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ABSTRACT  

 

 

USING NONLINEAR GEOSTATISTICAL MODELS FOR SOIL SALINITY AND YEILD 

MANAGEMENT 

 

Crop production losses associated with soil salinity on irrigated lands are significant. The 

genetic complexity of crops with regards to salt tolerance has limited the success of 

improving salt tolerance through conventional breeding programs. In the meantime, land 

reclamation and leaching can be expensive and sometimes impractical when fresh water 

sources are scarce or not readily available. This research introduces a geostatistical approach 

for the management of crop yield under current soil salinity conditions. It uses three 

nonlinear geostatistical models – disjunctive kriging (DK), indicator kriging (IK), and 

probability kriging (PK) – to manage soil salinity and crop yield. The nonlinear models were 

applied to selected irrigated fields in a study area located in the south eastern part of the 

Arkansas River Basin in Colorado where soil salinity is a problem in some areas. The overall 

objectives of this research are: 1) estimate soil salinity in irrigated fields using nonlinear 

gestatistical models; 2) develop conditional probability (CP) maps that divide each field into 

zones with different soil salinity levels; 3) estimate the expected yield potential (YP) for 

several crops at different zones in fields under multiple soil salinity thresholds; 4) evaluate 

the performance of the nonlinear geostatistical models in developing the interpolated and CP 

maps provide guidance to farmers and researchers by considering the output of this research 

as input for precision management of agriculture; and 5) provide guidance to farmers and 

decision makers in precision management of agriculture.  

The three nonlinear geostatistical models DK, IK, and PK were used to develop CP maps 

based on soil salinity thresholds for different crops. These CP maps were compared with 

actual yield data taken while conducting a soil salinity survey for two fields cultivated with 
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alfalfa and corn. The CP maps divide each field of interest into zones with different 

probabilities to reach a specific YP for a given crop at a specific soil salinity threshold. 

Different crops were selected to represent the dominant crops grown in the study area: alfalfa, 

corn, sorghum, and wheat. Six fields were selected to represent the range of soil salinity 

levels in the area.  Soil salinity data were collected in the fields using an EM-38 and the 

location of each soil salinity sample point was determined using a GPS unit. Datasets of soil 

salinity collected in irrigated fields were used to generate the CP maps and to evaluate 

different scenarios of the expected YP% of several crops at multiple soil salinity thresholds. 

These datasets were selected to represent a wide range of soil salinity conditions in order to 

be able to evaluate a wide variety of crops (larger set of crops than those grown in the study 

area) according to their soil salinity tolerances. Yield data were collected at the same fields to 

compare the actual data with that estimated by the models. The crops were used for 

evaluation were selected based on two criteria: dominant in the study area, and represent 

high, moderate, and low soil salinity tolerances. Different scenarios of crops and salinity 

levels were evaluated. Semivariograms were constructed for each scenario to represent the 

different classes of percent yield potential based on soil salinity thresholds of each crop.  

The results of this research show the nonlinear geostatistical models are efficient in 

assessing the impact of soil salinity on the spatial variability yield productivity. The 

comparison of the actual yield data with the estimated yield from the three models shows 

good agreement where most of the yield samples were located at the appropriate zones 

estimated with the models. The IK and PK models generated very similar estimates for each 

of the zones.  However, the zones generated by both of these models are slightly different to 

the zones generated using the DK model. Wheat and sorghum show the highest expected 

yield potential based on the different soil salinity conditions that were evaluated. Expected 

net revenue for alfalfa and corn are the highest under the different soil salinity conditions that 
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were evaluated. The CP maps generated using the DK technique give an accurate 

characterization and quantification of the different zones of the fields. Upon the knowledge of 

the YP% of different areas, a management decision action can be taken to manage the 

productivity of a field by selecting another crop or adjusting the inputs such as fertilizer, 

seeding rates and herbicides in low productivity areas. The information provided by the 

models about the variability and hotspots can be used for the precision management of 

agricultural resources. The IK model can be used to generate guidance maps that divide each 

field into areas of expected percent yield potential based on soil salinity thresholds for 

different crops. Zones of uncertainty can be quantified by IK and used for risk assessment of 

the percent yield potential. 
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1 GENERAL INTRODUCTION 

Approximately 25-30% of the irrigated lands in the United States have crop yields that 

are negatively affected by high soil salinity levels (Tanji, 1990; Postel, 1989; Ghassemi et al., 

1995; Wichelns, 1999). Worldwide crop production losses associated with salinity on 

irrigated lands are estimated to be around US $11 billion annually and increasing (Ghassemi 

et al., 1995). The Arkansas River is one of the most saline rivers in the United States (Tanji, 

1990; Miles, 1977). The Arkansas River drains approximately 25% of the state and is the 

state’s largest river basin. Soil salinity problems exist when the buildup of salts in a crop’s 

root zone is significant enough that it results in a loss in crop yield. Soil salinity negatively 

affects crop growth by increasing the osmotic potential of the soil solution (Jones and 

Marshall, 1992), which decreases a plant ability to extract water and results in suppressed 

plant growth and decreased yield. The development of saline soils is a dynamic phenomenon 

that needs to be monitored regularly in order to secure up-to-date knowledge of its extent, 

spatial distribution, nature and magnitude (Ghassemi et al., 1995). 

Geostatistical methods have been widely used for sampling and mapping soil salinity. 

They provide means to study the heterogeneity of the spatial distribution of soil salinity 

(Pozdnyakova and Zhang, 1999). Kriging is a collection of linear regression techniques that 

takes into account the stochastic dependence among data (Olea, 1991). Kriging remains the 

best choice as a spatial estimation tool since it provides a single numerical value that is best 

in some local sense (Deutsch and Journel, 1998).   The results of spatial prediction generate 

reasonable estimates of soil salinity regardless of what interpolation method was used 

(Triantafilis et al., 2006). Kriging models estimate the values at unsampled locations by a 

weighted averaging of nearby samples where the correlations among neighbouring values are 

modelled using variograms (Miller et al., 2007). Studies have shown that semivariograms of 

electrical conductivity can be a useful tool in determining the spacing between soil samples 
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for laboratory electrical conductivity determination (Utset et al., 1998). Samra and Gill 

(1993) used kriging results to assess the variation of pH and sodium adsorption ratios 

associated with tree growth on a sodium-contaminated soil. 

The variogram is the key function in geostatistics as it is used to fit a model of the spatial 

correlation of the observed phenomenon and provides a unique spatial study. Given a 

collection of data, a variogram reveals the type of spatial structure inherent to a spatial 

phenomenon. In addition, the variogram reveals the amount of noise present in the data, 

known commonly as the nugget (Carr et. al., 1985). Recent research shows that this noise can 

substantially mask prominent spatial autocorrelation and result in what appears to be a purely 

random spatial process. When a variogram is used to describe the correlation of different 

variables it is called a cross-variogram. Cross-variograms are used in co-kriging. If the 

variable being analysed is binary or represents classes of values, this is referred to as 

indicator variograms. Nonparametric geostatistical techniques such as IK offer immeasurable 

power for analysis of data quality (Journel, 1983). 

Linear kriging methods such as simple, ordinary and universal kriging are well 

established for predicting soil variables at unsampled locations and have been used widely in 

soil and water science. Eldeiry and Garcia (2008a; 2008b; 2010) used different linear kriging 

techniques to estimate soil salinity using remote sensing data. Burgess and Webster (1980b) 

and Webster and Burgess (1980) demonstrated the use of block and universal kriging. 

Triantafilis et al. (2001) used ordinary kriging, regression kriging, three-dimensional kriging, 

and cokriging to predict soil salinity from electromagnetic induction data in irrigated cotton. 

However, correctly assessing prediction uncertainty (conditional probability) has the same 

importance as predicting a variable at unsampled locations. Nonlinear kriging methods 

provide estimates of the conditional distribution of a variable quantity. There are two groups 

of nonlinear kriging techniques where the conventional linear kriging estimators are applied 

http://en.wikipedia.org/wiki/Geostatistics
http://en.wikipedia.org/w/index.php?title=Co-kriging&action=edit&redlink=1
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to the data after a nonlinear transformation. The first group is indicator methods (Journal, 

1983), where the nonlinear transform to data is a discrete (binary) indicator variable. These 

techniques have been widely applied (e.g. Van Meirvenne and Governs, 2001; Halvorson et 

al., 1995; Eldeiry and Garcia 2011). The second group of techniques, which is discussed in 

this study, involves a nonlinear transformation of the data to a continuous (Gaussian) 

variable. This approach is exemplified by Disjunctive Kriging (DK) (Matheron, 1976) and 

has found widespread use in soil science (e.g. Wood et al., 1990; von Steiger et al., 1996). 

The document is organized into three main chapters, each containing a self-contained 

presentation in which specific components of the objectives presented above are addressed. 

The organization of the thesis is as follows: 

Chapter 2 presents a practical method to manage soil salinity and yield in order to obtain 

maximum economic benefits using Indicator Kriging (IK) technique. The IK was applied to 

six irrigated fields in the study area located in the south eastern part of the Arkansas River 

Basin in Colorado where soil salinity is a problem. Different scenarios of crops and salinity 

levels were evaluated, while the IK technique was applied to each scenario. The generated 

maps show the expected percent yield potential areas and the corresponding zones of 

uncertainty for each of the different classes. Throughout the results section, the expected crop 

net revenue for each scenario was calculated and all the results were compared to determine 

the best scenarios. The results show that IK can be used to generate guidance maps that 

divide each field into areas of expected percent yield potential based on soil salinity 

thresholds for different crops. Zones of uncertainty can be quantified by IK and used for risk 

assessment of the percent yield potential. The results section discussed and evaluate the 

expected net revenue of several crops under different soil salinity conditions. 

In Chapter 3, the Disjunctive Kriging (DK) technique was applied to two datasets of soil 

salinity in the same study area to generate the conditional probability (CP) maps. Different 
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scenarios of the expected YP% of several crops at multiple soil salinity thresholds were 

discussed and evaluated. From the discussion and evaluation it was concluded that the CP 

maps generated using the DK technique give an accurate characterization and quantification 

of the different zones of the fields. The CP maps can be used to assess the expected YP% of 

whole fields for several crops under multiple soil salinity thresholds. The information 

provided about the YP% of different areas can be used to support the management decision 

action that can be taken to manage the productivity. This management could be through the 

selection of another crop or adjusting the inputs such as fertilizer, seeding rates and 

herbicides in low productivity areas. 

In Chapter 4, instead of discussing and evaluating the third nonlinear geostatistical 

technique, Probability Kriging (PK), the three nonlinear models – DK, IK, and PK – were 

compared and evaluated. Also, instead of generating the CP maps of different crop scenarios, 

actual crop samples for alfalfa and corn were collected in order to compare the actual data 

with that estimated by the models. The three nonlinear models were used to develop the CP 

maps based on soil salinity thresholds for alfalfa and corn and the CP maps were compared 

with actual yield data taken while conducting a soil salinity survey for alfalfa and corn. The 

comparison of the actual yield data with the estimated CP maps from the three models shows 

good agreement where most of the yield samples were located at the appropriate zones 

estimated with the three geostatistical models. The IK and PK models generated very similar 

estimates for each of the zones.  However, the zones generated by both of these models are 

slightly different to the zones generated using the DK model. The information provided by 

the models about the variability and hotspots can be used for the precision management of 

agricultural resources. 

A summary with general remarks is presented in Chapter 5, highlighting the most relevant 

findings of this research.  
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2 USING INDICATOR KRIGING TECHNIQUE FOR SOIL SALINITY AND 

YIELD MANAGEMENT 

2.1 Summary 

This chapter presents a practical method to manage soil salinity and yield in order to 

obtain maximum economic benefits. The method was applied to a study area located in the 

south eastern part of the Arkansas River Basin in Colorado where soil salinity is a problem in 

some areas. The following were the objectives of this study: 1) generate classified maps and 

the corresponding zones of uncertainty of expected yield potential for the main crops grown 

in the study area; 2) compare the expected potential productivity of different crops based on 

the soil salinity conditions; 3) assess the expected net revenue of multiple crops under 

different soil salinity conditions. 

Four crops were selected to represent the dominant crops grown in the study area: alfalfa, 

corn, sorghum, and wheat. Six fields were selected to represent the range of soil salinity 

levels in the area.  Soil salinity data were collected in the fields using an EM-38 and the 

location of each soil salinity sample point was determined using a GPS unit. Different 

scenarios of crops and salinity levels were evaluated. Indicator-variograms were constructed 

for each scenario to represent the different classes of percent yield potential based on soil 

salinity thresholds of each crop. Indicator kriging (IK) was applied to each scenario to 

generate maps that show the expected percent yield potential areas and the corresponding 

zones of uncertainty for each of the different classes. Expected crop net revenue for each 

scenario was calculated and all the results were compared to determine the best scenarios. 

The results of this study show that IK can be used to generate guidance maps that divide each 

field into areas of expected percent yield potential based on soil salinity thresholds for 

different crops. Zones of uncertainty can be quantified by IK and used for risk assessment of 
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the percent yield potential. Wheat and sorghum show the highest expected yield potential 

based on the different soil salinity conditions that were evaluated. Expected net revenue for 

alfalfa and corn are the highest under the different soil salinity conditions that were 

evaluated. 

 

2.2 Introduction 

Soil salinity refers to the presence in the soil and water of various electrolytic mineral 

solutes in concentrations that can be harmful to many agricultural crops (Hillel, 2000). Salts 

decrease the availability of water to plants due to increase osmotic potential and have direct 

adverse effects on the plant metabolism (Douaik, 2003; Greenway and Munns, 1980). 

