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Abstract. We have demonstrated a novel Mach-Zehnder soft x-ray interferometer that uses diffractiOn gratings as 
beam splitters. The interferometer was used together with a 46.9nm tabletop soft x-ray laser, to map the evolution of 
the electron density distribution of a large-scale laser created plasma. 

I. INTRODUCTION 

!'he development of gain-saturated soft x-ray lasers has opened the possibility to extend laser 
mtcrferomctry to large scale plasmas of very high density that can not be probed with optical lasers, and 
l1as generated mterest in soft x-ray laser interferometers [1-3]. The recent advent of gain-saturated 
'.<th!ctop soli x-ray lasers creates the opportunity of developing portable soft x-ray tools that will allow 
cidailed maps of the electron density evolution in a great variety of very dense plasmas. Recently our 
~roup has demonstrated plasma interferometry combining a 46.9nm capillary discharge tabletop laser 
11ith a wavefront-division interferometer based on Lloyd's mirror [3]. The Lloyd's mirror has the 
,1dvantage of constituting the simplest possible soft x-ray interferometer. However, it also presents 
,,,me limitations: since this is a wavefront-division interferometer in which the fringe visibility relays 
,1n the spatial and temporal coherence of the laser, it is difficult to obtain good fringe visibility over a 
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Figure I: Schematic representation of the amplitude division soft x-ray 
interferometer based on diffraction gratings. 

large area. To overcome this limitation we have developed a novel soft x-ray amplitude division 
mterferometer in which diffraction gratings are used as beam splitters. By properly tailoring the 
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large area. To overcome this limitation we have developed a novel soft x-ray amplitude division 
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gratings, the interferometer can be made to operate at any selected soft x-ray wavelength. The 
interferometer was used in combination with a 46.9 nm capillary discharge tabletop soft x-ray laser [4] 
to map the electron density evolution of a 2. 7mm long line focused plasma. 

2. SOFT X-RAY INTERFEROMETER BASED ON DIFFRACTION GRATINGS 

fhe son x-ray interferometer, which consists of a modified Mach-Zehnder configuration (7], is 
schematically illustrated in figure I. The soft x-ray laser beam is diffracted off the first grating into the 
two am1s of the interferometer. The incidence angle and the blaze angle of the grating are selected to 
allow for most of the laser radiation to be evenly split between the zero and first diffraction orders. This 
is essential for obtaining a good fringe visibility. Two elongated grazing incidence mirrors redirect the 
1ero and first order arms towards the second grating, which recombines the beams to generate the 
interference pattern. By tilting the grazing incidence mirrors and the output grating, the fringe spacing 

Figure 2: Amplitude division soft x-ray interferometer, inside its 
vacuum chamber. The lines represent the path of the soft x-ray (thin 
lines) laser and the Nd:Y AG laser beam( thick line). 

and orientation can be adjusted. A Si/Sc multilayer mirror [5] of 30cm focal length and "" 40% 
reflectivity images the plasma with a magnification of about 25x onto a MCP-CCD detector. A flat 
mitTor (not shown in fig. I) was used to relay the image. The interferometer was prealigned using an 
infrared (824 nm) semiconductor laser diode selected to have a temporal coherence length of ~250 ~m. 
similar to that of the soft x-ray laser. To allow the alignment of the interferometer with the diode laser 
the gratings were designed with two vertically separated rulings on the same substrate. Part of the 
substrate was ruled with 300 1/mm to diffract the 46.9 nm laser beam, and the other with 17.06 1/mm to 
diffract the beam of the alignment diode. With this ratio of groove spacing we obtain the same 

dispersion and therefore the same 
diode. All the relevant movement 
the system was under vacuum. lnl 
entire field of view. The interferon 

3. INTERFEROMETRY OF L 

We studied a plasma generated b 
wavelength of 1.06~m into a ~30 
on one of the arms of the inter~ 
plasma created with 0.36J Nd-Y A 
generated by amplification of the 

Figure 3: Sequen 
2.7mm long line t4 
respect to the begir 

discharge current pulse. This tat 
FWHM duration [4]. The far fie! 
about 4.6mrad. 



;th. The 
laser r 41 

l [7], IS 

into the 
lccted to 
..:rs. This 
irect the 
rate the 
spacmg 

" 40"1,, 
r. A flat 
usmg an 
250 ~1111, 

)de laser 
rt of the 
l'mmto 

he same 

XRL2000 Pr2-485 

dispersion and therefore the same path for the beams of the soft x-ray laser and the alignment laser 
diode. All the relevant movements in the system were motorized to fine-tune the interferometer once 
the system was under vacuum. lnterferograms with very good visibility ( ~0.5) were obtained over the 
entire field of view. The interferometer showed excellent stability. 

3. INTERFEROMETRY OF LASER CREATED PLASMA 

We studied a plasma generated by focusing a Q-switched Nd-YAG laser operating at its fundamental 
wavelength of l.06J.lm into a ~30 J.lm wide line focus ~2.7mm in length, onto a Cu slab target, placed 
on one of the arms of the interferometer. The results discussed below correspond to the study of a 
plasma created with 0.36J Nd-Y AG laser pulses of~ 13ns FWHM duration. The probe laser pulses were 
generated by amplification of the 46.9nm line ofNe-like Ar in an Ar capillary plasma excited by a fast 
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Figure 3: Sequence of soft x-ray interferograrns depicting the evolution of a 
2.7mm long line focused plasma generated by a Nd:Y AG laser. The time delay 
respect to the beginning of the laser pulse is indicated in each interferogram. 

discharge current pulse. This tabletop laser produces pulses with energy of about 0.13mJ and 1.2ns 
FWHM duration [ 4]. The far field beam profile has an annular shape and a peak to peak divergence of 
about 4.6mrad. 
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The sequence of interferograms shown on figure 3 describes the evolution of the laser-created plasma. 
The fringes are observed to shift with time due to the presence of the plasma. At the latter times the 
plasma cools down and absorption of the probe beam by the plasma becomes noticeable. Electron 
density maps were computed from the measured number of fringe shifts at each location assuming the 
plasma is uniform along the line focus. We have been able to probe the plasma at locations as close as 
25-301J.m from the target, where the electron density is ~5 x 10 19 cm-3 and the density gradient is steep. 
Ray tracing computations show that this measurement would be difficult to realize with an UV laser 
owing to the strong refraction caused by the large density gradient. Another series of measurements for 
1.8mm long line-focused plasmas created by 0.61 Nd:Y AG laser pulses probed electron densities as 
great as I x 1020 cm-1 [6]. 
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Figure4: Computed trajectory of rays corresponding to a 46.9 nm (Ne-like Ar laser) and 265 nm 
( 4'h harmomc of 1\ d: Y AG) traversing a plasma with electron density distribution corresponding to 
the 12. :i ns interferogram in figure 3. 

4. CONCLUSIONS 

We have demonstrated a new amplitude division interferometer utilizing diffraction gratings as beam 
splitters. It was used in combination with a 46.9nm capillary discharge laser to map the electron density 
evolution of a large-scale laser created plasma. This interferometer scheme has the advantage of an 
increased resistance to plasma debris as compared with amplitude-division interferometers based on 
thin film beam splitters. This grating interferometer can be combined with any of the presently 
available saturated soft x-ray lasers to study high density laboratory plasmas of significant current 
interest. 
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