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ABSTRACT

ALLOSTERY OF THE FLAVIVIRUS NS3 HELICASE AND BACTERIAL IGPS STUDIED

WITH MOLECULAR DYNAMICS SIMULATIONS

Allostery is a biochemical phenomenon where the binding of a molecule at one site in a biologi-

cal macromolecule (e.g. a protein) results in a perturbation of activity or function at another distinct

active site in the macromolecule’s structure. Allosteric mechanisms are seen throughout biology

and play important functions during cell signaling, enzyme activation, and metabolism regulation

as well as genome transcription and replication processes. Biochemical studies have identified al-

losteric effects for numerous proteins, yet our understanding of the molecular mechanisms under-

lying allostery is still lacking. Molecular-level insights obtained from all-atom molecular dynamics

simulations can drive our understanding and further experimentation on the allosteric mechanisms

at play in a protein. This dissertation reports three such studies of allostery using molecular dy-

namics simulations in conjunction with other methods. Specifically, the first chapter introduces

allostery and how computational simulation of proteins can provide insight into the mechanisms

of allosteric enzymes. The second and third chapters are foundational studies of the flavivirus

non-structural 3 (NS3) helicase. This enzyme hydrolyzes nucleoside triphosphate molecules to

power the translocation of the enzyme along single-stranded RNA as well as the unwinding of

double-stranded RNA; both the hydrolysis and helicase functions (translocation and unwinding)

have allosteric mechanisms where the hydrolysis active site’s ligand affects the protein-RNA in-

teractions and bound RNA enhances the hydrolysis activity. Specifically, a bound RNA oligomer

is seen to affect the behavior and positioning of waters within the hydrolysis active site, which

is hypothesized to originate, in part, from the RNA-dependent conformational states of the RNA-

binding loop. Additionally, the substrate states of the NTP hydrolysis reaction cycle are seen to

affect protein-RNA interactions, which is hypothesized to drive unidirectional translocation of the
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enzyme along the RNA polymer. Finally, chapter four introduces a novel method to study the

biophysical coupling between two active sites in a protein. The short-ranged residue-residue in-

teractions within the protein’s three dimensional structure are used to identify paths that connect

the two active sites. This method is used to highlight the paths and residue-residue interactions

that are important to the allosteric enhancement observed for the Thermatoga maritima imidazole

glycerol phosphate synthase (IGPS) protein. Results from this new quantitative analysis have pro-

vided novel insights into the allosteric paths of IGPS. For both the NS3 and IGPS proteins, results

presented in this dissertation have highlighted structural regions that may be targeted for small-

molecule inhibition or mutagenesis studies. Towards this end, the future studies of both allosteric

proteins as well as broader impacts of the presented research are discussed in the final chapter.
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Chapter 1

Introduction

1.1 What Is Allostery?

Allostery is a biochemical phenomenon where the binding of a molecule at one site in a bio-

logical macromolecule (e.g. a protein) results in a perturbation of activity or function at another

distinct active site in the macromolecule’s structure. A marvel of eons-worth of evolution, allostery

is described as “the second secret of life” – second only to the genetic code – because allosteric

mechanisms allow biological systems to adapt to ever-changing chemical environments. Proteins

that have some form of allosteric control are ubiquitous in all biology, from the largest eukaryotes

to the smallest prokaryotes as well as viruses. Allosteric mechanisms are found in cell signaling,

enzyme activation, and metabolism regulation as well as genome transcription and replication pro-

cesses.1–5 It is exactly for these reasons that the categorization and fundamental understanding of

this phenomenon is extremely compelling yet difficult to study.

Allostery, as defined above, requires at least two active sites in the protein’s three dimensional

structure. The first, termed the orthosteric site, is associated with the native function(s) of the pro-

tein. Within this active site, the protein’s ligand binds and undergoes some biophysical or chemical

reaction that is catalyzed by the enzyme. The second site, termed the allosteric site, is the struc-

tural location where a second molecule binds and perturbs the orthosteric site’s functionality. The

binding of this molecule, termed the effector molecule, can lead to the enhancement or inhibition

or regulation, in some fashion, of the protein’s activity at the other site. Examples of effector

molecules range from molecular oxygen (O2) for hemoglobin6 to peptidic- or nucleic acid (NA)

oligomers, as observed in kinase-peptide complexes4 and DNA- or RNA-helicases7.

A classic example of allostery is the hemoglobin protein, which reversibly-binds and trans-

ports O2 throughout the body. The basal function of hemoglobin is binding and unbinding of O2

molecules in the four heme groups located in the protein structure. The initial binding of an O2
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molecule induces structural changes in the hemoglobin protein that enhances binding of subse-

quent O2 molecules. This form of cooperative allostery allows for increased transport capabilities

of the wild-type hemoglobin enzyme. Breakdown of this cooperativity via inhibition (e.g. by car-

bon monoxide) or mutation of the protein (e.g. sickle cell hemoglobin) leads to issues with oxygen

transport and stability of the native enzyme.

Hemoglobin has been studied for over 50 years; it is a good case study for this introduction

to allostery due to its historical significance as well as its complexity. The observed allosteric

cooperativity in hemoglobin was the spark for the development of numerous enzymatic models, all

of which attempt to generalize a quantitative description of an allosteric enzyme’s response to the

effector molecule as measured by biochemical assays.8–10 These models are quantitative narratives

describing hypothesized steps in the mechanism for allosteric regulation, yet they lack specific

insight into the physical interactions between the effector molecule and the protein. As one of

the first crystal structures of a biological macromolecule obtained using X-ray crystallography, the

structures of hemoglobin in deoxy- and oxygenated conformations (Protein Data Bank - PDB - IDs

2HHB and 1HHO) were used to identify how a bound-O2 molecule affects the protein structure.11,12

The combination of biochemical assays, enzymatic models, and structural insights have resulted

in an extremely detailed understanding of the structure and function of hemoglobin.

Since the initial studies of hemoglobin’s allostery, the number of identified allosteric enzymes

has exploded. The biochemical studies of an allosteric enzyme can provide detailed understanding

of an effector’s influence on the enzyme’s kinetics. Yet, structural insights are needed to under-

stand how allostery is chemically or biophysically manifested in the enzyme of interest. Specific

questions of interest in this regard are:

1. What is the allosteric effect? In other words, what are effector-induced changes in the or-

thosteric site that lead to the observed biochemical allostery?

2. What are the interactions between the enzyme and effector that lead to this allosteric effect?

3. How are the orthosteric and allosteric sites coupled?
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X-ray crystallography studies of proteins can provide information about the enzyme in the pres-

ence and absence of the effector and ligand molecules. These static, structural details provide

critical information that can be used to preliminarily answer these questions, such as where the

allosteric site is located in the protein’s structure or the large-scale structural changes that occur

upon effector binding. Yet, proteins naturally function in dynamic environments, which might be

poorly described by the static structures obtained from crystallography studies.

1.2 Using Molecular Dynamics to Study Allostery

The structural fluctuations and conformational changes of proteins have become increasingly

more important to our understanding of the ever growing field of allostery.13,14 Interactions between

a protein and its ligands (including the effector molecule), as seen in crystal structures, may be

incomplete or poor descriptions of the interactions important to allostery. Additionally, these static

structures represent a single conformation in the highly complex phase space of the protein-ligand

complex.

Molecular dynamics (MD) is a theoretical chemistry method that can be used to sample the en-

semble of conformations for the protein-ligand structures, thereby providing a much more detailed

description of the biophysically important phase space. This method numerically solves Newton’s

equations of motion to propagate the atomic positions of the modeled structure in time, where in-

teratomic forces are defined by the molecular mechanics Hamiltonian and force-field parameters.

The Hamiltonian used to describe the potential energy between all atoms in the system is

VMM =

nbonds
∑

i

bi (ri − ri,eq)
2 +

nangles
∑

i

ai (θi − θi,eq)
2 +

ndihedrals
∑

i

ni,max
∑

n

Vi,n
2

[1 + cos(nφi − γi,n)]

+
natoms
∑

i<j

(

Ai,j

r12i,j
−
Bi,j

r6i,j

)

+
natoms
∑

i<j

qiqj
4πǫ0ri,j

where bi and ri,eq are parameters describing the harmonic bonding potential, ai and θi,eq are param-

eters describing the harmonic angle potential, Vi,n and γi,n are parameters to describe the torsional

rotation around a central bond, Ai,j and Bi.j are parameters to describe the Lennard-Jones po-
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tential between non-bonded atoms, and qi and qj are atomic charge parameters used to quantify

the pairwise electrostatic interaction potential. Over two decades of research has been focused on

the development of these force field parameters to accurately model biomolecule structures and

dynamics.15

Computational resources are used to perform these numerical calculations, where the modeled

system is propagated for a large number of time steps. This results in a trajectory where each

frame represents a conformation of the system that is hypothesized to be biophysically plausible.

Therefore, a large set of frames serves as a description of the accessible phase space for the system.

From such a set of frames, one can begin to answer the scientific questions posed above from

an atomistic perspective. Comparative analyses between modeled systems in the presence and

absence of ligands can identify the allosteric effect caused by the effector molecule. Frames that

strongly represent the average structure of the modeled system can be used to visualize the struc-

tural interactions between the protein and ligands as well as initiate further studies of the protein-

ligand complexes. Using enhanced sampling methods, MD simulations can provide enough sam-

pling of protein-ligand interactions to quantify the relative free energies of conformations within

the phase space of the system. Additionally, MD trajectories can be used to study the short-range,

residue-residue interactions that couple the allosteric and orthosteric active sites. These results,

obtained from sets of MD simulations, can be validated and contextualized with a combination of

bioinformatics and experimental insights. Hypotheses developed from the study of MD trajectories

provides new research avenues for experimental collaborators.

1.3 Chapter Overview

My research, which relies heavily on the use of MD simulations to study allostery, will be

presented in the subsequent chapters of this dissertation. The chapters are organized to mirror

the scientific questions presented above. Chapters two and three present work highlighting the

allosteric effect and protein-ligand interactions (questions 1 and 2) for the flavivirus NS3 helicase.

Chapter four introduces a new method to analyze the couplings between the allosteric and orthos-
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teric sites (question 3) for imidazole glycerol phosphate synthase (IGPS), which is a model system

for the study of allostery. The concluding chapter highlights potential research avenues for these

specific proteins as well as provides a forward-looking perspective on the scientific questions of

interest.

1.3.1 Flavivirus NS3 helicase

The NS3 protein is a helicase that hydrolyzes nucleoside triphosphate (NTP) molecules to

translocate the enzyme along a NA polymer. Often referred to as motor proteins, helicases are

analogous to a motor in a car: the fuel (an NTP molecule) is burned (hydrolyzed), resulting in the

release of energy that the motor (the protein) converts into mechanical work to move along the road

(the NA polymer). Allostery in the flaviviral NS3 helicase is observed for both the NTP hydrolysis

reaction as well as the translocation process: the hydrolysis of NTP is seen to be enhanced by the

bound-NA polymer and translocation along the polymer is dependent on the fuel-burning reaction

cycle.

For the flaviviruses (Family Flaviviridae), the NS3 helicase plays a pivotal role in the repli-

cation of the viral RNA genome. This viral helicase utilizes energy released from the hydrolysis

reaction to translocate along and unwind double-stranded RNA, thereby resolving the double-

stranded replication intermediate into single-stranded, positive sense RNAs. An understanding

of the natural workings of this enzyme, including the allosteric mechanisms underlying the he-

licase functions, could aid the development of antiviral therapeutics against flaviviruses such as

dengue, Zika, and West Nile. The work presented in chapters two and three represent foundational

research on the allosteric mechanisms of the flavivirus NS3 helicase. Specifically, chapter two

reports a set of all-atom, explicit solvent MD simulations modeling the dengue NS3 helicase, from

which the allosteric effects of both the RNA and NTP-hydrolysis ligands were studied. Chapter

three highlights RNA-dependent conformations of a secondary structure in the Zika virus NS3 that

is hypothesized to be an origin site of the RNA-induced allosteric effect.
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1.3.2 IGPS

The IGPS protein has been a model enzyme for the study of allostery, similar to hemoglobin. It

plays an important role in the purine and histidine biosynthesis pathways in plants, fungi, archaea,

and bacteria. Allostery in IGPS is seen between two active sites where the binding of a ligand at

the allosteric site induces a 4,900-fold enhancement of the reactivity at the orthosteric site. The

specific chemical reactions at these active sites as well as the biophysical importance of IGPS are

of little importance to this dissertation. Rather, the extreme allosteric enhancement observed for

the IGPS system has driven the field to use it as the proving ground for new methods to study

allostery. As presented here, chapter four uses the IGPS system in this way.

Methods to study the interactions that couple allosteric and orthosteric sites have used graph

theoretical frameworks to describe the protein as a network of interacting, coupled nodes. The

correlated fluctuations of these nodes have been used to highlight the coupled motions in the protein

between the two active sites. Our new method, presented in chapter four, continues in this vein of

research yet highlights a new, more physically-relevant quantity to describe the protein network.

Additionally, we present two new metrics to quantify the “importance” or “centrality” of nodes to

the protein’s allosteric mechanism. This new quantitative analysis of MD simulations is used to

study the short-ranged interactions observed in the IGPS system that build up into the coupling

between the two active sites of the protein. Results from this analysis provide novel insights into

the biophysics of the protein and are validated with experimental results.
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Chapter 2

Allostery in the Dengue Virus NS3 Helicase: Insights

into the NTPase Cycle from Molecular Simulations.1

2.1 Overview

The C-terminus domain of non-structural 3 (NS3) protein of the Flaviviridae viruses (e.g.

HCV, dengue, West Nile, Zika) is a nucleoside triphosphatase (NTPase) -dependent superfamily 2

(SF2) helicase that unwinds double-stranded RNA while translocating along the nucleic polymer.

Due to these functions, NS3 is an important target for antiviral development yet the biophysics

of this enzyme are poorly understood. Microsecond-long molecular dynamic simulations of the

dengue NS3 helicase domain are reported from which allosteric effects of RNA and NTPase sub-

strates are observed. The presence of a bound single-stranded RNA catalytically enhances the

phosphate hydrolysis reaction by affecting the dynamics and positioning of waters within the hy-

drolysis active site. Coupled with results from the simulations, electronic structure calculations

of the reaction are used to quantify this enhancement to be a 150-fold increase, in qualitative

agreement with the experimental enhancement factor of 10-100. Additionally, protein-RNA inter-

actions exhibit NTPase substrate-induced allostery, where the presence of a nucleoside (e.g. ATP

or ADP) structurally perturbs residues in direct contact with the phosphodiester backbone of the

RNA. Residue-residue network analyses highlight pathways of short ranged interactions that con-

nect the two active sites. These analyses identify motif V as a highly connected region of protein

structure through which energy released from either active site is hypothesized to move, thereby

inducing the observed allosteric effects. These results lay the foundation for the design of novel

allosteric inhibitors of NS3.

1Russell B. Davidsona, Josie Hendrixa, Brian J. Geissb,c, Martin McCullagha; a Department of Chemistry, Col-
orado State University, Fort Collins, CO, USA, b Department of Microbiology, Immunology, and Pathology, Colorado
State University, Fort Collins, CO, USA, c School of Biomedical Engineering, Colorado State University, Fort Collins,
CO, USA
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2.2 Author Summary

Non-structural protein 3 (NS3) is a Flaviviridae (e.g. Hepatitis C, dengue, and Zika viruses)

helicase that unwinds double stranded RNA while translocating along the nucleic polymer during

viral genome replication. As a member of superfamily 2 (SF2) helicases, NS3 utilizes the free

energy of nucleoside triphosphate (NTP) binding, hydrolysis, and product unbinding to perform

its functions. While much is known about SF2 helicases, the pathways and mechanisms through

which free energy is transduced between the NTP hydrolysis active site and RNA binding cleft

remains elusive. Here we present a multiscale computational study to characterize the allosteric

effects induced by the RNA and NTPase substrates (ATP, ADP, and Pi) as well as the pathways of

short-range, residue-residue interactions that connect the two active sites. Results from this body

of molecular dynamics simulations and electronic structure calculations are highlighted in context

to the NTPase enzymatic cycle, allowing for development of testable hypotheses for validation of

these simulations. Our insights, therefore, provide novel details about the biophysics of NS3 and

guide the next generation of experimental studies.

2.3 Introduction

Flaviviruses (family Flaviviridae) are small (∼11 kilobases) positive-sense, single-stranded

RNA (ssRNA) viruses that include members such as dengue (serotypes 1-4), Zika, West Nile,

yellow fever, and Japanese Encephalitis viruses. The dengue virus (DENV) is a public health

threat that causes serious morbidity and mortality globally16,17. Infection with DENV can result in

“break-bone" fever, an extraordinarily painful disease with symptoms ranging from a mild fever to

a fatal hemorrhagic syndrome18. There are approximately 50 million serious infections and 20,000

deaths each year, and dengue infections are a leading cause of mortality in children in a number of

Latin and Asian countries16. Dengue viruses have re-emerged in the United States, and a growing

number of locally acquired infections in Florida, Texas, and Hawaii have been reported over the

last decade. Despite a reinvigorated effort due to the recent Zika epidemic19, there are currently no

approved small molecule antivirals to treat Flavivirus-induced diseases.
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One of the primary antiviral targets in Flaviviridae is the nonstructural protein 3 (NS3), which

plays a critical role in the viral replication cycle20–30. NS3 is a multifunctional protein found

in all Flaviviridae, possessing an N-terminal serine protease domain responsible for proteolyt-

ically cleaving the viral polyprotein during translation31 and a C-terminal helicase/nucleoside

triphosphatase (NTPase)/RNA triphosphatase domain32–37. In a nucleoside triphosphate (NTP)

hydrolysis-dependent mechanism, the NS3 helicase domain (NS3h) unwinds double-stranded RNA

(dsRNA) while translocating along the nucleic polymer. These functions are required to resolve the

dsRNA replication intermediate into fully-mature positive strand RNAs (see Ref. 38 for a recent

review). Mutations in the NS3 helicase and NTPase active sites are seen to abrogate NS3 function

as well as decrease viral survival39–41, demonstrating the importance of these enzymatic functions

to the flavivirus life cycle. Drugs identified to inhibit DENV NS3h suffer from specificity issues

because they are either NTPase inhibitors42 or RNA/DNA mimics such as ivermectin28, suramin29

or aurintricarboxylic acid30. Therefore, it is of interest to further elucidate the mechanism of DENV

NS3h with molecular resolution to help identify new and specific target regions for antiviral ther-

apeutics.

The Flaviviridae NS3h have been classified as a superfamily 2 (SF2) helicase (NS3/NPH-II

subfamily; a DEx/H helicase) where the NTPase cycle (Figure 2.1) provides the free energy needed

to unwind dsRNA and translocate along the nucleic substrate in a 3′ to 5′ direction43. Structurally,

NS3h are monomeric helicases composed of three subdomains; subdomains 1 and 2 (red and or-

ange in the inset of Figure 2.1) are RecA-like folds that are structurally conserved across all SF1

and SF2 helicases, whereas subdomain 3 (green) is unique to the NS3/NPH-II subfamily and con-

tains some of the least conserved portions of the protein. In Figure 2.1, an adenosine triphosphate

(ATP; purple) molecule is bound within the NTPase active site between subdomains 1 and 2. Also,

an RNA substrate (blue) is bound within the RNA-binding cleft, separating subdomains 1 and 2

from subdomain 3. The 5′ terminus of the RNA is positioned at the top of the protein in Figure 2.1

and the ds/ss RNA junction is hypothesized to be just above this region of the protein.

9



Figure 2.1: The NTPase cycle of NS3h. A schematic depicting the hypothesized substrate cycle that NS3h
moves through during the NTPase function. Free energy released from this cycle powers the unwinding
of dsRNA and unidirectional translocation along the nucleic polymer. The protein structure (inset) demon-
strates the tertiary structure of NS3h as well as the positions of the RNA-binding cleft (ssRNA substrate
colored blue) and the NTPase active site (ATP molecule colored purple).

The NS3/NPH-II subfamily of SF2 helicases exhibit both RNA-stimulated NTPase activity and

NTPase-dependent helicase activity32–37. These experimentally observed phenomena suggest that

(1) the presence of RNA affects the NTPase active site, thereby activating the NTPase cycle and (2)

this cycle is the source of free energy needed to perform work on the RNA (translocation and un-

winding). In Figure 2.1, the enzymatic cycle for the NTPase function is depicted by four dynamic

events: RNA is bound within the RNA-binding cleft and activates the NTPase cycle, NTP binds,

NTP is hydrolyzed, and finally products (nucleoside diphosphate – NDP – and inorganic phosphate

– H2PO4
-, Pi) are released. To date, it is unclear which stage(s) of the cycle are responsible for the

translocation and unwinding functions of NS3h. Furthermore, the biophysical couplings between

NTPase and helicase active sites are still poorly understood43.
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One of the better studied Flaviviridae NS3h is that of the Hepatitis C virus (HCV; family: Fla-

viviridae hepacivirus)44–55. Utilizing both ensemble44–50 and single molecule51–53,56,57 techniques,

studies have provided insights into the kinetic steps of the HCV NS3h translocation function.

These studies, alongside crystallography studies of various Flaviviridae NS3h, suggest that the

NS3 enzyme tracks along the phosphodiester backbone of the nucleic oligomer, unwinding one

base-pair per hydrolysis event50–52. To explain these experimental results, various models de-

scribing the translocation mechanism have been reported, depicting NS3h as a Brownian48–50 or

backbone stepping motor51,54–56 protein. These models envision the coupling between NTPase

and helicase functions through different biophysical mechanisms, yet the models are not mutually

exclusive and are limited in temporal and spatial resolution58,59.

Luo et al. reported a set of crystal structures of the DENV NS3h in important protein-substrate

complexes of the NTPase cycle (bolded text in Figure 2.1)60. From these structures, major al-

losteric influences of RNA-binding were seen in the NTPase active site. For example, Luo and

coworkers noted that the presence of an RNA substrate shifts the carboxylate group of Glu285

(motif II) into a more catalytically relevant structure for the hydrolysis reaction. Mutation of the

Glu285 residue abrogates NTPase and helicase activities40. These static structures have provided

novel insights into RNA-induced protein structural changes yet provide limited insight into the

NTPase cycle or translocation and unwinding functions of NS3h.

Previous theoretical studies of helicases have focused on a broad range of enzymes such

as PcrA (SF1)61–64, transcription terminator Rho (SF5)65, SV40 (SF3)66, and various NS3h en-

zymes67–71. Of the theoretical studies on NS3h, Perez-Villa et al. reported microsecond-long

molecular dynamics (MD) simulations of the HCV NS3h-ssRNA systems in the presence and ab-

sence of ATP and ADP. The reported simulations were used to interrogate the thermodynamics of

these substrate states with various conformations of the NTPase active site67. While the reported

results are of interest for NS3h, the authors provide limited insight into the molecular mechanisms

at play during the NTPase cycle. Other theoretical studies of the NS3h enzyme are limited in

timescales (tens to hundreds of ns of simulation), substrate states modeled, or spatial resolution
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(e.g. coarse grained elastic network model)68–71. Therefore, theoretical modeling of the NS3h en-

zyme has yet to elucidate further details about the structural and dynamic couplings within NS3h

in light of the NTPase cycle.

