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ABSTRACT

OPTIMAL DICTIONARY LEARNING WITH APPLICATION TO UNDERWATER TARGET

DETECTION FROM SYNTHETIC APERTURE SONAR IMAGERY

K-SVD is a relatively new method used to create a dictionary matrix that best fits a set

of training data vectors formed with the intent of using it for sparse representation of a data

vector. K-SVD is flexible in that it can be used in conjunction with any preferred pursuit method

of sparse coding including the orthogonal matching pursuit (OMP) method considered in this

thesis. Using adaptive filter theory, a new fast OMP method has been proposed to reduce the

computational time of the sparse pursuit phase of K-SVD as well as during on-line implementation

without sacrificing the accuracy of the sparse pursuit method. Due to the matrix inversion required

in the standard OMP, the amount of time required to sparsely represent a signal grows quickly as

the sparsity restriction is relaxed. The speed up in the proposed method was accomplished by

replacing this computationally demanding matrix inversion with a series of recursive “time-order”

update equations by using orthogonal projection updating used in adaptive filter theory. The

geometric perspective of this new learning is also provided.

Additionally, a recursive method for faster dictionary learning is also discussed which can be

used instead of the singular value decomposition (SVD) process in the K-SVD method. A significant

bottleneck in K-SVD is the computation of the SVD of the reduced error matrix during the update

of each dictionary atom. The SVD operation is replaced with an efficient recursive update which

will allow limited in-situ learning to update dictionaries as the system is exposed to new signals.

Further, structured data formatting has allowed a multi-channel extension of K-SVD to merge

multiple data sources into a single dictionary capable of creating a single sparse vector representing

a variety of multi-channel data.
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Another contribution of this work is the application of the developed methods to an underwater

target detection problem using coregistered dual-channel (namely broadband and high-frequency)

side-scan sonar imagery data. Here, K-SVD is used to create a more optimal dictionary in the sense

of reconstructing target and non-target image snippets using their respective dictionaries. The ratio

of the reconstruction errors is used as a likelihood ratio for target detection. The proposed meth-

ods were then applied and benchmarked against other detection methods for detecting mine-like

objects from two dual-channel sonar datasets. Comparison of the results in terms of receiver oper-

ating characteristic (ROC) curve indicates that the dual-channel K-SVD based detector provides a

detection rate of PD = 99% and false alarms rate of PFA = 1% on the first dataset, and PD = 95%

and PFA = 5% on the second dataset at the knee point of the ROC. The single-channel K-SVD

based detector on the other hand, provides PD = 96% and PFA = 4% on the first dataset, and

PD = 96% and PFA = 4% on the second dataset at the knee point of the ROC. The degradation

in performance for the second dataset is attributed to the fact that the system was trained on a

limited number of samples from the first dataset. The coherence-based detector provides PD = 87%

and PFA = 13% on the first dataset and PD = 86% and PFA = 14% on the second dataset. These

results show excellent performance of the proposed dictionary learning and sparse coding methods

for underwater target detection using both dual-channel sonar imagery datasets.
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CHAPTER 1

Introduction

1.1. Problem Statement and Motivation

Underwater mine detection has attracted considerable attention in recent years attributed to

the inherent risks involved with the mines in question. This problem is complicated as the mines

are subjected to spatially random bottom clutter both of natural (e.g., coral, rocks, etc.) and

man-made sources (e.g., scrap metal, oil barrels, lobster traps, etc.). Other than the widely varying

environmental state, the mines can be proud on the surface of the ocean floor or even partially or

fully buried. Further, mine shape can vary, and they can even be of varied orientation and size as

a result of operational conditions.

These underwater mines can make global waterways unsafe for both military and commercial

vessels. Impacted commercial industries include telecommunication, shipping, offshore renewable

energy generation, offshore oil exploration and extraction, dredging, historical archeology, and even

recreational diving. Mines threaten oceanic development and travel as well as pose a danger to

humans and the environment. As a result, they must be detected and located quickly and efficiently.

Side-scan sonar has become increasingly common in the field of underwater mine detection

allowing large scale searches. In the past, side-scan sonar was operated by towing a submersible

sonar vehicle (tow-fish) which emitted narrow fans of acoustic energy perpendicular to the direction

of motion [1]. The acoustic return (echo) is then received in complex-value and stored for post-

processing where it can be used for target detection and classification. More recently, autonomous

underwater vehicles (AUV) such as the REMUS600 have been equipped with the Small Synthetic

Aperture Minehunter (SSAM) platform [2] to automate the sonar image acquisition process. Added

complications arise in locating the targets in these sonar generated images as the AUV can be

deployed in many different ocean environments, such as sandy, rocky, or one with heavy vegetation.
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Due to the wide area this specific AUV can cover (0.28 square nautical miles per hour), any

applicable target detection algorithm must be robust with regard to environmental variations.

1.2. Literature Review on Single and Multi-Channel Detection

Substantial effort has been devoted to developing both single and multi-channel or multi-sonar

(high frequency and broadband) detection methods [1] - [13]. Note that high frequency (HF) sonar

yields higher resolution images with better target definition while broadband (BB) sonar allows

higher clutter suppression capabilities. An in-depth review of many different single-channel side-

scan sonar detection methods can be found in [3]. One of the most straightforward single-channel

methods involves employing pure image processing methods and high quality sonar images [1]. It is

well-known that targets are characterized by a distinct highlight followed by a shadow. Highlights

are first detected using the highest percentiles of the pixel intensity histogram within a local region,

and shadows are detected based off the lowest percentiles. Highlight/shadow pairs that fit a set of

geometrical relationships are determined as targets. This allows the detector to pickup mines of

varying shape, orientation, and size which will change as a function of the elevation and direction

of the AUV. For high quality images, this method has proved to be successful; however, heavily

cluttered images will lead to a high false alarm rate and targets may be missed as this detector is

easily deceived. A similar tactic is used in [4] though instead of using geometrical relationships, a

model-based method is used in which templates of known shadows of mines are compared to an

extracted shadow. Both of the previous methods rely on high resolution sonar images and well-

defined target highlight-shadow structures. Much of the difficulty in this detection problem lies in

the fact that partially and fully buried mines will not produce a prominent highlight/shadow pair

while pronounced seafloor clutter (e.g. rocks and coral) may have a distinct highlight/shadow pair.

If this is the case, both of these methods will fail to detect the target while producing high incident

of false alarm.
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Neural networks have also been applied to single-channel sonar datasets. In [5], a matched

filter was employed based on a template of a target. The result of this filter was fed into a k-

nearest neighbor classifier and an additional optimal discriminatory filter to determine if a region

of interest (ROI) contains a target. A neural network was also employed in [6]; however, each

ROI is first decomposed using a wavelet transform before inputting into the neural network. This

wavelet transform allowed a unique multi-resolution analysis of each ROI before the neural network

determines if the ROI contains a target. Both of these methods have proven to be very effective

at distinguishing targets from non-targets due to their feature extraction processes; however, they

only employ a single sonar channel. As a result, when a mine is partially or fully buried and does

not have a distinct a highlight/shadow characteristic, the ROI will generally be disregarded after

the feature extraction process due to the lack of mine-like features.

