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ABSTRACT 
 
 
 

A SMART-DEVICE BASED MOTOR FUNCTION BATTERY 
 
 
 
Growth in the older population will increase the overall impact of age-related 

neurological disorders. Aging and neurological conditions share features such as impaired motor 

function and physical dysfunction including reduced muscle strength and power, slowness of 

movement, increased movement variability and balance dysfunction. Successful performance of 

daily activities and maintenance of mobility is key to independence and quality of life. 

Therefore, tracking changes in physical function is critical in gauging quality of life. However 

truly quantitative measures of physical capacity often require the use of expensive, lab-based 

equipment. Smart devices contain sensitive tri-axial accelerometers and gyroscopes that measure 

acceleration and rotation and offer a more cost-effective, portable yet still quantitative means of 

physical assessment. The purpose is to describe an iPod Touch-instrumented test battery 

designed to assess features of physical and motor function often shared by normal aging and age-

related movement disorders.         

 We have been assessing the correlation between measures taken from expensive lab 

devices and the iPod Touch smart device for a variety of movements. We developed and tested a 

multi-item smart device-based battery of motor tasks that addresses motor variability, slowness 

and postural instability across a range of young, healthy college students. By changing the 

location of the device we can assess upper and lower limb movement speed and power, hand 

tremor, or postural control. We have also used previously validated lab devices concurrently with 

the smart device, which allows us to correlate the results between devices to assess the extent of 
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the association between devices. Outcomes such as peak acceleration and variability of 

movements can be obtained.         

 Generally, the smart device demonstrated strong correlations with the lab grade sensors 

for all motor tasks. Furthermore, the smart device was also correlated with the accelerometer 

across a large range of speed and variability. Strong correlations were seen in ballistic arm and 

leg tasks, tremor, and postural control assessments. This finding suggests that the smart device 

can sufficiently assess a broad range of functional capacity.     

 This battery can then be used to study populations exhibiting motor impairment, ranging 

from older adults, to neurological patients. Using the sensors on the smart device, this testing can 

be administered remotely and inexpensively by non-experts, providing cost-effective, mobile, 

user- and patient-friendly physical function testing. More importantly, accessibility of testing is 

increased while retaining quantitative precision. This should aid in quantifying disease 

progression and response to pharmacological or exercise/rehabilitative intervention, with the 

goal of improved function and quality of life in those with impairment.  
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1.   INTRODUCTION 

 

Western society has experienced and will continue to experience considerable growth in 

its older population. Currently there are approximately 38.7 million people aged 65 or older, with 

an expected doubling by 2050 (Seidler et al., 2010). Furthermore, by 2030, more than 20% of US 

residents will be 65 or older, compared with only 13% in 2010 and 10% in 1970 (Ortman, A. 

Velkoff, & 2014.).  Increased longevity increases the risk of developing neurological disease, 

many of which increase in prevalence with age (Callixte et al., 2015; Murray et al., 2012). 

Parkinson’s disease (PD), the second most common neurodegenerative disease after 

Alzheimer’s, is one such condition in which the incidence rises steeply with age with peak 

prevalence typically occurring around 80 years of age (Callixte et al., 2015; Kalia & Lang, 2015; 

Lees, Hardy, & Revesz, 2009; Pringsheim, Fiest, & Jette, 2014). Similarly, the risk of stroke 

doubles each decade after the age of 55 (Ovbiagele & Nguyen-Huynh, 2011; Roger et al., 2011). 

The combination of population aging and the concomitant increase in neurological disease will 

continue to exert a substantial burden on the health care system and society in general in coming 

decades.  

 One of the shared outcomes of the aging process or the development of a neurological 

condition is the decline in functional capacity or motor performance. This age- or disease-related 

functional decline can have a significant detrimental impact on physical function in elderly 

adults. Common motor deficits seen in aging and neurological disease include decreased strength 

and power output, slowing of movement, and increased movement variability (Beaton, McEvoy, 

& Grimmer, 2015; Seidler et al., 2010). Similar motor deficits are clinically manifested in 

neurological conditions such as PD (Kalia & Lang, 2015). Overall, the decline in these systems 



 2 
 

leads to increased difficulty in performing functional every tasks. Physical function and mobility 

are crucially important to quality of life (QOL). 

The ability to perform everyday activities of daily living (ADLs) and maintain mobility 

are key to independence and quality of life. However, gait and balance abnormalities are 

common in aging and neurological impairment (Holtzer, Epstein, Mahoney, Izzetoglu, & 

Blumen, 2014; Sudarsky, 2001). For example, the incidence of gait impairment increases by 

10% between the ages 60-69 and then increases to 80% between the ages of 80-90 (Mahlknecht 

et al., 2013). Functional disability degrades the ability to perform ADLs such as walking or stair 

negotiation, and can decrease functional independence and overall quality of life (Schrager, 

Kelly, Price, Ferrucci, & Shumway-Cook, 2008). 

Injuries resulting from falls impact quality of life and independence in aging. Typical 

aging is associated with an increased risk of falls. For example, one in three people older than 65 

years’ experience a fall each year and falls are the leading cause of injury in those over 65 years. 

It is estimated that by 2020, falls will cost the US health care system $54 billion (Lee, Lee, & 

Khang, 2013). Injurious falls are a major contributor to loss of independence and reduced quality 

of life and can lead to institutionalization. Mobility impairments are one of the major risk factors 

contributing to causes of falls in the elderly (Rubenstein, 2006; Rubenstein et al., 2000; Tinetti, 

Speechley, & Ginter, 1988). 

Assessment of motor ability is paramount in addressing the needs of the growing aging 

population. Physical function and mobility are profoundly important to the quality of life of an 

individual, thus tracking changes in these outcomes is of importance. Such information is also 

valuable for assessing decline over time or responsiveness to intervention. Finally, quantitative 
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information on physical function and mobility can also be useful in predicting adverse outcomes 

such as a fall (Hausdorff, Rios, & Edelberg, 2001).  