We report here a multiscale theoretical study of the DENV NS3h enzyme at each substrate state

along the NTPase cycle. RNA-induced allostery on the NTPase active site is reported wherein the

presence of an RNA substrate alters the positioning and dynamics of waters within the hydrol-

ysis active site. Inspired by this observation, minimum energy electronic structure calculations

are performed to investigate the energy landscape of the hydrolysis reaction. Additionally, in-

vestigations into NTPase substrate-induced allostery on the RNA-binding cleft suggest that NS3h

interacts with RNA in a NTPase substrate-dependent manner. Umbrella sampling (US) simula-

tions are performed to enhance the sampling of a proposed elementary step of the translocation

mechanism observed during the unbiased simulations. Finally, analyses of the correlated motions

between residues are used to identify allosteric pathways that connect the two active sites. It is

through these pathways that we hypothesize that free energy released during the NTPase cycle

is transduced to the RNA-binding cleft and utilized to perform work on the RNA. This study of

the substrate states of DENV NS3h lays the foundation for further study of the NTPase cycle and

marks the most complete picture of the molecular mechanism of the NS3 NTPase/helicase to date.

2.4 Methods and Models

2.4.1 Starting Structures and System Preparation

A subset of the crystal structures reported by Luo et al.60 of the Dengue NS3h (serotype 4)

are used as the initial structures for all-atom, explicit solvent MD simulations. Specifically, the

binary complex of NS3h with a seven-residue ssRNA substrate (PDB ID: 2JLU) is used to model

the ssRNA substrate state, while the ternary structures of ssRNA+ATP (2JLV), ssRNA+ADP+Pi

(2JLY), and ssRNA+ADP (2JLZ) model the pre-hydrolysis, post-hydrolysis, and product release

states of the NTPase cycle, respectively. The Apo (2JLQ) and ATP (2JLR) substrate states are also

simulated and used as experimental controls for our investigation into allostery.
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The RNA-bound structures of DENV NS3h were crystalized as dimers of the protein60. For

these systems, chain A of the structure is used as the starting conformation. Furthermore, the A

conformers are chosen for residues with multiple side chain conformations. In all crystal structures

with ATP substrates, the crystalized Mn2+ divalent cation is converted into a Mg2+. For the ATP

crystal structure (2JLR), residues of the protease linker region were poorly resolved and so are

transferred from the Apo (2JLQ) structure after aligning the neighboring amino acid backbones in

both systems.

2.4.2 Molecular Dynamics Simulations

All-atom, explicit solvent MD simulations are performed for the six substrate states of DENV

NS3 and presented in Figure 2.1 (denoted Apo, ATP, ssRNA, ssRNA+ATP, ssRNA+ADP+Pi,

and ssRNA+ADP). The simulations are performed using the GPU-enabled AMBER14 software72,

ff14SB15 parameters for proteins, and ff99bsc0χ OL3
73,74 parameters for RNA. Parameters for ATP75,

ADP75, Pi (provided in Supporting Information (SI)), and Mg2+76 are also used. For each system,

the crystal structures are solvated in TIP3P water boxes with at least a 12 Å buffer between the

protein and periodic images. Crystallographic waters are maintained. Sodium and chloride ions

are added to neutralize charge and maintain a 0.10 M ionic concentration. The Langevin dynamics

thermostat and Monte Carlo barostat are used to maintain the systems at 300 K and 1 bar. Direct

nonbonding interactions are calculated up to a 12 Å distance cutoff. The SHAKE algorithm is

used to constrain covalent bonds that include hydrogen77. The particle-mesh Ewald method78 is

used to account for long-ranged electrostatic interactions. A 2 fs integration time step is used, with

energies and positions written every 2 ps. The minimum amount of simulation performed for each

system is one trajectory of 1.5 µs, with the first 200 ns of simulation sacrificed to equilibration of

the starting structures. Simulation of the ssRNA system is performed to 2 µs. For both the ATP

and ssRNA+ATP systems, two 1.5 µs simulations are performed. The total amount of unbiased

simulation reported here on the described structures is 12.5 µs.
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2.4.3 Umbrella Sampling Simulations

US simulations are performed to enhance sampling of a hypothesized elementary transloca-

tion event wherein the biased collective variable is the distance between the central carbon of the

guanidinium group of Arg387 to the phosphorous atom of phosphate 4 in the RNA. These simula-

tions are run for the ssRNA, ssRNA+ATP, ssRNA+ADP+Pi, and ssRNA+ADP systems, using the

same protocol as the unbiased simulations with the addition of a bias. For each substrate state, a

minimum of 22 sampling windows are simulated for 50 ns each with harmonic wells positioned

every 0.5 Å and ranging from 3.50 to 14.00 Å. Harmonic force constants are 20 kcal mol-1 Å-2.

Further simulation and additional windows are run in regions of collective variable space with poor

sampling. The weighted histogram analysis method (WHAM)79 is used to analyze the results of

these simulations, with bin sizes of 0.1 Å. Bootstrapping is used to approximate error bars for the

probability density and free energy plots shown. The total amount of biased simulations reported

here is 5.12 µs.

2.4.4 Electronic Structure Calculations

Electronic structure calculations are performed at the ωB97X-D/6-31+G* level of theory80 us-

ing the Guassian 09 version B.01 program81. The ωB97X-D functional is chosen due to its broad

applicability82,83 and a recent study demonstrating its energetic accuracy for a variety of phos-

phate hydrolysis reactions84. The QM system is composed of a truncated ATP molecule (truncated

to methyl triphosphate, MTP), functional groups of nine surrounding protein residues (Pro195,

Gly196, Lys199, Glu285, Ala316, Gly414, Gln456, Arg460, and Arg463), a Mg2+ ion, and seven

water molecules. The amino acids are truncated at various positions (more detail in SI) using hy-

drogen atoms. For each residue, the position of the terminal heavy atom is frozen to maintain the

active site geometry. This yielded a total of 138 atoms in the QM calculations.

These calculations are performed on active site conformations pulled from the unbiased MD

simulations of the ssRNA+ATP and ATP substrate states, thereby investigating the influence of

observed RNA structural allostery on the hydrolysis reaction mechanism and energy landscape.
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Frames used for the initial reactant state structures were selected by visualizing MD frames in

which a lytic water is present. Through visual and RMSD analyses of such frames, a single frame

was chosen to represent the population of catalytically relevant structures. The hydrolysis reaction

is then monitored by optimizing the reactants (MTP+lytic water), products (MDP+HPO2−
4 ), and

a single transition state (TS) in between. The initial TS and product state structures were created

from the previous optimized structure. The minima are confirmed using a Hessian calculation.

The TS is confirmed by examining the direction of the single imaginary frequency. Following ge-

ometry optimization, frequency calculations are performed to obtain gas-phase, zero-point energy

corrected free energies for each active site conformation.

2.4.5 Data Analysis

Unless stated otherwise, analyses of MD trajectories are performed using Python 2.7 and the

MDAnalysis module (version 0.15.0)85. Matplotlib is used for plotting data86. VMD is used for

visualization of trajectories and production of structural figures87–89. For each substrate state, a sin-

gle frame from the trajectories is used when presenting structural details of the respective substrate

state. Further information on choosing these “exemplar” structures is given in the SI. Additionally,

details of all analyses performed can be found in the SI. All scripts for the analyses are available

on Github (https://github.com/mccullaghlab/DENV-NS3h).

2.5 Results and Discussion

For clarity, we present and discuss our results in three sections. The first and second sections

independently report observed RNA-induced and NTPase substrate-induced structural allosteries,

respectively. The focus of the RNA-induced allostery section is on the structural changes seen

in the NTPase active site due to bound RNA. Similarly, the NTPase substrate-induced allostery

section highlights changes seen in the structure and dynamics of the RNA-binding cleft due to

the presence of different nucleoside substrates. In the final section, correlated motions between
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residues are used to highlight pathways through which these structural allosteric effects are in-

duced.

2.5.1 RNA-Induced Allostery

To date, no biophysical explanation has been proposed for the 10 to 100-fold increase in NT-

Pase turnover rate observed for DENV NS3h in the presence of RNA37. Crystallographic studies

of the DENV NS3h structure have identified static structural allostery due to RNA binding60, yet

a dynamic picture and interpretation of these influences are still missing. In this section, compar-

isons of the simulations of the Apo, ATP, ssRNA, and ssRNA+ATP substrate states are used to

depict structural rearrangements induced by RNA. These RNA-induced allosteries are observed to

affect the positioning and dynamics of waters within the NTPase active site. These novel insights

gained from the comparisons of the MD simulations inspire the reported electronic structure cal-

culations of the reactant, transition, and product states of the hydrolysis reaction. In combination,

these results demonstrate that the observed enhancement of NTPase activity originates from the

RNA-induced destabilization of the lytic water.

The RNA-binding Loop and α2.

The most marked structural difference between DENV NS3h with or without ssRNA is the

change in conformation of the RNA-binding loop (Lβ3β4; Thr244 to Glu255). The crystal struc-

tures of DENV NS3h from Luo et al.60 with no RNA present (Apo, 2JLQ; ATP, 2JLR) resolve this

loop in a “closed” conformation while the crystal structures with bound RNA all have this loop in

an “open” conformation. Figure 2.2(A) depicts both conformations and the relative position of the

loop with respect to the RNA-binding cleft and NTPase active site. In the “closed” conformation,

the RNA-binding loop is covering part of the RNA-binding cleft while, in the “open” conforma-

tion, this loop contacts the phosphodiester backbone of the RNA as well as amino acids of α-helix

2 (α2). Transitions from “closed” to “open” conformations are not sampled during our MD sim-

ulations of the Apo and ATP systems demonstrating that the crystal structure conformations are

minima in the solution phase free energy surfaces.
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Figure 2.2: RNA-induced displacement of Lβ3β4 and α2. (A) Depiction of the “open” and “closed”
structural states of Lβ3β4 for exemplar structures of ATP (blue) and ssRNA+ATP (green) simulations. (B)
Hydrophobic interactions between Lβ3β4 and α2 stabilize the “open” conformation. Furthermore, Val227
and Met231 (α2) are pushed in towards the NTPase active site when Lβ3β4 is in the “open” conformation.
(C) RMSD of α2 (residues 224 to 235) backbone atoms referenced against the ssRNA+ATP crystal structure
(PDB ID: 2JLV).

The RNA-induced structural change of Lβ3β4 affects the position of α2 as highlighted in Fig-

ure 2.2(B), where the top of α2 is displaced in towards the NTPase active site when Lβ3β4 is in the

“open” conformation. This conformation is stabilized by hydrophobic contacts between Ala246

and Val247 (Lβ3β4) and Val226, Ala228, Ala229 (α2). When in the “closed" conformation, this

hydrophobic pocket is not formed and leaves the top of α2 exposed to solvent.

The structural deviation of α2 is quantified by computing the root mean square deviation

(RMSD) of the backbone atoms of α2 (residues 224 to 235) relative to the ssRNA+ATP crys-

tal structure (2JLV). The distributions of this metric are presented in Figure 2.2(C) with the largest

structural deviations seen in the simulations of the Apo and ATP substrate states. Bound RNA

decreases the RMSD values while an ATP substrate shows minimal influence. Therefore, these

RNA-induced hydrophobic interactions between Lβ3β4 and α2 stabilize the structural conforma-

tion of α2 where the top of the helix is pushed in towards the NTPase active site. Interestingly,

Val227 and Met231 are the residues in α2 that have prominent positions in the NTPase active

site. While these hydrophobic side chains likely have minimal influence on the hydrolysis reaction

mechanism, their structural shift into the hydrolysis active site reduces the volume of the pocket.
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Motif II.

Motif II (Walker B) is a set of highly conserved amino acid residues within NTPase enzymes

and is known to play an important role in the catalysis of the hydrolysis reaction40. In DENV

and other Flaviviridae, motif II is the DEAH sequence (residues 284 to 287) where Asp284 and

Glu285 are positioned in the rear of the NTPase active site. Luo et al. noted that the presence

of RNA shifts the carboxylate group of Glu285 from a magnesium-bound position to a position

more conducive to coordinating the lytic water60. In this RNA-induced position, Glu285 is ideally

located to act as a base where it can accept a proton from the lytic water, thereby increasing the

nucleophilicity of the attacking group during the hydrolysis reaction.

Our MD simulations maintain these starting conformations and support the deduced impor-

tance of Glu285. Snapshots of the Glu285 positions in the ATP and ssRNA+ATP simulations are

shown in Figure 2.3 (A) and (B), respectively. The highlighted water demonstrates the position of

a lytic water in the NTPase active site, relative to the γ-phosphorus atom. Structurally, with RNA

bound, the carboxylate side chain of Glu285 is pulled away from the coordination sphere of the

Mg2+ cation and is moved into plane with the terminal phosphoanhydride bond. In either position,

Glu285 is observed to hydrogen bond with the lytic water yet, in the RNA-induced position, the

lytic water is positioned in a more ideal environment for nucleophilic attack (quantified in the next

section).

Both Asp284 and Glu285 are major structural landmarks within the NTPase active site and have

no direct interactions with the RNA substrate. Rather, the origin of the RNA-induced structural

rearrangement of motif II residues is attributed to RNA-induced displacement of residues down the

linear amino acid sequence, specifically Phe288 and Asp290. Figure 2.3 (C) shows the structural

alignment of the ATP and ssRNA+ATP structures (same frames as in panels (A) and (B)), focusing

on residues Glu285 to Asp290. The structural deviations of the residues highlighted in Figure 2.3

(C) are quantified with an RMSD analysis of the backbone atoms of residues 284 to 290, referenced

against the ssRNA+ATP crystal structure (Figure 2.3 (D)). There is a shift of ∼ 1.3 Å in these atoms

when comparing RNA-bound systems (ssRNA, ssRNA+ATP) and no RNA systems (Apo, ATP).
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Figure 2.3: RNA-induced allostery on motif II. The Asp284 and Glu285 positioning relative to the γ-
phosphate of the ATP molecule, for the ATP (A) and ssRNA+ATP (B) systems. In each panel, the high-
lighted water molecule is identified as the most lytic-like water within the active site. (C) Structural align-
ment of the same frames shown in (A) and (B), highlighting the RNA-induced backbone shift of residues
Glu285 to Asp290. Phe288 and Asp290 are highlighted in both systems due to their prominence in the RNA-
binding cleft. (D) RMSD of the backbone atoms of residues 284 to 290 referenced against the ssRNA+ATP
crystal structure (PDB ID: 2JLV).

Therefore, bound RNA causes a backbone shift of the post-motif II residues (e.g. Phe288, Asp290)

that propagates to the residues within the NTPase active site.

Water positioning and dynamics within the NTPase active site.

RNA allosterically affects the positions of amino acids within the NTPase active site, yet it

is unclear how these structural rearrangements influence the hydrolysis cycle. When comparing

the ATP and ssRNA+ATP simulations, the positions and dynamics of the ATP molecule and Mg2+

cation are minimally affected by the presence of RNA. Alternatively, waters within the NTPase

active site are observed to be greatly influenced by the presence of bound RNA. For example, the

average number of water molecules found within the NTPase active site decreases from 30.0± 0.7
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molecules for the Apo substrate state to 21.72± 0.08 molecules in the ssRNA state. A similar but

reduced trend is observed when comparing the ATP (15.0±0.2 water molecules) and ssRNA+ATP

(12.8± 0.4) simulations.

The translational and rotational dynamics of water molecules within the NTPase active site are

also influenced by bound RNA, as shown graphically in Figure 2.4(A) and (B). The mean squared

displacement (MSD, panel (A)) is a metric describing the average squared distance traveled by

water molecules within the NTPase active site over a time interval, where large slopes indicate fast

diffusion of water. The MSD metric for the Apo substrate state (purple) has a large slope relative

to the ssRNA substrate state, demonstrating that waters in the NTPase active site diffuse more

slowly when an RNA is bound within the binding cleft. Although much less dramatic, a similar

trend is seen in the ATP and ssRNA+ATP states. The O-H bond autocorrelation metric (panel

(B)) describes the rotational motions of water molecules within the active site, thereby looking at

water reorientation; slower decay of this metric indicates slower reorientation times. Similar to

the MSD results, the ssRNA-bound systems have extended O-H bond correlation times relative to

the control states (Apo and ATP), indicating that rotational motions of water molecules within the

NTPase active site are slowed by the RNA.

Considering the hypothesized SN2 mechanism of the hydrolysis reaction90,91, ideal nucle-

ophilic attack by a lytic water on the γ-phosphorous atom (Pγ) of ATP is described by an attack

angle of 180◦ with respect to the terminal phosphoanhydride (Pγ-Oβ,γ) bond. The distance between

the lytic water oxygen (Owat) and Pγ will decrease to a bonded distance of ∼ 1.7 Å over the course

of this reaction. Therefore, the Pγ-Owat distance and Oβ,γ-Pγ-Owat angle are used as geometric

collective variables that describe the nucleophilic attack of a lytic water. Projecting the positions

of waters within the NTPase active site onto these two coordinates allows for comparisons of the

positioning of catalytically relevant water in the ATP and ssRNA+ATP substrate simulations. The

two-dimensional heat maps of this projection are shown in the SI (Figures Figure 2.16 and Fig-

ure 2.17) for both of the substrate states.
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Figure 2.4: Water dynamics and positioning within the NTPase active site. (A) Mean square dis-
placement (MSD) and (B) O-H bond autocorrelation metrics for the Apo, ATP, ssRNA, and ssRNA+ATP
simulations that describe the translational and rotational motions of waters within the active site. (C) The
difference between the ssRNA+ATP and ATP probability densities of water positions within the NTPase
active site, projected onto the Oβ,γ-Pγ-Owat angle and Pγ-Owat distance. These axes are used to project wa-
ter positions into catalytically relevant space relative to the ideal position of a lytic water in the hydrolysis
reaction.

The difference between the probability densities for the ssRNA+ATP and ATP simulations is

shown in Figure 2.4(C), where positive values (blue) correspond to increased probability density

in ssRNA+ATP versus ATP states. Therefore, the presence of RNA causes water molecules in

lytic positions of the NTPase active site to shift into more ideal (larger) nucleophilic angles while

pushing competing waters at short distances to lower angles. Motivated by the electronic structure

calculations reported in the next section, geometric cutoffs are used to quantify these observations

by defining a conical volume of the NTPase active site within which waters are identified as lytic:

waters with a Pγ-Owat distance less than 5.0 Å and an Oβ,γ-Pγ-Owat angle greater than 155◦ are

defined as lytic. The probability of observing a frame with water in a lytic position is 72.93% ±

0.07% for the ATP system and 79.08% ± 0.09% for the ssRNA+ATP system.

In total, these results demonstrate that RNA affects the dynamics and positioning of waters

within the NTPase active site. These effects are propagated from the RNA binding cleft to the

NTPase active site through structural rearrangements of Lβ3β4, α2, and motif II. Although it

is difficult to fully deconvolute the specific influences of these structural allosteries on the wa-
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ter molecules in the active site, we propose that the observed influence of RNA on number and

dynamics of water molecules originates from the structural rearrangement of α2, where Val227

and Met231 become more prominent in the hydrolysis active site when RNA is bound. These hy-

drophobic residues not only exclude water molecules from the active site but also slow the trans-

lational and rotational motions of water molecules. This RNA-induced effect can be thought of as

a entropic destabilization of the NTPase active site, where the RNA decreases the phase space that

the water molecules can populate. Furthermore, the RNA-induced structural rearrangement of the

Glu285 carboxylate group leads to the observed increased in probability of lytic water molecules.

Through the backbone displacement of motif II residues, the Glu285 side chain is pulled away

from the Mg2+ cation and into plane of the γ-phosphate group, thereby creating a local protein

environment that stabilizes water molecules into more ideal positions for nucleophilic attack. This

effect is interpreted as a direct destabilization of the lytic water in the hydrolysis reaction.

Electronic Study of the NTP Hydrolysis Reaction.

The impact of the RNA-induced repositioning of the lytic water on the hydrolysis reaction is

investigated using density functional theory (DFT) calculations of an abbreviated NTPase active

site where conformations are pulled from the unbiased MD simulations. Active site geometry

optimizations are performed on the ATP and ssRNA+ATP substrate states where the hydrolysis

reaction is modeled as a concerted SN2 mechanism using a reactant state (ATP*), a transition state

(TS), and a product state (HPO2−
4 ). Geometry optimized potential energies and gas phase free

energy corrections are used to compute the free energy landscape of the hydrolysis reaction for

the respective substrate state, as presented in Figure 2.5. Figure S1 highlights the full selection of

the NTPase active site (amounting to 138 atoms) that are included in the DFT calculations. For

clarity, the geometries presented in Figure 2.5 only include the triphosphate, lytic water, Mg2+,

and Glu285 atoms.

The free energy landscape of the ATP substrate state is presented in Figure 2.5(A), where the

reactant structure has the lytic water 3.41 Å away from the gamma phosphorus and at an angle

of 157◦ between the water oxygen and the Oβ,γ-Pγ bond. The TS structure is found to be 30.5
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Figure 2.5: Energy landscape and structures of the NTP hydrolysis reaction in the active site of DENV

NS3h for the ATP (A) and ssRNA+ATP (B) substrate states. DFT calculations were performed using
the ωB97X-D/6-31+G* level of theory. A total of 138 atoms were included in the quantum mechanical
calculations (see supporting information for full structures) but only the triphosphate, lytic water, Mg2+,
and Glu285 side chain atoms are shown here for clarity. Important distances and angles are included in the
structural representations of each state. All energies are reported in units of kcal mol−1.

kcal mol−1 above the reactant state, with a Pγ-Owat distance of 1.89 Å and Oβ,γ-Pγ-Owat angle

of 172◦. Additionally, the Oβ,γ-Pγ bond distance has increased from 1.64 Å to 2.31 Å. Over the

transition, the lytic water molecule reorients relative to the γ-phosphate and Glu285 atoms. Via

this reorientation, a proton from the lytic water is partially transferred to the carboxylate group of

Glu285, as seen in the difference in the water O-H bond distance between TS and reactant states

(∆Owat-Hwat = d(Owat-Hwat)TS - d(Owat-Hwat)ATP* = 0.12 Å). The product state was found following

the TS in which the proton has completely transferred to Glu285, forming the HPO4
2- molecule.
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Panel (B) of Figure 2.5 depicts the hydrolysis reaction landscape and structures for the ss-

RNA+ATP substrate state. The reactant structure has the lytic water 3.26 Å away from the gamma

phosphorus and at an Oβ,γ-Pγ-Owat angle of 161◦. In the TS structure, the Pγ-Owat and Oβ,γ-Pγ

distances become 2.03 Å and 2.39 Å, respectively, while the Oβ,γ-Pγ-Owat angle increases to 175◦.

Unlike in the ATP substrate state, the O-H bond distance of the lytic water is minimally perturbed

when comparing the reactant and TS structures (∆Owat-Hwat = 0.04 Å). Rather, the proton transfer

step is completed during the transition from the TS to the product state. Overall, the calculated

activation barrier height for the ssRNA+ATP substrate state is 27.6 kcal mol−1, corresponding to a

2.8 kcal mol−1 decrease in barrier height relative to the ATP substrate state landscape.

The overall reaction, ATP(aq)
NS3h
−→ ADP(aq) + Pi(aq), is expected to be exergonic for both

substrate states due to NS3h being hydrolysis active in the presence and absence of RNA37. While

the energy landscape for the ATP substrate state (panel (A)) does not demonstrate an exergonic

reaction, we hypothesize that neither product states presented in Figure 2.5 adequately model the

final product state of the hydrolysis reaction. This hypothesized thermodynamic product state

requires a proton transfer from Glu285 to the HPO2−
4 molecule as well as an unbinding event of

the HPO2−
4 molecule from the Mg2+ coordination sphere. Optimization of such a product state

is infeasible due to the limited description of the protein environment in these DFT calculations.

Additionally, it is assumed that the energy barriers of these subsequent events are much smaller

than the hydrolysis reaction barrier and so, are disregarded in the current study.