Increasing soil salinity is offsetting a good portion of the increased productivity achieved by 

expanding irrigation (Postel, 1999). On average, 20% of the world's irrigated lands are 

affected by salts, but this figure increases to more than 30% in countries such as Egypt, Iran 

and Argentina (Ghassemi et al., 1995). Crop yield reduction in fields in the Lower Arkansas 

Valley due to salinization is estimated to vary between 0 to 75% with a total revenue loss 

ranging from $0-$750/ha based on 1999 crop prices (Gates et al., 2002).  

A careful selection of thresholds in assigning an indicator function can yield an indicator 

variogram which reveals underlying spatial autocorrelation. Problems arise when dealing 

with highly variant phenomena where the data present long-tailed distributions with a 

coefficient of variation in the range of 2-5. Raw variograms become extremely sensitive to 

tail data, and are basically useless (Journel, 1983). Indicator variograms are not affected by 

outliers, since they do not call for the data values themselves but rather for their rank order 

(indicator values) with regard to a given cutoff. Data are used through their rank order with 

regard to a given cutoff, allowing for a more comprehensive structural analysis, and are yet 
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more robust with regard to outliers. The influence of outliers is removed from the distribution 

and data sensitivity to different thresholds can be uniquely studied. The indicator approach, 

whereby the data are used through their rank order, allows a nonparametric approach to study 

the bivariate distribution of the data (Journel, 1983). This rich structural information allows a 

nonparametric risk-qualified analysis of the data as well as an estimation of local and global 

spatial distributions. 

IK provides a non-parametric distribution estimated directly at fixed thresholds by 

considering indicator transforms of conditioning data in the form of cumulative distribution 

functions (Richmond, 2001). The power of multi-variable IK as a tool is that it is flexible and 

can be modified to fit specific management or research goals by modifying the critical 

threshold criteria (Smith et al., 1993). IK makes no assumptions on the underlying invariant 

distribution, and 0:1 indicator transformation of the data makes the predictor robust to 

outliers (Cressie, 1993). At an unsampled location, the values estimated by IK represent a 

probability that the value is less than a specified threshold. That is, the expected value at the 

location derived from indicator data is equivalent to the cumulative distribution function of 

the variable (Smith et al., 1993). Mapping of uncertainty zones for individual phases is one 

advantage of using a geostatistical approach to characterize the morphology of quantitative 

variables (Soares, 1992). Smoothing effects occurring around zero thickness investigation 

sites can be reduced significantly by the use of a combined ordinary-IK approach (Marinoni, 

2003). Solow et al. (1986) used simple IK to estimate the conditional probability that a 

sample point belongs to one type or another. Their results show that simple IK performed 

well, and in some cases can be exact. 

IK provides a way to use depth to water table data to quantify the probability of saturation 

and evaluate the predicted spatial distributions of runoff generation risk (Lyon et. al., 2006). 

Spatial principal component analysis and IK were used to estimate the geochemical 
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distributions by utilizing their statistical and spatial properties (Panahi et al., 2004). Indicator 

variables and multi-level thresholds were used to analyse the Arsenic concentration 

probability in the coastal aquifer in Yun-Lin, Taiwan (Liu et al., 2004). Using this technique 

allowed them to solve the problem of data scarcity and provided multi-level thresholds in the 

probability estimation of contamination. IK geostatistics was also used successfully to 

identify the areas where mercury concentration was higher than the median in southern 

Portugal, and to produce an index that combines mercury contamination across trophic levels 

(Figueira et al., 2009). Mapping of uncertainty zones for individual phases is one advantage 

of using a geostatistical approach to characterize the morphology of quantitative variables 

(Soares, 1992). Western et al. (1998) examined soil moisture patterns through indicator 

semivariograms and showed good spatial structure for high soil moisture conditions. 

IK has also been frequently applied to the pollution of soil by heavy metals. For example, 

Smith et al. (1993) and Oyedele et al. (1996) used multivariate IK to analyze the quality of 

soil; Lin et al. (2002) applied IK to delineate the variation and pollution sources of heavy 

metals in agricultural land; Juang and Lee (1998), Castrignano' et al. (2000) and van 

Meirvenne and Goovaerts (2001) adopted multi-level-threshold IK to estimate the probability 

distribution of heavy metal pollution in a field. Geostatistical indicator methods have also 

been applied in the lithological classification of rocks (McCord et al., 1997; Fogg et al., 

1999) and in the estimation of probability of contamination in groundwater aquifers (Istok 

and Pautman, 1996). 

Several studies have been carried out using IK in soil science. Bierkens and Burrough 

(1993a) showed the application of IK to predict categorical soil data. Bierkens and Burrough 

(1993b) also applied IK to water-table mapping and land suitability assessment. Goovaerts 

(1994) compared the performance of cokriging, simple kriging and multiple indicator kriging 

(MIK) in predicting soil quality indicators. Triantafilis et al. (2003) used MIK to produce 
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conditional probability maps of deep drainage risk in an irrigated cotton field in the lower 

Gwydir valley in southeastern Australia. Triantafilis et. al, (2004) used IK, MIK and 

disjunctive kriging (DK), to assess the current status and potential threat of soil salinity using 

data from soil and water surveys in the lower Namoi valley of northern New South Wales, 

Australia.   

The geostatistical approach presented in this paper uses IK to provide farmers with a tool 

to estimate the potential maximum economic benefit under the current conditions of their 

fields. Crops with different soil salinity tolerances have significantly different crop yield 

potential under the same soil salinity conditions. Therefore, depending on the soil salinity 

conditions of a field, some crops will have higher yields than others. A classified map of 

expected yield potential based on soil salinity thresholds of different crops can help in 

selecting the appropriate crop that maximizes the potential yield for a specific area. In this 

research a set of scenarios generated from combinations of different crops and fields was 

analyzed using the soil salinity data for each field.  Each field was classified into different 

thresholds to produce the following crop yield potentials: 100%, 90%, 75%, 50%, < 50% & > 

0 %, and 0%. Indicator-variograms were constructed for each of the scenarios and IK was 

applied to each scenario to generate maps that show the expected percent yield potential as 

well as zones of uncertainty for different parts of each field. Expected crop net economic 

revenue for each scenario was calculated. The expected yield potential maps can be used by 

farmers to determine which crop would maximize the yield and the economic benefits of their 

fields under the current soil salinity conditions.  
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2.3 Data and Methodology 

2.3.1 Study Area and Data Collection 

The study area is located in the south eastern part of the Arkansas River Basin in 

Colorado near the cities of Rocky Ford and La Junta Figure 2.1. Farmers in this area are 

facing decreasing crop yields due in part to high levels of salinity in their irrigation water. In 

some areas, land is being taken out of production due to unsustainable crop yields. This is due 

in part to the fact that the Arkansas River is one of the most saline rivers in the United States 

(Tanji, 1990; Miles, 1977). In a survey of the region, 68% of producers stated that high 

salinity levels were a significant concern (Frasier et. al., 1999).  Farmland along the lower 

Arkansas River Basin has been continuously irrigated since the 1870’s and began to develop 

shallow, saline water tables by the beginning part of the twentieth century (Miles, 1977). 

Average water table depths in this region have risen towards the surface approximately 0.3 – 

1.22 m between 1969 and 1994 which has only exacerbated the salinity problems because of 

increasing amounts of upflux of saline groundwater. 
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Figure 2.1: The study area in the south eastern part of the Arkansas River Basin in Colorado.  

 

Several fields were selected to carry out the soil salinity assessment in the study area. Soil 

salinity data were collected using EM-38 electromagnetic probes and the location of the 

samples was determined using global position systems (GPS) units. The EM-38 

electromagnetic probes provide vertical and horizontal readings while the GPS units provide 

X and Y coordinates for each sample point. A calibrated equation which was developed for 

the study area by Wittler et al. (2006) was used to convert the EM-38 electromagnetic probe 

readings to EC (dS/m). Soil moisture content and soil temperature were used for the 

calibration equation. A detailed description of using the EM-38 electromagnetic probe in 

combination with GPS in collecting soil salinity can be found in Eldeiry and Garcia (2008) 
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and Eldeiry et al. (2008). Six fields were selected to represent the different soil salinity 

ranges: low, moderate and high. 

 

Table 2.1: Description of the fields of the study area and the collected soil salinity samples. 

Field Area (ha) Number of Soil Salinity Samples Min. Max. Mean 

US01 16.20 318 2.38 7.19 3.32 

US04 93.19 316 2.38 41.23 8.41 

US09 28.92 369 1.57 3.49 2.30 

US10 4.19 132 3.04 31.26 6.82 

US14 12.73 254 2.66 11.26 4.45 

US80 11.26 178 2.86 12.33 4.21 

 

Table 2.1 shows a description of the fields used in this study. The table contains the area, 

number of samples, minimum, maximum, and mean values of the soil salinity that were 

collected in each field. These fields were selected to represent different soil salinity ranges 

(low, medium and high) since soil salinity is an important factor which can significantly 

affect crop yield. Table 2.1 shows that the selected fields represent a wide range of soil 

salinity levels from 1.57 to 41.23 dS/m. 

 

2.3.2 Soil Salinity Classification 

Table 2.2 shows the percent yield potential and the corresponding soil salinity EC (dS/m) 

for alfalfa, corn, sorghum, and wheat (adapted from Ayers and Westcot, 1976). Ayers and 

Westcot carried out an experiment where soil salinity was measured based on the electrical 

conductivity of the saturated paste extract taken from a root zone soil sample (ECe) measured 

in (dS/m).  
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Table 2.2: Yield potential and the corresponding soil salinity (dS/m) for selected crops (adapted from 

Ayers and Westcot, 1976). 

Crop Yield Potential %, Soil Salinity (dS/m) 

100% 90% 75% 50% 0% 

Corn  1.7 2.5 3.8 5.9 10.0 

Alfalfa 2.0 3.4 5.4 8.8 16.0 

Sorghum 4.0 5.1 7.2 11.0 18.0 

Wheat 6.0 7.4 9.5 13.0 20.0 

 

For barley and wheat, during the germination and seedling stages, ECe should not exceed 

4 to 5 dS/m except for certain semi-dwarf varieties. For beets, during germination ECe should 

not exceed 3 dS/m. Many crops have little tolerance for salinity during seed germination, but 

significant tolerance during later growth stages. The crops shown in Table 2.2 were sorted 

based on their tolerance to soil salinity from low to high: corn, alfalfa, sorghum, and wheat. 

Table 2.2 shows that wheat can reach up to 100% of yield potential at a soil salinity of 6 

dS/m while corn can only reach 50% of yield potential at a soil salinity of 5.9 dS/m.  

 

2.3.3 Preparing the Data 

The soil salinity data for each field were sorted and classified into different thresholds to 

produce the following crop yield potential classes: 100%, 90%, 75%, 50%, < 50% & > 0 %, 

and 0%. For each of these six fields, the classification was done for each of the four selected 

crops. For high soil salinity tolerant crops such as wheat or sorghum, in fields with low soil 

salinity levels such as US09, there is no need for IK since the whole field has 100% expected 

yield potential. However, with the same crops in fields with moderate soil salinity levels, 

crops can reach a high yield potential from 75% to 100% while classes with yield potential 

ranging from 0% to 100% can be present in fields with high soil salinity levels. For crops 

with moderate and low soil salinity tolerance such as alfalfa and corn, a wide range of yield 

potentials is represented in the selected fields for this study.  
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2.3.4 Constructing the Indicator Variograms 

From the data combinations of crops and fields, twenty four scenarios were created 

(combinations of four crops and six fields). For each scenario, data were analysed using the 

S+ statistical software package and the indicator variograms were decided based on the 

number of classes or thresholds of yield potential for each scenario. For example the scenario 

of planting alfalfa in field US04 has five classes: 90%, 75%, 50%, <50% & > 0%, and 0% of 

percent of yield potential. The best model variogram among the Exponential, Gaussian, and 

Spherical was chosen based on the smallest Akaike Information Corrected Criterion (AICC). 

AICC is a measure of the goodness of fit of an estimated statistical model. It is a tradeoff 

between bias and variance in model construction. It is not a test of the model in the sense of 

hypothesis testing; rather it is a test between models (a tool for model selection). AICC was 

defined by McQuarrie and Tsai (1998) as: 
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where: RSS is the residual sum of squares, k is the number of parameters, and n is the number 

of samples. 

Indicator variograms were constructed for each of the scenarios using the model with the 

smallest AICC value. Each phase of the variograms represents one class of percent yield 

potential. The indicator variograms contain six phases or less depending on the tolerance of 

the crop and the soil salinity in the field. The indicator variogram (Soares, 1992) is defined as 

the probability that x  and hx   belong to different classes iK : 
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where: x and hx  , represent a pair of sample locations separated by distance h  and i  is the 

number of k  classes of soil salinity. 

http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Bias
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Model_selection
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2.3.5 Applying IK 

IK was applied to each scenario to generate classified maps that show the expected 

percent yield potential. The number of classes in each map depends on the number of phases 

of the indicator variograms of that scenario. One of the advantages of IK is that it has the 

power to quantify the zones of uncertainty for different parts of each field. Zones of 

uncertainty exist around the borders of classes and these areas have the probability of 

belonging to either of the classes. Assessing zones of uncertainty can be very beneficial for 

the accuracy of the generated maps since it can produce more information about the risk 

assessment. The essence of the indicator approach is the binomial coding of soil salinity data 

into either 1 or 0 depending upon its relationship to the thresholds of soil salinity for each 

crop.  For a given value of z(x) : 
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z if z(x)
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where kz  is the soil salinity threshold for a specific crop (Lyon et al. 2006).  More detailed 

description of IK can be found in Soares (1992).  

 

2.3.6 Zones of Uncertainty 

The indicator variable can be described as the probability of exceeding a given threshold. 

