depleted, the current will again peak at point F and fall off until 
the final potential at point G.  The peak to peak separation (ΔEp) can be determined by 
subtracting Ep,anodic from Ep,cathodic. B) Potential scan for cyclic voltammetry.  The scan starts at 
point A and is ramped down to point D, known as the switching potential, Eλ.  The scan is then 
reversed back.  C) Concentration profile of ferricyanide and ferrocyanide during cyclic 
voltammetry.  The scan starts at point A with high concentrations of ferricyanide, which is 
depleted as it is reduced to ferrocyanide.  At Eλ (D), high concentrations of ferrocyanide can be 
oxidized back to ferricyanide.  Figure modified from (296). 
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Figure 2.6 Macroelectrode vs microelectrode behavior.  A) Linear diffusion of species to the 
macroelectrode surface.  B) Duck-shaped voltagramm.  Because linear diffusion does not replace 
species as quickly as they are depleted, the current peaks and then falls off creating the 
traditional “duck-shaped” voltagramm. C) Radial diffusion of species to the microelectrode 
surface.  D) Steady state voltagramm.  Edge effects resulting in radial diffusion increases the rate 
of mass transport to the electrode surface, replenishing the species at the surface as quickly as 
they react.  In this case, current is no longer limited by mass transport and instead reaches a 
limiting current, il, corresponding to the rate of electron transfer.  Figure modified from (306, 
472, 473). 
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Figure 2.7 Direct vs alternating current.  DC voltage is static, thus producing a static current 
signal.  AC voltage, however, oscillates back and forth, generating a complementary sinusoidal 
current response. AC current is generated using an AC generator.  By rotating a circuit between 
two magnetic poles, the voltage across the circuit will continuous change, alternating between 
two polarities.  This voltage generates an alternating current signal.  Figure modified from (474, 
475). 
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Figure 2.8 Electrochemical impedance spectroscopy.  A) AC potential (E) and current (I) 
response.  The current and potential signals can be shifted in time by a given phase (φ) and may 
also differ in amplitude (Δa).  B)  Impedance, Z, is a complex number with real and imaginary 
components that can be represented as a vector with an angle (phase, φ) and magnitude, |Z|.  C) 
Nyquist plot.  Z is measured through a range of frequencies and imaginary components are 
plotted against the real components to yield a semicircle shape.  At high frequencies, the double 
layer capacitance acts as a short circuit with only the solution resistance, Rs impeding the current 
flow.  At lower frequencies, the charge transfer resistance dominates, corresponding to the 
difficulty of oxidizing or reducing a species.  At sufficiently low frequencies, the current 
becomes limited by how quickly species can diffuse to the electrode surface.  This impedance 
due to mass transport is called Warburg impedance, ZW.  D) Bode plot.  Because frequency is 
implicit in the Nyquist plot, a Bode plot may be used to explicitly examine the relationship 
between phase or impedance with frequency.  Figure modified from (295, 307). 
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Figure 2.9 Randle’s equivalent circuit. As the current flows through the system, various 
phenomena at the electrode surface can be modeled as circuit components.  Redox reactions and 
charging of the double layer capacitance occur simultaneously and are thus placed in a parallel 
circuit.  The redox reaction must overcome impedance related to mass transport of the species to 
the electrode (Warburg impedance, ZW) as well a charge transfer resistance, Rct which 
corresponds to the difficulty of oxidizing or reducing a species at a given potential. Both the 
redox and double layer processes are subject to the solution resistance, Rs, which corresponds to 
how well the electrolyte can conduct electricity and is placed in series with the Faradaic and non-
Faradaic components.  Figure modified from (476). 
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CHAPTER 3 - A NUCLEASE PROTECTION ELISA ASSAY FOR COLORIMETRIC AND 

ELECTROCHEMICAL DETECTION OF NUCLEIC ACID (477) 

 
 
 

Introduction 

Nuclease protection has been an essential tool in molecular biology for over forty years 

and is an ideal candidate for a simplified nucleic acid detection (NAT) platform. This technique 

employs an endonuclease such as S1 nuclease (478), mung bean nuclease (479), or RNAse (480) 

that demonstrates specificity for single-stranded nucleic acids. Traditionally, DNA or RNA that 

is hybridized to a DNA probe is “protected” from endonuclease digestion and is detected via gel 

electrophoresis analysis (481). Nuclease protection assays demonstrate high specificity and are 

effective alternatives for techniques such as Northern blotting and PCR for NAT (482).  They 

were first employed in molecular genetics as a technique to map elements of the genome (483) or 

quantify messenger RNA transcripts (484, 485) and their traditional use has been extended to 

investigate drug immunotoxicity (486) and transgenic expression (487).  Nuclease protection has 

also been used to detect endogenous (479, 488) and viral (482, 489) microRNA. More recently, 

nuclease protection has been integrated with sandwich hybridization assays (SHAs) for 

colorimetric detection and monitoring of environmental algal species (490–492). Some research 

has been directed toward clinical use of nuclease protection to detect biomarkers associated with 

cancer (493–497) or genetic disorders (498) but to date, no work has been done to investigate its 

potential as an infectious disease diagnostic. 

Many viral diseases including Zika fever, influenza, dengue fever, and chikungunya 

present with general, nonspecific symptoms that encumber differential diagnosis (499). Thus, the 

Center for Disease Control (CDC) typically recommends NAT on serum, urine, or other 

biologically-relevant samples to diagnose viral disease during the early stage of infection (260, 
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500). This is typically done with approved real-time PCR assays which exhibit good specificity 

and sensitivity – often with limits of detection around 103 genome copy equivalents (GCE) mL-1 

(261). However, the real-time PCR assay is very technical, requiring design of three sequence-

specific probes in conserved regions of the viral genome with expensive fluorescent and 

quenching tags (261).  Many infections like Zika virus infection are associated with medical 

complications that necessitate monitoring and timely intervention. While gel-based nuclease 

protection assays have previously served as an effective alternative for PCR in research (482), 

the lengthiness and technicality of gel analysis limits the traditional assays use as a diagnostic.   

To improve the potential of nuclease protection assays as a clinical diagnostic, gel 

analysis of nuclease protection can be replaced with enzymatic readout.  Cai et al developed a 

nuclease protection sandwich hybridization assay (NPA-SH) in 2006 with an enzyme-mediated 

signal output (501).  Although the assay was subsequently used by other groups for 

environmental monitoring (490, 492), the NPA-SH format requires three DNA oligo probes: a 

NPA probe, capture probe, and a signal probe. Designing three separate probes for every target 

of interest increases the assay complexity and limits its adaptability to other potential analytes.   

Here, we report a proof-of-principle nuclease protection-ELISA (NP-ELISA) for the 

specific and sensitive detection of nucleic acid (Figure 3.1). In contrast to the NPA-SH, the NP-

ELISA uses a single oligo capture probe which was designed in this case to have specificity 

towards a respective Zika (ZIKV) or Kunjin (KUNV) virus sequence.  The capture probe is 

mixed with a nucleic acid target (i) and hybridized products (ii) are immobilized to the bottom of 

a microtiter plate and are subjected to a digestion reaction with S1 nuclease which degrades 

single stranded nucleic acid including unbound probe (iii). HRP-conjugated anti-Digoxigenin 

antibody binds to a digoxigenin molecule bound to the 3’ end of the capture probe and facilitates 

an enzymatic readout (iv). The assay was validated using synthesized target oligos and then 
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compared for colorimetric, chemiluminescent, and electrochemical detection methods.  Although 

electrochemical detection yielded the best sensitivity, the assay is adaptable to all three formats.  

The NP-ELISA is a new valuable approach for NAT that uses fewer reagents and inexpensive 

instrumentation compared to real-time PCR.  

Materials and Methods 

Materials 

NP-ELISA assays were performed in clear Neutravidin/BSA treated 8-well strips 

(ThermoScientific Cat# 15128) for absorbance and electrochemical assays and High Sensitivity 

Streptavidin black 8 well strips (ThermoScientific, Cat#15525) for chemiluminescence assays.  

S1 nuclease was purchased from Invitrogen (Cat#EN0321). Ultra TMB-ELISA and SuperSignal 

ELISA Femto Maximum Sensitivity Substrate were purchased from ThermoScientific 

(Cat#34028 and Cat#37075).  HRP-conjugated anti-Digoxigenin antibody was purchased from 

AbCam (Cat#ab6212).  5× Hybridization buffer was made with final concentrations of 1.5 M 

NaCl, 5 mM EDTA, and 190 mM HEPES, pH 7.0 (502).  Digestion buffer (3 M NaCl, 20 mM 

Zn acetate, and 600 mM Na acetate, pH 4.5) was used for S1 nuclease digestion (502).  Dilution 

buffer for the nuclease was made according to the manufacturer’s protocol. All buffers were 

made with Millipore Milli-Q water (18 MΩ cm-1), filtered with a 0.45 µm filter membrane, and 

stored at 4˚ C.  Oligonucleotide probe and target sequences specific for a section of the envelope 

protein coding region in Zika (target/probe 1) and West Nile virus Kunjin subtype (target/probe 

2) viruses (Genbank Accession # KU501215 and AY274504, respectively) were synthesized by 

Integrated DNA Technologies.  Sequences were as follows: 

BG992 (Probe 1): 5’ Biotin-TTTGCACCATCCATCTCAGCCTCC-Digoxigenin 

BG993 (Target 1): GGAGGCTGAGATGGATGGTGCAAA 

BG975 (Probe 2):  5’ Biotin-TAGTATGCACTGGTGTCTATCCCT-Digoxigenin 
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BG1082 (Target 2): AGGGATAGACACCAGTGCATACTA 

BG859 (Extended Target 2): 

CAGGGATAGACACCAGTGCATACTATGTGATGACTGTCGG 

BG 946 (Scrambled Target 2 nonspecific control): 

AGCACGTGTCCGTTGTTATTGGAGTACGCACCGAGAAGAA 

BG860 (Target 2 90% complementary target): 

CAGCGATAGAGACCAGGGCATACTAAGTGATGACTGTCGG 

BG861 (Target 2 80% complementary target): 

CAGCGAAAGAGACGAGGGCATACAAAGTGTTGACTGTCGG 

Hybridization and Digestion 

A 25 µL solution of 50 fmol probe oligos (BG975 or BG992), 0.5× hybridization buffer, 

and the indicated target amount were added to a microtube.  Probe and target oligos were 

denatured at 95˚C for 1 minute followed by annealing at 50˚C for 2 minutes. After the annealing 

step, the hybridized probe:target mixture was transferred to the plate.  Prior to use, neutravidin-

coated plates were rinsed with 200 µL/well with 1× TBST buffer and incubated for 5 minutes.  

The digestion reaction mix (final concentrations of 1× S1 digestion buffer and 50U of S1 

nuclease) was added to each well and the plate was incubated at 42˚C for 1h.  The plate was 

rinsed five times with 200 µL rinses of 1× TBST and incubated for 5 minutes in between each 

wash.  After rinsing, target detection was performed as described in the following section.   

Absorbance Detection 

Absorbance detection was performed in clear 8-well strips using TMB ELISA substrate 

after the S1 nuclease digestion step.  100 µL of 1:1000 anti-digoxigenin antibody was added to 

each well and allowed to incubate for one hour at room temperature.  After antibody incubation, 

wells were again washed five times with 1× TBST buffer.  100 µL of UltraTMB-ELISA was 
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added to each well.  Plates were incubated for 30 minutes at room temperature and then the HRP 

reaction was quenched with the addition of 100 µL of 2 M H2SO4.  Absorbance at 450 nm was 

measured using a PerkinElmer VICTOR X5 plate reader. Data was analyzed with Prism 

GraphPad software.  All errors bars indicate standard error of the mean (SEM).   

Chemiluminescence Detection 

Chemiluminescence detection was performed in black 8-well strips using a SuperSignal 

ELISA Fempto Maximum Sensitivity Substrate. After antibody incubation, wells were washed 

five times with 1× TBST. 100 µL of substrate was added to each well and allowed to incubate 

for no longer than five minutes.  Total luminescence was measured using a PerkinElmer 

VICTOR X5 plate reader.  Data was analyzed with Prism GraphPad software.  All error bars 

indicate SEM. 

Electrochemical Detection 

Electrochemical assays were performed in clear 8-well strips using a CHI1242B 

Potentiostat (CH Instruments, Inc, TX).  A 25 µm diameter Au disk microelectrode (CH 

Instruments, Model CHI106) was used as the working electrode.  The working electrode was 

polished with an alumina slurry (0.1 µm diameter), washed with water, then cleaned 

electrochemically through cycling in 50mM KOH before each use.  An Ag/AgCl microelectrode 

(25µm diameter, eDAQ, Colorado Springs) was used as the reference/counter electrode in a two-

electrode setup.  After the rinses, 100µL of 1:1000 anti-digoxigenin was added to each well and 

incubated for 1 hour at room temperature.  After antibody incubation, wells were again washed 

five times with 1× TBST buffer.  100 µL of Ultra TMB-ELISA or 100 µL of 1mM hydroquinone 

(HQ) with 0.1% H2O2 were added to each well and incubated for 30 minutes.  The oxidation of 

TMB or HQ was quenched with 10 µL of 8 M H2SO4.  SWV measurements were taken in a 

range of -0.2 V to 1.4 V for TMB and 0.4 V to -0.4 V for HQ at a frequency of 15 Hz and were 
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conducted in a CS-3A Cell Stand faradaic cage.  SWV curves were averaged and the peaks were 

integrated from ~0.47 V to ~0.62 V using the automatic peak finding function of the CHI1242B 

software.  The data was then analyzed with Prism GraphPad software.  All error bars indicate 

SEM. 

Results and Discussion 

Optimization of Nuclease Protection 

 Oligo probes were designed with sequence specificity for either ZIKV (Target 1; BG992) 

or KUNV (Target 2; BG975).  To optimize the probe concentration for use in the assay, BG992 

and BG975 were titrated out and incubated with anti-digoxigenin HRP-conjugated antibody.  

The signal response was analyzed with absorbance and the results are presented in Figure 3.2a.  

As expected, increasing concentrations of probe increased the signal response until the signal 

saturated at 6×1012 molecules mL-1.  Similar results were obtained for both the ZIKV and the 

KUNV probes, suggesting that oligo sequence should not affect the detection mechanism.  A 

linear dynamic range of 6×1010 - 6×1012 molecules mL-1 was determined, spanning three orders 

of magnitude.  The probe concentration that gave the highest signal without saturation was 

6×1012 molecules mL-1 and was used for downstream applications.     