More recently, in [7] Canonical Correlation Analysis (CCA) is used to discriminate between

mine-like objects and non-mine-like objects from dual-channel sonar imagery by exploiting the

differences between coherence patterns of sonar pings that contained mine-like objects compared

to those that did not contain mine-like objects. Results in [8] - [11] on the buried object scanning

sonar (BOSS) system dataset have also shown high discrimination between targets and non-targets

using single-channel sonar. The work in [7] is furthered in [12] with a natural extension through a

generalized eigenvalue problem of a covariance matrix of N channels and the corresponding block-

diagonal matrix through what is named Multi-Channel Coherence Analysis (MCA) to parallel its

single sonar predecessor (CCA). Using the new multi-channel coordinate system, the expression for

the log-likelihood ratio used in the Gauss-Gauss detector are reformulated. Substantial detection

rate gains are noticed when using two-sonar (HF and one BB) and three-sonar (HF and two BB)

detection systems. The point of diminishing return occurred when increasing from three to four-

sonar (HF and three BB) images indicating that the fourth sonar image does not add any new

information.
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In [13], the detection problem is cast as a test of independence among multiple random vectors

and is solved using the Generalized Likelihood Ratio Test (GLRT). The GLRT tests whether or not

the covariance matrix composed of N channels is block-diagonal through the use of a generalized

Hadamard ratio. Assuming the null hypothesis is true (no target), the covariance matrix is block

diagonal and each of the N channels contain only noise (or background). If the alternative is true,

the covariance matrix won’t be block diagonal and the N channels contain noise plus some unknown

signal (e.g. mine-like object) leading to higher levels of correlation among all N channels. Note

that due to the generalization of this algorithm it has a wide range of applications in addition to

underwater mine detection. This multi-channel coherence framework is used later in this thesis as

the baseline results of a two-channel detector.

1.3. Research Objectives

As mentioned in the previous section, a wide range of detectors have been developed for side-

scan sonar imagery with each method having its own benefits and shortcomings. The goal of

this particular work is to develop and present a new detection method based upon sparse coding

and dictionary learning. The idea is to sparsely represent each region of interest (ROI) within a

sonar image on the basis of some dedicated dictionary to determine if it contains a target. The

detection hypothesis is that a dictionary formed exclusively from data samples of one class (target

and non-target) will poorly represent data samples from the opposite class. This hypothesis will

be tested as a target detector by sparsely representing an ROI on the basis of two exclusive class

dictionaries and measuring the dictionaries ability to represent the original ROI. As two sonar

channels are available, the effects of expanding the dictionaries to include both channels will also

be investigated. As the sonar operates in a wide variety of environments, the detector must be

robust to the typical changes in operational and environmental conditions. The sparse detector

should operate with either a single sonar or allow multiple (HF and BB) sonar channels to improve

target/non-target discrimination capabilities if available.
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Results will be presented for both single-channel (HF) dictionaries and a dual-channel (HF and

BB) dictionaries for two datasets provided by the Naval Surface Warfare Center, Panama City

(NSWC-PC). As target and non-target samples are required to train the dictionaries, they will be

hand selected from only the first dataset. Detection results will be in the form of ROC curves

for both single-channel and dual-channel detectors as well as the multi-channel frequency-based

coherence detector in [13].

1.4. Organization of the Thesis

This thesis is organized as follows: Chapter 2 gives an in-depth review of the K-SVD method

which is one of the most popular dictionary creation methods for sparse coding. A common sparse

pursuit method, namely orthogonal matching pursuit (OMP) is first reviewed and its properties are

described. This is the first step in the K-SVD algorithm. Then, the dictionary update step of the

K-SVD algorithm is shown in detail. For both phases of K-SVD, the limiting factors are discussed.

Chapter 3 further expands on OMP by developing a new fast OMP method based upon orthogonal

projection updating used in adaptive filter theory. The dictionary update phase of K-SVD is also

replaced with a recursive set of coupled equations. Both of these methods are then applied in

Chapter 4 to two dual-channel sonar imagery datasets as a way to validate the effectiveness of the

algorithms and the detection hypothesis. Detection results and the ROC curves are presented for

the single-channel K-SVD detector, dual-channel K-SVD detector and the dual-channel coherence

detector in [13]. Finally, Chapter 5 concludes the thesis with a discussion and goals for future work.
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CHAPTER 2

Sparse Coding and Dictionary Creation

2.1. Introduction

Sparse coding has recently become popular due to widespread applications in signal and image

processing. Sparse coding involves finding a linear combination of a small set of vectors from

a typically large and redundant (overcomplete) set of dictionary vectors that best represent a

particular data set. Basis pursuit (BP) [14], matching pursuit (MP) [15], orthogonal matching

pursuit (OMP) [16] are among the more commonly used methods for finding both the set of vectors

and the coefficients associated with each vector. Each method requires a suitable dictionary of atoms

to guarantee the output of an accurate sparse signal representation, and each method features a

tradeoff between accuracy and speed. Naturally, selection of the dictionary matrix is critical to the

accuracy of the sparse signal.

Many methods have been proposed to create such dictionaries based on the multi-variate distri-

bution of an input training data set. For example, Method of Optimal Dictionary (MOD) [17] finds

the optimum dictionary by solving a minimum mean squared error (MMSE) problem. A maximum

a posteriori (MAP) method [18] has also been proposed which alters MOD by looking at the poste-

riori distribution rather than the likelihood function as in MOD. The K-SVD algorithm [19], on the

other hand, is considered as a generalization of the K-means algorithm [20] where dictionary atoms

are selected such that the reconstruction error is minimized. In general, K-SVD involves a sparse

coding phase followed by a dictionary update phase which are repeated to monotonically reduce

the reconstruction error. Dictionaries created using K-SVD are superior in both compression and

signal recovery due to the Gauss-Seidel nature of the learning. Details of the K-SVD method are

given in this chapter to provide a foundation for the developed methods in Chapter 3.
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This chapter is organized as follows. Section 2.2. gives an in-depth review of the K-SVD and

its two phases, namely the sparse pursuit phase and the dictionary update phase . Section 2.3 gives

concluding remarks on the standard K-SVD method and its computational problems.

2.2. Review of K-SVD Method

The main purpose of K-SVD is to create an optimal dictionary that can be used to reduce

the dimension of a signal vector by representing it as a sparse linear combination of relatively few

atoms. K-SVD aims to solve a constrained minimization problem to reduce the reconstruction

error in a set of training vectors. Let Y ∈ RN×M be a matrix consisting of the input training data

vectors y
k

for k ∈ [1,M ] as its columns, D ∈ RN×K be the dictionary matrix to be found, and

X ∈ RK×M be the sparse representation of Y in terms of the dictionary atoms. Note it is desired

that the number of non-zero elements of each xk is substantially less than N as the dimension must

be reduced in this process. The constrained optimization problem is given by,

min
D,X
‖Y −DX‖2F s.t. ‖xk‖0 ≤ τ ∀ k (2.1)

where ‖·‖2F is the Frobenius norm of a matrix, and ‖·‖0 is the l0 norm which simply counts the

non-zero elements of a vector limited by some fixed value τ .

During the training, the K-SVD algorithm is composed of two-phases: (i) a sparse representation

phase where for each y
k

the corresponding xk is computed based on a given D using some pursuit

method, e.g. OMP [16], (ii) and a dictionary update phase where D is updated based on minimizing

the reconstruction error using SVD. These two phases are repeated until convergence through

monotonic MSE reduction [19] which can be seen in detail in the following subsections.

2.2.1. Sparse Coding Phase

In the sparse coding phase, a pursuit algorithm is applied to data matrix Y on the basis of a

dictionary matrix D to create a sparse feature matrix X. The goal is to minimize the cost function
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in (2.1) or alternatively
∑M

k=1

∥∥∥y
k
−Dxk

∥∥∥2 by finding sparse solution vectors, xk’s, given dictionary

matrix D. Any pursuit algorithm [14] - [16], can be employed to represent each y
k

sparsely based

on the dictionary D to create the corresponding xk; however, OMP [16] is adopted here due to its

much faster performance and comparable accuracy.