Therefore, the estimation of the indicator variable at unsampled locations produces 

probability maps (Reis et al. 2005b). Zones of uncertainty between soil salinity classes can be 

obtained by identifying locations with low probability, for a given threshold, of belonging to 

a specific soil salinity level. For example a zone of uncertainty can be defined as being the 

lowest 25% of the probabilities of belonging to a particular soil salinity level. To generate a 

map of uncertainty, the first thing to do is to obtain some information regarding the 
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distribution of probabilities associated with each soil salinity class, such as identifying the 

threshold representing the lowest 25% of the probabilities.  

Consider an attribute Z that must be conditionally simulated and the information available 

consists of z values at n locations xi, z(xi), i = 1, 2, ... , n. The uncertainty about the soil 

salinity value at an unsampled location x is modeled by the conditional cumulative 

distribution function (ccdf) of the random variable Z(x):  

  )()( Prob),( xzxZzxF      (2.4) 

The function F(x,z) represents the probability that the unknown soil salinity does not 

exceed a threshold z. The ccdfs are modeled using a non-parametric (IK) approach, which 

estimates the probability for a series of K threshold values zk discretizing the range of 

variation of Z (Froideveux, 1993; Saito and Goovaerts, 2002; Reis et al. 2005a): 

  K,1,........k                     (n)|zZ(x)Prob)zF(x, kc    (2.5) 

where k is the number of samples within a specific class K. 

The calculated probabilities are recoded into 0 and 1 in order to obtain binary maps with 

two levels, the areas with uncertainty and the areas without uncertainly, while considering a 

confidence interval. 
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2.3.7 Net Revenue 

Expected crop net economic revenue for each scenario was calculated based on the 

Colorado State University Extension (Agriculture and Business Management) 2007 crop 

budget estimates. The total revenue includes the revenue of the crop without taking into 

account the costs. The costs include the operations associated with pre-harvest, harvest, 

property ownership and cost, and for some crops a factor payment. Net revenue is the 

revenue after the costs are taken into account. The expected crop net economic revenue can 

be used as guidance for the growers to determine which crop would maximize the potential 

economic benefits from their fields under the current soil salinity conditions. 

Each field is composed of a number of areas according to soil salinity classes. Each area 

produces a specific yield potential based on its soil salinity class for each crop. The total 

revenue, cost, and net revenue for alfalfa, corn, sorghum, and wheat are based on the 

Colorado State University Extension (Agriculture and Business Management) 2007 crop 

budget estimates. The crop budget takes the averages and does not take into account the 

distribution within each field. However, the actual net revenue of each field depends on how 

many soil salinity classes are present in each field and the yield potential percentage of each 

class for a particular crop being considered. Therefore, the following equation is used to 

adjust the net revenue of each field: 

e fieldArea of th
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i


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 1Re  (2.6) 

where: n represents the number of different yield potential classes, i.e. n represents five 

classes when field US04 is planted with alfalfa. 
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2.4 Model Validation 

This study focused on three levels of soil salinity (low, moderate and high) and each level 

was represented by two fields. Out of each set of two fields, one field was used to construct 

the indicator variogram while the other was used for validation of the indicator variogram. 

Four different scenarios of planting alfalfa, corn, sorghum, and wheat were evaluated for each 

field. Therefore, four different indicator variograms were constructed for each field, and then 

applied to the other field in the same soil salinity level (validation field).  Fields US01, US14, 

and US04 were used to construct the indicator variograms for low, moderate, and high soil 

salinity levels respectively.  Fields US09, US80, and US10 were used for validation of the 

same levels of soil salinity, respectively. The criteria used for selecting a field for 

constructing the variogram or validating it was based on the range of soil salinity in each of 

the two fields.  The field with the larger soil salinity range was chosen for constructing the 

indicator variogram while the other one was used for validation. Therefore, if the validation 

field has fewer classes for indicator variograms, the extra classes are removed. 

 

2.5 Model Performance 

IK performance with the different crops and fields is measured using the following 

criteria: 

Model precision: The RMSE  is used to measure the prediction precision (Dobermann et. al., 

2006; Triantafilis et. al., 2001) and is defined as: 
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where iZ  is the observed value of the ith observation, *

iZ is the predicted value of the ith 

observation, and n is the number of points collected. 
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The RMSE tends to place more emphases on larger errors and, therefore, gives a more 

conservative measure than the mean absolute error MAE. 

Smoothing effect: Interpolation usually leads to a smoothing of the observations and thus to a 

loss of variance. To assess the ability of the interpolation method to preserve the variance, the 

ratio of the variance of the estimated values to the variance of the observed values is used 

(Haberlandt, 2006): 
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i      (2.8) 

The closer RVar  is to 1, the better the ability of the interpolation method to preserve the 

observed variance. 

Model effectiveness: The effectiveness of the model was evaluated using a goodness-of-

prediction statistic, G (Agterberg 1984; Kravchenko and Bullock 1999; Guisan and 

Zimmermann 2000; Schloeder et al. 2001).  The G-value measures how effective a prediction 

might be relative to that which could have been derived by using the sample mean (Agterberg 

1984): 
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Z is the sample mean.  A G-value equal to 1 indicates perfect prediction, a positive value 

indicates a more reliable model than if the sample mean had been used, a negative value 

indicates a less reliable model than if the sample mean had been used, and a value of zero 

indicates that the sample mean should be used. 

 

2.6 Results 

This section presents the process of selecting the indicator variograms of IK based on the 

Akaike Information Corrected Criteria (AICC) statistical parameter. Examples of IK maps for 
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different scenarios of crops and fields are provided. Examples of zones of uncertainty are also 

presented to quantify the risk associated with each of these zones. Finally, an estimate of the 

net economic revenue for each of the scenarios is provided. 

 

Table 2.3: Akaike Information Corrected Criteria (AICC) of the Exponential, Gaussian, and Spherical 

variogram models for indicator kriging when evaluating alfalfa, corn, sorghum, and wheat as possible 

crops. 

Field Alfalfa Corn 

Sph. Exp. Gau. Sph. Exp. Gau. 

US01 55.7 55.6 55.0 72.3 72.4 72.0 

US04 65.6 46.8 44.4 68.0 48.5 46.9 

US14 63.9 58.5 61.0 67.6 67.7 68.8 

 Sorghum Wheat 

US01 61.5 61.5 54.5 N/A N/A N/A 

US04 64.0 60.3 60.3 84.0 84.2 84.0 

US14 62.5 62.4 63.3 64.5 64.6 64.5 

*N/A: the total area of the field has 100% yield potential. 

 

Table 2.3 shows the AICC values of the Exponential, Gaussian, and Spherical variogram 

models for the different combinations of crops and fields. The variogram model with the 

smallest AICC is considered the best. In most of the scenarios the Gaussian model 

performance is the best since the AICC values are the smallest. The performance of the 

Spherical and Exponential models is very similar. The average AICC values of the Spherical, 

Exponential, and Gaussian models for all the scenarios are: 66.3, 62.0, and 61.3 respectively. 

Fields US01, US04, and US14 were used to construct variograms for the different crop 

scenarios while fields US09, U10, and US80 were used for validation. 



24 

0 500 1000 1500

h

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

V
a

ri
a

n
c
e

Class 2 (90% YP)

Class 6 (0% YP)

Class 3 (75% YP)
Class 4 (50% YP)
Class 5 (< 50%  & > 0% YP)

.……...........

+

Average

0                                     500                                   1000                                  1500

Distance (m)

V
a
ri

a
n

c
e

0
.0

  
  

  
 0

.2
  

  
  

 0
.4

  
  
  

  
0

.6
  

  
  

 0
.8

  
  

  
  

1
.0

  
  

  
 1

.2

 

Figure 2.2: Example of indicator variograms for field US04 for alfalfa. 

 

Figure 2.2  shows an example of the indicator variograms for field US04 for a scenario of 

planting alfalfa. From the data presented in Table 3, the AICC value of the Gaussian model is 

the smallest; and therefore it was used to construct the indicator variogram by sorting the 

collected soil salinity data for that field from low to high. Five classes were assigned to the 

sorted soil salinity data according to the percent yield potential of alfalfa to represent the 

following yield potentials: 90%, 75%, 50%, < 50% ~ > 0%, and 0%. 
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Table 2.4: Different classes and zones of uncertainty for the selected fields planted with different 

scenarios of growing alfalfa, corn, sorghum, and wheat were evaluated 

 US01 US04 US09 US10 US14 US80 

 Alfalfa 

YP A(ha) Unc A(ha) Unc A(ha) Unc A(ha) Unc A(ha) Unc A(ha) Unc 

100%     3.83 0       

90% 11.68 0.24 18.10 0.21 25.53 0.07 1.92 0.24 3.01 0.22 7.08 0.16 

75% 4.30 0.27 11.57 0.28   0.66 0.32 7.48 0.24 3.25 0.23 

50% 0.22 0.17 32.56 0.17   0.57 0.38 2.04 0.28 0.53 0.20 

<50%   20.54 0.17   0.72 0.23 0.20 0.32 0.40 0.25 

0%       0.33 0     

 Corn 

YP A(ha) Unc A(ha) Unc A(ha) Unc A(ha) Unc A(ha) Unc A(ha) Unc 

100%     1.98 0.15       

90%     16.89 0.17       

75% 5.98 0.20 20.56 0.20 10.04 0.17 2.33 0.25 5.29 0.26 8.57 0.15 

050% 8.04 0.19 18.54 0.15   0.43 0.27 6.11 0.18 2.08 0.21 

<50% 2.18 0.18 29.74 0.19   0.43 0.27 1.34 0.13 0.61 0.22 

0%   24.34 0   1.00 0     

 Sorghum 

YP A(ha) Unc A(ha) Unc A(ha) Unc A(ha) Unc A(ha) Unc A(ha) Unc 

100% 15.66 0.03 25.08 0.24 28.92 0 2.42 0.25 7.28 0.25 9.52 0.20 

90% 0.35 0.25 4.40 0.35   0.15 0.32 3.27 0.25 0.71 0.23 

75% 0.19 0.20 20.96 0.21   0.34 0.35 1.40 0.25 0.61 0.25 

50%   24.80 0.22   0.44 0.21 0.79 0.32 0.32 0.28 

<50%   10.85 0.18   0.72 0.24   0.09 0.29 

0%   7.09 0.24   0.11 0.30     

 Wheat 

YP A(ha) Unc A(ha) Unc A(ha) Unc A(ha) Unc A(ha) Unc A(ha) Unc 

100% 16.20 0 40.66 0.29 28.92 0 2.87 0.23 12.28 0.18 10.98 0.21 

90%   12.48 0.25   0.11 0.24 0.01 0 0.15 0.19 

75%   13.32 0.26   0.11 0.16 0.34 0.26 0.13 0.18 

50%   11.84 0.25   0.54 0.22 0.11 0.23   

<50%   9.06 0.28   0.56 0.24     

0%   5.83 0.22         

YP: Yield potential; Unc: Zone of Uncertainty percentage. 

 

Table 2.4 shows the yield potential areas of each class and the corresponding zones of 

uncertainty for all the scenarios of the selected crops and fields. 
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Figure 2.3: Pie charts showing different categorical kriging areas for the different fields when 

different crops are evaluated. 
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In addition, Figure 2.3 shows pie-charts that summarize all scenarios of the different 

combinations of crops and fields. The same color scheme used with the maps was also used 

to produce the pie-charts where colors go from light to dark to represent productivity from 

high to low. Both Table 4 and Figure 3 show that fields with low soil salinity ranges (US01 

and US09) can reach the maximum production for all crops. However, with moderate and 

high salinity fields only sorghum and wheat start with 100% yield potential areas. Alfalfa has 

good production and in most scenarios, it starts with 90% yield potential areas. Corn has 

moderate production and in most cases, it starts with 75% yield potential areas. 
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Figure 2.4: IK maps for field US01 (low soil salinity) when different crops are evaluated. 

 

Figure 2.4, Figure 2.5, and Figure 2.6 show three examples of IK maps for fields US01, 

US14, and US04 which represent low, moderate, and high soil salinity ranges when alfalfa, 
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corn, sorghum, and wheat are assumed to be grown. Figure 2.4 shows the IK maps for field 

US01, which has low soil salinity. The whole area of field US01 can reach the maximum 

expected productivity (100% yield potential) for wheat, while the expected production of 

sorghum is quite high with the majority of the field having the potential to produce 100% of 

yield potential with small areas of 90% and 75% of yield potential. Alfalfa expected 

production is high with most of the field expected to produce between 90 and 100% of yield 

potential and very small areas expected to produce 75% of yield potential. Corns expected 

production is moderate where the production is between 90% and 50% of yield potential.  
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Figure 2.5: IK maps for field US14 (moderate soil salinity) when different crops are evaluated. 

 

Figure 2.5 shows IK maps for field US14, with moderate soil salinity range when the 

scenarios of planting alfalfa, corn, sorghum, and wheat are applied. The wheat expected yield 

in field US14 is high with large areas represented by 100% of yield potential and very small 
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areas represented by 90% and 75% of yield potential. Alfalfas expected production is 

reasonably good where the expected yield production is between 90% and less than 50% of 

yield potential. Sorghum has moderate production where large areas in the field are 

represented by 100% and 90% of yield potential and some areas are represented by 75% and 

50% of yield potential. Corn is moderate where the expected production is between 75% and 

less than 50% of yield potential. 
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Figure 2.6: IK maps for field US04 (high soil salinity range) when different crops are evaluated. 