Existing quantitative measures of physical function and mobility most often require the 

use of expensive, sophisticated, lab-based equipment. For example, traditional gait assessments 

are conducted with three-dimensional marker-based analysis systems while many assessments of 

balance incorporate the use of force plates. These measurements are restricted in terms of space 

and time and require trained personnel to conduct the assessment (Furrer, Bichsel, Niederer, 

Baur, & Schmid, 2015; Proessl, Swanson, Rudroff, Fling, & Tracy, 2018). These factors hamper 

the ability of clinical practitioners to carry out such assessments. Access to testing can be 

impacted for populations such as the elderly and neurological impaired who may have difficulty 

visiting a laboratory. Therefore, there is a need for a mobile battery of tests to examine physical 

function and mobility outside the lab setting.  

Smart devices are ubiquitous and offer a means to overcome the current limitations of 

assessing physical function and mobility.  Devices such as smartphones and tablets have become 

an increasingly popular method of assessment because they are affordable and portable outside 

the lab setting. For example, smart devices such as the iPod Touch contain MEMS 

accelerometers which can detect acceleration of the device along three axes continuously 

(Patterson, Amick, Thummar, & Rogers, 2014). Smart devices also contain a gyroscope sensor 

which can provide instantaneous information on the orientation of the device at any given time 

(Yang & Hsu, 2010). Recent research has demonstrated the validity and sensitivity of the tri-

axial accelerometer housed within smart devices (Amick, Patterson, & Jorgensen, 2013; Hou, 

Chiu, Chiang, Chen, & Sung, 2018). The use of the smart device can increase the overall 
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accessibility of physical function and mobility assessment which can help improve functionality 

and quality of life. 

Research using portable smart devices as movement sensors has advanced in recent 

years. Many features of physical function and mobility are readily detectable using the 

accelerometer and gyroscope within the device. For example, investigations have incorporated 

the smartphone in balance assessments (Kuznetsov et al., 2018; Moral-Munoz, Esteban-Moreno, 

Herrera-Viedma, Cobo, & Perez, 2018; Shah & Aleong, 2016) and features of gait have been 

measured (Furrer et al., 2015; LeMonye, COROIAN, MASTROIANNI, & GRUNDFEST, 2008; 

Proessl et al., 2018; Silsupadol, Teja, & Lugade, 2017). Mellone and colleagues demonstrated 

the reliability and validity of a smartphone-based timed up and go test (Mellone, Tacconi, & 

Chiari, 2012). Studies assessing the symptoms of PD such as tremor have also incorporated the 

use of the smartphone (R. Lemoyne, Mastroianni, Cozza, Coroian, & Grundfest, 2010). Overall, 

the results suggest that the smartphone provides a feasible platform for assessing many features 

of physical function and mobility.  

The purpose is to describe an iPod Touch-instrumented test battery designed to assess 

features of physical function and mobility often shared by normal aging and age-related 

movement disorders. The aim was to show the feasibility within a young healthy population for 

potential use within clinical and motor impaired populations. The overall goal is to increase the 

quality of information from functional testing above and beyond that of the traditional timed or 

counted clinical and field tests.  
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2.   METHODS 

All testing took place in the Neuromuscular Function Lab at Colorado State University. 

The procedures were approved by the Colorado State University Institutional Review Board. 

Prior to participation, written consent was obtained from the subjects that informed them what 

would be asked of them and any associated risks from taking part in the testing. 

2.1 Assessment Devices 

2.1.1  5th Generation iPod Touch 

A smart device (iPod 5th Generation, Apple, Inc., Cupertino, CA) was used to 

continuously record accelerometer and gyroscope data during the tasks. These devices house 

Micro Electro-Mechanical (MEMS) accelerometers which detect instantaneous acceleration. The 

tri-axial accelerometers permit the detection of acceleration along the X, Y, Z axes of the device. 

The smart device also contains a gyroscope sensor which measures the orientation of the device 

around three rotational axes (pitch, roll, yaw). The Sensor Data Application (Wavefront Labs) 

was used to sample and digitize the data at 100Hz. This sampling rate is the maximum currently 

allowed by the operating system code. Data is stored on the device as a labeled, delimited text 

file and subsequently wirelessly transmitted to a computer for analysis. The files on the iPod are 

accessed remotely via a dedicated URL, renamed, and saved to a secure computer. Each text file 

was then imported to Spike 2 (Cambridge Electronic Design Limited, UK, Version 7.18) for 

further analysis. 

2.1.2 Lab Grade Accelerometer  

For three out of the five functional tasks the smart device was compared with a more 

expensive lab-based accelerometer, a small, uniaxial, lightweight piezoresistive accelerometer 

designed for motion studies and other applications requiring high sensitivity (Endevco® 7265A). 
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The device utilizes two fixed silicon gages and two fixed resistors in a full-bridge circuit, and has 

a sensitivity of 5 mV/g and a frequency response range from 20Hz to 1000Hz.   

 The lab accelerometer was attached to the surface of the smart device so that the sensitive 

axis aligns with the relevant axis of acceleration of the smart device. The accelerometer signal is 

led through a transducer coupler (Coulbourn, Inc.), digitized at 100Hz (1401 A/D device, 

Cambridge Electronic Design, UK), recorded on the same computer, and imported to Spike 2 for 

analysis. 

2.2  Assessment Protocols 

2.2.1  Hand Tremor 

20 young, healthy adults (13 males, 7 females) with no previous diagnosis of 

neurodegenerative disease or motor impairment took part in this study. Subjects were seated in a 

chair next to a rigid table. The dominant forearm and hand were placed on the table with the 

shoulder slightly abducted. Two rigid foam blocks were aligned on the table to permit the full 

forearm and hand to rest upon them. An iPod Touch 5th generation was firmly attached to the 

dorsum of the hand using a Velcro strap (Figure 1A). The uniaxial lab-grade accelerometer was 

attached to the screen of the iPod Touch over the location of the internal smart device 

accelerometer and secured with adhesive tape. Care was taken to secure all wires and ensure the 

accelerometer was consistently adhered. Both devices collected acceleration data concurrently.  

