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ABSTRACT 
 
 
 
QUANTITATIVE ASSESSMENT OF FLOODPLAIN FUNCTIONALITY IN COLORADO USING 

AN INDEX OF INTEGRITY 

 
 
 

Floodplain integrity can be defined as the ability of a floodplain to support essential geomorphic, 

hydrologic, and ecological functions that maintain biodiversity and ecosystem services. Humans 

alter floodplain functionality by changing the physical landscape of the floodplain or by altering 

river flow regimes and subsequent floodplain inundation dynamics. This research evaluates 

floodplain integrity by assessing the prevalence of anthropogenic modifications to hydrology and 

landscape. Specifically, the objectives of this research are to: 1) develop a methodology to assess 

floodplain integrity using geospatial datasets available for large spatial scales; and 2) use the 

methodology to evaluate spatial patterns of floodplain integrity in the state of Colorado. To 

accomplish these objectives, I evaluated the critical floodplain functions of attenuating floods, 

storing groundwater, regulating sediment, providing habitat, and regulating organics and solutes. 

At present, this work is the first to quantify the integrity of specific floodplain functions instead of 

measuring floodplain health solely by ecological integrity. I applied the index of floodplain integrity 

methodology in the state of Colorado to analyze the integrity of each of the five floodplain functions 

and the aggregated overall integrity. In Colorado, overall floodplain integrity decreased as stream 

order increased above third order streams. Floodplain integrity was also lower in floodplains that 

intersected urban areas than those that did not, which indicates the index of floodplain integrity 

captured the adverse relationship between development and floodplain health established in 

literature. By quantifying anthropogenic reductions to floodplain functionality at broad spatial 

scales, the index of floodplain integrity can help target restoration efforts towards the most 

affected functions and areas.   
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1 Introduction 
 
 
 
1.1 Floodplain functions 

Floodplains are unique and vital ecosystems. They support unparalleled levels of biodiversity 

(Tockner and Stanford, 2002; Ward et al., 1999), are among the most productive landscape types 

(Tockner and Stanford, 2002), and are second only to estuaries in terms of global value of 

ecosystem services (Costanza et al., 1997). The characteristic intermittent wetting and drying of 

floodplains allows them to serve a multitude of purposes to support a healthy ecosystem. The 

most vital floodplain functions can be summarized as: 

1) Flood reduction: Floodplains help attenuate floods by storing water and slowing peak flows 

(Burt, 1997; Helton et al., 2014). 

2) Groundwater storage: Floodplains greatly increase hydraulic residence time and 

groundwater recharge by increasing vertical hydraulic connectivity (Brunke and Gonser, 

1997; Helton et al., 2014; Stanford and Ward, 1993).  

3) Sediment regulation: Floodplains provide a buffer between the zones of sediment creation 

and transport, serving as either a sediment source or a sink depending on the sediment 

and flow regime present (Fryirs, 2013; Fryirs et al., 2007; Nanson and Croke, 1992; Wohl 

et al., 2015). 

4) Organics and solutes regulation: Floodplain heterogeneity and intermittent wetting makes 

them well suited to retaining and transforming various forms of carbon and nutrients 

(Brunke and Gonser, 1997; Noe and Hupp, 2009; Sutfin et al., 2016; Wollheim et al., 

2014). 

5) Habitat provision: Floodplains support high biodiversity and provide habitat crucial to the 

life cycle of many aquatic species due to their heterogeneity and high productivity (Brunke 

and Gonser, 1997; Junk et al., 1989; Tockner and Stanford, 2002; Ward et al., 1999).  
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Despite the variety of important functions they perform, floodplains are among the most 

threatened ecosystems and are disappearing at a faster rate than other landscapes due to human 

alteration (Tockner and Stanford, 2002). In a summary of the current state and future of 

floodplains, Tockner and Stanford arrived at the alarming conclusion that if there is any hope for 

sustaining floodplains long term, “highly enlightened management and restoration efforts” are 

crucial. A useful first step in improving or protecting floodplains using management and restoration 

efforts includes assessing overall floodplain health or integrity. 

1.2 Integrity of environmental systems 

The concept of integrity in an environmental context was first discussed by Leopold in his 

landmark 1949 essay that introduced his Golden Rule of Ecology that, “A thing is right when it 

tends to preserve the integrity, stability, and beauty of the biotic community. It is wrong otherwise.” 

(Leopold, 1949). In the following decades, various works explored and clarified the definitions of 

ecological and biological integrity and their use in environmental management (Angermeier and 

Karr, 1994; Karr, 1996, 1992; Karr and Dudley, 1981). Importantly, these explorations clarified 

that reductions to integrity were defined explicitly to be caused by human alterations as opposed 

to natural disturbances (Karr, 1981).  

Further work applied the concept of environmental integrity to guide watershed 

management perspectives (Novotny et al., 2005; USEPA, 2012, 1998). The definition of high 

watershed integrity ranged from a watershed that sustains ecosystem services for humans 

(USEPA, 1998) to a watershed completely free of human influence (Novotny et al., 2005; USEPA, 

2012). Flotemersch et al. (2016) attempted to resolve this ambiguity and create an operable 

definition of environmental integrity as “the capacity of a system (and its sub-components) to 

support and maintain the full range of ecosystem processes and functions essential to the long-

term sustainability of its it is [sic] diversity and natural resources” (Flotemersch et al., 2016). 

The definition of integrity proposed by Flotemersch et al. (2016) can be applied to ecological 

units besides watersheds, such as floodplains. At present, studies of integrity in floodplains are 
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predominantly focused on ecological integrity in the floodplains rather than assessing integrity of 

the floodplains themselves (Chovanec et al., 2003; Chovanec and Waringer, 2001; Petts, 1996). 

The key difference between assessing ecologic integrity in floodplains and assessing floodplain 

integrity is that ecologic integrity focuses solely on habitat quality, therefore providing little or no 

information about the other four functions of healthy floodplains listed in Section 1.1. In contrast, 

Konrad (2015) performed a holistic assessment of floodplain functions for major rivers in the 

Puget Sound. Though not explicitly stated as a study of floodplain integrity, this assessment of 

the anthropogenic changes to a variety of floodplain functions fits the definition of integrity 

proposed by Flotemersch et al. (2016).  

1.3 Quantifying floodplain integrity 

Although a consistent definition of floodplain integrity is a necessary first step, the 

usefulness of the concept of floodplain integrity from a management perspective is in being able 

to measure it. Konrad (2015) provides an example of a method for assessing floodplain integrity 

at a broad spatial scale using GIS analysis of spatial data. However, one limitation of this study 

is that the resulting evaluations are categorical; for each floodplain function, the floodplain in 

question is assigned to a category. The categories provide specific information about the functions 

but have no hierarchy of integrity. This method of categorical assessment provides substantial 

information about floodplain condition at a given location but limits comparisons and analysis of 

spatial trends. Brinson (1996) emphasizes the importance of numerical assessments while 

proposing a method to evaluate wetland functionality, noting that identifying which functions are 

impacted and by how much moves restoration efforts from “fuzzy generalities” to specific goals. 

Congruent to this focus on quantifiable evaluations, Flotemersch et al. (2016) and 

Thornbrugh et al. (2018) develop and then employ a methodology to quantitatively assess 

watershed integrity, which I use as the basis for this methodology to quantify floodplain integrity 

presented in this paper. Remarking that unaltered reference watersheds are practically non-

existent (Stoddard et al., 2006), Flotemersch et al. (2016) instead propose studying the presence 
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of anthropogenic stressors to measure changes to watershed function. Thornbrugh et al. (2018) 

implemented this methodology to assess watershed integrity for the continental United States 

using broadly available datasets. The result was an Index of Watershed Integrity (IWI) and Index 

of Catchment Integrity (ICI) ranging from zero to one (lowest to highest integrity) for all catchments 

and watersheds associated with the National Hydrography Dataset Version 2 stream segments. 

Although the ICI and IWI were calculated for six watershed functions and an aggregated overall 

value, Thornbrugh et al. (2018) conclude that the index representing hydrologic alteration could 

be used to represent overall watershed integrity more efficiently and with minimal loss of 

information compared to calculating and combining all six functional metrics. 

This study builds off the advances made in both the qualitative assessment of floodplains 

in the Puget Sound region of Konrad (2015) and the quantitative assessment of watershed 

integrity in Thornbrugh et al. (2018) by developing a novel methodology to quantitatively assess 

floodplain integrity and applying the methodology to floodplains in the state of Colorado. 

1.4 Index of floodplain integrity 

For the purpose of this study, floodplain integrity is defined as the ability of a floodplain to 

support essential geomorphic, hydrologic, and ecological functions that maintain biodiversity and 

ecosystem services provided to society. Similar to Thornbrugh et al. (2018), I aim to address the 

limitations of inefficient small-scale field studies and the lack of a truly unaltered reference 

environment by using available datasets to assess the level of alteration to floodplains. However, 

as floodplains are unique hydrogeomorphic features, the functions they provide and the human 

alterations that inhibit these functions are unique from those of entire watersheds. In particular, 

floodplain functionality is dependent not only on the physical landscape of the floodplain, but also 

driven by the frequency and duration of overbank flooding (Opperman et al., 2010). Because of 

the tight link between floodplain inundation and floodplain function, I chose to explicitly include 

human alterations to river hydrology, which were absent from Thornbrugh et al. (2018), as a 

stressor variable in the assessment of floodplain integrity.  
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The objectives of this research are to: 1) develop a methodology to assess floodplain integrity 

using geospatial datasets available for large spatial scales; and 2) use the methodology to 

evaluate spatial patterns of floodplain integrity in the state of Colorado. Colorado is large enough 

to ensure my proposed approach can be used for a large spatial extent, while still providing a 

refined spatial extent for iterating on the methodology. Additionally, Colorado contains varied 

geomorphology, climate, hydrology, and levels of human alteration, which ensures a robust 

evaluation of the methodology. Through quantifying the abundance of anthropogenic alterations 

to floodplains in the state of Colorado, this research produces and analyzes an index of floodplain 

integrity (IFI) for each of the five floodplain functions and an aggregated overall IFI.  
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2 Links between floodplain functions and human stressors 
 
 
 

In order to quantify the effects of humans on floodplains, I first identified specific anthropogenic 

alterations that reduce floodplain functionality. As the intent of this research is to measure 

anthropogenic disturbance, I did not consider the impact of natural disturbances, such as fires or 

landslides, on floodplain functions. I used the literature highlighted below to identify relevant 

stressors and their effect for the five floodplain functions, with my findings summarized in Figure 

1. I later used these identified stressors to choose relevant datasets, which are discussed in 

Section 3.2 and illustrated in Table 3.   

2.1 Flood reduction stressors  

Floodplains’ potential to reduce peak flows and provide transient surface water storage is 

stressed by human developments in the floodplain that lower the floodplain storage capacity and 

therefore increase flood stage for the same volume of water (Konrad, 2003; Larson and Plasencia, 

2001; Wheater and Evans, 2009). Levees are a particularly important stressor, as they can 

completely cut off connection with the floodplain (Criss and Shock, 2001; Tobin, 1995; Wheater 

and Evans, 2009). Roads and railroads also hinder flood attenuation by being a barrier that 

isolates segments of the floodplain (Beevers et al., 2012; Kumar et al., 2014; Tarolli and Sofia, 

2016), intercepting and diverting subsurface flow (Wemple and Jones, 2003), or increasing runoff 

by collecting and channelizing surface flow, which increases flood peaks (Tarolli and Sofia, 2016). 

Flood attenuation is also sensitive to changes in land cover, as vegetation helps to slow and store 

floodwater (Nicholson et al., 2012; Sholtes and Doyle, 2011; Zell et al., 2015) and urbanization 

increases conveyance and therefore flood peaks (Wheater and Evans, 2009).  

2.2 Groundwater storage stressors 

The ability of floodplains to store and regulate groundwater is primarily stressed by 

reductions in vertical connectivity. These reductions can be driven by increased area of 
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impermeable surface in floodplains, which reduces infiltration (Brunke and Gonser, 1997; 

Wheater and Evans, 2009). Infiltration can also be limited by channelization of overland flow as 

this decreases the contact time and area by hastening the movement of surface flows from the 

floodplain to the river (Brunke and Gonser, 1997; Hancock, 2002; Wheater and Evans, 2009). 

Colmation, or  clogging  of  interstitial  spaces  in alluvial  sediments,  also  reduces  infiltration in 

 

Figure 1. Conceptual diagram of floodplain functional integrity and the variables that change each function. 
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floodplains. Colmation can be caused by increased fine sediment loading, increased algal growth, 

and degradation of soil structure, which are often responses to changes in land cover (Brunke 

and Gonser, 1997; Hancock, 2002; Wheater and Evans, 2009). Excessive pumping of 

groundwater can also contribute to colmation (Brunke and Gonser, 1997). In the short term, 

pumping of groundwater can lower the water table and provide increased groundwater storage.  

However, in the long term, lowering the groundwater table endangers riparian vegetation, which 

harms soil structure and increases erosion and therefore reduces groundwater connectivity 

(Brunke and Gonser, 1997). Finally, vertical connectivity can be enhanced by riparian vegetation, 

large wood, and beaver dams, which serve to improve soil structure, increase ponding, and 

increase time for infiltration (Boulton, 2007; Hancock, 2002; Harper et al., 1999; Wheater and 

Evans, 2009).  

2.3 Sediment regulation stressors 

Floodplains’ ability to serve as sediment buffer zones is dependent on the floodplain 

landscape and floodplain inundation dynamics. Unaltered floodplains help to moderate the 

sediment regime by switching roles between being a sediment source or sediment sink, but 

anthropogenic land cover change can shift this balance (Lecce, 1997; Wohl et al., 2015). In 

particular, agriculture in floodplains has increased sediment supply and erodibility, causing 

floodplains to be a greater sediment source (Knox, 2006; Walling and Fang, 2003; Wheater and 

Evans, 2009). Removal of riparian vegetation also shifts the role of floodplains in the sediment 

regime because riparian vegetation helps filter suspended sediment and reduce sediment yield 

to rivers (Brunke and Gonser, 1997; Wheater and Evans, 2009), and reductions in riparian 

vegetation make flows much more effective at mobilizing sediment (Fryirs, 2013). Sediment 

connectivity and residence time are also affected by roads and railroads, which can increase 

sediment production in floodplains by intercepting and channelizing surface flows, which 

increases their erosive power (Persichillo et al., 2018; Tarolli and Sofia, 2016). Additionally, the 

natural cycle of sediment deposition and erosion in floodplains is disproportionately dependent 
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on large overbank flows (Florsheim and Mount, 2003; Wohl et al., 2015), and therefore is severely 

limited by reductions in the magnitude or frequency of peak flows (Fryirs, 2013; Nanson, 1986).  

2.4 Organics and solutes regulation stressors 

The storage of organics and the chemical processing that occurs in floodplains are also 

dependent on both the landscape and the inundation of the floodplain. Regular overbank flooding 

is beneficial for accumulation of organic matter and enhancing denitrification (Craig et al., 2008; 

Sgouridis et al., 2011; Tockner et al., 1999), and thus hydrologic alteration can change the 

processing of organics and solutes in floodplains. Connectivity of groundwater is also important 

for nutrient processing and filtration (Brunke and Gonser, 1997; Burt, 1997; Stanford and Ward, 

1993) therefore impermeable areas that limit vertical connectivity in floodplains reduce floodplain 

solute regulation. Reductions in lateral overland connectivity are also a stressor, as connected 

surface flow is responsible for particulate movement (Tockner et al., 1999). Vegetation and large 

wood contribute to retention of organic matter and nutrient loads and carbon storage in floodplains 

(Craig et al., 2008; Hanberry et al., 2015; Harper et al., 1999; Pinay and Decamps, 1988; Stanford 

and Ward, 1993; Sutfin et al., 2016). Floodplains can also be a significant source of organics and 

solutes due to autochthonous production (Junk et al., 1989; Roach et al., 2014). Consequently, 

the loss of riparian vegetation and associated loss of complexity can reduce mediation and 

change the production of organics and solutes in floodplains.  

2.5 Habitat stressors 

Many anthropogenic modifications to floodplains degrade habitat and result in loss of 

biodiversity. For instance, changes in land use towards urbanization and agriculture reduce 

biodiversity and increase nutrient pollution (Harper et al., 1999; Tockner et al., 1999). Floodplain 

habitat is also highly vulnerable to species invasion, which can harm fitness of native species and 

reduce aquatic biodiversity (Tockner et al., 1999). Lateral connectivity of floodplain habitat is an 

important contributor to floodplain heterogeneity (Ward and Stanford, 1995), and therefore 
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development that blocks the movement of water and aquatic species in the floodplain reduces 

habitat area and quality (Beevers et al., 2012; King et al., 2003). Additionally, loss of trees and 

large wood in floodplains leads to less complex and diverse habitat and reduces channel 

migration, producing a cyclic effect that can lead to further loss of native riparian vegetation 

(Collins et al., 2012; Harper et al., 1999). Finally, floodplain habitat can be detrimentally impacted 

by hydrologic alteration, as regular overbank flows are vital to maintain biodiversity, habitat 

heterogeneity, and ecosystem dynamism (Amoros and Bornette, 2002; Brunke and Gonser, 1997; 

Galat et al., 1998; Harper et al., 1999; Higgisson et al., 2019; Junk et al., 1989; Tockner et al., 

1999; Ward et al., 1999).  
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3 Methods 
 
 
 

In order to assess floodplain integrity, I first identified datasets that represent the 

anthropogenic stressors to floodplain functions described in Section 2. Next, I calculated the 

prevalence of these stressors in discretized floodplain units. From the relative densities of these 

stressors in the floodplain, I calculated an IFI for each of the five floodplain functions. Then, I 

combined these functional IFI values to make an overall IFI metric. The functional and overall IFI 

values range from zero to one, representing floodplains where functionality is most to least 

altered, respectively. This process is represented graphically in Figure 2 and each step is 

described in detail in the following sections, with a sample calculation provided in Appendix A.  

 

Figure 2. Overview of IFI methodology. 

3.1 Discretization of floodplain units 

Assessing the integrity of floodplains across Colorado requires a floodplain delineation for 

the entire state. Floodplain boundaries used in the project were adapted from results of flood 

hazard mapping performed for the conterminous United States at a 30 m resolution using a 2D 

hydrodynamic model and regionalized flood frequency estimates (Wing et al., 2017). The 

floodplain delineation used in this research is associated with the 100-year flood in an 

“undefended” (without levees) condition. 
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From the floodplain delineation for the entire US, I extracted a floodplain shapefile for the 

state of Colorado. I performed minor cleaning of the delineated floodplains by filling gaps and 

removing disconnected islands in the shapefile that were smaller than 3 raster grid cells (< 2,700 

m2). This minor cleaning changed the overall area of the delineated floodplain in Colorado from 

14,202 km2 to 14,214 km2 (+0.0008 %).  

To create smaller floodplain units to compare across the state, I divided floodplains along 

the boundaries of sub-watersheds delineated by 12-digit hydrologic unit codes (HUC-12s) from 

the Watershed Boundary Dataset (Seaber, 1987). This resulted in 3,025 floodplain units in the 

state with an average of 4.70 km2 per floodplain unit (Figure 3).  