 The effect of S1 nuclease concentration on the absorbance signal was also investigated 

(Figure 3.2b).  The enzyme was serially diluted and allowed to catalyze degradation of 6×1012 

molecules mL-1 (50 fmol) of probe (BG992) bound to the neutravidin plate in S1 digestion buffer 

for 1 hour at 42˚ C.  Maximum signal was retained with increasing amounts of nuclease from 5 

µU to 0.5 U.  Addition of 5 U of nuclease caused the signal to drop dramatically and 50 U 

resulted in a complete loss of signal.  To ensure complete degradation and removal of unbound 

nucleic acid, 50 U (5 µL of 10 U/µL) of nuclease was chosen for further experiments.    
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 DNA oligo targets (Target 1 (BG993) or Target 2 (BG1082)) and complementary probes 

(Probe 1 (BG992) or Probe 2 (BG975)) were designed and synthesized to test target detection by 

nuclease protection.  The targets were hybridized to their respective probe and unbound probe 

was digested with S1 nuclease.  A range of concentrations were then tested to determine the 

linear dynamic range (LDR) and the limit of detection (LOD). For the absorbance readout, 

3,3',5,5'-Tetramethylbenzidine (TMB) was used as a colorimetric substrate for HRP.  The results 

in Figure 3.3a demonstrate a sigmoidal response with a linear dynamic range of 9.64×1010 – 

1.20×1013 molecules mL-1.  This range is consistent with that obtained for the probe titration. 

LOD is generally calculated using the linear calibration curve according to ICH standard (503), 

through 

LOD =
D.DF

G
  (3.1) 

where σ is the standard deviation of the blank sample and m is the slope of the regression line. 

We found, however, that using this method for absorbance detection produced artificially low 

LODs that did not account for the signal drop-off outside the linear range.  The LOD was instead 

calculated via  

LOD = 𝜇IJK<L + 3𝜎IJK<L  (3.2) 

where µblank and σblank are the mean and standard deviation respectively of a series of blank 

samples (504).  With this method (equation 3.2), the LOD was calculated to be 9.80×1010 

molecules mL-1.  To place our results in perspective, the CDC reported an LOD of 2.45×103 

genome copy equivalents (GCE) mL-1 for their Trioplex real time PCR assay which is used to 

detect ZIKV, dengue virus, and chikungunya virus (261).  Because the LOD for the absorbance 

readout is several orders higher than comparable clinical assays, it may limit the absorbance 

assay’s applicability to viral diagnostics.  However, the absorbance NP-ELISA may still be used 

for accurate detection of nucleic acid at higher concentrations. 
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NP-ELISA Specificity 

 To test the specificity of the NP-ELISA, nuclease protection was attempted with 

nonspecific target oligos.  As shown in Figure 3.3a, when increasing amounts of Target 2 

(BG1082) are added to Probe 1 (BG992), no protection was observed. Likewise, when Target 1 

(BG993) was added to the Probe 2 (BG975), no protection was observed.  This indicates that the 

nonspecific target is not able to protect the probe and thus the probe oligos are digested by the 

enzyme in the presence of non-specific targets. To further validate the specificity of the assay, 

three different nonspecific targets were employed.  The targets were scrambled to have 90% 

(36/40 matched base pairs), 80% (32/40) or 0% complementarity to Probe 2 while maintaining 

equivalent GC%. They were added to the reaction in 5× excess compared to the probe 

concentration.  The results (Figure 3.4) show that even with high sequence similarity (4 

mismatches or 8 mismatches, 90% and 80% complementarity respectively), nonspecific targets 

provide virtually no protection to the probe oligo from S1 nuclease digestion and do not differ 

significantly from the negative control (no probe). These data suggest a high specificity that may 

be further confirmed by testing protection with 1-3 mismatches and agree with the reported use 

of nuclease protection to detect single nucleotide mutations (505–507).  The targets for the 

specificity assay, including the 100% complementary oligo, were designed to have overhanging 

sequences.  These data also suggest that overhanging target DNA sequences do not have a 

significant effect on specific target detection.   

Increasing NP-ELISA Sensitivity through Chemiluminescent Detection 

Because the LOD for NP-ELISA absorbance detection is significantly higher than LODs 

for clinically used assays like the Trioplex assay (261), chemiluminescent and electrochemical 

HRP detection schemes were tested to see if the LOD could be significantly improved.  

Chemiluminescent substrates have been used in place of colorimetric substrates to increase the 
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sensitivity of ELISAs (508).  The assay was tested with SuperSignal ELISA Fempto Maximum 

Sensitivity Substrate for detection (Figure 3.3b), which yielded a comparable, though slightly 

smaller dynamic range compared to absorbance (4.82×1011 – 1.20×1013 molecules mL-1).  

Because the chemiluminescent substrate did not significantly increase assay sensitivity, no 

further experiments were performed with the chemiluminescent substrate. 

Electrochemical Characterization of Hydroquinone/Benzoquinone and 3,3',5,5'-

Tetramethylbenzidine 

HRP catalyzes the reduction of peroxide into water using a cosubstrate (e.g. TMB) that 

functions as an electron donor.  HRP thus oxidizes TMB in a two-step irreversible process. The 

first one-electron oxidation of TMB produces a blue-colored product consisting of an 

equilibrium between the cation free-radical and a charge transfer complex of the precursor 

diamine and its diimine oxidation product (509, 510).  At acidic pHs, the second-electron 

oxidation product becomes stable, yielding the yellow-colored diamine (509, 511).  These two 

products can be quantified with absorbance at 370nm and 420nm respectively (509).  TMB and 

its oxidized forms are also electrochemically active, generating a faradaic current that can be 

detected by electrochemical techniques. The concept of a plate-based electrochemical 

immunoassay was published as early as the 1980s (512), but has not been widely studied and has 

been overshadowed by immunosensor research.  Electrochemical detection typically provides 

lower LODs, wider dynamic ranges, and better sensitivity compared to absorbance techniques 

(513).  Additionally, interference from turbid or colored samples is not an issue for 

electrochemical analysis as it is the case spectrophotometric techniques (514).  Lastly, the 

instrumentation for voltammetry is relatively inexpensive (~$2000 USD) when compared to a 

real time PCR system (~$15,000 USD) or even a plate reader (~$5000 USD) and is easily 

miniaturized (514).   
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To see if electrochemistry could increase the NP-ELISA assay’s sensitivity, TMB was 

characterized with cyclic voltammetry as an electrochemical HRP substrate and optimized for 

square wave voltammetry detection.  Square wave voltammetry (SWV) is a pulsing technique 

known to be both fast and highly sensitive (304).  As a differential method, the peak height of a 

SWV curve is not always proportional to the concentration of the species, so peak area 

integration was employed to give a more accurate readings (515). Although TMB is the most 

widely used as an HRP substrate due to its chromogenic properties and is an easily accessible 

reagent for electrochemical detection, some research has shown an inability to detect TMB using 

SWV (516). Multiple other molecules can function as an HRP substrate including hydroquinone 

(HQ), o-phenilendiamine, p-chlorophenol, and more (516).  Due to its widespread use in 

biosensor applications (355, 517–520), HQ was chosen as a second electrochemical substrate to 

compare against TMB.  Like TMB, HQ also undergoes a two-electron oxidation to form its 

product p-benzoquinone (BQ) via a semiquinone intermediate (521).  To determine the optimal 

electrode material for analysis, cyclic voltammetry (CV) was performed with both enzymatic 

products (1 mM BQ in 1× PBS, pH 7.4 and ox2-TMB in proprietary citrate buffer + H2SO4, pH 

1) using Au (2 mm diameter) and glassy carbon electrodes (GCE) (3 mm), as well as a Pt 

electrode (2 mm) to test BQ (Figure 3.5).  BQ exhibits one reduction peak at 0.115 V for Au, 

0.036 V for GCE, and 0.067 V for Pt and a single oxidation peak at 0.179 V, 0.315 V, and 0.304 

V respectively.  Peak to peak values (ΔEp) are shown in Table 1 and are graphed in Figure 3.5b.  

The ΔEp for GCE and Pt are large at 279 mV and 237 mV respectively, indicating a quasi-

reversible process /slow electron transfer kinetics.  ΔEp for Au, however, was close to ideal at 64 

mV and suggests that the BQ reduction to HQ is reversible at an Au electrode.  The Au working 

electrode was thus chosen for further HQ-BQ analysis.   
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Interestingly, the redox behavior of ox2-TMB was different at Au and GCE electrodes.  

At the Au electrode, ox2-TMB exhibits two reduction peaks at 0.615 V and 0.473 V but only a 

single oxidation peak at 0.549 V.  Conversely for GCE, there is one reduction peak at 0.486 V 

and one oxidation peak at 0.525 V.  The ΔEp for GCE was 39 mV, which suggests that the 

species readily adsorbs to the carbon surface (295).   

Table 1.  Peak to peak separation of BQ CV curves 

Electrode Metal ΔEp  (mV) 
Au 64 

GCE 279 

Pt 237 

This was also evidenced by extensive fouling as depicted in Figure 3.6.  Although fouling 

was also noted for both BQ and TMB at the gold electrode, it was less pronounced.  To mitigate 

the effects of fouling, the Au electrode was polished with alumina slurry then washed with Milli 

Q water in between all measurements and was used for downstream TMB analysis. 

Electrochemical characterization of the HRP substrates and products was performed 

using cyclic voltammetry and the results are shown in Figure 3.7.  1 mM HQ and 1 mM BQ in 

1× PBS were tested and compared in Figure 3.7a.  HQ exhibited oxidation and reduction peaks at 

0.241 V and 0.071 V respectively with a ΔEp of 170 mV, which is indicative of a quasireversible 

process.  BQ however, showed oxidation and reduction peaks at 0.179 V and 0.115 V with a ΔEp 

of 64 mV.  It is not clear what leads to quasireversible electrochemical behavior for HQ but not 

BQ.  Furthermore, BQ exhibited a second small reduction peak at -0.133 V which could 

correspond to the semiquinone intermediate and was not observed at the GCE and Pt electrodes.   

Next, the electrochemical behavior of TMB was analyzed in a 1-Step TMB-Ultra solution 

from ThermoScientific (Figure 3.7b).  The clear species exhibited two oxidation peaks at 0.606 

V and 0.412 V as well as two reduction peaks at 0.439 V and 0.267 V.  The blue species (ox1-
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TMB) was generated by adding 50µL of 200 pg mL-1 anti-Digoxigenin/HRP in 1× PBS to 

900µL of clear TMB substrate.  It behaved similarly with two oxidation peaks at 0.563 V and 

0.384 V and two reduction peaks at 0.418 V and 0.273 V.  Because the yellow species (ox2-

TMB) is only stable at low pH, it was generated by adding 100µL of 8 M H2SO4 to the solution 

and it demonstrated different electrochemical behavior.  Likely due to the lower pH, the two 

reduction peaks were shifted towards higher potentials at 0.615 V and 0.473 V.  Only a single 

oxidation peak was noted at 0.549 V and is likely due to the instability of the TMB intermediate 

form at low pH. 

Due to its speed and sensitivity, square wave voltammetry was used for assay analysis.  

Initial potential (Einitial) was optimized for BQ analysis as shown in Figure 3.8a.  A small 

relationship between Einitial and peak current (ip) was observed.  Starting the scan at higher 

potentials may convert extra HQ to BQ before being converted back to HQ during reduction.  

Thus, starting at higher potentials has a small signal amplification effect.  Scan frequency was 

also optimized as shown in Figure 3.8b.  Higher frequencies generate a larger signal but may also 

correspond to higher capacitive background signal.  The signal to noise ratios are listed in Table 

2 and were largest for 15 Hz (3.05) which was chosen for further analysis.   

Increasing NP-ELISA Sensitivity through Electrochemical Detection 

TMB and HQ were compared in the NP-ELISA for sensitivity and the results are shown in 

Figure 3.9. A probe titration was performed for electrochemical detection with both TMB and 

HQ to optimize the probe amount for the electrochemical assay. HQ as a substrate yielded a 

wider dynamic range (6.02×105 – 6.02×1015 molecules mL-1) compared to the absorbance 

readout with TMB, but the variability was higher (Figure 3.5d).  The probe titration data for 

TMB (Figure 3.5b) shows a linear dynamic range of 0 – 6×1011 molecules mL-1, which is several 
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magnitudes larger than the absorbance readout (9.64×1010 – 1.20×1013 molecules mL-1), 

suggesting a much higher sensitivity for electrochemical TMB readout versus absorbance  

Table 3.2.  Relationship between frequency and signal to noise ratio for square wave 

voltammetry 
Frequency (Hz) S/N 
30 2.99 

15 3.05 

10 3.01 

5 2.71 

readout.  At concentrations greater than 6×1013 molecules mL-1, the oxidized TMB rapidly 

precipitates out of solution and yields little to no electrochemical signal.  However, in the tested 

range, TMB peaks were sharper and more defined than the HQ peaks (Figure 3.9a and 3.9c 

respectively).  Given its demonstrated superiority as an electrochemical substrate, TMB was 

chosen over HQ for downstream applications.  A probe concentration of 6×1012 molecules mL-1 

(50 fmol) was chosen for electrochemical target detection. 

Sensitivity of Electrochemical Detection 

 The sensitivity of the NP-ELISA with TMB-based electrochemical detection was 

assessed for a DNA oligo target (Figure 3.10). A linear range of 0 - 6×1013 molecules mL-1 was 

determined, in agreement with the electrochemical probe titration. While electrochemical 

detection has a significantly higher sensitivity than absorbance, poor reproducibility at low 

concentrations may limit the accuracy of the assay.  Reproducibility may be improved by using 

electroactive substrates that mitigate the quasi-reversibility of the TMB reaction and the fouling 

of the electrode with electrochemical species.  The LOD was calculated using the linear 

calibration line according to the ICH guidelines (503) via Equation 1. The LOD was determined 

to be 3.72×103 molecules mL-1.  Reported viral loads range from 103-108 GCE mL-1 in blood and 

urine (139).  The dynamic range for the NP-ELISA is significantly wider than the reported 
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clinical range and the calculated LOD is similar to that of the Trioplex assay at 2.45×103 GCE 

mL-1 (261).  By detecting such small amounts of nucleic acid, clinicians may be able to diagnose 

infection sooner and enable earlier medical intervention for at-risk fetuses.   