The Sensor Data App was used to record from the iPod’s internal sensors at 100Hz and 

the text files were then downloaded and imported to Spike 2 for analysis (Spike 2, ver. 7.14, 

Cambridge Electronic Design). The lab-grade accelerometer signal was led trough a transducer 

coupler (Coulbourn, Inc.), digitized at 100Hz (1401 device, Cambridge Electronic Design, UK) 

and was also recorded on the same computer and imported to Spike 2 for analysis.  
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The task was split into three stages consisting of a baseline resting measure, unsupported 

hand measure, and voluntary simulated tremor measure. Subjects were asked to complete two 

trials of this task with a one-minute rest period between.  

 Stage 1: Baseline measure 

Subjects rested their dominant forearm/hand on the foam pads and were instructed to rest 

and remain as still as possible while five seconds of acceleration data was collected from both 

devices.  

Stage 2: Unsupported hand measure  

During this stage the distal foam pad upon which the subject rested their dominant hand 

was removed. The subjects were instructed to keep their hand suspended at the wrist as still as 

possible. Five seconds of acceleration data was collected from both devices.  

Stage 3: Voluntary simulated tremor  

With the hand still suspended from the previous stage, subjects were instructed to 

produce self-paced voluntary hand tremor in a progressive manner- started at the lowest possible 

amplitude and then increasing to very high amplitude over 60 seconds. Both devices recorded the 

progressive increases in fluctuations of the acceleration signals.   

After acceleration data was collected from both the iPod Touch and the lab-grade 

accelerometer, data from each device were merged and time –aligned in the Spike2 program 

(Figure 1B). The standard deviation of acceleration was calculated to quantify the amplitude of 

the tremor. For stages 1 and 2, a single standard deviation value was calculated from a 3 second 

time interval. Stage 3 was broken down into twelve five second intervals, each representing 

progressively increasing amplitude of manufactured tremor. Including all stages, a total of 14 SD 

of acceleration values were obtained across a large range of tremor amplitudes.  
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For comparison between devices, the SD values were normalized as a percentage of the 

maximal standard deviation value produced by that device during that trial. This was done to 

scale the values in the same manner across the large range of amplitudes observed across trials. 

Pearson correlations and R2 values were calculated between devices for each trial (n=14 values) 

and for the normalized data pooled across all subjects and trials.  

 

2.2.2 Ballistic Arm Movement 

17 young, healthy adults (9 male, 8 female) with no previous history of 

neurodegenerative disease took part in this task. Subjects were seated in a sturdy laboratory chair 

with their shoulder slightly abducted, elbow flexed at 90 degrees, forearm in mid pronation and 

their fingers flexed into a fist (Figure 2A).         

 An iPod Touch 5th generation was firmly secured to a Velcro strap around the distal 

Figure 1. A)  Experimental set up of the tremor detection assessment. Top picture depicts the 
position of the iPod on the dorsum of the hand and their hand supported on a foam pad for stage 
1 of assessment.  B)  Experimental data traces from voluntary tremor (stage 3). Top trace 
represents the standard deviation of acceleration from the z-axis of the iPod accelerometer. 
Bottom trace represents the standard deviation of the lab grade accelerometer.  

                   

B

) 

A

) 
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forearm so that the Y-axis of the device would sense the outward phase of the arm movement. A 

uniaxial lab-grade Endevco accelerometer was secured to the iPod Touch so that it’s sensitive 

axis was aligned with the Y-axis of the iPod. The lab-grade accelerometer was securely fastened 

to the iPod Touch using double sided adhesive tape overlying securing tape. All leads were 

carefully secured as to not interfere with the motion.       

 The task was an abbreviated outward punch. The shoulder was flexed, and elbow 

extended in the sagittal plane as rapidly as possible, but not to full extension, and then returned 

to the starting position. The purpose was to capture the explosive initial phase of limb 

acceleration. Subjects were instructed to perform three trials of 20 punches with 1-2 seconds rest 

between repetitions and one-minute rest between trials. Subjects were instructed to begin with a 

“very slow” punch and perform each of the 20 consecutive punches incrementally faster, so that 

their final punch was maximal speed. The iPod Touch device and the lab-grade accelerometer 

both collected acceleration data concurrently.      

 The iPod Touch device used the Sensor Data App to sample the acceleration values at 

100Hz. A brief mechanical artifact was introduced simultaneously to both devices to synchronize 

the files on the time axis. The data from both devices was then merged into one file for analysis. 

The peak acceleration from the initial outward punching phase were measured from both devices 

(Fig 2B). The peak acceleration values from both devices were then normalized as a percent of 

maximal acceleration value from that trial of 20 repetitions. Bivariate correlations and the R2 

values were then calculated to quantify the correlation between the values obtained from the iPod 

vs. lab-grade accelerometer for each individual subject’s trial. Between-device correlation of the 

normalized peak acceleration values pooled across all subjects was also examined.  
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2.2.3 Ballistic Leg Movement 

Fifteen young, healthy subjects (7 males, 8 females) volunteered and provided written 

informed consent. They reported no known neurodegenerative disease or motor impairment. 

A) 

B) 

Figure 2: A) Experimental set up for the ballistic arm movement task. The iPod was 
placed on the distal forearm and participants were instructed to rapidly extend their arm 
horizontally. B) Experimental data traces from from twenty ballitic arm movements 
Top trace is the the y-axis accleration signal from the iPod Touch. The bottom trace 
represents the accerlation signal from the lab grade acclerometer. The peak accleration 
values from each movement were measured   
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Subjects were seated on a rigid table with their knee at a right angle and the lower leg hanging 

freely (Figure 3A).           