 

Figure 3. Floodplain study location map. The state of Colorado (red on US map) is shown with fourth order 
and larger rivers (blue), census-designated and incorporated areas (orange), physiographic regions (green, 
blue, and yellow shading), and floodplain areas (grey). The red inset map shows a close-up view of the 
floodplain units divided by HUC-12 boundary.  

I associated each floodplain unit with a stream order using the National Hydrography 

Dataset Version 1 (NHDPlus V1) streamlines (McKay et al., 2010). Each floodplain unit was 

assigned the maximum stream order in the associated HUC-12 based on the assumption that the 

majority of the floodplain area will be preferentially associated with the largest streams in a given 
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HUC-12. Of the HUC-12 sub-basins used to divide the floodplain, 100 HUC-12s do not contain 

an NHDPlus V1 streamline with a reported stream order, and therefore there is no stream order 

associated with 100 floodplain units. Floodplains were also associated with a physiographic 

division (Fenneman, 1917) based on the region in which the majority of the floodplain area was 

contained. Summaries of floodplain area by stream order and physiographic region can be found 

in Table 1 and Table 2, respectively. 

Table 1. Floodplain area by stream order. 

Stream Order Floodplain Area (km2) 
1 486 
2 1,507 
3 2,817 
4 3,788 
5 2,284 
6 932 
7 1,136 
8 5 

N/A 1,258 
Total 14,214 

 

Table 2. Floodplain area by physiographic region. 

Physiographic Division Floodplain Area (km2) 
Intermontane Plateaus 1,063 

Rocky Mountain System 4,495 
Interior Plains 8,656 

Total 14,214 
 

3.2 Identification of stressor datasets 

Once I determined the relevant stressors for each floodplain function, I identified datasets 

that could be used to measure the amount of each stressor across Colorado floodplains. I selected 

datasets based on the following criteria: 1) information contained in the dataset was available for 

the entire state; 2) the datasets were the same or finer spatial scale than the floodplain delineation; 

and 3) the datasets were publicly available or soon to be publicly available. My intention in 
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focusing on publicly available datasets was to create a methodology that could easily be 

replicated and updated without needing to contact individuals or organizations for access to data.  

The datasets I selected vary in their representativeness of the stressors. In some cases, 

datasets that directly measured the stressor were available, such as the National Landcover 

Database (NLCD) percent impervious surface raster data to quantify impervious surface 

coverage. For other stressors, I was unable to identify a large-scale measurement and reporting 

effort, so I instead used proxy indicators of the stressor for which data were available. For 

instance, since measurements of groundwater depletion in Colorado are not currently available 

at the scale and coverage required, I estimated this stressor with the density of groundwater wells 

in the floodplain. The datasets used to represent each stressor and important characteristics of 

the datasets are shown in Table 3. Note that the same stressor may be represented by a different 

dataset for a different function, or that the same dataset may be used to represent several 

stressors. These links between the datasets and the stressors were informed by the function-

specific review presented in Section 2.  

One unique dataset used in this study is an estimate of the magnitude of change for a 

variety of indicators of hydrologic alteration for NHDPlus V1 stream lines. This dataset was 

created following the method described in McManamay et al. (2017) and extended to additional 

hydrologic alteration metrics (see Olden and Poff (2003) for definitions of the indicators of 

hydrologic alteration). To create this dataset, hydrologic alterations at USGS gages across the 

U.S. were calculated using modeled estimates of natural flows from USGS reference gage sites 

(Falcone, 2017). Hydrologic alteration was then extrapolated from gages to stream reaches using 

random forest models based on fifty-two water cycle related variables. The hydrologic alteration 

dataset was developed in collaboration with Ryan McManamay at Oak Ridge National Laboratory. 

This novel data-driven modeling of hydrologic alteration represents a notable advancement over 

representing hydrologic alteration using proxies such as the presence of dams and irrigation 

canals. This dataset provides estimates for several relevant indicators of hydrologic alteration that 
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represent changes in the magnitude, duration, frequency, and timing of flows of various return 

intervals. However, because all of the relevant indicators were highly correlated (see Appendix 

A), I chose to use a single indicator to represent all types of change to hydrology. I selected 

alterations to MH20, or mean annual maximum flow divided by catchment area, as the metric to 

represent hydrologic alteration, as its physical meaning is simple to understand and the mean 

annual maximum flow is likely to activate the floodplain. Although this hydrologic alteration dataset 

is not currently available to the public, I chose to include the dataset in this investigation as the 

data will be published and available in the near future. 

3.3 Calculation of stressor density 

After I identified a dataset to represent each stressor, I was able to quantify the level of each 

stressor within the floodplain. The method I used to compute the stressor density was dependent 

on the data type. Polygon, polyline, and point type stressor datasets all represented binary 

stressor presence or absence, such that prevalence of the shape features indicated the 

prevalence of the stressor. As such, I calculated the stressor level as the density of the polygons, 

polylines, and points in the floodplain unit in km2/km2, km/km2, and count/km2, respectively. For 

the forest cover loss dataset, the percentage of cells in the floodplain that reported forest loss 

events between 2000 and 2018 was computed. Prevalence of developed area was considered 

the percentage of cells in the floodplain reported as high, medium, or low intensity development 

(NLCD classes 21-24). I computed the level of agriculture as the percentage of cells in the 

floodplain reported as pasture/hay or cultivated crops (NLCD classes 81 and 82). To quantify 

impervious surface, I averaged the percent imperviousness values reported for each 30 m cell for 

all cells in the floodplain. I computed the percentage of non-native introduced vegetation as the 

percentage of cells in the LANDFIRE Existing Vegetation Type raster reported as groups 701-

709, 711, and 731, which represent various types of invasive, non-agricultural plant species. The 

hydrologic alteration dataset reports the probability of change to the indicator MH20, or specific 

mean  annual  maximum flow,  for  each  connected  NHDPlus  V1 segment.  To  aggregate  these  
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Table 3. Summary of datasets used to represent floodplain function stressor. 

Floodplain 
function 

Stressor Dataset Data attributes 

Flood 
reduction 

Reduced storage volume Buildings1 Polygon, July 17, 2018 version 

Floodplain disconnection Leveed area2 Polygon, April 2015 

Overland flow interception Roads and Railroads1 Polyline, July 17, 2018 version 

Land cover change Forest cover loss events3  Raster, 30m resolution, loss 2000 – 
2018 

 Developed area4 Raster, 30m resolution, 2011 version 

Groundwater 
storage 

Impermeable surface Percent imperviousness4 Raster, 30m resolution, 2011 version 

Channelized overland flow Ditches and canals5 Polyline, 1:100,000 scale, 2006 release 

Colmation Agricultural area4 Raster, 30m resolution, 2011 version 

Loss of wood and 
vegetation 

Forest cover loss events3  Raster, 30m resolution, loss 2000 – 
2018 
 

 Lowered water table Groundwater wells6 Points, October 2018 

Sediment 
regulation 

Land cover change Agricultural area4 Raster, 30m resolution, 2011 version 

Loss of wood and 
vegetation 

Forest cover loss events3  Raster, 30m resolution, loss 2000 – 
2018 

Overland flow interception Roads and Railroads1 Polyline, July 17, 2018 version 

Hydrologic alteration Probability of change in 
MH207 

Data for NHD+ V1 polylines, 2018 
hydrology data 

Organics 
and solutes 
regulation 

Hydrologic alteration Probability of change in 
MH207 

Data for NHD+ V1 polylines, 2018 
hydrology data 

Vertical connectivity Percent imperviousness4 Raster, 30m resolution, 2011 version 

Overland flow interception Roads and Railroads1 Polyline, July 17, 2018 version 

Loss of wood and 
vegetation 

Forest cover loss events3  Raster, 30m resolution, loss 2000 – 
2018 

Habitat 
provision 

Land cover change Developed area4 Raster, 30m resolution, 2011 version 

  Agricultural area4 Raster, 30m resolution, 2011 version 

 Loss of wood and 
vegetation 

Forest cover loss events3  Raster, 30m resolution, loss 2000 – 
2018 

 Species invasion Non-native introduced 
vegetation8 

Raster, 30m resolution, 2014 release 

 Overland flow interception Roads and Railroads1 Polyline, July 17, 2018 version 

 Hydrologic alteration Probability of change in 
MH207 

Data for NHD+ V1 polylines, 2018 
hydrology data 

1. OpenStreetMap Contributors, 2018 
2. National Levee Database; USACE, 2015 
3. Global Forest Loss Dataset; Hansen et al., 2013 
4. National Landcover Database; Homer et al., 2012 
5. National Hydrography Dataset, Version 1; McKay et al., 2010 
6. Colorado Decision Support System; CWCB/DNR, 2018 
7. Hydrologic Alteration Data; McManamay et al., 2017 and personal communication 
8. LANDFIRE Existing Vegetation Type; Rollins, 2009 
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stream segment values to one number for each floodplain unit, I averaged the values for the 

streamlines of the maximum order in the floodplain unit. This aggregation method is based on the 

assumption that the floodplain area is preferentially associated with higher order streams. Refer 

to Appendix A for an investigation of alternate streamline-to-floodplain hydrologic alteration value 

aggregation methods. I computed all stressor densities in the floodplain units using ArcGIS tools 

written in Python (see Appendix B).  

3.4 Stressor rescaling 

Using the methods described in Section 3.3, I calculated the quantity of each stressor in 

each floodplain unit. Stressors datasets that were raster or polygon type measured stressor 

density in area, and therefore have a theoretical maximum value of one. However, polyline and 

point type datasets have no theoretical maximum. Additionally, most of the stressor area densities 

observed in Colorado are much lower than one as the likelihood of a single stressor occupying 

the entire floodplain area is very low. Accordingly, I rescaled quantities of each stressor from zero 

to one, with a zero value indicating absence of stressor in the floodplain and value of one being 

the 90th percentile of the stressor levels in the floodplain observed in Colorado. All stressor levels 

over the 90th percentile were assigned a value of one. However, for the two datasets for which 90 

percent or greater of the floodplain units still had no stressor present (leveed area and wells), a 

value of one instead corresponded to the maximum observed value.  

I performed this rescaling for two main reasons. First, it provided a more consistent method 

to quantify the prevalence of stressors on a zero to one scale when using several different data 

types (i.e., areas, lines, and points). Secondly, it provided much more spread amongst the 

observed levels of the stressors compared to unscaled stressor densities. As the purpose of the 

IFI is to provide a comparison between floodplains across the state, this increased spread makes 

comparisons between floodplain units more meaningful, rather than a comparison to a theoretical 

worst case scenario. One limitation of this rescaling of the datasets is that the scaling now 

depends on the observed data, which makes comparisons between separate computations of the 
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IFI more difficult. Plots of the rescaled data and a more in-depth discussion of the scaling rationale 

can be found in Appendix A.  

3.5 Calculation of IFI for functions 

Using the scaled quantities of each stressor in each floodplain unit, I calculated the IFI 

values for the five floodplain functions. First, I performed a Pearson correlation analysis for the 

scaled stressor data for the floodplain units (see Appendix A). For any two stressor datasets with 

correlation coefficients greater than 0.7, only one of the stressors was included in the calculation 

of each function to avoid over-weighting one stressor type. With the remaining stressor datasets, 

I calculated the function IFI for each of the five functions as  

𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑘𝑘 = 1 −
∑ 𝑆𝑆𝑖𝑖,𝑗𝑗
𝑛𝑛𝑗𝑗,𝑘𝑘
𝑗𝑗=1

𝑛𝑛𝑗𝑗,𝑘𝑘
 

where 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑘𝑘 is the integrity of the 𝑖𝑖𝑖𝑖ℎ floodplain unit for the 𝑘𝑘𝑖𝑖ℎ function; 𝑆𝑆𝑖𝑖,𝑗𝑗 is the scaled stressor 

value for the 𝑗𝑗𝑖𝑖ℎ stressor in the 𝑖𝑖𝑖𝑖ℎ floodplain unit; and 𝑛𝑛𝑗𝑗.𝑘𝑘 is the number of stressors, 𝑗𝑗, that 

impact floodplain function 𝑘𝑘. This function assumes a negative linear response to the abundance 

of stressors where higher values of scaled stressors in the floodplain equate to lower function IFI 

and vice versa. It also implies an equal weighting of all stressors that contribute to a given function. 

The assumptions of equal weighting and negative linear response to stressors are necessary 

simplifications due to the current lack of understanding of the complex functional responses in 

floodplains. Weighting and non-linear relationships could easily be incorporated into this 

methodology at this step should future research clarify the expected changes in functionality due 

to floodplain modifications.  

3.6 Calculation of overall IFI 

The overall IFI for each floodplain unit was calculated as the geometric mean of the five 

function IFI values, such that:  
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5

𝑘𝑘=1

�
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5

 

where 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 is the overall index of integrity for the 𝑖𝑖𝑖𝑖ℎ floodplain unit; and 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑘𝑘 is the index of 

integrity for the 𝑘𝑘𝑖𝑖ℎ function in the 𝑖𝑖𝑖𝑖ℎ floodplain unit. I chose a geometric mean because each 

floodplain function is considered critical to floodplain function. Accordingly, if one function is 

evaluated at zero integrity, the overall integrity of the floodplain unit is also zero. The geometric 

average has previously been shown to be most appropriate for combining several essential and 

non-substitutable metrics into one index (Sandoval-Solis et al., 2011).  

After computing the functional and overall IFI, I summarized the results based on spatial 

attributes. These attributes included the physiographic region and stream order of the floodplain 

(as described in Section 3.1), and also whether or not the floodplain unit intersected the 

TIGER2010 City Boundaries shapefile, which includes incorporated places and census 

designated places (2010 TIGER/Line Shapefiles, 2011).  

3.7 Comparison to index of catchment integrity and wetland density 

The overall IFI values were compared to the Index of Catchment Integrity (ICI) values 

computed in Thornbrugh et al., 2018. To allow a one-to-one comparison, I calculated the mean 

ICI of the catchments that intersected each floodplain unit. This produced a single ICI value for 

each floodplain unit.  

Additionally, I compared the overall IFI values to the density of wetlands in the floodplains. 

Wetlands were considered to be areas of the classes “Freshwater Emergent Wetland” and 

“Freshwater Forested/Shrub Wetland” from the National Wetland Inventory (USFWS, 2018). The 

justification behind comparing IFI to wetland density is that wetlands are more likely to be 

supported in floodplains that have little human alteration as compared to floodplains that are 

highly modified.  
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4 Results 
 
 
 

Using the HUC-12 identification number, the computed function and overall IFI values were 

mapped to the floodplain across the state of Colorado (see Appendix C for a full map of overall 

IFI in Colorado and Appendix A for a map of Colorado with HUC-12s colored by the overall IFI of 

the floodplain they contain). Figure 4 shows the distribution of the computed IFI values by area of 

floodplain for each of the five floodplain functions and the overall IFI. IFI values for all functions 

and overall are left skewed, with the highest skew occurring for flood reduction and groundwater 

storage. Statistics of the computed overall and function IFI values are summarized in Table 4. 

The functional IFI values are generally highly correlated, with correlation coefficients ranging from 

0.65 to 0.89 (see Appendix A).  

 

Figure 4. Prevalence of IFI value by total floodplain area for each of the five floodplain functions and the 
aggregated overalll IFI. Note that all functions and overall IFI show a left skew.  
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Table 4. Summary statistics of computed IFI for overall integrity and floodplain functional integrity.  

 Overall 
IFI 

Flood 
reduction 

Groundwater 
storage 

Sediment 
regulation 

Organics/Solutes 
regulation 

Habitat 
provision 

Minimum 0.00 0.20 0.25 0.05 0.00 0.16 
Median 0.76 0.89 0.85 0.68 0.73 0.71 
Mean 0.73 0.82 0.83 0.67 0.68 0.69 

Maximum 1.00 1.00 1.00 1.00 1.00 1.00 
Std. dev. 0.16 0.18 0.15 0.17 0.20 0.15 

 

Figure 5 shows a sample of the mapped IFI results at a 1:1,000,000 scale for the region 

of Colorado shown in the red box on Figure 3. In Figure 5, there are visible gradients in integrity 

present. Similar spatial patterns are present for the overall IFI and functional IFI values, although 

magnitudes of IFI differ. 

 

Figure 5. Close up of mapped IFI values for each of the five floodplain functions and overall IFI. The region 
of Colorado shown in this figure is the same close-up region shown in Figure 3. Gradients of color 
representing gradients in floodplain integrity are present.  



22 

IFI values were analyzed by physiographic region, urban versus rural area, and stream 

order, with results shown in Figure 6. Using Tukey Honestly Significant Difference (HSD) test 

(Tukey, 1953), floodplains in the Interior Plains region (median = 0.81, mean = 0.78) have a 

significantly different average IFI (p < 0.0001) than the Intermontane Plateau (median = 0.72, 

mean = 0.70) or Rocky Mountain System regions (median = 0.71, mean = 0.69), between which 

there is no significant difference (p = 0.61). Figure 6b shows that the average overall IFI of 

floodplain units that intersect urban areas is lower (median = 0.53, mean = 0.55) than that of 

floodplain units that do not (median = 0.79, mean = 0.77), which are considered rural. The 

difference in average overall IFI between rural and urban floodplains is significant using the 

Student’s t-test (p < 0.0001). Figure 6c shows overall IFI decreasing with stream order for streams 

above third order (except for eighth order, which only includes two floodplain units). The 

differences between average IFI as stream order increases are significant between third and 

fourth (p < 0.0001), fourth and fifth (p < 0.0001), and fifth and sixth (p = 0.0002) order streams 

using Tukey HSD. The relationship between overall IFI and the area of the floodplain unit was 

also investigated to check for an area bias, but no meaningful relationship existed (R2 = 0.02) 

(see Appendix A). 

I also analyzed the functional and overall IFI data to determine the importance of each 

function to the overall IFI for each floodplain unit. Figure 7 shows the ratio between the functional 

IFI and the overall IFI value for each of the floodplain units. Ratios greater than one indicate that 

the function IFI is increasing the overall IFI, while ratios less than one indicate that the function 

IFI is reducing the overall IFI for that floodplain unit. On average, flood reduction and groundwater 

storage functional IFI are slightly higher than overall IFI, while sediment regulation, 

organics/solutes regulation, and habitat provision functional IFI are lower than overall IFI. 

Differences between the average ratios for all functions are significant except for sediment 

regulation and organics/solutes regulation using Tukey HSD (p values in Appendix A). I also 
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investigated the standard deviation of the five function IFI values and the frequency and spatial 

distribution of the function with the minimum IFI value of the five functions (see Appendix A). 

 

Figure 6. Analysis of IFI by a) physiographic region, b) rural vs urban, and c) stream order. Physiographic 
regions and urban areas are shown shaded in Figure 3. Statistical significance between means is indicated 
by ns (not significant), *, **, ****, or ****, indicating the p value is >0.05, <0.05, <0.01, <0.001, or <0.0001, 
respectively.  