 

Figure 2.6 shows IK maps for field US04, with high soil salinity range when the scenarios 

of planting alfalfa, corn, sorghum, and wheat are applied. Even though field US04 has 

relatively high soil salinity, the expected production of wheat is relatively high with a large 

percent of the area represented by 100% and 90% of yield potential. The expected production 
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for sorghum and alfalfa is moderate where the production of sorghum covers a range between 

100% and 0% of yield potential while alfalfa covers a range between 90% and 0% of yield 

potential. Corn expected production is poor with a few areas represented by 75% of yield 

potential and the majority of the areas have 50% or less of yield potential. 

Zone 1 Zone 2

Zone 4Zone 3  

Figure 2.7: Zones of uncertainty for field US14 for alfalfa. 

 

Figure 2.7 shows an example of zones of uncertainty for field US14 when the scenario of 

planting alfalfa is applied. One of the advantages of IK is that it can provide a risk-

assessment tool for high-risk regions in a field. Figure 2.7 as well as Table 2.4 show how 

these areas can be quantified. As shown in Table 2.4, the areas of the different zones of 

uncertainty vary between 0% and 35% of the class area.  
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Table 2.5: Total revenue, cost, and net revenue per hectare ($/ha) of alfalfa, corn, sorghum, and wheat 

Crop Alfalfa Corn Sorghum Wheat 

Total revenue ($/ha) 1,780 1,780 381 863 

Cost ($/ha) 751 724 161 403 

Net Revenue ($/ha) 1,028 1,055 220 460 

 

Table 2.6: Adjusted net revenue ($/ha) with and without risk of alfalfa, corn, sorghum, and wheat 

under the different conditions of soil salinity at the selected fields.  

Field 

ID 

 

 

Alfalfa Corn Sorghum Wheat 

Net Rev. ($/ha) Net Rev. ($/ha) Net Rev. ($/ha) Net Rev. ($/ha) 

Without 

Uncert.  

With 

Uncert* 

Without 

Uncert* 

With 

Uncert.  

Without 

Uncert* 

With 

Uncert.  

Without 

Uncert* 

With 

Uncert.  

US01 878 661 589 447 219  212 460 460 

US04 511 407 364 297 141  108 346 250 

US09 937 880 902 745 220 220 460 460 

US10 658 478 522 266 169  74 380 168 

US14 758 574 609 609 201  151 455 371 

US80 837 686 714 599 211  168 458 363 

*With Uncertainty - the net revenue was calculated using the percentage of the uncertainty 

zones 

 

Table 2.5 shows the total revenue, cost, and net revenue for alfalfa, corn, sorghum, and 

wheat based on the Colorado State University Extension (Agriculture and Business 

Management) 2007 crop budget estimates. The total revenue includes the final revenue of the 

crop without taking into account the costs. Net revenue is the revenue after the costs are taken 

into account. The net revenue and cost of alfalfa and corn are high while both are low for 

sorghum and wheat. For one hectare of alfalfa, in order to gain a net revenue of $1,028, a 

grower needs to spend $751 while they only need to spend $161 for sorghum but they only 

gain a net revenue of $220. 

Table 2.6 shows the adjusted net revenue with and without risk according to the indicator 

kriging maps of yield potential of each crop based on the soil salinity thresholds of each field. 

The net revenue of the different crops has the following order: alfalfa, corn, wheat, and 
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sorghum. The net revenue of alfalfa and corn are highly affected by the soil salinity levels 

while sorghum and wheat are slightly affected. 

Table 2.5 shows that there is a slight difference between the net revenue of alfalfa and 

corn while Table 2.6 shows that there is a significant difference in the adjusted net revenue 

for alfalfa and corn among different fields due to the sensitivity of these crops to salinity and 

the salinity levels in each field. The difference between the net revenue of alfalfa and corn is 

significant in all fields except for field US09. That is due to the fact that soil salinity in field 

US09 allows for 100% of yield potential and there is a big portion of the field with 90% of 

yield potential while the salinity levels in other fields allows only for 75% or less of yield 

potential. Uncertainty zones sometimes have significant impact and sometimes marginal 

impact. Therefore, taking uncertainty zones into consideration provides farmers with more 

support when making a selection on the crop that has the potential to generate higher net 

revenue. 

 

Table 2.7: Performance parameters: RMSE, RVar, and G values of indicator kriging when evaluating 

alfalfa, corn, sorghum, and wheat as possible crops 

 RMSE RVar G RMSE RVar G 

 US01 US04 

Alfalfa 0.59 0.95 -0.12 0.78 1.05 0.61 

Corn 0.85 0.82 -0.49 0.06 1.00 1.00 

Sorghum 0.46 0.54 0.02 1.00 1.04 0.57 

Wheat N/A N/A N/A 0.06 1.00 1.00 

 US09 (Validation) US10 (Validation) 

Alfalfa 0.60 0.40 -0.44 0.45 1.05 0.89 

Corn 0.36 0.99 0.64 0.33 1.04 0.93 

Sorghum N/A N/A N/A 0.44 1.03 0.93 

Wheat N/A N/A N/A 0.61 1.06 0.84 

 US14 US80 (Validation) 

Alfalfa 0.49 0.77 0.57 0.49 0.90 0.62 

Corn 0.40 0.87 0.64 0.44 0.70 0.61 

Sorghum 0.73 0.77 0.45 0.69 0.79 0.47 

Wheat 0.63 0.42 0.02 0.46 0.25 0.38 
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Table 2.7 shows the performance parameter values of IK when evaluating alfalfa, corn, 

sorghum, and wheat as possible crops under different soil salinity conditions. N/A means that 

the whole field can produce 100% of yield potential which applies to the crops with high 

tolerance to soil salinity when planted in the fields with low soil salinity levels. G values are 

positive for the fields with high and moderate soil salinity (US04, US10, US14, and US80) 

while it does not perform as well in fields with low soil salinity (US01 and US09). In some 

cases the G value reaches 1 or close to 1 which means that the model is perfect such as corn 

and wheat in US04 and corn in US09. The RVar values are closest to 1 in fields with a high 

range of soil salinity (US04 and US10).  In cases where the RVar values are small such as 

wheat in US14 and US80, this means that the model was not able to overcome the smoothing 

effects problem. The RMSE values are reasonable in all fields since all values are equal or 

less than 1. 

As previously mentioned, several studies have been carried out using IK applications in 

soil science. However, none of them used IK as a tool to manage soil salinity with crop 

productivity to maximize the benefit. As presented in the results above, IK was used to 

determine which crops to grow in order to maximize the potential net benefits taking into 

account the variability of soil salinity in the fields. In this study, different thresholds were 

made in the soil salinity data based on the salt tolerance of different crops. Therefore, instead 

of representing different soil salinity thresholds, the resulting indicator variograms represent 

different yield potentials. To improve the usability of the resulting maps, the different areas 

of yield potential as well as the corresponding zones of uncertainty of produced maps were 

quantified and evaluated. The yield potential and the uncertainty zones can provide a 

management tool for selecting the crops that have the potential to generate the highest yields. 

However, high yield of specific crop is not guaranteed to provide the maximum net revenue 
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due to the market price, therefore, the net revenue values were evaluated and adjusted to 

incorporate the variability in soil salinity in fields. 

 

2.7 Crop Selection Recommendations 

The following are practical recommendations for farmers and technicians to be used as 

guidelines for crop selection based on the variability of soil salinity: 

Case 1: Low level of soil salinity where no significant impact on most crops. In this case, 

no restrictions for crop selection and high profit crops should be considered. Alfalfa would be 

strongly recommended as the first choice while corn would be recommended as the second 

choice. The expected net revenue from examples presented in this study for low levels of soil 

salinity can provide a net revenue for alfalfa of approximately $900/ha while the expected net 

revenue for corn is approximately $750/ha. Wheat and sorghum are not recommended since 

the net revenue for both of them is low compared to those of alfalfa and corn. 

Case 2: Moderate level of soil salinity where the impact of soil salinity is slight on 

moderate sensitive crops such as alfalfa and corn and no impact on moderate tolerant crops 

such as wheat and sorghum. Alfalfa is strongly recommended as the best choice. The 

examples in this study for moderate level of soil salinity fields shows that the net revenue of 

alfalfa would be $800/ha while the net revenue of corn would be $660/ha. 

Case 3: High level of soil salinity where its impact on moderate sensitive crops is 

significant while the impact on moderate tolerant crops such as wheat and sorghum is slight. 

Even though the high level of soil salinity has significant impact on moderate sensitive crops, 

these crops still provide high net revenue. The examples presented for high soil salinity levels 

shows a net revenue of approximately $580/ha while the second choice would be corn with a 

net revenue of approximately $440/ha. 
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It is clear that the market price has greater impact on crop selection rather than soil 

salinity impact. As presented earlier, the expected yield of alfalfa and corn is less than the 

expected yield of wheat and sorghum. However, the market price of alfalfa and corn is higher 

than those of wheat and sorghum which makes alfalfa and corn better selections. There was a 

significant difference between the prices of alfalfa and corn versus wheat and sorghum in 

spite of the reduction in the productivity of alfalfa and corn due to the impact of soil salinity. 

To make the results of this study more general, the crops presented: alfalfa, corn, wheat, and 

sorghum can be replaced by crops with similar tolerance to soil salinity in order to 

accommodate other crop selections. Therefore, since alfalfa and corn are moderate sensitive 

to soil salinity, they can be replaced by some other crops that have the same tolerance to soil 

salinity such as broccoli, cabbage, celery, cucumbers, and tomatoes. Wheat and sorghum are 

moderate tolerant to soil salinity, therefore, they can be replaced by grapes, pineapples, 

squash, and sugar beets. 

 

2.8 Conclusion 

A geostatistical approach (indicator kriging), which makes no assumptions regarding the 

normality of the dataset and is essentially a non-parametric model, was used in this study. IK 

uses the behavior and correlation structure of the transformed data instead of the data itself. It 

uses a series of threshold values between the smallest and largest data values in the dataset. 

This advantage allows incorporating soil salinity with crop yield potential where soil salinity 

values were transformed into yield potential classes. Therefore, IK was successful in 

generating classified maps of expected yield potential of the main crops grown in the study 

area. In addition to generating the classified maps, the results show that IK has the power to 

generate the corresponding zones of uncertainty. Providing farmers with information 
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regarding the uncertainty associated with each zone, which can help them in their decision 

making process. The fields used in this study were selected to represent different levels of 

soil salinity from low, to moderate, to high. Soil salinity values for some fields were 

homogeneous with small ranges such as field US09 while others had high ranges such as 

US04. The outcomes of this study show how to obtain the maximum productivity for a 

particular field under its current soil salinity conditions. However, to reach a high potential 

productivity may be a target; but to maximize the expected net revenue under different soil 

salinity conditions should be the optimal target. The results presented in this study show that 

wheat and sorghum provide the highest expected yield potential while alfalfa and corn 

provide the highest expected net revenue under the same conditions of soil salinity. 

Therefore, this study can be used to develop management strategy guidelines for crop 

selections in order to maximize the economic benefit based on the soil salinity of fields. 
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3 USING DISJUNCTIVE KRIGING AS A QUANTITATIVE APPROACH TO 

MANAGE SOIL SALINITY AND CROP YIELD 

3.1 Summary 

Disjunctive kriging (DK) is a nonlinear geostatistical model that provides unbiased 

estimates of the conditional probability (CP) that the true value of the property of interest 

doesn’t exceed a defined threshold. It has important implications in aiding management 

decisions by providing growers with a quantitative input that can be used for evaluating the 

variability of the crop productivity at different zones in fields. The objectives of this study 

are: 1) identify the yield potential percentage (YP%) for several crops at different zones in 

fields under multiple soil salinity thresholds; 2) evaluate the excepted YP% of whole fields 

for several crops under multiple soil salinity thresholds; and 3) provide guidelines to growers 

to help them decide which crops to grow. To achieve these objects, the DK technique was 

applied to data from a project conducted in the south eastern part of the Arkansas River Basin 

in Colorado to generate CP maps. Two datasets of soil salinity (316 and 136 points) collected 

in two fields in 2004 and 2005 were used to generate the CP maps and to evaluate different 

scenarios of the expected YP% of several crops at multiple soil salinity thresholds. These 

datasets were selected to represent a wide range of soil salinity conditions in order to be able 

to evaluate a wide variety of crops (larger set of crops than those grown in the study area) 

according to their soil salinity tolerances. The following crops were used for evaluation: field 

crops (barley, sorghum, and corn); fruit crops (pomegranate, apples, and strawberries); 

vegetable crops (beets, tomatoes, and lettuce); and forage crops (barley (hay), crested wheat 

grass, and alfalfa). This selection was set to include three crops of each type to represent 

high, moderate, and low soil salinity tolerances. Scenarios were created for each of the above 

mentioned crops and the DK technique was applied to each scenario in order to generate CP 
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maps and evaluate the expected YP%. The results of this study show that the CP maps 

generated using the DK technique give an accurate characterization and quantification of the 

different zones of the fields. CP maps can be used to assess the expected YP% of whole fields 

for several crops under multiple soil salinity thresholds. Upon the knowledge of the YP% of 

different areas, a management decision action can be taken to manage the productivity of a 

field by selecting another crop or adjusting the inputs such as fertilizer, seeding rates and 

herbicides in low productivity areas. 