 An iPod Touch 5th generation was attached to the anterior shank of the dominant leg with 

the Z-axis perpendicular to the distal lower leg. The iPod was securely fastened to the lower leg 

with a Velcro strap. A uniaxial lab-grade Endevco accelerometer was attached to the surface of 

the iPod Touch so that the sensitive axis was in line with the Z-axis of the iPod. The 

accelerometer was attached with double-sided adhesive tape to ensure it was fastened firmly, so 

that both devices would undergo the same acceleration while attached to the limb.  

 Subjects performed one trial of 20 ballistic knee extension movements. Subjects were 

instructed to perform an arrested kick movement which involved not carrying through full range 

of motion. Each ballistic leg movement was performed with self-selected increasing velocity, 

starting at a “very slow” speed and progressing to maximal velocity. The iPod and lab-grade 

accelerometer sampled acceleration data at the same time.      

 Acceleration data from both the devices was time-aligned using a simultaneous 

mechanical artifact in the data stream and then merged into a single data file. The peak 

acceleration from the initial outward phase of the kick movement was measured from each 

device (Figure 3B). These values were then normalized as a percent of maximal peak 

acceleration value for that trial to allow for meaningful between-subject and between-device 

comparisons. Pearson correlations and R2 values were then calculated for the iPod vs lab-grade 

accelerometer correlation for each individual trial. Between-device correlation of the pooled 

normalized values across all subjects was also examined. 
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2.2.4 Postural Stability 

34 young healthy adults (17 male, 17 female) with no previous history of neurological 

disease or impairment volunteered to take part in this study. A 5th generation iPod Touch was 

securely attached to the subject’s hip with Velcro. The smart device was oriented so that its X-

A) 

B) 

Figure 3 A) Experimental set up for the ballistic leg movement task. The iPod Touch 
was secured to the anterior lower leg and subjects were instructed to kick outwards 
progressively faster. B) Experimental data traces from the ballistic leg movement task. 
Top trace is the y-axis acceleration from the iPod Touch. The bottom trace is the 
acceleration from lag grade accelerometer. The peak acceleration value was obtained 
from each trial.  
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axis would reflect accelerations in the anteroposterior (AP) direction and the Z-axis provided 

measures along the medial-lateral (ML) direction. A force platform (Accusway, AMTI) was used 

to measure center of pressure (COP) excursions. Both devices sampled data concurrently at 

100Hz.  The signals from the two devices were time-aligned using a simultaneous, small 

amplitude, sharply applied tap to the iPod and force platform.      

 The task was separated into three 30-second conditions; 1) Quite Standing Eyes Open 

(QSEO), 2) Quiet Standing Eyes Closed Neck Extended (QSECE) and 3) Anterior/Posterior 

Voluntary Sway (APVS) (Figure 4A and 4B). The three conditions were chosen to produce 

significant changes in postural sway to be quantified by the devices. During the QSEO condition 

subjects were instructed to stand as still as possible with their hands by their side and eyes open. 

The foot width was calculated as 10% of their height.  During the QSECE condition subjects 

were asked to maintain the same physical posture as the QSEO condition however this time with 

their eyes closed and neck extended. During the APVS condition, subjects were asked to look 

forward with their eyes open and then produce slow, voluntary oscillations in sway in the AP 

direction without the foot sole leaving the ground and with the body as straight and rigid as 

possible so that the sway occurred mainly at the ankle.       

 The data from both devices was downloaded and merged into the same Spike2 file and 

analyzed. The SD of acceleration in the X-axis from the iPod Touch and the SD of AP COP 

excursion from the force platform was calculated for a 10 second period. Change values between 

conditions were calculated for both devices. Pearson correlations and R2 values were used to 

quantify between-device correlation.    
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2.2.5 Sit-To-Stand (STS) 

42 young, healthy adults (21 male, 21 female) who reported no health problems were 

included in the study and provided written informed consent. Each subject performed three trials 

of STS movements with 2-3 minutes rest between trials. Subjects were instructed to fold their 

arms across their chest, stand with their feet at a comfortable width apart (same position for each 

trial), keep their feet on the ground, and to rise to full standing and return to a full seated position 

for each repetition. Subjects were asked to first perform 5 STS as fast as they could and then 

progressively reduce their STS speed over the next 15 repetitions so that by the 20th repetition 

they were standing and sitting very slowly.         

Figure 4: Postural stability assessment occurred with both eyes open condition 
(A) and eyes closed neck extended condition (B). The voluntary anterior posterior sway 
trial in which subjects manufactured progressively increasing sway, adopted the same 
position as (A). The iPod Touch was securely fasted to the hip. 

A) B) 
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Subjects sat in a rigid chair with their knee angle at 90 degrees. Data was collected 

concurrently from a 5th generation iPod Touch and electronic goniometer. The iPod Touch was 

firmly attached with Velcro to the lateral side of the thigh (measured 2/3 distance from greater 

trochanter to knee). The Sensor Data App on the iPod touch was used to record the pitch, roll and 

yaw from the iPod’s gyroscope at 100Hz. The pitch signal was analyzed as it reflects the sagittal 

plane thigh tilt during extension and flexion of the knee joint. An electronic goniometer was 

secured to the lateral side of the left knee joint. The knee angle was digitized at 100Hz and 

recorded on computer (1401 A/D converter, Spike 2 ver. 7 software, Cambridge Electronic 

Design, UK). Both signals were merged into the same Spike2 file for analysis.    

 The signals from the two devices were time-aligned by introducing a sharp tap at the 

same time to both devices which produced a mechanical artifact in the signal. The peak slope 

value of the rising phase of the iPod pitch signal and electronic goniometer were calculated for 

each STS. From all the peak slope values from each trial of 20 repetitions, the maximum value, 

the minimum value, and the difference between the maximum and minimum value was 

calculated from each of the 20 repetitions.  The overall aim was to assess between-device 

correlation and agreement in terms of detecting and measuring STS speed. Therefore, correlation 

values were calculated across a range of speeds for both individual subject trials and the pool of 

values across all subjects.  