The calculated activation barrier heights of both substrate states are in good agreement with pre-

vious DFT studies of NTP hydrolysis in a protein environment91–97 and in aqueous solution98–100.

The differences observed between the ATP and ssRNA+ATP free energy landscapes of the hydrol-

ysis reaction are mainly attributed to the different positions of the Glu285 carboxylate group. For

either substrate state, this functional group acts as a base that increases the nucleophilicity of the

lytic water. When unbound from the Mg2+ coordination sphere, Glu285 performs this function

more effectively, stabilizing the lytic water at a shorter Pγ-Owat distance and a larger Oβ,γ-Pγ-Owat

angle. Additionally, comparisons of the associative (Pγ-Owat distance) and dissociative (Oβ,γ-Pγ
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distance) reaction coordinates suggest that the RNA-induced structural rearrangement of the active

site leads to slight changes in the hydrolysis mechanism. For both substrate states, the change in

Pγ-Owat distance from reactant to TS states (ATP: ∆Pγ-Owat = -1.52 Å; ssRNA+ATP: ∆Pγ-Owat

= -1.23 Å) is larger in magnitude than the respective change in Oβ,γ-Pγ distance (ATP: ∆Oβ,γ-Pγ

= 0.67 Å; ssRNA+ATP: ∆Oβ,γ-Pγ = 0.73 Å). These values suggest that the hydrolysis reaction

proceeds through an asynchronous SN2 hydrolysis mechanism where the nucleophilic attack by

the lytic water is enhanced by the local protein environment101,102. Further comparison of these

values demonstrates that the hydrolysis reaction for the ATP substrate state proceeds through a

more “associative”102 transition state than does the reaction for the ssRNA+ATP substrate state.

The changes in the reaction coordinates discussed above as well as the changes in the Owat-Hwat

distance (ATP: ∆Owat-Hwat = 0.12 Å; ssRNA+ATP: ∆Owat-Hwat = 0.04 Å) and the OGlu285-Hwat dis-

tance (ATP: ∆OGlu285-Hwat = -0.74 Å; ssRNA+ATP: ∆OGlu285-Hwat = -0.28 Å) collectively suggest

that the ssRNA+ATP TS structure is more reactant-like than the TS structure of the ATP substrate

state.

Theoretical Enhancement Factor of the RNA-Stimulated NTPase Activity.

The results from the last two subsections are consistent with the hypothesis that the biophysical

origin of the experimentally observed RNA-stimulated NTPase activity37 is two-fold: (1) the RNA-

induced structural changes of Lβ3β4, α2, and motif II affect the probability of water molecules to

be located in lytic positions, and (2) the same RNA-induced structural changes alter the activation

barrier of the hydrolysis reaction. To account for both effects, a reaction scheme is proposed to

describe the NTPase function within NS3h, where a fast equilibrium exists between active site

conformations with and without the presence of a lytic water. This equilibrium is followed by the

slow, irreversible hydrolysis reaction. Using this scheme, the theoretical observed rate constant for

the NTP hydrolysis reaction is kobs = Keqkhydrol. For both ATP and ssRNA+ATP substrate states,

the Keq is defined as the respective ratio of probabilities of observing a MD frame with and without

a lytic water. The hydrolysis rate constant is quantified using an Arrhenius rate equation where

the Boltzmann factor accounts for the activation energy barrier observed in the electronic structure
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calculations. The ratio of observed rate constants is defined as the theoretical enhancement factor

of the RNA-stimulated NTPase activity,

Enhancement Factor =
kssRNA+ATP
obs

kATP
obs

=
KssRNA+ATP

eq

KATP
eq

exp (−∆Ea/RT )

where ∆Ea is the difference in activation energies between the ssRNA+ATP and ATP substrate

states (EssRNA+ATP
a − EATP

a ). The Arrhenius prefactor is assumed to be constant for both ATP

and ssRNA+ATP substrate states and thus does not contribute to the enhancement factor.

Taking the ratio of the ssRNA+ATP and ATP rates results in a theoretical enhancement factor

of 150, which is consistent with the experimentally observed enhancement factor (10 to 100)37.

Error analyses for this calculation are at least three fold: (1) statistical error from the sampling in

MD simulations, (2) error in the force field, and (3) error in the DFT calculations. Propagation

of the statistical uncertainties of the probability of observing a lytic water lead to an error in the

enhancement factor of 0.002. The errors in the force field and the DFT energies103 are difficult if

not impossible to estimate. Uncertainty of the enhancement factor is comprised mainly of errors in

the activation energies obtained from the DFT calculations since they are present in the exponential

term in the Arrhenius equation. Therefore, an error of 1 kcal mol−1 in the activation barriers is

used as a conservative estimate for the DFT method. Using these approximated uncertainties, the

minimum and maximum values for the calculated enhancement factor are observed to bound the

best estimate (150) by an order of magnitude on both sides. Even with this large range, the calcu-

lated enhancement factor maintains the qualitative narrative that RNA-induced structural allostery

of Lβ3β4, α2, and motif II leads to the repositioning of the lytic water within the NTPase active

site as well as affects the energetics of the hydrolysis reaction.

2.5.2 NTPase Substrate-Induced Allostery

Experimental studies have shown that the NS3h helicase functions (translocation and unwind-

ing) are NTPase dependent, yet it is unclear which equilibrium states and/or dynamic events of the

NTPase cycle are the source of the necessary free energy for these functions35,36. All previously
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developed models describing these functions have deduced that the NTPase cycle drives confor-

mational changes in the RNA-binding cleft, thereby cycling the protein-RNA interactions leading

to unidirectional translocation and melting of the duplex/single stranded nucleic junction48–51,54–56.

Yet, limited structural allostery attributed to the NTPase substrates (e.g. ATP, ADP, and Pi) is

observed in the crystal structures of DENV NS3h60. Therefore, a subset of the MD simulations

reported here (ssRNA, ssRNA+ATP, ssRNA+ADP+Pi, and ssRNA+ADP) is used to interrogate

protein-RNA interactions as well as identify protein structural changes that have NTPase substrate-

dependent behaviors.

Protein-RNA Contacts.

For the RNA-bound substrate states modeled here, the RNA oligomer is seven residues long

with the first five residues (5′ end) strongly bound within the RNA-binding cleft of the protein.

The remaining two nucleic residues are poorly resolved in the crystal structures60 and are highly

fluctional in the MD simulations. For the NS3/NPH-II helicase subfamily, amino acids in mo-

tifs Ia, Ib, IV, IVa, and V are observed in crystal structures to have contact with the phosphodiester

backbone of the nucleic oligomer54,60, yet little is known about the dynamic role that these residues

play during translocation and unwinding of the nucleic substrate43. As observed in our MD simula-

tions, protein-RNA contacts are dominated by electrostatic interactions between highly conserved

residues in these motifs and the first four phosphate groups of the ssRNA, as highlighted in Fig-

ure 2.6. Specifically, arginines (225 and 387), threonines (224, 244, and 408), backbone amides

(Arg225, Ile365, Arg387), and α-helix dipole moments (α2 as well as subdomain 2 α-helices 1,

α1′, and 2, α2′)104 are observed to stabilize RNA through interactions with the phosphate groups.

Asymmetry of the Protein-RNA Interactions.

Nonbonding interaction energies are used to provide a quantitative description of the relative

strength of the protein-RNA interactions. Comparisons of these data between substrate states of the

NTPase cycle provide insight into the hypothesized NTPase dependence of protein-RNA interac-

tions. The pair-wise sum of Lennard-Jones and short-range, unscreened electrostatic energies are
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Figure 2.6: Protein-RNA contacts. Motifs Ia, Ib, IV, IVa, V of NS3h make strong contact with the phos-
phodiester backbone of the RNA. These contacts are dominated by electrostatic interactions between the
phosphate groups of RNA and highly conserved amino acid residues. The four strongly bound phosphate
groups (labeled P1 through P4) are highlighted with space filling representations.

calculated using the lie analysis function in AMBER14 cpptraj105. Table 2.1 shows the nonbonding

interaction energies between RNA phosphates 1 through 4 (P1-4) (in total and individually) and all

protein residues. An interaction cutoff of 12 Å was used for these calculations.

The totals of interaction energies between the protein and P1-4 demonstrate that the ssRNA+ATP

(-625 ± 3 kcal mol-1) and ssRNA+ADP+Pi (-649 ± 5 kcal mol-1) structures have more stable

protein-RNA interactions than the ssRNA (-582 ± 6 kcal mol-1) and ssRNA+ADP (-579 ± 4 kcal

mol-1) structures. These results suggest that the presence of the γ-phosphate group (or Pi) in the

NTPase active site has a stabilizing effect on the strongly bound phosphate groups of the RNA.
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Table 2.1: Nonbonding interaction energies between RNA phosphate groups (named P1 through P4)

and all protein residues. Units for all values shown are kcal mol-1. An interaction cutoff of 12 Å is used.
Short-range, electrostatic energies were calculated with a dielectric of 1.

ssRNA ssRNA+ATP ssRNA+ADP+Pi ssRNA+ADP

P1-4 -582 ± 6 -625 ± 3 -649 ± 5 -579 ± 4

P1 -62 ± 2 -106 ± 2 -126 ± 4 -118 ± 3
P2 -157 ± 2 -192 ± 1 -193 ± 1.3 -158 ± 1.9
P3 -206 ± 3 -188.4 ± 0.4 -190.2 ± 0.9 -176.9 ± 0.5
P4 -155 ± 3 -139.3 ± 0.6 -139.7 ± 0.9 -126 ± 1.3

This result is in direct disagreement with experimental results of HCV NS3 where it is observed

that the protein has a decrease in affinity for nucleic oligomers in the presence of ATP47,49. One

possible reason for this discrepancy is the lack of a realistic nucleic polymer that extends above

and below the RNA-binding cleft in the simulations reported here. Modeling more complex RNA

structures is left for further study.

The interaction energies between protein atoms and individual phosphate groups presented in

Table 2.1 allow for comparisons of local protein-RNA interactions in the various substrate states.

Protein-phosphate 2 (P2) energies show similar trends as the total energies, where the presence of

the γ-phosphate group stabilizes P2 interactions by ∼ 35 kcal mol-1. Additionally, while similar

in total energies, the ssRNA and ssRNA+ADP substrate states have very different local energies,

suggesting different protein-RNA contacts. Specifically, the ssRNA substrate state has stronger

interactions with P3 (-206 ± 3 kcal mol-1) and P4 (-155 ± 3 kcal mol-1) than the other three systems

(e.g. ssRNA+ATP, -188.4 ± 0.4 kcal mol-1, -139.3 ± 0.6 kcal mol-1) and weaker interactions with

P1 (ssRNA: -62 ± 2 kcal mol-1; ssRNA+ATP: -106 ± 2 kcal mol-1). This demonstrates that a

bound nucleoside (ATP or ADP) causes a shift in protein-RNA interactions from 3′ (P3 and P4) to

5′ (P1) RNA residues.

Hypothesized Elementary Step in the Translocation Mechanism.

Visual analysis of the protein-P3 and -P4 interactions in the ssRNA simulation highlighted a

rare event where the guanidinium side chain of Arg387 (motif IVa) transitions from coordinat-
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Figure 2.7: NTPase substrate-dependent interactions between Arg387 of motif IVa and RNA phos-

phate groups. (A) The guanidinium group of Arg387 is observed to transition from the “up" conformation
to the “down" conformation, respectively colored blue and orange. (B) Probability densities and (C) free
energy surfaces from the US simulations performed to model the “up" to “down" transition of the Arg387
side chain. Short collective variable distances correspond to the “down" conformation. As emphasized by
the line colors, the trend of these results show that ssRNA favors the “down" conformation while the other
substrate states favor the “up" conformation, suggesting a NTPase substrate-dependence of the Arg387 con-
formational states.

ing P1 and P2 to P3 and P4. The two conformations of this event are depicted in Figure 2.7(A):

the “up" conformation (colored blue) has the guanidinium group coordinating P1 and P2 while,

in the “down" conformation (colored orange), the side chain coordinates P3 and P4. During the

ssRNA+ATP, ssRNA+ADP+Pi, and ssRNA+ADP simulations, Arg387 is stable in the “up" con-

formation. In the ssRNA simulation, the “up" to “down" transition occurs once, after which no

reverse transitions occur. Furthermore, after Arg387 transitions to the “down" conformation, two

concerted events are observed to occur: (1) Lys388 (motif IVa) coordinates P1 and P2, taking up

Arg387’s previous position, and (2) P4 partially unbinds from the RNA-binding cleft.

Arg387 and Lys388 are highly conserved residues in the NS3/NPH-II subfamily of SF2 heli-

cases and have been classified as motif IVa residues (positioned at the N-terminus of α2′). Lys388

is more solvent exposed than Arg387 and fluctuates around the phosphate groups of the RNA. The

α2′ secondary structure is generally solvent exposed with its dipole-axis pointing towards P2. His-
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torically, an arginine residue observed to coordinate adjacent phosphate groups of RNA has been

termed an arginine fork106,107. Arg387 is one such arginine fork that has been observed to have

functional importance to the helicase functions of NS3h. In previous studies of HCV NS3h, the

analogous arginine residue (Arg393) was mutated to an alanine, resulting in abrogation of nucleic

binding, translocation, and unwinding functions of the mutant HCV NS3h108. A recent crystal

structure of the Zika virus NS3h in complex with an RNA (PDB ID: 5GJB) has been reported

where the analogous motif IVa arginine (Arg388) is positioned in the “down" conformation109.

This crystal demonstrates that the Arg387 transition observed during DENV NS3h simulation cor-

responds to a realistic conformation of NS3h:RNA complexes. Furthermore, the high sequence

conservation of Arg387 and the mutational results from HCV NS3h suggest that this motif IVa

arginine fork binds the RNA and plays an important role in the helicase functions of NS3h.

Due to the concerted nature of the Arg387 transition and the unbinding of P4, we propose

that the observed “up" to “down" transition is potentially an elementary step in the transloca-

tion mechanism of NS3h, where the guanidinium side chain conformations are NTPase substrate-

dependent. Therefore, we investigate the thermodynamics of the side chain conformational states

using one-dimensional US simulations for the ssRNA, ssRNA+ATP, ssRNA+ADP+Pi, and ss-

RNA+ADP systems. The biased collective variable is the distance between the central carbon of

the Arg387 guanidinium group to the phosphorous atom of P4, where the “up" and “down" con-

formations correspond to long and short distances, respectively. The resulting probability densities

and relative free energy surfaces from the US simulations are shown in Figure 2.7 (B) and (C),

respectively. The relative changes in free energy between the “up" and “down" side chain confor-

mations (∆ GUS) are -7.52±0.05 kcal mol-1, 13.885±0.05 kcal mol-1, 7.45±0.06 kcal mol-1, and

10.91±0.05 kcal mol-1 for the ssRNA, ssRNA+ATP, ssRNA+ADP+Pi, and ssRNA+ADP systems,

respectively. Therefore, the Arg387 side chain states are observed to have a NTPase substrate-

dependence where the ssRNA system energetically favors the “down" conformation while the

ssRNA+ATP, ssRNA+ADP+Pi, and ssRNA+ADP substrate states favor the “up" conformation.
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Unbinding of P4 is not observed for US windows corresponding to the “down" conformation in

the ssRNA+ATP, ssRNA+ADP+Pi, and ssRNA+ADP US simulations.

These results support the hypothesis that the Arg387 side chain conformational states are NT-

Pase substrate-dependent and exemplify a large shift in protein-RNA interactions. Considering the

full NTPase cycle (Figure 2.1), Arg387 thermodynamically favors the “down" conformation in the

ssRNA substrate state where the guanidinium group coordinates P3 and P4. Subsequently moving

through the NTPase substrate states, Arg387 is expected to transition to the “up" conformation

and coordinate P1 and P2. Therefore, transitions between the Arg387 conformational states are

predicted to impart a 3′ to 5′ direction to interactions between NS3h and RNA. Furthermore, the

concerted events that were observed to followed the Arg387 conformational change (Lys388 co-

ordinating P1 and P2; partial unbinding of P4) are novel events that have potentially important

implications for the translocation of NS3h along the phosphodiester backbone of ssRNA. These

results support the hypothesis that the Arg387 conformational states represent states of a NTPase

substrate-dependent, elementary step in the unidirectional translocation mechanism of NS3h.

2.5.3 Allosteric Pathways

The current view of allosteric regulation focuses on signal transduction through complex, 3-

dimensional networks, brought about by intrinsic structural and/or dynamic changes along path-

ways connecting two distal, non-overlapping active sites110–112. These allosteric pathways are de-

scribed by coupled short-range, residue-residue interactions that lead to long-range correlations. In

the previous two sections, RNA-induced and NTPase substrate-induced structural rearrangements

have been presented. In this section, these allosteric structural changes are absorbed into a unified

description of the allosteric pathways connecting the RNA-binding cleft with the NTPase active

site.

Dynamic network analyses, such as residue-residue correlations, have been used to identify

allosteric pathways within proteins from simulation110–114. A growing body of literature has high-

lighted the functional importance of such pathways as well as the fundamental residue-residue
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interactions leading to their emergence110–116. We report here residue-residue distance correlation

analyses that are used to identify the allosteric pathways present within the DENV NS3h protein.

Focus is given to the motifs discussed in the previous sections (α2, motifs II and IVa) due to

the observed structural rearrangements. Additionally, the correlation heat maps are used to iden-

tify segments of the protein that experience strong correlations with numerous other regions of the

protein, such as motif V. While motif V does not experience substrate-induced structural rearrange-

ments, the strong correlations between motif V and motifs in both the NTPase active site and RNA

binding cleft are hypothesized to have functional importance in the signal transduction mechanism

of allosteric regulation. Unlike the previous two sections, comparisons between substrate states

(RNA-bound and NTPase substrate-bound) are not considered here. Instead, focus is given to the

discussion of the residue-residue distance correlation analysis of the ssRNA+ATP substrate state.

Correlations Between Motifs.

Figure 2.8(A) shows the average residue-residue distance correlation heat map for the ss-

RNA+ATP substrate state, where residue pairs with strong correlated and anti-correlated motions

are colored red or blue, respectively. The correlation heat map is abridged by setting correlation

values to zero if the average COM-COM distance of residue pairs is greater than 15 Å. This simpli-

fication limits the correlation analysis to residue pairs within a close proximity, thereby identifying

the short-range interactions that build up to the pathways connecting the RNA-binding cleft and

the NTPase active site. Correlation heat maps for the other substrate states are presented in SI

(Figures Figure 2.18 to Figure 2.22).

As expected, there is strong correlation along the linear sequence of residues, as seen in Fig-

ure 2.8(A) along the diagonal. Secondary structures experience more extended linear sequence

correlations than non-structured regions (thickness of diagonal sections). The RecA-like β-sheets

in subdomains 1 (residues 188 to 326) and 2 (residues 327 to 481) produce the honeycomb patterns

observed in the heat map, due to the extremely stable tertiary structure observed in NS3h. Lines

drawn on Figure 2.8(A) highlight a range of 20 residues centered on α2, motifs II and IVa.
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Figure 2.8: Correlated motions of protein motifs observed to experience RNA- or NTPase substrate-

induced allostery. (A) The average COM-COM residue pair correlation heat map for the ssRNA+ATP
system abridged with a distance cutoff of 15 Å. Lines drawn highlight the structural motifs discussed in the
previous two sections (α2, motifs II and IVa). Panels (B) and (C) are magnifications of off-diagonal regions
in (A) that correspond to the correlations between α2 and motif II or motif IVa, respectively. Hotspots within
these regions identify the short-range residue-residue interactions that couple the structures. Panels (D) and
(E) provide structural depiction of these residue-residue interactions.

Panels (B) and (D) of Figure 2.8 highlight the α2/motif II off-diagonal region of the heat

map and the structural features leading to the observed correlations between these two segments.

Specifically, Asp284 and Glu285 of motif II experience correlated motions with most of α2 (residues

220 to 231) and especially strong correlations with Ala222, Pro223, and Thr224. Thr224 directly

coordinates phosphate 3 of the RNA substrate. Therefore, panels (B) and (D) highlight a pathway

through Glu285, Ala222, Pro223, and Thr224 that connects residues of paramount importance in

the hydrolysis reaction (Glu285) with residues that directly coordinate the phosphodiester back-

bone of the RNA (Thr224).

In a similar fashion, the motif IVa structure is observed to have strong correlations with residues

in α2, as shown in panels (C) and (E) of Figure 2.8. Phe390 and, to a lesser extent, Tyr394 of motif

IVa are observed to have strong correlated motions with residues 222 to 232 of α2. Alterna-

tively, from the perspective of α2, the guanidinium group of Arg225 has strong and maintained

electrostatic interaction with the backbone carbonyl group of Arg387. Through this short-range

interaction, Thr224, Arg225, and Ala226 experience correlated motions with residues 385 to 395
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of motif IVa. As observed in Figure 2.8(E), the side chains of Arg225, Phe390, and Tyr394 are

positioned in a π stacking-like structure, bookended by RNA phosphate 3 as well as residues in the

NTPase active site (not shown).

Direct coupling between motifs II and IVa is minimal due to the large distances between the

residues in both motifs, as shown in the respective off-diagonal region of Figure 2.8(A). Rather,

short-range interactions between residues in α2 (Ala222, Pro223, Thr224, Arg225) with residues

of motifs II (Asp284, Glu285) and IVa (Arg387, Phe390, Tyr394) act as channels through which

free energy released from the NTPase cycle or helicase functions can be transferred from the

NTPase active site to the phosphodiester backbone of the RNA (and vice versa). Structural or

dynamic perturbation of these pathways, via mutation or small molecule binding, are hypothesized

to affect the efficiency of energy transduction.

Motif V.

The residue-residue correlation analyses are used to identify structural regions of NS3h that ex-

hibited strong correlations with other regions of the protein. Particularly, this analysis highlighted

residues 407 to 420 of motif V. Figure 2.9 (A) shows the motif V correlation heat map section

for the ssRNA+ATP system, where lines are drawn to highlight the strong coupling between these

residues and residues of motifs I, II, III, IV, IVa, VI as well as α2. Structurally, the highly cor-

related nature of motif V is explained by the position of these residues in relation to the NTPase

active site, RNA-binding cleft, and protein residues important in either active site, as shown in

Figure 2.9(B). Motif V consists of residues in subdomain 2 and has a complex secondary structure

(loop into short α-helix into loop). The backbone amide of Gly414 actively coordinates the lytic

water of the hydrolysis reaction. The alcohol group of Thr408 coordinates phosphate 2 of the RNA.

Therefore, the linear sequence of motif V is a direct pathway connecting the NTPase active site

with the RNA-binding cleft. Limited structural changes are observed for this motif in the presence

or absence of RNA or NTPase substrates. Rather, motif V is observed to have strongly correlated

motions with the previously mentioned structural regions for all substrate states. Similar to the
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Figure 2.9: Motif V is a highly correlated and centralized structure within subdomains 1 and 2. (A)
Vertical segment of the ssRNA+ATP correlation heat map focusing on motif V (residues 407 to 420). Con-
served motifs that have strong correlations with motif V are highlighted by horizontal lines on the heat map,
colored as shown in the legend. (B) ssRNA+ATP exemplar structure depicting the central position of motif
V in relation to the NTPase active site and the conserved motifs highlighted in panel (A). The ATP and lytic
water molecules are shown to highlight the proximal location of motif V residues with respect to the NTPase
active site.

previously discussed pathways, motif V is hypothesized to be another pathway for free energy

transduction from one active site to another.