OMP is a greedy algorithm which iteratively selects the best dictionary atoms for each y
k

to

reduce the reconstruction error. The reconstruction error (known as the residual), is initialized as

the entire input signal r0 = y
k

and the set of selected atoms is initialized as S0 = ∅ i.e. the empty

set. At iteration t, the residual is projected onto the dictionary atoms, and the atom which yields

the largest inner product is selected and the index set is updated. That is, St = St−1
⋃
{kt}. This

is done using

kt = argmax
j

∣∣rtt−1dj∣∣ , ∀j /∈ St−1 (2.2)

An augmented dictionary of selected atoms is then created to reflect the new index in St by

including the new atom i.e. Dt = [Dt−1 dkt ]. After updating Dt, the new sparse signal x̂k(t) can

be found using the Least Squares (LS) method as,

x̂k(t) = (Dt
tDt)

−1Dt
tyk = D†tyk (2.3)

where D†t is the Moore-Penrose matrix inverse of Dt. Note that the sample index k has been

dropped from Dt and St for simplicity in notation. Using this new sparse vector x̂k(t), the residual

must be recomputed as

rt = y
k
−Dtx̂k(t) (2.4)

It is also possible to view this algorithm in a geometrical perspective, where PDt = Dt(D
t
tDt)

−1Dt
t

is the projection matrix onto the subspace spanned by the columns of Dt. Using this projection

matrix, the residual rt can be viewed simply as the projection of y
k

onto the orthogonal complement
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of subspace 〈Dt〉. In other words rt = P⊥Dt
y
k

where P⊥Dt
= I − PDt . This geometrical perspective

will be used in Chapter 3 for the Fast OMP method.

This algorithm is very easy to implement due to the iterative nature of the method and the

simplicity of the concept. Stopping conditions can be set to either break at a certain number of

iterations for a predefined sparsity limit or stop when the magnitude of the residual falls below a

predefined error threshold. The steps in the OMP algorithm can be seen in Table 2.1.

Table 2.1. OMP Algorithm

Task: For a signal vector y
k
∈ RN , dictionary D ∈ RN×K , and sparsity restriction τ ,

find a coefficient vector x̂k(t) ∈ RK with at most τ non-zero coefficients.

Initialization: r0 = y
k
, S0 = ∅, x̂k(0) = 0, D0 = 0

Procedure:

(a) kt = argmax
j

∣∣rtt−1dj∣∣ , ∀j /∈ St−1
(b) Update the index set St = St−1

⋃
{kt}

(c) Dt = [Dt−1 dkt ]

(d) x̂k(t) = (Dt
tDt)

−1Dt
tyk

(e) rt = y
k
−Dtx̂k(t)

(f) Set t = t+ 1. Repeat steps (a) through (f) until convergence.

2.2.2. Dictionary Update Phase

The notation in this subsection is mostly from [19] for consistency. In the dictionary update

phase, the cost function in (2.1) can be rewritten as

‖Y −DX‖2F =

∥∥∥∥∥∥Y −
K∑
j=1

djx
j
T

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥
Y −∑

j 6=k

djx
j
T

− dkxkT
∥∥∥∥∥∥
2

F

=
∥∥∥Ek − dkxkT

∥∥∥2
F

(2.5)

where xkT is not the sparse representation of the kth training vector, rather it is the row vector

of the coefficients of all the xi’s corresponding to the kth atom, and Ek is the error matrix which

represents the reconstruction error when neglecting the kth atom.
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At this point, SVD can be used to minimize the error in (2.5) to find dk such that the combi-

nation dkx
k
T best approximates Ek; however, this does not address the sparsity requirement. Due

to the SVD computation, xkT will be filled rather than being sparse. Instead a group of indices

will be defined as ωk =
{
i
∣∣1 ≤ i ≤ K, xkT (i) 6= 0

}
where xkT (i) is the ith element of xkT indicating

the training samples in Y that use the dictionary atom dk. The restricted error matrix ER
k when

only using these indicated atoms is then defined as ER
k = EkΩk. Note that in this equation, Ωk

is defined as a matrix of size [M × ωk] with ones on the (ωk(i), i) entries and zeroes everywhere

else. When post-multiplying Ek by this matrix such as ER
k = EkΩk, the selection process chooses

columns of Ek associated with the dictionary atom dk. When post-multiplying a vector by Ωk such

as xkTΩk, the zero entries are discarded, and the row vector xkR is returned with a length of ωk. The

cost function in (2.5) can then be written as

∥∥∥EkΩk − dkxkTΩk

∥∥∥2
F

=
∥∥∥ER

k − dkxkR
∥∥∥2
F

(2.6)

When decomposing ER
k using SVD as ER

k = U∆V T , the solution for the updated dictionary

atom d̂k is the eigenvector corresponding to the largest eigenvalue. In other words, d̂k is the first

column of U .

Because d̂k has been changed, xkR must also be updated to reflect these changes otherwise Ek

would be computed incorrectly for the next atom. The coefficient vector xkR is updated as the

first column of V multiplied by ∆(1, 1) i.e. x̂kR = v1∆(1, 1) where v1 is the first column of V .

After updating the kth dictionary atom, the same procedure is followed for the next atom until

all atoms have been individually updated. Using this newly updated dictionary for iteration J ,

D(J), the sparse matrix X can be recomputed using any pursuit method. The dictionary update

and sparse representation phases will be repeated until the stopping conditions are met (either

maximum number of iterations or a reconstruction error below some threshold). The steps in the

K-SVD algorithm are given in Table 2.2.
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Table 2.2. K-SVD Algorithm

Task: Find the best dictionary D ∈ RN×K to represent the data samples
{
y
k

}M

k=1

as sparse compositions by solving min
D,X
‖Y −DX‖2F s.t. ‖xk‖0 ≤ τ ∀k

Initialization: Set the dictionary matrix D(0) ∈ RN×K with random l2 normalized

columns. Set J = 1. Repeat the following steps until a stopping rule is met:

Procedure:

Sparse Coding Stage: Generate X by computing the sparse representation xi

for each y
k

based on the dictionary D. This can be accomplished by using a pursuit

algorithm such as OMP.

Codebook Update Stage: Each column k ∈ 1 : K in D(J−1) is updated by:

(a) Compute error matrix: Ek = Y −
∑

j 6=k djx
j
T

(b) Define group of training data that use the atom:

ωk =
{
i
∣∣1 ≤ i ≤ K, xkT (i) 6= 0

}
(c) Obtain ER

k by restricting Ek to only columns corresponding to ωk

(d) Apply SVD: ER
k = U∆V T . The updated dictionary column d̂k is the first

column of U , and the updated coefficient vector x̂kR is v1∆(1, 1).

Set J = J + 1 and repeat until convergence

2.3. Conclusion

K-SVD has become increasingly popular due to the optimal dictionary it creates. The major

downside of K-SVD is the speed of training. OMP is the first step in K-SVD due to the sparse coding

phase where each training sample must be sparsely represented based on the current dictionary

matrix D. As seen in Section 2.2.1, the inverse of matrix (Dt
tDt) is required to determine the

coefficients of x̂k at each iteration. For low sparsity, this inverse can be computed quickly as the

matrix is of low dimension. As the sparsity requirement is relaxed, the amount of time required

to compute the inverse grows rapidly. A method that does not require matrix inversion would

therefore speed up not only training time, but also the time required for in-situ operation where

OMP must be completed many times on a testing dataset. This fast pursuit method can be found

in Section 3.2.
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Additionally, due to the SVD computation required in the update of each dictionary atom in

K-SVD, a substantial amount of time is devoted to train a dictionary. For offline training, this is

acceptable as training will not interfere with normal operation. When in-situ dictionary updates

are required, a faster method is needed that produces the same optimal dictionary without the

costly SVD operation. An alternative dictionary update for K-SVD is presented in Section 3.3,

which uses a recursive learning process void of any SVD operation to extract only the dominant

eigenvector.
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CHAPTER 3

New Fast Sparse Coding and Dictionary Learning Methods

3.1. Introduction

As stated in Section 2.3, K-SVD is limited by the fact that it can only be used in offline learning

situations. As the detector may encounter new contacts when applied to new environments in a

real operational setting, it may be necessary to update/expand the dictionaries to retain robustness

to environmental variations. The emphasis of this chapter is on replacing the phases of K-SVD

with faster operating methods to allow higher operating speeds with the goal of in-situ learning or

allowing shorter offline learning sessions. The limitation is due in part to the costly SVD operation

involved in the dictionary update phase as well as the matrix inversion in the OMP step. This

chapter features a dictionary update that extracts only the dominant eigenvalues as seen in [19].