2.3 Statistical Analysis 

All statistical analysis was completed using SPPS software (IBM Corp. Released 2017. 

IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp.). Pearson 

correlations were used to determine the association between devices. Correlations were classified 
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as very strong (0.9-1.0), strong (0.7-0.9), moderate (0.5-0.9), weak (0.39-0.49) and negligible 

(<0.30) (Mukaka, 2012).  

3.   RESULTS 
 
 
 

3.1 Hand Tremor 

The normalized standard deviation of acceleration values across all subjects and trials 

demonstrated strong correlation (R2 =0.89, Figure 5A). One individual trial of the voluntary 

tremor task showed very strong between device correlation (R2 = 0.92, Figure 5B). Figure 5C 

illustrates how the smart device and accelerometer track each other with increasing accelerations 

Figure 5A: Between device correlation of the SD of acceleration during the voluntary tremor 
task for 20 subjects. Each subject completed two trials and was instructed to progressively 
increase tremor amplitude after each five seconds.  (R2 = 0.89). 

Tremor: iPod vs Lab Grade Accelerometer (All Subjects) 
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(Figure 5C). Both devices were able to track the increasing changes in accelerations in a similar 

manner.  

 

 

 

 

 

 

  

Figure 5B:  Example of between-device correlation for the standard deviation of 
acceleration across a large range of tremor amplitude. Data from two trials of voluntary 
tremor from a single subject that produced 28 pairs of values. (R2= 0.84) 

Tremor: iPod vs Lab Grade Accelerometer (Single Subject) 

Voluntary Tremor Across Repetitions 

Figure 5C: Line graph depicting one trial from one subject’s voluntary tremor task. Subjects were 
instructed to progressively increase their tremor each five seconds. This graph depicts how the smart 
device and lab grade accelerometer track each other at increasing accelerations during one trial. 
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3.2 Ballistic Arm Movement 

  The normalized peak acceleration values across all subjects demonstrated very strong 

correlation between devices (R2=0.98, Figure 6A). For the 60 repetitions pooled from a single 

subject’s three trials, the between device correlation was also very strong (R2= 0.97, Figure 6B). 

The maximum and minimum single peak acceleration values from a 20-repetition trial were also 

strongly correlated between devices across subjects (both R2 = 0.98, Figure 6C and D). 

Similarly, there was a strong correlation between the two devices for the value that represented 

the change in ballistic arm movement from the slowest to fastest repetition (Figure 6E).   

Figure 6A: Between-device correlation of the peak accelerations during the ballistic 
arm movement task for 20 subjects. Each subject completed three trials and was 
instructed to progressively increase speed of movement each rep. (R2 = 0.98). 

Ballistic Arm Movement Peak Acceleration: iPod vs Lab Grade 

Accelerometer (All Subjects) 
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Figure 6C: Between-device correlation of the maximum peak acceleration values from each trial 
of the ballistic arm movement. Each subject performed three trials of 20 movements, this graph 
depicts the 60 maximum peak acceleration values detected from each device (R2=0.98). 

 

Ballistic Arm Movement Maximum 

Peak Acceleration: iPod vs Lab Grade 

Accelerometer (One Subject) 

Figure 6B: Example of between device correlations of one subject’s three trials of 
20 progressively increasing ballistic arm movements (R2= 0.97). 

Ballistic Arm Movement Peak 

Acceleration: iPod vs Lab Grade Accelerometer 
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Ballistic Arm Movement Minimum Peak 

Acceleration Values: iPod vs Lab Grade Accelerometer  

Figure 6D: Between-device correlation of the minimum peak acceleration values extracted 
from each trial of 20 repetitions of arm movement. Each subject performed three trials of 20 
movements. Depicted here are the 60 minimum peak acceleration values detected from each 
device (R2 =0.98). 

Ballistic Arm Movement Peak 

Acceleration Across Repetitions 

Figure 6E: Line graph depicting one trial from one subject’s ballistic arm movement task. Subjects 
were instructed to progressively increase the speed of their movement each repetition. This graph 
depicts how the smart device and lab grade accelerometer track each other at increasing 
accelerations 
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3.3 Ballistic Leg Movement 

 When the normalized peak acceleration values were pooled across all trials from all 

subjects, the two devices were very strongly correlated (R2=0.97, Figure 7A). When examining 

an individual trial the between device correlation was also very strong (R2=0.99, Figure 7B). 

The ability of the devices to similarly capture both the maximum peak acceleration values 

(R2=0.88) and minimum peak acceleration values (R2=0.97) from each trial demonstrated strong 

correlation (Figure 7C and D). The two devices detected changes in increasing acceleration in a 

similar manner (Figure 7E).  

 

 

Figure 7A:  Between device correlation of the peak acceleration values during the 
ballistic leg movement task for 15 subjects. Each subject completed one trial and was instructed 
to progressively increase speed of movement with each successive repetition (R2 = 0.97). 

Ballistic Leg Movement: Peak Acceleration: 

iPod vs Lab Grade Accelerometer (All Subjects) 



 22 
 

 

 

 

 

 

 

 

 

 

 

 

 

Ballistic Leg Movement: Peak Acceleration: iPod vs 

Lab Grade Accelerometer (One Subject) 

Figure 7B: 

Example of between 
device correlations 
of one subject’s trial 
of 20 progressively 
increasing ballistic 
leg movement task 

Ballistic Leg Movement: Maximum Peak 

Acceleration iPod vs Lab Grade Accelerometer  

Figure 7C: Between device correlation of the maximum 
peak acceleration values from each trial of the ballistic leg 
movement. Each subject performed one trial of 20 
movements, this graph depicts the minimum peak 
acceleration values detected from each device (R2 =0.98). 
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Ballistic Leg Movement: Minimum 

Peak Acceleration iPod vs Lab Grade 

Accelerometer  

Figure 7D:  Between device 
correlation of the minimum 
peak acceleration values from 
each trial of the ballistic leg 
movement. Each subject 
performed one trial of 20 
movements, this graph depicts 
minimum peak acceleration 
values detected from each 
device (R2 =0.98). 