In comparing the computed overall IFI to ICI and density of wetlands, no meaningful 

relationships were found, as shown in Figure 8. Coefficients of determination were 0.05 for IFI 

versus ICI and 0.01 for IFI versus wetland density. However, despite the absence of a predictive 

relationship, the correlations of overall IFI to ICI and wetland density were both statistically 

significant (p < 0.0001). The regression of IFI and wetland density was also performed with 

floodplains separated by stream order, with no meaningful relationships found (see Appendix A).  
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Figure 7. Ratio of functional IFI to overall IFI for the five floodplain functions. Ratios greater than one indicate 
that the function is increasing the overall IFI, while ratios less than one mean that the function is reducing 
the overall IFI.  

 

Figure 8. Comparison of overall IFI to a) ICI and b) wetland density. The relationships are not predictive (R2 
< 0.1), although they are statistically significant (p < 0.0001).   



25 

5  Discussion 
 
 
 

The methodology developed to compute IFI was successfully applied to the state of Colorado. 

With functional and overall IFI mapped for Colorado’s floodplains, it is possible to visualize the 

anthropogenic effect on floodplain integrity across the state. At present, this work is the first to 

quantify the integrity of specific floodplain functions instead of measuring floodplain health solely 

by ecological integrity. Because the IFI is numeric, it is possible to use the IFI values computed 

here for a broad range of analyses. The examples of IFI by physiographic region, stream order, 

and city versus rural represent analyses that can be performed, but any other spatial division or 

pattern could be investigated without recalculating IFI.  

Similarly, because this methodology focuses on broadly available datasets, the computation 

of IFI can be repeated in a different area. The only Colorado-specific dataset used in this 

implementation of the IFI calculation was the groundwater well locations from the Colorado 

Decision Support System. All other datasets are available for the continental US. If alternate 

stressor datasets were identified for a new region, it would be straightforward to substitute these 

datasets into the IFI computational framework.  

Regarding the results for Colorado, it is unsurprising that functional IFI values for the five 

floodplain functions are highly correlated (Appendix A). Many of the same stressors inhibit several 

functions (see Table 3), even though the specific manner in which the stressor affects the 

floodplain may vary between functions. The highly correlated functional IFI values are an inherent 

result of the interconnectedness of floodplain functions. A similar interdependence of stressors 

and indicators of functionality in floodplains has been noted in previous studies. For instance, 

Bouska et al. (2019) developed indicators of adaptive capacity for the Upper Mississippi River 

System and concluded that the indicators were often interdependent but that no single indicator 

appropriately described floodplain resilience. Furthermore, a review of the impact of altered flow 

regime on river and floodplain ecosystems by Bunn and Arthington (2002) noted the difficulty of 
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distinguishing the impacts of flow alterations “from those of a myriad of other factors and 

interactions,” highlighting the complexity of stressor responses in floodplains.  

5.1 IFI in Colorado 

The functional and overall IFI values are left skewed (Figure 4), which is an inherent result 

of the distributions of the scaled stressor data used in their computation. As shown in Appendix 

A, the stressor density data are all skewed right, and thus the negative linear relationship between 

stressor density and IFI results in left skew of the IFI values. The two stressors that were not 

present in greater than 90 percent of the floodplain units were leveed area and groundwater wells, 

which were included in the calculation of the flood reduction and groundwater storage IFI, 

respectively. As a result, flood reduction and groundwater storage IFI show the highest skew and 

also have the most tendency to raise the overall IFI of the five functions (Figure 7). However, 

despite the relatively higher average IFI of flood reduction and groundwater storage, all five 

functions report a ratio of functional IFI to overall IFI above and below one for some floodplain 

units, showing that there was variability in the relative integrity of the functions despite their high 

correlation. This inter-function variability is quantified by the histogram of the standard deviation 

of the functional IFI values shown in Appendix A.  

When mapped to the floodplains units, the computed IFI shows gradients in integrity (Figure 

5). One conclusion to draw from these visible gradients is that the scale at which the floodplains 

were divided is appropriate. If a random distribution of IFI values were observed, it could imply 

that the division of the floodplains was too fine relative to the stressor data scale and average 

trends in stressor level were not captured. However, if the IFI changed minimally between 

floodplain units, it could signal that spatial trends in stressor density were masked by averaging 

over too large of an area. As neither a random nor uniform distribution of IFI values was produced, 

the HUC-12 division of the floodplains appears to be an acceptable scale for this methodology.  

The analyses of IFI by physiographic region, urban versus rural, and stream order present 

an overview of spatial variations in floodplain integrity in Colorado. The analysis by stream order 
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provides information about the effect on integrity of a floodplain’s position within a watershed. 

Higher integrity is generally observed in the headwaters than in larger order streams, which 

makes sense considering that human activity tends to be focused around larger rivers and that 

headwater streams are often in less populated (and therefore less modified) areas. Also, 

floodplains that intersect urban areas have a significantly lower average integrity than those that 

do not, which also is supported by the fact that humans disturb floodplain function (Wohl, 2019), 

and humans are preferentially concentrated in urban areas. When considering the regional trends 

in floodplain integrity, I was surprised to see higher integrity in the plains than the other 

physiographic regions, especially considering that the largest cities in Colorado are also in the 

plains region. One possible explanation for this is relative recentness of development in the 

mountainous regions relative to the plains, which feeds into a time bias described further in 

Section 5.3. Additionally, different regions have different primary stressors. For the interior plains, 

the primary stressors are likely surface flow regulation and lowered groundwater table, which are 

both stressors that do not have a directly measured dataset. Accordingly, the regional differences 

in overall IFI may reflect more on regional changes in primary stressors and representativeness 

of the associated dataset than actual differences in integrity.  

5.2 IFI validation 

As IFI is intended as a comparative metric and has no physical meaning, it is difficult to 

validate the IFI results. I attempted to find datasets to use for comparison to the Colorado IFI 

results, but was unable to identify an appropriate measure of floodplain functionality. Most riverine 

integrity studies focus on watershed level or in-stream metrics with a strong emphasis on 

ecological integrity, which complicates the comparison with a multi-function floodplain specific 

metric like the IFI. However, IFI results for Colorado were compared to ICI from Thornbrugh et al. 

(2018) and wetland density to see if similar spatial patterns existed.  

I was surprised to see very little correlation between IFI and ICI or wetland density. One 

implication of this is that catchment health is not an appropriate indicator of floodplain health, as 
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their differing processes and forms make them distinct ecological units that must be evaluated 

individually. One notable difference between the ICI and IFI computation is that many catchment 

stressors are water quality related, which was not included as a floodplain stressor. For instance, 

one of the six watershed functions Thornbrugh et al. (2018) identified was regulation of water 

chemistry, which included mines, superfund sites, fertilizer application, industrial facilities, and 

wastewater treatment plants as stressors. The importance of water quality to the watershed 

integrity evaluation is reflected in the fact that IWI explained more than 25 percent of the variability 

in a water quality metric derived from the EPA’s National Rivers and Streams Assessment 

(Thornbrugh et al., 2018; USEPA, 2016).   

When considering the relationship between overall IFI and wetland density, there is no 

predictive relationship. However, Figure 8b appears to show a rough threshold where high 

densities of wetlands do not occur in floodplains with low overall IFI. Despite the lack of predictive 

relationships between ICI and wetland density, I have some confidence in the IFI results as the 

spatial analyses discussed in Section 5.1 match what is intuitively expected.  

One final note on the comparison of overall IFI to ICI and wetland density is that the 

relationships were statistically significant, which means that there is evidence to support that the 

data are not entirely random. The high sample sizes of floodplain units likely contribute to this 

statistical significance. However, the low coefficients of determination for both comparisons 

demonstrate that, though significant, the relationships have negligible predictive power.  

5.3 Limitations of the IFI method 

Although the IFI approach presented in this paper is novel in its assessment of specific 

floodplain functions, there are also limitations that reduce the usefulness of this methodology. 

Likely the most impactful of these limitations is that the datasets available to quantify the stressors 

of floodplain functions vary in their representativeness. For instance, density of groundwater wells 

does not necessarily correspond directly to groundwater depletion, especially considering that no 
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withdrawal volume is included in the dataset. This introduces uncertainty into the integrity estimate 

for groundwater storage.  

One other stressor that is poorly represented by available data is the presence of large wood 

and forest stands. The Hansen et al. (2013) global forest loss dataset only contains forest loss 

occurring after 2000 and therefore does not represent the bulk of the deforestation in the state. 

This limited date range also serves to introduce a bias into the integrity assessment as forest loss 

is preferentially shown in regions of new development as opposed to areas where forest may 

have been cleared for development historically. A final note on the forest loss dataset is that it is 

also used to represent loss of large wood in the floodplain system as no other datasets quantify 

this at a broad enough scale. However, prevalence of large wood has been reduced through 

active log jam removal in Colorado (Wohl, 2019), not only deforestation, and therefore the forest 

loss dataset provides an incomplete quantification of this stressor. This limitation of poor stressor 

representativeness could be addressed with identification or creation of additional datasets that 

measure these human landscape alterations for large spatial extents.  

Another notable limitation of this methodology is the assumption that the responses of 

functions to stressors are all equal and negatively linear (Thornbrugh et al., 2018). It is probable 

that certain stressors are more influential to given functions. Additionally, certain relationships 

between stressors and functionality may be non-linear and have thresholds where functionality 

changes drastically. Although there are few studies that specifically explore the responses of 

floodplain functions to stressors, there is ample evidence that thresholds exist in floodplain 

morphology (Livers et al., 2018; Meyer, 2001; Wohl, 2019), so it is probable that they exist in 

floodplain functionality as well. As new research elucidates more complex functional responses, 

substituting these relationships into the IFI computation is a minor process modification that can 

improve the credibility of the IFI metric. Specifically, studies that measure floodplain functionality 

at a variety of stressor levels would provide useful insight. For instance, an investigation could be 
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performed to identify if a threshold density of impervious surface exists below which groundwater 

recharge is no longer impaired.  

One additional limitation of the IFI methodology is that the computed IFI is scaled relative to 

the datasets included, which complicates comparisons between different implementations of the 

methodology. Because the stressor data are rescaled relative to the 90th percentile of the data 

included in the analysis, the IFI calculated for Colorado in this investigation are not directly 

comparable to results calculated for other locations. Although insight could still be gained in 

comparing the distributions or spatial patterns of IFI calculated with two different datasets, the 

best practice would be to rescale the stressor data using datasets that cover the entire area of 

interest before calculating IFI.  

A final consideration for the results of the IFI calculation is that the floodplain delineation I 

used in this study is a hydraulically modeled 100-year floodplain. If the floodplain was delineated 

for a different return interval, or delineated hydrogeomorphically, the results would change as they 

are dependent on the precise floodplain delineation. However, I would expect changes in the 

results with floodplain delineation to be small as stressors tend to have gradual spatial changes, 

so slight floodplain boundary shifts will not drastically change the stressor levels observed in the 

floodplain.  

5.4 Future work 

As mentioned in the discussion of limitations of the IFI method, there are opportunities to 

expand upon the methodology and implementation presented in this paper. First, incorporation of 

new or more representative stressor datasets will contribute to the trustworthiness of the IFI 

assessment. Secondly, the relationships between floodplain functions and their stressors should 

be updated as new research provides additional information into the complexities of floodplain 

response. Finally, this methodology can be applied to additional and potentially larger areas, such 

as the continental United States, to both serve as a test of the methodology’s robustness and to 

provide useful information about the integrity of floodplain functions across a larger region.  
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6 Conclusion 
 
 
 

This study presents a novel methodology to assess the integrity of floodplains and their 

functions over broad spatial scales and then demonstrates the methodology in the state of 

Colorado. The IFI methodology is based upon identifying and quantifying anthropogenic stressors 

that inhibit critical floodplain functions. The prevalence of these stressors is used to evaluate the 

relative integrity of five floodplain functions: flood reduction, groundwater storage, sediment 

retention, organics and solutes retention, and habitat provision, as well as evaluating overall 

integrity. For Colorado, overall floodplain integrity decreased with stream order above third order 

streams. Overall integrity was also lower for floodplain that intersected urban areas. Finally, 

regional difference in IFI were identified, with the Interior Plains having higher integrity than the 

Intermontane Plateaus or Rocky Mountain System. The IFI methodology as presented in this 

study provides an important first step towards quantifying changes to floodplain integrity and the 

results of this study can provide a useful management tool for agencies that perform floodplain 

restoration projects. By highlighting the functions and the areas with the highest reductions in 

functionality, the IFI can enable more efficient restoration efforts by targeting the areas of greatest 

need early in the restoration planning process. The trustworthiness of the IFI is currently limited 

by the datasets available and the state of knowledge of floodplain functional response. Progress 

in either of these areas could easily be incorporated into the IFI methodology to create a more 

informative metric. Despite this potential for improvement, I believe the IFI methodology can be 

applied to additional areas to provide key high-level guidance to floodplain restoration projects. 

Understanding the extent of human influence on floodplain functionality is a crucial step towards 

preserving floodplains and their associated benefits.   



32 

References 
 
 
 
2010 TIGER/Line Shapefiles, 2011. . U.S. Census Bureau. 

Amoros, C., Bornette, G., 2002. Connectivity and biocomplexity in waterbodies of riverine 
floodplains. Freshw. Biol. 47, 761–776. https://doi.org/10.1046/j.1365-2427.2002.00905.x 

Angermeier, P.L., Karr, J.R., 1994. Biological integrity versus biological diversity as policy 
directives: protecting biotic resources, in: Ecosystem Management. Springer, pp. 264–
275. 

Beevers, L., Douven, W., Lazuardi, H., Verheij, H., 2012. Cumulative impacts of road 
developments in floodplains. Transp. Res. Part Transp. Environ. 17, 398–404. 
https://doi.org/10.1016/j.trd.2012.02.005 

Boulton, A.J., 2007. Hyporheic rehabilitation in rivers: restoring vertical connectivity. Freshw. Biol. 
52, 632–650. https://doi.org/10.1111/j.1365-2427.2006.01710.x 

Bouska, K.L., Houser, J.N., De Jager, N.R., Van Appledorn, M., Rogala, J.T., 2019. Applying 
concepts of general resilience to large river ecosystems: A case study from the Upper 
Mississippi and Illinois rivers. Ecol. Indic. 101, 1094–1110. 
https://doi.org/10.1016/j.ecolind.2019.02.002 

Brinson, M.M., 1996. Assessing wetland functions using HGM. Natl. Wetl. Newsl. 18, 10–16. 

Brunke, M., Gonser, T., 1997. The ecological significance of exchange processes between rivers 
and groundwater. Freshw. Biol. 37, 1–33. https://doi.org/10.1046/j.1365-
2427.1997.00143.x 

Bunn, S.E., Arthington, A.H., 2002. Basic Principles and Ecological Consequences of Altered 
Flow Regimes for Aquatic Biodiversity. Environ. Manage. 30, 492–507. 
https://doi.org/10.1007/s00267-002-2737-0 

Burt, T.P., 1997. The hydrological role of floodplains within the drainage basin system, in: 
Haycock, N., Burt, T.P., Goulding, K., Pinay, G. (Eds.), Buffer Zones: Their Processes and 
Potential in Water Protection. Haycock Associates Limited, pp. 21–32. 

Chovanec, A., Waringer, J., 2001. Ecological integrity of river-floodplain systems-assessment by 
dragonfly surveys (Insecta: Odonata). Regul. Rivers Res. Manag. 17, 493–507. 
https://doi.org/10.1002/rrr.664 

Chovanec, A., Waringer, J., Straif, M., Graf, W., Reckendorfer, W., Waringer-Löschenkohl, A., 
Waidbacher, H., Schultz, H., 2003. The Floodplain Index - a new approach for assessing 
the ecological status of river/floodplain-systems according to the EU Water Framework 
Directive. River Syst. 15, 169–185. https://doi.org/10.1127/lr/15/2003/169 

Collins, B.D., Montgomery, D.R., Fetherston, K.L., Abbe, T.B., 2012. The floodplain large-wood 
cycle hypothesis: A mechanism for the physical and biotic structuring of temperate 
forested alluvial valleys in the North Pacific coastal ecoregion. Geomorphology 139–140, 
460–470. https://doi.org/10.1016/j.geomorph.2011.11.011 



33 

Costanza, R., d’Arge, R., Groot, R. de, Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, 
S., O’Neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P., Belt, M. van den, 1997. The value 
of the world’s ecosystem services and natural capital. Nature 387, 253. 
https://doi.org/10.1038/387253a0 

Craig, L.S., Palmer, M.A., Richardson, D.C., Filoso, S., Bernhardt, E.S., Bledsoe, B.P., Doyle, 
M.W., Groffman, P.M., Hassett, B.A., Kaushal, S.S., Mayer, P.M., Smith, S.M., Wilcock, 
P.R., 2008. Stream restoration strategies for reducing river nitrogen loads. Front. Ecol. 
Environ. 6, 529–538. https://doi.org/10.1890/070080 

Criss, R.E., Shock, E.L., 2001. Flood enhancement through flood control. Geology 29, 875–878. 
https://doi.org/10.1130/0091-7613(2001)029<0875:FETFC>2.0.CO;2 

CWCB/DNR, 2018. Colorado Decision Support System GIS data. Colorado Water Conservation 
Board. 

Falcone, J.A., 2017. U.S. Geological Survey GAGES-II time series data from consistent sources 
of land use, water use, agriculture, timber activities, dam removals, and other historical 
anthropogenic influences. https://doi.org/10.5066/f7hq3xs4 

Fenneman, N.M., 1917. Physiographic Subdivision of the United States. Proc. Natl. Acad. Sci. U. 
S. A. 3, 17–22. 