Conclusion 

In this work, we have described a novel nuclease protection ELISA (NP-ELISA) that has 

clinical relevance as an alternative to real time RT-PCR.  The assay has excellent specificity with 

highly similar sequences and is compatible with multiple signal visualization modalities. 

Electrochemical detection can reach an LOD of 3.72×103 molecules mL-1, within a relevant 

clinical range for nucleic acid detection.  Further research is required to address the limitations of 

this study.  Because a synthetic system was used to assess proof-of-concept principles, more 

work is required to address the functionality of the assay with biological samples.  Furthermore, 

poor reproducibility at low concentrations can obscure the accuracy of electrochemical analysis 

and may be a result of the quasi-reversible nature of these redox reactions and the propensity of 

these species to foul the electrode surface.  However, potentiostats for electrochemical detection 

are significantly less expensive and more portable than real time PCR systems, making the assay 

more accessible for sensing or screening in remote areas.  For example, our previous research 

with microwire electrodes shows that electrochemical detection is easily miniaturized into 

handheld, disposable paper sensors (522, 523).  Our research group is currently working to 

implement the NP-ELISA on microwires for antibody-less, hand-held detection of nucleic acids. 

In addition to its capacity for miniaturization, the NP-ELISA has large potential as a 

multiplexed assay.  For the antibody-based assay, sequence specific probes can be designed with 

conjugated small molecules other than digoxigenin.  Antibodies specific for these small 

molecules can be conjugated to different enzymes with different electroactive substrates.  

Because oxidation or reduction of the reaction products would occur at different potentials, one 



 71 

potential sweep would allow the user to identify each target in a single sample at a different 

potential. This greatly increases the NP-ELISA’s usefulness as a differential diagnostic tool.  The 

data presented here as well as above mentioned future directions suggest that the NP-ELISA is a 

viable alternative for clinical NAT with potential for direct, multiplexed, and hand-held detection 

of pathogen nucleic acids.   

 

Figure 3.1. Conceptualization of NP-ELISA.  Oligo capture probes specific for ZIKV (BG992) 
or KUNV (BG975) are mixed with target nucleic acid (i) and are allowed to hybridize (ii).  The 
hybridized probe is immobilized to a neutravidin plate via a 5’ biotin molecule (iii).  S1 nuclease 
degrades any unbound probe, leaving only the hybridized probe behind (iii).  An HRP-
conjugated antibody binds to the 3’ Digoxigenin molecule on the probe and catalyzes the 
oxidation of TMB to produce a colorimetric or electrochemical signal (iv).     

 

Figure 3.2. Optimization of nuclease protection.  A) The effect of probe concentration on 
absorbance signal was examined.  A sigmoidal response was observed with a linear range of 
6×1010- 6×1012 molecules mL-1.  Probe sequence (BG992 vs BG975) had no effect on signal 
response.  B) The effect of S1 nuclease concentration on absorbance signal was investigated.  
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Dilutions lower than 5U had no effect on the signal.  50U of enzyme caused total loss of signal, 
indicating complete digestion of the probe (BG992). 
 

 

Figure 3.3.  Spectrophotometric Detection of Oligo Target.  A) Oligo target was titrated out to 
determine the effect of target concentration on absorbance signal.  A sigmoidal signal response 
was obtained with a linear dynamic range of 9.64×1010 – 1.20×1013 molecules mL-1.  The limit of 
detection was determined to be 9.80×1010 molecules mL-1 for absorbance detection.  B) A 
chemiluminescent substrate was used in attempt to increase the sensitivity of spectrophotometric 
detection.  A linear range of was determined to be 4.82×1011 – 1.20×1013 molecules mL-1, which 
is smaller than the range determined for absorbance detection.  Because chemiluminescent 
detection did not increase sensitivity, no further experiments were done with the substrate. 

 

Figure 3.4. Effect of mutations and target length on nuclease protection.  Mutations were 
added to the target oligos (BG860, BG861, BG946) and tested for capacity for nuclease 
protection.  Even with high complementarity, the signal from mutated targets did not differ 
significantly from the - control.  To test the effect of length on protection, these targets were 
designed to have overhanging sequences.  Signal from the 100% complementary target (BG859) 
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did not differ significantly from the + control, suggesting that overhangs to not detrimentally 
affect protection. 

 

 

Figure 3.5. Electrode optimization for BQ and TMB analysis. A) Cyclic voltammetry of 1 
mM BQ in 1× PBS (pH 7.4) with Au, GCE, and Pt electrodes. B) ΔEp values for BQ CV analysis 
with Au, GCE, and Pt electrodes.  C) Cyclic voltammetry of ox2-TMB in proprietary citrate 
buffer + H2SO4 (pH 1) with Au and GCE electrodes. 
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Figure 3.6. Electrode fouling during BQ and TMB analysis.  A)  Repeated square wave 
voltammetry measurements of 1mM BQ in H2SO4 with Au electrode.  B)  Repeated cyclic 
voltammetry measurements of ox2-TMB in proprietary citrate buffer + H2SO4 (pH 1) with Au 
electrode.  C) Repeated cyclic voltammetry measurements of ox2-TMB in proprietary citrate 
buffer + H2SO4 (pH 1) with GCE electrode. 
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Figure 3.7. Electrochemical characterization of HRP substrates and products.  A)  Cyclic 
voltammetry of 1 mM HQ and 1 mM BQ in 1× PBS.  B) Cyclic voltammetry of TMB (clear 
species) and ox1-TMB (blue species) in proprietary citrate buffer and ox2-TMB (yellow species) 
in citrate buffer + H2SO4 (pH 1). 

 

Figure 3.8.  Optimization of square wave voltammetry parameters.  A) Relationship between 
initial potential (Einitial) and peak current (ip) during square wave voltammetry analysis of 1 mM 
BQ in 1× PBS.  B)  Relationship between frequency and current response during square wave 
voltammetry analysis of 5 mM HQ + 100 µM BQ in 1× PBS. 
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Figure 3.9.  Optimization of Electrochemical Detection.  A)  Square wave voltammetry results 
evaluating TMB as an electrochemical substrate for HRP.  B) Peaks were integrated and the peak 
area was plotted to obtain a linear range of 0 – 6×1011 molecules mL-1 was determined. C) 
Square wave voltammetry results for hydroquinone as an alternative substrate for 
electrochemical detection.  D) Peak integration was performed and peak areas were plotted.  A 
linear range of 6.02×105 – 6.02×1015 molecules mL-1 was obtained. 
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Figure 3.10. Electrochemical Detection of Target Oligo.  A) Square wave voltammetry was 
used for oligo target detection (BG993). B) The peak area was obtained from 0.45 V to 0.65 V 
and plotted against the log molecules mL-1.  A linear curve was obtained from 0 - 6×1013 
molecules mL-1 with an LOD of 3.72×103 molecules mL-1.   
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CHAPTER 4 - AN ULTRA-SENSITIVE CAPACITIVE MICROWIRE SENSOR FOR 

PATHOGEN-SPECIFIC ANTIBODY RESPONSES (524) 

 

 

 

Introduction 

Detecting and analyzing the humoral antibody response in clinical samples is critical for 

diagnosis of infectious disease, understanding pathogenesis and immune response kinetics, and 

vaccine development (525). Current methods for antibody detection include immunoprecipitation 

(e.g., hemagglutination), immunoblotting, plaque reduction neutralization tests, and 

immunosorbent assays (526). Among these methods, the enzyme-linked immunosorbent assay 

(ELISA) is used as the gold standard clinical diagnostic tool for antibody detection (527). 

However, established detection techniques, including ELISAs, require large instrumentation in 

centralized laboratories and specialized training to execute and interpret the results (528, 529). 

These disadvantages limit the use of ELISAs in low-resource settings (528, 530). When standard 

laboratory tools are not locally accessible, samples must be collected, stored under specific 

conditions, and sent to reference laboratories, which leads to additional turnaround time. As a 

result, many cases go undiagnosed and this indicates an urgent need for sensitive and robust 

assays that can be used at the point of care (POC) to quickly diagnose infection and provide 

health-care providers with actionable information. 

    As one branch of electrochemical immunosensors, capacitive biosensors employ direct 

sample application for label-free detection. Other electrochemical antibody sensors have been 

developed for serological analysis, but these designs incorporate enzymatic labels (531, 532) or 

toxic redox couples (277) that increase the complexity and cost of the sensor.  Compared to other 

immunosensors, capacitive biosensors are ideal candidates for sensitive and label-free 

bioanalysis platforms.  Capacitive sensing is based on the underlying theory of the electrical 
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double layer (533, 534), where the working electrode is conjugated with probe that binds its 

respective target to increase the thickness of the double layer.  Because capacitance is inversely 

proportional to the length of the double layer, this increase in double layer width produces a 

corresponding decrease in capacitance (535, 536). Such capacitive signals provide a direct 

measure of target binding and can be rapidly detected. Based on our previous work using 

capacitive change to detect DNA (535), the sensitivity of capacitive biosensors is far superior to 

traditional diagnostic assays (535–538) and is ideal for the detection of low antibody titers found 

during early stages of infection. Capacitive biosensors are thus an attractive sensing modality 

that has not yet been fully explored for specific antibody detection. 

The goal of this work, done in collaboration with Lei Wang, was to develop a novel POC 

platform that can specifically detect low levels of antigen-specific antibodies in serum. Due to its 

clinical relevance, Zika virus (ZIKV) was chosen as a model system to validate the sensing 

platform. ZIKV is an emerging Flavivirus that is closely related to other mosquito-borne viruses 

of clinical importance, such as yellow fever, West Nile, and dengue viruses. It has become a 

major public health concern due to neurological complications in infected adults (136, 167–169) 

and severe developmental complications for fetuses of infected women (194, 196, 539–541). 

Therefore, accurate and early diagnosis of ZIKV infection is essential for proper monitoring and 

medical intervention in these cases.  

In this study, we developed a capacitive immunosensor that specifically detects ZIKV 

antibodies using a sensor modified with ZIKV envelope (E) protein. The sensor presented here 

directly measures ZIKV-specific polyclonal antibody in mouse serum, with a lower dilution 

boundary of 1:1012 by day 4 and is ultrasensitive compared to the CDC MAC-ELISA which 

employs a 1:400 serum dilution over seven days after symptom onset (269). The antibody 

detection system discriminates between virus specific antibodies with little cross-reactivity, 
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indicating a high degree of selectivity, and can even differentiate antibody isotypes.  This method 

is distinguished from previous antibody detection methods not only in the platform, but also by 

its superior sensitivity and specificity. 

Material and Methods 

Study Design 

The purpose of this study was to build a sensitive capacitive biosensor for the specific 

detection of ZIKV antibody.  The working microwire surface was functionalized with E protein 

from either ZIKV (ZIKV E) or Chikungunya virus (CHIKV E).  The microwire sensor was then 

validated using pre-immune and immune mouse serum collected 4, 7, 14, and 21 days post ZIKV 

immunization which tested positive for ZIKV IgG by Western blotting and subsequently used to 

isotype Day 4 and 21 mouse sera for IgM and IgG antibody.  Three experimental replicates were 

performed for each serum sample. Control samples and experimental sample replicates are 

indicated in the text and figure legends.  

Materials 

Potassium hydroxide (KOH), iron (III) chloride hexahydrate (FeCl3∙6H2O), 30% 

hydrogen peroxide (H2O2), and absolute ethanol were purchased from Fisher Scientific 

(Fairlawn, NJ). High-purity silver ink was purchased from SPI Supplies (West Chester, PA). 11-

Mercaptoundecanoic acid (MUA) was purchased from Santa Cruz Biotechnology (Dallas, TX). 

3-Mercapto-1-propanol (MPOH) was purchased from Tokyo Chemical Industry Co., Ltd. 

(Portland, OR). N-Hydroxysuccinimide (NHS) and 1-Ethyl-3-(3-dimethylaminopropyl)-

carbodiimide (EDC) were purchased from Acros Organics (Geel, Belgium). Ethanolamine, 

Tween-20, and 2-(N-morpholino) ethanesulfonic acid (MES) was purchased from Sigma-Aldrich 

(St. Louis, MO). Phosphate buffered saline (1× PBS: 137 mM NaCl, 2.7 mM KCl, 10 mM 

Na2HPO4 and 1.8 mM KH2PO4, pH 7.4) was purchased from Hyclone (Logan, UT). All reagents 
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were used as received without further purification. All stock solutions were prepared using 

ultrapure water (18 MΩ cm) purified with the Nanopure System (Kirkland, WA). Wires of 

99.99% pure gold (25 µm) and silver (25 µm) were purchased from California Fine Wire 

Company (Grover Beach, CA) and used as the working and reference electrode materials, 

respectively. 

Recombinant ZIKV E and recombinant CHIKV E were purchased from MyBioSource, 

Inc. (San Diego, CA) and stored at –20°C until use.  Nunc Maxisorp 96 well plates (Cat# 44-

2404-21) and 1-Step Ultra TMB-ELISA were purchased from Thermo Scientific.  HRP-

conjugated anti-mouse IgG (ab97023) and IgM (ab97230) were purchased from AbCam. ZIKV 

immune mouse serum was generated after DNA immunization of mice with ZIKV virus-like 

particle expression plasmids modeled from previous work (542).  Details for the construction of 

the immunization plasmids, immunization, and serum collection are described by Wang et al 

(524).  

Surface functionalization of the working electrode 

A 25 µm diameter Au microwire was used as the working electrode. To prepare the 

surface of the electrode, the Au microwire was immersed in a 20 mL solution of 50 mM KOH 

and 25% H2O2 for 10 min (543), and thoroughly rinsed in Milli-Q water to remove residual 

reagent. The Au microwire was then plasma cleaned for 2 min in an O2 Plasma Etch PE-25 

(Plasma Etch, Carson City, NV, USA) at a pressure of 200 mTorr and with 150 W applied to the 

RF coil. An alkanethiol self-assembling monolayer (SAM) layer formation reaction was 

performed immediately after plasma cleaning. A 10 mM mixed solution consisting of a 1:1 ratio 

of 3-MPOH (3-Mercapto-1-propanol) to 11-MUA (11-Mercaptoundecanoic acid) was prepared 

in the absolute ethanol. The gold microwires were immersed in the mixed solution for 48 hours 



 82 

without light at room temperature and then rinsed three times with deionized water to remove 

residual reagent.  