Ballistic Leg Movement Peak Acceleration Across 

Repetitions 

Figure 7E: Line graph depicting one trial from one subject’s ballistic leg movement task. 
Subjects were instructed to progressively increase the speed of their movement each 
repetition. This graph depicts how the smart device and lab grade accelerometer track 
each other at increasing accelerations during one trial. 
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3.4 Postural Stability 

During the voluntary sway phase in which subjects were asked to manufacture increasing 

sway in the anterior posterior direction, strong correlation (R2= 0.86) was noted in the SD of 

acceleration and the SD of COP between devices (Figure 8A). Change values were also 

calculated in order to assess how the two devices were correlated in detecting a change in 

stability between conditions. Fold change values were calculated from each device comparing 

the eyes open and eyes closed conditions and then correlated with each other. Figure 8B depicts 

the strong correlation observed between devices.   

 

Figure 8A:  Pearson correlation of the standard deviation of the x-axis Acceleration of 
the iPod with the SD of change in in A/P COP from the force plate (R2=0.74). 

AP Voluntary Sway: iPod vs Force Plate 
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3.5 Sit-To-Stand 

The between-device (iPod vs. eGONI) correlations of peak slope revealed consistently 

high correlation values (Figure 9A). The mean peak slope R2 value across all trials was 0.95 for 

iPod vs eGONI. The distribution of R2 values was strongly positively skewed with 88% over 0.9 

(Figure 9B). To determine the ability of the iPod to detect specific outcome parameters, the 

minimum, maximum and the maximum minus the minimum was extracted from each trial of 20 

repetitions. Correlation values between the iPod and eGONI for the minimum peak slope value 

were R2= 0.83, for the maximum peak slope R2= 0.78 and the max-min change value in peak 

slope R2= 0.78. (Figures 9 C, D, and E).  

 

Figure 8B: The change in the SD of iPod x-axis acceleration was correlated with the 
change in SD of AP COP between the eyes and eyes closed conditions. (R2=0.76) 

Change Values: Eyes Closed vs Eyes Open 
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iPOD vs eGONI 

Figure 9A: Example of between-
device peak slope correlations for one 
trial of 20 repetitions from four 
different participants. iPod peak slope 
vs. eGONI peak slope (R2= 0.99). 

iPOD vs eGONI: R2 Values (All Trials)  

Figure 9B: 
Distribution of the 
R2 values from all 
126 individual 
participant trials for 
A) the correlations 
between iPod peak 
slope vs. eGONI 
peak slope (Mean R2 
value =0.95) 
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iPOD vs eGONI: Minimal Single Repetition  

Figure 9D: Between-device 
correlations for the minimal peak 
slope from the slowest single 
repetition from each trial of 20 
repetitions. The minimal peak 
slope from the iPod was 
positively correlated with the 
minimal peak slope from the 
eGONI (R2 = 0.83) 

 

Figure 9C: Between-device 
correlations for the maximal peak 
slope from the fastest single repetition 
from each trial of 20 repetitions. The 
maximal peak slope from the iPod was 
positively correlated with the maximal 
peak slope from the eGONI           
(R2 =0.78) 

iPOD vs eGONI: Maximal Single Repetition  
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.  

Figure 9E: Between-device correlations for the difference in peak slope between the fastest single 
repetition and the slowest single repetition in a trial of 20 repetitions. The iPod peak slope 
difference (Max-Min) was positively correlated with the eGONI peak slope difference (Max-Min) 
(R2 = 0.78). 

iPOD vs eGONI: Maximal – Minimal Repetition  
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4.   DISCUSSION 
 
 
 

The goal of this paper was to examine and compare quantitative measures of movement 

taken during a battery of physical function tasks between a cost-effective, portable smart device 

(iPod Touch) and a validated and reliable lab grade accelerometer (Endevco 625A). Tasks were 

deliberately chosen to reflect key physical and functional capacity measures that previous 

research has shown degrade with age or the development of neurological disease. Furthermore, 

tasks were performed across a large range of performance (e.g., slow to fast speed, small to large 

variability) to further demonstrate the capability of the smart device to accurately measure 

accelerations at slow and fast speeds.  

The results indicate that the iPod Touch-based assessment can accurately reflect output 

variables from the lab grade accelerometer or lab-based force platform. From each of the tasks, 

raw signal output traces from both devices displayed high similarity. Across the five tasks, the 

main finding was that across a range of performance values, there was very strong between-

device correlations in the outcome measures. The voluntary tremor task produced strong between 

device correlations for the standard deviation of acceleration, a measure of the average amplitude 

of motor variability (Figures 5A and 5B). The ballistic arm movement task demonstrated very 

high correlation of peak acceleration values between the smart device and lab grade 

accelerometer (Figures 6A and 6B). Comparison of peak acceleration values from the ballistic 

leg movement task also demonstrated very strong correlation (Figures 7B and 7B). When 

varying amounts of postural sway were produced during different tasks, the SD of the X-axis 

acceleration and the standard deviation of COP from the force plate were strongly correlated 

(Figure 9A) and between-condition changes in those values were also correlated. The measure 
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of peak knee joint rotation rate from the iPod Touch was highly correlated between the smart 

device and electronic goniometer (Figures 9A and 9B). Other specific performance parameters 

extracted from the STS such as the maximum speed, minimum speed and change in speed (max-

min) was strongly correlated between devices (Figures 9C, 9D and 9E).  

4.1 Ballistic Arm Movement  

For the ballistic arm movement task, the iPod Touch and accelerometer were placed on 

the forearm (Figure 2A) and the peak acceleration value in the horizontal axis was obtained. 