Florsheim, J.L., Mount, J.F., 2003. Changes in lowland floodplain sedimentation processes: pre-
disturbance to post-rehabilitation, Cosumnes River, CA. Geomorphology, Floodplains: 
environment and process 56, 305–323. https://doi.org/10.1016/S0169-555X(03)00158-2 

Flotemersch, J.E., Leibowitz, S.G., Hill, R.A., Stoddard, J.L., Thoms, M.C., Tharme, R.E., 2016. 
A Watershed Integrity Definition and Assessment Approach to Support Strategic 
Management of Watersheds. River Res. Appl. 32, 1654–1671. 
https://doi.org/10.1002/rra.2978 

Fryirs, K., 2013. (Dis)Connectivity in catchment sediment cascades: a fresh look at the sediment 
delivery problem. Earth Surf. Process. Landf. 38, 30–46. https://doi.org/10.1002/esp.3242 

Fryirs, K.A., Brierley, G.J., Preston, N.J., Kasai, M., 2007. Buffers, barriers and blankets: The 
(dis)connectivity of catchment-scale sediment cascades. CATENA 70, 49–67. 
https://doi.org/10.1016/j.catena.2006.07.007 

Galat, D.L., Fredrickson, L.H., Humburg, D.D., Bataille, K.J., Bodie, J.R., Dohrenwend, J., 
Gelwicks, G.T., Havel, J.E., Helmers, D.L., Hooker, J.B., Jones, J.R., Knowlton, M.F., 
Kubisiak, J., Mazourek, J., McColpin, A.C., Renken, R.B., Semlitsch, R.D., 1998. Flooding 
to Restore Connectivity of Regulated, Large-River WetlandsNatural and controlled 
flooding as complementary processes along the lower Missouri River. BioScience 48, 
721–733. https://doi.org/10.2307/1313335 

Hanberry, B.B., Kabrick, J.M., He, H.S., 2015. Potential tree and soil carbon storage in a major 
historical floodplain forest with disrupted ecological function. Perspect. Plant Ecol. Evol. 
Syst. 17, 17–23. https://doi.org/10.1016/j.ppees.2014.12.002 

Hancock, P.J., 2002. Human Impacts on the Stream-Groundwater Exchange Zone. Environ. 
Manage. 29, 763–781. https://doi.org/10.1007/s00267-001-0064-5 



34 

Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, 
D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., 
Justice, C.O., Townshend, J.R.G., 2013. High-Resolution Global Maps of 21st-Century 
Forest Cover Change. Science 342, 850–853. https://doi.org/10.1126/science.1244693 

Harper, D.M., Ebrahimnezhad, M., Taylor, E., Dickinson, S., Decamp, O., Verniers, G., Balbi, T., 
1999. A catchment-scale approach to the physical restoration of lowland UK rivers. Aquat. 
Conserv. Mar. Freshw. Ecosyst. 9, 141–157. https://doi.org/10.1002/(SICI)1099-
0755(199901/02)9:1<141::AID-AQC328>3.0.CO;2-C 

Helton, A.M., Poole, G.C., Payn, R.A., Izurieta, C., Stanford, J.A., 2014. Relative influences of the 
river channel, floodplain surface, and alluvial aquifer on simulated hydrologic residence 
time in a montane river floodplain. Geomorphology, Discontinuities in Fluvial Systems 205, 
17–26. https://doi.org/10.1016/j.geomorph.2012.01.004 

Higgisson, W., Higgisson, B., Powell, M., Driver, P., Dyer, F., 2019. Impacts of water resource 
development on hydrological connectivity of different floodplain habitats in a highly 
variable system. River Res. Appl. 0. https://doi.org/10.1002/rra.3409 

Homer, C.H., Fry, J.A., Barnes, C.A., 2012. The National Land Cover Database (U.S. Geological 
Survey Fact Sheet No. 2012–3020). 

Junk, W.J., Bayley, P.B., Sparks, R.E., 1989. The flood pulse concept in river-floodplain systems. 
Can. Spec. Publ. Fish. Aquat. Sci. 106, 110–127. 

Karr, J.R., 1996. Ecological integrity and ecological health are not the same. Eng. Ecol. 
Constraints 97, 109. 

Karr, J.R., 1992. Ecological integrity: protecting earth’s life support systems. Ecosyst. Health New 
Goals Environ. Manag. Isl. Press Wash. DC USA 223–238. 

Karr, J.R., 1981. Assessment of biotic integrity using fish communities. Fisheries 6, 21–27. 

Karr, J.R., Dudley, D.R., 1981. Ecological perspective on water quality goals. Environ. Manage. 
5, 55–68. 

King, A.J., Humphries, P., Lake, P.S., 2003. Fish recruitment on floodplains: the roles of patterns 
of flooding and life history characteristics. Can. J. Fish. Aquat. Sci. 60, 773–786. 
https://doi.org/10.1139/f03-057 

Knox, J.C., 2006. Floodplain sedimentation in the Upper Mississippi Valley: Natural versus human 
accelerated. Geomorphology, 37th Binghamton Geomorphology Symposium 79, 286–
310. https://doi.org/10.1016/j.geomorph.2006.06.031 

Konrad, C.P., 2015. Geospatial assessment of ecological functions and flood-related risks on 
floodplains along major rivers in the Puget Sound Basin, Washington (U.S. Geological 
Survey Scientific Investigations Report No. U.S. Geological Survey Scientific 
Investigations Report 2015–5033). U.S. Geological Survey, Reston, Virginia. 

Konrad, C.P., 2003. Effects of Urban Development on Floods (No. FS-076-03). U.S. Geological 
Survey. 



35 

Kumar, R., Jain, V., Prasad Babu, G., Sinha, R., 2014. Connectivity structure of the Kosi megafan 
and role of rail-road transport network. Geomorphology, Tropical Rivers of South and 
South-east Asia: Landscape evolution, morphodynamics and hazards 227, 73–86. 
https://doi.org/10.1016/j.geomorph.2014.04.031 

Larson, L., Plasencia, D., 2001. No Adverse Impact: New Direction in Floodplain Management 
Policy. Nat. Hazards Rev. 2, 167–181. https://doi.org/10.1061/(ASCE)1527-
6988(2001)2:4(167) 

Lecce, S.A., 1997. Spatial patterns of historical overbank sedimentation and floodplain evolution, 
Blue river, Wisconsin. Geomorphology 18, 265–277. https://doi.org/10.1016/S0169-
555X(96)00030-X 

Leopold, A., 1949. A Sand County Almanac, and Sketches Here and There. Oxford University 
Press, New York. 

Livers, B., Wohl, E., Jackson, K.J., Sutfin, N.A., 2018. Historical land use as a driver of alternative 
states for stream form and function in forested mountain watersheds of the Southern 
Rocky Mountains. Earth Surf. Process. Landf. 43, 669–684. 
https://doi.org/10.1002/esp.4275 

McKay, L., Bondelid, T., Johnston, C., Moore, R., Rea, A., 2010. NHDPlus Version 1 
(NHDPlusV1) user guide. U.S. Environmental Protection Agency. 

McManamay, R.A., Nair, S.S., DeRolph, C.R., Ruddell, B.L., Morton, A.M., Stewart, R.N., Troia, 
M.J., Tran, L., Kim, H., Bhaduri, B.L., 2017. US cities can manage national hydrology and 
biodiversity using local infrastructure policy. Proc. Natl. Acad. Sci. 114, 9581–9586. 
https://doi.org/10.1073/pnas.1706201114 

Meyer, G.A., 2001. Recent large-magnitude floods and their impact on valley-floor environments 
of northeastern Yellowstone. Geomorphology 40, 271–290. 
https://doi.org/10.1016/S0169-555X(01)00055-1 

Nanson, G.C., 1986. Episodes of vertical accretion and catastrophic stripping: A model of 
disequilibrium flood-plain development. GSA Bull. 97, 1467–1475. 
https://doi.org/10.1130/0016-7606(1986)97<1467:EOVAAC>2.0.CO;2 

Nanson, G.C., Croke, J.C., 1992. A genetic classification of floodplains. Geomorphology 4, 459–
486. https://doi.org/10.1016/0169-555X(92)90039-Q 

Nicholson, A.R., Wilkinson, M.E., O’Donnell, G.M., Quinn, P.F., 2012. Runoff attenuation features: 
a sustainable flood mitigation strategy in the Belford catchment, UK. Area 44, 463–469. 
https://doi.org/10.1111/j.1475-4762.2012.01099.x 

Noe, G.B., Hupp, C.R., 2009. Retention of Riverine Sediment and Nutrient Loads by Coastal Plain 
Floodplains. Ecosystems 12, 728–746. https://doi.org/10.1007/s10021-009-9253-5 

Novotny, V., Bartošová, A., O’Reilly, N., Ehlinger, T., 2005. Unlocking the relationship of biotic 
integrity of impaired waters to anthropogenic stresses. Water Res. 39, 184–198. 
https://doi.org/10.1016/j.watres.2004.09.002 



36 

Olden, J.D., Poff, N.L., 2003. Redundancy and the choice of hydrologic indices for characterizing 
streamflow regimes. River Res. Appl. 19, 101–121. https://doi.org/10.1002/rra.700 

OpenStreetMap Contributors, 2018. Map Data. www.openstreetmap.org. 

Opperman, J.J., Luster, R., McKenney, B.A., Roberts, M., Meadows, A.W., 2010. Ecologically 
Functional Floodplains: Connectivity, Flow Regime, and Scale1. JAWRA J. Am. Water 
Resour. Assoc. 46, 211–226. https://doi.org/10.1111/j.1752-1688.2010.00426.x 

Persichillo, M.G., Bordoni, M., Cavalli, M., Crema, S., Meisina, C., 2018. The role of human 
activities on sediment connectivity of shallow landslides. CATENA 160, 261–274. 
https://doi.org/10.1016/j.catena.2017.09.025 

Petts, G.E., 1996. Sustaining the ecological integrity of large floodplain rivers, in: Anderson, M.G., 
Walling, D.E., Bates, P.D. (Eds.), Floodplain Processes. Wiley, Chichester, pp. 535–551. 

Pinay, G., Decamps, H., 1988. The role of riparian woods in regulating nitrogen fluxes between 
the alluvial aquifer and surface water: A conceptual model. Regul. Rivers Res. Manag. 2, 
507–516. https://doi.org/10.1002/rrr.3450020404 

Roach, K.A., Winemiller, K.O., Davis, S.E., 2014. Autochthonous production in shallow littoral 
zones of five floodplain rivers: effects of flow, turbidity and nutrients. Freshw. Biol. 59, 
1278–1293. https://doi.org/10.1111/fwb.12347 

Rollins, M.G., 2009. LANDFIRE: a nationally consistent vegetation, wildland fire, and fuel 
assessment. Int. J. Wildland Fire 18, 235–249. https://doi.org/10.1071/WF08088 

Sandoval-Solis, S., McKinney, D.C., Loucks, D.P., 2011. Sustainability Index for Water Resources 
Planning and Management. J. Water Resour. Plan. Manag. 137, 381–390. 
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000134 

Seaber, P.R., 1987. Hydrologic Map Units (U.S. Geological Survey water supply paper No. 2294). 
.S. Geological Survey. 

Sgouridis, F., Heppell, C.M., Wharton, G., Lansdown, K., Trimmer, M., 2011. Denitrification and 
dissimilatory nitrate reduction to ammonium (DNRA) in a temperate re-connected 
floodplain. Water Res. 45, 4909–4922. https://doi.org/10.1016/j.watres.2011.06.037 

Sholtes, J.S., Doyle, M.W., 2011. Effect of Channel Restoration on Flood Wave Attenuation. J. 
Hydraul. Eng. 137, 196–208. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000294 

Stanford, J.A., Ward, J.V., 1993. An Ecosystem Perspective of Alluvial Rivers: Connectivity and 
the Hyporheic Corridor. J. North Am. Benthol. Soc. 12, 48–60. 
https://doi.org/10.2307/1467685 

Stoddard, J.L., Larsen, D.P., Hawkins, C.P., Johnson, R.K., Norris, R.H., 2006. Setting 
Expectations for the Ecological Condition of Streams: The Concept of Reference 
Condition. Ecol. Appl. 16, 1267–1276. https://doi.org/10.1890/1051-
0761(2006)016[1267:SEFTEC]2.0.CO;2 

Sutfin, N.A., Wohl, E.E., Dwire, K.A., 2016. Banking carbon: a review of organic carbon storage 
and physical factors influencing retention in floodplains and riparian ecosystems. Earth 
Surf. Process. Landf. 41, 38–60. https://doi.org/10.1002/esp.3857 



37 

Tarolli, P., Sofia, G., 2016. Human topographic signatures and derived geomorphic processes 
across landscapes. Geomorphology 255, 140–161. 
https://doi.org/10.1016/j.geomorph.2015.12.007 

Thornbrugh, D.J., Leibowitz, S.G., Hill, R.A., Weber, M.H., Johnson, Z.C., Olsen, A.R., 
Flotemersch, J.E., Stoddard, J.L., Peck, D.V., 2018. Mapping watershed integrity for the 
conterminous United States. Ecol. Indic. 85, 1133–1148. 
https://doi.org/10.1016/j.ecolind.2017.10.070 

Tobin, G.A., 1995. The Levee Love Affair: A Stormy Relationship? JAWRA J. Am. Water Resour. 
Assoc. 31, 359–367. https://doi.org/10.1111/j.1752-1688.1995.tb04025.x 

Tockner, K., Pennetzdorfer, D., Reiner, N., Schiemer, F., Ward, J.V., 1999. Hydrological 
connectivity, and the exchange of organic matter and nutrients in a dynamic river–
floodplain system (Danube, Austria). Freshw. Biol. 41, 521–535. 
https://doi.org/10.1046/j.1365-2427.1999.00399.x 

Tockner, K., Stanford, J.A., 2002. Riverine flood plains: present state and future trends. Environ. 
Conserv. 29. https://doi.org/10.1017/S037689290200022X 

Tukey, J.W., 1953. The problem of multiple comparisons (Unpublished manuscript). Princeton 
University. 

USACE, 2015. National Levee Database. U.S. Army Corps of Engineers. 

USEPA, 2016. National Rivers and Stream Assessment 2008-2009 Technical Report. U.S. 
Environmental Protection Agency, Office of Wetlands, Oceans and Watersheds, 
Washington, DC. 

USEPA, 2012. Safe and Sustainable Water Resources Strategic Research Action Plan 2016-
2019 (No. EPA/601/R-12/004). U.S. Environmental Protection Agency, Washington, DC. 

USEPA, 1998. Ecological Research Strategy (No. EPA/600/R-98/086). U.S. Environmental 
Protection Agency, Washington, DC. 

USFWS, 2018. National Wetlands Inventory - Version 2 - Surface Waters and Wetlands Inventory. 
U.S. Fish and Wildlife Service. 

Walling, D.E., Fang, D., 2003. Recent trends in the suspended sediment loads of the world’s 
rivers. Glob. Planet. Change, The supply of flux of sediment along hydrological pathways: 
Anthropogenic influences at the global scale 39, 111–126. https://doi.org/10.1016/S0921-
8181(03)00020-1 

Ward, J.V., Stanford, J.A., 1995. The serial discontinuity concept: Extending the model to 
floodplain rivers. Regul. Rivers Res. Manag. 10, 159–168. 
https://doi.org/10.1002/rrr.3450100211 

Ward, J.V., Tockner, K., Schiemer, F., 1999. Biodiversity of floodplain river ecosystems: ecotones 
and connectivity1. Regul. Rivers Res. Manag. 15, 125–139. 
https://doi.org/10.1002/(SICI)1099-1646(199901/06)15:1/3<125::AID-
RRR523>3.0.CO;2-E 



38 

Wemple, B.C., Jones, J.A., 2003. Runoff production on forest roads in a steep, mountain 
catchment. Water Resour. Res. 39. https://doi.org/10.1029/2002WR001744 

Wheater, H., Evans, E., 2009. Land use, water management and future flood risk. Land Use 
Policy, Land Use Futures 26, S251–S264. 
https://doi.org/10.1016/j.landusepol.2009.08.019 

Wing, O.E.J., Bates, P.D., Sampson, C.C., Smith, A.M., Johnson, K.A., Erickson, T.A., 2017. 
Validation of a 30 m resolution flood hazard model of the conterminous United States. 
Water Resour. Res. 53, 7968–7986. https://doi.org/10.1002/2017WR020917 

Wohl, E., 2019. A review of floodplains and flood-induced changes in floodplain form and function 
(No. CoWC Special Report No. 33). Colorado Water Center. 

Wohl, E., Bledsoe, B.P., Jacobson, R.B., Poff, N.L., Rathburn, S.L., Walters, D.M., Wilcox, A.C., 
2015. The Natural Sediment Regime in Rivers: Broadening the Foundation for Ecosystem 
Management. BioScience 65, 358–371. https://doi.org/10.1093/biosci/biv002 

Wollheim, W.M., Harms, T.K., Peterson, B.J., Morkeski, K., Hopkinson, C.S., Stewart, R.J., 
Gooseff, M.N., Briggs, M.A., 2014. Nitrate uptake dynamics of surface transient storage 
in stream channels and fluvial wetlands. Biogeochemistry 120, 239–257. 
https://doi.org/10.1007/s10533-014-9993-y 

Zell, C., Kellner, E., Hubbart, J.A., 2015. Forested and agricultural land use impacts on subsurface 
floodplain storage capacity using coupled vadose zone-saturated zone modeling. Environ. 
Earth Sci. 74, 7215–7228. https://doi.org/10.1007/s12665-015-4700-4 



39 

Appendix A: Additional investigations 
 

CONTENTS OF APPENDIX A 

1. Hydrologic alteration aggradation method exploration ........................................................ 40 

2. Scaled stressor data........................................................................................................... 48 

3. Correlation of stressor data ................................................................................................ 50 

4. Example of IFI calculation .................................................................................................. 51 

5. Correlation of functional IFI values ..................................................................................... 53 

6. Overall IFI mapped to HUC-12 ........................................................................................... 54 

7. Overall IFI vs floodplain unit area ....................................................................................... 55 

8. Stream order by physiographic region ................................................................................ 56 

9. Functional IFI sensitivity and variability .............................................................................. 57 

10. IFI vs. wetland density by stream order .............................................................................. 61 

 

  



40 

1. Hydrologic alteration aggradation method exploration 

Because the hydrologic alteration data were available for streamlines and the delineated 

floodplain was not explicitly linked to streamlines, it was necessary to aggregate the hydrologic 

alteration values from the streamline scale to floodplain unit scale. Five different methods were 

tested for aggregating the individual flow line hydrologic alteration values to the larger floodplain 

units (which are divided by HUC-12). They are explained, with rationale, below: 

1) Maximum value: The maximum probability of hydrologic alteration present within each 

HUC-12 is assigned to the entire floodplain within that HUC-12. This is the most 

conservative, and also relies on the assumption that the majority of the mapped floodplain 

and the high alteration values are both generally associated with the main stem in each 

HUC-12.  

2) Mean value: The arithmetic mean of all probability of hydrologic alteration values present 

within the HUC-12 is applied to the entire floodplain within the HUC-12. Assumes that 

floodplain alteration represents a combination of hydrologic alteration within the basin. 

3) Length-weighted mean: The hydrologic alteration probability of each stream segment is 

multiplied by the stream segment length. The length-metric product is summed for each 

HUC-12 and divided by the total stream length for each HUC-12 to provide a length-

weighted estimate of the probability of hydrologic alteration. This estimate is applied to the 

floodplain within the HUC-12. This method assumes that the length of the stream within 

the HUC-12 determines its importance to the floodplain alteration. 

4) Order-weighted mean: The stream order (NHD+ V1 values) of each segment is multiplied 

by the hydrologic alteration probability of each stream segment. The order-metric product 

is summed for each HUC-12 and divided by the sum of the stream orders for each HUC-

12 to provide a stream order-weighted estimate of the probability of hydrologic alteration. 

This estimate is applied to the floodplain within the HUC-12. This method assumes that 
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the mapped floodplain is preferentially associated with the larger order streams and 

therefore they receive higher weight.  

5) Maximum order only mean: The maximum stream order of all stream segments present 

in the HUC-12 is determined. The stream segments in the HUC-12 that are of the 

maximum order are selected, and then the hydrologic alteration probability values for 

these maximum order segments are averaged within each HUC-12. This “max order 

mean” is applied to the floodplain within that HUC-12. This method assumes that the 

floodplain is associated with the highest order streams within the catchment and therefore 

the alteration of these streams reflects floodplain alteration. 