    The MUA carboxyl groups on the SAM were immediately activated for antigen 

coupling using NHS/EDC bioconjugation. The SAM modified gold microwires were incubated 

in 20 mL of 20 mM EDC and NHS in 0.1 M MES (2-(N-morpholino) ethanesulfonic acid) (pH 

6.0) buffer for 30 min and then rinsed with 20 mL 0.1 M MES buffer.  A solution of 8 µg/mL 

antigen (ZIKV E or CHIKV E) was incubated on the activated MUA surface for 2 hrs. After 

antigen incubation, the surface was incubated in 0.1 M ethanolamine in 1× PBS solution for 30 

min to passivate unbound, activated MUA. The wire was rinsed with 1× PBS, incubated for 10 

min, then rinsed three times with 30 µL of 0.1× PBS buffer before baseline measurements.  

Fabrication of the microwire chip 

The capacitive sensor was constructed using a glass substrate with a 

polydimethylsiloxane (PDMS) layer 1 mm in height, and two metal microwires.  To make the 

PDMS layer, PDMS prepolymer [RTV 615 A and B (10:1, w/w)] was mixed, degassed, then 

poured onto a flat silicon wafer to yield a 1 mm-thick fluidic layer (544). The PDMS layer was 

baked for 30 min at 80°C, then peeled from the silicon wafer.  A biopsy punch (Technical 

Innovations, FL, Inc. USA) was used to create 6 mm diameter wells, then both the PDMS and 

glass substrate were exposed to oxygen plasma (Plasma Etch, NV, USA) for 1 min and bonded 

together.   Ag/AgCl and Au microwires were then spaced in parallel 1 mm apart across the well. 

A two-electrode system was employed using Au and Ag/AgCl microwires as the working and 

reference electrodes, respectively, each with a surface area of 4.7×10–3 cm2. Ag/AgCl reference 

electrodes were made by dipping silver Ag wire in 50 mM iron (III) chloride for 50 s, forming a 

silver chloride layer on the surface. Silver paint was applied to wire ends to create touchpads that 

could be connected to the capacitance reader. 
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Capacitance readout 

Capacitance measurement data were collected using an Instek LCR-821 benchtop LCR meter 

(New Taipei City, Taiwan) with a PC interface for data acquisition. Because double layer 

capacitance is a non-faradaic signal, a 0 V DC bias voltage was applied. A 20 mV root mean 

square (RMS) AC voltage was applied to the sensors at a frequency of 20 Hz. All capacitance 

readouts were recorded in parallel mode in 30 µL of 0.1×PBST and 60 data points were collected 

per reading. A lab-made faradic cage was used to remove electrical interference during readout. 

Capacitance data was analyzed using Matlab (Math-works) and statistical tests were performed 

using R (www.r-project.org). Only p values less than 0.05 were considered statistically 

significant. 

Mouse serum analysis 

Clarified mouse sera were diluted 1:106 and 1:1012 in 30 µL 1× PBST buffer and 

incubated on microwire chips for 5 min at room temperature.  Following incubation, electrodes 

were rinsed three times with 30 µL 1× PBST buffer and three times with 30 µL 0.1× PBST 

buffer.  To determine the isotype of anti-ZIKV antibodies in the mouse sera the microwire sensor 

was first immersed in 30 µL of mouse serum diluted 1:106 in 1× PBST for 5 min at room 

temperature. Antibodies specific for each isotype were then incubated for 5 min at dilutions of 

1:106 and 1:1012 in 30 µL 1× PBST buffer. Following incubation, electrodes were rinsed three 

times with 30 µL 1× PBST buffer and three times with 0.1× PBST buffer prior to capacitance 

reading. 

ELISA analysis of anti-Zika IgM and IgG levels in mouse sera 

An ELISA assay was used to determine the relative amounts of IgM and IgG in the 

Mouse 3, 4, and 6 Day 4 and Day 21 serum samples.  Briefly, 100 µL of 10 µg/mL ZIKV E 

protein diluted in PBS (pH 7.4) was added to each well of a Nunc Maxisorp 96 well plate and 
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incubated at 4˚C overnight.  Excess antigen was discarded, and the wells were washed three 

times with 0.05% PBST (pH 7.4).  300µL of fresh blocking buffer (4% milk powder in PBS) was 

then incubated in each well for 1 hour at room temperature.  Afterwards, the wells were washed 

six times with 0.05% PBST.  100 µL of mouse serum was then incubated for 1 hour at room 

temperature at dilutions of 1:100, 1:500, and 1:2500.  10 µg/mL of 4G2 antibody was used as a 

positive control.  The wells were washed again six times with 300µL of 0.05% PBST and 100 µL 

of 1:3000 HRP-conjugated anti-mouse IgG or IgM was incubated for 1 hour at room 

temperature.  The plate was washed six times with 300 µL 0.05% PBST then again twice with 

300 µL of PBS to eliminate residual detergent.  100 µL of TMB-ELISA substrate was incubated 

for 30 minutes at room temperature and quenched with 100 µL of H2SO4.  Absorbance was 

measured at 450 nm.   

Results and Discussion 

Sensor design and working principles.  

The label-free capacitive immunosensor introduced here uses microwire electrodes for 

sensitive and rapid detection of antibodies produced during the host immune response to 

vaccination, in this case antibodies against ZIKV.  The device is made of low-cost, easily 

accessible materials. A glass slide is used as the base substrate with a biocompatible 

polydimethylsiloxane (PDMS) well for sample application.  Au and Ag/AgCl microwires 

(working and reference electrodes respectively) are immobilized across the PDMS well (Figure 

4.1a) and 30 µL of liquid sample is added to the well and incubated for 5 min. Measurements can 

then be taken in as quickly as one minute. Microelectrode wires, compared to other electrode 

fabrication methods like ink printing, paste, and sputter-coated electrodes, demonstrate increased 

mass transport rates due to radial diffusion (545, 546). This increases the current density and 

consequently improves sensitivity and enhances detection limits (547). In addition, microwire 
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electrodes hold additional benefits of simple fabrication without expensive equipment, ease of 

surface chemical modification, and availability in different pure and alloyed compositions (522).  

Randle’s equivalent circuit is commonly employed in biosensor research to model the 

electrode-electrolyte interface of a Faradaic system (410).  However, our sensor has been 

designed as a non-Faradaic system to measure capacitive charging currents only.  With no offset 

voltage applied to the electrode, off-target electrochemical reactions or charge transfer at the 

interface should be minimal.  AC electrokinetic microflows have been known to affect capacitive 

charging currents, but these effects typically begin to occur at a peak-to-peak amplitude of 1-2 V 

and do not become prominent until 6-15 V (548, 549).  The influence of microflows at the 20 

mV oscillation voltage used here is negligible.  Thus, to model the charging current at the 

interface, we place 𝐶OP in parallel with a leakage resistance,	𝑅PRST.  𝐶OP in turn can be modeled 

as the total capacitance, 𝐶7U7, of several capacitors in series, as visualized in Figure 4.1b. The 

first component constitutes the insulating SAM layer on the electrode surface, 𝐶VWX. The second, 

𝐶WY, includes the anchoring groups and the recognition element (antigen), which is followed by 

the concentration-dependent antibody layer, 𝐶WZ.  

Based on this model, the specific binding of antibody to antigen results in a change in the 

total capacitance, 𝐶7U7.  𝐶VWX is generally large and constant and its contribution to the 𝐶7U7 may 

therefore be ignored. The sensitivity of the sensor is predominately determined by the relative 

capacitance between antigen and antibody. In this case, use of a large analyte like antibody 

increases the sensitivity of our sensor by creating a proportionally larger increase in double layer 

width compared to smaller analytes like antigens (550). 

Detection of anti-ZIKV antibodies during an immunization time-course. 

To explore the performance of the capacitive immunosensor in a complex matrix with 

various interfering species, we tested if ZIKV-specific polyclonal antibodies could be detected in 
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mouse serum.  Ten CD1 mice were administered with a DNA vaccine for ZIKV and serum 

samples were collected before vaccination (pre-immune samples), and 4, 7, 14 and 21 days after 

vaccination. To confirm a Day 21 anti-ZIKV immune response, the samples were first tested for 

IgG antibody using strip Western blots and ZIKV-infected Vero cell lysates as the antigen (data 

not shown).  Of the 10 vaccinated mice, two with strong anti-Zika IgG antibody responses (mice 

3 and 4) and one with a weak anti-Zika IgG antibody response (mouse 6) were chosen for further 

analysis.  Mouse 3, 4, and 6 samples were tested with the ZIKV E functionalized sensor.   To 

determine suitable dilutions of the mouse serum samples for the platform, the pre-immune and 

Day 4 mouse sera were tested with a wide range of concentrations (1:1018 to 1:103 dilutions in 1× 

PBST). As shown in Figure 4.2, the average -∆C obtained from the Day 4 serum increases along 

with increased concentration and the pre-immune sera conversely shows no significant change in 

the average -∆C across the dilution range. There is no significant difference between pre-immune 

and Day 4 serum at dilutions lower than 1:1012.  All dilutions at and above 1:1012 show 

statistically significant differences with p-values less than 0.05.  These results indicate that this 

platform can differentiate vaccinated from non-vaccinated mouse serum at ultra-dilute 

concentrations as low as 1:1012 and as few as four days after vaccination. This is comparable to 

the early acute phase of infection before or concurrent with disease symptomology (551). 

Subsequently, this assay can extend the window of antibody detection into the early acute phase 

of infection which currently diagnosed by nucleic acid testing (NAT) (259). 

Based on the results in Figure 4.2, two dilutions of the mouse serum, 1:106 and 1:1012 

were chosen to characterize Day 4, 7, 14 and 21 mouse sera. Each of the three biological 

replicates was tested and averaged. Every biological replicate is the average of three technical 

replicates. The −∆𝐶 for each post-vaccination sample was compared to the pre-immune sample 

as shown in Figure 4.3.  At a 1:1012 dilution, the -∆C increases with each time point after 
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vaccination and saturates around Day 14. The lower −∆𝐶 for Day 14 can be attributed to its 

smaller sample size as there was no serum collected for mouse 6 on this day.  Although results 

are similar for the 1:106 dilution compared to the 1:1012 dilution, it is notable that the -∆C for this 

dilution saturates as early as Day 4 after immunization.  Because the 1:106 dilution is 

significantly more concentrated, this is not unexpected. More importantly, this capacitive 

immunosensor can detect target antibodies at extremely low concentrations as early as four days 

and through 21 days post-vaccination.  

    Reliably analyzing serum at dilutions of 1:1012, these results suggest that our sensor 

has a sensitivity that is far superior to other platforms (277, 344) and this increased sensitivity 

enables us to detect an antibody response four days earlier compared to established serological 

methods (552).  It is unclear what the underlying mechanism is that gives rise to such extreme 

signal changes at low concentrations, but the reported dynamic range was highly reproducible.  It 

is well established that proteins randomly orient themselves when immobilized to a surface (553) 

so that binding regions of many probes may not be accessible and leave a portion of the surface 

as inert.  This may cause the active functionalized surface area to be much smaller than the total 

surface area. Therefore, while antibody in ultra-dilute sera may bind to only a small fraction of 

the total surface area, the proportion of the active surface area that is bound may be significantly 

larger and may contribute to large percentage changes in capacitance. However, even though 

significant advances have been made in the understanding of the interfacial region, 

thermodynamic models of functionalized surfaces fail when more complex charge distributions 

are considered (554).  Further research is needed to elucidate what is happening at the interface 

of functionalized surfaces to understand the high sensitivity of our sensing system. 

Our sensor also requires less sample volume than comparable ELISAs (30 µL of 1:1012 

vs 50-100 µL of 1:400 diluted sample (269)), which preserves precious serum sample and 
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reduces reagent waste. Furthermore, whereas the CDC ZIKV MAC-ELISA needs 12+ hours to 

obtain results from sample application, our sensor can produce results in under ten minutes. This 

could result in faster diagnostics needed to determine a timely and effective therapeutic 

intervention.  

Specificity tests with mouse sera. 

To further characterize the specificity of the sensor, we examined whether anti-ZIKV 

serum had any cross-reactivity with CHIKV sensors.  CHIKV E antigen was conjugated to the 

microwire as a control probe to test two dilutions (1:1012 and 1:106) of the pre-immune and 

ZIKV-vaccinated Day 21 mouse serum. Figure 4.4 compares the -∆C results obtained with 

specific ZIKV E probe and control CHIKV E probe. The y-axis marks the difference in -∆C 

between Day 21 and pre-immune samples, and the x-axis denotes the two probes used. As shown 

in Figure 4.4a, the -∆C between Day 21 and pre-immune mouse serum using ZIKV E probe is 

approximately 9 nF at the 1:1012 dilution, suggesting that ZIKV antibody concentrations increase 

significantly after 21 days post vaccination. In comparison, the CHIKV E sensor shows almost 

no change (~0 nF), 21 days post ZIKV vaccination, indicating that only specific binding 

occurred.  A small increase in capacitance may be attributed to small amounts of nonspecific 

adsorption. There is a statistically significant difference between the ZIKV E and CHIKV E 

functionalized sensors. Similar results are observed for a 1:106 dilution (Figure 4.4b.)  

    These results demonstrate satisfactory reproducibility and further validate the excellent 

specificity and sensitivity of this platform in a complex physiological matrix.  Therefore, our 

sensor may be useful for direct detection of antigen-specific antibodies in serum and other 

potential types of biological sample. 
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Isotyping of antibodies in mouse serum samples.  

Antibody isotyping is a diagnostic component required to separate acute from past 

infections. To characterize whether our wire sensor platform can be used to determine the 

isotypes present in a serum sample, wire sensors were functionalized with ZIKV E protein and 

saturated with antibody using a 1:106 dilution of serum from Day 4 or Day 21.  Anti-mouse IgM 

or IgG was applied to the sensor and the results are compared in Figure 4.5.  As expected from 

published flavivirus antibody kinetics (500) and the corresponding ELISA data (Figure 4.6), Day 

4 IgM levels were higher than IgG.  It was somewhat surprising that the sensor detected constant 

levels of IgM between Day 4 and Day 21 given that the ELISA showed an increase from Day 4 

to Day 21.  This may be explained by saturation of the sensor.  A recent report, however, 

indicates that anti-ZIKV IgM levels drop off 8-16 days after symptom onset (552).  The 

discrepancy between our ELISA data and theirs may be due to our use of the immunodominant E 

protein instead of NS1 as antigen or it could be related to differences in host species. Antibody 

kinetics for dengue virus indicate that IgM can be detected for over 90 days (500), suggesting 

that a higher titer for Day 21 is reasonable.   