This reflects the maximum speed at which at which an individual can extend their arm outward. 

This movement reflects actions such as rapid reaching which can be an important component of 

activities of daily living. Previous research has shown that older individuals produce movements 

with 30-70% lower peak velocity compared with younger adults. Ketcham and colleagues found 

that for a short distance movement older adults peak velocity was 15.9 cm/s compared to young 

adults whose peak velocity was 29 cm/s (Ketcham, Seidler, Van Gemmert, & Stelmach, 2002). 

This finding has been reinforced through numerous other investigations (Bellgrove, Phillips, 

Bradshaw, & Gallucci, 1998; Cooke, Brown, & Cunningham, 1989; Pratt, Chasteen, & Abrams, 

1994).  Furthermore, as previously described, fall risk increases with age (Tinetti et al., 1988). 

This consistent finding of markedly reduced movement speed can therefore have huge negative 

implications for an elderly individual. For example, the ability of an individual to extend their 

arms outwards to a nearby support surface as they fall or to break a fall to the ground is 

important to reduce the severity of injury. The strategy to land with outstretched arms can reduce 

the likelihood of injuries such as hip fractures, which present a severe risk in the aging 

population. A unique approach for this protocol was to test the sensitivity and association of the 

smart device and lab grade accelerometer at progressively increasing peak accelerations across a 
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large range of performance, which to our knowledge has not yet been studied. Further, very 

strong correlation was observed when the absolute maximum and minimum peak accelerations 

from each trial were correlated between devices. This depicts the capability of the smart device 

to be used as a diagnostic and rehab tool to subjectively quantify upper limb movement speed.  

4.2 Ballistic Leg Movement  

For the ballistic leg movement task, the iPod Touch was placed on the anterior shin and 

the peak acceleration during the outward phase of knee extension was measured (Figures 3A 

and 3B). This task provides a quantitation of unloaded leg movement speed, which significantly 

degrades with age (Seidler et al., 2010). (Seidler et al., 2010). Furthermore, this knee extension is 

physically similar to the stepping action commonly executed for protection against falling in 

response to a trip or perturbation (Maki & McIlroy, 1997; Rogers, Hedman, Johnson, Martinez, 

& Mille, 2003). The initiation of this protective stepping mechanism involves the complex 

integration and interaction of sensorimotor, neuromuscular and other cognitive systems. 

However, age and disease related declines in these systems leads to impaired control of balance 

and postural stability (Stelmach & Worringham, 1985). For example, much research has shown 

that aging delays the initiation of voluntary movements such as in reaction time stepping (Patla 

et al., 1993). Therefore, the longer latency to initiate voluntary stepping is a marker for increased 

fall- risk (Lord & Fitzpatrick, 2001).         

 Further research has shown that perturbation training using external perturbations can 

lead to improvements in protective stepping (Barajas & Peterson, 2018). Previous research has 

demonstrated that within an older population, perturbation training resulted in fewer falls within 

the community while Pai et al. showed that older adults who participated in a single session 
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experienced a 50% reduction in falls within the next year (Mansfield, Peters, Liu, & Maki, 2010; 

Pai, Bhatt, Yang, & Wang, 2014). 

This training paradigm is an example of a situation where the smart device could be 

implemented as an effective and reliable rehabilitation device. The smart device would permit 

for an easy and accessible method of measuring lower limb movement speed at various times 

throughout an intervention, whether the measures were performed in the rehabilitation clinic or 

even the home setting.   

4.3 Hand Tremor 

The results obtained from the tremor task support previous work carried out by LeMonye 

and colleagues (R. Lemoyne et al., 2010). Their study investigated tremor amplitude between 

healthy control subjects and PwPD. Acceleration signals were used to detect tremor amplitude 

with the use of a smart device. PwPD demonstrated significantly increased tremor as represented 

by increased acceleration fluctuation values. This study depicts the ability of the smart device to 

differentiate between a clinical population and healthy controls. Our hand tremor data provides 

support for and expands upon these findings. Firstly, acceleration data was collected 1) 

concurrently with a lab grade device and 2) over a progressively increasing tremor amplitude. 

High correlation values were obtained between devices and at both low and high tremor 

amplitudes, demonstrating that the smart device is capable and sensitive enough to measure and 

detect a large range of tremor, whether it be subtle and low amplitude or the type observed in 

more severe stages of disease. This further supports the notion that the smart device could be 

integrated in a clinical or rehabilitation setting to enhance diagnosis or track intervention 

efficacy. 

. 
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4.4 Postural Stability 

Improvement in balance function has been shown to reduce the overall risk of injury, aid 

in the recovery from injury and improve functional performance in elderly individuals (Moral-

Munoz et al., 2018). There is thus a need to have the ability to quickly and reliably assess 

balance outside of a hospital or laboratory setting. Our results demonstrate the capability of the 

iPod to be readily and reliably used as an objective balance assessment in a field setting. The 

implications of this could increase the resources available to a clinician and have a beneficial 

impact on the clinical environment. The outcome of our testing supports pervious research 

completed in this area. Hou et al. utilized a smart device in six different postures and assessed 

whether the device can note any significant differences between conditions or postures. . As with 

our results, they showed the ability of the smart device to detect a change in conditions (eyes 

open vs eyes closed), Hou and colleagues also found that the smart devices were sensitive 

enough to detect the expected differences in postural stability between healthy controls and 

stroke patients (Hou et al., 2018). Likewise, Patterson and colleagues showed that balance 

measures obtained from a smart device were consistent with measurements obtained using an 

already validated system, demonstrating concurrent validity of the smart device-based balance 

measurement (Patterson et al., 2014). The totality of this work suggests that the iPod Touch is an 

assessment tool that can be feasibly used to measure balance. This device can fulfill the need for 

a cost-effective, convenient and easy to use measure of balance. The development and validation 

of such a protocol is beneficial, whether it be as a rehabilitative tool in injury recovery, aiding in 

injury prevention or enhancing the functional performance of an individual ultimately resulting 

in increased QOL. 
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4.5 Current Limitations in Assessment 