2.6 Conclusions

Through analyses of the reported simulations, molecular observables of RNA- and NTPase

substrate-induced allostery were identified. Specifically, an RNA bound within the RNA-binding

cleft affects the dynamics and positioning of water molecules within the NTPase active site. This

allosteric influence is conferred from the RNA-binding cleft to the hydrolysis active site through

structural rearrangements of Lβ3β4, α2, and motif II. These RNA-induced structural changes lead

to an entropic destabilization of the NTPase active site as well as a direct destabilization of the
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lytic water. Inspired from these results, electronic structure calculations were used to investigate

the energetics of NTP hydrolysis reaction. The energetic landscapes obtained from the DFT calcu-

lations demonstrate that RNA decreases the activation barrier as well as affects the mechanism of

the hydrolysis reaction. Combining these results into a kinetic model allowed for the calculation

of a theoretical RNA-stimulated NTPase activity enhancement factor of 150, which qualitatively

matches the experimentally observed enhancement factor. Therefore, results from MD and DFT

calculations provide novel, multiscale insight into the RNA-induced allosteric effects that stimulate

the catalysis of the NTP hydrolysis reaction in DENV NS3h.

Unlike RNA, the NTPase substrates are smaller perturbations to the NS3h structure and dynam-

ics. Protein-RNA interaction energies were used to investigate the NTPase substrate-dependence

of protein-RNA contacts in the unbiased MD simulations. From these analyses, the protein-RNA

phosphodiester backbone interactions were observed to be NTPase substrate-dependent. The pres-

ence of the γ-phosphate (or Pi) of the NTPase substrate was observed to strengthen the protein-

RNA contacts. Furthermore, the localized nonbonding interaction energies demonstrate a large

shift in protein-RNA contacts, originating in part from the side chain conformational states of

Arg387. Results from US simulations demonstrate that the Arg387 side chain conformational

states exemplify NTPase substrate-dependent protein-RNA interactions. With the purview of the

NTPase cycle, transitions between conformational states leads to 3′ to 5′ translocation. There-

fore, we hypothesize that the transition between Arg387 side chain conformations is an elementary

step in the unidirectional translocation mechanism of NS3h along the phosphodiester backbone of

RNA.

Finally, consideration of these allosteric effects independent of one another provides an incom-

plete picture of the biophysics of the NS3h protein. Residue-residue correlation analyses were used

to identify structural regions of the protein that experienced correlated motions with other regions.

These analyses were used to describe the allosteric pathways that connect α2 with motifs II and

IVa. The short-range, residue-residue interactions were presented that connect the RNA-binding

cleft to the NTPase active site. Furthermore, the correlation heat maps allow for identification of
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regions of the protein that experience strong correlated motions with numerous other regions. Mo-

tif V is one such example, where the segment of 13 residues has strong coupled motions with seven

other motifs in subdomains 1 and 2. This highly correlated nature suggests that motif V functions

as a centralized communication hub that connects distal portions of the protein structure.

Complete modeling of a revolution of the NTPase cycle in the DENV NS3h presents a signif-

icant challenge for current computational methodologies. Rather, we have divided the cycle into

equilibrium substrate states and dynamic events where the protein transitions from one substrate

state to another. The simulations reported have modeled the important NTPase cycle substrate

states, leading to novel insights into the function and underlying biophysics of the DENV NS3h

enzyme with focus given to the allosteric connections between the RNA-binding cleft and NT-

Pase active site. We hypothesize that the observed allosteric effects and pathways have important

roles in the transduction of energy from one active site to another during the dynamic events of

the NTPase cycle. Therefore, the results reported have laid an initial foundation for theoretical

investigations into the dynamic events of the NTPase cycle.

Beyond further theoretical modeling of NS3h, transverse relaxation-optimized spectroscopy

(TROSY) NMR, mutational biochemical studies, and targeted small molecule binding experiments

can be envisioned to test the hypothesis and results presented. Nuclear magnetic resonance has

been previously used to study dynamics within isolated HCV NS3 helicase subdomains117–119, but

the size of the full dengue NS3h domain is too large for traditional NMR approaches due to line

width increasing with increased molecular mass. However, TROSY NMR has been developed

that may allow for experimental monitoring of fast NS3h dynamics120. We anticipate that per-

turbation of the wild-type structure or dynamics of the allosteric pathways in NS3h will lead to

abrogation of NTPase and/or helicase functions, and are currently developing and testing assays to

test each step with dengue NS3h. Residues active in the allosteric pathways are viable targets for

mutational studies where varying a specific amino acid residue is expected to alter the short-range,

residue-residue interactions and lead to a destabilization of the pathway connecting the two active

sites. This is hypothesized to result in reductions in enzymatic activity and would be observable
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in our biochemical assays. Additionally, these pathways are viable targets for theoretical and ex-

perimental small molecule drug docking experiments with focus given to molecules that disrupt

the residue-residue interactions along the pathway. Co-crystallization of specific conformation-

binding molecules may lock NS3h into transition-state conformations that can help verify our

computational studies. Molecular candidates also have the potential for inhibiting NS3h function

during replication and being specific to the NS3/NPH-II subfamily of SF2 helicases.
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2.8 Supporting Information

2.8.1 System Preparation

Molecular Dynamics Simulations Energy minimization of MD starting structures was per-

formed in two steps: 1) 10,000 steps of minimization with the protein, substrates, and crystallo-

graphic waters restrained and 2) another 10,000 steps with all atoms unconstrained. Initial heating

of each simulation was performed where minimized structures were heated from 0 K to 300 K over

0.5 ns. The heating simulation was performed with 75 kcal mol−1 harmonic restraints on all non-

solvent atoms. Equilibration of the protein structure at 300 K was performed by slowly releasing

the applied restraints over the course of 2 ns. This minimization and heating protocol was used for

all reported simulations.
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QM structures As mentioned in the article, reactant starting structures for the density functional

theory (DFT) calculations were grabbed from the body of MD frames that posses a water molecule

in a lytic position. To demonstrate that the initial structures used in the DFT calculations adequately

represent the population of frames with lytic waters, the RMSD of protein side chain heavy atoms

included in the QM region was calculated for all MD frames, referenced against the DFT starting

structures. For the ATP substrate state, the average RMSD for this selection is 1.2 ± 0.4 Å. For the

ssRNA+ATP substrate state, the average RMSD for this selection is 1.2 ± 0.3 Å. The high relative

standard deviation of these values is associated with fluctuations of Ala316 atoms during the MD

simulations.

The QM region consists of 138 atoms corresponding to the methyl triphosphate, Mg2+ cation,

six water molecules, and ten amino acid residues closest to the triphosphate tail of the ATP

molecule (shown in Figure 2.10). The amino acid residues were truncated at various positions

with hydrogen atoms. For example, a hydrogen atom was added to the backbone amide of Pro195

as well as the Cα atom of Gly196. Lys199 was truncated at Cǫ atom. For Thr200, the alcohol group

is truncated with a hydrogen, thereby bringing the number of water atoms to seven and number of

amino acid residues down to nine (as reported in the article). Glu285 is truncated at the Cβ atom.

Ala316 is truncated on the backbone amide group and Cα atoms. Similarly, Gly414 is truncated

at the backbone amide and carbonyl atoms. Gln456 is truncated at the Cγ atom. Both Arg460

and Arg463 are truncated at the Cγ atoms. These truncations maintain the coordination sphere of

Mg2+ as well as the important contacts between the triphosphate tail and amino acid functional

groups. Waters included in the QM calculations were chosen due to their proximity to the terminal

phosphoanhydride bond as well as the Mg2+ cation.

2.8.2 Data Analysis

Equilibration and Convergence of Simulations Global and local protein structural metrics (e.g.

radius of gyration, RMSD referenced against the respective crystal structures; Figure 2.11 to Fig-

ure 2.13) are used to determine that the protein structure in each simulation had adequately con-
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Figure 2.10: Structural representation of the QM region. (A) The QM region within the broader protein
structure. Residue labels included in the QM region are provided. Thr200 is included because the alcohol
group of the side chain was replaced with a water molecule in the electronic structure calculations. (B) De-
piction of the QM region with full truncation used in the electronic structure calculations. Atoms highlighted
with the CPK representation are shown in the energy landscape (Fig 5) in the article.

verged away from the crystal structure after 200 ns of simulation. Further convergence of the

simulations is measured by separating the full trajectories into 50 ns windows that are treated as

independent trajectories for the purpose of convergence and error analyses. Comparisons between

these windows are made to identify long-timescale changes occurring during the microsecond-long

trajectories. Additionally, for analysis metrics discussed in the paper, averages of these windows

are used to determine the standard error of the mean for the full dataset. For the substrate states

with a pair of microsecond-long trajectories (ATP and ssRNA+ATP), each replica is given 200

ns to equilibrate from the starting structures, after which analysis results from both replicas are

combined into the reported ensemble averages. Error analysis of these averages include the 50 ns

windows from both replicas.

Alignment Landmarks The β-sheets in the RecA-like subdomains of DENV NS3h (subdo-

mains 1 and 2) are observed to be extremely stable during the reported MD simulations as well

as across all substrate states. Therefore, this collection of secondary structures acts as a good ref-

erence point for analyzing structural and dynamic changes in the rest of the protein. Specifically,
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the Cα atoms of the residues making up these secondary structures (listed in Table 2.2) are used

as the landmark for all analyses requiring structural alignment of the protein. Figure 2.14 shows

the aligned RMSD of this landmark for all trajectories as referenced against the ssRNA+ATP crys-

tal structure (PDB ID: 2JLV). Similarly, Figure 2.15 shows the RMSD of all heavy-atoms for

residues comprising these β-sheets, referenced against the ssRNA+ATP crystal structure and using

the alignment landmark. Structurally, these β-sheets are conserved across the SF1 and SF2 heli-

case families and so we hypothesize that this landmark can be efficiently used for broad structural

comparisons within these families.

Figure 2.11: RGYR of the protein and substrates. As seen through this metric (e.g. Apo, ssRNA+ADP+Pi,
and ssRNA+ADP), the RGYR metric deviates from the starting values during the first 200 ns of simulation.
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Figure 2.12: RMSD of all heavy atoms of the protein, referenced against the respective crystal structures.
Before the calculation, every frame is aligned to the β-sheets discussed in the Alignment Landmarks section.

Exemplar Structures All structural figures presented in this manuscript were created in a con-

sistent fashion: for each substrate state, a single frame from the total number of frames was chosen

to be the “exemplar” structure for the substrate state. The exemplar structure corresponds to the

frame with the minimum RMSD value of all protein, heavy atoms referenced against the average

structure of the equilibrated portion of the microsecond-long trajectories.
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Figure 2.13: RMSD of all heavy atoms of motif II residues (residue IDs: 284 to 291), referenced against
the respective crystal structures. Before the calculation, every frame is aligned to the β-sheets discussed in
the Alignment Landmarks section.

Definition of the Center of the NTPase Active Site The center of the NTPase active site was

determined by measuring the center of mass of a subset of protein residues that are prominent

within the active site. These residues (numbers: 194 to 202, 227, 230, 231, 284, 285, 314, 316,

326, 412 to 416, 455, 456, 459, 460, and 463) were identified using protein-ATP(ADP) distance

analyses and visual analysis of trajectories. Waters within an 8 Å radius of the COM coordinate

are considered to be within the active site and are analyzed further.
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Table 2.2: Residue numbers for each β-sheet in the alignment landmark.

Secondary Structure Residue Numbers

β1 187-192
β2 217-222
β3 240-242
β4 257-261
β5 279-283
β6 309-314
β1′ 332-336
β2′ 357-361
β3′ 381-385
β4′ 403-407
β5′ 420-425
β6′ 470-474

Definition of Lytic Waters Of the waters within the NTPase active site, a lytic water was defined

as a water with an Pγ-Owat distance less than 5 Å and Oβ,γ-Pγ-Owat angle greater than 155◦. The

definition of the angle cutoff is supported by the electronic structure results, where the lytic water in

the ssRNA+ATP and ATP substrate state reactant structures have an Oβ,γ-Pγ-Owat angle of 161◦ and

157◦, respectively. These geometric cutoffs are used to identify frames in the ATP and ssRNA+ATP

MD simulations that have water(s) near ideal lytic positions. The reported probabilities in section

2.5.1 were calculated by counting the number of frames with a lytic water and dividing by the

total number of frames. The error for this measurement was approximated by assuming a Poisson

distribution for counting experiments.

The two-dimensional heat maps of NTPase active site water positions projected on the Pγ-Owat

distance and Oβ,γ-Pγ-Owat angle are presented in Figure 2.16 and SFigure 2.17.

Water Mean Squared Displacement and O-H Bond Autocorrelation The mean squared dis-

placement (MSD) and O-H bond autocorrelation analyses were measured for waters within the

NTPase active site. To obtain the necessary time resolution, 1 ns trajectories were initiated from

restart files every 50 ns. Frames were written every 0.2 ps, providing 5000 frames per trajectory to

calculate the MSD and O-H bond autocorrelation metrics as a function of time. Rather than use the
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β-sheet alignment landmark, the NTPase active site residues were used as the alignment landmark

for this analysis thus providing a more localized alignment. Both metrics were averaged over the

post-equilibration trajectories (26 trajectories for each system except for the ssRNA system which

had 36 trajectories).

Nonbonding Interaction Energies The linear interaction energy (lie) function of AMBER14

cpptraj was used to calculate the pairwise sum of Lennard-Jones (LJ) and short-range, unshielded

electrostatic energies between the protein and the RNA substrate.105 A 12 Å distance cutoff was

applied for both LJ and electrostatic energies. Reported errors in the interaction energies were

calculated by measuring the standard error of the averages of the 50 ns windows (discussed above).

Correlation Analyses The calculation and utility of residue-residue distance correlation analy-

ses have been thoroughly discussed in the literature.111–114 Nodes in the correlation matrix were

defined as the center of mass of each residue. The correlation heat map is abridged by applying a

distance cutoff of 15 Å where correlation values are set to zero if the average COM-COM distance

is greater than the cutoff.
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Figure 2.14: RMSD of the Cα atoms of the RecA-like β-sheets referenced against the ssRNA+ATP crystal
structure (PDB ID: 2JLV) with the alignment landmark applied. Residue numbers for this atom selection are
provided in Table 2.2. Generally, RMSD values are small and uniform for all simulations and thus support
the use of this alignment landmark.

47



Figure 2.15: RMSD of the RecA-like β-sheets referenced against the ssRNA+ATP crystal structure (PDB
ID: 2JLV) with the alignment landmark applied. Residue numbers for this atom selection are provided in
Table 2.2.
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Figure 2.16: Probability density heat map of water molecule positions within the NTPase active site for the
ATP substrate state. The water positions are projected onto the Pγ-Owat distance and Oβ,γ-Pγ-Owat angle.
Waters within 5 Å and above an angle of 155◦ are defined as lytic waters.
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Figure 2.17: Probability density heat map of water molecule positions within the NTPase active site for the
ssRNA+ATP substrate state. The water positions are projected onto the Pγ-Owat distance and Oβ,γ-Pγ-Owat

angle. Waters within 5 Å and above an angle of 155◦ are defined as lytic waters.
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Figure 2.18: Residue-residue correlation heat map for the Apo substrate state. Residues of α2, motif II, and
motif IVa are highlighted by the drawn lines.
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Figure 2.19: Residue-residue correlation heat map for the ATP substrate state. Residues of α2, motif II,
and motif IVa are highlighted by the drawn lines.
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Figure 2.20: Residue-residue correlation heat map for the ssRNA substrate state. Residues of α2, motif II,
and motif IVa are highlighted by the drawn lines.
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Figure 2.21: Residue-residue correlation heat map for the ssRNA+ADP+Pi substrate state. Residues of α2,
motif II, and motif IVa are highlighted by the drawn lines.
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Figure 2.22: Residue-residue correlation heat map for the ssRNA+ADP substrate state. Residues of α2,
motif II, and motif IVa are highlighted by the drawn lines.
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Chapter 3

RNA-dependent Structures of the RNA-binding

Loop in the Flavivirus NS3 Helicase.2

3.1 Overview

The flavivirus NS3 protein is a helicase that has pivotal functions during the viral genome

replication process, where it unwinds double-stranded RNA and translocates along the nucleic

acid polymer in a nucleoside triphosphate hydrolysis-dependent mechanism. Crystallographic and

computational studies of the flavivirus NS3 helicase have identified the RNA-binding loop as an

interesting structural element, which may function as an origin for the RNA-enhanced NTPase

activity observed for this family of helicases. Microsecond-long unbiased molecular dynamics

as well as extensive replica exchange umbrella sampling simulations of the Zika NS3 helicase

have been performed to investigate the RNA-dependence of this loop’s structural conformations.

Specifically, the effect of the bound single-stranded RNA (ssRNA) oligomer on the putative “open”

and “closed” conformations of this loop are studied. In the Apo substrate state, the two structures

are nearly isoergonic (∆GO→C = −0.22 kcal mol−1), explaining the structural ambiguity observed

in Apo NS3h crystal structures. The bound ssRNA is seen to stabilize the “open” conformation

(∆GO→C = 1.97 kcal mol−1) through direct protein-RNA interactions at the top of the loop.

Interestingly, a small ssRNA oligomer bound over 13 Å away from the loop is seen to affect the free

energy surface to favor the “open” structure while minimizing barriers between the two states. The

mechanism of the transition between “open” and “closed” states is characterized as are residues of

importance for the RNA-binding loop structures. From these results, the loop is hypothesized to

be a viable region in the protein for targeted small-molecule inhibition and mutagenesis studies,

2Russell B. Davidsona, Josie Hendrixa, Brian J. Geissb,c, Martin McCullaghd; a Department of Chemistry, Col-
orado State University, Fort Collins, CO, USA, b Department of Microbiology, Immunology, and Pathology, Colorado
State University, Fort Collins, CO, USA, c School of Biomedical Engineering, Colorado State University, Fort Collins,
CO, USA, d Department of Chemistry, Oklahoma State University, Stillwater, OK, USA
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where stabilization of the “closed” RNA-binding loop will negatively impact RNA-binding and the

RNA-enhanced NTPase activity.

3.2 Introduction

The flaviviruses (family Flaviviridae) present major health threats to the tropical and subtrop-

ical regions of the world. Over half of the world’s population lives in areas that are susceptible to

infections from this viral family, which includes dengue, Zika, and West Nile viruses.16,121 Out-

breaks of Zika virus (ZIKV) in 2013 and 2014, in French Polynesia, as well as 2015, in Brazil,

have been correlated with severe congenital malformations (microcephaly) as well as neurological

complications such as Guillain-Barré syndrome.19 The most recent ZIKV epidemic in the Ameri-

cas sparked major research endeavors into identification of novel antiviral drugs against Zika and

other flaviviruses.19,122–125 Towards this goal, fundamental research on the viral enzymes’ structures

and functions will aid the identification of antiviral targets.

The nonstructural protein 3 (NS3) of flaviviruses has been identified as one such target due to

its pivotal role during the viral replication cycle.24,26,125–134 As one of eight nonstructural proteins

encoded by flaviviruses, NS3 is a multifunctional enzyme that possess an N-terminal serine pro-

tease domain and a C-terminal helicase/nucleoside triphosphatase (NTPase)/RNA triphosphatase

domain.32–37 The N-terminal protease is responsible for cleaving the viral polyprotein during trans-

lation. The C-terminal helicase domain (NS3h) unwinds the double-stranded RNA replication

intermediate during the viral genome replication process.38 In order to do so, NS3h binds and

translocates along a single stranded RNA (ssRNA) polymer in a nucleoside triphosphate (NTP)

hydrolysis-dependent mechanism. Therefore, the NS3h enzyme represents a complex molecular

machine that has pivotal functions in the replication of the viral genome.

NS3h is categorized as a superfamily 2 (SF2) helicase (NS3/NPH-II subfamily) that hydrolyzes

NTP to unwind double stranded RNA and translocate along the nucleic acid oligomer in a 3′ to

5′ direction.43 A structural representation of ZIKV NS3h is shown in Figure 3.1A. The enzyme

has three subdomains; subdomains 1 and 2 are RecA-like structures with large β-sheets forming
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the core of the subdomain while subdomain 3 is unique to the NS3 subfamily and less conserved

structurally across the Flaviviridae viruses. The RNA-binding cleft, highlighted in orange, is a

large channel that separates subdomain 3 from subdomains 1 and 2, with the 5′ terminus of the

ssRNA oligomer positioned at the top of the protein in Figure 3.1A. The NTP hydrolysis active

site, highlighted in purple, is positioned between the beta sheets of subdomains 1 and 2.

Figure 3.1: Conformational states of the RNA-binding loop of the flavivirus NS3h. (A) The ssRNA
substrate state of the Zika NS3h (PDB 5GJB). The NTPase and RNA-binding clefts are highlighted in
purple and orange, respectively. The 3′ terminus of the single-stranded RNA interacts with subdomain 1 and
predominantly the RNA-binding loop. This loop region, also named Lβ3β4, is depicted in panel B, which
has been adapted from Davidson et al.7. RNA-induced “open” and “closed” conformations of Lβ3β4 are
depicted using the dengue NS3h ATP (blue) and ssRNA+ATP (green) crystal structures due to lack of the
well-resolved “closed” conformations in Zika crystal structures.

Both active sites and respective functions are strongly coupled; NS3h is known to exhibit

RNA-stimulated NTPase activity and NTPase-dependent helicase activity.32–37,135 Coupling be-

tween these two active sites has been the subject of numerous recent studies.7,71,135–138 The RNA-

binding loop, shown in Figure 3.1B, is highlighted in this body of research as a site of allosteric
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structural change induced by the RNA oligomer, which we hypothesize is one of the origins of the

RNA-enhanced NTPase activity.7 This loop structure represents a large region of the RNA-binding

cleft where the 3′ terminus of the bound RNA interacts with subdomain 1. Positioned between β3

and β4 of the subdomain 1 β-sheet, the RNA-binding loop (also termed Lβ3β4) is seen to have

two major conformational states in flavivirus NS3h crystal structures. The dengue NS3h crystal

structures presented in Figure 3.1B depict these two states: the “open” conformation has the loop

closely interacting with α2 (termed the spring helix by Gu and Rice139) while, in the “closed” con-

formation, the loop is positioned in close proximity to α3 and is blocking the lower portion of the

RNA-binding cleft.

During development of a dengue virus vaccine (DENVax), mutation of a NS3h residue in the

RNA-binding loop (E250A) has been identified as one of three mutations producing a signifi-

cantly attenuated phenotype.133,134 It is unclear from these vaccine development studies why such

a mutation results in the observed phenotype, specifically an increased temperature sensitivity and

decreased viral replication. Yet, these results suggest that slight modification to the RNA-binding

loop negatively affects the viral replication process.

The body of crystal structures available on the Protein Data Bank (PDB) of ZIKV and other fla-

vivirus NS3h has left ambiguity as to the functional importance of the conformational states of the

RNA-binding loop. Recently, Jain et al. highlighted the Lβ3β4 structure in their Apo ZIKV NS3h

crystal structure (PDB ID: 5JRZ) relative to structures seen in other flavivirus NS3h.136 In this crys-

tal structure, the RNA-binding loop was resolved in the “open” conformation, which was insightful

because the “open” conformation had previously been associated with RNA-bound structures.60,140

In non-RNA-bound conformations, Lβ3β4 had always been resolved in the “closed” conformation

or poorly resolved due to high flexibility of the loop region.