 

3.2 Introduction 

Disjunctive Kriging (DK), unlike other geostatistical methods such as ordinary kriging, 

can be used as a quantitative method for making management decisions if the conditional 

probability (CP) information is available. DK has several advantages over linear estimation 

methods. It provides a more accurate estimate of the property of interest and can generate an 

estimate of the CP for that property (Yates and Yates, 1988). This CP can be used as an input 

to a management decision making model to provide a quantitative means for determining 

whether management actions are necessary (Yates and Yates, 1988). Whenever the value of a 

property in a region is larger than the cutoff level at a probability equal to, or greater than, the 

critical probability level, this indicates that an action should be taken. Such management 

decisions may often be based on threshold values of a soil property. There may be threshold 

concentrations of contaminants specified by regulators that land managers are obliged to 

maintain. The management of soil nutrients may also be based on threshold values. For 

example, if the concentration of available (Bray-1) phosphorus in the soil is larger than 15 mg 

kg-1 then no phosphorus is needed according to the University of Nebraska recommendations 

(Ferguson et al., 2000). There are other examples where threshold values of other soil 
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properties are of importance for management. If the concentration of cobalt in the pasture 

soils of Scotland is smaller than 0.25 mg kg-1 then action should be taken to avoid cobalt 

deficiency in grazing livestock (Webster and Oliver, 1989). Land use planning may also refer 

to threshold values of soil properties. Wood et al. (1990) used a DK technique to estimate and 

map the soil salinity in the Bet Shean Valley of Israel from measurements of electrical 

conductivity. Zirschky (1985), Zirschky and Harris (1986) and Zirschky et al. (1985) 

investigated the use of geostatistics for determining reclamation strategies for the cleanup of 

hazardous waste sites. The kriged estimates of the concentrations of contaminants may be 

used to plan soil remediation, for example, estimates of the concentration of a nutrient may 

be used to plan spatially variable application of fertilizers (Schepers et al., 2000). Russo 

(1984a, b) described a method for using geostatistics to aid in managing the soil salinity of a 

heterogeneous field. 

In addition to kriging techniques, other authors have used delineation of management 

zones for either soil salinity or yield management. Fridgen et al. (2000) used elevation, soil 

salinity, and slope to create management zones for wheat. Fleming et al. (1999) used bare soil 

color, farmer’s perception of yield, and field topography to classify fields into three 

productivity zones (high, moderate, and low). Fraisse et al. (1999) used cluster analysis to 

identify areas that have similar landscape attributes, soil properties and plant parameters, to 

quantify patterns of variability and to reduce the empirical nature of defined management 

zones. Stafford et al. (1998) used fuzzy clustering of combined yield monitor data to divide a 

field into potential management zones. Boydell and McBratney (1999) divided a field into 

management zones using cotton yield estimates from satellite imagery.  

Most of the previous studies that used geostatistical techniques were able to provide 

different approaches to assess soil salinity. However, most of these studies do not provide 

techniques that integrate soil salinity and crop yield to improve crop production. 
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Geostatistical techniques have been used for management of soil nutrients, land use and 

reclamation (Ferguson et al., 2000; Webster and Oliver, 1989; Wood et al., 1990; Zirschky, 

1985; Zirschky and Harris, 1986; and Zirschky et al., 1985; Schepers et al., 2000). Only a few 

studies have utilized geostatistical techniques to manage soil salinity (Eldeiry and Garcia, 

2011; Wood et al., 1990; Russo,1984a; and Russo,1984b). Eldeiry and Garcia (2011) used 

Indicator Kriging (IK), a non-linear technique, for soil salinity and yield management to 

maximize the economic benefits. They applied IK to different scenarios of crops and soil 

salinity thresholds to generate maps that show the expected percent yield potential areas and 

the corresponding zones of uncertainty. The DK, a non-linear technique, is used in this study, 

to provide unbiased estimates of the conditional probability (CP) that the true value of the 

property of interest doesn’t exceed a defined threshold. Even though two different techniques 

(DK and IK) have been used in these two studies, both provide management tools to 

maximize the crop productivity under the current soil salinity conditions. The main 

contributions of this study are: 1) several crops are evaluated under different soil salinity 

thresholds which provide growers with a variety of crop selections; 2) CP maps were 

generate which can be used to quantify the variability of YP% in different soil salinity zones 

of fields; and 3) the CP maps can be used as management tools to increase crop productivity 

based on the current soil salinity of different fields. 

 

3.3 Data and Methodology 

3.3.1 Study Area 

The study area is located in the south eastern part of the Arkansas River Basin in 

Colorado near the cities of Rocky Ford and La Junta (Figure 3.1). Farmers in this area are 

facing decreasing crop yields due in part to high levels of salinity in their irrigation water. In 
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some areas, land is being taken out of production due to unsustainable crop yields. This is due 

in part to the fact that the Arkansas River is one of the most saline rivers in the United States 

(Tanji, 1990; Miles, 1977). Farmland along the lower Arkansas River Basin has been 

continuously irrigated since the 1870’s and began to develop shallow, saline water tables by 

the beginning part of the twentieth century (Miles, 1977). Average water table depths in this 

region have risen towards the surface approximately 0.3 – 1.3 m between 1969 and 1994 

(Cain, 1997) which has only exacerbated the salinity problems because of increasing amounts 

of upflux of saline groundwater. In a survey of the region, 68% of producers stated that high 

salinity levels were a significant concern (Frasier et al., 1999). Crop yield reduction due to 

salinity in fields in the Lower Arkansas Valley has been estimated to be between 0 and 75% 

with a total revenue loss ranging from $0-$750/ha based on 1999 crop prices (Gates et al., 

2002). 
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Figure 3.1: The study area in the south eastern part of the Arkansas River Basin in Colorado. 

 

3.3.2 Selected fields and crops 

Two datasets of soil salinity points (316 and 136) were collected in two fields during the 

2004 and 2005 growing seasons. These two datasets were selected to represent a high range 

of soil salinity which allows evaluating a wide variety of crops with different soil salinity 

tolerances. The first dataset consists of 316 points with a minimum soil salinity value of 2.38 

dS/m, a maximum value of 41.23 dS/m, and a variance of 42.21 dS/m. The second dataset 

consists of 132 points with a minimum soil salinity value of 3.04 dS/m, a maximum soil 

salinity value of 31.26 dS/m, and a variance of 31.38 dS/m. Soil salinity data were collected 

using EM-38 electromagnetic probes and the location of the samples was determined using 

global position system (GPS) units. The EM-38 electromagnetic probes provide vertical and 

horizontal readings while the GPS units provide X and Y coordinates for each sample point. 
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A calibrated equation to convert the EM-38 electromagnetic probe readings to EC (dS/m) 

was developed for the study area by Wittler et al. (2006) and was used in this study. Soil 

moisture content and soil temperature were used for the soil salinity calibration equation. A 

detailed description of using the EM-38 electromagnetic probe in combination with GPS in 

collecting soil salinity can be found in Eldeiry and Garcia (2008) and Eldeiry et al. (2008).  

The evaluated crops were selected to represent field, fruit, vegetable, and forage crops where 

three crops of each category were selected to represent high, moderate, and low soil salinity 

tolerances. The following crops were evaluated as part of this study: field crops (barley, 

sorghum, and corn); fruit crops (olive, apples, and strawberries); vegetable crops (beets, 

tomatoes, and lettuce); and forage crops (barley (hay), crested wheat grass, and alfalfa). 

Different scenarios using each of these crops were created based on the soil salinity 

thresholds for each of them. These scenarios provide growers with a wide selection of crops 

according to the level of soil salinity in their fields. In addition to the selected crops in this 

study, other crops can be evaluated based on their similarity in soil salinity tolerance to one 

of the crops evaluated in this study. 

 

Table 3.1: Soil salinity threshold values (dS/m) of different YP% for the selected crops. 

Crop YP % 

Common name Botanical name 100 100-90 90-75 75-50 50-0 

Field Crops Soil Salinity (dS/m) 

Barley Hordeum vulgare 8.0 10.0 13.0 18.0 28.0 

Sorghum Sorghum bicolor 4.0 5.1 7.2 11.0 18.0 

Corn Zea mays 1.7 2.5 3.8 5.9 10.0 

Fruit Crops 

Olive Olea europaea 2.7 3.8 5.5 8.4 14 

Apples Pyrus malus 1.7 2.3 3.3 4.8 8.0 

Strawberries Fragaria spp. 1.0 1.3 1.8 2.5 4.0 

Vegetable Crops 

Beets Beta vulgaris 4.0 5.1 6.8 9.6 15 

Tomatoes Lycopersicon esculentum 2.5 3.5 5.0 7.6 12.5 

Lettuce Lactuca sativa 1.3 2.1 3.2 5.2 9.0 

Forage Crops 

Barley (hay) Hordeum vulgare 6.0 7.4 9.5 13.0 20.0 
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CWG Agropyron desertorum 3.5 6.0 9.8 16.0 28.5 

Alfalfa Hedicago sativa 2.0 3.4 5.4 8.8 15.5 
 

Table 3.1 shows the YP% and the corresponding soil salinity for the selected crops from 

field, fruit, vegetable, and forage crops. The YP% values according to soil salinity levels 

were adapted from Ayers and Westcot, (1976). They mentioned that for barley during the 

germination and seedling stages, soil salinity should not exceed 4 to 5 dS/m except for certain 

semi-dwarf varieties. However, Storey and Jones (1978) mentioned that barley is most 

sensitive to salinity at germination and young seedling stage and that it exhibits increased 

tolerance with age. Salinity tolerance at germination and seedling stages determines the stand 

density in the field under saline conditions. Therefore, the impact of salinity on barley during 

germination and seedling stages can be mitigated by increasing the seed density.  Ayers and 

Westcot (1976) also mentioned that for beets, during germination electrical conductivity 

should not exceed 3 dS/m. Many crops have little tolerance for salinity during seed 

germination, but significant tolerance during later growth stages. Table 1 shows the 

significant impact of soil salinity on productivity and how some crops can reach high 

productivity while others barely grow under the same conditions. For example, at a specific 

area of a field where soil salinity is 8.0 dS/m, the expected yield of barley is 100% while the 

expected yield of apples would be between 50% and 0%. 

 

3.3.3 DK equations: 

A brief description is provided in this study to explain the basic equations of DK. A more 

comprehensive explanation can be found in Matheron (1976), Journel and Huijbregts (1978), 

Yates et al. (1986a, b), and Yates (1986).  
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To obtain the DK estimator, the original soil salinity data must be transformed into a new 

variable, )(xY , with a standard normal distribution where pairs of sample values are bivariate 

normal. The function, )]([ xY , which describes this transformation is: 
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where the values for )(xY  are obtained by taking the inverse of the data, )]([)( 1 xZxY   

and )]([ xYH k is a Hermite polynomial of order k. The sCk ' are the Hermitian coefficients, 

which are determined using the properties of orthogonality, and are generally determined 

using numerical integration, as follows: 
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where iv , and iw , are the abscissa and weight factors for Hermite integration (Hochstrasser, 

1965). 

The DK estimator is calculated from a sum of unknown functions of the transformed 

sample values, )( ixY . It is required that each unknown function, )]([ ii xYf depend on only 

one transformed value, )( ixY . The DK  estimator is calculated using the following equation: 
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where if  is the unknown function with respect to the transformed variable, and n is the 

number of samples. 

An unbiased estimator with the minimum estimation variance can be obtained using the 

following equations: 

 )]([)(
0

**

o

K

k

kkoDK xYHCxZ 


     (3.4) 

 



52 

where 
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where the series in Eq. [4] has been truncated to K terms and ikb are the DK weights. The 

)]([*

ok xYH  represents the estimated value of the Kth Hermite polynomial at the estimation 

location. The sum of these estimates multiplied by the coefficient, kC [which transforms 

)(xY  into )(xZ ] makes up the DK estimate at ox . To obtain an estimated value for the 

Hermite polynomial, the DK weights, ikb , must be found by solving the linear kriging 

equation for each k as follows: 
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when 0k , Eq. [6] represents the unbiased condition, that is, the sum of the weights equals 

unity. The disjunctive kriging covariance can be calculated using the following equation: 
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One advantage of the DK method is that an estimate of the CP that the value at an 

estimation site is greater than an arbitrary critical value, cy , can be calculated. This CP is a 

useful means for determining the risk of various management alternatives. The CP is obtained 

by defining an indicator variable that is equal to unity if ci yxY )( and is zero otherwise (see 

Yates et al., 1986a, b).  This allows the CP to be written in terms of the conditional 

expectation and gives the estimator of the CP as: 
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where )( cyG and )( cyg are the cumulative and probability density functions, respectively, for 

a standard normal variable, and )]([*

ok xYH is found using Eq. [5]. The estimated CP density 

function, )(*

oDK xpdf , is found by taking the derivative of Eq. [8] with respect to cy and is: 
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3.3.4 Applying DK technique on soil salinity datasets: 

Data transformation: 

Data transformations should be performed before using DK. Transformations are used to 

make the data normally distributed where pairs of sample values are bivariate normal. There 

are several transformations methods and the appropriate method should be chosen. For all 

transformations, the predictions are automatically back-transformed to the original values 

before a map is produced. There are many forms of transformations such as: square-root 

which is a special case of the Box-Cox and is usually used when data is counts; Log 

transformation which is used for data with a skewed distribution; arcsine which is used with 

data that is proportions or percentages; and the normal score transformation which is used 

with simple, disjunctive, and cokriging. DK ranks the dataset, from lowest to highest values, 

and matches these ranks to equivalent ranks from a normal distribution. The normal score 

transformation was used for the data of this study since it is the best for the DK technique.  
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Figure 3.2: Histograms of the collected and transformed soil salinity data for the two datasets. 

 

Figure 3.2 shows the histogram plots of the observed and transformed soil salinity data 

for the two datasets. Histograms can provide information about the mode and its frequency, 

an indication of the overall variation, and the shape of the distribution. Both datasets are 

transformed using normal score transformations. When the first dataset was transformed, the 

mode value was set to zero with a frequency of 60, the overall variation is between -3 and 3 

dS/m, and the distribution is normal. When the second dataset was transformed, the mode 

value was set to zero with a frequency of 25, the overall variation is between -3 and 3 dS/m, 

and the distribution is normal. 