As before in K-SVD, each atom is updated one at a time; however, the process is much more

lightweight without the SVD operations.

As K-SVD is a two phase process, the time required to complete K-SVD can be further reduced

by increasing the speed of the sparse pursuit phase. Though OMP is a relatively fast sparse pursuit

method to begin with, it still relies on the computationally demanding matrix inversion. For low

sparsity, this computation can be computed quickly; however, if sparsity is relaxed this can become

problematic. The OMP algorithm used in the sparse coding phase of K-SVD has been improved

by replacing this matrix inversion with an efficient recursive update based on orthogonal projection

updating used in adaptive filter theory. As an added benefit, this recursive update also prevents

costly recomputation of commonly used factors within the algorithm.

This chapter is organized as follows: Section 3.2 introduces the new fast OMP algorithm using

a series of lightweight recursive update equations. Section 3.3 contains details of the fast dictionary
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update for reducing the time required in the dictionary update phase of K-SVD. Finally, Section

3.4 contains concluding remarks and observations.

3.2. Fast OMP using Orthogonal Projection Updating

Due to the number of occurrences of OMP in training and in the in-situ operation of the target

detector, one of the major bottlenecks in the process is the time it takes to sparsely represent an

image snippet. It is ideal to enhance this procedure to decrease the amount of time required to

locate targets. As before, let D = [d1, d2, · · · dK ] be an overcomplete dictionary matrix designed by

using K-SVD. Given some observation vector y
k
∈ RN , we would like to find a sparse representation

xk ∈ RK , K � N for this vector using a fixed number of non-zero components of xk computed as

‖xk‖0 ≤ τ . Instead of using a predefined sparsity limit, it is also possible to set a lower limit on the

reconstruction error with a preselected tolerance ε by using the smallest possible number of basis

vectors in D. That is, the error in this representation ek = y
k
−Dxk, satisfies ||ek|| ≤ ε.

Recall the most time consuming computation from the original OMP algorithm is the compu-

tation of D†t in the Least Squares solution for x̂k(t) as illustrated in Section 2.2.1. Further, due

to the growing size of the matrix inversion in (2.3), the required time rapidly increases with each

additional iteration. To remedy this problem, let us start by considering, QDt = (Dt
tDt)

−1Dt
t as

the LS filter based upon matrix Dt, i.e.

x̂k(t) = (Dt
tDt)

−1Dt
tyk = QDtyk (3.1)

Also, recall that when considering the geometric perspective of OMP, the residual error was

written as,

rt = y
k
−Dtx̂k(t) = P⊥Dt

y
k

(3.2)

where P⊥Dt
= I − PDt and PDt = Dt(D

t
tDt)

−1Dt
t is the projection matrix onto subspace spanned

by columns of Dt. As can be seen in (3.1) and (3.2), the computational effort of the original
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OMP algorithm grows very fast as the number of chosen atoms increases. Additionally, to relate

this sparse coding to iterative K-SVD an interface between these two processes is needed. To

develop our fast OMP, we use the orthogonal projection updating equations for PDt and QDt [21]

by first considering the previous iteration’s projection matrix PDt−1 = Dt−1(D
t
t−1Dt−1)

−1Dt
t−1 and

expanding it to include the new atom dkt . This can be written as

PDt = P[Dt−1 dkt ]
= [Dt−1 dkt ]




Dt

t−1

dtkt

 [Dt−1 dkt ]



−1 
Dt

t−1

dtkt


= PDt−1 + P⊥Dt−1

dkt(d
t
ktP
⊥
Dt−1

dkt)
−1dtktP

⊥
Dt−1

= PDt−1 + Pd̃kt
(3.3)

If d̂kt = PDt−1dkt is the projection of dkt onto < Dt−1 >, let d̃kt = P⊥Dt−1
dkt be the orthogo-

nal component of this projection (or innovation). Using this, the orthogonal projection updating

equation can be written as

P⊥Dt
= P⊥Dt−1

− Pd̃kt
(3.4)

where Pd̃kt
=

d̃kt d̃
t
kt

||d̃kt ||
2

is the projection matrix for d̃kt . It can also be seen that QDtPDt = QDt . When

premultiplying the update equation for PDt by QDt , the update equation for the LS filter can be

found.

QDt =


QDt−1

0

 +


−Qt

Dt−1
dkt

1

 (dtktP
⊥
Dt−1

dtkt)
−1dtktP

⊥
Dt−1

=


QDt−1

0

 +


−bt−1

1

 qt
t

(3.5)
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where bt−1 = QDt−1dkt i.e. filtered version of dkt based upon LS filter QDt−1 , and qt
t

=
d̃
t
kt

||d̃kt ||
2

is the

LS filter operator using d̃kt .

Premultiplying (3.4) and (3.5) by y
k

yields the recursive update equations for rt and x̂k(t),

respectively, i.e.

rt = rt−1 − αtd̃kt (3.6)

and

x̂k(t) =


x̂k(t− 1)

0

 + αt


−bt−1

1

 (3.7)

where αt = qt
t
y
k

=
dtkt

rt−1

||d̃kt ||
2

i.e. filtered version of y
k

based upon LS filter operator qt
t
. Thus, the

adjustment term in (3.7) corresponding to the previous coefficients is equal to the products of two

filtered outputs, namely bt−1 and αt; whereas the coefficient associated with the newly added atom

is αt. These equations allow for a “time-order” update after adding a new dictionary atom.

Note that in this algorithm computing the projection matrix PDt and LS filter operator QDt are

completely avoided and hence no matrix inversion is required. The updated atom is d̃kt = P⊥Dt−1
dkt ;

however, we only need the filtered output bt−1 since,

d̃kt = P⊥Dt−1
dkt

= dkt − PDt−1dkt

= dkt −Dt−1QDt−1dkt

= dkt −Dt−1bt−1 (3.8)

The steps of the entire algorithm are given in Table 3.1 in the order of computation. Addi-

tionally, the geometric interpretation of this learning and in particular rt−1 and d̃kt is illustrated

in Figure 3.1. In this figure, the observation vector y
k

is orthogonally projected onto the subspace
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〈Dt−1〉⊥ to produce the residual vector rt−1. As demonstrated in the figure, the new residual rt

can be expressed using (3.9) where rt and Pd̃kt
y
k

are orthogonal, i.e. rttPd̃kt
y
k

= 0.

rt = rt−1 − Pd̃kt
y
k

= rt−1 − αtd̃kt (3.9)

Table 3.1. Fast OMP Algorithm

Task: For a signal vector y
k
∈ RN , dictionary D ∈ RN×K , and sparsity

restriction τ , find a coefficient vector x̂k(t) ∈ RK with at most τ non-zero
coefficients.