    The sensor results also show an increase in IgG levels from Day 4 to Day 21, which 

agrees with the ELISA data.  However, higher levels of IgG than IgM do conflict somewhat with 

the ELISA results, which show slightly higher IgM for both days.  Because the IgM is 

significantly larger than IgG, it is possible that steric hindrance causes the IgM sensor to saturate 

faster than the IgG sensor leading to a narrower dynamic range.  As a smaller molecule, more 

IgG may be able to bind to the wire surface and produce a larger signal. Cabral-Miranda et al. 

recently published an immunosensor for ZIKV antibody with isotyping capacity that was able to 

detect a 106 to 107 dilutions of serum (277). However, the reported design has decreased 

sensitivity compared to our system and it also incorporates a toxic redox couple that limits its 
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point of care use.  Without using labels or redox couples, our sensor can distinguish antibody 

isotypes from a complex serum matrix containing a mixture of isotypes.  These results enhance 

the applicability of the sensor for point of care diagnostic purposes and even for research 

purposes.  

Conclusion 

Although diagnosis of infectious diseases like ZIKV require laboratory confirmation, 

current methodologies are limited to use by specialized diagnostic laboratories. Recent outbreaks 

like that of Ebola virus and ZIKV indicate a growing need for simple, sensitive, and selective 

diagnostics amenable to a point of care setting. The ultra-sensitive capacitance sensor introduced 

in this study represents a simple and robust platform for pathogen-specific antibody detection in 

serum. Within minutes and without using labels or redox couples, our sensor can detect anti-

ZIKV antibodies during an immunization time course and distinguish antibody isotypes from a 

complex serum matrix containing a mixture of isotypes. Furthermore, this sensor design can be 

easily integrated with microfluidics and handheld measuring devices to make it suitable for field 

work and point of care testing. Our research team is currently working to integrate this 

immunosensor platform into our previously developed paper-based analytical device (555). 

Continued development of this novel platform technology can greatly increase the capacity of 

public health agencies worldwide to assess drug or vaccine efficacy and to monitor emerging 

infectious diseases of global importance in future. 
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Figure 4.1. Schematic of capacitive immunosensor design and working principles.  A) 
Device layers and resulting immunosensor shown from the top. RE: reference electrode, WE: 
working electrode.  B) Working electrode (Au microwire) surface chemistry and functionalized 
layers, with the corresponding equivalent circuit and total capacitance equation.  Double layer 
capacitance, 𝑪𝑫𝑳, is placed in parallel with a leakage resistance, 𝑹𝑳𝒆𝒂𝒌.  𝑪𝑫𝑳 represents the total 
capacitance, 𝑪𝒕𝒐𝒕, of the individual capacitance contribution from each surface layer. 
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Figure 4.2. Capacitive responses of pre-immune and Day 4 after ZIKV infected mouse 
serums at a wide range of dilutions from 1:1018 to 1:103 dilutions in 1x PBST buffer (n = 3 
at each dilution). 
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Figure 4.3. Immune response kinetics for mouse serum samples. Capacitive response to 
mouse serum at different time points pre- and-post vaccination with ZIKV.  A) Mouse serum 
tested at a 1:1012 dilution in 1× PBST buffer.  B) Mouse serum tested at a 1:106 dilution in 1× 
PBST buffer. Three biological samples (n = 3, mean ± STD) for each time point were tested 
except for Day 14 (n = 2, mean ± STD). Each biological sample shown is the average of three 
technique replicates. A paired t-test was carried out between pre- and post- vaccination with 
ZIKV samples. * paired t-test: p < 0.05. 
6. 
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Figure 4.4. Specificity tests with samples of mouse sera.  A) The difference between the 
negative capacitance change for Day 21 and pre-immune mouse serum samples at a 1:1012 
dilution in 1× PBST buffer are compared for ZIKV E and CHIKV E recognition antigens (n = 3 
at each concentration, mean ± STD).  B) The difference between the negative capacitance for 
Day 21 and pre-immune mouse serum samples at a 1:106 dilution in 1× PBST buffer are 
compared for ZIKV E and CHIKV E recognition antigens (n = 3 at each concentration, mean ± 
STD). ** paired t-test: p < 0.01. 

 

Figure 4.5.  Isotyping of antibodies in samples of mouse sera. Capacitive response of antibody 
isotypes in mouse serum at day 4 and 21 with ZIKV. Mouse serum was used at a 1:106 dilution in 
1× PBST buffer to saturate the surface for isotype detection. Three biological samples (n = 3, 
mean ± STD) for each time point were tested. Each biological sample shown is the average of 
three technical replicates. 
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Figure 4.6. ELISA analysis of anti-Zika IgM and IgG levels in Mice 3, 4, and 6.  
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CHAPTER 5 - DESIGN AND OPTIMIZATION OF ELECTRODE SURFACE CHEMISTRY 
FOR A NOVEL ELECTRODE ARRAY SENSOR (556) 

 
 
 

Introduction 

 Antigen-capture enzyme immunosorbent assays (EIAs) and immunohistochemistry can 

be used for direct flavivirus detection (557), however, these techniques lack sensitivity, are time 

and labor intensive, and must be performed in specialized laboratories by trained personnel.  

Electrochemical biosensors have several advantages including high sensitivity, portability, 

simplicity, and cost-effectiveness that make them attractive for viral diagnosis.  However, only a 

small portion of biosensor research has been devoted to investigating direct detection of virus 

particles. 

 Most sensors report clinically relevant limits of detection (LOD) ranging from 0.12 

plaque forming units per mililiter (PFU/mL) (558) to 167 PFU/mL (559) using electrochemical 

impedance spectroscopy (EIS) or voltammetric techniques like cyclic voltammetry (CV), linear 

sweep voltammetry (LSV), and differential pulse voltammetry (DPV).  While these sensors 

demonstrate good sensitivity and specificity, the electrodes are designed as individual chips that 

must be independently handled.  As such, these sensors lack potential for high-throughput.  In 

this work, done in collaboration with Lang Yang, a novel array biosensor was designed that 

allows multiple electrodes to be simultaneously functionalized and handled.  The electrode array 

consists of two rows of 12 gold electrode pairs in a sun/moon configuration, each with an area of 

0.5 mm2 per electrode (Figure 5.1).  The electrode array was used to develop an impedance 

sensor for detection of Zika virus (ZIKV) particles which was chosen due to its clinical relevance 

as an emerging pathogen.  Briefly, 4G2 antibody was immobilized to a mixed self-assembling 

monolayer (SAM) composed of short and long chain alkanethiols on the gold surface.  EIS 

measurements were then taken for a virus concentration range of 10 to 11,110 focus forming 
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units (FFU) and the percent delta change of charge transfer resistance (%ΔRct) was plotted as a 

linear line with an LOD of 22.4 FFU (S/N = 3).   

Table 5.1 Reported limits of detection for direct virus particle sensing 

LOD (PFU/mL) Analyte Technique Year Reference 
0.12 Dengue (DENV) EIS 2017 (558) 
0.23 DENV2 EIS 2013 (560) 
0.5 Influenza (H1N1) amperometry 2017 (561) 
1 DENV2 DPV 2012 (562) 
1 DENV2 EIS 2012 (563) 
1 H1N1 LSV 2014 (564) 
8 Fowel adenovirus (FAdV) CV 2018 (565) 
10 particles West Nile Virus EIS 2018 (523) 
22 FFU ZIKV EIS 2018 This work 
113 H1N1 DPV 2017 (566) 
167 Japanese encephalitis virus (JEV) EIS 2016 (559) 

 

Materials and Methods 

Materials 

Phosphate buffered saline (1× PBS: 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4 and 

1.8 mM KH2PO4, pH 7.4) was purchased from Hyclone (Logan, UT). 11-Mercaptoundecanoic 

acid (MUA) was purchased from Santa Cruz Biotechnology (Dallas, TX) and 3-Mercapto-1-

propanol (MPOH) was purchased from Tokyo Chemical Industry Co., Ltd. (Portland, OR).  

Potassium hydroxide (KOH), 30% hydrogen peroxide (H2O2), and reagent alcohol were obtained 

from Fisher Scientific (Fairlawn, NJ).  N-Hydroxysuccinimide (NHS) and 1-Ethyl-3-(3-

dimethylaminopropyl)-carbodiimide (EDC) were obtained from Acros Organics (Geel, 

Belgium). Ethanolamine, Tween-20, and 2-(N-morpholino) ethanesulfonic acid (MES) were 

purchased from Sigma-Aldrich (St. Louis, MO).  Potassium ferricyanide (CAS # 13746-66-2) 

and Potassium ferrocyanide (CAS# 14459-95-1) were also purchased from Sigma-Aldrich.  Tris-

base (CAS# 77-86) was purchased from Sigma and citric acid (CAS# 5949-29-1) and sodium 

phosphate monobasic monohydrate (CAS# 10049-21-5) were purchased from Fisher Scientific.  
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SylGuard 184 Silicon Elastomer and Curing Agent were purchased from Dow.  Stock solutions 

were prepared using ultrapure water (18 MΩ cm).   

4G2 mouse B cell hybridomas (D1-4G2-4-15) were purchased from ATCC and stored at 

-80˚C until use.  Recombinant ZIKV E and recombinant CHIKV E were purchased from 

MyBioSource, Inc. (San Diego, CA) and stored at –20°C until use.  HRP-conjugated anti-mouse 

IgG (ab97023) was purchased from AbCam while Nunc Maxisorp 96 well plates (Cat# 44-2404-

21), 1-Step Ultra TMB-ELISA, and 1-Step Ultra TMB-Blotting were obtained from 

ThermoScientific.  Dulbecco’s Modified Eagle Medium (DMEM) was purchased from Life 

Technologies and supplemented with 10% fetal bovine serum (FBS), 25 mM HEPES (CAS# 

7365-45-9 Sigma), 1× L-glutamine, and 1× Penicillin/Streptomycin to make complete DMEM 

(cDMEM).  All reagents were used as received without further purification.  

Electrode fabrication 

 Gold electrode arrays were fabricated using photolithography.  Briefly, 1×3 inch glass 

slides were rinsed successively with acetone, isopropyl alcohol (IPA), and nanopure water then 

dried with N2 gas and baked at 135˚C to evaporate residual moisture.  The glass slide was then 

spin-coated with S-1813 photoresist at 3000 rpm for 30 seconds.  Once coated, the slide was 

baked at 135˚C for 1 minute.  A photomask was placed on the slide which was then exposed to 

ultraviolet light for 6 seconds and developed in S-1813 developer for 1 minute.  Development 

was quenched by rinsing with nanopure water and the slide was then dried with N2 gas.  The 

developed slide was then cleaned by immersion in 1 M HCl for 1 minute, rinsed with nanopure 

water, and dried with N2 gas.  Metal deposition was then performed to coat the slide first with a 

10 nm Cr adhesion layer then a 150 nm Au layer to generate the electrode.  Lift off was 

performed by immersing the metal-coated slide in acetone to remove excess metal, leaving 
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behind the electrode array which was then rinsed with acetone, IPA, and nanopore water and 

dried with N2 gas. 

PDMS fabrication 

 SylGuard Elastomer base and curing agent were mixed (10:1 ratio w/w), degassed, and 

poured onto a silicon wafer to produce a 3 mm thick PDMS layer.  A biopsy punch (Technical 

Innovations, FL, Inc. USA) was used to generate 3.5 mm diameter wells.  Both the PDMS and 

electrode array were plasma cleaned in an O2 Plasma Etch PE-25 (Plasma Etch, Carson City, 

NV, USA) at 200 mTorr pressure and application of 150 W to the RF coil for 5 minutes, then 

bonded together. 

Surface functionalization of the electrodes  

 Electrodes were cleaned by immersing the array into 20 mL 50 mM KOH/25% H2O2.  

The array was then rinsed in 20 mL nanopure water and dried with N2 gas.  After PDMS 

bonding, the array was plasma cleaned for 5 minutes in an O2 Plasma Etch PE-25 (Plasma Etch, 

Carson City, NV, USA) at 200 mTorr pressure and application of 150 W to the RF coil.  

Immediately after plasma cleaning, the array was immersed in a 20 mL solution of 9 mM 

MUA/9 mM MPOH in reagent alcohol.  The array was then rinsed in 20 mL reagent alcohol and 

immersed in 100 mM NHS/100 mM EDC in 0.1 M MES, 0.5 M NaCl, pH 5.0 for 30 minutes to 

activate the surface and subsequently rinsed with 20 mL 0.1 M MES, 0.5 M NaCl, pH 5.0.  10 

µL of 2.55 mg/mL 4G2 antibody was added to each electrode and incubated for 2 hours for 

bioconjugation.  Each electrode was rinsed twice with 10 µL 1 M ethanolamine in PBS and then 

incubated with 10 µL 1 M ethanolamine for 30 minutes.  The electrodes were then rinsed three 

times with 10 µL PBS and incubated 1 hour with 10 µL 2.5 mg/mL BSA in PBS.  Afterwards, 

they were rinsed five times with 10 µL PBS and incubated with 10 µL clarified ZIKV or SINV 

for 30 minutes.  The electrodes were rinsed five times again with 10 µL PBS. 
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Electrochemical measurements  

 Capacitance measurements were performed in 10 µL of 0.1× PBST using an Instek LCR-

6200 (New Taipei City, Taiwan) in parallel mode.  0 V DC bias was applied to the electrode and 

20 mV root mean square voltage (Vrms) was applied at a frequency of 20 Hz. 

 Electrochemical impedance spectroscopy (EIS) measurements were performed in 10 µL 

of 5 mM K3Fe(CN)6/5 mM K4Fe(CN)6 in PBS using a ZIVE SP1 potentiostat (WonATech Co, 

Ltd. Seoul, South Korea).  To equilibrate the electrochemical system, the sequence was started 

with 30 seconds of amperometry at 0 V then transitioned immediately to EIS at 0 V DC bias and 

10 mV Vrms.  The frequency was scanned from 800 kHz to 1 Hz. 