 

Generating the CP maps: 

An advantage of DK is the ability to generate CP maps that a value at an estimation site is 

greater than an arbitrary critical value. CP maps are generated by specifying a threshold as a 
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condition of probability that the values exceed (or do not exceed) the specified threshold. The 

level or quantity of the property that is being studied must be known in order to use DK 

effectively. This value is called the cutoff or critical level and values of the property that are 

larger than this level represent the event being considered. Also, the probability level that 

spurs a management action must be known. This is the critical probability level where the 

levels of the property being investigated will no longer be tolerated (Yates and Yates, 1988). 

Maas and Hoffman (1977) concluded that crops will generally be unaffected by salinity up to 

some threshold at which time yield will begin to decrease linearly as soil salinity levels 

increase. This correlation between soil salinity and crop productivity was used in this study to 

produce CP maps for YP% under different conditions of soil salinity thresholds. Each crop 

has different thresholds that can determine its YP% levels according to its tolerance to soil 

salinity. For example, sorghum can produce 100, 100-90, 90-75, 75-50, and 50-0 YP% when 

soil salinity values do not exceed 4, 5.1, 7.2, 11, and 18 dS/m respectively. Another example, 

corn can produce 100-90, 90-75, 75-50, and 50-0 YP% when soil salinity values do not 

exceed 2.5, 3.8, 5.9, and 10 dS/m respectively. These soil salinity threshold values were used 

as conditions to produce CP maps for different YP% of the selected crops. For each 

condition, a CP map was generated from 0% to 100% probability with 20% intervals. 

Therefore, in order to generate a CP map of sorghum that reaches 90-75 YP%, a condition 

must be set such that the soil salinity values should not exceed 7.2 dS/m while such a 

condition for corn should not exceed 3.8 dS/m to generate similar CP maps. For soil salinity 

sensitive crops such as strawberries, a higher CP cannot be produced since the condition 

requires that soil salinity must be very low.  For example, to produce a CP map for 

strawberries that has a 100% YP, a condition must be set that soil salinity values should not 

exceed 1 dS/m. 
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Assessing the crop productivity from the CP maps: 

The spatial analyst in ArcGIS was used to reclassify the resulting CP raster maps into six 

classes for each crop scenario with each dataset. These six classes of the CP maps represent 

data at 20% intervals from 0% to 100%. This was implemented in ArcGIS using the manual 

classification and setting the category values as: 0, 0.2, 0.4, 0.6, 0.8, and 1. Contour maps 

were used for visual illustration and they were generated using the ArcGIS surface analysis 

option of the spatial analyst. The “tabulated area” option in the ArcGIS toolbox was used to 

calculate the total area of each class, i.e., to quantify the CP maps. When a condition was set, 

i.e., soil salinity values do not exceed 4 dS/m, a condition for sorghum to have 100 YP%, the 

resulting CP map has contour lines of probability from 0% to 100% with 20% intervals that 

represent the 100 YP% of sorghum. The area contained within the 100% contour lines 

represents the area of the field that has 100% probability to produce 100% YP. There is one 

scenario for each threshold of each crop that produces a specific CP map. For example, there 

are five scenarios for sorghum while only four for corn based on the soil salinity tolerance of 

each crop (no 100 YP% class for corn). The following is an example of how the areas of 

different contour lines are calculated for the CP map that has a condition that the soil salinity 

values do not exceed 7.2 dS/m, which is the condition for sorghum to have 90-75 YP%. The 

area contained within the 100% contour line represents the area of the field that has 100% 

probability to produce 90-75 YP%. The area contained within the 100% and 80% contour 

lines represents the area of the field that has the 80-100% probability to produce 90-75 YP%. 

The area contained within the 80% and 60% contour lines represents the area of the field that 

has the 60-80% probability to produce 90-75 YP%, and so on. After calculating the areas of 

the different classes, each class area was divided by the total area of the field to obtain the 

percentage of that class from the total area of the field. To obtain the cumulative probability 



57 

for each scenario, the percentage of each class was multiplied with its probability and all of 

them were summed. 

 

3.3.5 Model Evaluation: 

Cross-validation was used to evaluate the DK geostatistical model for the different 

scenarios of the selected crops at different thresholds. Cross-validation removes each data 

location one at a time and predicts the associated data value and compares the measured and 

predicted values for all points. The statistics used in cross-validation serve as diagnostics to 

indicate whether the performance of the model is acceptable. The following statistical 

measures were set to guarantee that the prediction is unbiased, as close as possible to the 

measured value, and the variability of the prediction is correctly assessed: 

The mean prediction error was used to check if the model is unbiased (centered on the 

measured values), these values should be near zero to guarantee that the model is unbiased. 

The mean prediction error depends on the scale of the data; therefore the mean standardized 

prediction error was also used to check if the model is unbiased. These values should be close 

to zero to guarantee the model is unbiased. 

The root-mean-squared prediction error was used to check whether the prediction is close to 

the measured values, the smaller the root-mean-squared prediction error the closer the 

prediction is to the measured value.  

The variability was assessed in two different ways:  

Comparing the average standard error with the root-mean-squared prediction error. If the 

values are similar, then the variability in the prediction is correctly assessed. If the average 

standard error is greater than the root-mean-squared prediction error, then the variability of 

the predictions is overestimated. If the average standard error is less than the root-mean-

squared prediction error, then the variability of the predictions is underestimated. 
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Evaluating the root-mean-squared standardized error value. If it is close to one, then the 

variability of the prediction is correctly assessed.  If it is greater than one, then the variability 

of the prediction is underestimated.  If it is less than one, then the variability of the prediction 

is overestimated. 

 

3.4 Results 

In this section, the use of the DK technique as a tool for the management of soil salinity 

and yield to achieve maximum productivity under existing soil salinity conditions is 

discussed. First, three examples of CP maps of YP% at different soil salinity thresholds are 

presented which represent: a sensitive crop (strawberries), a moderate sensitive crop (corn), 

and a moderate tolerant crop (sorghum).  These examples are discussed and evaluated below 

to visualize the variation in the probability of YP% within a field. Second, the areas 

contained within the CP contours for all the selected crops were tabulated to evaluate the 

quantity of variation in the probability of YP% at different zones. Third, the cumulative 

probability of the whole field for each scenario was calculated to compare among the 

probabilities to reach different YP% for all the selected crops. Finally, some 

recommendations and guidelines for growers are presented based on the outcomes of this 

study to help them select specific crop(s) or to use agro-chemicals more efficiently in the 

different zones in their fields. 
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3b) Soil Salinity ≤ 4 dS/m

(YP%=50-0)

3a) Soil Salinity ≤ 2.5 dS/m

(YP%=75-50)

 

Figure 3.3: CP maps of YP% at different soil salinity thresholds of strawberries using the first dataset. 

 

Figure 3.3 and Figure 3.4 show two examples of CP maps of YP% at different soil 

salinity thresholds using the first dataset to represent: a sensitive crop (strawberries) and a 

moderate sensitive crop (corn). The purpose of these two examples is to visualize the 

variation in the probability of YP% for different zones in fields when planting different crops 

with different soil salinity tolerances. Contour maps were used to display the CP where each 

line is labeled with its YP% value. The area contained within two contour lines represents the 

area of the field that has the range of probability of these two contours to reach a specific 

YP%. The first example (Figure 3.3) shows the scenario of planting a sensitive crop 

(strawberries) with the highest probability of productivity of less than 75%. The following 

thresholds of soil salinity ≤ 2.5, ≤ 4 dS/m were used as conditions to produce probability 

maps of 75-50, 50-0 of YP% of strawberries respectively. Figure 3.3a shows that the 

probabilities that strawberries can reach 75-50 YP% are very limited with the condition of 

soil salinity ≤ 2.5 dS/m, the contour lines with low probabilities cover the majority of the 
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field. The maximum probability that strawberries can reach 75-50 YP% is 71% which is 

represented by a very small area at the bottom of the field. Figure 3b shows that the 

probabilities that strawberries can reach 50-0 YP% is higher (than those of Figure 3.3a) with 

the condition of soil salinity ≤ 4 dS/m, the contour lines with high probabilities cover 

significant areas of the field.  

4b) Soil Salinity ≤ 3.8 dS/m

(YP%=90-75)

4c) Soil Salinity ≤ 5.9 dS/m 

(YP%=75-50)

4d) Soil Salinity ≤ 10 dS/m 

(YP%=50-0)

4a) Soil Salinity ≤ 2.5 dS/m

(YP%=100-90)

 

Figure 3.4: CP maps of YP% at different soil salinity thresholds of corn using the first dataset. 

 

The second example (Figure 3.4) shows the scenario of planting a moderate sensitive crop 

(corn) with the highest probability of productivity of less than 100%. The following 
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thresholds of soil salinity ≤ 2.5, ≤ 3.8, ≤ 5.9, ≤ 10 dS/m were used as conditions to produce 

probability maps of 100-90, 90-75, 75-50, 50-0 of YP% of corn respectively. Figure 3.4a is 

similar to Figure 3.3a which means that corn can reach 100-90 YP% under the same 

condition as strawberries can reach 75-50 YP. 

 

Table 3.2: Areas of different zones with different Conditional Probabilities (CP) for all scenarios of 

the selected crops under different soil salinity thresholds for the first dataset. 

 CP CP 

YP 

(%) 

100% 80% 60% 40% 20% 0% 100% 80% 60% 40% 20% 0% 

 Barley Sorghum 

100 38.7 22.5 14.5 11.8 9.6 2.8 7.8 5.3 10.0 22.6 38.2 16.2 

100-

90 

54.5 18.0 12.7 9.2 3.8 1.8 10.8 8.1 17.6 26.0 24.6 12.9 

90-

75 

70.0 16.2 7.8 3.0 2.7 0.2 25.5 24.0 18.7 13.8 13.5 4.5 

75-

50 

87.8 7.1 3.0 2.0 0.1 0.0 62.2 16.5 11.4 5.7 3.2 1.0 

50-0 94.5 4.4 1.1 0.0 0.0 0.0 87.8 7.1 3.0 2.0 0.1 0.0 

 Corn Pomegranate 

100       0.1 2.6 5.8 7.7 51.5 32.3 

100-

90 

0.0 0.1 2.1 7.5 47.0 43.3 7.1 5.1 8.8 21.4 40.9 16.8 

90-

75 

7.1 5.1 8.8 21.4 40.9 16.8 12.0 9.7 19.2 25.3 22.1 11.8 

75-

50 

14.4 15.8 22.2 20.4 17.7 9.5 42.4 21.6 14.1 11.5 7.7 2.6 

50-0 54.5 18.0 12.7 9.2 3.8 1.8 74.3 15.1 5.7 2.8 2.2 0.0 

 Apples Strawberries 

100             

100-

90 

            

90-

75 

4.2 5.5 6.1 16.7 48.5 19.1       

75-

50 

10.0 6.7 15.5 26.2 27.7 13.8 0.0 0.1 2.1 7.5 47.0 43.3 

50-0 38.7 22.5 14.5 11.8 9.6 2.8 7.8 5.3 10.0 22.6 38.2 16.2 

 Beets Tomatoes 

100 7.8 5.3 10.0 22.6 38.2 16.2 0.0 0.1 2.1 7.5 47.0 43.3 

100-

90 

10.8 8.1 17.6 26.0 24.6 12.9 5.2 5.2 6.8 18.2 46.3 18.3 

90-

75 

21.2 23.1 20.4 14.9 14.7 5.7 10.5 7.5 16.9 26.1 25.8 13.2 
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75-

50 

51.9 18.9 12.7 10.1 4.4 2.0 30.8 23.9 16.9 12.7 12.3 3.3 

50-0 78.0 13.7 4.0 2.8 1.4 0.0 68.5 16.4 8.7 3.2 2.9 0.3 

 Lettuce Barley (Hay) 

100       15.0 17.2 22.3 19.4 16.9 9.2 

100-

90 

      29.4 23.8 17.5 13.0 12.7 3.6 

90-

75 

3.4 5.6 5.7 15.2 49.9 20.1 51.4 19.1 12.8 10.2 4.6 2.1 

75-

50 

11.3 8.6 18.2 25.9 23.5 12.4 70.0 16.2 7.8 3.0 2.7 0.2 

50-0 49.3 19.8 13.0 10.6 5.2 2.2 90.4 5.4 3.2 1.0 0.0 0.0 

 Crested Wheat Grass Alfalfa 

100 5.2 5.2 6.8 18.2 46.3 18.3       

100-

90 

15.0 17.2 22.3 19.4 16.9 9.2 4.8 5.3 6.4 17.6 47.2 18.6 

90-

75 

54.5 18.0 12.7 9.2 3.8 1.8 12.0 9.7 19.2 25.3 22.1 11.8 

75-

50 

81.0 11.9 3.4 2.8 0.9 0.0 45.2 20.9 13.8 11.0 6.6 2.4 

50-0 95.0 4.1 0.8 0.0 0.0 0.0 80.9 11.8 3.4 2.8 0.9 0.0 

 

Table 3.3:  Areas of different zones with different Conditional Probabilities (CP) for all scenarios of 

the selected crops under different soil salinity thresholds for the second dataset. 