Procedure:

Iteration 1 Iterations t > 1 to τ

r0 = y
k
, D0 = 0 kt = argmax

j

∣∣rtt−1dj∣∣
k1 = argmax

j

∣∣rt0dj∣∣ bt−1 = QDt−1dkt

D1 = dk1 d̃kt = dkt −Dt−1bt−1

QD1 = (Dt
1D1)

−1Dt
1 qt

t
=

d̃
t
kt

‖d̃kt‖
2

b0 = QD0dk1 = 0 αt = qt
t
y
k

d̃k1 = dk1 Dt = [Dt−1dkt ]

qt
1

=
d̃
t
k1∥∥∥d̃k1∥∥∥2 Qt

Dt
= [Qt

Dt−1
− q

t
btt−1, qt]

α1 = qt
1
y
k

x̂tk(t) = [x̂tk(t− 1)− αtb
t
t−1, αt]

x̂k(1) = α1 rt = rt−1 − αtd̃kt
r1 = r0 − α1d̃k1 −

Figure 3.2 shows the plots of computational time of the fast OMP and standard OMP as a

function of the number of selected atoms. It can be seen that the computational requirements of

the standard OMP method grow substantially quicker due to the matrix inversion and computations

of the coefficients at each iteration compared to the recursive update equations in the fast OMP.

For a relaxed sparsity and thus a low reconstruction error, this method is very beneficial.
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Figure 3.1. Geometric Interpretation of Fast OMP Learning.

Figure 3.2. Timing Analysis of Pursuit Methods.

3.3. Fast Dictionary Update Using Recursive Updating Process

When referencing the reduced K-SVD cost function
∥∥ER

k − dkxkR
∥∥2
F

in (2.6), the objective is to

find the combination of dk and xkT such that dkx
k
R approximates ER

k as closely as possible. This

is normally solved by using SVD as explained in Section 2.2.2; however, this is computationally

inefficient especially for atoms of large dimension as SVD returns all eigenvectors though we are
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only interested in the most dominant. The following process is a common method used to return the

most dominant eigenvector. The solution to dk can also be found by taking the partial derivative

of the cost function with respect to dk in (2.6) and setting it equal to zero. This results in

∂

∂dk

∥∥∥ER
k − dkxkR

∥∥∥2
F

=
∂

∂dk
[tr(ER

k − dkxkR)(ER
k − dkxkR)t] = −2(ER

k − dkxkR)xkR
T

= 0 (3.10)

Solving for dk yields

dk =
ER

k x
k
R
T

xkRx
k
R
T

(3.11)

which clearly requires having previously computed xkR through OMP.

After using (3.11) to update the dictionary atom, the coefficients in xkR must also be updated to

reflect this change. If this does not happen, Ek on the next atom will be incorrect as a dictionary

atom has been changed, but the coefficients do not match the change. This update can be done by

taking the partial derivative of the cost function with respect to xkR and setting it equal to zero, i.e.

∂

∂xkR

∥∥∥ER
k − dkxkR

∥∥∥2
F

= −2dk(ER
k − dTk xkR) = 0 (3.12)

Solving for xkR gives the update equation

xkR =
dTkE

R
k

dTk dk
(3.13)

The two coupled equations (3.11) and (3.13) are iterated (5 times here) to yield x̂kR and dk

instead of doing SVD. This method is much faster than the original K-SVD. To start the process,

dk is initialized with (3.11). Note that it is required that xkR has been previously calculated by OMP;

however, this has already been done when entering the dictionary update phase as the entire sparse

matrix X is available after the sparse pursuit phase. After initializing dk, xkR can be updated for the

first time with (3.13). It has been shown in [19] that convergence is assured as the reconstruction
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error will monotonically decrease as the dictionary update takes place. When applying only the

dictionary update method in this section, the K-SVD training time can be cut in half.

3.4. Conclusion

This chapter has shown methods used to replace the two phases in K-SVD: the sparse coding

phase and the dictionary update phase. First, a series of light-weight recursive equations were

developed to replace the matrix inversion typically used in the LS solution of OMP in the sparse

coding phase. Not only do these equations prevent the matrix inversion, but due to the recursive

update, they also prevent costly recomputation of commonly used factors within the algorithm.

Then, the second phase of K-SVD was addressed in a faster dictionary update phase proposed in

[19]. This dictionary update replaces SVD with the coupled update equations from the partial

derivatives of the cost function allowing training to be completed in under half of the original time.

With the motivation of reducing overall computation time without sacrificing accuracy, the

methods discussed in this chapter have not only speed up computation time but they have also

offered a new and interesting perspective on previously existing methods leading to the faster

algorithms. Increasing the speed of OMP as a function of sparsity level has two benefits. First

of all, it can provide efficient OMP even when sparsity is relaxed due to the efficient “time-order”

recursive updates. Second, due to the reduced computational/structural complexity, OMP can

be used to sparsely represent many signals very quickly allowing in-situ operation (e.g., on DSP

boards) as the target detector is applied to live data. The major limitation of all sparse coding

algorithms including OMP, is the accuracy of the resulting sparse signal is heavily determined by

the basis dictionary. A dictionary that does not contain the dominant features of the input signals

will not be able to accurately represent the signal. As can be seen in Chapter 4, this can be used

to the advantage of the detector.
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CHAPTER 4

Application to Underwater Target Detection Using Sonar

Imagery

4.1. Introduction

With the end goal of testing the effectiveness and applicability of the developed sparse signal-

based detector, the learned dictionaries have been applied to the important problem of underwater

mine-like detection. While this thesis does not focus on the neutralization and removal of mines,

many options have been explored in [22] for this problem including blow-in-place operations and

dangerous retrieval operations. Mine neutralization and removal are critical, but this is only half of

the battle. Finding mines quickly and efficiently in large scale searches is a key step in the removal

process. The focus of this work is therefore on the detection and localization of mine-like objects in

sonar imagery gathered from the Small Synthetic Aperture Minehunter (SSAM) [2]. This problem

is very difficult as these objects must be discriminated from clutter both of natural (e.g., coral,

rocks, etc.) and man-made sources (e.g., scrap metal, oil barrels, lobster traps, etc.). As stated

previously, the mines can be proud on the surface of the ocean floor, partially, or fully buried.

This chapter presents the application of a K-SVD-based detector developed in Chapter 2 to this

detection problem. First, the dual-channel extension of K-SVD-based detector is shown granting

the ability to incorporate high frequency (HF) and broadband (BB) sonar imagery into a single

dictionary used as a basis for sparse coding. The dictionaries created through K-SVD are applied

to two different sonar datasets as a way to validate the concept. Receiver operating characteristic

(ROC) curves are presented in a discussion to highlight benefits and shortcomings of the algo-

rithm. Modification to further reduce false alarms, including ROI grouping, are also discussed and

implemented in a series of post-processed sonar images.
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This chapter is organized as follows: Section 4.2 describes the datasets and their properties

used in this chapter. Further, it shows how the proposed K-SVD algorithm can be used to generate

dictionaries for locating the mine-like objects, and how they are distinguished from competing

clutter. Section 4.3 presents the results of the sparse signal based detector. Finally, Section 4.4

gives concluding remarks and discussions.