To determine which method was most appropriate to aggregate stream-level data to the 

floodplain unit, the data were visually compared with boxplots. From the boxplots, the center and 

spread of all 10 hydraulic alteration metrics was similar for methods 2-4. For all metrics, the 

highest average value and largest spread was seen with method 1 (statistically difference from 

all other methods for all metrics using Tukey significant difference). Method 5 produced a slightly 

higher center and a higher top end of the spread than methods 2-4 for most metrics. This 

difference was statistically significant from methods 2-4 for some, but not all, hydrologic alteration 

metrics.  

In addition, to test the assumption the hydrologic alteration increases with increasing stream 

order, the hydrologic alteration for all 64,742 stream segments in Colorado was plotted by stream 

order in box plots. Visual inspection shows a generally increasing alteration with stream order, 

especially for stream orders 4 and above. Several metrics show a slight decline from order 1 to 

order 3 streams, but it is not as pronounced as the increase at higher orders.  

Finally, plots were made to check if the trends observed in the stream segment data were also 

present in the floodplain unit aggregated data. Hydrologic alteration data for all floodplain units 

were plotted according to the maximum stream order present within the HUC-12 of the floodplain 

unit. The data for aggregation methods 1, 2 and 5 were plotted. There was minimal difference in 
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trends between the methods. It appeared that Method 2 produced les of an increase in hydrologic 

alteration with stream order than methods 1 or 5.  In comparison the stream segment plots, 

methods 2 and 5 of the floodplain unit plots showed slightly more of a decrease between stream 

orders 1 to 3 for almost all metrics.  

In considering all the methods discussed above and their differences or lack thereof, method 

5 of averaging the hydrologic alteration probabilities for the highest order stream segments in 

each HUC-12 was selected. It did not produce significantly different results from methods 2-4, 

reproduced the patterns seen in the stream segment analysis, and had the most realistic physical 

explanation when considering with which stream segments the floodplain areas would be 

associated.  
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These boxplots show the probability of hydrologic alteration values by stream order for the 

NHDPlus V1 segments for which they were calculated. This is presented for the 10 relevant 

indicators of hydrologic alteration. 
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This figure compares methods 1-5 described above for aggregating the stream level 

probabilities of hydrologic alteration to the floodplain unit scale. This is presented for the 10 

relevant indicators of hydrologic alteration.  
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This figure shows the results of using method 1, or maximum values per HUC-12, to aggregate 

to the floodplain unit level by stream order. This is presented for the 10 relevant indicators of 

hydrologic alteration. 
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This figure shows the results of using method 2, or mean of values per HUC-12, to aggregate 

to the floodplain unit level by stream order. This is presented for the 10 relevant indicators of 

hydrologic alteration. 
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This figure shows the results of using method 5, or mean of maximum stream order values 

per HUC-12, to aggregate to the floodplain unit level by stream order. This is presented for the 10 

relevant indicators of hydrologic alteration. 
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2. Scaled stressor data 

The density of each stressor in each floodplain was calculated and then rescaled. It was 

decided to rescale the data relative to the 90th percentile of each data set, unless the 90th 

percentile was still 0, in which case the data was rescaled relative to the maximum value (for 

levees and wells). The 90th percentile was chosen as it limits the influence of exceptionally high 

outliers while providing significantly more definition with the lower 90% of the data. All values 

higher than the 90th percentile were given a stressor value of 1, or maximum density. 

Consideration for re-scaling included the following: 

1) The original scale had no consistent scaling as the different types of data were scaled 

differently (i.e. lines and points vs. areas). Lines and point were already scaled relative to 

a local maximum value. 

2) For some of the stressors, 100% coverage is not a reasonable value and therefore 100% 

coverage does not correspond to complete lack of function (eg buildings). 

3) There is not sufficient research to determine the relative important of each stressor to each 

function, so the implication the 100% agriculture and 100% impervious surface should be 

counted equally has no theoretical base.  

4) Covering 0% of the area of the floodplain should correspond to no impact, but covering 

100% of the area does not necessarily indicate the highest possible impact as 100% is 

often not a feasible value. 

5) The changes in stressor abundance at low values are likely proportionately more important 

to the processes occurring in the floodplain (e.g. a change from 0 to 10% impervious is 

more impactful to floodplain function than 80% to 90%). 

6) The main goal of the IFI is to compare floodplains in Colorado to each other, and therefore 

scaling the stressor levels relative to the values present currently is more important than 

the scaling to a theoretical worst case scenario. 

Some limitations of this rescaling procedure are as follows:  
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1) Still creates inconsistent scaling as 2 of the data sets are rescaled to the max instead of 

90th percentile. 

2) Sets 10% (303) data points to 1, which means information about the differences in these 

floodplains is lost.  

3) Makes the methodology much more dependent on the input datasets – rescaling makes 

make it more difficult to compare results of separate computations of IFI. 

 

This figure shows the distribution of the scaled stressor densities for each of the 11 stressor 

datasets.  
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3. Correlation of stressor data 

In order to avoid over-weighting a given stressor in calculation of the functional IFI, the 

stressor data were analyzed for correlation. For any two stressors which had a Pearson’s 

correlation coefficient of 0.7 or greater, only one of the two stressors was used in the calculation 

of the functional IFI. The stressor that was included of the two correlated stressors was 

determined based on a judgement of relevance to the function informed by the literature review. 

Additionally, as the majority of the hydrologic alteration metrics had correlation coefficients greater 

than 0.7, only one metric was included in the IFI calculation. A correlation matrix of the stressor 

data is shown below.  
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4. Example of IFI calculation 

The IFI calculation process is shown for the floodplain unit associated with HUC-12 

101900030204 near Denver, shown below.  

 

First, the scaled stressor densities for this floodplain unit are computed from all of the stressor 

datasets, with the results shown below. 

Stressor Scaled Value Stressor Scaled Value 
Agriculture Area 0.148 Leveed Area 0.0 

Buildings 1.0 Non-Native Vegetation 0.256 
Ditches/Canals 0.801 Roads & Railroads 1.0 
Developed Area 1.0 Groundwater Wells 0.080 

Forest Loss 0.086 Hydrologic Alteration 0.894 
Impervious Area 1.0   

 

From these stressors, each function IFI can be calculated. 

Flood reduction: Buildings, Developed Area, Forest Loss, Leveed Area, Roads and Railroads  

𝐼𝐼𝐼𝐼𝐼𝐼𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 1 −
1.0 + 1.0 + 0.086 + 1.0 + 0

5
= 1 − 0.617 = 0.383  
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Groundwater storage: Agriculture Area, Ditches/Canals, Forest Loss, Impervious Area, 

Groundwater Wells 

𝐼𝐼𝐼𝐼𝐼𝐼𝑔𝑔𝑔𝑔𝑓𝑓𝑔𝑔𝑛𝑛𝑓𝑓𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 1 −
0.148 + 0.801 + 0.086 + 1.0 + 0.080

5
= 1 − 0.423 = 0.577  

Sediment regulation: Agriculture Area, Forest Loss, Roads and Railroads, Hydrologic Alteration 

𝐼𝐼𝐼𝐼𝐼𝐼𝑓𝑓𝑔𝑔𝑓𝑓𝑖𝑖𝑠𝑠𝑔𝑔𝑛𝑛𝑔𝑔 = 1 −
0.148 + 0.086 + 1.0 + 0.894

4
= 1 − 0.532 = 0.468  

Organics/Solutes regulation: Forest Loss, Impervious Area, Hydrologic Alteration (Roads and 

Railroads not included because of high correlation) 

𝐼𝐼𝐼𝐼𝐼𝐼𝑓𝑓𝑔𝑔𝑔𝑔/𝑓𝑓𝑓𝑓𝑓𝑓 = 1 −
0.086 + 1.0 + 0.894

3
= 1 − 0.660 = 0.340 

Habitat provision: Agriculture Area, Developed Area, Forest Loss, Non-Native Vegetation, 

Roads and Railroads, Hydrologic Alteration 

𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑔𝑔𝑎𝑎𝑖𝑖𝑔𝑔𝑔𝑔𝑔𝑔 = 1 −
0.148 + 1.0 + 0.086 + 0.256 + 1.0 + 0.894

6
= 1 − 0.564 = 0.436 

The overall IFI is calculated as the geometric mean of the five functional IFI values. 

𝐼𝐼𝐼𝐼𝐼𝐼𝑓𝑓𝑜𝑜𝑔𝑔𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓 = (0.383 ∗ 0.577 ∗ 0.468 ∗ 0.340 ∗ 0.436)
1
5 = 𝟎𝟎.𝟒𝟒𝟒𝟒𝟒𝟒 
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5. Correlation of functional IFI values 

A correlation analysis was performed on the IFI values calculated for each of the five floodplain 

functions. Pearson’s correlation coefficients are reported in the correlation matrix shown below. 

High correlation is generally seen, with the highest correlations occurring for functions which have 

the most overlapping stressor data (e.g. sediment regulation and habitat provision, which share 

four datasets).  
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6. Overall IFI mapped to HUC-12 

Because the area of floodplain in Colorado is small relative to the area of the state, it is difficult 

to visualize the patterns in floodplain integrity for the entire state simultaneously. To clarify the 

patterns in integrity, the HUC-12 units were colored according to the overall IFI of the floodplain 

unit contained within. Stream lines above fourth order are also included to show trends in IFI 

dependent on the location in the watershed. 
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7. Overall IFI vs floodplain unit area 

To check for floodplain area bias in the estimation of floodplain integrity, a regression was 

performed on the overall IFI value versus the area of the floodplain unit for which that value was 

computed. As shown below, no meaningful relationship was found, with an R2 value of 0.02. The 

investigation was repeated for each functional IFI with no meaningful correlations found. 
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8. Stream order by physiographic region 

When overall IFI was analyzed by physiographic region, it was noted that the Interior Plains had 

a significantly higher average integrity than the Rocky Mountain System. As this was unexpected, 

an investigation into the impact of stream order was conducted to ensure that stream order was 

not a lurking third variable, i.e. the Interior Plains showed higher integrity because there are more 

low order floodplain units in the plains and low order floodplain units were shown to have higher 

average floodplain integrity. However, as shown in the figure below, the distribution of stream 

order of the floodplain units is approximately the same between the three physiographic regions. 

The differences in stream order distribution were determined to be too minor to account for the 

difference in average overall IFI between the regions.  
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9. Functional IFI sensitivity and variability 

Investigations were performed to identify how the functional IFI varied for the same floodplain 

and how each functional value affected the overall IFI. In considering the ratios of the individual 

functional IFI to the overall IFI (Figure 7), the p-values for the difference in average ratio between 

functions are summarized in the matrix below.  

p-value Flood reduction Groundwater 
storage 

Sediment 
regulation 

Organics/solutes 
regulation 

Habitat 
provision 

Flood reduction - < 0.0001 < 0.0001 < 0.0001 < 0.0001 
Groundwater 

storage < 0.0001 - < 0.0001 < 0.0001 < 0.0001 

Sediment 
regulation < 0.0001 < 0.0001 - 1.00 < 0.0001 

Organics/solutes 
regulation < 0.0001 < 0.0001 1.00 - < 0.0001 

Habitat provision < 0.0001 < 0.0001 < 0.0001 < 0.0001 - 
 

The figure below shows a histogram of the standard deviation of the five functional IFI 

values for each floodplain unit. The distribution of variation amongst functional IFI values is 

approximately normal.  
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This analysis was repeated with floodplain units separated by stream order. It can be seen 

in the figure below that variability between functional IFI is higher for the higher order streams, 

though this relationship is not monotonically increasing.  

  

In addition to assessing the variability of the functional IFI, investigations were performed 

to understand the relative impact of the five functional IFI values on the overall IFI. The figure 

below shows the number of floodplain units by stream order for which a given function is lowest 

of the five. 
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The next figure shows the same distribution of minimum function by stream order, but with 

the distribution of minimum function expressed as the percentage of floodplain units for which a 

given function was the lowest of the five IFI values. 
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The map below shows the locations where a given function was the minimum function, 

with the color shown for the entire HUC-12 instead of the floodplain for visualization purposes.  
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10. IFI vs. wetland density by stream order 

To further explore the relationship between wetland density and overall IFI, the regression 

was separated by stream order of the floodplain unit. The highest correlation coefficient when 

analyzed by stream order is 0.07 for seventh order floodplains (excluding eighth order which 

comprises only two floodplains). None of the regressions were significant.  
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Appendix B: Code 
 

CONTENTS OF APPENDIX B 

1. Calculation of shapefile stressor densities in floodplain ...................................................... 63 

2. Hydrologic alteration aggregation calculations.................................................................... 67 

3. Compilation and correlation analysis of stressor data ......................................................... 69 

4. Calculation of IFI ................................................................................................................ 72 

5. Analysis of IFI values ......................................................................................................... 78 

6. IFI results mapping ............................................................................................................. 92 

 

All code is available in a dynamic repository at https://github.com/mnk5/floodplain_integrity.git 

  

https://github.com/mnk5/floodplain_integrity.git
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1. Calculation of shapefile stressor densities in floodplain 

The Python script Shapefile_Calculations.py was used to make the Arcpy tool “Shapefile 

Calculations” in the “Floodplain Integrity” toolbox. This script takes a folder of stressor shapefiles 

and a shapefile of the floodplain units and outputs stressor density as csv files in a nested folder.  

Code:  

#------------------------------------------- 
#  Calculates density of shapefile per HUC-12 
# 
#------------------------------------------- 
 
#Import system modules 
import sys, string, os, arcpy, math, traceback, glob 
import pandas as pd 
import numpy 
from arcpy.sa import * 
 
# Allow output to overwrite... 
arcpy.env.overwriteOutput = True 
 
# Check out the ArcGIS Spatial Analyst extension license 
arcpy.CheckOutExtension("Spatial") 
 
 
 
try: 
 
 
    #INPUT ARGUMENTS FOR GIS TOOL 
    SHP_FLDR = arcpy.GetParameterAsText(0)   # Folder containing 
shapefiles trimmed 
    FP = arcpy.GetParameterAsText(1)    # FP intesected with 
HUC-12 shapefile 
     
#    #INPUT ARGUMENTS FOR PYTHON DIRECTLY 
#    SHP_FLDR = "C:\Users\mnk5\Documents\GIS\DATA\Datasets_trimmed
 "  # Folder containing shapefiles trimmed 
#    FP = 
"C:\Users\mnk5\Documents\GIS\DATA\Datasets_trimmed\ForProcessing\ 
     
    #OUTPUTFOLDER 
    Out_path= SHP_FLDR +"\\RESULTS"  
 
    #Creating the new folder 
    if not os.path.exists(Out_path): 
        os.makedirs(Out_path) 
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    #GETTING FILES 
    arcpy.AddMessage('') 
    arcpy.AddMessage('-----------------------------------------') 
    arcpy.AddMessage('ACCESSING SHAPEFILES') 
    arcpy.AddMessage(' ') 
     
    # Get area of FP by HUC-12 
    arcpy.env.workspace = SHP_FLDR 
    FILES = arcpy.ListFeatureClasses() 
     
    arcpy.AddMessage('TABULATING FEATURE ABUNDANCE BY HUC-12') 
    arcpy.AddMessage(' ') 
     
     
    # write Floodplain area and HUC-12 identifier to Numpy Array 
    HUC12_area = arcpy.da.FeatureClassToNumPyArray(FP, 
["HUC12","FP_Areakm2"]) 
    # Convert Numpy array to Pandas dataframe (see 
http://geospatialtraining.com/tutorial-creating-a-pandas-dataframe-
from-a-shapefile/) 
    FP_df = pd.DataFrame(HUC12_area) 
    FP_df.to_csv(Out_path + '\\FP_area.csv') 
    FP_df = pd.read_csv(Out_path + '\\FP_area.csv') #don't know why 
this has to be read back in from the file, but the merge doesn't work 
otherwise. 
     
    for fc in FILES: 
         
        filename  = os.path.splitext(fc)[0] 
#        arcpy.AddMessage(filename) # to test correct files are being 
accessed 
         
        # Trim to only floodplain extents and divide by HUC-12 
        inFeatures = [fc, FP] 
        arcpy.Intersect_analysis(inFeatures, Out_path + 
"\\OutTrim.shp") 
        desc = arcpy.Describe(fc) 
         
        # Location to save files 
        OutTrim = Out_path + "\\OutTrim.shp" 
        OutTable = Out_path + "\\" + filename + "_table.csv" 
         
        if desc.shapeType == "Point": 
#        # add column of count per huc 12  
            arcpy.Statistics_analysis(OutTrim, OutTable, 
[["FID","COUNT"]], "HUC12") 
                         
        # Calculate density of points as number/ km^2 per HUC-12 and 
add to csv 
            df = pd.read_csv(OutTable) 
            # merge tables of HUC-12 FP area and objects, keeping all 
HUC-12 entries that have a feature in them 
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            df_results = df.merge(FP_df, on = "HUC12", how='left') 
            df_results['Point_Density'] = 
df_results['COUNT_FID']/df_results['FP_Areakm2'] 
            df_results.to_csv(OutTable) 
         
         
        elif desc.ShapeType == "Polyline":  
             
        # Calculate length of trimmed lines 
            arcpy.AddField_management(OutTrim,"Length_km", "FLOAT") 
            arcpy.CalculateField_management(OutTrim, "Length_km", 
"!shape.length@kilometers!", "PYTHON", "#" ) 
             
        # Save sum of length by HUC-12  
            arcpy.Statistics_analysis(OutTrim, OutTable, 
[["Length_km","SUM"]], "HUC12") 
             
        # Calculate density of lines as km/ km^2 per HUC-12 and add to 
csv 
            df = pd.read_csv(OutTable) 
            # merge tables of HUC-12 FP area and objects, keeping all 
HUC-12 entries that have a feature in them 
            df_results = df.merge(FP_df, on = "HUC12", how='left') 
            df_results['Line_Density'] = 
df_results['SUM_Length_km']/df_results['FP_Areakm2'] 
            df_results.to_csv(OutTable) 
             
             
        else: # for polygons  
         
        # Calculate area of trimmed polygons 
            arcpy.AddField_management(OutTrim,"area_km2", "FLOAT") 
            arcpy.CalculateField_management(OutTrim, "area_km2", 
"!shape.area@squarekilometers!", "PYTHON", "#" )             
        # Save sum of area by HUC-12  
            arcpy.Statistics_analysis(OutTrim, OutTable, 
[["area_km2","SUM"]], "HUC12") 
             
        # Calculate density of area per HUC-12 and add to csv 
            df = pd.read_csv(OutTable) 
            # merge tables of HUC-12 FP area and objects, keeping all 
HUC-12 entries that have a feature in them 
            df_results = df.merge(FP_df, on = "HUC12", how='left') 
            df_results['Area_Density'] = 
df_results['SUM_area_km2']/df_results['FP_Areakm2'] 
            df_results.to_csv(OutTable) 
       
 
    arcpy.AddMessage(' ') 
    arcpy.AddMessage('FLOODPLAIN PREPROCESSING  COMPLETED!') 
except: 
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    arcpy.AddError(arcpy.GetMessages()) 
    arcpy.AddMessage(traceback.format_exc())  
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2. Hydrologic alteration aggregation calculations 

This Python script, HydAlterationCalculations.py, takes the attributes of the stream lines with 

hydrologic alteration metrics associated and provides an aggregated value for each HUC-12 

weighted either by the length or the stream order of the stream lines. The aggregated values are 

saved as csv files. 