 CP CP 

YP (%) 100% 80% 60% 40% 20% 0% 100% 80% 60% 40% 20% 0% 

 Barley Sorghum 

100 62.0 11.2 7.8 7.5 6.4 5.2 42.7 10.6 5.7 8.7 18.9 13.5 

100-90 71.5 8.5 7.2 3.9 6.1 2.8 51.8 6.8 7.0 10.0 14.4 10.0 

90-75 82.7 5.8 3.4 4.1 4.0 0.0 60.2 10.3 8.4 7.2 8.0 5.9 

75-50 91.6 4.6 2.7 1.1 0.0 0.0 75.1 8.9 5.0 3.6 6.3 1.0 

50-0 97.3 2.6 0.1 0.0 0.0 0.0 91.6 4.6 2.7 1.1 0.0 0.0 

 Corn Pomegranate 

100             

100-90       40.9 11.0 6.2 8.0 19.3 14.5 

90-75 40.9 11.0 6.2 8.0 19.3 14.5 53.9 5.6 8.0 9.9 13.3 9.3 

75-50 57.3 5.3 10.2 9.0 10.7 7.5 65.3 10.6 7.1 6.6 6.0 4.4 

50-0 71.5 8.5 7.2 3.9 6.1 2.8 84.6 4.5 3.5 4.6 2.7 0.0 

 Apples Strawberries 

100             

100-90             

90-75 20.5 15.1 10.1 7.5 21.9 25.0       

75-50 49.7 8.2 5.8 10.3 15.4 10.6       

50-0 62.0 11.2 7.8 7.5 6.4 5.2 42.7 10.6 5.7 8.7 18.9 13.5 

 Sugar Beets Tomatoes 

100 42.7 10.6 5.7 8.7 18.9 13.5       
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100-90 51.8 6.8 7.0 10.0 14.4 10.0 33.2 12.1 7.8 6.6 20.2 20.1 

90-75 59.8 9.7 8.7 7.2 8.4 6.2 50.6 7.7 6.4 10.2 14.9 10.3 

75-50 69.5 8.9 7.2 4.9 6.0 3.5 60.7 10.7 8.2 7.3 7.5 5.6 

50-0 85.9 3.8 3.6 4.8 2.0 0.0 77.1 8.8 3.8 3.7 6.5 0.1 

 Lettuce Barley (Hay) 

100       57.7 6.0 10.0 8.8 10.3 7.3 

100-90       60.7 10.7 8.2 7.3 7.5 5.6 

90-75       68.4 9.2 6.9 5.6 6.0 3.8 

75-50 51.8 6.8 7.0 10.0 14.4 10.0 82.7 5.8 3.4 4.1 4.0 0.0 

50-0 68.4 9.2 6.9 5.6 6.0 3.8 91.6 4.6 2.7 1.1 0.0 0.0 

 Crested Wheat Grass Alfalfa 

100 33.2 12.1 7.8 6.6 20.2 20.1       

100-90 57.7 6.0 10.0 8.8 10.3 7.3 26.1 13.6 9.9 6.1 20.8 23.6 

90-75 70.5 8.7 7.3 4.3 6.0 3.1 51.8 6.8 7.0 10.0 14.4 10.0 

75-50 87.7 3.9 3.6 4.1 0.7 0.0 66.9 9.9 6.9 6.1 6.0 4.1 

50-0 99.6 0.4 0.0 0.0 0.0 0.0 87.6 3.9 3.6 4.1 0.7 0.0 

 

Table 3.2 and Table 3.3 show the areas with different CP that reach different YP% for all 

crop scenarios for both datasets. The purpose of presenting these tables is to provide a 

quantitative means to present the variation in the probability of YP%. Both tables show how 

the areas contained within the 100% CP contour lines increase while the areas contained 

within the 0% CP contour lines decrease with the decrease of YP%. This sequence of 

increase or decrease is not followed for the areas contained within contour lines between 

100% and 0% of CP (80%, 60%, 40%, 20%). As an example, for the scenario of planting 

sorghum in Table 3.3 for the first dataset, the areas contained within the contour lines of 

100% CP increase (8, 11, 25, 62, 88) as the YP% decrease (100, 100–90, 90–75, 75-50, 50–0) 

respectively. For the same scenario, the areas contained within the contour lines of 0% CP 

decrease (16, 13, 4, 1, 0). However, there is a tendency for the areas close to the 0% CP to 

decrease and the areas close to the 100% CP to increase. There is a transition zone among the 

areas that have a tendency to decrease and those that have a tendency to increase. This 

increase or decrease of the areas contained within contour lines with magnitudes between 

100% and 0% CP depends on the values of the collected soil salinity data and their locations 

as well as the soil salinity threshold of each scenario. 
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Table 3.4: The cumulative CP% of the whole field for the two datasets at different levels of soil 

salinity thresholds (different YP%) of all the scenarios of the selected crops. 

YP (%) CP% for the whole field CP% for the whole field 

 1st dataset 2nd dataset 1st dataset 2nd dataset 

 Barley Sorghum 

100 72.1 79.9 34.7 61.8 

100-90 80.9 85.4 43.2 68.4 

90-75 89.4 91.8 64.1 78.0 

75-50 96.1 97.4 85.1 88.0 

50-0 98.7 99.4 96.1 97.4 

 Corn Pomegranate 

100 0 0 19.0 0 

100-90 13.7 0 33.1 60.5 

90-75 33.1 60.5 45.8 69.8 

75-50 52.0 73.4 74.3 81.9 

50-0 80.9 85.4 91.3 92.7 

 Apples Strawberries 

100 0 0 0 0 

100-90 0 0 0 0 

90-75 28.6 46.0 0 0 

75-50 40.7 66.9 13.7 0 

50-0 72.1 79.9 34.7 61.8 

 Beets Tomatoes 

100 34.7 61.8 13.7 0 

100-90 43.2 68.4 30.0 54.2 

90-75 60.8 77.3 42.2 67.6 

75-50 79.5 84.1 67.6 78.6 

50-0 92.8 93.3 88.7 89.2 

 Lettuce Barley (Hay) 

100 0 0 53.3 74.0 

100-90 0 0 66.7 78.6 

90-75 27.4 0 79.3 83.4 

75-50 44.2 68.4 89.4 91.8 

50-0 78.1 83.4 97.0 97.4 

 Crested Wheat Grass Alfalfa 

100 30.0 54.2 0 0 

100-90 53.3 74.0 29.4 49.5 

90-75 80.9 84.8 45.8 68.4 

75-50 93.9 94.8 75.9 82.7 

50-0 98.8 99.9 93.7 94.7 
 

Table 3.4 shows the cumulative probability of YP% for the whole field which include all 

zones of variable productivity. The cumulative probability increases with the increase of the 

soil salinity threshold values i.e., the decrease of YP%. For sorghum, the first dataset shows 
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that under the following soil salinity thresholds ≤4, ≤5.1, ≤7.2, ≤11, ≤18 dS/m, the 

cumulative probability for the whole field can reach 34.7, 43.2, 64.1, 85.1, 96.1 to achieve 

100, 100-90, 90-75, 75-50, 50-0% YP respectively. However, for the second dataset the 

cumulative probability for the whole field can reach 61.8, 68.4, 78, 88, 97.4 to achieve the 

same YP%’s. For corn, the first dataset shows that under the following soil salinity thresholds 

values ≤2.5, ≤3.8, ≤5.9, ≤10 dS/m, the cumulative probability for the whole field can reach 

13.7, 33.1, 52, 80.9 to achieve 100-90, 90-75, 75-50, 50-0% YP respectively. However, in the 

second dataset the cumulative probability for the whole field can reach 0, 60.5, 73.4, 85.4 to 

achieve the same YP%’s (there is no 100-90 YP% in the second dataset). 

 

3.5 Model Evaluation: 

Table 3.5 and Table 3.6 show the cross-validation parameters used to evaluate the DK 

geostatistical model. The prediction errors of the mean, root-mean-square (RMS), average 

standard error (ASE), mean standardized (MS), and root-mean-square standardized (RMSS) 

were used as cross-validation parameters. These parameters were obtained for each scenario 

of the selected crops at multiple soil salinity thresholds. The mean and mean standardized 

prediction errors were used to evaluate whether the model is unbiased or not. 

 

Table 3.5: Cross validation parameters for the selected crops at different salinity thresholds for the 

first dataset. 

 Mean RMS ASE MS RMSS Mean RMS ASE MS RMSS 

 Barley Sorghum 

100 0.01 0.36 0.38 0.03 0.94 0 0.33 0.35 -0.01 0.94 

100-90 0.01 0.34 0.36 0.02 0.95 0 0.37 0.38 0 0.98 

90-75 0.01 0.30 0.30 0.03 0.98 0.01 0.38 0.39 0.02 0.97 

75-50 0.01 0.21 0.22 0.03 0.96 0.01 0.32 0.33 0.02 0.96 

50-0 0 0.15 0.16 0.03 0.98 0.01 0.21 0.22 0.03 0.96 

 Corn Pomegranate 
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100      0 0.23 0.24 -0.01 0.91 

100-90 0 0.19 0.19 0.02 1.01 0 0.32 0.34 0.01 0.92 

90-75 0 0.32 0.34 0.01 0.92 0 0.38 0.38 0 0.98 

75-50 0 0.39 0.39 0.01 1.00 0.01 0.35 0.38 0.02 0.93 

50-0 0.01 0.33 0.35 0.02 0.95 0.01 0.28 0.29 0.03 0.99 

 Apple Strawberry 

100           

100-90           

90-75 0 0.29 0.32 0.01 0.91      

75-50 0 0.35 0.37 0 0.95 0 0.19 0.19 0.02 1.01 

50-0 0.01 0.36 0.38 0.03 0.94 0 0.33 0.35 0.01 0.94 

 Beet Tomato 

100 0 0.33 0.35 -0.01 0.94 0 0.19 0.19 0.02 1.01 

100-90 0 0.37 0.38 0 0.98 0 0.29 0.33 -0.01 0.87 

90-75 0 0.39 0.39 0.02 0.99 0 0.36 0.38 0 0.96 

75-50 0.01 0.34 0.36 0.02 0.97 0.01 0.37 0.39 0.02 0.96 

50-0 0.01 0.25 0.27 0.03 0.94 0.01 0.30 0.31 0.02 0.97 

 Lettuce Barley (Hay) 

100      0.01 0.39 0.39 0.01 1.00 

100-90      0.01 0.38 0.39 0.02 0.96 

90-75 0 0.28 0.31 0.01 0.91 0.01 0.35 0.36 0.02 0.96 

75-50 0 0.37 0.38 0 0.98 0.01 0.30 0.30 0.03 0.98 

50-0 0.01 0.35 0.37 0.02 0.95 0 0.19 0.21 0.03 0.93 

 Crested Wheat Grass Alfalfa 

100 0 0.29 0.33 -0.01 0.89      

100-90 0.01 0.39 0.39 0.01 1.00 0 0.30 0.32 0.01 0.91 

90-75 0.01 0.33 0.36 0.02 0.95 0 0.38 0.38 0 0.98 

75-50 0.01 0.24 0.26 0.03 0.92 0.01 0.35 0.37 0.02 0.94 

50-0 0 0.14 0.15 0.03 0.97 0.01 0.24 0.26 0.03 0.92 

 

 

Table 3.6: Cross validation parameters for the selected crops at different salinity thresholds for the 

second dataset. 

 Mean RMS ASE MS RMSS Mean RMS ASE MS RMSS 

 Barley Sorghum 

100 0.01 0.22 0.27 0.02 0.81 0.00 0.20 0.30 0.00 0.68 

100-90 0.01 0.20 0.25 0.02 0.80 0.00 0.21 0.29 0.01 0.72 

90-75 0.01 0.19 0.21 0.04 0.89 0.01 0.23 0.27 0.02 0.84 

75-50 0.00 0.21 0.14 0.02 1.47 0.01 0.19 0.24 0.03 0.79 

50-0 0.00 0.13 0.09 0.01 1.50 0.00 0.21 0.14 0.02 1.47 

 Corn Pomegranate 

100           

100-90      0.01 0.20 0.30 0.02 0.68 

90-75 0.01 0.20 0.30 0.02 0.68 0.00 0.21 0.29 0.02 0.72 

75-50 0.01 0.24 0.28 0.02 0.86 0.01 0.19 0.26 0.02 0.73 

50-0 0.01 0.20 0.25 0.02 0.80 0.00 0.21 0.20 0.02 1.01 
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 Apple Strawberry 

100           

100-90           

90-75 0.00 0.30 0.28 0.00 1.05      

75-50 0.00 0.19 0.29 0.01 0.65      

50-0 0.01 0.22 0.27 0.02 0.81 0.00 0.20 0.30 0.00 0.68 

 Beet Tomato 

100 0.00 0.20 0.30 0.00 0.68      

100-90 0.00 0.21 0.29 0.01 0.72 0.00 0.26 0.29 -0.02 0.86 

90-75 0.01 0.24 0.27 0.02 0.86 0.00 0.20 0.29 0.01 0.69 

75-50 0.01 0.19 0.25 0.02 0.77 0.01 0.23 0.27 0.02 0.83 

50-0 0.00 0.20 0.20 0.01 1.03 0.00 0.20 0.23 0.03 0.88 

 Lettuce Barley (Hay) 

100      0.01 0.24 0.28 0.02 0.85 

100-90      0.01 0.23 0.27 0.02 0.83 

90-75 -0.01 0.39 0.27 -0.03 1.47 0.01 0.18 0.26 0.02 0.71 

75-50 0.00 0.21 0.29 0.01 0.72 0.01 0.19 0.21 0.04 0.89 

50-0 0.01 0.18 0.26 0.02 0.71 0.00 0.21 0.14 0.02 1.47 

 Crested Wheat Grass Alfalfa 

100 0.00 0.26 0.29 -0.02 0.86 -0.01 0.30 0.29 -0.02 1.03 

100-90 0.01 0.24 0.28 0.02 0.85 0.00 0.21 0.29 0.01 0.72 

90-75 0.01 0.20 0.25 0.02 0.81 0.01 0.18 0.26 0.02 0.69 

75-50 0.00 0.22 0.18 0.01 1.21 0.00 0.22 0.18 0.01 1.21 

50-0 0.00 0.09 0.06 -0.01 1.51 0.00 0.22 0.18 0.01 1.21 

 

Table 3.4 and Table 3.5 show that the mean and mean standardized prediction errors are 

almost zero for all the scenarios in both datasets. This means that the DK model is unbiased 

i.e., the prediction values are centered on the measured values for all scenarios. The root-

mean-square prediction errors were used to check how close the predicted values were to the 

measured values, the smaller the error the closer the predicted values to the measured ones. 