Additionally, a pair of molecular dynamics studies have recently provided insight into the

Lβ3β4 structural states. Mottin et al. reported multiple 100 ns simulations of the ZIKV Apo

and ssRNA-bound structures.71 Large structural fluctuations of Lβ3β4 were observed in the Apo

simulations with dampened conformational fluctuations seen in the ssRNA simulations. Minimal
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quantification of the observed Lβ3β4 structural states were performed for these simulations. In

Davidson et al., we reported micro-second long simulations of dengue NS3h structures where the

“open” conformation maintained direct interactions with residues in α2, which is seen to push

the helix in towards the NTPase active site and, thereby, affect the behaviors of active site water

molecules.7 These results led us to hypothesize that the RNA-binding loop is an allosteric site

where RNA affects the NTPase activity through the loop-α2 interactions observed in the “open”

conformation.

We report here a directed study of the Lβ3β4 conformational states in an effort to understand

the effect RNA has on the loop. Micro-second long MD simulations of the ZIKV Apo, ssRNA, and

an artificially-altered ssRNA:NS3h systems were used to sample the loop conformations in differ-

ent RNA-bound substrate states. In the simulation of the Apo system, a transition from the “open”

to “closed” conformation is observed and quantified using numerous methods. Finally, replica

exchange umbrella sampling (REUS) simulations were used to enhance the sampling of the RNA-

binding loop’s conformations in the three substrate states, allowing us to quantify the RNA-induced

effect on the loop’s structural free energy landscape. This body of simulations demonstrates that

an RNA oligomer perturbs the Lβ3β4 free energy surface to favor the “open” conformation over

the “closed” conformation, even when the RNA is far removed from the loop.

3.3 Methods

3.3.1 Starting Structures and System Preparation

Initial structures for the reported all-atom, explicit solvent MD simulations originated from

the ZIKV Apo NS3h (PDB: 5JRZ) and binary NS3h:ssRNA (PDB: 5GJB) crystal structures.136,140

Additionally, a ssRNA-bound system was artificially created from the 5GJB conformation, where

three of the five nucleotides were removed from the 3′ end of the RNA oligomer. The remaining

RNA in this structure is positioned at the top of the RNA-binding cleft, ∼ 13.5 Å away from the

closest Lβ3β4 residue. This structure and respective simulations will be referred to as ssRNA1−2.
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3.3.2 Molecular Dynamics Simulations

All-atom, explicit solvent MD simulations were performed for the three conformations dis-

cussed above (denoted Apo, ssRNA, and ssRNA1−2). The simulations were performed using the

GPU-enabled AMBER16 and AMBER18 software141,142, ff14SB15 parameters for proteins, and

ff99bsc0χ OL3
73,74 parameters for RNA. For each system, the starting structures were solvated in

TIP3P water boxes with at least a 12 Å buffer between the protein and periodic images. Crys-

tallographic waters were maintained. Sodium and chloride ions were added to neutralize charge

and maintain a 0.10 M ionic concentration. The Langevin dynamics thermostat and Monte Carlo

barostat were used to maintain the systems at 300 K and 1 bar. Direct nonbonding interactions

were calculated up to a 12 Å distance cutoff. The SHAKE algorithm was used to constrain co-

valent bonds that include hydrogen.77 The particle-mesh Ewald method was used to account for

long-ranged electrostatic interactions.78 A 2 fs integration time step was used with energies and

positions written every 5 ps. The minimum amount of simulation performed for each system was

one trajectory of 1.0 µs, with the first 200 ns of simulation sacrificed to equilibration of the starting

structures. Simulation of the Apo system was performed to 1.3 µs in order to thoroughly sample

the “closed” Lβ3β4 conformation.

3.3.3 Adaptive Sampling of Lβ3β4 Transition

Neither the ssRNA nor ssRNA1−2 systems sampled the Lβ3β4 conformation transition during

the respective microsecond MD simulations. To obtain structures of the “closed” conformation,

three independent, 100 ns steered molecular dynamics (SMD) simulations were used to slowly pull

Lβ3β4 into poorly sampled structural space.143 For these SMD trajectories, the pulling collective

variable was the distance between the Val250 (Lβ3β4) and Arg269 (α3) Cα atoms. A pulling

force constant of 20 kcal mol−1 Å−2 was used; all other simulation parameters were maintained as

above. The rate of pulling was approximately 0.5 Å ns−1.

Frames from this set of SMD trajectories were subsequently used to initiate 40 independent,

unbiased trajectories, each 50 ns long. Selection of starting frames for these trajectories was per-
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formed using a two dimensional projection of the unbiased and SMD trajectories onto essential

dynamics (discussed in the Supporting information, SI) eigenvectors. Regions of poor sampling in

this projection space were identified and frames associated with these regions were used in these

independent, unbiased trajectories. This body of simulation represents an extra 2 µs of simulation

for both the ssRNA and ssRNA1−2 systems.

3.3.4 Replica Exchange Umbrella Sampling (REUS) Simulations

The REUS method was used to enhance the sampling of the Lβ3β4 conformational space for

the Apo, ssRNA, and ssRNA1−2.144 The distance between Ala230 (α2) and Ala247 (Lβ3β4) Cα

atoms was used as the biased collective variable. This single atomic displacement distance was

chosen because it has the largest free energy barrier from the Apo unbiased simulation’s sampling

of the “open” to “closed” conformational change. Additionally, the Ala230 Cα atom has small po-

sitional variance due to being in α2; the large changes in this distance collective variable occurring

during the transition are strongly correlated with the Lβ3β4 transition.

For each of the three systems described above, 40 windows were used in the REUS simula-

tions. Equilibrium wells of these windows range from 3.625 Å to 18.250 Å with these equilibrium

wells separated by 0.375 Å. Harmonic, biasing force constants were 20 kcal mol−1 Å−2. Window

exchanges were attempted every 25 ps, with an average accepted rate of 0.37 attempts. The biased

CV values are written every 200 fs, while frames and energies are written every 2 ps. For each

window, a total of 46 ns of REUS simulations was performed, amounting to a total of 1.84 µs of

enhanced sampling of the Lβ3β4 structures for each of the systems.

Due to the protocol used to obtain structures of the “closed” conformation in the ssRNA and

ssRNA1−2 systems, the first 10 ns of the REUS simulations were not included in free energy

analyses. We use the eigenvector method for umbrella sampling (EMUS) analysis package to

calculate the stitched free energy surfaces for these REUS simulations.145
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3.3.5 Data Analysis

Analyses of MD trajectories were performed using Python 3.7.4 and the MDAnalysis module

(version 0.19.2).85 Matplotlib was used for plotting data.86 VMD was used for visualization of

trajectories and production of structural figures.87–89 All analysis scripts are available on Github

(https://github.com/mccullaghlab/ZIKV-Lb3b4). Additional analysis details are provided in the

SI.

3.4 Results and Discussion

The structure-function relationship of the RNA-binding loop is poorly understood, especially

when considering the RNA-dependence of the loop’s structure. 56 monomeric flavivirus NS3h

structures have been reported on the Protein Data Bank (PDB), of which a large proportion have

poorly resolved electron densities for Lβ3β4 atoms. Additionally, a multiple sequence alignment

of the flavivirus NS3h sequences indicates that the loop is one of the least conserved regions of

the protein, which generally suggests low functional importance of sequence positions. See the

SI for further discussion of the structural and bioinformatic analyses of flavivirus NS3h. Yet, as

presented in Figure 3.1B, large structural changes are seen in the loop when comparing RNA-

bound and Apo structures, a common trend across all flaviviruses. This ambiguity around the

RNA-binding loop’s functional importance has motivated our molecular dynamics study of the

loop and, more specifically, its RNA-dependent conformational states.

Results of this study are presented in two sections. The first section highlights the Lβ3β4

structural states observed during the unbiased, microsecond-long MD simulations of Apo, ssRNA,

and ssRNA1−2 systems. Focus is given to the thorough quantification of a transition between the

“open” and “closed” loop conformational states, observed during the Apo NS3h simulation, as

well as specific residues hypothesized to be functionally important during this transition. The

second section reports free energy surfaces of the structural transition, as obtained from REUS en-

hanced sampling simulations, to highlight the effect that the bound RNA oligomer has on Lβ3β4’s

structure.
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3.4.1 Lβ3β4 Conformations in MD Simulations.

Microsecond-long simulations of Zika NS3h Apo (5JRZ), ssRNA (5GJB), and an artificially-

altered ssRNA system (ssRNA1−2) have been performed to sample the RNA-binding loop’s con-

formations in the presence or absence of an RNA oligomer. Starting structures for all three sys-

tems have Lβ3β4 in the “open” conformation, directly interacting with residues of α2. Shown in

Figure 3.2A, the root mean square deviation (RMSD) of the loop backbone atoms for these simula-

tions, referenced against the 5GJB structure, indicate that large structural deviations occur during

the Apo simulation while RNA-bound systems maintain the “open” loop conformation. The small

structural deviations seen during the ssRNA simulation are expected due to strong interactions be-

tween the 3′ RNA nucleotides and protein residues at the top of the loop. Surprisingly, artificial

removal of three 3′ nucleotides has a limited effect on the Lβ3β4 conformational sampling, as seen

in Figure 3.2. This suggests that an RNA-binding loop conformational change is a rare event that

may be affected via indirect RNA-loop interactions.

Large structural deviations of the loop have been observed by Mottin et al. in 100 ns MD

simulations of the 5JRZ and 5JMT crystal structures.71 A large transition between the “open” and

“closed” loop conformations is observed in our Apo simulation, quantified by RMSD and struc-

turally depicted in Figure 3.2. During the initial 900 ns of this simulation, Lβ3β4 fluctuates about

the “open” crystal structure conformation (small RMSD values, red to light green colors). The

transition to the “closed” structure begins to occur at 900 ns (light green to turquoise), seen respec-

tively by a large jump in the loop backbone atom RMSD. The loop begins to sample the “closed”

conformation by 1 µs (turquoise to blue), although it is unclear if the transition has completed due

to the poor resolution of the “closed” conformation in ZIKV crystal structures.

Residues of interest for Lβ3β4 conformations.

Certain residues in the local region of Lβ3β4 are hypothesized to have important functions

in relation to the loop’s structural states as well as protein-RNA interactions. Such residues are

highlighted in Figure 3.3 and will be discussed in further detail here to present their hypothesized

or observed importance.
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Figure 3.2: Structural fluctuations of Lβ3β4 during the MD simulations. (A) Root mean square devi-
ation (RMSD) analysis of residues 246 to 254, relative to the 5GJB crystal structure. Large RMSD values,
seen in the Apo results, indicate a large structural shift away from the “open” loop conformation occurring
during that simulation. (B) Structural representation of Lβ3β4 backbone atoms over many time steps of
the Apo simulation. At ∼ 900 ns (light green to turquoise), the loop structure begins to transition from the
“open” to “closed” conformation.

The three arginine residues highlighted in Figure 3.3A are ideally positioned within the RNA-

binding cleft to function as arginine forks, residues that can strongly coordinate two adjacent phos-

phate groups of nucleic substrates.106,107 Arg226 sits at the top of α2, directly interacts with co-

crystallized RNA in the 5GJB structure, and is a highly conserved residue of Motif Ia (0.13%

sequence variance in flavivirus NS3h sequences).43 Numerous crystal structures have resolved the

guanidinium functional group of Arg226 in coordination with the RNA phosphate backbone of 3′

terminal nucleotides. Additional arginine residues that are highlighted in panel A, Arg242 (0.67%

sequence variance) and Arg269 (1.88% sequence variance), are positioned in β3 and α3, respec-

tively. These residues have not been observed in crystal structures to coordinate RNA due to the

limited resolution of the co-crystallized RNA. Yet, their sequence conservation and ideal position-

ing within the RNA-binding cleft support our hypothesis that these arginine residues play important

roles in binding RNA.

Residues Thr245 and Thr246, shown in Figure 3.3B, and are positioned at the structural change

between β3 and Lβ3β4. Although less conserved than the residues discussed above, both Thr245

(7.80%) and Thr246 (58.0% sequence variance) are seen to have large structural changes that occur
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Figure 3.3: Residues and collective variables that are good descriptors of the “open”

to “closed” transition and conformational states. (A) Arginine residues in the RNA-
binding cleft, local to Lβ3β4. (B) Thr245-Thr246 are residues positioned at the transition
between β3 and Lβ3β4. Ramachandran plots of Thr245 (C) and Thr246 (D) highlight a
dihedral switch in these two residues occurring during the loop structural transition. (E)
Residues in α2 (green) and Lβ3β4 (orange) that form a small, stable hydrophobic pocket
between the two secondary structures. (F) The time evolution of the distance between
Ala230 (α2) and Ala247 (Lβ3β4) Cα atoms describes the breakup of the hydrophobic
pocket and subsequent loop structural transition.
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during the “open” to “closed” transition observed in the Apo simulation. Specifically, the loop’s

“open” to “closed” conformational change is well described by the simultaneous switching of the

backbone dihedrals of these two residues, presented in the Ramachandran plots shown in Fig-

ure 3.3C and D. This observation is supported by these residues’ dihedral values in the flavivirus

NS3h crystal structures (see SI). In the “open” conformation of 5JRZ, Thr245 and Thr246 have φ

and ψ dihedral values of (-155◦, 141◦) and (-79◦, -1◦), respectively. Conversely, in crystal struc-

tures with Lβ3β4 in the poorly resolved, “closed” conformation (e.g. 5K8L), these residues have

φ and ψ dihedral values of (-76◦, -12◦) and (-141◦, 168◦), respectively. The Ramachandran plots

of Thr245 and Thr246 (Figure 3.3C and D, respectively) have strong sampling in both dihedral

spaces associated with the “open” and “closed” loop conformations. The time evolution of these

four dihedrals are shown in Supporting Figure 3.9-3.12. While the loop shifts from the “open”

to the “closed” conformation, large concerted flips in the Thr244 and Thr245 ψ dihedrals are ob-

served, followed by correlated fluctuations of these residues’ φ dihedrals. The dihedral states of

these two residues describe the backbone structural conformation of the top of Lβ3β4 and so, are

hypothesized to be strong decisors of the loop’s conformational state. We hypothesize that these

dihedrals will switch during transitions between the “open” and “closed” conformations of the loop

for all flavivirus NS3h.

A set of hydrophobic residues in α2 and Lβ3β4 form a small, hydrophobic pocket when the

RNA-binding loop is in the “open” conformation.7 This hydrophobic pocket is structurally de-

picted in Figure 3.3E, where Ala230 and Ala231 (α2) and Ala247, Val248, and Val250 (Lβ3β4)

are in direct interaction with each other. Additionally, Tyr243 (β3) and aliphatic portions of

Arg226, Glu234, and Thr245 are neighboring this small hydrophobic region. These stabilizing,

hydrophobic interactions are lost in the “closed” conformation of Lβ3β4, as quantified by the Cα-

Cα distance between Ala230 and Ala247 shown in Figure 3.3F. This distance metric describes the

breakup of the depicted hydrophobic pocket and is one of the atomic, pairwise distances with the

largest change during the “open” to “closed” transition observed in the Apo simulation.
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Figure 3.4: Zika NS3h Apo’s essential dynamics in the Lβ3β4 region. (A) The scree plot for the
essential dynamics analysis indicates that PC1 is the only major eigenvector to be considered. (B) Projection
of the trajectory’s data onto PC1 clearly separates the “open” (positive values) and “closed” (negative values)
Lβ3β4 conformations. (C) The porcupine plot of the PC1 highlights the correlated fluctuations of the loop
residues’ cartesian coordinates during the transition between the two conformational states.

Essential Dynamics of the Lβ3β4 Transition.

The presented RMSD, dihedral, and distance collective variables clearly delineate the “open”

and “closed” conformations of Lβ3β4, but there are additional important coordinates necessary

to describe the observed transition. To quantify these large-scale motions, the essential dynamics

(ED) of Lβ3β4 were analyzed. Principal component analysis of the Lβ3β4 cartesian coordinates

will appropriately quantify the two structural states because the transition between “open” and

“closed” conformations represents the largest covariance motions in the coordinate space. Choice

of coarse-grained sites for the ED analysis were guided by the multiple sequence analysis results

(see SI); residues near the loop region with high sequence conservation were prescribed two sites,

describing the backbone and side chain fluctuations independently. Backbone atoms were used to

describe the residue-level fluctuations for sequence positions with low conservation or small side

chains (e.g. Gly, Ala, and Val). The protocol for determining these atomic coarse-grained sites,

detailed in the SI, resulted in 44 atoms that were used to describe the Lβ3β4 transition.

The Lβ3β4 transition dominates the first eigenvector of the ED analysis, as demonstrated in

the scree plot shown in Figure 3.4A. This eigenvector accounts for 75% of the total variance of the

atom selection. The remaining eigenvectors have sufficiently small magnitude eigenvalues and,

so, are disregarded for the remainder of this study. The cartesian coordinate data projected onto

eigenvector 1 is presented in Figure 3.4B, where the transition is clearly observed. The “open”
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conformation is represented by positive projected data values. Additionally, the transition seen

at ∼900 ns in Figure 3.2 is also observed in the projected data. The “closed” conformation is

described by large magnitude negative values, with smaller magnitude values representing inter-

mediate loop conformations during the transition.

Additionally, the first eigenvector highlights the structural motions that occur during the “open”

to “closed” transition. Figure 3.4C shows the porcupine plot of this eigenvector. The residues with

large magnitude vectors in this figure have the largest covariance during the “open” to “closed”

conformational change described by PC1. Specifically, Cα atoms of the loop have the largest

magnitude cartesian vectors, indicating strong representation of these residues’ fluctuations in the

most dominant eigenvector of the ED analysis. As expected, the direction of these vectors are

associated with the “open” to “closed” transition observed in the MD simulation. Interestingly,

Arg242 has a large magnitude vector as well pointing in the opposite direction of the loop residues’

large magnitude vectors.

3.4.2 Free Energy Landscape of the RNA-binding Loop Conformations.

We have performed extensive replica exchange umbrella sampling (REUS) simulations to en-

hance the sampling of the conformational space of Lβ3β4 in the Apo, ssRNA, and ssRNA1−2

systems. Unfortunately, PC1 cannot be used as the biased collective variable in these REUS sim-

ulations due to the non-trivial task of applying a bias on the linear combination of atoms’ coor-

dinates. Instead, the distance between Ala230 (α2) and Ala247 (Lβ3β4) Cα atoms was used as

proxy for the PC1 reaction coordinate. As previously discussed, this distance represents a large

collective variable space and describes the breakup of the hydrophobic interactions between α2

and Lβ3β4 (see Figure 3.3). Finally, the dividing surface between the “open” and “closed” confor-

mational states was chosen as the respective collective variable value associated with the highest

free energy barrier between the two equilibrium wells. With this dividing surface defined for each

system in the Ala230-Ala247 Cα distance collective variable space, the relative free energy of the
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Figure 3.5: Free energy surfaces for the Apo, ssRNA, and ssRNA1−2 systems as projected on the

biased CV and PC1. (A) Small and large distance values represents the “open” and “closed” conformations,
respectively. The transition barrier, shown as a vertical red line, is used to separate the two conformational
states of Lβ3β4. Error bars were calculated by EMUS, which accounts for the decorrelation time of the
collective variable. (B) Positive and negative values correspond to the “closed” and “open” conformations,
respectively. Error bars were measured using bootstrapping and so likely under approximate the error in the
free energy surfaces.

two Lβ3β4 conformations was approximated by integrating the free energy surface on either side

of the divide.

Relative free energy differences of Apo, ssRNA, and ssRNA1−2 systems.

The free energy surfaces for the biased CV are shown in Figure 3.5A, where small (∼4 to

7 Å) and large (∼14 to 18 Å) values correspond to the “open” and “closed” conformations, re-

spectively. In this projection, the Apo substrate state has nearly isoergonic “open” and “closed”

conformations (∆GO→C = −0.22± 0.04 kcal mol−1), while the two RNA-bound states favor the

“open” conformation (∆GO→C = 0.95 ± 0.02 for ssRNA1−2 and 1.97 ± 0.03 kcal mol−1 for ss-

RNA). The small magnitude ∆GO→C for the Apo system corroborates the ensemble of observed
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RNA-binding loop conformations in crystal structures, where both the “open” and poorly resolved

“closed” conformations have been reported numerous times.

Both the ∆GO→C and barrier heights shown in Figure 3.5A highlight the destabilization of the

“closed” conformation of Lβ3β4 in the presence of RNA. For the ssRNA system, five nucleotides

were crystallized in the 5GJB crystal structure. The 3′ end of this RNA oligomer is positioned just

at the top of Lβ3β4, as seen in Supporting Figure 3.8B. The large ∆GO→C and barrier height for

the ssRNA system indicate that the close proximity of the 3′ nucleotides locks the RNA-binding

loop into the “open” conformation.

Surprisingly, RNA perturbs the loop’s conformational free energy even when the RNA oligomer

is > 13 Å away from the loop, as is the case for the ssRNA1−2 system where three 3′ nucleotides

were artificially removed. The remaining, shortened RNA oligomer is positioned between subdo-

mains 2 and 3, between the helical gate α-helices. Yet, at this distance, the RNA decreases the

free energy barrier between the “open” and “closed” loop conformations relative to both the Apo

and ssRNA free energy surfaces. Additionally, this small RNA oligomer shifts the ∆GO→C from

favoring the “closed” conformation (as the Apo system does) to favoring the “open” loop.

These results demonstrate that the RNA affects the Lβ3β4 free energy surface. In fact, the

presence of even minimal RNA at the top of the RNA-binding cleft is seen to perturb the loop’s

free energy surface in such a way as to enable the “closed” to “open” transition to occur more

readily than in either of the other two substrate states. This may provide insight into the mecha-

nisms of molecular recognition between NS3h and RNA. Specifically, incremental representations

of an RNA oligomer bound within NS3h’s RNA-binding cleft are seen to modulate the free energy

surface of Lβ3β4. Due to its approximately isoergonic ∆GO→C value, the Apo substrate state of

NS3h is hypothesized to sample both the “closed” and “open” conformations of the RNA-binding

loop; this is strongly supported by the crystal structures of the flavivirus NS3h. The free energy

differences of the Apo and ssRNA1−2 systems demonstrate that an RNA oligomer positioned be-

tween subdomains 2 and 3 (> 13 Å away from Lβ3β4) induces a population shift away from the

“closed” conformation of the loop. This shift is aided by the diminished free energy barrier seen in
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the ssRNA1−2 system’s free energy surface, relative to Apo’s. Further presence of RNA enhances

this energetic shift in the free energy surface, as seen in the ∆GO→C for the ssRNA system.

Apo NS3h can sample both the “open” or the “closed” conformations, yet initial binding of

RNA drives the free energy surface to favor “open” structures. This results in a population shift

away from “closed” structures that is sustained by further binding of the RNA oligomer. Since we

do not model the true binding event of RNA into NS3h, we cannot definitively state what mech-

anism best describes the molecular recognition of RNA by Lβ3β4. Yet, the free energy surfaces

reported above suggest that the “conformational selection” model of molecular recognition events

may be at play for NS3h-RNA complexes, at least in regards to the RNA-binding loop.146–148

Free energy surface of the Lβ3β4 transition.

As stated previously, the biased distance between Ala230 and Ala247 Cα atoms was used as a

proxy to describe the PC1 eigenvector from the Apo system’s ED analysis. Therefore, the REUS

simulations were projected onto PC1 to investigate the free energy surface of the loop conforma-

tional transition described by this eigenvector. The reweighted free energy surfaces associated with

the projection onto PC1 are shown in Figure 3.5B. For these projected free energy surfaces, less

emphasis is placed on the ∆GO→C values due to the larger collective variable space having lower

quality sampling for all three systems. In conjunction with the sampling issues in this reweighted

space, 1000 iterations of bootstrapping was used to estimate the error in the surfaces; this error

is an approximate lower-bound for the true error in these results. Instead, focus is given to the

features within these free energy surfaces and their mechanistic interpretations.