Code:  

# -*- coding: utf-8 -*- 
""" 
Created on Wed Jan 16 09:28:54 2019 
 
@author: mnk5 
""" 
 
import pandas as pd 
 
 
## calculating hydrologic alteration methods with various weightings 
 
attributefile = 
"C:\\Users\\mnk5\\Documents\\GIS\DATA\\Hyd_Alteration\\ByHUC12\\attrib
utetable.txt" 
 
df = pd.read_table(attributefile, delimiter=",") 
 
hydfields = ["pnMH20", "pnFH1", "pnFH6", "pnFH7", "pnDH1", 
"pnDH2","pnDH3","pnDH4","pnDH5","pnDH15" ] 
 
df_hydalt = df[hydfields] 
 
 
# Weight by length 
 
df_lengthweight = df_hydalt.multiply(df["Length_km"], axis="index") 
 
df_lengthweight["HUC12"] = df["HUC12"] 
 
df_lengthsum = df.groupby('HUC12')['Length_km'].sum() 
df_HA_byLength = df_lengthweight.groupby('HUC12').sum() 
 
df_HA_byLength = df_HA_byLength.divide(df_lengthsum, axis="index") 
 
 
# Weight by Stream Order 
 
df_SOweight = df_hydalt.multiply(df["StrmOrder"], axis="index") 
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df_SOweight["HUC12"] = df["HUC12"] 
 
df_SOsum = df.groupby('HUC12')['StrmOrder'].sum() 
df_HA_bySO = df_SOweight.groupby('HUC12').sum() 
 
df_HA_bySO = df_HA_bySO.divide(df_SOsum, axis="index") 
 
# Calc max and avg 
 
df_hydalt["HUC12"] = df["HUC12"] 
 
df_maxHA = df_hydalt.groupby('HUC12').max() 
df_meanHA = df_hydalt.groupby('HUC12').mean() 
 
# save files to csv to use with GIS 
 
df_HA_byLength.to_csv("C:\\Users\\mnk5\\Documents\\GIS\DATA\\Hyd_Alter
ation\\ByHUC12\\LengthWeightbyHUC12.csv") 
df_HA_bySO.to_csv("C:\\Users\\mnk5\\Documents\\GIS\DATA\\Hyd_Alteratio
n\\ByHUC12\\SOWeightbyHUC12.csv") 
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3. Compilation and correlation analysis of stressor data 

This R script, CorrelationAnalysis.R, takes the stressor densities from the csv files produced by 

Shapefile_calculations.py and raster processing and combines them into a single data table. The 

code outputs this merged data as a csv file. A correlation analysis is then performed, with the 

correlation matrix saved as a jpeg image.   

Code: 

##################### 
# Floodplain Integrity Assessment 
# Stressor data correlation analysis 
# M. Karpack, Spring 2019 
 
 
# Code to take all data tables from GIS data exports and assimilate 
# And then check for correllation using Pearson's correlation 
coeffcient 
 
library(lsmeans) 
library(corrplot) 
library(foreign) 
library(tools) 
library(data.table) 
library(RColorBrewer) 
 
basepath <- "C:/Users/mnk5/Documents/floodplain_integrity" 
 
# Load all csv files in folder into list 
data.path <- paste(basepath, "/RawData/StressorData/", sep="") 
filelist <- list.files(path = data.path, pattern="*.csv") 
 
# read in each .csv file in folder and create a data frame with the 
same name as the .csv file 
for (i in 1:length(filelist)){ 
   
  assign(file_path_sans_ext(filelist[i]),  
         read.csv(paste(data.path, filelist[i], sep='')) 
  )} 
 
## Get all information relevant into one df using FP HUC-12 as basis 
 
data.merge <- merge(FP_Info[,c("HUC12", "FP_Areakm2", "StrmOrder")], 
AgricultureArea[, c("HUC12", "MEAN")], by = "HUC12", all.x = TRUE) 
colnames(data.merge)[colnames(data.merge)=="MEAN"] <- "Agriculture" 
 
data.merge <- merge(data.merge, Buildings[, c("HUC12", 
"Area_Density")], by = "HUC12", all.x = TRUE) 
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colnames(data.merge)[colnames(data.merge)=="Area_Density"] <- 
"Buildings" 
 
data.merge <- merge(data.merge, CanalDitch[, c("HUC12", 
"Line_Density")], by = "HUC12", all.x = TRUE) 
colnames(data.merge)[colnames(data.merge)=="Line_Density"] <- 
"Ditches" 
 
data.merge <- merge(data.merge, DevelopedArea[, c("HUC12", "MEAN")], 
by = "HUC12", all.x = TRUE) 
colnames(data.merge)[colnames(data.merge)=="MEAN"] <- "Developed" 
 
data.merge <- merge(data.merge, ForestLoss[, c("HUC12", "MEAN")], by = 
"HUC12", all.x = TRUE) 
colnames(data.merge)[colnames(data.merge)=="MEAN"] <- "ForestLoss" 
 
data.merge <- merge(data.merge, ImperviousArea[, c("HUC12", "MEAN")], 
by = "HUC12", all.x = TRUE) 
colnames(data.merge)[colnames(data.merge)=="MEAN"] <- "Impervious" 
 
data.merge <- merge(data.merge, LeveedArea[, c("HUC12", 
"Area_Density")], by = "HUC12", all.x = TRUE) 
colnames(data.merge)[colnames(data.merge)=="Area_Density"] <- 
"LeveedArea" 
 
data.merge <- merge(data.merge, NonNativeVeg[, c("HUC12", "MEAN")], by 
= "HUC12", all.x = TRUE) 
colnames(data.merge)[colnames(data.merge)=="MEAN"] <- "NonNativeVeg" 
 
data.merge <- merge(data.merge, RoadsRailroads[, c("HUC12", 
"Line_Density")], by = "HUC12", all.x = TRUE) 
colnames(data.merge)[colnames(data.merge)=="Line_Density"] <- 
"Roads_Rail" 
 
data.merge <- merge(data.merge, WellStructures[, c("HUC12", 
"Point_Density")], by = "HUC12", all.x = TRUE) 
colnames(data.merge)[colnames(data.merge)=="Point_Density"] <- "Wells" 
 
data.merge <- merge(data.merge, MeanHA_MaxOrderOnly[, c("HUC12", 
"MEAN_pnMH20", "MEAN_pnFH1","MEAN_pnFH6", 
                                                        
"MEAN_pnFH7","MEAN_pnDH1", "MEAN_pnDH2","MEAN_pnDH3", 
                                                        "MEAN_pnDH4", 
"MEAN_pnDH5","MEAN_pnDH15")], by = "HUC12", all.x = TRUE) 
setnames(data.merge, old =c("MEAN_pnMH20", "MEAN_pnFH1","MEAN_pnFH6", 
"MEAN_pnFH7","MEAN_pnDH1", "MEAN_pnDH2","MEAN_pnDH3", 
                            "MEAN_pnDH4", "MEAN_pnDH5","MEAN_pnDH15" 
), new = c("MH20", "FH1", "FH6","FH7", "DH1", "DH2", 
                                                                                 
"DH3","DH4","DH5","DH15" )) 
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## Version with zeros changed to NA  
data.merge.NA <- data.merge 
data.merge.NA[data.merge.NA==0] <- NA 
 
# version with NA changed to zero 
data.merge[is.na(data.merge)] <- 0 
 
 
# Save as .csv file  
out.path <- paste(basepath, "/Outputs/", sep="") 
out.file <- paste(out.path, "Combined_Data.csv", sep="") 
write.csv(data.merge, file = out.file, row.names = FALSE) 
 
 
########################################################## 
 
# Correlation analysis (omitting NAs) 
Correl.NA <- cor(data.merge.NA[,4:length(data.merge.NA)], use = 
"pairwise.complete.obs") 
 
# Significance test 
res.NA <- cor.mtest(data.merge.NA[,4:length(data.merge.NA)], 
conf.level =0.95) 
 
# Plotting (and saving) correlations 
out.graph.NA <- paste(out.path, "Correlation_NA.jpg", sep="") 
jpeg(out.graph.NA, width = 2000, height = 2000, units = "px") 
corrplot(Correl.NA, type = "upper", method = "color", tl.col="black", 
tl.srt=45, 
         tl.cex= 2.5, diag=FALSE, addCoef.col = "#9fa0a5",number.cex = 
2, cl.pos ="n") 
dev.off() 
 
 
# Correlation analysis (w zero instead of NA) 
Correl <- cor(data.merge[,4:length(data.merge)], use = 
"pairwise.complete.obs") 
 
# Significance test 
res <- cor.mtest(data.merge[,4:length(data.merge)], conf.level =0.95) 
 
# Plotting (and saving) correlations 
out.graph <- paste(out.path, "Correlation.jpg", sep="") 
jpeg(out.graph, width = 2000, height = 2000, units = "px") 
corrplot(Correl, type = "upper", method = "color", tl.col="black", 
tl.srt=45,  
         tl.cex= 2.5, diag=FALSE, addCoef.col = "#9fa0a5", number.cex 
= 2, cl.pos ="n") 
dev.off() 
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4. Calculation of IFI 

This R script, IndexCalcualtion.R, takes the csv of the stressor density data output from 

CorrelationAnalysis.R and rescales the stressor data, computes the five functional IFI values and 

the overall IFI. Various plots are also created to show results. The resultant IFI values are output 

as a csv file.  

Code: 

##################### 
# Floodplain Integrity Assessment 
# Index Calculation for functions 
# M. Karpack, Spring 2019 
 
# Take assembled stressor data and translate to 0 to 1 metrics 
# for individual floodplain functions 
 
library(ggplot2) 
library(RColorBrewer) 
library(corrplot) 
library(emmeans) 
library(psych) 
 
 
# set path to Git folder 
basepath <- "C:/Users/mnk5/Documents/floodplain_integrity" 
out.path <- paste(basepath, "/Outputs/", sep="") # for saving outputss 
 
# Load csv file of stressor data from "CorrelationAnalysis.R" script 
output 
data.path <- paste(basepath, "/Outputs/Combined_Data.csv", sep="") 
all.data <- read.csv(data.path) 
data.names <- colnames(all.data) 
 
# Convert HUC-12 from numeric to character 
all.data$HUC12 <- as.character(all.data$HUC12) 
 
# boxplots to look at range of data 
 
for (i in 4:ncol(all.data)){ 
  hist(all.data[,i], main = data.names[i]) 
  boxplot(all.data[,i], main = data.names[i]) 
  text(y=fivenum(all.data[,i]), labels = round(fivenum(all.data[,i]), 
digits = 2), x = 0.75) 
   
} 
 
##################### 



73 

# Get only final stressors and HUC-12 Identifier into df 
 
keep.columns <- c("Agriculture", "Buildings", "Ditches", "Developed", 
"ForestLoss", 
                  "Impervious", "LeveedArea", "NonNativeVeg", 
"Roads_Rail","Wells", "MH20") 
stressors <- all.data[, keep.columns] 
 
# adjust stressors that are not 0 to 1  
stressors$Impervious <- stressors$Impervious/100 # convert percent to 
decimal 
 
# Scale count and line denisty by max value observed 
stressors$Ditches <- stressors$Ditches/max(stressors$Ditches) 
stressors$Roads_Rail <- stressors$Roads_Rail/max(stressors$Roads_Rail) 
stressors$Wells <- stressors$Wells/max(stressors$Wells) 
 
 
# Compare all measures 
boxplot(stressors, use.cols = TRUE, ylab = 'Stressor Density') 
 
 
# Scale buildings to max building density in CO 
stressors$Buildings <- stressors$Buildings/max(stressors$Buildings) 
 
 
# Make neagtive  
stressors.neg <- 1-stressors 
# boxplot(stressors.neg, use.cols = T) 
 
##################### 
# Calculate functions as average of stressors 
 
# choose datasets by function 
 
# Flood reduction 
FR.stressors <- c("Buildings", "Roads_Rail", "ForestLoss", 
"Developed", "LeveedArea") 
# Groundwater regulation 
GW.stressors <- c("Impervious", "Ditches", "Agriculture", 
"ForestLoss", "Wells") 
# Sediment Flux 
SF.stressors <- c("MH20", "Agriculture", "Roads_Rail", "ForestLoss") 
# Organics and Solute regulation 
OS.stressors <- c("MH20", "ForestLoss", "Impervious") # Roads_Rail not 
included b/c of high correlation 
# Habitat provisioning  
HP.stressors <- c("Roads_Rail", "MH20", "NonNativeVeg", "Developed", 
"Agriculture", "ForestLoss") 
 
data.byfunction <- list(FR.stressors, GW.stressors, SF.stressors, 
OS.stressors, HP.stressors) 
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# Compute Index as average of stressors for each function 
Function.Index <- data.frame(matrix(NA, nrow = nrow(stressors.neg), 
ncol = length(data.byfunction))) 
 
for (i in 1:length(data.byfunction)) { 
  Function.Index[,i] <- rowMeans(stressors.neg[,data.byfunction[[i]]]) 
} 
 
colnames(Function.Index) <- c("Floods", "Groundwater", "Sediment",  
                              "Organics/Solutes", "Habitat") 
 
 
# plot boxplot of index by function 
function.plot <- ggplot(stack(Function.Index), aes(x = ind, y = 
values)) +  
  geom_boxplot() + 
  scale_y_continuous(limits = c(0,1)) + 
  xlab("Floodplain Function") + 
  ylab("Integrity Index") + 
  ggtitle("Index of Floodplain Integrity by Function") 
function.plot 
 
# plot correlation of Indices 
 
function.cor <- cor(Function.Index, use = "pairwise.complete.obs") 
 
out.graph <- paste(out.path, "IFI_Correlation.jpg", sep="") 
jpeg(out.graph, width = 2000, height = 2000, units = "px") 
corrplot(function.cor, type = "upper", method = "circle", 
tl.col="black", tl.srt=45, 
         tl.cex= 4.5, diag=FALSE, addCoef.col = "#bbbcc1", number.cex 
= 4, cl.pos ="n") 
dev.off() 
 
 
 
# Compute overall Index of floodplain Integrity 
IFI <- data.frame(IFI.geomean = apply(Function.Index, 1, prod)^(1/5)) 
IFI.product <- data.frame(IFI.prod = apply(Function.Index, 1, prod)) 
IFI.comb <- data.frame(IFI,IFI.product) 
 
IFI.plot <- ggplot(stack(IFI.comb), aes(x = ind, y = values)) +  
  scale_y_continuous(limits = c(0,1)) + 
  geom_boxplot() + 
  xlab("") + 
  ylab("Index of Floodplain Integrity")  
 
IFI.plot 
 
################################### 
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# GEO MEAN 
 
# Compute index using geometric mean 
Function.Index.Geo <- data.frame(matrix(NA, nrow = 
nrow(stressors.neg), ncol = length(data.byfunction))) 
 
for (i in 1:length(data.byfunction)) { 
  Function.Index.Geo[,i] <- 
apply(stressors.neg[,data.byfunction[[i]]], 1, function(x) 
geometric.mean(x)) 
} 
 
colnames(Function.Index.Geo) <- c("Floods", "Groundwater", "Sediment",  
                              "Organics/Solutes", "Habitat") 
 
 
 
# plot boxplot of index by function with geomean 
function.plot.geo <- ggplot(stack(Function.Index.Geo), aes(x = ind, y 
= values)) +  
  geom_boxplot() + 
  scale_y_continuous(limits = c(0,1)) + 
  xlab("Floodplain Function") + 
  ylab("Integrity Index") + 
  ggtitle("Index of Floodplain Integrity by Function, Geometric Mean") 
function.plot.geo 
 
# Compute overall Index of floodplain Integrity with Geo Mean 
IFI.geo <- data.frame(IFI.geomean = apply(Function.Index.Geo, 1, 
prod)^(1/5)) 
IFI.product.geo <- data.frame(IFI.prod = apply(Function.Index.Geo, 1, 
prod)) 
IFI.comb.geo <- data.frame(IFI.geo,IFI.product.geo) 
 
IFI.plot.geo <- ggplot(stack(IFI.comb.geo), aes(x = ind, y = values)) 
+  
  scale_y_continuous(limits = c(0,1)) + 
  geom_boxplot() + 
  xlab("") + 
  ylab("Index of Floodplain Integrity, Function Geometric Mean")  
 
IFI.plot.geo 
 
########################### 
# Cap stressors at 75th percentile 
 
stressors.scaled <- stressors # initialize vector 
percent.capped <- list() 
 
# loop over stressors 
for (i in 1:ncol(stressors)) { 
  # find 90th percentile 
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  limit <- quantile(stressors[,i], probs = 0.90) 
   
  # for non-zero 90th percentiles, compute as relative to 90th 
percentile 
  if (limit != 0) { 
    stressors.scaled[,i] <- stressors.scaled[,i]/limit 
     
    # Count percentage of data being capped to one 
    percent.capped[[i]] <- 
sum(stressors.scaled[,i]>1)/nrow(stressors.scaled) 
     
    # set values over 90th percentile to 1 
    stressors.scaled[,i][stressors.scaled[,i]>1] <- 1 
     
  } else { 
    # if 90th percentile is 0, scale relative to max value 
    stressors.scaled[,i] <- 
stressors.scaled[,i]/max(stressors.scaled[,i]) 
     
    percent.capped[[i]] <- 0 
  } 
     
} 
 
## Boxplot scaled stressors 
boxplot(stressors.scaled, use.cols = TRUE, ylab = 'Scaled Stressor 
Density') 
 
 
# Compute  Index as average of stressors scaled for each function 
Function.Index.Scaled <- data.frame(matrix(NA, nrow = 
nrow(stressors.scaled), ncol = length(data.byfunction))) 
 
for (i in 1:length(data.byfunction)) { 
  Function.Index.Scaled[,i] <- 1 - 
rowMeans(stressors.scaled[,data.byfunction[[i]]]) 
} 
 
colnames(Function.Index.Scaled) <- c("Floods", "Groundwater", 
"Sediment",  
                              "Organics/Solutes", "Habitat") 
 
 
# plot boxplot of index by function 
function.plot.scaled <- ggplot(stack(Function.Index.Scaled), aes(x = 
ind, y = values)) +  
  geom_boxplot() + 
  scale_y_continuous(limits = c(0,1)) + 
  xlab("Floodplain Function") + 
  ylab("Integrity Index") + 
  ggtitle("Index of Floodplain Integrity by Function, Scaled 
Stressors") 
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function.plot.scaled 
 
# plot correlation of Indices 
 
function.scaled.cor <- cor(Function.Index.Scaled, use = 
"pairwise.complete.obs") 
 
out.graph <- paste(out.path, "IFI_Scaled_Correlation.jpg", sep="") 
jpeg(out.graph, width = 2000, height = 2000, units = "px") 
corrplot(function.scaled.cor, type = "upper", method = "circle", 
tl.col="black", tl.srt=45, 
         tl.cex= 4.5, diag=FALSE, addCoef.col = "#bbbcc1", number.cex 
= 4, cl.pos ="n") 
dev.off() 
 
 
 
# Compute overall Index of floodplain Integrity 
IFI.scaled <- data.frame(IFI.geomean = apply(Function.Index.Scaled, 1, 
function(x) geometric.mean(x))) 
IFI.product.scaled <- data.frame(IFI.prod = 
apply(Function.Index.Scaled, 1, prod)) 
IFI.comb.scaled <- data.frame(IFI.scaled,IFI.product.scaled) 
 
IFI.scaled.plot <- ggplot(stack(IFI.comb.scaled), aes(x = ind, y = 
values)) +  
  scale_y_continuous(limits = c(0,1)) + 
  geom_boxplot() + 
  xlab("") + 
  ylab("Index of Floodplain Integrity, scaled stressors")  
 
IFI.scaled.plot 
 
# Export to csv 
HUC12 <- all.data$HUC12 
 
combined.data <- 
data.frame(HUC12,Function.Index.Scaled,IFI.comb.scaled) 
IFI.outfile <- paste(out.path, "IFI_Scaled.csv", sep="") 
write.csv(combined.data, file = IFI.outfile) 
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5. Analysis of IFI values 

This R script, IndexAnalysis.R, uses the IFI values calculated in IndexCalculation.R and 

associated with several spatial attributes in GIS to perform a variety of analyses on the results. 