Current assessment of motor function, physical function, and mobility have some 

limitations. They are either confined to laboratory settings with expensive, fixed equipment, or 

they are relatively crude timed or counted measures in the field. For example, the lab grade 

equipment necessary to provide quantitative motor function measures is usually heavy, 

expensive, prone to damage with moving, and requires power.  This severely limits the ability to 

conduct testing in field settings and thus reduce accessibility to such testing. Aside from the lack 

of portability, laboratory grade equipment is often costly. For example, the least expensive lab 

grade force platforms used to assess postural stability can cost upwards of $5000, and full 

systems for measuring ground reaction forces can be > $40K. Again, this expense impacts the 

ability to carry out assessments. Furthermore, tests using this type of equipment require 

significant training and must be conducted by a skilled researcher. Finally, a number of the more 

traditional assessments, while easy to perform, involve relatively crude outcome measures. For 

example, the number of sit-to- stand repetitions a subject can complete in a given time, or the 

time taken to complete a timed up-and-go or simple walking task. This outcome measure is 

rudimentary and does not provide the clinician with the precision of information necessary to 

track progression or and target specific rehabilitation strategies.  

4.6 Novelty and Utility of Smart Device Motor Battery 

The evidence that supports our novel collection of motor assessments expands on 

previous data from work on other portable movement sensors and together demonstrates that the 

smart device appears to be a feasible and reliable movement sensor.  There is a need for the 

ability to report on an individual’s mobility and physical function outside of a laboratory or a 

hospital setting. The results of our study indicate that the iPod Touch could be a potential tool to 
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fill this void. It could be a valuable resource for a clinician whether it be aiding in diagnostic 

decision making or evaluating interventions. Furthermore, the iPod Touch is relatively 

inexpensive, it is portable and easy to use and can provide in depth and quantitative information 

concerning movement behavior.  . The notion of the utility of these devices in this type of testing 

is supportive of views put forward by Culhane and colleagues which suggest that the 

accelerometers housed within the smart devices have potential use in a clinical setting (Culhane, 

O'Connor, Lyons, & Lyons, 2005). Despite heavy use within the research realm, these 

inexpensive, miniature, non-invasive accelerometers are ideal for potential use in clinical 

monitoring situations.  

4.7 Future Exploration 

For the tests described as part of this motor protocol, data was collected on the iPod 

Touch through means of a straightforward data collection application that simply logs the values 

from the sensors and produces a text file. Data was stored temporarily on the device and then 

transferred to computer for subsequent analysis. Use of the common smart device is ubiquitous 

amongst the public, thus an application onboard the device with an algorithm capable of 

quantifying the parameters and producing the outcome measures as outlined in our protocol 

would be very useful. This would serve to contain the entire measurement and analysis process 

on the device and increase the access to outcomes for investigators and patient alike. The 

development of smart device apps for self-managed or professional health assessment is 

developing rapidly. For example, Munoz and colleagues conducted a review of smartphone 

applications used to assess the performance of body balance (Moral-Munoz et al., 2018). They 

found that the app called ‘Sway’ had the highest number of scientific publications validating 

their use. Authors used a clinically reliable and valid force platform to compare the data obtained 
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by a mobile app using the mobile accelerometers, concluding that the results were consistent and 

valid between devices (Patterson et al., 2014; Roeing, Hsieh, & Sosnoff, 2017).  Similar 

applications have also shown a degree of feasibility with the sit-to-stand task. For example, a 

feasibility study was carried out by Lummel and colleagues using the gyroscope of the smart 

device during a 5x STS study to assess whether an automatic algorithm detection is sensitive and 

capable enough to capture angular velocity. They concluded that the automated algorithm was 

capable and feasible in detecting the angular velocity during a STS and clearly demonstrates 

clinical utility (Van Lummel et al., 2013).        

 The results of our findings show that the iPod Touch is a valid and reliable movement 

sensor, displaying high correlation when compared to lab grade apparatus. Therefore, the next 

logical and practical step is to develop a simple app, with a user-friendly interface, capable of 

measuring our outcome parameters such as peak acceleration values or motor variability. This 

will permit for more efficient and effective assessment of motor function, physical function, and 

mobility in almost any setting. 

4.8 Study Limitations 

Throughout the study there were several limitations identified. One such being that the 

lab grade accelerometer (Endevco 625A) is only a uniaxial accelerometer and therefore had to be 

aligned specifically during each task so that the desired axis was sensitive to acceleration 

direction. The findings would likely have been enhanced with the use of a tri-axial lab grade 

accelerometer. A second potential limitation was the outcomes quantified for the postural 

stability task. The iPod Touch outcome measure of sway was the standard deviation of x-axis 

acceleration which is reflective of the variability of body movement in the A/P direction. The 

outcome measure of postural stability from the force platform was the SD of the excursion of the 
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anteroposterior center of pressure. Subjects were instructed to stand with a straight body during 

the quiet standing portions and to produce the active voluntary A/P sway at the ankle with a 

straight body. However, there might have been subtle deviations from this form which could 

have introduced differences in the amplitude of the fluctuation between the iPod (hip) and force 

platform (COP). Another limitation was that throughout all the tasks, the iPod Touch was 

compared and correlated with another accepted measure of assessment but not necessarily 

directly with the accepted gold standard for that outcome.    
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5.   CONCLUSION 
 
 
 

This study showed that a smart device (iPod Touch) can assess a range of upper and lower limb 

movement speeds, the variability of movements and postural stability by means of a battery of motor 

function tasks. This testing can be administered remotely and inexpensively by non-experts, providing 

cost-effective, portable means of motor function testing while still retaining precise quantitative 

assessment. 
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