Apo’s Lβ3β4 transition mechanism. The Apo system’s free energy surface in the projected

PC1 space (green in Figure 3.5B) has two major free energy barriers, with the direction of the

transition (i.e. “open” to “closed” or the reverse) greatly changing the energetics. From left to right,

the first barrier is seen at PC1 ≈ -17 and separates the “closed” conformation from an intermediate

“closed” conformation, where the barrier heights of 2.1 or 0.3 kcal mol−1 are seen for the “closed”

to intermediate and reverse transitions, respectively. Structural representations of these two states
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Figure 3.6: Exemplar structures of the Apo system’s Lβ3β4 conformations at local minima in the PC1

projected free energy surface. (A) “Closed” conformation where Arg242 is solvent exposed and Thr245
and Thr246 dihedrals sample the expected “closed” values. (B) The intermediate “closed” conformation
where Arg242 has transitioned to the opposite side of Lβ3β4, relative to its position in (A). (C) “Open”
conformation where the Thr245 and Thr246 dihedrals have flipped into the putative “open” dihedral values
and the Arg242 and Arg269 residues sit in the RNA-binding cleft.

are shown in Figure 3.6A and B, where the loop conformation remains closed, as supported by the

dihedral values of Thr245 and Thr246 residues. The largest structural change that separates these

two conformations is the Arg242 positioning. In the “closed” conformation, the side chain of this

residue sits in a solvent exposed location while, in the intermediate state, the guanidinium group

has repositioned into a protein-internal location on the opposite side of the Lβ3β4 backbone. This

Arg242 repositioning is highlighted in the PC1 porcupine plot (Figure 3.4C) where the residue’s

large magnitude vector is aimed in the opposite direction of the loop’s set of vectors. The Arg242

repositioning represents a large destabilization of the “closed” conformation with a very small

barrier in the reverse direction, suggesting that the intermediate “closed” structure is rare and short

lived.

The second barrier represents the transition between the intermediate “closed” and “open”

conformations, seen at PC1 ≈ 0. An exemplar structure of the “open” conformation is presented in

Figure 3.6C, where the Thr245 and Thr246 dihedrals are seen in the “open” conformation dihedral

space. As expected due to the Lβ3β4 structure seen in 5JRZ, arginines 226, 242, and 269 are

all positioned in the RNA-binding cleft in the “open” conformation. For this transition, the two

states are nearly isoergonic with a barrier heights of 2.5 and 2.3 kcal mol−1 when transitioning

from the intermediate to the “open” structure and the reverse, respectively. With respect to the
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PC1 porcupine plot, this barrier represents the large structural change of the Lβ3β4 residues. The

combination of the two barriers seen in the Apo system’s PC1 free energy surface highlights the

downhill energetics of the “open” to “closed” transition that was observed in the Apo unbiased

simulations.

ssRNA systems sample the PC1 transition poorly. Both the ssRNA and ssRNA1−2 systems’

PC1-projected free energy surfaces have major differences from the Apo system’s surface in Fig-

ure 3.5B. Important to note are regions on these surfaces with discontinuities or large changes in

slope, especially in the transition barriers. The presence of such data indicates non-ergodic sam-

pling at these positions in the PC1 space and suggests that the transition described by PC1 is not

viable in the respective substrate state. Even with these caveats, the PC1-projected free energy

surfaces of the ssRNA and ssRNA1−2 systems are qualitatively similar to the results in the biased

CV free energy surfaces. Both systems favor the “open” conformation of Lβ3β4 (positive values).

The ssRNA1−2 oligomer reduces the barrier heights seen in the PC1-projected space relative to

those seen in the Apo or ssRNA free energy surfaces.

The ssRNA system’s surface has one large barrier between the two conformational energy

wells, approximated as 2.6 and 3.4 kcal mol−1 for the “closed” to “open” transition and the reverse,

respectively. The transition barrier for this system is the most prominent example of nonergodic

sampling and, so, the barrier height is likely under approximated. Furthermore, no intermediate

structures between the two wells are seen to be energetically stable and the sampling of negative-

valued PC1 space is drastically narrowed. These results suggest that the PC1 eigenvector describes

a transition mechanism between “open” and “closed” conformations that is not viable in the ss-

RNA system. Furthermore, this demonstrates that the energetics of the PC1 transition are strongly

affected by the ssRNA oligomer as also observed in the biased CV energetics.

Similarly, the qualitative story observed in the biased CV free energy surface of the ssRNA1−2

system is maintained in the PC1-projection surface. The small RNA oligomer stabilizes the “open”

conformational state while also minimizing the barrier heights between “closed” and intermediate

Lβ3β4 structures. The narrowing of PC1 sampling seen for the ssRNA system is not as drastic
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in the ssRNA1−2 system, yet the “closed” conformational well is still displaced to more positive

PC1 values. For this system, the structural origins of the RNA oligomer’s effect on the Lβ3β4 free

energy surface are difficult to identify from the body of simulations reported here. Further study

of the numerous RNA-bound structural states of the flavivirus NS3h will need to be performed to

fully deconvolute these results.

3.5 Conclusions

The Lβ3β4 conformations observed in the flavivirus NS3h crystal structures were investigated

using all-atom, explicit solvent MD simulations of the Apo, ssRNA, and ssRNA1−2 substrate states.

A single observation of the “open” to “closed” conformational transition, seen in the unbiased Apo

simulation, was studied to identify collective variables that efficiently quantified the structural

changes observed. The backbone dihedrals of the Thr245 and Thr246 residues of Lβ3β4 are one

such set of collective variables, where crystal structures and MD simulations highlight the large

quantitative change in these dihedrals in the “open” and “closed” conformations. Additionally,

an essential dynamics analysis of the observed transition produced a single, dominant eigenvector

that described 75% of the positional covariance of the RNA-binding loop region. PC1 strongly

separated the “open” and “closed” conformations and accounted for the large scale fluctuations of

the full loop.

The free energy surfaces of the Lβ3β4 structural states were quantified using REUS simula-

tions. Reweighting these free energy results into the PC1 collective variable space also allowed for

us to study the energetics of the “open” to “closed” transition originally observed in the unbiased

Apo simulation. In either the biased collective variable or PC1 spaces, the quantitative free energy

results highlight the RNA-dependence of the Lβ3β4 structures. For Apo, a relatively large barrier

separates the two structural states that are nearly isoergonic in the Ala230-Ala247 Cα distance

space. In the projected space, the transition from “open” to “closed” is much more energetically

favorable than the reverse process. In this transition, two energetic steps are observed to occur:

the backbone of the RNA-binding loop moves into the “open” conformation, as described by the
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Thr245 and Thr246 dihedrals, followed by the side chain of Arg242 fluctuating to the opposite side

of the loop to a position in the RNA-binding cleft.

For the ssRNA and ssRNA1−2 systems, the “open” loop conformation is energetically favored

in both free energy surfaces. Direct interactions between RNA and loop residues lead to an even

larger barrier seen for the ssRNA system’s biased collective variable free energy surface. Addi-

tionally, the transition described by PC1 is not viable in the ssRNA system as indicated by the

nonergodic regions in the respective surface. Interestingly, the ssRNA1−2 system has lower free

energy barriers in both the biased collective variable and PC1 free energy surfaces. These results

suggest that even a small RNA oligomer, bound in the RNA-binding cleft between subdomains 2

and 3, increases the rate at which Lβ3β4 transitions between the “closed” conformation (favored

by Apo) and the “open” conformation. These results also suggest a possible conformational selec-

tion mechanism for the RNA-dependent Lβ3β4 structural states, where RNA positioned between

subdomains 2 and 3 causes an energetic shift in the loop’s structures to favor the RNA-bound,

“open” conformation.

In light of our previous study of the dengue NS3h NTPase cycle, the Lβ3β4’s RNA-dependent

free energy surface provides interesting insight into the hypothesis that RNA-induced enhancement

of the NTP hydrolysis reaction originates, to some degree, from the “open” Lβ3β4 conformation.

We previously reported that the number of water molecules within the hydrolysis active site is

decreased as are these waters’ translational and rotational motions when RNA is present.7 Addi-

tionally, the positioning of water molecules within the active site was also observed to be affected

by RNA. These effects are proposed to originate from RNA-induced structural changes in the

hydrolysis active site, an example of which is a structural shift in α2 brought on by the Lβ3β4 in-

teractions while in the “open” conformation. Therefore, our free energy results suggest that initial

binding states of the NS3h:RNA complex (modeled by ssRNA1−2) enhance the Lβ3β4 transition

from “closed” to “open”, leading to structural shifts in α2 that prime the NTPase active site for

the hydrolysis reaction. Continued binding of RNA (modeled by ssRNA) locks in the α2-Lβ3β4

interactions even further.
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The structural origins of the ssRNA1−2 oligomer’s effect on Lβ3β4 have not been identified,

yet our results highlight the RNA-binding loop as a potential target for small-molecule inhibition

or mutagenesis studies. We hypothesize that destabilization or prevention of the “open” Lβ3β4

structure, while in the Apo or ssRNA1−2 substrate states, would diminish the RNA-induced en-

hancement of the NTPase activity as well as lead to weakened protein-RNA interactions. The

highly conserved Arg226, Arg242, and Arg269 are all hypothesized to function as arginine fork

residues that strongly coordinate the phosphate groups of 3′ RNA nucleotides. Arg242 is also

observed to play an important role in the “open” to “closed” transition described by PC1; sta-

bilization of the solvent exposed conformation of Arg242 (seen in Figure 3.6) is proposed as a

potential method of inhibiting the transition. Therefore, mutations or small molecules that perturb

the wild-type behavior of Lβ3β4 would be detectable via NTPase, RNA binding, and helicase ac-

tivity assays. Additionally, further computational studies of the NS3h:RNA structural states could

provide insights into the short-range, residue-residue interactions through which the observed al-

losteric effect is propagated.
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3.7 Supporting Information

3.7.1 Analyses

Multiple Sequence Alignment

The NIAID Virus Pathogen Database and Analysis Resource (ViPR)149 (accessed on May 30th,

2018 through the web site at http://www.viprbrc.org/) was used to collect the available Flaviviridae

NS3 sequences, totaling 51,816 independent sequences from all four genuses of the virus family.
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The Biopython module150 (version 1.74) was used to preprocess this population of NS3 sequences.

Specifically, this preprocessing analysis removed uninteresting sequences (not an NS3h sequence,

too short to be full NS3h, or poorly resolved). Subsequently, the CD-HIT software package was

used to perform a three-step clustering analysis.151,152 The first clustering step used a clustering

threshold of 1.00, which was used to aggregate non-unique sequences into a single, representative

sequence. This was done to normalize the weight that each unique sequence has in the population

of sequences. The second step in the sequence clustering protocol used a clustering threshold of

0.4, which successfully clustered sequences by the genera of the Flaviviridae family (flavivirus,

hepacivirus, pestivirus, and pegivirus). Finally, the third step of clustering was performed on the

flavivirus sequences with a threshold of 0.8. This last step was used to remove poorly sampled

clusters of sequences, which were either poor quality sequences or associated with flaviviruses

(e.g. Apoi virus) that had few representative sequences. After the preprocessing analysis and clus-

tering protocol, 1,488 flaviviral sequences remained and were subsequently analyzed in a multiple

sequence alignment (MSA).

The MAFFT software153 was used to perform three independent MSA analyses: (1) a pro-

gressive alignment with iterative refinement, (2) local alignment with iterative refinement methods

using WSP and consistency scores, and (3) global alignment with iterative refinement methods

using WSP and consistency scores. Output from these separate MSA analyses were then ana-

lyzed in the trimAl software154 to quantitatively chose the highest quality MSA as well as remove

sequence positions with gaps in at least 20% of the analyzed sequences. Finally, post-analysis

of the MSA results measured the sequence position variance away from the consensus sequence.

Specifically, the position frequency matrix was calculated from the ensemble of aligned sequences.

The variance away from the most-probable residue at each sequence position was calculated from

this data; these values are reported in the paper for specific residues of interest. Additioanlly, Fig-

ure 3.7 depicts the sequence logo of the MSA results, using dengue NS3h residue numbering.155,156

The exact pre-processing, clustering, MSA, and post-processing protocols are available on Github

(https://github.com/mccullaghlab/ZIKV-Lb3b4/bioinformatics).
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Figure 3.8A highlights the sequence variance of sequence positions in the local region of

Lβ3β4. Sequence positions with high conservation (< 1% variance) across all flavivirus sequences

are colored blue, while positions with larger variance away from the consensus are colored from

white to red, representing increasing variance. This structural representation of the MSA results

highlight the poor conservation of the loop residues while sequence positions in α2, β3, β4, and

α3 secondary structures are more strongly conserved.

Figure 3.7: Sequence logo155,156 of the flaviviral NS3h multiple sequence alignment results, using residue
numbering from the DENV NS3h 2JLV structure. An equiprobable background composition of amino acid
usage was assumed. Amino acids are colored based on their side chain chemistry: polar residues (green),
neutral (purple), basic (blue), acidic (red), and hydrophobic (black). The relative height of each residue
letter describes the relative frequency of observing the respective residue at that sequence position. The
overall height of the column describes how conserved the sequence position is.
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Crystal Structure Alignment

In conjunction with the MSA analysis of flavivirus NS3h sequences, a structural alignment

of all available crystal structures of the flavivirus NS3h was performed to highlight the structural

heterogeneity of the RNA-binding loop and surrounding areas. In total, 56 monomer structures

of flavivirus NS3h are available on the Protein Data Bank (PDB). The dengue NS3h:ssRNA:ATP

crystal structure (2JLV) was used as the alignment reference structure. The alignment landmark

reported in Davidson et al.7 was used. Specifically, the Cα atoms of the core β-sheets of subdo-

mains 1 and 2 were used for alignment due to the strongly maintained tertiary structure of these

subdomains.

Panel B of Figure 3.8 depicts a representative body of crystal conformations of ZIKV NS3h,

focusing on the Lβ3β4 structural region. Generally, the “closed” conformation of the loop is

poorly resolved except for the initial residues of the loop. Conversely, structures with the loop in

the “open” conformation are well resolved and have similar structures to the RNA-bound (5GJB)

crystal. Panels C and D of this figure highlight the arginine fork residues found in the Lβ3β4 local

region of the RNA-binding cleft as well as the Thr245 and Thr246 residues, which are seen in

structural analyses to be strong decisors of the two conformational states of the loop.

Essential Dynamics of the Lβ3β4 Structure

The largest covariance motions of the RNA-binding loop were analyzed in the unbiased Apo

simulation. Specifically, residues in α2, β3, Lβ3β4, β4, and α3 were of interest when quantifying

the “open” to “closed” conformational change observed in the unbiased simulation. Of these sec-

ondary structures, residues that face away from the RNA-binding cleft were not considered. The

MSA results guided the choice of coarse-graining used in this essential dynamics (ED) analysis.

If a sequence position is strongly conserved (low sequence position variance), then the residue

fluctuations are described with a two site coarse-graining: the Cα atom used to describe backbone

fluctuations and a side chain atom to describe the side chain fluctuations. An exception to this are

residues with small side chains (e.g. Gly, Ala, and Val) where the fluctuation of the side chain

is highly correlated with the backbone fluctuations. Residues with low conservation are coarse-
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Figure 3.8: Alignment of flaviviral NS3h sequences and crystal structures. (A) Structural representation
of the MSA results. Sequence positions are colored based on percent variance away from the consensus
sequence. Highly conserved positions are colored blue, while less conserved residues are colored from
white to red with increasing variance. (B) Crystal structure alignment of a subset of ZIKV NS3h, focusing
on the Lβ3β4 region of subdomain 1. 5K8I is one of the few crystal structures with the Lβ3β4 structure in a
“closed”-like position, albeit largely unresolved. (C) The strongly conserved Arg226, Arg242, and Arg269
residues hypothesized to function as arginine forks. (D) The large Lβ3β4 structural change can be seen in
the large dihedral shifts of the Thr245-Thr246 residue pair.

grained as a single site at the Cα atom. This bioinformatics-guided coarse-graining resulted in 44

atoms, incorporating all five secondary structures in the region of interest. A principal component

analysis (PCA) of these atoms’ cartesian coordinates result in eigenvectors describing the essential

dynamics of the Lβ3β4 conformational transition observed in the Apo simulation.
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Figure 3.9: φ dihedral of Thr245 in the unbiased Apo simulation. The “open” to “closed” conformational
change in Lβ3β4 occurs at approximately 900 ns.

Figure 3.10: ψ dihedral of Thr245 in the unbiased Apo simulation. The “open” to “closed” conformational
change in Lβ3β4 occurs at approximately 900 ns.
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Figure 3.11: φ dihedral of Thr246 in the unbiased Apo simulation. The “open” to “closed” conformational
change in Lβ3β4 occurs at approximately 900 ns.

Figure 3.12: ψ dihedral of Thr246 in the unbiased Apo simulation. The “open” to “closed” conformational
change in Lβ3β4 occurs at approximately 900 ns.
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Chapter 4

Residue-Level Allostery Propagates Through the

Effective Coarse-Grained Hessian.3

4.1 Overview

The long-ranged coupling between residues that gives rise to allostery in a protein is built up

from short-ranged physical interactions. Computational tools used to predict this coupling and its

functional relevance have relied heavily on the application of graph theoretical metrics to residue-

level correlations measured from all-atom molecular dynamics (aaMD) simulations. The short-

ranged interactions that yield these long-ranged residue-level correlations are quantified by the

effective coarse-grained Hessian. Here we compute an effective harmonic coarse-grained Hessian

from aaMD simulations of a benchmark allosteric protein, IGPS, and demonstrate the improved

locality of this graph Laplacian over two other connectivity matrices. Additionally, two centrality

metrics are developed that indicate the direct and indirect importance of each residue at producing

the covariance between the effector binding pocket and the active site. The residue importance

indicated by these two metrics is corroborated by previous mutagenesis experiments and leads

to unique functional insights. In contrast to previous computational analyses, our results suggest

that fP76-hK181 is the most important contact for conveying direct allosteric paths across the

HisF-HisH interface. The connectivity around fD98 is found to be important at affecting allostery

through indirect means.

3Peter T. Lakea,†, Russell B. Davidsona,†, Glen M. Hocky b, Martin McCullagha; a Department of Chemistry,
Colorado State University, Fort Collins, CO, USA, b Department of Chemistry, New York University, New York, NY,
USA, † Contributed equally to this work.
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4.2 Introduction

Allostery refers to the long-range functional coupling of sites in a macromolecule through net-

works of short-ranged interactions. This phenomenon can be a pivotal component of a protein’s

function157 as demonstrated in GPCR signaling,158 coupling of ATP binding and hydrolysis to me-

chanical work in motor proteins7,159–161 and activation of oxygen binding in hemoglobin.13,116,162–165

Many of these processes are initiated by the binding of an effector molecule that modulates the ac-

tivity at a distal active site. This behavior has become an increasingly important target in the field

of drug development due to possible improvements in selectivity over orthosteric sites.1,166–169 In-

triguingly, allostery can be incorporated into an enzyme’s function even on the short time scales of

directed evolution studies to produce a desired increase in activity.170 Therefore, it is highly desir-

able to be able to identify and predict allostery, as well as the interactions (“allosteric pathways”)

involved in these processes.

There are many well established experimental techniques for characterizing allostery, including

activity based assays to investigate non-Michaelis-Menten kinetic behavior9, H/D mass spectrom-

etry,171,172 as well as structural based approaches such as X-ray crystallography,173 cryoEM,174 and

NMR.175–183 Structural techniques can be used to identify residues that interact directly with or are

structurally perturbed by the effector molecule by comparing apo and effector bound states of a

protein. Identifying allosteric pathways is significantly more challenging. While pathways have

been identified using experimental techniques in well-studied proteins such as hemoglobin,13,184–186

the combination of NMR spectroscopy and computational techniques have allowed for the most

robust description of allosteric pathways.178,181,182,187,188

Computational techniques used to investigate allostery rely on graph theoretical approaches

to identify important residues or connections that convey information from the effector binding

pocket to the active site.180,189–191 A weighted graph is constructed by defining nodes (residues)

and edges (bonds) that connect nodes. These edge weights populate a pairwise adjacency matrix,

A, that has finite values between connected residues. The closely related graph Laplacian, L =

D − A where D is a diagonal matrix with elements Dii =
∑

j Aij , can be readily constructed
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the adjacency matrix. A variety of edge and node centrality metrics have been developed using

either the adjacency matrix of graph Laplacian to identify important amino acids contributing to

the allostery in a protein.180,188,192

Two computational techniques have been used to generate these graphs: bioinformatics and

molecular dynamics. Sequence-based bioinformatic methods, working under the assumption that

allosteric pathways are functionally important and thus evolutionarily conserved, use residue pair-

wise sequence co-evolution to define a graph.180,186,193 These methods do not explicitly take into

account the 3D structure of a given protein as this information should be implicitly captured in

sequence covariance. Additionally, structural databases can be used to build pairwise, knowledge-

based potentials that describe the interactions observed in e.g. a protein’s crystal structure.194 None

of these models, however, directly account for the ensemble nature of protein structure and the as-

sociated allosteric behavior.164

All-atom molecular dynamics (aaMD) is a well-established method to sample the configura-

tional ensemble of a protein.195–200 Analyses of such simulations have been used to identify al-

losteric importance based on residue interaction networks180,201–203 or positional covariance-based

metrics.113,187,188,203,204 Both of these models are used to describe the average residue-residue cou-

plings from the ensemble of protein configurations observed. Interestingly, these methods lead to

dramatically different graphs: the residue interaction networks will be localized in space while the

positional covariance will be delocalized. Thus, while aaMD provides an appealing measure of

protein configurational space, the appropriate graph Laplacian to describe residue-level correla-

tions is not well understood.

An alternative to using some form of the positional covariance as the adjacency matrix is to

use the Hessian, which is a graph Laplacian constructed from the second spatial derivative of the

Hamiltonian. Elastic Network Models (ENM) have been used to define a residue-level coarse-

grained Hessian and study the contributions of the normal modes to allostery for a variety of sys-

tems.205 While standard ENM models qualitatively capture low frequency motions of proteins, the

lack of residue specificity in the model yields low fidelity with all-atom models in the mid to high
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frequency range.206 Bottom-up coarse-graining approaches, such as REACH207,208 and hENM,209

have been developed to yield anisotropic ENMs with increased residue specificity. These methods

are designed to capture higher fidelity with all-atom normal modes across the spectrum.210 We

propose to connect these two fields of study, namely protein allostery and coarse-grained poten-

tials, and use the resulting effective coarse-grained Hessian as the graph Laplacian to study protein

allostery.

In the next section, we demonstrate that the effective coarse-grained Hessian is the appropriate

graph Laplacian to quantify residue-level allostery from aaMD simulations. Motivated by the

physical interpretation of the Hessian, we define two centrality metrics that indicate a Hessian

element’s importance at conveying covariance between a selected set of sources and sink residues.

Finally, we apply this method to simulations of the imidazole glycerol phosphate synthase (IGPS)

heterodimer, which is a well established benchmark allosteric system. Our definition and resulting

weights of allosteric pathways provide new insight into the physics underlying allostery, a key

functional component of most proteins.

4.3 Theoretical Framework

Structural allostery can be described as the positional change at one site due to the application

of an external force at a different site. A linear response of a system to an external force, fex, can

be written as

∆x =
1

T
Cfex, (4.1)

where ∆x is the change in the equilibrium position due to the perturbation, C is the matrix of

covariance of particle positions, and T is temperature in units of energy.211 (4.1) demonstrates the

importance of positional covariance to predicting allostery, but does not indicate anything about

the short-ranged physical interactions leading to this behavior.