4.2. Data Description and Multimodal K-SVD

4.2.1. SSAM I Dataset 1

The dataset used in this study has been collected by the SSAM I system, developed under the

support of the Office of Naval Research (ONR). The SSAM I system collects pairs of coregistered

HF and BB sonar images for the purposes of underwater target detection and classification. The

first sonar imagery dataset used in this study is composed of 122 pairs of HF and BB images

containing 77 targets of varying sizes, shapes, and ranges from the platform. Due to the way in

which sonar pings are emitted and received, targets are normally characterized (cross-track) by

a highlight followed by a shadow; however, this characteristic can also be shared with common

seafloor clutter such as coral and rocks making automatic detection and classification difficult. The

difficulty can be seen in the HF image in Figure 4.1. A target is present in this image located at

x = 1400 (cross-track) and y = 1000 (along-track). The target can be detected by an expert sonar

operator as the shadow can be seen to the right of the highlight. In this particular case, the BB

sonar image, as seen in Figure 4.2, doesn’t add any new information to aid the operator. In general,

the BB images do not have the sharp details seen in the HF images. Thus, they contain less clutter

effects in contrast to the HF images. This study will test if including the coregistered BB channel

indeed aids in the detection and localization of the targets. If the target had fallen at approximately

y = 1100, the shadow would be obscured by the natural bottom clutter and detection would have

been even more difficult as is the case with many of the other targets in this dataset.
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Figure 4.1. Difficult High Frequency Image Containing High Density of Bottom Clutter.

Figure 4.2. Difficult Broadband Image Containing High Density of Bottom Clutter.

The detection algorithm is applied to smaller Regions of Interest (ROIs) of size [80×140] pixels

by sweeping a window across the entire image. The ROIs overlap by 9 pixels in both the cross-

track and along-track directions. The kth pair of coregistered HF and BB ROIs are vectorized and

concatenated to form the composite vector zk =
[
yT
k

(hf) yT
k

(bb)
]T
∈ C2N where y

k
(hf) ∈ CN

represents the HF ROI and y
k
(bb) ∈ CN represents its BB counterpart. After converting to a

column vector, N is equal to the number of pixels in the ROI i.e. N = 80 ∗ 140 = 11200. The
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dataset is complex-valued as it is the output of the k-space or wavenumber beamforming algorithm

[23], [24]. When using signals of this format and assuming a properly formatted dictionary, each

pair of ROIs can be reconstructed according to the relationship

zk =


y
k
(hf)

y
k
(bb)

 =


D11 D12

D21 D22



x
(1)
k

x
(2)
k

 (4.1)

where D11 and D22 are the inter-channel dictionaries, D12 and D21 are the intra-channel dictionar-

ies, and x
(1)
k and x

(2)
k are the sparse representations of yT

k
(hf) and yT

k
(bb); not individually since

y
k
(hf) = D11x

(1)
k +D12x

(2)
k and y

k
(bb) = D21x

(1)
k +D22x

(2)
k .

This dual-channel (HF and BB) detection strategy is compared to a situation where one employs

the HF channel only in which case yk(hf) = D11x
(1)
k . Note that the dictionary D11 will not be

the same for these two scenarios, though they are exposed to the same training data. A dual-

channel dictionary can be created simply by formatting the K-SVD input data matrix Y such that

Y = [z1 · · · zM ] where M is the number of training samples to use.

For this detection problem, two dictionaries (one for target and one for non-target) are created

using the K-SVD algorithm discussed in Chapters 2 and 3. The two dictionaries will be created

using data matrices Y1 containing only target samples and Y2 containing only non-target samples.

This setup essentially creates two mutually exclusive dictionaries equipped to represent only a

certain type of data, and it exploits the fact that the dictionaries cannot represent data they

have not been exposed to via training. It can be expected that a target reconstructed from the

non-target dictionary will be very poor, while the reconstruction of a target will be accurate for

the target dictionary. Conversely, a non-target reconstructed from a non-target dictionary will be

accurate, while the reconstruction of a non-target from the target dictionary will be poor. This

relationship can be seen in Figure 4.3. The input target seen on the left side of the figure is

sparsely represented as x1 and x2 using the dictionaries D1 (target) and D2 (non-target). After
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displaying the reconstructed images, D1x1 and D2x2, it can be seen that the input image is most

similar to the reconstructed image when sparsely representing the input image using the target

dictionary D1. This similarity can be represented mathematically by simply looking at the norm

of the reconstruction error which is lower for dictionary containing images of the same class as the

input, i.e. the dictionary D1 for this case.

Figure 4.3. Exclusive Dictionary Reconstructions for a Target Sample.

Both the single-channel (HF only) and dual-channel dictionaries have been generated using a

subset, 16 out of the total 77 targets in the dataset, as well as a selected set of background ROIs

as training sets. A set of 30 background ROIs are used in the single-channel dictionary while

only 15 background ROIs are used in the dual-channel dictionary. Figure 4.4 shows the selected

training samples (HF only) of the K-SVD algorithm and the corresponding atoms after K-SVD for

both dictionaries. Only five atoms are shown for these training images to keep the figure simple;

however, 13 atoms are generated (K = 13) using K-SVD. As expected the target dictionary D1

contains atoms that capture different distinct features of the selected target samples. Interestingly,

the atoms in D2 appear to be a mixture of random noise and odd patterns of rocks and coral. This

is due to the selected non-target training images. The displayed atoms are those that are needed

to minimize the reconstruction error within the training set.

After the training and dictionary creation, for each ROI (e.g. kth) extracted from the entire

image, the data is represented sparsely based on both dictionaries. The vectors x1 and x2 will

be generated sparsely from the dictionaries D1 and D2 using fast OMP as discussed in Section
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Figure 4.4. Training Samples and the Corresponding K-SVD Atoms.

3.2. The reconstruction errors are then computed for each sparse composition and used to form an

analog of likelihood ratio Λ(zk) for each ROI zk in the sonar image, i.e.

Λ(zk) =

∥∥zk −D2xk,1
∥∥∥∥zk −D1xk,2
∥∥ T

≷
NT

γ (4.2)

The value of Λ(zk) is then compared against a preselected threshold γ to determine if the kth

ROI contains a target or a non-target. The complete testing phase can be seen in Figure 4.5. Note

that the selection of γ is purely experimental and is heavily dependent upon the environment and

how well the dictionaries are able to represent the data in each ROI. In a heavily cluttered image,

γ may be much lower to prevent many false alarms, while in an image with low clutter γ can be

larger. In general γ is chosen to provide a desired PFA [25], [26].

4.2.2. SSAM I Dataset 2

The second dataset used in this study has also been collected by the SSAM I System. This

dataset is composed of 458 pairs of HF and BB images containing only 68 targets of varying sizes,

shapes, and ranges. In this dataset, the amount of targets are vastly outweighed by the amount of
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Figure 4.5. Diagram of K-SVD Testing Phase.

clutter giving the added benefit of simulating a wide scale search. As an added test, the detector

discussed previously will not be trained on this dataset. This gives the added insight as to their

robustness against environment versatility.

Compared to dataset 1, this particular dataset has been collected over three different environ-

ments adding an extra difficulty. Two of the environments are relatively flat with features similar

to dataset 1. The third environment is very complex as it contains a mixture of seagrass and

sand formations. The particular species of seagrass is unique to this region, and it is an element

foreign to dataset 1. It is expected that the dictionaries generated by dataset 1 will have difficulty

representing these elements.

4.3. Detection Results

4.3.1. Results on Dataset 1

Figure 4.6 compares the ROC curves of the detection strategies i.e. single-channel (HF only) and

dual-channel (HF and BB). In addition, they are also compared to the multichannel frequency-based

detector [13] which looks for high levels of coherence between each pair of HF and BB ROIs. In this

detection strategy it was shown that coherence patterns are different when ROI contained mine-like

objects compared to those that did not contain mine-like objects. From the ROC curve, one can

see that the dual-channel K-SVD algorithm exhibits an improvement in detection performance over

its single-channel counterpart as well as the multi-channel coherence detector for this dataset with

a knee point of PD = 0.92 and PFA = 0.08. In this dataset, the multi-channel coherence based
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Figure 4.6. Receiver Operating Characteristic Dataset 1.

detector is sightly below the K-SVD based detectors. The knee point of the ROC for this detector

is at PD = 0.87 and PFA = 0.13. Compared to the multi-channel frequency domain coherence

based detector [13], the single-channel K-SVD detector offers an improvement in the detection rate

while decreasing the false alarm rate with the knee point at PD = 0.91 and PFA = 0.09. Even

though the BB images offer poor visual quality, the dual-channel K-SVD detector offers the best

performance of the three detectors.