ELISA characterization  

 To validate 4G2 antibody, 100 µL of ZIKV was added to a Nunc Maxisorp 96 well plate 

and incubated overnight at 4˚C.  The wells were rinsed three times with 200 µL 0.05% PBST and 

300 µL of blocking buffer (4% milk in PBS) was incubated for 1 hour at room temperature.  The 

wells were then rinsed six times with 200 µL 0.05% PBST and 100 µL of 8 µg/mL 4G2 antibody 

in blocking buffer was incubated for 1 hour at room temperature.  Then they were again rinsed 

six times and 100 µL goat anti mouse/HRP secondary antibody (1:3000 in blocking buffer) was 

incubated for 1 hour at room temperature.  The wells were rinsed six times with 200 µL 0.05% 

PBST then twice with 200 µL PBS to remove detergent.  100 µL of 1-Step Ultra TMB-ELISA 

was added to the wells and incubated for 30 minutes before quenching with 100 µL 2 M H2SO4.  

Absorbance was measured at 450 nm using a PerkinElmer VICTOR X5 plate reader.   

4G2 Production and Purification  

 4G2 hybridomas were thawed on ice and added directly to 10 mL of chilled cDMEM.  

The cells were then centrifuged at 1500 rpm for 5 minutes at 4˚C.  The media was aspirated off 

and the cells were transferred to a T-75 flask with 10 mL cDMEM and incubated at 37˚C for two 
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days before expansion into five T-150 flasks with 20 mL cDMEM.  The cells were grown to 

80% density and the media was replaced with Hybrimax serum-free media and incubated at 37˚C 

for four days.  The cells were centrifuged at 1500 rpm for 5 minutes at 4˚C and the supernatant 

was pulled off, filtered with a 0.45 µm membrane, and stored at 4˚C until purification.  4G2 

antibody was loaded onto a Protein A column in 20 mM sodium phosphate (monobasic 

monohydrate), pH 7 with an AKTA Pure FPLC.  The antibody was eluted using 0.1 M citric 

acid, pH 3 and fractionated directly into a fraction plate containing 100 µL 1 M Tris-base, pH 7.4 

neutralization buffer.  Antibody-containing fractions were collected, pooled, and dialyzed 

overnight into PBS buffer with 20% glycerol.  The dialyzed antibody was then concentrated, 

quantified using a Nanodrop 2000c, validated with an ELISA, and stored at -20˚C until use. 

Virus Production and Quantitation 

 Vero cells were grown to 70% confluency and infected with ZIKV or SINV at an MOI of 

0.1 for 72 hours at 37˚C.  The cells were then centrifuged at 1500 rpm for 5 minutes and the 

supernatant was drawn off and stored at -80˚C until use.   

The virus was quantified with a focus forming assay (FFA).  Briefly, Vero cells were 

plated at 100,000 cells/well and incubated overnight at 37˚C.  Virus was diluted with 2% FBS 

cDMEM into a 1:10 serial dilution series, added to the cells, and incubated 1 hour at 37˚C.  An 

agarose overlay was added to the plate and the cells were incubated for 48 hours at 37˚C.  500 

µL of formaldehyde was added to each well and the agar overlay was removed.  The cell 

monolayer was gently rinsed three times with 500 µL PBS.  The cells were then incubated with 

Perm Wash Buffer (0.3% Tween 20, 0.1% BSA in PBS) for 5 minutes and 500 µL of 500 ng/mL 

4G2 antibody (diluted with Perm Wash Buffer) was added to the cells and incubated overnight at 

4˚C.  The cell monolayer was gently rinsed three times with 500 µL of ELISA wash buffer (0.5% 

Tween20 in PBS) and 500 µL of goat anti-mouse/HRP secondary antibody (1:5000 in Perm 
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Wash Buffer) was added and incubated 2 hours at room temperature.  The cells were gently 

rinsed three times with 500 µL ELISA wash buffer and 150 µL of 1-Step TMB Ultra Blotting 

Solution was added to the wells.  Development was quenched by rinsing four times with 500 µL 

nanopore water.  The titer of focus forming units per mL (FFU/mL) was calculated using the 

formula below: 

#	𝑜𝑓	𝑓𝑜𝑐𝑢𝑠	𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠

𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 × 	𝑉𝑜𝑙𝑢𝑚𝑒
 

The virus was clarified by diluting 1 mL of stock virus with PBS and adding to a 300k 

Vivaspin column.  The column was centrifuged at 1500 rpm for 3-4 minutes.  The solution was 

mixed, filled again to 15 mL and centrifuged once more.  This was repeated 2-3 times until the 

solution was clear.  The virus solution was then resuspended at 1 mL with PBS and applied 

directly to the functionalized electrodes. 

Results and Discussion 

Sensor principles 

Significant advancements have been made in biosensor research in terms of sensitivity 

and specificity.  However, many sensor designs are still lacking in throughput and compatibility 

with portable, handheld instruments.  The goal of this work is to use existing principles of 

electrode surface functionalization to validate a novel electrode array design for direct virus 

particle sensing.  The array, shown in Figure 5.1a, is fabricated by photolithography and metal 

deposition to create a 2×12 array of Au electrode pairs and the capacity to independently treat 24 

electrodes simultaneously enhances throughput.  Furthermore, probe antibodies may be 

immobilized to individual electrodes by fabricating and bonding a set of PDMS wells to the glass 

substrate surface as shown in Figure 5.1b.  

The circuit model shown in Figure 5.1c describes the electrochemical behavior at the 

surface of the electrode pair.  Because the two electrodes have different geometries, they each 
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contribute an independent Rct and double layer capacitance (Cdl) which are separated by the 

solution resistance (Rs).  Rct is the most sensitive parameter for characterizing the electrode-

electrolyte interface and, ignoring the Warburg impedance (ZW), the total charge transfer 

resistance Rct, total can be extracted by calculating Rct1 and Rct2 from the transfer function below. 

𝑍(𝜔) = 𝑍s + 𝑗𝑍"	 
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As the mass at the electrode surface increasingly passivates the surface during target binding 

(Figure 5.2), charge transfer becomes more difficult resulting in larger Rct values. 

Sensor characterization 

To characterize adsorption of protein to the electrode surface, the electrodes were 

functionalized with either MCU, thiolated oligos, or left bare (Figure 5.3a).  It is well established 

that protein readily adsorbs to a gold surface through hydrophobic interactions and effectively 

blocks the surface.  Thus, as expected, addition of 15 µL of 5 µg/mL of ZIKV E protein (75 ng) 

to the bare electrode drops the capacitance signal.  Interestingly, the DNA-functionalized surface 

demonstrated no change in capacitance indicating that protein did not adsorb to a surface 

passivated with DNA.  Also surprising was an observed increase in capacitance as protein 

adsorbs to an alkanethiol SAM. 

 Surface functionalization is critical for sensor performance.  Incomplete blocking may 

amplify background and nonspecific signals, reducing specificity, and too much or little 

biorecognition probe may negatively impact sensitivity.  Furthermore, the presence of debris on 

the electrode surface may hinder the functionalization process and reduce performance.  It is 

therefore critical to rigorously clean electrodes before use.  A cleaning protocol was adopted 

from (523) and optimized for the array sensor.  The array was immersed in a solution of KOH 

and 25% H2O2 for ten-minute intervals and EIS was performed to characterize the charge 
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transfer.  As shown in Figure 5.3b, 20 minutes in cleaning solution largely decreased impedance 

which continued to drop after subsequent intervals until the signal plateaued at 40 minutes.  To 

ensure complete surface cleanliness, an immersion time of 45 minutes was chosen for 

downstream applications.   

 The surface of the sensor was characterized by EIS after each step in the fabrication 

process (Figure 5.3c and 5.3d).  The sensor was first modified with a mixed SAM layer of MUA 

and MPOH adapted from Mihailescu et al 2015 (567).  MUA is a long chain alkanethiol with ten 

carbons while MPOH is a short chain alkanethiol with three carbons.  By mixing these long and 

short chain alkanethiols in defined ratios (e.g. 1:1 in this work), the bioreceptor density can be 

controlled to reduce steric hindrance and optimize target binding (343).  After SAM 

modification, the Rct dramatically increased which is attributed to the passivation of the electrode 

surface.  4G2 probe antibody was then immobilized via the carboxyl headgroups of MUA by 

NHS/EDC bioconjugation which surprisingly decreased Rct.  This effect may due to electrostatic 

repulsion of charge from negatively charged carboxyl groups of MUA which greatly enhance 

Rct.  Therefore, once antibody is conjugated to the head groups, the negative charge is 

neutralized and the contribution towards impedance from electrostatic repulsion is lost.  

After probe immobilization, remaining unconjugated headgroups were deactivated with 

ethanolamine, causing the Rct to increase once again and the surface was then blocked by 

adsorption of BSA which further increased Rct again.  Subsequent passivation layer (SAM, 4G2 

probe, ethanolamine deactivation, and BSA blocking) have a characteristic Rct pattern, which has 

been readily characterized and repeated.  

Sensor optimization and specificity 

As a model system, recombinant ZIKV E and chikungunya (CHIKV) E were chosen for 

specific and nonspecific targets respectively.  Target analysis was done using both EIS and 
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capacitance readout at 20 Hz (Figure 5.4).  EIS yielded no significant change in impedance 

signal and capacitance readout showed a small change in capacitance that did not differ 

significantly between ZIKV and CHIKV E targets.  Because larger analytes produce 

proportionally larger changes in double layer width and therefore capacitance, the microwire 

sensor described and validated in Chapter 4 was used to determine whether ZIKV E (53 kDa) 

and CHIKV E (38 kDa) are too small to create a measurable change in double layer width.  The 

results in Figure 5.5a show a small (< 8%), statistically significant change in capacitance for 300 

pg of ZIKV E applied to the sensor.  However, flavivirus and alphavirus E protein generally does 

not exist in soluble form in clinical samples, but rather in context with the virus particle.  

Therefore, because capacitance readout for E protein lacked sensitivity and because soluble E 

protein is not a realistic target, infectious virus particles were used for capacitive target analysis.  

The results in Figure 5.6a show that surprisingly, no significant signal change was obtained for 

target virus.  Capacitive measurements were then taken to validate the probe functionalization 

but still showed no change in signal that should be associated with bioreceptor immobilization 

(Figure 5.6b).  In an attempt to increase sensitivity, the electrode pair was shorted together to 

increase surface area and a commercial Ag/AgCl reference microelectrode (25 µm diameter) was 

used.  However, while the raw values shown in Figure 5.6c differed between the external 

Ag/AgCl and internal Au references, no significant increase in signal change was noted using the 

Ag/AgCl.  As one last confirmation that capacitance readout lacked sensitivity for this platform, 

the difference in capacitance was compared between a bare and SAM-functionalized electrode 

(Figure 5.6d).  A small increase in capacitance was noted upon alkanethiol binding, but these 

results did not compare well to other data which indicate a prominent change in surface blocking 

and electrostatic repulsion when the electrode is passivated with an alkanethiol SAM (Figure 

5.3). 
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EIS is a technique well-known for its sensitivity (523) and was therefore used to 

investigate the sensor specificity using virus particles.  Clarified virus particle analysis was first 

compared to a PBS negative control which showed a large nonspecific buffer signal.  After 

ruling out buffer contamination, it was hypothesized that extended incubations at room 

temperature could destabilize and denature the 4G2 antibody probe causing it to spread out and 

maximize contact points on the electrode surface (327).  The relaxed antibody could more 

effectively passivate the surface, resulting in a large jump in impedance.  In contrast, target 

binding may stabilize the antibody conformation through protein-protein interactions and prevent 

denaturation.  In this case, target binding would also increase impedance, but gaps in the 

passivation layer would allow reagents to penetrate the passivation layer and yield a smaller 

impedance compared to denatured protein.  To mitigate possible denaturation effects, sensor 

fabrication was done at 4˚C and target analysis was again compared to a PBS negative control.  

However, as shown in Figure 5.7a, refrigeration did not decrease the nonspecific signal enough 

for target detection.  Although it remains unclear why PBS buffer incubations increase 

impedance, the sensor is still able to differentiate between SINV and ZIKV particles.  ZIKV 

(12,200 FFU) was compared to an excess of SINV particles (267,000 FFU) (n = 6).  Figure 5.7b 

shows that the impedance signal is significantly larger for ZIKV compared to SINV which 

indicates that the sensor demonstrates good specificity and can distinguish between similar 

targets. 

Concentration dependent sensing of ZIKV 

The sensor response was investigated using EIS for virus concentrations ranging from 10 

FFU to 11,110 FFU.  Increasing concentrations were added consecutively to an electrode 

and %ΔRct was calculated to normalize the response from variations between electrodes (523) 

and plotted against the log of the additive virus amount (n = 4).  As can be seen in Figure 5.8, the 
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array sensor response is linear for all tested concentrations (R2 = 0.9843) and though there is 

background signal from the negative PBS control, the slope for subsequent PBS incubations is 

significantly different from the calibration curve (p = 0.0001).  The LOD (S/N = 3) was 

calculated to be 22.4 FFU and was determined using the equation below  

LOD = µZ{S}T + 3𝜎Z{S}T 		 

where σ is the standard deviation of the mean blank signal and µ is the average blank signal.  

This LOD compares well to other reported sensors and to reported viral loads of 80 PFU/mL of 

ZIKV in saliva (568), making it a viable alternative to immunohistochemistry and antigen-

capture EIAs for direct virus detection. 