IFI values are analyzed for correlation, spatially, for sensitivity and variability, and relationship 

with other river health metrics. Outputs are primarily graphical. 

Code: 

##################### 
# Floodplain Integrity Assessment 
# Index Analysis 
# M. Karpack, Spring 2019 
 
# Analysis IFI data by stream order, floodplain area, ecoregion and 
city/not city, 
# Comparison to IFI and identification of most impacted function.  
 
library(ggplot2) 
library(RColorBrewer) 
library(wesanderson) 
library(tidyr) 
library(grid) 
library(gridExtra) 
library(emmeans) 
library(scales) 
library(dplyr) 
library(data.table) 
library(stringr) 
library(psych) 
library(ggpubr) 
 
 
# set path to Git folder 
basepath <- "C:/Users/mnk5/Documents/floodplain_integrity" 
out.path <- paste(basepath, "/Outputs/", sep="") # for saving outputss 
 
# Load csv file of stressor data with Ecoregion and city as exported 
from GIS 
data.path <- paste(basepath, "/RawData/IFI_Ecoregion_cities.csv", 
sep="") 
all.data <- read.csv(data.path) 
colnames(all.data)[which(names(all.data) == "IFI_geomea")] <- 
"IFI_geomean" 
 
col.names <- colnames(all.data) 
 
# find columns to plot 
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functions <- c("Floods", "Groundwate", "Sediment", "Organics_S", 
"Habitat") 
func.IFI <- all.data[, functions] 
colnames(func.IFI) <- c("Floods", "Groundwater", "Sediment", 
"Organics_Solutes", "Habitat") 
 
# colnames(func.IFI)[which(names(func.IFI) == "IFI_geomean")] <- 
"Overall IFI" 
 
###################################### 
# general statistics about overall IFI 
IFI.stats <- describe(all.data$IFI_geomean) 
IFI.stats 
 
IFI.func.stats <- apply(func.IFI, 2, function(x) describe(x)) 
IFI.func.stats 
 
###################################### 
# Histograms of IFI results 
 
p <- ggplot(gather(func.IFI), aes(value)) + 
  geom_histogram(bins = 20) + 
  facet_wrap(~key, scales = 'free_y') + 
  xlab("Index of Floodplain Integrity") + 
  ylab("Count") + 
  theme(text = element_text(size=20)) 
p 
 
b <- ggplot(all.data, aes(x=IFI_geomean)) + 
  geom_histogram(bins = 20) + 
  xlab("Overall Index of Floodplain Integrity" ) + 
  ylab("Count") + 
  theme(text = element_text(size=20)) 
b 
 
####################################### 
# Plot bar graphs of function IFI by area 
 
# Arrange data into groups of 0.05 bins 
breaks <- seq(0.00, 1, 0.05) 
breaks[1] <- -Inf 
 
by.area<- data.frame(Area_km2 = all.data$FP_Areakm2) 
 
by.area$Floods <- cut(func.IFI$Floods, breaks) 
by.area$Groundwater <- cut(func.IFI$Groundwater, breaks) 
by.area$Sediment <- cut(func.IFI$Sediment, breaks) 
by.area$Organics_Solutes <- cut(func.IFI$Organics_Solutes, breaks) 
by.area$Habitat <- cut(func.IFI$Habitat, breaks) 
by.area$Overall_IFI <- cut(all.data$IFI_geomean, breaks) 
 
Flood.sum <- by.area %>% 
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  group_by(Floods) %>% 
  summarise(area = sum(Area_km2)) 
 
GW.sum <- by.area %>% 
  group_by(Groundwater) %>% 
  summarise(area = sum(Area_km2)) 
 
Sed.sum <- by.area %>% 
  group_by(Sediment) %>% 
  summarise(area = sum(Area_km2)) 
 
OS.sum <- by.area %>% 
  group_by(Organics_Solutes) %>% 
  summarise(area = sum(Area_km2)) 
 
Habitat.sum <- by.area %>% 
  group_by(Habitat) %>% 
  summarise(area = sum(Area_km2)) 
 
Overall.sum <- by.area %>% 
  group_by(Overall_IFI) %>% 
  summarise(area = sum(Area_km2)) 
 
 
# THIS IS ALL MANUAL AND WILL NEED TO CHANGE IF DATA CHANGES 
area.sum <- data.frame(breaks = OS.sum$Organics_Solutes) 
area.sum$Floods <- NA 
area.sum[4:20,2] <- Flood.sum$area 
area.sum$Groundwater <- NA 
area.sum[6:20,3] <- GW.sum$area 
area.sum$Sediment <- NA 
area.sum[2:20,4] <- Sed.sum$area 
area.sum$Organics_Solutes <- OS.sum$area 
area.sum$Habitat <- NA 
area.sum[4:20,6] <- Habitat.sum$area 
area.sum$Overall <- Overall.sum$area 
 
area.sum$breaks <- as.numeric(area.sum$breaks) 
 
# Graph with facet wrap "histograms" 
 
area.df <- melt(area.sum, id = 1, measure = 2:7) 
levels(area.df$variable) = c("Flood Reduction", "Groundwater Storage", 
"Sediment Regulation", 
                          "Organics/Solutes Regulation", "Habitat 
Provision", "Overall IFI") 
 
area.barplot <- ggplot(data = na.omit(area.df), aes(x = breaks, y = 
value)) + 
  geom_bar(stat = "identity", width = 1,  position = position_nudge(x 
= -0.5), fill = "grey27") + 
  scale_x_continuous(limits = c(0, 20), breaks = seq(0, 20, 4),  
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                     labels = c("0", "0.2", "0.4", "0.6", "0.8", 
"1.0")) + 
  facet_wrap(~ variable, ncol = 3) + 
  labs(x = "IFI Value", y = bquote("Total floodplain area, " ~km^2)) + 
  theme_bw(base_size = 16) + 
  theme(strip.background =element_rect(fill="grey93")) 
area.barplot 
 
 
####################################### 
# Plot by floodplain area 
a1 <- ggplot(all.data, aes(x = FP_Areakm2, y = Floods)) +  
    geom_point() + 
    scale_x_log10(labels = trans_format('log10',math_format(10^.x))) + 
    scale_y_continuous() + 
    xlab("") + 
    ylab("Floods IFI") + 
    theme_bw() 
 
a2 <- ggplot(all.data, aes(x = FP_Areakm2, y = Groundwate)) +  
  geom_point() + 
  scale_x_log10(labels = trans_format('log10',math_format(10^.x))) + 
  scale_y_continuous() + 
  xlab("") + 
  ylab("Groundwater IFI") + 
  theme_bw() 
 
a3 <- ggplot(all.data, aes(x = FP_Areakm2, y = Sediment)) +  
  geom_point() + 
  scale_x_log10(labels = trans_format('log10',math_format(10^.x))) + 
  scale_y_continuous() + 
  xlab(bquote("Floodplain unit area," ~km^2)) + 
  ylab("Sediment IFI") + 
  theme_bw() 
 
a4 <- ggplot(all.data, aes(x = FP_Areakm2, y = Organics_S)) +  
  geom_point() + 
  scale_x_log10(labels = trans_format('log10',math_format(10^.x))) + 
  scale_y_continuous() + 
  xlab(bquote("Floodplain unit area," ~km^2)) + 
  ylab("Organics and Solutes IFI") + 
  theme_bw() 
 
a5 <- ggplot(all.data, aes(x = FP_Areakm2, y = Habitat)) +  
  geom_point() + 
  scale_x_log10(labels = trans_format('log10',math_format(10^.x))) + 
  scale_y_continuous() + 
  xlab(bquote("Floodplain unit area," ~km^2)) + 
  ylab("Habitat IFI") + 
  theme_bw() 
 
grid.arrange(a1, a2, a5, a4, a3, nrow = 2) 
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# Linear relationship between IFI as function of Area 
area.lm <- lm(all.data$IFI_geomean ~ log10(all.data$FP_Areakm2)) 
R2 <- summary(area.lm)$r.squared 
summary(area.lm) 
cor.test(all.data$FP_Areakm2, all.data$IFI_geomean, method = 
c("pearson")) 
 
a6 <- ggplot(all.data, aes(x = FP_Areakm2, y = IFI_geomean)) +  
  geom_point() + 
  scale_x_log10(labels = trans_format('log10',math_format(10^.x))) + 
  scale_y_continuous() + 
  xlab(bquote("Floodplain unit area," ~km^2)) + 
  ylab("Overall IFI") + 
  theme_bw() + 
  theme(text = element_text(size=20)) 
a6 
 
 
 
############################ 
# IFI by stream order 
all.data[all.data == -999] <- NA 
count.data <- as.data.frame((table(all.data$StrmOrder))) 
names(count.data)[1] = 'StrmOrder' 
count.data$Freq <- paste(" N =", as.character(count.data$Freq), sep = 
" ") 
 
SO_comparisons <- list( c("1","2"), c("2","3"), c("3", "4"), 
c("4","5"), c("5","6"), c("6", "7")) 
 
SO <- ggplot(na.omit(all.data), aes(StrmOrder, IFI_geomean, group = 
StrmOrder)) + 
  geom_boxplot(na.rm = TRUE) + 
  scale_x_discrete(name = "Stream Order", breaks = seq(1:8)) +  
  scale_y_continuous(limits = c(0,1.5)) + 
  ylab("Overall IFI") + 
  theme_linedraw() + 
  theme(text = element_text(size=16), panel.grid.major.x = 
element_blank(), panel.grid.major.y = element_blank(), 
        panel.grid.minor.y = element_blank()) + 
  geom_text(data = count.data, aes(StrmOrder, y = 1.05, label = Freq), 
nudge_y = 0.05, size = 4) + 
  labs(tag = "c)") + 
  stat_compare_means(comparisons = SO_comparisons, label = "p.signif", 
method = "t.test",  
                     label.y = seq(1.25, 1.45, 
0.2/length(SO_comparisons))) 
   
SO 
 
# Test for significant difference 
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all.data$StrmOrder <- as.factor(all.data$StrmOrder) 
SO.lm <- lm(IFI_geomean ~ StrmOrder, data = all.data) 
SO.pairwise <- lsmeans(SO.lm, pairwise ~ StrmOrder) 
method.contrasts <- SO.pairwise$contrasts 
method.contrasts 
# Results - 1-3 not sig different, 4-6 all sig different fromnext 
larger, 6-7 not sig different, 8 is weird.  
 
############################ 
# IFI by ecoregion 
 
all.data$ECO_name <- as.factor(all.data$ECO_name) 
 
# get counts for label 
count.data.ECO <- as.data.frame((table(all.data$ECO_name))) 
names(count.data.ECO)[1] = 'ECO_name' 
count.data.ECO$Freq <- paste(" N =", 
as.character(count.data.ECO$Freq), sep = " ") 
 
# Compute ANOVA 
eco.aov <- aov(IFI_geomean ~ ECO_name, data = all.data) 
summary(eco.aov) 
# result: they are significantly different 
 
eco.lm <- lm(IFI_geomean ~ ECO_name, data = all.data) 
eco.pairwise <- lsmeans(eco.lm, pairwise ~ ECO_name) 
method.contrasts <- eco.pairwise$contrasts 
method.contrasts 
# Results - three statistically significant groups 
 
# add column for coloring in ggplot 
all.data$sig.group <- NA 
all.data$sig.group <- ifelse(all.data$ECO_name %in% c('ANP', 'COP', 
'SRO'), 'A', 
                             ifelse(all.data$ECO_name %in% c('HPL', 
'WYB'), 'B', 'C')) 
 
ECO <- ggplot(all.data, aes(ECO_name, IFI_geomean)) + 
  geom_boxplot(aes(ECO_name, IFI_geomean, fill = sig.group)) + 
  scale_fill_manual(values = c("#217463","#32ae95", "#9ce3d4")) + 
  scale_x_discrete(name = "\nEPA Ecoregion, Level 3") +  
  ylab("Overall IFI\n") + 
  theme(text = element_text(size=20), panel.grid.major.x = 
element_blank(), 
        legend.position = "none") + 
  geom_text(data = count.data.ECO, aes(ECO_name, y = 1.05, label = 
Freq), nudge_y = 0.05, size = 5) 
ECO 
 
############################# 
# IFI by city or not 
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all.data$In_City <- as.factor(all.data$In_City) 
 
# get counts for label 
count.data.city <- as.data.frame((table(all.data$In_City))) 
names(count.data.city)[1] = 'In_City' 
count.data.city$Freq <- paste(" N =", 
as.character(count.data.city$Freq), sep = " ") 
 
# T test for difference 
t.test(IFI_geomean ~ In_City, data = all.data) 
# result: means are not equal 
 
city_comparisons <- list(c("0", "1")) 
 
City.plot <- ggplot(all.data, aes(In_City, IFI_geomean)) + 
  geom_boxplot(aes(In_City, IFI_geomean)) + 
  scale_x_discrete(name = "", labels = c("Rural", "Urban")) +  
  scale_y_continuous(limits = c(0,1.5)) + 
  ylab("Overall IFI") + 
  theme_linedraw() + 
  theme(text = element_text(size=16), panel.grid.major.x = 
element_blank(), panel.grid.major.y = element_blank(), 
        panel.grid.minor.y = element_blank(), legend.position = 
"none") + 
  geom_text(data = count.data.city, aes(In_City, y = 1.05, label = 
Freq), nudge_y = 0.05, size = 4) + 
  labs(tag = "b)") + 
  stat_compare_means(comparisons = city_comparisons, label = 
"p.signif",  
                    label.y = c(1.25)) 
City.plot 
 
# Summary statistics, urban vs rural 
all.data %>% group_by(In_City) %>% summarize(mean = mean(IFI_geomean), 
med = median(IFI_geomean)) 
 
############################## 
# IFI by Physiographic region 
 
# Convert to factor and re-order to match geography 
all.data$PhysioReg <- factor(all.data$PhysioReg, 
                                levels = c("Intermontane Plateaus", 
"Rocky Mountain System", "Interior Plains"), 
                                ordered = TRUE) 
 
# get counts for label 
count.data.phys <- as.data.frame((table(all.data$PhysioReg))) 
names(count.data.phys)[1] = 'PhysioReg' 
count.data.phys$Freq <- paste(" N =", 
as.character(count.data.phys$Freq), sep = " ") 
 
# Test for differences  
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phys.lm <- lm(IFI_geomean ~ PhysioReg, data = all.data) 
phys.pairwise <- lsmeans(phys.lm, pairwise ~ PhysioReg) 
method.contrasts <- phys.pairwise$contrasts 
method.contrasts 
# results: Interior plains different from both Rocky mtn and Plateaus 
 
Phys_comparisons <- list(c("Intermontane Plateaus", "Rocky Mountain 
System"),  
                         c("Rocky Mountain System", "Interior 
Plains"), 
                         c("Intermontane Plateaus", "Interior 
Plains")) 
 
#Plot boxplots 
PHYS <- ggplot(all.data, aes(PhysioReg, IFI_geomean)) + 
  geom_boxplot(aes(PhysioReg, IFI_geomean)) + 
  scale_x_discrete(name = NULL, labels = function(x) str_wrap(x, width 
= 20)) +  
  scale_y_continuous(limits = c(0,1.5)) + 
  ylab("Overall IFI") + 
  theme_linedraw() + 
  theme(text = element_text(size=16), panel.grid.major.x = 
element_blank(), panel.grid.major.y = element_blank(), 
        panel.grid.minor.y = element_blank(), legend.position = 
"none") + 
  geom_text(data = count.data.phys, aes(PhysioReg, y = 1.05, label = 
Freq), nudge_y = 0.05, size = 4) + 
  labs(tag = "a)") + 
  stat_compare_means(comparisons = Phys_comparisons, label = 
"p.signif",  
                     label.y = c(1.25, 1.35, 1.45)) 
PHYS 
 
# Stream Order by physiographic region 
phys.so <- ggplot(na.omit(all.data), aes(StrmOrder)) + 
  geom_bar() + 
  facet_wrap(~ PhysioReg) + 
  xlab("Stream Order") + 
  ylab("Number of Floodplain Units") + 
  theme_bw() + 
  theme(text = element_text(size = 16)) 
phys.so  
 
# Summary statistics, physioregion 
all.data %>% group_by(PhysioReg) %>% summarize(mean = 
mean(IFI_geomean), med = median(IFI_geomean)) 
 
############################## 
# Combine boxplots to make figure 
 
# divide grid arrange by 5 
Figure <- grid.arrange(PHYS, City.plot, SO, 
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                       layout_matrix = rbind(c(1,1,1,2,2), 
c(3,3,3,3,3))) 
 
############################## 
# IFI vs ICI comparison 
 
# read export from GIS 
ICI <- read.csv(paste(basepath, "/RawData/ICI_byHUC12.csv", sep="")) 
# read file intersected with the floodplain 
ICI.intersect <- read.csv(paste(basepath, 
"/RawData/ICI_byHUC12_FloodplainIntersect.csv", sep="")) 
 
IFI <- func.IFI 
IFI$Overall <- all.data$IFI_geomea 
IFI$HUC12 <- all.data$HUC12 
 
# Join ICI and IFI based on HUC12 
ICI.comp <- merge(IFI, ICI, by.x = "HUC12", by.y = "IFI_HUC12", all.x 
= TRUE) 
names(ICI.comp)[names(ICI.comp)== 'MEAN_ICI_I'] <- "ICI" 
 
ICI.intersect.comp <- merge(IFI, ICI.intersect, by.x = "HUC12", by.y = 
"IFI_HUC12", all.x = TRUE) 
names(ICI.intersect.comp)[names(ICI.intersect.comp)== 'MEAN_ICI_I'] <- 
"ICI" 
 