Next, we show how we can improve on these results using the same dictionaries by reducing

the number of false alarms. Further investigation of the results of K-SVD-based detection leads to

a procedure to accomplishing this goal. The first observation to make is the previous ROC curves

were generated using single ROI analysis where every ROI is independently analyzed to determine

if it contains a target or not. In other words, neighboring ROIs do not impact the decision-making

process. Figure 4.7 shows a low cluttered HF image with five prominent targets, four of which were

successfully detected by the system (as indicated by the dark blue boxes). The green boxes and
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Figure 4.7. A HF Sonar Image And Detected Contacts.

Figure 4.8. A HF Sonar Image And Detected Contacts - Updated Threshold

red boxes were drawn on afterward to show the actual locations of the targets based upon divers’

markings. A green box indicates a target was found by the system at that location, and a red box

indicates a target was missed at that location. An obvious solution for detecting the missed target

is to modify the threshold; however, this will clearly increase the number of false alarms as seen in

Figure 4.8. False alarms in this application are critical as any alarm must be treated as an actual

threat. In some cases, an alarm may involve a team of divers inspecting an underwater site, or it

may just take validation by an expert operator. As in all applications, it can be time consuming

and costly if there are a large number of false alarms.
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Figure 4.9. 3D Analysis of Likelihood Ratios Λ(zk).

Instead independently analyzing each ROI to determine the presence of a target, it is possible

to employ a grouping requirement where multiple nearby ROIs must be above a threshold within a

certain area. Neighboring ROIs can be used to determine if a specific point on the seafloor contains

a target. This strategy relies on the assumption that a target will be picked up by multiple ROIs

within a small area. This is often the case as seen in Figure 4.9. When the window is centered

around a target, the likelihood ratio experiences a sharp peak. As the window moved away from

the target, the likelihood ratio decays.

It is possible to use these peaks to locate the targets. If a simple grouping technique is employed

(such as requiring a minimum number of hits within an area to declare a target), the ROC curve

seen in Figure 4.10 can be generated. The dual-channel K-SVD dictionaries are able to detect

100% of the targets with only 1.2% false alarms (a knee point at PD = 0.986 and PFA = 0.014).

Interestingly, this is achieved when enforcing the minimum group size of 2 elements. In other words,

at least two ROIs must agree on a target within some small area (approximately half the size of

an ROI) for a target to be declared. Compared to the results when not enforcing this condition,

the dual-channel K-SVD detection method experiences an increase in detection rate of 6.43% while
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Figure 4.10. Receiver Operating Characteristic Dataset 1 using ROI Grouping.

simultaneously reducing the false alarm by 6.74%. In this same study, the single-channel K-SVD

is also able to achieve very high detection results (knee point at 95.9% detected targets with only

4.1% false alarms) using the same minimum group size. The single-channel K-SVD experiences an

increase of 4.99% in detection rate with a reduction of false alarm rate by 4.27%. Other grouping

techniques are possible including other minimum group sizes, using Gaussian shapes, or integrating

the volume above the threshold. These techniques may further reduce the false alarm rate but they

were not pursued due to time constraints. Nevertheless, as only the addition of the BB channel

has been included in the dual-channel K-SVD, it is clear that the simple grouping method played

a major role in the success of this algorithm.

When analyzing a more difficult image, such as the HF image seen in Figure 4.1, a large number

of false alarms are generated to detect the target (shown in green). Figure 4.11 shows the false

alarms generated when detecting the single target in this image (shown in green) as a result of

employing the grouping method discussed previously. While this is far fewer false alarms than

without the grouping method, as seen in Figure 4.12, better resultes may be achieved using other

advanced grouping methods as mentioned before.
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Figure 4.11. A Difficult HF Sonar Image With Detected Contacts After Grouping.

Figure 4.12. A Difficult HF Sonar Image With Detected Contacts - Without Clustering.

4.3.2. SSAM Dataset 2

The K-SVD dictionaries generated using dataset 1 will be used here to test the robustness of the

designed detector by applying them to dataset 2. The system will then be benchmarked against the

multichannel frequency-based detector [13]. Both single-channel (HF only) and the dual-channel

detection strategies were applied to dataset 2. As can be seen in the ROC curve in Figure 4.13, the

dual-channel K-SVD algorithm did not perform as well as the single-channel K-SVD and multi-

channel coherence based detectors on this dataset. The knee point for the multi-channel coherence

detector is at PD = 0.86 and PFA = 0.14, while the single-channel K-SVD detector yields the knee
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Figure 4.13. Receiver Operating Characteristic Dataset 2

point performance of PD = 0.88 and PFA = 0.12. The dual-channel K-SVD detector performs very

poorly in this dataset with a knee point at only PD = 0.69 and PFA = 0.31.

The main reason the dual-channel K-SVD performed poorly on this dataset is the addition

of the BB channel makes discrimination much more difficult. Figure 4.14 depicts the BB image

in a HF BB sonar pair. Within this image, very distinct highlights can be observed on many of

the clutter features. In the first dataset, this was a common feature of a target; however, this

characteristic is common among clutter in this dataset thus leading to a high false alarm rate as

seen in the HF version of the same image Figure 4.15. Notice only those ROIs with prominent

highlights in both BB and HF images have been declared as targets. If the broadband channel is

neglected as in the single-channel K-SVD detector, the detection rate is much higher as observed

in the ROC curve.
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Figure 4.14. Broadband Image in Dataset 2.

Figure 4.15. High Frequency Image in Dataset 2 with Detected Contacts.

4.3.3. Tabulated Results for Datasets 1 and 2

On the first dataset, the dual-channel K-SVD algorithm exhibited a 1.3% detection rate im-

provement over the single-channel K-SVD strategy with a false alarm reduction of 1.5%. Compared

to the multi-channel coherence detector, the dual-channel K-SVD detector exhibited a 5.2% de-

tection rate improvement with a false alarm reduction of 4.77% as seen in Section 4.3.1. As for

the second dataset, the dual-channel K-SVD was unable to accurately represent both HF and BB

images and therefore performed poorly. The single-channel K-SVD algorithm, on the other hand,
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exhibits a 1.48% detection rate increase over the multi-channel coherence detector while simultane-

ously decreasing the false alarm rate by 2.05% when not employing any clustering methods. Final

results can be seen in Table 4.1.

Table 4.1. Detection Results without Grouping

Dataset 1 Dataset 2

PD PFA PD PFA

Single-Channel K-SVD 0.91 0.09 0.88 0.12

Dual-Channel K-SVD 0.92 0.08 0.69 0.31

Coherence 0.87 0.13 0.86 0.14

Grouping methods have been developed and implemented to increase the detection rate of these

targets while retaining a low false alarm rate. After employing these techniques on dataset 1, the

dual-channel K-SVD dictionaries were able to achieve a detection rate of 98.64% (an increase of

6.43% compared to dual-channel K-SVD when not using these clustering methods) while simultane-

ously reducing the false alarm to 1.03% (reduction of 6.74%). Additionally, single-channel K-SVD

achieved a detection rate of 95.9% detection with only 4.1% false alarms (an increase of 4.99% in

detection rate and a reduction of false alarm rate by 4.27%). Interestingly, when applying these

grouping methods to dataset 2 substantial gains are observed indicating that even the dual-channel

K-SVD detector can be generalized to outside datasets if multiple ROIs are required to vote on a

target. These results can be seen in Table 4.2

Table 4.2. Detection Results with Grouping

Dataset 1 Dataset 2

PD PFA PD PFA

Single-Channel K-SVD 0.96 0.04 0.96 0.04

Dual-Channel K-SVD 0.99 0.01 0.95 0.05
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4.4. Conclusion

Three different detectors were tested against two sonar imagery datasets. The detectors in-

clude: single-channel K-SVD, dual-channel K-SVD, and multi-channel frequency-based coherence

detectors. Both K-SVD-based methods were trained with ROIs selected from the first dataset.