Within a graph theoretical framework, the short-ranged interactions that lead to long-ranged

correlations are what should populate the graph Laplacian of the system. The Hessian is the ap-

propriate graph Laplacian for molecular systems because (1) Hessian elements are only finite for
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short-ranged physical interactions, (2) the Hessian is, by construction, a symmetric positive semi-

definite matrix as all graph Laplacians are, and (3) the covariance is related to the generalized

inverse of the Hessian. The final point is most well-known in elastic network models (ENMs) for

which the covariance and Hessian are related by the Moore-Penrose pseudoinverse (H+ ≡ 1
T
C).

This relationship is consistent with the Gaussian Markov random field literature in which the graph

Laplacian and the covariance are related by pseudoinverses.212 In the context of allostery in pro-

teins, the covariance is typically measured at a residue-level even if the underlying simulations

have atomic resolution. Thus, the Hessian of interest is the second derivative of an effective

coarse-grained Hamiltonian. Determining the effective Hessian from a measured covariance is

a non-trivial problem due to the difficulties in converging a measured covariance.213 Here we use

a previously described coarse-graining procedure to generate an effective harmonic Hessian based

on a measured covariance.

4.3.1 The Effective Harmonic Hessian from All-Atom Molecular Dynamics

Simulations

Explicit solvent aaMD simulations can provide a detailed and accurate structural ensemble pic-

ture of proteins under physiological conditions.195–200 These simulations have been used to generate

3N × 3N covariance matrices that have been used to assess N−residue level structural allostery.

Motivated by the idea that the structural ensemble in a single free energy well from aaMD is well

represented by a harmonic system,214–218 effective harmonic Hamiltonians have been fit to mapped

all-atom data.207–209 In this work, we construct an effective harmonic Hessian using a slightly mod-

ified heterogeneous-ENM (hENM) procedure209 as described in the Supporting Information (SI)

Computational Methods section.

The result of the hENM procedure is a N × N force constant matrix, k, that is optimized to

reproduce pairwise particle variances. The 3×3 tensor element of the 3N×3N Hessian is defined

as

Hij = −kijR̂ij ⊗ R̂ij, (4.2)
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where R̂ij =
〈ri〉−〈rj〉

|〈ri〉−〈rj〉|
and 〈ri〉 is the average position of node i. The 3N × 3N covariance can

then be reconstructed as C = TH+. The corresponding covariance calculated from the hENM

Hessian demonstrates good correlation with the measured aaMD covariance (Figure 4.5).

4.3.2 Allosteric Paths in the Hessian

To investigate allosteric pathways, we start by dictating that the sum over these pathways yields

the covariance between a selected pair of source and sink residues. This is motivated by the idea

that the covariance is the physical observable that dictates the linear response between two residues.

Employing a property from graph theory that, given a weighted adjacency matrix, A, (Aℓ)ij is the

weighted sum of all walks of length ℓ between nodes i and j, we can express the covariance in the

following way,

C =
∞
∑

ℓ=0

Aℓ = (I −A)−1 , (4.3)

where I is the identity matrix and the last equality arises from identifying the infinite sum as an

example of the Neumann series. At this juncture, it is natural to write that A = I − C−1 but, in

the context of molecular simulations, C is a singular matrix and, thus, not invertible due to the

removal of center-of-mass translation and rotation.

If we consider C to be strictly invertible and map the infinite number of walks to a finite set of

paths, Pij , it can be shown that

1

T
Cij =

∑

n∈Pij

H−1
ii

∏

〈α,β〉∈n

−Hαβ ×
{

[

H{α}prev

]−1
}

ββ
, (4.4)

where 〈α, β〉 is an edge in the path and subscript {α}prev denotes the principle submatrix of H

obtained by removing all nodes previously visited in the path. The inverse terms in (4.4) arise

from mapping walks to paths; traversing all loops from α to itself results in terms related to the

conditional variance of α. The only terms that couple two nodes together in (4.4) are Hαβ which

are the terms in the Hessian. We note that these terms in the Hessian are 3 × 3 tensors for a 3D

system.
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Paths are usually referenced in terms of a length ℓ as opposed to a weight. This distinction can

be made by considering a path length as being the negative of a sum of the adjacency matrix on a

logarithmic scale as opposed to the weight which is a product of elements in the adjacency matrix.

In this way, the paths with the largest weights have the shortest lengths. We study these paths

by sampling them in a Monte Carlo scheme; even though the paths observed are not necessarily

all the shortest paths within some number, the algorithm is much more efficient than the typically

used Floyd-Warshall algorithm.219,220 This method of sampling paths also leads us to consider

these paths as part of an ensemble, all of which can contribute. The Monte Carlo sampling is also

readily extended to account for path lengths which are not strictly a sum of pairwise interactions.

The procedure is detailed in the SI Theory section.

A similar but more complicated procedure can be followed to determine paths that yield the

covariance in a singular covariance matrix. The most crucial idea obtained from performing the

full derivation is that fully connected paths, those with finite Hessian values connecting a given

source and sink, are not the only contributions to the covariance. Additional terms, that can be

described as broken paths, contribute to the covariance due to a coupling through the null-space

of the singular matrix. The relevant outcome of this for the current work is that residues that

contribute to direct paths are not the only residues that affect the covariance between a source and

sink. This motivates the need for additional importance metrics to study allosteric interactions in a

given graph.

4.3.3 Hessian Derivative as a Centrality Metric

The effective harmonic Hessian lends itself to another centrality metric. One can consider how

changing a single spring constant alters the covariance between a given set of sources and sinks.

This leads to an edge-based centrality metric we call the derivative metric, defined by

δ
(ij)
edge =

d||Cmn||
2

dkij
, (4.5)
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where ||Cmn||
2 is the squared Frobenius norm of the covariance tensor between source m and sink

n. We map this metric down to a node-based centrality metric by

δ
(i)
node =

∑

j

kijδ
(ij)
edge. (4.6)

This mapping of the edge metric to a node metric is motivated by considering a fractional change

of all the spring constants connecting a given node. These values can be positive and negative

and vary by orders of magnitude. Simulations for this study yielded values of δnode ranging from

−5.57× 10−3 Å4 to 2.20× 10−4 Å4.

4.4 Results and Discussion

4.4.1 Model protein - IGPS

Imidazole glycerol phosphate synthase (IGPS) is an enzyme that functions in both the purine

and histidine biosynthesis pathways of plants, fungi, archaea, and bacteria. In Thermatoga mar-

itima, IGPS is a heterodimeric protein complex of HisH and HisF proteins (depicted in white

and orange respectively in Figure 4.1). HisH catalyzes the hydrolysis of glutamine into ammonia

and glutamate. Nascent ammonia is then shuttled across the HisF–HisH interface and through

the (β/α)8 barrel of HisF (an approximate distance of 25 Å). At the HisF cyclase active site,

the ammonia reacts with N’-[(5’-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide

ribonucleotide (PRFAR) to form imidazole glycerol phosphate (IGP) and 5-aminoimidazole-4-

carboxamide (AICAR). These two reactions are strongly coupled with a 1:1 stoichiometry, despite

the large distance that separates the two active sites.221,222 In addition to the concerted mechanism

between HisF and HisH, IGPS is classified as a V-type allosteric enzyme, such that the rate of the

glutaminase reaction is critically dependent on the presence of the PRFAR ligand. Experimental

assays have quantified this strong allosteric activation to be an approximate 4,900-fold increase

in activity relative to basal levels.223 Allosteric activation is also observed in the presence of the

cyclization products, IGP and AICAR, but at reduced magnitudes.223,224
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Figure 4.1: Structural depiction of the IGPS heterodimer. The protein is composed of HisH and HisF
monomers. The PRFAR ligand binds in the pocket indicated by the green oval and source residues fL50,
fT104, fD130 and fS225. The glutaminase active site, labeled in pink, is located in the HisH monomer near
the interface. We chose four sink residues hV51, hC84, hH178 and hE180 to identify this pocket.

The allostery of the IGPS enzyme has been studied for nearly two decades using a broad

range of experimental and theoretical methodologies. Mutational studies, coupled with biochem-

ical assays and NMR experiments, have highlighted residues that are pivotal for the functionality

of the protein complex as well as dynamic effects induced by the HisF ligand.181,182,223–231 Ad-

ditionally, MD simulations and graph-theoretic analyses have been applied to the IGPS system

to study the allosteric effect of PRFAR and the allosteric paths that couple the two distal active

sites.111,113,181,187,188,203,226,232–234 For this work, we have performed aaMD simulations of apo IGPS

as well as one mutant variant, totaling 1µs of trajectory for each system. Subsequently, an ef-
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Figure 4.2: Normalized adjacency matrices computed from 4 × 250 ns all-atom molecular dynamics

simulations of IGPS protein in its apo form. A) The linear mutual information adjacency, rMI,235 B) the
Pearson correlation adjacency and C) the effective harmonic Hessian.

fective harmonic Hessian has been constructed and analyzed for both systems (SI Computational

Methods).

4.4.2 Adjacency Matrix Comparison

Adjacency matrices based on the covariance and mutual information (MI) have been used to

study allostery in IGPS.113,203,234 The theoretical framework outlined above demonstrates the im-

portance of a third adjacency matrix, one based on the Hessian. In order to compare and contrast

between these three, we consider absolute values of normalized adjacency matrices. These matri-

ces are limited to values between 0 and 1, with values near one indicating strong connectivity and

values near zero indicating weak connections. Residue-level normalized adjacency matrices based

on our 1µs MD simulation of apo IGPS are shown in Figure 4.2.

Mutual information (MI) is a measure of correlation between two distributions based on the

difference between marginal and joint Shannon entropies. The numeric values of this quantity

range from zero to infinity, but can be “normalized” by computing rMI =
√

1− exp(−2
3
MI)

where this manipulation leads to pairs with large MI having rMI ≈ 1 and uncoupled pairs having

rMI ≈ 0. We note, however, that neither the MI nor the rMI matrices are positive semi-definite,

which differentiates it from the two other matrices discussed here. The motivation for using this

“adjacency” matrix over, for example, the normalized 1D covariance matrix, is that it accounts for
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correlation along perpendicular degrees of freedom.235 The residue-level rMI matrix, computed

from a linear MI, for our apo IGPS simulations is depicted in Figure 4.2A. This plot indicates

strong correlations along the primary sequence as indicated by dark colors in the near off-diagonal

elements of the matrix. Further off-diagonal dark coloring indicates secondary structural elements

that also convey strong correlation. The break between the HisF and HisH proteins is also evident

as there are clear dividing lines at residue 253. Despite stronger near diagonal correlation, the rMI

adjacency matrix demonstrates long-range contacts even in the HisF–HisH coupling sub-matrix in

the bottom-right or top-left of the matrix.

An alternative to rMI is the Pearson correlation matrix. This adjacency matrix is derived from

the covariance matrix, which is positive semi-definite. In a 3D system of N particles, the covari-

ance matrix is a 3N × 3N matrix or, equivalently, an N × N matrix of 3 × 3 tensor elements. A

typical manipulation is to reduce the 3N × 3N matrix to an N × N matrix by taking the trace

of each tensor element. While this manipulation still yields a positive semi-definite matrix, we

do note that it ignores couplings in orthogonal degrees of freedom upon mapping the system to a

1D system.235 The resulting N × N matrix can be further manipulated to the Pearson correlation

matrix with values between -1 and 1 by dividing by the square root of the diagonal elements of

each corresponding row and column. Taking the absolute value of the Pearson correlation for the

apo IGPS system yields the normalized adjacency matrix depicted in Figure 4.2B. While there are

quantitative differences observed between rMI and the Pearson correlation, the qualitative behavior

remains the same; there are strong contacts along the primary sequence but there are finite contacts

for almost all elements of the matrix.

The third adjacency matrix we consider is based on the effective harmonic Hessian. We com-

pute this from the 3N × 3N covariance matrix and the average structure from a simulation fol-

lowing the modified hENM procedure as discussed in the Theory section and further elaborated in

the SI. The Hessian is a symmetric positive semi-definite matrix by construction, and the normal-

ized adjacency matrix can be constructed in a manner analogous to what is done for the Pearson

correlation. The Hessian-based normalized adjacency matrix (Figure 4.2C) shows strong primary
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Figure 4.3: Comparison of paths and resulting centralities for different adjacency matrices for the

IGPS protein. A) The path length degeneracy as a function of path length, ℓ. B) The probability of
observing a given node in a sampled path, Pnode. C) The probability of a given node in a sampled path for
the Hessian-based adjacency matrix coloring residues in a structural representation of IGPS.

sequence connectivity in agreement with the correlation and rMI adjacency matrices. Secondary

structure connectivity is observed in the near off-diagonal of Figure 4.2C in agreement with the

strongly correlated off-diagonal regions of Figure 4.2A and B. These connections are distinctly

weaker in the Hessian-based adjacency, however, and the farther off-diagonal elements are zero

indicating little long-range connectivity in the graph. This adjacency matrix is consistent with the

idea of short-ranged physical interactions that yield long-range correlation.

4.4.3 Direct Paths Comparison

Paths that convey the covariance between a set of sources and sinks are attractive physical

interpretations of allostery. Direct paths, ones with complete connectivity in the adjacency matrix,

are an incomplete picture of the covariance between any given source and sink but are readily

sampled. We use direct paths here to compare and contrast adjacency matrices. In this work,

we sample paths between four source residues (fLeu50, fThr104, fAsp130, fSer225) that span

the effector-binding pocket (green oval in Figure 4.1) and four sink residues (hVal51, hCys84,

hHis178, hGlu180) in the glutaminase active site (pink oval in Figure 4.1 of IGPS that have been

previously identified as important.187,236,237 Path sampling is performed in a Monte-Carlo scheme

as described in the Theoretical Framework section and SI.
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Paths between sources and sinks in the Hessian-based adjacency matrix are longer and less

degenerate than those observed in the Pearson or rMI matrices. Figure 4.3A depicts the degeneracy

of paths as a function of path length, ℓ, for the Pearson correlation, rMI and Hessian paths. The

paths in the Pearson correlation and rMI adjacency matrices behave similarly; paths of extremely

short length are found and the degeneracy grows rapidly with path length. This can be understood

by observing finite values in all elements of these two matrices. The paths on the Hessian are longer

and the degeneracy of paths grows much less rapidly than either the Pearson or rMI paths. Again,

this can be understood by the smaller number of connections in the adjacency matrix leading

to both longer paths as well as more unique, short path lengths. These results demonstrate that

the paths on the Hessian use a small number of short-ranged interactions to produce long-range

correlation.

Paths in the Hessian sample different nodes than paths in the other two adjacency matrices.

A residue centrality metric, Pnode, can be defined as the probability of observing each residue in

the sampled paths. This metric is plotted as a function of residue number in Figure 4.3B for each

adjacency matrix. The rMI and Pearson adjacency matrices both have high probability of observing

the source residue fThr104 in the paths (Pnode ∼ 0.8) but little probability of observing the other

three source residues (fLeu50, fAsp130, fSer225). Similarly, the sink residue probabilities are

dominated by hVal51 (Pnode ∼ 0.8) with some contribution from hCys84 (Pnode ∼ 0.4). This is

due to the highly correlated nature of residues fThr104 and hVal51 yielding a direct path between

the two that is much shorter than all other paths. The Hessian-based adjacency matrix, on the other

hand, yields significant probability of observing source residue fLeu50 and sink residue hGlu180.

There are, however, finite probabilities of observing the other source and sink residues in the

Hessian paths.

The Hessian-based paths go through known important regions of IGPS. Figure 4.3C depicts

these Pnode results on the structure of the heterodimer, highlighting the localization of residues

sampled in paths to sideR of HisF as indicated by the white to blue coloring. These paths mainly

propagate from fLeu50 through a hydrophobic network that spans the interface of the beta barrel
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and surrounding alpha helices in HisF. This includes residue fVal48 (Pnode = 0.19; to be discussed

later). These results are consistent with previous results indicating the importance of sideR.187,188

Interestingly, the Hessian-based paths show significant probability of observing residues fPro76

(Pnode = 0.45) and hLys181 (Pnode = 0.58) as the connection between HisF and HisH. This is in

contrast to some previous results indicating the importance of a salt-bridge at the interface between

fAsp98 (Pnode = 0.16) and hLys181. We leave further discussion of this to a subsequent section in

which we compare to experimental results.

4.4.4 Derivative Centrality Metric of Hessian

Paths are an appealing approach to identify important residues between binding sites, but direct

paths are not the only contributors to covariance between source and sink residues. How a mutation

will ultimately affect the covariance between nodes via paths is not obvious. Using the Hessian as

the adjacency matrix suggests another analysis to compare to mutagenesis experiments. Given the

physical interpretation of the finite Hessian elements, we can consider how the covariance between

a source and sink is affected by changes in the Hessian elements. The details of this method, termed

the derivative centrality metric, are provided in the Theory section. This type of thinking parallels

work from Rocks et al. but has not been applied directly to allostery in a protein.238,239

After applying a 12 Ådistance cut-off to the derivative edge metric, contacts at the HisF–HisH

interface are highlighted. A structural representation of the edges with large magnitude derivative

values from (4.5) is provided in Figure 4.4A. The highest density of large magnitude (green) edges

span the heterodimer interface, specifically at a region identified previously by Amaro et al. and

Rivalta et al. to be modulated by PRFAR-binding.187,234 These past results are interpreted as a

strengthening of the spring constants that span the interface in this region, leading to increased

frequency of the reported “breathing motion”. Results from the derivative centrality metric then

suggest that the strengthening of these spring constants impacts the covariance between source

and sink residues, thus indicating an indirect allosteric effect on the glutaminase active site due to

PRFAR binding.
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Figure 4.4: Hessian-based derivative centrality metric δnode of IGPS apo. A) A structural representa-
tion edges with large derivative metric values B) Derivative node metric values as a function of residues.
Residues that have connections across the HisF–HisH interface are colored by vertical orange lines.

The derivative node metric ((4.6)) on apo IGPS highlights the importance of a second position

at the interface between HisF and HisH. These values are plotted as a function of residue number

in Figure 4.4B with interfacial residues highlighted in orange. A cluster of three residues with

large magnitude δnode values are hP119 (δnode = −5.6 × 10−3 Å4), hM121 (δnode = −5.2 × 10−3

Å4) and fV125 (δnode = −4.3 × 10−3 Å4). These three residues sit at the interface between HisF

and HisH, on SideL of the region discussed above. The interface is closer together at this position

and the interfacial contacts in the Hessian matrix are observed to be stronger. The large magnitude

δnode values of these three residues suggest that the perturbation of their respective contacts will

have a large impact on the covariance between sources and sinks. Due to the limited focus on this

region of IGPS, we proffer this cluster of residues as potential targets for mutagenesis or inhibitory

binding studies.

The path-based and derivative centrality metrics highlight different residues. This can be ob-

served by noting that bridge residues, highlighted in orange, tend to be underrepresented in Fig-

ure 4.3B and highly represented in Figure 4.4B. The structural comparison also indicates that

Pnode highlights residues on SideR of the protein. On the other hand, the derivative centrality met-
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Table 4.1: Residue importance for glutaminase related allostery in IGPS. A comprehensive list of
published kinetic assay results for glutaminase activity of single point mutants of IGPS is included as well
as our node centrality metrics, Pnode and δnode, for each of the mutated residues.

Residue Mutation Ratio of Activated/Basal Pnode δnode
kcat/KM (10−3 Å4)

fR5Aa,b 870
fR5 fR5Ha,b 71 0.0068 -3.8049

fR5Ka,b 440

fV12 fV12Ac 3095 0.0131 -0.0201

fK19Ac 92
fK19 fK19Aa,b 45 0.0000 0.0225

fK19Ra,b 110

fV48 fV48Ac 139 0.1891 -0.3954

fD98 fD98Aa,d 2 0.1620 -1.8466
fD98Ac 54

fK99 fK99Aa,b 9100 0.0547 -1.4076
fK99Ra,b 700

fT104 fT104Aa,e 40 0.1973 0.1068

fQ123 fQ123Aa,d 2000 0.0000 -0.8889

hN12 hN12Aa,d 100 0.0004 -1.6660

hK181 hK181Aa,d 2000 0.5797 -4.1806

WTb,d 4500− 4900 − −

Mutant residues are reported using T. maritima IGPS notation. a denotes mutations performed in
S. cerevisiae IGPS. b is from Ref. 223, c is from Ref. 182, d is from Ref. 227 and e is from Ref.

234.

ric highlights only the interfacial residues, which span both sides of the protein. The correlation

between these metrics is plotted in Figure 4.6. As presented in that figure, the majority of residues

highlighted in the derivative metric are not observed in the direct paths between sources and sinks.

The few exceptions to this are interfacial residues such as hK181 that are both at the interface, as

well as in the direct paths. The frequency of such residues is relatively rare, thus we conclude that

these two analyses provide different and complementary information.
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4.4.5 Comparison to Experimental Results for IGPS

The results from our simulations and centrality metrics on the effective harmonic coarse-

grained Hessian compare favorably to kinetic experiments. To assess the mechanistic role of

specific residues, we will focus on comparing our results to kinetic assay experiments of wild-

type (WT) and mutant IGPS proteins. These assays compute the Michaelis-Menten enzymatic

efficiency metric, kcat/KM , in the activated (effector bound) and basal states of the protein. The

ratio of the enzymatic efficiency in these two states indicates the allosteric enhancement factor of

the enzyme. The WT enzyme exhibits an allosteric enhancement factor of 4,500 to 4,900182,223

while most mutant proteins have a smaller enhancement factor relative to WT, indicating reduced

allosteric activation of glutaminase activity by PRFAR (see Table 4.1).

The mutation of a residue found in an allosteric pathway is hypothesized to have an effect on

the allosteric activation of the enzyme. Of the residues studied by mutagenesis (Table 4.1), we find

that only residues hK181, fT104, fV48 and fD98 have a significant (above ∼ 6%) probability of

being in the direct paths between the PRFAR binding pocket and glutaminase active site. Of these,

single point mutations of fT104, fV48 and fD98 to alanines diminish allosteric enhancement factor

by over an order of magnitude compared to WT. This is consistent with the picture that altering

residues in the allosteric paths disrupts the ability of the enzyme to properly convey covariance

between pockets.

Interestingly, a single point alanine mutation to hK181 only causes a factor of two decrease in

allosteric enhancement factor when compared to WT. This result calls into question the importance

of the salt-bridge between hK181 and fD98 that has been previously implicated as of extreme

importance in IGPS allosteric paths. As was mentioned in the previous paths sections, we find

that the residues fP76 and hK181 are more sampled in the paths than fD98. Additionally, in the

IGPS apo Hessian, the fP76-hK181 and fD98-hK181 spring constants are 7.322 and 0.411 kcal

mol−1 Å−2, respectively. The interaction between fP76 and the aliphatic portion of hK181’s side

chain is stronger than the salt bridge observed between fD98-hK181. We hypothesized that these

trends in interactions would be well maintained in an hK181A mutant. To test this, we performed

100



a simulation of the mutant and found a comparable force constant for the fP76-hA181 edge (2.844

kcal mol−1 Å−2) and no force constant between fD98-hA181. Therefore, the alanine mutation

of hK181 constitutes a small perturbation to the direct allosteric paths, which explains the small

decrease in observed allosteric enhancement factor.