# fit linear models 
ICI.lm <- lm(data = ICI.comp, Overall ~ ICI) 
R2.ICI <- summary(ICI.lm)$r.squared 
 
ICI.intersect.lm <- lm(data = ICI.intersect.comp, Overall ~ ICI) 
R2.ICI.intersect <- summary(ICI.intersect.lm)$r.squared 
cor.test(ICI.intersect.comp$ICI, ICI.intersect.comp$Overall, method = 
c("pearson")) 
 
summary(ICI.intersect.lm) 
 
# Scatter plot of ICI vs IFI 
ICI.plot <- ggplot(ICI.comp, aes(x = ICI, y = Overall)) + geom_point() 
+ 
  xlim(0,1) + ylim(0,1) + 
  coord_equal() + 
  xlab("Index of Catchment Integrity") + 
  ylab("Overall Index of Floodplain Integrity") + 
  ggtitle("All Catchments") + 
  geom_text(x= 0.1, y=0.1, label = paste0("R^2 = ", round(R2.ICI,2))) 
+ 
  theme_bw() 
 
# Scatter plot for catchments intersected with floodplains, ICI vs IFI 
ICI.intersect.plot <- ggplot(ICI.intersect.comp, aes(x = ICI, y = 
Overall)) +  
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  geom_point(size = 1) + 
  xlim(0,1) + ylim(0,1) + 
  coord_equal() + 
  xlab("Index of Catchment Integrity") + 
  ylab("Overall Index of Floodplain Integrity") + 
  # geom_text(x= 0.1, y=0.1, label = paste0("R^2 = ", 
round(R2.ICI.intersect,2))) + 
  theme_bw() + 
  theme(text = element_text(size=16)) + 
  labs(tag = "a)") 
 
grid.arrange(ICI.plot, ICI.intersect.plot, ncol = 2) 
 
 
# Look at distribution of ICI values (very few over 0.8) 
# hist(ICI.comp$ICI, xlim = c(0,1)) 
 
########################################## 
# Compare IFI to wetland abundance 
 
# read in wetland abundance by HUC-12 file 
wetlands <- read.csv(paste(basepath, "/RawData/Wetlands_table.csv", 
sep="")) 
wetlands <- wetlands[,c("HUC12", "Area_Density")] 
 
IFI$StrmOrder <- all.data$StrmOrder 
IFI$StrmOrder <- as.factor(IFI$StrmOrder) 
 
# Join Wetland abundance and IFI based on HUC12 
wetlands.comp <- merge(wetlands, IFI, by = "HUC12") 
 
# fit linear model 
wetlands.lm <- lm(data = wetlands.comp, Overall ~ Area_Density) 
R2.wetlands <- summary(wetlands.lm)$r.squared 
summary(wetlands.lm) 
cor.test(wetlands.comp$Area_Density, wetlands.comp$Overall, method = 
c("pearson")) 
 
# lm by stream order 
 
wetlands.lm.order <- by(wetlands.comp, wetlands.comp$StrmOrder,  
                        function(x) lm(data = x, Overall ~ 
Area_Density)) 
R2.wetlands.order <- lapply(wetlands.lm.order, function(x) 
summary(x)$r.squared) 
 
 
# Scatter plot of wetlands vs IFI 
wetlands.plot <- ggplot(wetlands.comp, aes(x = Area_Density, y = 
Overall)) +  
  geom_point(size = 1) + 
  xlim(0,1) + ylim(0,1) + 
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  coord_equal() + 
  xlab("Density of Wetlands") + 
  ylab("Overall Index of Floodplain Integrity") + 
  # geom_text(x= 0.9, y=0.1, label = paste0("R^2 = ", 
round(R2.wetlands,2))) + 
  theme_bw() + 
  theme(text = element_text(size=16)) + 
  labs(tag = "b)") 
wetlands.plot 
 
# Scatter plot of wetlands vs IFI by stream order 
wetlands.plot.SO <- ggplot(na.omit(wetlands.comp), aes(x = 
Area_Density, y = Overall)) +  
  geom_point() + 
  xlim(0,1) + ylim(0,1) + 
  coord_equal() + 
  xlab("Density of Wetlands") + 
  ylab("Overall Index of Floodplain Integrity") + 
  facet_wrap(~StrmOrder) + 
  # geom_text(x= 0.9, y=0.1, label = paste0("R^2 = ", 
round(R2.wetlands,2))) + 
  theme_bw() + 
  theme(text = element_text(size=14)) 
wetlands.plot.SO 
 
grid.arrange(ICI.intersect.plot, wetlands.plot, ncol = 2) 
 
################################ 
# Sensitivity analysis of Function IFI results 
 
# Numeric value (1 to 5) to represent function with min value 
func.sensitivity <- data.frame(HUC12 = as.character(all.data$HUC12)) 
func.sensitivity$min.func <- apply(func.IFI, 1, which.min) 
 
# add function names 
func.lookup <- data.frame(num = seq(1,5), names = c("Floods", 
"Groundwater", "Sediment", 
                                                    
"Organics/Solutes", "Habitat")) 
func.sensitivity$min.func.name <- 
func.lookup$names[match(unlist(func.sensitivity$min.func), 
func.lookup$num)] 
 
# Standard deviation of function IFI 
func.sensitivity$std.dev <- apply(func.IFI, 1, sd) 
 
# Modified coefficient of variation (sd of functions / overall IFI 
(geomean)) 
func.sensitivity$CV <- func.sensitivity$std.dev/all.data$IFI_geomean 
 
# Plots to visualize sesitivity 
func.plot <- ggplot(func.sensitivity, aes(min.func.name)) + 
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  geom_bar() + 
  xlab("Function with Minimum IFI") + 
  ylab("Number of Floodplain Units") + 
  theme_bw() + 
  theme(text = element_text(size=14)) 
func.plot 
 
sd.hist <- ggplot(func.sensitivity, aes(x = std.dev)) + 
  geom_histogram(binwidth = 0.02) + 
  xlab("Standard deviation of Function IFI") + 
  ylab("Number of Floodplain Units") +  
  theme_bw() + 
  theme(text = element_text(size=14))  
   
sd.hist 
 
# Investigate by stream order 
func.sensitivity$StrmOrder <- all.data$StrmOrder 
 
# plot Std dev and C.V. of function IFI by stream order 
sd.SO <- ggplot(func.sensitivity, aes(StrmOrder, std.dev, group = 
StrmOrder)) + 
  geom_boxplot(na.rm = TRUE) + 
  scale_x_discrete(name = "Stream Order", breaks = seq(1:8)) +  
  ylab("Standard Deviation of Function IFI\n") + 
  theme_linedraw() + 
  theme(text = element_text(size=14), panel.grid.major.x = 
element_blank(), panel.grid.major.y = element_blank(), 
        panel.grid.minor.y = element_blank()) + 
  geom_text(data = count.data, aes(StrmOrder, y = 
max(func.sensitivity$std.dev), label = Freq),  
            nudge_y = 0.05, size = 5) 
sd.SO 
 
cv.SO <- ggplot(func.sensitivity, aes(StrmOrder, CV, group = 
StrmOrder)) + 
  geom_boxplot(na.rm = TRUE) + 
  scale_x_discrete(name = "Stream Order", breaks = seq(1:8)) +  
  ylab("Coefficient of Variation of Function IFI\n") + 
  theme_linedraw() + 
  theme(text = element_text(size=20), panel.grid.major.x = 
element_blank(), panel.grid.major.y = element_blank(), 
        panel.grid.minor.y = element_blank()) + 
  geom_text(data = count.data, aes(StrmOrder, y = 2.02, label = Freq), 
size = 5) 
cv.SO 
 
# Plot minimum function by stream order 
min.func.SO <- func.sensitivity %>% 
  count(min.func.name, StrmOrder) %>% 
  group_by(StrmOrder) %>% 
  mutate(percent = n/sum(n)) 
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# plot by percent 
min.func.plot <- ggplot(min.func.SO, aes(x= StrmOrder, y = percent, 
fill = min.func.name)) + 
  geom_col(position = "fill") + 
  scale_y_continuous(labels = percent) + 
  scale_fill_manual(values = wes_palette(n=5, name = "Darjeeling1")) + 
  xlab("Stream Order") + 
  theme(text = element_text(size=14)) + 
  labs(fill = "Minimum Function") 
min.func.plot 
 
min.func.plot2 <- ggplot(min.func.SO, aes(x= StrmOrder, y = n, fill = 
min.func.name)) + 
  geom_col() + 
  scale_y_continuous(name = "Count of Floodplain Units") + 
  scale_fill_manual(values = wes_palette(n=5, name = "Darjeeling1")) + 
  xlab("Stream Order") + 
  theme(text = element_text(size=14)) + 
  labs(fill = "Minimum Function") 
min.func.plot2 
 
# output sensitivity result as csv 
write.csv(func.sensitivity, file = paste(out.path, 
"/IFI_sensitivity.csv", sep="")) 
 
############################ 
# IFI function to overall ratio 
 
func.ratio <- apply(func.IFI, 2, function(x) x/all.data$IFI_geomean) 
 
# Plot boxplots 
ratio.df <- melt(func.ratio) 
levels(ratio.df$Var2) = c("Flood Reduction", "Groundwater Storage", 
"Sediment Regulation", 
                             "Organics/Solutes Regulation", "Habitat 
Provision") 
 
ratio.plot <- ggplot(ratio.df, aes(x = Var2, y = value)) + 
  geom_boxplot() + 
  geom_hline(yintercept = 1, linetype = "dashed", size = 1) + 
  scale_x_discrete(labels = function(x) str_wrap(x, width = 10)) + 
  labs( y = "Ratio of Function to Overall IFI\n", x = NULL) + 
  theme_linedraw() + 
  theme(text = element_text(size=16), panel.grid.major.x = 
element_blank(), panel.grid.major.y = element_blank(), 
        panel.grid.minor.y = element_blank(), legend.position = 
"none") 
ratio.plot 
 
# Test for significant differences  
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# clean INF and remove 
ratio.df <- ratio.df[!is.infinite(ratio.df$value),] 
ratio.lm <- lm(value ~ Var2, data = ratio.df) 
ratio.pairwise <- lsmeans(ratio.lm, pairwise ~ Var2) 
method.contrasts <- ratio.pairwise$contrasts 
method.contrasts 
# results: all significantly different except sediment and organics  
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6. IFI results mapping 

This R script, ResultsMapping.R, makes spatial plots of the results of the IFI computation. These 

maps are mostly included as figures in this report. 

Code: 

################ 
# Floodplain Integrity Assessment  
# Mapping of floodplain integrity results 
# M. Karpack, Spring 2019 
 
# Plots the results of the IFI analysis 
# including figures for publication 
 
library(ggplot2) 
library(RColorBrewer) 
library(wesanderson) 
library(rgeos) 
library(rgdal) 
library(dplyr) 
library(tidyr) 
library(broom) 
library(gridExtra) 
library(reshape2) 
library(ggmap) 
 
# Set working directory 
setwd("C:/Users/mnk5/Documents/floodplain_integrity") 
 
# read in files 
floodplain <- readOGR(dsn = "RawData/SpatialData", layer = 
"CO_FP_IFI") 
CO.boundary <- readOGR(dsn = "RawData/SpatialData", layer = 
"CO_StateBoundary_UTM") 
CO.HUC12 <- readOGR(dsn = "RawData/SpatialData", layer = 
"CO_HUC12_IFI") 
# NHD v1 segments order 4 and larger in Colorado 
CO.rivers <- readOGR(dsn = "RawData/SpatialData", layer = 
"NHDv1_Order4_CO") 
 
# Clean data 
floodplain$HUC12 <- as.character(floodplain$HUC12) 
CO.HUC12$HUC12 <- as.character(CO.HUC12$HUC12) 
 
# transform for ggplot 
floodplain_tidy <- tidy(floodplain, region = "HUC12") 
floodplain.df <- left_join(floodplain_tidy, floodplain@data, by = 
c("id" = "HUC12")) 
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HUC12_tidy <- tidy(CO.HUC12, region = "HUC12") 
HUC12.df <- left_join(HUC12_tidy, CO.HUC12@data, by = c("id" = 
"HUC12")) 
 
CO.boundary@data$id <- row.names(CO.boundary@data) 
CO.boundary_tidy <- tidy(CO.boundary, region = 'id') 
 
CO.rivers@data$id <- row.names(CO.rivers@data) 
CO.rivers_tidy <- tidy(CO.rivers, region = 'id') 
 
############################### 
# Plot results 
 
# choose bounding box area for zoomed in area 
zoomsize <- 50000 
xlimits <- c(494000,494000 + zoomsize) 
ylimits <- c(4506000, 4506000 - zoomsize) 
 
# Floodplains in state 
map <- ggplot(data = floodplain.df, aes(x = long, y = lat, group = 
group)) +  
  geom_polygon(data = CO.boundary_tidy, aes(x = long, y = lat, group = 
group), fill = "grey97") + 
  geom_polygon(data = floodplain.df, aes(x = long, y = lat, group = 
group), fill = "grey50") + 
  geom_path(data = CO.rivers_tidy, aes(x = long, y = lat, group = 
group), color = "mediumblue", size = 0.25) + 
  geom_rect(aes(xmin = min(xlimits), xmax = max(xlimits), ymin = 
min(ylimits), ymax = max(ylimits)), 
            fill = "transparent", color = "red", size = 1.5) + 
  coord_equal() + 
  labs(x = NULL, y = NULL) + 
  theme_minimal(base_size = 14) +  
  theme(legend.text = element_text(size = 8)) + 
  theme(axis.text=element_blank()) + 
  theme(panel.grid.major = element_blank(), panel.grid.minor = 
element_blank()) 
 
map 
 
# Overall IFI 
 
map1 <- ggplot(data = floodplain.df, aes(x = long, y = lat, group = 
group, fill = IFI_geomea)) +  
  geom_polygon(data = CO.boundary_tidy, aes(x = long, y = lat, group = 
group), fill = "grey93") + 
  geom_polygon(data = floodplain.df, aes(x = long, y = lat, group = 
group, fill = IFI_geomea)) + 
  coord_equal() + 
  # coord_fixed(ratio = 1, xlim = xlimits, ylim = ylimits) + 
  scale_fill_gradientn(colours = c("chocolate3", "wheat1" 
,"darkcyan"), breaks = seq(0, 1, by = 0.2)) 
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map1 <- map1 + labs(x = NULL, y = NULL, fill = "IFI") 
map1 <- map1 + theme_minimal(base_size = 14) +  
  theme(legend.text = element_text(size = 14)) + 
  theme(axis.text=element_blank()) + 
  theme(panel.grid.major = element_blank(), panel.grid.minor = 
element_blank()) 
 
map1 
 
# Overall IFI mapped to HUC-12 units 
 
map2 <- ggplot(data = HUC12.df, aes(x = long, y = lat, group = group)) 
+  
  geom_polygon(data = HUC12.df, color = "grey27", size = 0.1, aes(x = 
long, y = lat, group = group, fill = IFI_geomea)) + 
  geom_polygon(data = CO.boundary_tidy, aes(x = long, y = lat, group = 
group),  
               fill = NA, color = "black", size = 1.5) + 
  geom_path(data = CO.rivers_tidy, aes(x = long, y = lat, group = 
group), color = "navy", size = 1) + 
  coord_equal() + 
  # coord_fixed(ratio = 1, xlim = xlimits, ylim = ylimits) + 
  scale_fill_gradientn(colours = c("chocolate3", "wheat1" 
,"darkcyan"), breaks = seq(0, 1.0, by = 0.2),  
                       labels = c("0.0","0.2", "0.4", "0.6", "0.8", 
"1.0"), limits = c(0,1)) + 
  labs(x = NULL, y = NULL, fill = "IFI") + 
  theme_minimal(base_size = 12) +  
  theme(legend.text = element_text(size = 12)) + 
  theme(axis.text=element_blank()) + 
  theme(panel.grid.major = element_blank(), panel.grid.minor = 
element_blank()) 
 
map2 
 
 
################################### 
# Map minimum function to HUC-12 
 
# put functions in order 
HUC12.df$MinFunc <- factor(HUC12.df$MinFunc, 
       levels = c("Floods", "Groundwater", "Sediment", 
"Organics/Solutes", "Habitat"), 
       ordered = TRUE) 
 
min.map <- ggplot(data = HUC12.df, aes(x = long, y = lat, group = 
group)) +  
  geom_polygon(data = HUC12.df, color = "grey27", size = 0.1, aes(x = 
long, y = lat, group = group, fill = MinFunc)) + 
  geom_polygon(data = CO.boundary_tidy, aes(x = long, y = lat, group = 
group),  
               fill = NA, color = "black", size = 1.5) + 
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  geom_path(data = CO.rivers_tidy, aes(x = long, y = lat, group = 
group), color = "navy", size = 1) + 
  coord_equal() + 
  scale_fill_manual(values = wes_palette(n=5, name = "Darjeeling1")) + 
  # coord_fixed(ratio = 1, xlim = xlimits, ylim = ylimits) + 
  labs(x = NULL, y = NULL, fill = "Minimum Function") + 
  theme_minimal(base_size = 12) +  
  theme(legend.text = element_text(size = 12)) + 
  theme(axis.text=element_blank()) + 
  theme(panel.grid.major = element_blank(), panel.grid.minor = 
element_blank()) 
 
min.map 
 
################################### 
# # All IFI by function 
 
# Mapping zoomed in area IFI by function 
fp.df <- melt(floodplain.df, id = 1:9, measure = 13:18) 
levels(fp.df$variable) = c("Flood Reduction", "Groundwater Storage", 
"Sediment Regulation", 
                           "Organics/Solutes Regulation", "Habitat 
Provision", "Overall IFI") 
 
 
 
map7 <- ggplot(data = fp.df, aes(x = long, y = lat, group = group, 
fill = value)) +  
  # geom_polygon(data = CO.boundary_tidy, aes(x = long, y = lat, group 
= group), fill = "grey93") + 
  geom_polygon() + 
  # coord_equal() + 
  coord_fixed(ratio = 1, xlim = xlimits, ylim = ylimits) + 
  facet_wrap(~ variable, ncol = 3) + 
  scale_fill_gradientn(colours = c("chocolate3", "wheat1" 
,"darkcyan"), breaks = seq(0, 1, by = 0.2)) + 
  labs(x = NULL, y = NULL, fill = "IFI") + 
  theme_minimal(base_size = 16) +  
  theme(panel.background = element_rect(fill = "grey93"), 
        panel.border = element_rect(fill = NA, colour = "black"), 
        legend.position = "bottom", 
        legend.text = element_text(size = 12), 
        legend.key.width = unit(1, "cm"), 
        axis.text=element_blank(), 
        panel.grid.major = element_blank(), panel.grid.minor = 
element_blank()) 
map7  
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Appendix C: Map of overall IFI for Colorado 
 

This appendix contains a tiled map of overall floodplain integrity for the entire state of Colorado.  
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Overall IFI Map Index
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