Conclusion 

 We describe here a novel array biosensor used for direct impedance sensing of ZIKV 

particles.  The sensor demonstrated good specificity when tested against nonspecific SINV and 

had a clinically relevant LOD of 22.4 FFU.  The sensor can be further improved by investigating 

fabrication methods to increase probe protein stability and additional work is needed to integrate 

the array with microfluidics which would automate sample handling.  Future research is also 

needed to investigate biosensor storage and reusability, however, this array sensor is an 

important step towards direct and high-throughput sensitive and specific virus detection at the 

point-of-care.  By providing a platform for further development, point-of-care diagnostics will 

enable physicians to diagnose patients quickly without expensive sample shipment and technical 

assays.  Reduced turnaround times enable physicians to medically intervene sooner and mitigate 

possible sequelae.    
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Figure 5.1.  Array sensor design and circuit model.  A) 2 × 12 electrode array with 24 pairs of 
electrodes in a sun/moon configuration.  B) PDMS wells bonded to the array for individual 
electrode treatment.  C) Circuit model for the sun/moon electrode pair.  Although the electrodes 
have the same area, their different geometries lead them to contribute differentially to the charge 
transfer resistance, Rct.  The surface is therefore best modeled by two asymmetric Randles 
circuits between the working electrode (WE) and counter electrode (CE) separated by a solution 
resistance, Rs. 
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Figure 5.2.  Electrode surface functionalization and target detection.  The gold electrode is 
modified with a mixed SAM of long (MUA) and short (MPOH) chain alkanethiols at an equal 
ratio.  The carboxylic head groups of the MUA are functionalized with 4G2 antibody via 
NHS/EDC chemistry and remaining head groups are deactivated with ethanolamine.  Bovine 
serum albumin (BSA) is adsorbed to the surface to block nonspecific binding.  ZIKV structure 
adapted from (15) and BSA structure adapted from (569). 
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Figure 5.3.  Characterization of the electrode surface.  A) Adsorption of recombinant ZIKV E 
protein on the bare, DNA-passivated, and MCU passivated surface.  B)  Optimization of 
electrode cleaning.  C) EIS characterization of step-wise electrode functionalization.  D) Charge 
transfer resistance, Rct, for step-wise electrode functionalization. (mean + SEM) 
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Figure 5.4.  Specificity testing with recombinant ZIKV and CHIKV E protein.  A)  EIS 
testing of ZIKV (specific) and CHIKV (nonspecific) E protein from an ethanolamine-passivated 
electrode baseline.  B)  Percent capacitance change from ZIKV (specific) and CHIKV 
(nonspecific) E protein target.  (mean ± SEM) 
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Figure 5.5.  Wire sensor analysis of recombinant ZIKV and CHIKV E protein.  A) Percent 
capacitance change for ZIKV and CHIKV E target protein (mean ± SEM). B)  Double layer 
length associated with a large analyte (αZIKV E) and a small analyte (ZIKV E). 
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Figure 5.6.  Capacitance measurements for ZIKV particle detection and electrode 

characterization.  A).  Capacitance response for ZIKV concentrations ranging from 12 FFU/mL 
– 1220 FFU/mL compared to a mock sample.  B) Investigation of capacitive response to 4G2 
probe immobilization compared to mock and virus samples.  C)  Comparison of capacitive 
response to SAM and 4G2 probe functionalization with the array electrode pair and an external 
Ag/AgCl reference electrode.  D) Capacitive response of bare and SAM-functionalized 
electrodes.  (mean ± SEM) 
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Figure 5.7. Background noise and specificity. A) EIS target and buffer control responses after 
refrigerated fabrication and target incubations.  B)  %ΔRct response for virus and buffer control.  
C) EIS response comparing ZIKV (12,200 FFU) with an excess of SINV negative control 
(267,000 FFU).  D)  %ΔRct response for ZIKV compared to an excess of SINV negative control.  
(n = 6, mean ± SEM, p = 0.01) 
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Figure 5.8.  Calibration of the array sensor.  A) Nyquist plots for the EIS response of 
subsequent ZIKV incubations (10 – 11,110 FFU) compared to subsequent PBS negative control 
incubations.  B) Linear response of %ΔRct against the logarithmic concentration of ZIKV (or 
PBS negative control).  The slopes of the specific and background lines are significantly 
different (n = 4 technical replicates, mean ± SEM, p = 0.0001). 
 

  



 116 

CHAPTER 6 - CONCLUSION 
 
 

Summary 

 ZIKV is an emerging arbovirus that caused over 64,000 confirmed cases of ZIKV fever 

during the 2015-2016 Brazilian outbreak alone (148).  While the majority of cases are 

asymptomatic or manifest with a mild febrile illness, 1% of patients develop severe neurological 

complications including Guillan Barré syndrome, transverse myelitis, encephalitis, etc (162).  

Furthermore, the incidence of microcephaly and other birth defects is four to nine fold higher in 

infants exposed to ZIKV in the womb (212).  In order to properly monitor patients for 

complications and intervene rapidly when necessary, timely and accurate diagnosis is crucial for 

disease outcome.  Accurate diagnostics are also essential for disease surveillance which 

facilitates timely intervention for outbreaks.  Current diagnostic techniques like nucleic acid 

testing by real time PCR and serological testing by ELISA and PRNT are reliable and sensitive 

but are slow, costly, and must be executed is specialized laboratories with bulky equipment.  

There is a large need for new tools that reduce labor, cost, and time.  Electrochemical sensors 

demonstrate excellent sensitivity and are easily miniaturized, making them an attractive platform 

for point-of-care diagnostics.  In this work, we have described three new electrochemical 

platforms for ZIKV diagnosis for nucleic acid testing, serological analysis, and virus detection. 

 The NP-ELISA described in Chapter 3 builds upon reported enzymatic assays (501) and 

simplifies the platform to reduce cost and labor while maintaining sensitivity comparable to 

commercial assays.  Chapter 4 discusses a novel microwire sensor that is simpler in design, 

faster, and significantly increases sensitivity compared to ELISAs and other reported sensors 

(277, 344).  Although electrochemical biosensors out-perform ELISAs in miniaturization and 

portability, they often lack throughput.  A novel electrode array is described in Chapter 5 that 

adds throughput for the direct detection of virus particles.  These advancements expand the 
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boundaries and possibilities of assay development and contribute innovations that can be readily 

integrated in mainstream biosensor research. 

Future Directions 

 While the platforms described here offer innovations to the field of electrochemical 

biosensors, they each have limitations that need to be addressed as well as potential for further 

development.  The NP-ELISA was validated using a synthetic DNA oligo model target and more 

work needs to be done to investigate the assay’s capacity to detect viral RNA.  Current gold 

standard diagnostics use an intermediate step to indirectly detect RNA, which increases reagent 

and instrumentation costs as well as labor.  The ability to directly detect RNA would negate the 

need for these extra steps and reduce cost, labor, time, and assay complexity.  This reduces 

turnaround time, providing health care providers with the information they need for proper 

patient care earlier, which would reduce sequelae and improve disease outcome.  However, 

nuclease protection has traditionally been used to detect mRNA and microRNA.  Because RNA-

RNA hybrids are thermodynamically more stable than RNA-DNA hybrids (570), extensive 

secondary structure throughout the ZIKV RNA genome may preferentially fold back onto itself 

rather than hybridizing with the oligo and inhibit its ability to successfully protect the probe from 

degradation.  Hybridization conditions need to be carefully optimized to mitigate the inhibitory 

effects of secondary structure.  Once optimized, research employing traditional nuclease 

protection assays indicates that the assay tolerates partially degraded RNA, whereas other 

molecular techniques like PCR and LAMP assays do not.  As long as the region complementary 

to the probe is intact, hybridization and protection may occur properly.  This has large impact for 

point-of-care use as proper sample storage is not always feasible in the field and samples may 

rapidly degrade.  Additionally, the electrochemical assay can be easily integrated into handheld, 

disposable paper sensors for point-of-care use which have already been developed by our group 
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(522, 523).  The assay can also be developed as a multiplexed sensor by employing multiple 

antibody-small molecule pairs with different enzymatic substrates that undergo oxidation and 

reduction at distinguishable potentials.  Multiplexed analysis enables health care providers to test 

patients with general, nonspecific symptomology for multiple pathogens simultaneously and 

dramatically reduce time for diagnosis. 

The microwire sensor demonstrates extreme sensitivity that enables antibody detection 

four days earlier and with less sample volume compared to gold standard assays.  The underlying 

mechanism for the sensor’s sensitivity is currently unknown, and further work needs to be done 

to understand the interfacial interactions and electrochemistry.  Such studies may include 

characterization of the amount, behavior, and orientation of ZIKV E protein at the electrode 

surface and surface plasmon resonance studies to investigate the interaction of ZIKV E with its 

antibody on the electrode.  In addition, the microwire sensor currently uses a glass substrate, but 

can also be developed as a paper microwire sensor for point-of-care applications.  During the 

process of integrating the wire sensor with paper microfluidics, challenges will need to be 

addressed such as long-term probe protein stability as well reagent dehydration for storage and 

shipping, and rehydration for use.  However, incorporating a paper substrate increases ease of 

handling and allows for incorporation of microfluidics that automate sample processing – all of 

which increase efficiency and reduce cost, labor, and time for diagnosis.   

Lastly, the array sensor increases throughput and enables multiple electrodes to be 

handled simultaneously.  As such, the sensor has large capacity for multiplexed analysis by 

functionalizing different electrodes with probes for various pathogens, and such developments 

will also require intricate microfluidics to control and automate sample application.  As 

described previously, an automated, multiplexed sensor enables differential diagnosis to be 

completed faster and easier without expensive shipment of environmentally-sensitive clinical 
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samples to a specialized diagnostic laboratory.  Several challenges still remain to be addressed 

for the array sensor, primarily involving the background signal from buffer.  Although 

contamination has been ruled out, it is still unclear what mechanisms give rise to increasing 

background signals which do not occur in the presence of specific or nonspecific virus.  While 

the surface can be modified with better antifouling agents to further reduce nonspecific signal, it 

may be beneficial to probe the surface using approaches like microscopy, x-ray reflectometry, or 

isothermal titration calorimetry to investigate the behavior of the passivation layers.  Once 

optimized, the array sensor exhibits great potential for point-of-care applications.  Together, 

these three platforms represent crucial steps in the development of tenable commercial point-of-

care diagnostics in terms of multiplexing capacity, direct detection, sensitivity, and throughput.   
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APPENDIX A - CHARACTERIZATION OF ENGINEERED β-GALACTOSIDASE ENZYME 
FOR PROTEIN FRAGMENT COMPLEMENTATION 

 
 
 

Introduction 

 Protein fragment complementation assays (PCAs), also known as enzyme fragment 

complementation (EFC), are based on the idea assembling fragments of an enzyme to 

reconstitute a functional protein.  This phenomenon was first reported in 1958 for ribonuclease 

(571) and again in 1965 for β-galactosidase (β-gal) (572, 573).  While PCAs have now been 

developed for enzymes such as β-lactamase (574, 575), Cre recombinase (576, 577), and 

luciferase (578–580), β-galactosidase remains the predominant enzyme used.   

β-gal is an enzyme encoded by the lacZ gene in E.coli which hydrolyzes the glycosidic 

bonds of β-galactosides like lactose to yield monosaccharides. It is a tetrameric protein with four 

identical monomers of 1023 amino acids, each of which are comprised of five subdomains (581).  

The enzyme can be broken into two fragments called the ω and α fragments.  ω fragments, like 

the M15 or M112 mutants, have a small N-terminal deletion 10-30 amino acids in length (582).  

Because these mutants exist as dimers, the deletion likely disrupts tetramer formation.  α 

fragments, such as the CNBr2 fragment are the result of termination mutations that produce a 

small peptide in the N-terminal region which complements the deletion in ω fragments (582).  

Complementation of α and ω fragments (termed α-complementation) was first employed in 

molecular cloning to screen plasmid-transformed colonies, a technique called “blue/white 

screening” (583–585).  It has also been employed in mutational analysis (586, 587) and has been 

used to investigate protein-protein interactions for in vitro (588), in vivo (589–591), and drug 

discovery analysis (592).  More recently, α-complementation of β-gal was used for diagnostic 

purposes (593–595), but these in vivo and Western blot analyses are too complex and laborious 

for regular clinical use.  Furthermore, while the use of two distinct fragments is useful for 
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investigating the interaction of two proteins which can be individually conjugated, it complicates 

diagnostic assays in which a singular analyte is of interest.  In this work, we have designed and 

characterized a novel β-gal mutant with a single mutation that splits the enzyme into two 

identical, reconstitutable fragments for PCA analysis.  Although this research may be 

incorporated into a biosensor design at a later time, it does not describe a novel electrochemical 

sensor and has thus been incorporated as an appendix.   

Materials and Methods 

Materials 

 All primers were ordered from Integrated DNA Technologies and resuspended at 1 

µg/mL in water.  β-gal plasmid (pSF-OXB20-COOH-TEV-BetaGal-6His, catalog number 

OG3011) was purchased from Oxford Genetics.  X-gal (5-Bromo-4-chloro-3-indoxyl-beta-D-

galactopyranoside) was purchased from Gold Biotechnology (Cat# X4281C) and diluted 

according to the manufacturer protocol.  PFU Turbo DNA Polymerase was purchased from 

Agilent (Cat#600250-52).  dNTP solution (Cat#NO447S) and DpnI (Cat#R0176S) were 

purchased from New England BioLabs. Kanamycin monosulfate was purchased from Fisher 

BioReagents (Cat#BP906-5), imidazole was purchased from Spectrum (CAS 288-32-4).  

Dimethyl sulfoxide (DMSO) (Cat# 472301-500ML), Trizma hydrochloride (Tris-HCl, Cat# 

T5941-500G), and glycerol (Cat# G7893-500ML) were purchased from Sigma-Aldrich. NaCl 

was purchased from Fisher Chemical (Cat# S271-3).  HisPur Ni-NTA Superflow Agarose beads 

were purchased from ThermoScientific (Prod# 25215).  A His-Trap HP 5mL column (Cat# 

GE29-0510-21) was used for affinity purification and a HiLoad Superdex gel filtration column 

(Cat# 28-9892-35) was used for size exclusion purification on an AKTA Pure FPLC (GE 

Healthcare).  An Applied Biosystems 2720 Thermocycler was used for mutagenesis and a 

PerkinElmer Victor X5 2030 Multilabel Reader was used for absorbance measurements.  A 
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NanoDrop 2000c spectrophometer (ThermoScientific) was used for spectrophotometric 

quantification of protein. 