The dual-channel K-SVD algorithm outperformed the other two detection strategies on dataset 1.

The single-channel K-SVD algorithm also exhibited a detection rate improvement over the multi-

channel coherence detector while simultaneously decreasing the false alarm rate. As for the second

dataset, the dual-channel K-SVD method falls short due to the inability to accurately represent

both HF and BB images, and the high false alarm rate caused by the distinct highlights in the BB

images. The single-channel K-SVD algorithm, on the other hand, outperformed both of the other

methods showing better generalization to outside datasets compared to the dual-channel K-SVD

detector.

In general, all three detectors face difficulty when targets are occluded by natural underwater

clutter (partially/fully buried, etc.). Further, targets that are very close in range to the sonar

emitter are corrupted in the beamforming process and become very difficult to detect as they

are not characterized by the distinct highlight/shadow pair. Detection of these difficult targets

normally come at the cost of many false alarms. An ROI grouping method has been developed and

implemented to increase the detection rate of these targets while retaining a low false alarm rate

when using the same dictionaries with significant results.

This chapter has illustrated that though the K-SVD dictionaries were trained in one dataset,

they can be generalized to other datasets to achieve comparable detection results. When employing

the grouping methods, both the single-channel and the dual-channel K-SVD-based detectors were

found to performed very well. These results indeed indicate that the K-SVD-based detection is a

powerful tool for difficult detection problems. The new fast OMP has sped up the detection rate

allowing online operation. Numerous additional improvements have been proposed in Chapter 5.
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CHAPTER 5

Conclusion and Suggestions for Future Work

5.1. Conclusion and Discussion

The problem of underwater mine detection from dual-channel sonar images is complicated as the

mines are subjected to spatially random bottom clutter, widely varying environmental conditions,

and the mines can be of varying size, shape, and orientation. This work led to the improvement of

the existing K-SVD algorithm by utilizing preexisting tools in the adaptive filter area and showed

its application to the important problem of underwater mine detection. First, a new fast OMP

method was presented based on orthogonal projection updating used in fast transversal filters [27].

As the fast OMP method is void of matrix inversions, this algorithm benefits as sparsity is relaxed

compared to the standard OMP method. Then, the dictionary update phase was replaced by a

faster update method which replaces SVD with pair of coupled updating coupled equations which

extracts only the dominant eigenvector. These two methods have increased the speed of training

and allow in-situ operation of this detector on DSP boards or other dedicated hardware.

The success of the K-SVD-based detection algorithm is attributed to the fact that the training

data essentially informs the detector of the types of signals associated with targets and non-targets.

Compared to the multi-channel frequency domain coherence detector in [13], which simply looks for

ROIs exhibiting certain cross spectral structure rather than matching a known model, the K-SVD-

based detector tends to yield not only lower false alarm rate, but also a higher target detection

rate. This benefit is also one of the most significant downfalls of the K-SVD-based detector as

it requires the availability of enough training data to extract relevant atoms. In this application,

K-SVD is possible due to the readily available data; however, this may not always be the case.

While it is possible to generalize to other datasets after training, if training data is not available to

create the initial dictionaries this method will fail while other GLRT-based detectors such as the
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multi-channel frequency domain coherence detector method may still succeed as it does not depend

on training data.

In the first dataset, the dual-channel K-SVD detector outperformed the single-channel K-SVD

detector due to the added information in the broadband channel. Further, the single-channel K-

SVD detector achieved superior results compared to the multi-channel coherence detector due to

the presence of information about the targets and clutter in the dictionaries. While the dual-

channel K-SVD detector performed poorly on the second dataset due to the inability to accurately

represent both HF and BB channels of the sonar image, this deficiency was corrected by employing

a grouping method where multiple neighboring ROIs are used make a decision.

5.2. Future Work

Though the K-SVD-based detector featured in this thesis has shown excellent results in the

application of detecting underwater mines from dual-channel sonar images, this thesis has laid the

foundation for several improvements that can be pursued in the future. These include:

• In-situ dictionary update: Due to the slow learning speed of K-SVD it has previously been

limited to offline learning scenarios. As a result of fast OMP and the faster dictionary update

presented in this thesis, in-situ dictionary updates are now possible. In general, dictionaries

will be retrained and the system will learns as it is exposed to unfamiliar environments. A

set of conditions must be set to determine a number of actions. The first task is given some

ROI, autonomously determine if the sample should be neglected or learned as a target or a

nontarget. This involves updating the dictionary atoms to better represent the data. The

ROI would simply be added to either Y1 or Y2 and fast K-SVD would be used to retrain either

D1 or D2 respectively. It may be necessary to increment the number of allowable atoms in the

dictionary as the dictionary may be unable to accurately hold additional information present

in the new training sample. If this is the case, to incorporate a larger dictionary, it may be
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required to slightly relax the sparsity restriction of OMP in the target detector. Naturally,

when the detector encounters a new environment, the detector should rapidly adapt and

incorporate the presence of new data while retaining the previously learned information.

• Kernel K-SVD: One limitation of K-SVD is it assumes linearly separable data; however, in

many difficult scenarios this is not the case. Kernelization is a common tactic for combating

non-linearly separable data because when mapping into hyperspace, data often becomes lin-

early separable. Kernel K-SVD was discussed in [28], with the aim to pose the modified cost

function in the higher dimensional feature space while solving the minimization problem in

the original space with the kernel trick. As X becomes sparse on the basis of a kernelized

dictionary, a kernelized OMP method must also be employed. After training the kernel dic-

tionaries, the same procedure employed in this thesis would be used to detect the targets in

the sonar images where each ROI is represented based on two dictionaries and the likelihood

ratio is compared against a threshold.

• Extension to target classification: The present framework can be extended to include

two-class target classification assuming the presence of labeled data. Instead of grouping

training data into two sets Y1 and Y2 for mine-like and non-mine-like respectively, matricies

will be constructed based upon those samples that pass the detector to assign final class lables

with high confidence and reject all the false detections as much as possible.

• Other applications: This algorithm is not limited to sonar data. K-SVD-based detection

can also be applied to target detection or classification from radar data. It can also be used

in other areas including facial recognition, iris recognition, or other multi-sensor biometric

classifiers.
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LIST OF ABBREVIATIONS

• AUV - Autonomous Underwater Vehicle

• BB - Broadband

• BOSS - Buried Object Scanning Sonar

• BP - Basis Pursuit

• CCA - Canonical Correlation Analysis

• GLRT - Generalized Likelihood Ratio Test

• HF - High Frequency

• LS - Least Squares

• MAP - Maximum a Posteriori

• MCA - Multi-Channel Coherence Analysis

• MMSE - Minimum Mean Squared Error

• MOD - Method of Optimal Dictionary

• MP - Matching Pursuit

• NSWC - Naval Surface Warfare Center

• ONR - Office of Naval Research

• OMP - Orthogonal Matching Pursuit

• ROC - Receiver Operating Characteristic

• ROI - Region of Interest

• SSAM - Small Synthetic Aperture Minehunter

• SVD - Singular Value Decomposition
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