Residues that are at the HisF–HisH interface but not in allosteric paths can also have a large

effect on the covariance between sources and sinks as demonstrated by our derivative metric. In

Table 4.1, interfacial residues consist of fR5, fK99, fQ123 and hN12. The δnode values for these

residues are −3.8049 × 10−4 Å4, −1.4076 × 10−4 Å4, −0.8889 × 10−4 Å4 and −1.6660 × 10−4

Å4 respectively. Experimentally, mutations to these residues are all shown to decrease allosteric

enhancement relative to WT. This suggests that the mutations have changed the interaction network

around the mutated residue, which, in turn, caused a change to the covariance between PRFAR

binding pocket residues and glutaminase active site residues. Interestingly, mutation to fK99 can

either have a decrease (fK99R) or an increase (fK99A) in activity relative to WT. The derivative

metric does not indicate how the change in covariance affects allosteric enhancement just that it

will change. It will thus be of interest to study fK99 further to investigate how these two mutants

affect the covariance.

If the path and derivative centrality metrics provide a complete picture of allostery in IGPS,

then residues not in paths and not at the HisF–HisH interface will have little effect on the experi-

mentally measured allosteric enhancement factor. Residue fV12 is observed in only 1% of paths

and has a δnode of only −0.0201 × 10−4 Å4. A valine to alanine mutation at this position has

little affect on the allosteric enhancement factor relatively to WT, suggesting that the Pnode and

δnode results do provide a complete picture for this residue. In contrast, fK19 has Pnode = 0 and

δnode = 0.0225×10−4 Å4 yet all three mutations listed in Table 4.1 have a large effect on allosteric

enhancement factor. Amaro et al. performed aaMD simulations to model the unbinding of the

PRFAR ligand from which fK19 was observed to play an important role in the recognition and

binding of the effector molecule.234 Thus, a mutation to the fK19 residue is likely to decrease the
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allosteric enhancement factor by simply reducing the binding affinity of PRFAR and this behavior

might not perturb the allostery between binding pockets.

4.5 Conclusions

In this work, we provided evidence that the effective coarse-grained Hessian is the appropriate

graph Laplacian to consider in the context of allostery. The Hessian only contains finite values

for short-ranged physical interactions and can be rigorously tied to the covariance for harmonic

systems. We use a previously developed coarse-graining protocol, hENM, to compute the best

effective harmonic Hessian that captures the residue-level covariance of all-atom molecular dy-

namics systems.

With the Hessian as the graph Laplacian, we develop two centrality metrics to highlight impor-

tant residues that contribute to allostery. Both of these metrics are applied to the IGPS protein to

investigate interactions between the PRFAR binding pocket and the glutaminase active site. The

first of these metrics is based on direct path sampling and recapitulates the known importance of

sideR in the allostery of IGPS. Paths in the Hessian-based adjacency matrix are found to be signif-

icantly longer and to be less diluted than paths found on two previously used adjacency matrices.

The second centrality metric we develop is based on the derivative of the covariance as a func-

tion of a given Hessian element. This metric is motivated by mutagenesis experiments in which

one perturbs the interactions around a mutation site as compared to wild type. This metric identi-

fies residues at the interface between HisF and HisH as being important for the allosteric network

between the PRFAR binding pocket and the glutaminase active site. The correlation between the

derivative and path centrality metrics is found to be minimal, suggesting that these two metrics

provide different yet important information about the covariance between the two pockets.

Results from the path and derivative centrality metrics on the effective Hessian corroborate and

functionally explain previous mutagenesis experiments. Interestingly, the combination of experi-

mental and simulation results suggest that fP76-hK181 is a more important HisF–HisH interfacial

connection for allosteric paths than the previously implicated fD98-hK181. Additionally, we pro-
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pose a novel sight for targeted mutational or inhibitory binding studies based on the results obtained

from our two centrality metrics.
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4.7 Supporting Information

4.7.1 Computational Methods

Heterogeneous elastic network models

Here we will closely follow the procedure known as heterogenous ENM (hENM) to generate

an effective harmonic Hessian that best reproduces the aaMD measured covariance.209 Our adapted

hENM algorithm is as follows:

1. Initiate a trial N ×N force constant matrix, k.

2. Create the 3N×3N Hessian matrix, H using the tensor matrix elements Hij = −kij ·r̂ij⊗r̂ij

for i 6= j and Hii =
∑

j 6=i Hij

3. Get the predicted 3N×3N covariance, C, by performing the Moore-Penrose psuedo inverse

of H , C = TH+.

4. Update the force constants based on

kn+1
ij = knij − α

(

1

σn
ij

−
1

σtarget
ij

)

(4.7)
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where σn
ij = r̂ij

[

Cn
ii +Cn

jj −Cn
ij −Cn

ji

]

r̂ij is the variance of node i and j projected along

the separation vector and α is a minimization step size parameter (we found α = 1 × 10−2

to yield stable convergence).

5. Repeat steps 2-4 until a converged Hessian matrix has been produced.

4.7.2 All-Atom MD Simulations

All-atom, explicit solvent MD simulations are performed for the apo substrate state of T. mar-

itima IGPS (PDB: 1GPW).222 Specifically, chains C and D are used from this crystal structure.

Crystallographic waters are maintained. The active site mutation, fN11D, present in this crystal

structure was converted back to wild type.

The simulations are performed using the GPU-enabled AMBER18 software142 and the ff14SB15

parameters for proteins atoms. Using tleap, the starting structure is solvated in a TIP3P water box

with at least a 12 Å buffer between the protein and periodic images. Sodium and chloride ions

are added to neutralize charge and maintain a 0.10 M ionic concentration. Direct nonbonding in-

teractions are calculated up to a 12 Å distance cutoff. The SHAKE algorithm is used to constrain

covalent bonds that include hydrogen77. The particle-mesh Ewald method78 is used to account

for long-ranged electrostatic interactions. Before simulation began, a two stage minimization was

performed: (1) 10,000 steps of conjugate gradient optimization were performed to minimize water

positioning (substrate atoms restrained with a 75 kcal mol−1 Å−2 force constant) and (2) an addi-

tional 10,000 minimization steps with no restraints applied. The system was slowly heated from 25

K to 303 K over 1 ns. Additionally, 4 ns of NVT simulation was performed to equilibrate the cubic

box volume. Finally, the simulations were run in the NTP ensemble, using the Langevin dynamics

thermostat and Monte Carlo barostat to maintain the systems at 303 K and 1 bar. A 2 fs integration

time step is used, with energies and positions written every 5 ps. An initial 500 ns simulation was

run, from which the structure at 250 ns was used to initialize three more independent trajectories.

These new trajectories were given different random number seeds and were run for an additional

250 ns. We have a total of 1 µs of trajectory to analyze the apo state of IGPS.
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4.7.3 Theory

Linear Response Solution to Allosteric Pathways

Path Sampling

The emphasis of the ensemble of paths makes sampling the paths an apt way of studying them.

For this purpose, we present a Markov chain simulation to sample the paths. This work is in

contrast to previous studies, namely WISP,113 that focus on finding the exact shortest paths up to

some number. Instead, we statistically sample a distribution of paths. This algorithm is shown to

be more efficient than using WISP to accomplish the same result.

The set of objects that are studied using the Markov chain simulation is the set of paths from a

predefined source and sink nodes. Each path is then assigned an effective length. For the purpose

of this work we consider some adjacency matrix A and functionalize it into a cost matrix χ in an

analogous way as the covariance is related to the Pearson correlation. Namely,

χij = − log

(

|Aij|
√

AiiAjj

)

(4.8)

In this study, we consider the paths of three adjacency matrices: the covariance, rMI , and the

Hessian. The length ℓ of a path is defined as a sum over values in the cost matrix corresponding to

the edges in the path. The distribution of the paths that are studied is of the form

Ppath ∝ exp [−ℓ/τ ] , (4.9)

where the free parameter τ is an effective temperature of the simulation. The Markov chain sim-

ulation we present is not limited to these definitions of path lengths and path probabilities; more

complex functions of the weights and the path distributions can readily be used.

A trial move in the Monte Carlo simulation consists of randomly choosing a node in the graph

that is neither the source nor sink node from a uniform distribution, and add/remove the node

to/from the path if it is currently/not in the present path. Any trial move that destroys the path, as

will happen when an edge with a zero in the adjacency matrix is used, the move is rejected. The
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following values associated with the probability of adding the selected node n between each pair

of connected nodes i and j in the path not containing n is then calculated

pij = exp

[

−
χin + χnj − χij

τ

]

. (4.10)

If the node is not in the current path, the trial move is a path with node n randomly inserted between

two connected nodes with the probability proportional to pij . Detailed balance is achieved by using

a Metropolis algorithm whereby the trial path is accepted with a probability PMet of

PMet = min



1,





∑

〈ij〉

pij





±1

 , (4.11)

where the upper sign is for when the trial move removes a node from the path and the lower sign

is for node addition.

The difference between using the Hessian as the adjacency matrix and the equation we derived

relating the Hessian to the covariance in terms of paths can be mocked in the sampling on a few

levels. As a first pass, the Hessian can be treated as a 3N × 3N object where an edge in a graph

is described by a 3 × 3 submatrix. The nature of the Hamiltonian we are using to find spring

constants of the system produces a 3 × 3 submatrix describing the interaction of node i and j of

the form kij r̂ij r̂
⊺

ij . The weight w of a path can then be considered to be the product of these spring

constants, treated in the same fashion as above, as

w =
∏

〈i,j〉

kij
√

kiikjj
r̂ij r̂

⊺

ij

= r̂i1i2 r̂
⊺

iM−1iM

∏

〈i,j,k〉

cos θijk
∏

〈i,j〉

kij
√

kiikjj
, (4.12)

where 〈i, j, k〉 is the set of all three consecutive nodes in the path. The two products in this equation

can be interpreted as the scalar weight of the path and the tensor part is treated separately. Taking

the length of the path to be equal to ℓ = − logw, these paths can similarly sampled with the

106



following change to the pij defined above,

pij =

(

cos θi−1,i,n cos θi,n,j cos θn,j,j+1

cos θi−1,i,j cos θi,j,j−1

)1/τ

exp

[

−
χin + χnj − χij

τ

]

. (4.13)

Notice that this definition of path length is not trivially studied by exhaustive search algorithms

such as that proposed by WISP, but it readily studied using this Markov chain simulation frame-

work.

A simulation of the paths consists of N trial moves between writing the path to file, where N

is the number of nodes in the graph, and then 106 paths are generated to sample the ensemble.

The choice of τ is dependent on the desired ensemble of paths to sample. For the present study,

τ is chosen such that the first thousand shortest paths are well sampled so that our results can be

compared to that of WISP.
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Figure 4.5: Covariance matrices computed through the hENM procedure (bottom right) and raw simulation
(top left) from 1 µs all-atom molecular dynamics of apo IGPS.
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Figure 4.6: Correlation of Hessian derivative metric and Pnode.
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Chapter 5

Conclusions

The previous three chapters have focused on the study of allostery in the flavivirus NS3h (Chap-

ters 2 and 3) and bacterial IGPS (Chapter 4) proteins. Allostery is the biochemically-observed

phenomenon where the presence of a ligand, termed the effector molecule, enhances or inhibits

or regulates, in some fashion, the activity of a protein’s functions. From a molecular or atomic

perspective, this phenomenon can generally be described by direct interactions between the effec-

tor molecule and the protein at the allosteric active site that lead to some structural or dynamic

perturbations at the protein’s orthosteric site. The mechanisms of allostery is system-specific and

poorly understood due to the complexity of the phenomenon.

The study of allostery has been broken down into three scientific questions that focus on various

aspects of the phenomenon:

1. What is the allosteric effect? How does the effector molecule perturb the orthosteric site?

2. What are the interactions between the enzyme and effector that lead to this allosteric effect?

3. How are the orthosteric and allosteric sites coupled?

Specific aims of study to answer these questions can utilize molecular dynamics (MD) simula-

tions to glean novel, atomic-resolution insights about allosteric proteins, specifically focusing on

the interactions between the protein and its ligands. This dissertation is a presentation of my re-

search, which has begun to answer these three questions for the flaviviral NS3h and bacterial IGPS

proteins. Both of these enzymes have wild-type functions that are regulated using allosteric mech-

anisms, as observed in experimental studies, yet these mechanisms are incompletely understood

at a fundamental, atomistic resolution. Therefore, the modeling of these protein systems that I

report here has forwarded our understanding of the allosteric mechanisms at play utilized by these

proteins.
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Specifically, in Chapter 2, comparative analysis of a set of all-atom MD simulations of the

dengue NS3h was used to highlight allosteric effects for both the NTP hydrolysis active site and

the RNA-binding cleft. This body of simulations was used to identify that RNA decreases the

number of waters, slows their dynamics, and affects their positioning within the hydrolysis active

site as well as affects the hydrolysis reaction’s energetics. Similarly, the hydrolysis active site’s

substrates (nucleoside triphosphates) are shown to perturb the protein-RNA interactions within the

RNA-binding cleft. This work directly highlights aspects of the allosteric effects (question 1) that

are observed in the dengue NS3h system and are hypothesized to be in play for other flavivirus

NS3h as well.

In Chapter 3, the structural states of a large region of the RNA-binding cleft of Zika NS3h

are studied to identify the direct protein-RNA interactions that function as origins of the observed

RNA-induced allosteric effects on the NTP hydrolysis active site. Results from the presented set

of unbiased and biased MD simulations highlight how RNA perturbs the structural free energy

landscape of the RNA-binding loop (known as Lβ3β4). Residues of this local structural region are

seen to have functional importance to the RNA-induced structural changes in Lβ3β4. Additionally,

the free energy surfaces of the various RNA-bound states allow us to hypothesize a mechanism of

NS3h “recognizing” the binding of an RNA oligomer and subsequently undergoing large struc-

tural changes to enable further binding. With the aid of structural and sequential alignments, I

hypothesize that these observations are consistent for all of the flavivirus NS3h’s.

Chapter 4 moves away from the study of flavivirus’ NS3h and instead presents a novel method-

ology to study the short-range, residue-residue interactions that connect the orthosteric and al-

losteric active sites within a protein, using MD simulations to thoroughly sample residue-residue

interactions. The past literature has attempted to study these interaction networks using, e.g., the

Pearson correlation or linear mutual information matrices to quantify the strength of direct residue-

residue interactions, which results in nonphysical descriptions of the protein network. Instead, the

effective harmonic Hessian matrix and respective centrality metrics, presented in Chapter 4, quan-

tify a physically-relevant representation of the protein network that highlights residues of impor-
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tance to allosteric coupling between two active sites. The bacterial IGPS protein complex is used

as a benchmark system to test the veracity of this new methodology, to considerable success.

5.1 Continued Work

Further study of both the flavivirus NS3h and bacterial IGPS systems are needed to further

elucidate the atomic-resolution mechanisms behind allostery. While the studies presented in this

dissertation have provided novel insights into the respective systems’ allostery, much work can be

done to verify these results as well as answer the questions presented above in more detail. Ideas

of continued research on both the flavivirus NS3h and effective harmonic Hessian projects are

presented here.

5.1.1 Allostery of Flavivirus NS3h

The Flaviviridae flavivirus NS3h system is an exceptional benchmark system for the study of

the mechanisms of allosteric regulation. The coupling between the NTP hydrolysis active site and

the RNA-binding cleft are pivotal to the replication of the viral genome. Insights gained from

continued research on these aspects of NS3h may provide the key to treatment of the respective

flavivirus diseases.

As a first step to studying the couplings between the NTPase and helicase active sites, Du Pont

et al. has utilized MD simulations as well as mutagenesis and virological studies of NS3h Motif

V residues, which are seen in Chapter 1 to have strong correlated fluctuations with residues in

both active sites.7,138 Concurrent application of computational and experimental studies of NS3h

highlighted specific residue mutations that resulted in an attenuated virus as well as the atomic-

resolution explanation of this phenotype. Additionally, this study provides a strong research pro-

tocol for similar studies attempting to directly correlation experimental results with computational

simulations (and vice versa) for the flavivirus NS3h system.

For example, a similar methodology to that used in Du Pont et al.138 could be envisioned to

examine the importance of α2 (Motif Ia) and Lβ3β4 residues in relation to the RNA-induced
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allosteric effect on the NTPase active site as well as RNA-binding. Perturbations to the certain

residues in this region are hypothesized to affect the Lβ3β4 conformational states, which is hy-

pothesized to be observable in NTPase activity and RNA-binding biochemical assays. The exper-

imentally performed mutations could be modeled in MD simulations to provide atomic resolution

understanding of the in situ results.

Additionally, the α2 and Lβ3β4 secondary structures represent the region of NS3h with the

shortest distance separating the RNA-binding cleft and the NTPase active site. Therefore, I hypoth-

esize that it is through this region’s network of short-ranged, residue-residue interactions that RNA

perturbs the hydrolysis active site most. This hypothesis can be tested by the application of the ef-

fective harmonic Hessian analysis to study how the two active sites in the protein are coupled. The

application of this new methodology to the NS3h system will provide a novel, physically-relevant

description of the protein that can further explain and validate biochemical and virological results.

Additionally, the application of this description of the protein network can guide further com-

putational and experimental studies in structural regions of the NS3h system that have yet to be

identified by either computational or experimental studies to date.

These proposed research aims would continue to answer the three scientific questions associ-

ated with allostery.

5.1.2 NS3h as a Molecular Machine

In addition to the virological importance of the flavivirus NS3h, the protein is an exemplar

molecular machine that utilizes the hydrolysis of nucleoside triphosphates (NTPs) to power the

helicase functions. In this way, the conversion of chemical energy into mechanical work by NS3h

is a fascinating phenomenon that is incompletely understood. Research on the conversion, transfer,

and utilization of free energy within a protein matrix will provide novel understanding of the

biophysics of energy transduction within molecular machines. These insights may begin to allow

scientists to design new or utilize already-available molecular machines to perform novel functions

at the molecular level.
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In this regard, continued modeling of the NS3h NTP hydrolysis enzymatic cycle (see Fig-

ure 2.1) will provide new details on energy release from the hydrolysis cycle and, subsequently,

how this energy is transduced to the RNA-binding cleft. Chapter 2 represents a foundational study

of the equilibrium substrate states of this cycle, where we are hypothesizing that each substrate

state is long-lived relative to the life time of the transitions between substrate states. With this

body of simulations, we have sampled, to some degree, the ensemble of NTPase active site and

RNA-binding cleft conformational states. There is further work to be done on the quantification

of the various substrate states to identify the biophysically relevant structures of both the NTPase

active site and RNA-binding cleft in regards to the energy conversion and transduction mecha-

nisms. For example, the definition of the active and inactive conformations of the NTPase active

site, as quantified by the lytic water analysis in Chapter 2, does not account for conformations of

the protein residues in this region. Applying a conformational study, similar to the PCA analysis

reported in Chapter 3, could independently quantify the structural states of the hydrolysis active

site, allowing for us to correlate lytic water states with structural states. A second generation of

quantum mechanical calculations or quantum mechanics molecular dynamics simulations could be

performed to study the hydrolysis reaction in the identified structural states.

A novel research endeavor in this specific aim is to model the dynamic events of the hydrolysis

active site, specifically the binding of NTP and unbinding of the hydrolysis products (nucleoside

diphosphate and inorganic phosphate). These events are equally as likely to be sources of free

energy release as the hydrolysis reaction and, therefore, deserve to be modeled so as to calculate

the free energy surfaces of the respective events. Utilization of novel or cutting-edge simulation

protocols will likely be necessary to obtain adequate sampling of the events due to the complexity

of the collective variable space as well as conformational states of the NS3h system.

Finally, the identification of paths through which energy is transduced from the NTPase ac-

tive site to the RNA-binding cleft is a major goal for this specific aim. The effective harmonic

Hessian methodology, developed in Chapter 4, might provide physically-relevant insight towards
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this research goal. Yet, further development and verification of the methodology is needed to have

confidence in the interpretation of the method’s results in regards to energy transduction.

5.1.3 Further Development of the Effective Harmonic Hessian Method

The effective harmonic Hessian methodology is a physically-motivated metric to describe the

short-ranged, residue-residue interactions through which allosteric signals are hypothesized to

propagate. The methodology can be broken down into two steps: (1) quantification of the Hes-

sian matrix that describes the interaction network and (2) centrality and path analyses to identify

residues that are important in the allosteric mechanisms of the protein. There are improvements to

be had in both steps of the current methodology.

Generally, the Hessian matrix is the pseudo-inverse of the residue-residue covariance matrix

and, so, assumes that a residue-level coarse-graining of the protein system is acceptable when

describing the direct, short-ranged interactions of interest. Additionally, the methodology has not

implemented a state-space quantification. I hypothesize that conformational states of the protein

system, as defined by a fine-grained description of the protein, will have quantifiable differences

in the Hessian matrix, which may be important in regards to the functions of the protein (see the

discussion of the NS3h hydrolysis active site above). Finally, the algorithm used to converge the

Hessian matrix has not been optimized for the desired application nor has error been quantified

for this calculation. The current convergence method does not efficiently reach a minimum when

evaluating the model versus the training data. All of these aspects of the Hessian matrix calculation

are potential sources for bias and error to enter into the results produced from this methodology.

Research endeavors should be undertaken by users of this method so as to minimize the effect that

these biases might have on their results.

Additionally, the development of physically-relevant centrality metrics is a continued research

endeavor in the McCullagh group. The Pnode metric currently assumes that only the direct paths

connecting the two active sites are important to the allosteric mechanisms within a protein system.

This metric assumes that paths that do not connect the two active sites but rather connect the active
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sites to other regions of the protein network (termed “broken paths”) are unimportant. There is

some doubt to the validity of this assumption and so metrics are being developed to account for

the ensemble of broken paths within the protein network. Additionally, there is ambiguity in the

interpretation of the derivative metric. What does the sign of the δnode value signify? How do the

magnitudes of this metric correlate with experimental observations? Can this metric be verified

by an experimental observable? These questions highlight research endeavors underway in the

McCullagh group in regards to the development of centrality metrics that have direct, physical

interpretations.

5.2 A Broad Perspective

The research presented in this dissertation represents foundational work for the specific aims

described above. Beyond those proposed research endeavors, I believe my work has the potential to

lead to broader impacts in the fields of virology and biophysics. Utilizing all of the computational

techniques described in this dissertation, one can begin to provide the degree of understanding of

a protein system, at an atomic resolution, to confidently propose residues to experimentally per-

turb and predict the resulting phenotype. Currently, the strong connection between the McCullagh

and Geiss groups allows for direct testing of hypotheses developed from the computational study

of the flaviviral NS3h. Continued development of the collaborative workflow between these two

groups has the potential to produce an efficient research pipeline that can intake MD simulations

of NS3h, develop experimentally-testable hypotheses as to perturbing the wild-type protein, and

subsequently test these hypotheses using biochemical and virological methods. The development

of such a pipeline is nontrivial due to the huge differences in time- and length-scales that compu-

tational and experimental techniques report on. Yet, results reported in this dissertation as well as

in Du Pont et al.138 indicate that the development of such a pipeline is underway.

Prediction of biochemical or virological phenotypes from MD simulations is exceptionally ex-

citing when considering the development of antiviral therapeutics and vaccines. Intelligent design

of these antiviral treatments is currently infeasible due to the hugely complex interactions at play
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during the life cycle of viruses. The current strategies to identify small-molecule inhibitors or

vaccines to treat virus infections use high-throughput methods that are cost- and time-inefficient

as well as are naive of the underlying, atomic-resolution interactions being perturbed. With the

research pipeline discussed above, we can begin to identify specific residues in the protein that we

hypothesize will attenuate the wild-type functioning of the protein when perturbed by mutation or

small-molecule drug binding. This will greatly speed up the identification and development pro-

cess of antiviral treatments. Using the flavivirus NS3h as a benchmark system, similar research

pipelines can be envisioned for a broad range of protein systems. In this light, my research has

provided the initial, detailed insights into the NS3h structure and function that sparked the devel-

opment of this research pipeline.
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