Site Directed Mutagenesis 

 Primers were designed to introduce five independent mutations into the β-gal enzyme and 

are listed in Table 5.1.  Each primer was designed to be 21-34 base pairs (bp) in length and have 

a GC clamp at both ends.  A 50 µL reaction mix with final concentrations of 1× PFU Buffer, 2.5 

ng/mL forward (F) primer, 2.5 ng/mL reverse (R) primer, X dNTPs, 50 ng of β-gal plasmid 

(pBG612R), 20× DMSO, and 2.5 U PFU Turbo.  Polymerase chain reaction (PCR) was then 

performed in a thermocycler with the following conditions: 

1. 95˚C for 2 minutes 

2. 95˚C for 50 seconds 

3. 55˚C for 1 minute 

4. 68˚C for 8 minutes 

5. Repeat 18× steps 2-4  

6. 68˚C for 5 minutes 

1µL of DpnI restriction enzyme, which digests methylated DNA, was added directly to the PCR 

product to remove original, unmutated plasmid and incubated for one hour at 37˚C.  1 µL of the 

digested product was then transformed directly in Dh5α cells and plated on kanamycin plates 

with 200 µg/mL X-gal substrate.  The plates were incubated overnight at 37˚C and colonies 

selected for analysis were amplified in a 5 mL overnight culture after which mutant plasmids 

were isolated and purified by miniprep and sent for sequencing analysis at Genewiz using the 

primers listed in Table A2.  

 

 



 191 

Protein Purification and Characterization 

To purify wild type (WT) and mutant β-gal enzyme, plasmid was transformed into Dh5α 

cells and amplified with either a 50 mL or 750 mL culture for batch prep or FPLC protein 

purification.  As the plasmid has a constitutive promoter, no induction step was necessary.   

For batch prep purification, 50 mL cultures were centrifuged at 3700 rpm for 20 minutes.  

The bacterial pellet was resuspended in 10 mL low imidazole buffer (LIB – 50 mM Tris, 400 

mM NaCl, 10 mM imidazole, 5% glycerol) and the sample was sonicated ten times for thirty 

seconds with one minute in between each sonication.  The lysate was then centrifuged at 10,000 

rpm for 30 minutes at 4˚C.  100 µL of nickel agarose beads were washed with 5 mL LIB and 

clarified lysate was added to the beads and tumbled overnight at 4˚C.  The beads were then 

centrifuged at 1000 rpm for five minutes, resuspended in 2 mL LIB, and added to a spin column.  

A lab-made vacuum was used to pull the sample through the spin column and the column was 

washed three times with 1 mL LIB.  50 µL of 1:1 LIB:HIB (high imidazole buffer – 50 mM Tris, 

400 mM NaCl, 500 mM imidazole, 5% glycerol) was added to the column to elute the protein 

which was quantified using a Nanodrop 2000c.   

For FPLC protein purification, 750 mL bacterial cultures were grown overnight at 37˚C 

and centrifuged at 5000 rpm for 20 minutes and the pellet was resuspended with LIB.  The pellet 

was then microfluidized and clarified and purified with a Ni column and gel filtration (GF) 

column using an AKTA Pure FPLC. 

PAGE analysis was used to validate the purification.  Enzymatic assays were used to 

characterize the enzymatic activity of WT and mutant β-gal enzymes.  Diluted protein and X-gal 

substrate was combined as indicated and absorbance was measured at 595 nm. 
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Table A1. Quick Change Mutagenesis Primers 

Mutation Identification 
Number 

Sequence 

R13A (F) BG998 5’CCCGTCGTTTTACAAGCTCGTGACTGGGAAAACC 
R13A (R) BG999 5’GGTTTTCCCAGTCAGCTTGTAAAACGACGGG 
D15A (F) BG1000 5’CGTTTTACAACGTCGTGCCTGGGAAAACCCTGGC 
D15A (R) BG1001 5’GCCAGGGTTTTCCCAGGCACGACGTTGTAAAACG 
S477A (F) BG1009 5’GGATCAAAGCTGTCGATCCTTCC 
S477A (R) BG1010 5’GGAAGGATCGACAGCTTTGATCC 
R473A (F) BG1011 5’GCTCTATGCCTGGATCAAATCTGTCG 
R473A (R) BG1012 5’CGACAGATTTGATCCAGGCATACAGC 
R431A (F) BG1013 5’CGATGATCCGGCCTGGCTACC 
R431A (R) BG1014 5’GGTAGCCAGGCCGGATCATCG 

 

Table A2. β-galactosidase Sequencing Primers 

Plasmid Location (bp) Identification Number Sequence 
251-272 BG1004 5’GCTTGCTCTAGCCAGCTATGG 
998-1020 BG1005 5’CGTTTGTTCCCACGGAGAATCC 
1759-1781 BG1006 5’GGTCATGGATGAGCAGACGATGG 
2605-2626 BG1007 5’CGATAACGAACTCCTGCATTGG 
3391-3413 BG1008 5’CCTTACTGCCGCCTGTTTTGACC 

 

Results and Discussion 

 Several polar or charge-charge interactions hold the two dimers of the β-gal tetramer 

together.  By mutating the amino acids involved in these interactions, the interaction is broken 

and the connections are no longer strong enough to hold the dimers together in solution. 

However, by tethering the mutant dimers to a surface in close proximity with one another, they 

may be able to re-associate and reconstitute enzymatic activity.  These mutant dimers can then be 

conjugated to single chain antibody fragments or DNA oligo probes which will bind to a 

diagnostic marker such as a virus particle or genome and tether the dimers in close enough 

proximity to produce an enzymatic signal corresponding to target concentration. 

The positively charged arginine (R) 13 interacting with negatively charged aspartic acid 

(D) 15 was chosen for preliminary mutagenesis analysis.  Both amino acids were independently 
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mutated to a hydrophobic alanine to break the charge-charge interaction.  Because DMSO is 

commonly used in PCR to relieve secondary structure and supercoiling of the plasmid template 

(596), the mutagenesis was compared with and without DMSO.  Dh5α cells were transformed 

with the mutagenesis product and grown on plates infused with X-gal, a lactose analog that is 

cleaved by β-gal to produce a blue product.  Three colony phenotypes were expected based on 

the effect of the enzyme mutation: blue colonies are expected to have no effect on activity from 

the mutation, light blue colonies are expected to have attenuated activity, and white colonies are 

expected to have killed activity as a result of the mutation.  Initial mutagenesis results as shown 

in Figure A1a demonstrated zero to low yield for both mutations with little observed difference 

with DMSO.  Both the R13A and D15A mutagenesis reactions with DMSO yielded a singular 

blue colony.  The D15A (-) DMSO reaction did not yield any colonies while the R13A (-) 

DMSO yield four colonies, half blue and half white.  A white colony (R13A_W) was chosen for 

batch prep purification and enzymatic characterization.  Briefly, a 10 µL reaction with 1 mg/mL 

X-gal and either 0.5 mg/mL R13A_W or 1.1 mg/mL WT protein was incubated for 30 minutes. 

The qualitative analysis depicted in Figure A1c shows that, as expected from a white colony, the 

R13A_W mutant did not exhibit any enzymatic activity compared to the WT.  To test if enzyme 

activity could be reconstituted, the 10 µL reaction was combined with 10 µL of washed Ni 

beads.  However, as shown in Figure A1c, no blue product was produced indicating that the 

enzyme could not be reconstituted.   

The mutagenesis was repeated and demonstrated higher yield for the R13A mutant with 

and without DMSO (Figure A2).  Two blue colonies and the single white colony were selected 

from the R13A (+) DMSO plate and sent for sequencing analysis.  Sequencing results indicated 

that all three plasmids possessed the R13A mutation, but the white colony had additional 

nonspecific mutations that killed enzymatic activity.  Because the other two plasmids yielded 
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blue phenotypes with full activity, it is likely that the disrupted interaction was not sufficient to 

break the connection between the dimers. 

Three other dimer interactions were identified including the interaction between serine (S) 477 

and D469, R473 and threonine (T) 494, and R431 and R26 (which is part of the protein 

backbone).  The mutagenesis was again compared with and without DMSO which produced 

similar yield.  10 colonies with B, LB, and W phenotypes as circled in Figure A3a and listed in 

Table A3 were selected for preliminary sequencing analysis.  Of the 10 plasmids, only two had 

successful mutagenesis and these plasmids were sent for full sequencing analysis which 

unfortunately revealed an extra nonspecific mutation.  The mutagenesis was repeated without 

DMSO and B and W colonies (circled in Figure A5b) were selected from each plate for 

sequencing analysis.  As shown in Table A4, only three plasmids, R473A_W, R473A_B, and 

S477A_B, had the correct mutation without additional nonspecific mutations.  After 

transformation into Dh5α cells, both R473A _B and S477A_B exhibited B phenotypes as 

expected while R473A_W exhibited LB phenotype (Figure A3c).  Protein was purified by batch 

prep and a 100 µL reaction of 1 mg/mL X-gal and 5× stock protein (which ranged 71 – 143 

µg/mL) was incubated for 15 minutes for enzymatic analysis as shown in Figure A4.  

Table A3. Mutagenesis and sequencing results for R473A, R431A, and S477A mutants 

Mutation Phenotype Plate (+/- DMSO) Sequencing Analysis 
R473A W (-)  Nonspecific mutations 
R473A B (-) No mutation 
R473A LB (+) Nonspecific mutations 
R431A W (-) Nonspecific mutations 
R431A LB (-) Successful 
R431A W (+) Nonspecific mutations 
R431A B (+) No mutation 
S477A W (-) Nonspecific mutations 
S477A B (-) No mutation 
S477A LB (+) Successful 
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Table A4. Repeated mutagenesis and sequencing results for R473A, R431A, and S477A 
mutations 

Mutation Phenotype Sequencing Analysis 
R473A W Successful 
R473A B Successful 
R431A W Nonspecific mutations 
R431A B Nonspecific mutations 
S477A W Nonspecific mutations 
S477A B Successful 

 

The R473A_B mutant showed strong activity compared to the other mutants which had 

almost no enzymatic activity.  Based on the gel analysis in Figure A4c, it is unsurprising that 

R473A_W had no activity, as it does not appear to be expressed.  It is interesting, however, that 

the S477A_B mutant had no activity in solution.  Gel analysis and spectrophotometry results 

confirm that there was double the amount (143 µg/mL vs 71 µg/mL) of S477A_B in the stock 

solution.  The discrepancy between the B phenotype and no activity in solution could be 

explained by reconstitution of otherwise attenuated enzyme activity at sufficiently high 

intracellular concentrations.  Because S477A_B was highly expressed, had a B phenotype in 

bacterial culture, but did not exhibit activity in solution, it was concluded that this mutant 

exhibited desirable properties for a protein complementation assay.   

A larger protein prep was prepared by affinity column and gel filtration.  As shown in 

Figure A5a, the larger WT protein (~540 kDa) comes off the GF column in a single large peak.  

If the tetramer connections are disrupted in the S477A_B, the protein will likely exist in the 

smaller (~270 kDa) dimeric form).  This is evidenced by the GF trace in Figure A5b, which 

shows a second peak after the void volume corresponding to the mutant protein.  To examine the 

relationship between enzymatic activity and concentration, S477A_B was serially diluted and 

combined with X-gal substrate.  As shown in Figure A7a, the enzyme does not exhibit activity 

until it has reached a final concentration of 0.6 µg/mL.  To test if the mutant could be used for 

protein complementation, 60 ng/mL of His-tagged protein was combined with a serial dilution of 
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Ni beads and a strong linear response was obtained (Figure A7b).  These data indicate that the 

S477A_B mutant can be used for protein complementation-based detection of target 

biomolecules such as virus particles or viral nucleic acid. 

Conclusion 

β-galactosidase has been used for decades in protein fragment complementation assays to 

characterize protein-protein interactions, facilitate drug discovery, and screen bacterial colonies 

for successful plasmid transformation.  These assays use α-complementation of the larger ω 

fragment with the small α peptide fragment.  However, two distinct fragments complicate 

analysis when only one analyte is being studied for diagnostic purposes.  In this study, we have 

introduced a singular mutation to change a polar serine into a hydrophobic alanine which splits 

the enzyme into two identical fragments.  These identical fragments may then be attached to 

single chain antibodies or DNA oligos which bind to large analytes such as virus particles or 

viral nucleic acid.  The β-gal fragment-conjugated probes (antibody or oligo) bind to their 

analyte and are therefore tethered in close proximity to one another and allows close fragments 

to associate with one another and reconstitute activity.  The ability of the S477A mutant to 

reconstitute activity was confirmed use Ni beads as a proof of concept.  Furthermore, β-gal 

substrates like 4-Methoxyphenyl-β-galactopyranoside (4-MPGal) which yield electrochemical 

reporters like 4-methoxy phenol (4-MP) can be used for electrochemical determination of analyte 

(597).  Compared to absorbance-based methods, electrochemical detection has better sensitivity 

and it is easily miniaturized into handheld devices for lab-on-chip or paper-based biosensors 

(513, 514). 
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Figure A1. Characterization of R13A and D15A mutants.  A) Mutagenesis yield was 
compared with and without DMSO for both R13A and D15A mutants.  B) A white colony 
(R13A_W) was batch purified and validated with PAGE analysis.  C) The R13A_W mutant was 
tested for enzymatic activity and compared with the WT protein.  Capacity for reconstitution of 
mutant activity was tested by combining the enzyme with Ni beads. 
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Figure A2.  Repeat of R13A and D15A mutagenesis.  Two blue colonies and the single white 
colony were selected from the R13A (+) DMSO plate and sent for sequencing analysis which 
indicated that all three plasmids possessed the R13A mutation, but the white colony had 
additional nonspecific mutations that killed enzymatic activity. 
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Figure A3. Selection of R473A, R431A, and S447A mutants.  A) Ten colonies were selected 
for sequencing analysis which indicated unsuccessful or nonspecific mutations in all cases.  B) 
The mutagenesis was repeated and B and W colonies were selected for each mutant and sent for 
sequencing.  C) Three colonies demonstrated successful mutation incorporation and these 
plasmids were isolated and retransformed into bacteria.  Surprisingly, R473A_W demonstrated a 
LB phenotype while R473A_B and S477A_B had B phenotypes as expected. 

 

Figure A4. Characterization of selected mutants.  A-B) Absorbance and colorimetric analysis 
of mutant β-gal activity.  C) PAGE validation of purified mutant protein. 
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Figure A5. Gel-filtration analysis of A) WT β-gal and B) S477A_B mutant β-gal 
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Figure A6. Schematic of β-galactosidase.  A) WT β-gal tetramer (first dimer in tan, second 
dimer in green).  B)  Interaction of S477 with D469 which is involved in tetramerization. 
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Figure A7. Enzymatic analysis of S477A_B.  A)  Concentration curve of S477A_B mutant β-
gal.  B)  Reconstitution analysis of mutant S477A_B β-gal using Ni beads which bind the 
dimer’s His-tag. (mean ± SEM) 
 