The values of the root-mean-square prediction errors shown in both tables are small and close 

to zero which means that the DK model was successful in making the predicted values as 

close as possible to the observed values. However, the values in Table 3.6 for the second 

dataset are slightly less than the corresponding values of the first dataset, which means that 

the DK model was more successful when using the second dataset rather than the first 

dataset. Two ways were used to assess whether the variability in the predictions is correct, 

overestimated, or underestimated. First, the closer the values of the average standard errors 
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are to the values of the root-mean-squared prediction errors the better the assessment of the 

variability in the predictions; which is clear for all the scenarios. This means that the 

variability was correctly assessed in the predictions. Second, the values of the root-mean-

square-standardized prediction errors should be 1 for the correct assessment of the variability; 

which is clear for most of the scenarios. Only in a few scenarios the root-mean-square-

standardized prediction errors exceed 1 such as: barley at YP% < 75%, sorghum at YP% < 

50%, barley (hay) at YP% < 50%, crested wheat grass at YP% < 75%, and alfalfa at YP% is 

< 75%. This means that the DK model underestimates the variability for these few scenarios. 

 

3.6 Advantages and disadvantages of DK 

DK which is a non-linear kriging technique has several advantages over linear estimation 

methods. First, it provides a more accurate estimate of the property of interest and can 

generate an estimate of the CP for that property (Yates and Yates, 1988). Second, the CP 

maps produced by DK can be used as an input to a management decision making model to 

provide a quantitative means for determining whether management actions are necessary 

(Yates and Yates, 1988). Third, the DK technique provides important implications in aiding 

management decisions by providing growers with a quantitative input that can be used for 

evaluating the variability of the crop productivity in different zones in fields. Fourth, DK 

performed better than IK because the continuous Hermite transform in DK retains all the 

information in the original data while the transform in other techniques, such as IK, use 

discrete transformations which inevitable looses information. The only disadvantage in using 

DK is the increased computational time (Yates et al. 1986a).  
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3.7 Discussion 

It has become imperative to explore the potential of increasing the food production from 

saline lands due to the increasing pressure from growing populations. Thus combating land 

salinization problems is vital for food security through adoption of salinity and crop 

management strategies. Plants vary widely in their salinity tolerance. One method for 

addressing the soil salinity problem is to select and plant salt-tolerant crops in saline soil 

areas. This paper, introduces a technique on how to live with salinity in its current condition 

without leaching the soil salinity or doing other soil reclamation efforts. The critical or 

threshold value of the soil salinity is the value beyond which the crop productivity is 

negatively affected. In this study the threshold values were used as input values (conditional 

probability information) for the DK technique to generate CP maps for YP% under different 

conditions of soil salinity thresholds. The CP maps can be used as a quantitative method for 

making management decisions. 

Non-linear kriging techniques can be used as a quantitative method for making 

management decisions for soil salinity and yield if the CP information is available. Non-

linear kriging techniques include indicator kriging (IK) which involves a nonlinear 

transformation of the data to a discrete variable and DK which involves a nonlinear 

transformation of the data to a continuous variable. To the best of the authors knowledge, of 

the previous studies that used non-linear kriging techniques and targeted soil salinity and crop 

yield management, Eldeiry and Garcia (2011) is the closest to the current study. They applied 

the IK technique using indicator variograms to evaluate different scenarios of crops and 

salinity levels to generate maps that show the expected percent yield potential YP%. Their 

results show that IK can be used to generate guidance maps that divide fields into areas of 

expected percent yield potential based on soil salinity thresholds for different crops. In this 

paper, the DK technique was used to provide unbiased estimates of the conditional 
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probability (CP) that the true value of the property of interest doesn’t exceed a defined 

threshold. The results of this study show that the CP maps generated using the DK technique 

provide an accurate characterization and quantification of the different areas of the fields. CP 

maps were used to assess the expected YP% of fields for several crops under multiple soil 

salinity thresholds. The methodologies used in both techniques (IK and DK) are different, 

however, both of them can be used as management decision tools to manage the productivity 

under current soil salinity conditions. Both techniques provide knowledge of the YP% of 

different areas. Based on the knowledge of YP% at different areas of a field, a decision can 

be taken to manage the productivity of these areas by selecting another crop or adjusting the 

inputs such as fertilizer, seeding rates and herbicides. 

 

3.8 Conclusions 

Decisions based on critical thresholds which use estimates of variability are subject to 

error. DK enables these errors to be converted to an estimated probability that the true value 

exceeds a given threshold, thereby giving decision makers a means to judge the risk 

associated with a particular estimate. DK provides minimum variance estimates of properties 

from nonlinear combinations of spatially correlated sample data. In addition it can be used to 

estimate the conditional probability that some critical threshold is exceeded. DK, a nonlinear 

kriging model, was used in this study to provide an unbiased estimator of the conditional 

probability that a given variable exceeds a threshold. DK assists in making management 

decisions by providing a quantitative input (CP maps), which can be used for evaluating the 

variability of different areas in fields. The data presented in the results show how the DK 

technique can generate valuable information for the growers for them to make decisions 

regarding which crop(s) to select or if they need to make more efficient use of agro-

chemicals. Efficient use of agro-chemicals is beneficial for farmers as well as for the 
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environment. In this study, visual information of the variation in the probability of 

productivity in the different areas of fields, for different crop scenarios, were presented and 

discussed.  This information enables growers to visualize the variability of the productivity in 

different areas of their fields. Tabulated information was also presented and discussed in 

order to provide growers with quantitative information about the probability of the 

productivity of different areas in their fields. This information enables growers to quantify the 

variability of the productivity in different areas of their fields. The DK technique presented in 

this study provides a tool to achieve spatial optimization of farm management which will 

increase productivity or reduce the amount of agro-chemicals applied.  
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4 COMPARISON OF NONLINEAR GEOSTATISTICAL MODELS IN 

ESTIMATING THE IMPACT OF SOIL SALINITY ON THE SPATIAL 

VARIABILITY OF CROP YIELD 

4.1 Summary 

In order to manage soil salinity and crop yield, this research proposes that individual 

fields be divided into zones based on the conditional probability (CP) of each zone reaching a 

specific yield potential (YP). Three nonlinear geostatistical models – disjunctive kriging 

(DK), indicator kriging (IK), and probability kriging (PK) – were used to develop the CP 

maps based on soil salinity thresholds for two crops, alfalfa and corn. These CP maps were 

compared with actual yield data taken while conducting a soil salinity survey for two fields 

cultivated with alfalfa and corn. The CP maps divide each field of interest into zones with 

different probabilities to reach a specific YP for a given crop at a specific soil salinity 

threshold. The objectives of this study are as follows: (1) compare the performance of the 

DK, IK, and PK models in developing CP maps; (2) compare actual alfalfa and corn yield 

samples with the estimated YP by the three models; and (3) provide guidance by considering 

the output of the models used in this study as input for precision management of agriculture. 

The three nonlinear geostatistical models were applied to soil salinity datasets collected in 

two fields (alfalfa and corn) in the Lower Arkansas River Valley in Colorado. Yield data 

were collected at the same fields to compare the actual data with that estimated by the 

models. The results of this study show that the CP maps developed using the three 

geostatistical models are efficient in assessing the impact of soil salinity on the spatial 

variability of alfalfa and corn yield. The comparison of the actual yield data with the 

estimated CP maps from the three models shows good agreement where most of the yield 

samples were located at the appropriate zones estimated with the three geostatistical models. 
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The IK and PK models generated very similar estimates for each of the zones.  However, the 

zones generated by both of these models are slightly different to the zones generated using 

the DK model. The information provided by the models about the variability and hotspots can 

be used for the precision management of agricultural resources. 

  

4.2 Introduction 

It is imperative that crop production increase to meet the increasing demand for food due 

to the growth of the world population. Soil salinity is a major limiting factor for crop yield in 

poorly drained soils (Rogers 2002; Patel et al., 2002). Based on crop biomass samples 

collected on corn and alfalfa fields in a study conducted from 2004-2008 in the Lower 

Arkansas River Valley of Colorado, there appears to be a clear trend of decreasing crop yield 

as soil salinity increases above threshold values of 3 to 5 dS/m (Gates et al., 2012). The 

worldwide salt-affected soils, including saline and sodic soils, were estimated to be 831 

million hectares (Martinez-Beltran and Manzur, 2005), extending over all continents.  

Attempts to improve the salt tolerance of crops through conventional breeding programs have 

met with very limited success due to the complexity of the salt tolerance both genetically and 

physiologically (Flowers, 2004). Mapping and assessing soil salinity is the first step towards 

developing management strategies to optimize crop yield under current soil salinity 

conditions. 

Linear kriging methods such as simple, ordinary, and universal kriging are well 

established for predicting soil variables at unsampled locations. Examples of using linear 

kriging in soil and water science are well documented (Burgess and Webster, 1980; Webster 

and Burgess, 1980; Triantafilis et al., 2001; Eldeiry and Garcia 2008a, 2008b, 2010). 

Assessing conditional probability (CP) of a specific variable is as important as predicting 
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value of the variable at unsampled locations, both of which can be achieved by using 

nonlinear kriging. Nonlinear kriging techniques depend on the nonlinear transformation of 

data, whether discrete or continuous. 

The disjunctive kriging (DK) technique has found widespread use in soil science (Wood 

et al., 1990; von Steiger et al., 1996). The CP maps generated using the DK technique can be 

used as input to a management decision-making model in order to provide a quantitative 

means of determining whether management actions are necessary (Yates et al., 1988). Wood 

et al. (1990) used the DK technique to estimate soil salinity and mentioned that soil salinity 

thresholds are important in determining land suitability for different crops in Israel. 

Triantafilis et al. (2004) used indicator kriging (IK), multiple-indicator kriging and DK to 

assess the current status and potential threat of soil salinity. Eldeiry and Garcia (2012) used 

the DK technique to manage soil salinity and crop yield. The IK technique has been widely 

applied (Halvorson et al., 1995; Van Meirvenne and Goovaerts, 2001; Eldeiry and Garcia 

2011, 2012). The IK technique is flexible and can be modified to fit specific management or 

research goals by modifying the critical threshold criteria (Smith et al., 1993). IK makes no 

assumptions on the underlying invariant distribution (Cressie, 1992). Solow (1986), used IK 

to estimate the conditional probability that a sample point belongs to one type of soil or 

another. The probability kriging (PK) technique is based on the cokriging estimator and is a 

shortcut of IK, which uses the order relation of observed values to recover information from 

all available attribute values (Carr, 1994; Carr and Mao, 1993). Juang and Lee (2000) 

mentioned that PK is based on the cokriging estimator and may be troubled by some intrinsic 

disadvantages of cokriging. The uniform value (the standardized rank), which denotes the 

order relation of observed values, is assigned as the only auxiliary variable in PK to improve 

the estimation of the probability of the attribute value being lower than the desired threshold 

(Juang and Lee, 2000).  
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Nonlinear kriging techniques have advantages over linear kriging techniques due to their 

ability to take data uncertainty into account, and therefore are often used to predict the CP for 

categorical data at unsampled locations (Goovaerts, 1994; Oyedele et al., 1996). Few studies 

have been published that use nonlinear geostatistical techniques to manage soil salinity and 

crop yield. The authors of this study previously investigated the CP maps generated using the 

DK nonlinear techniques for different crops. The results of their research motivated them to 

broaden their investigation to cover all nonlinear geostatistical techniques (DK, IK, and PK) 

in order to explore the differences between them. Therefore, the objectives of this study are: 

comparing the performance of the DK, IK, and PK models in developing CP maps; 

comparing actual alfalfa and corn yield samples with the estimated YP by the three models; 

and providing guidance by considering the output of the models used in this study as input for 

precision management of agriculture. The CP maps that were generated using the three 

nonlinear models divided the study fields into zones, with each zone having a probability that 

it would reach a specific YP according to the soil salinity thresholds for alfalfa and corn. 

Dividing fields into zones with different probabilities to reach a specific YP provides 

valuable information that can be used in the management of soil salinity for crop yield. Based 

on this information, farmers or managers can decide which crops to grow. Both visual and 

quantitative information presented in this study warns farmers about the potential for low 

yield in part or all of a specific field. 

 

4.3 Data and Methodology 

4.3.1 Study Area and Selected Datasets 

The study area is located in the Lower Arkansas River Basin in Colorado, near the cities 

of Rocky Ford and La Junta (Figure 4.1). Farmers in this area are facing decreasing crop 
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yields due in part to high levels of salinity in the soil and irrigation water because the 

Arkansas River is one of the most saline rivers in the United Sates (Myers, 1982).  Average 

water table depths in this region have risen toward the surface approximately 0.3-1.3 m 

between 1969 and 1994 (Cain, 1997). This has only exacerbated the salinity problems 

because of the increased upflux of saline groundwater. In a survey of the region, 68% of 

producers stated that high salinity levels were a significant concern (Frasier, 1999).  

 

Figure 4.1: The study area in the Arkansas River Basin in Colorado, with the upstream (US) region on 

the left side and the downstream (DS) region on the right side. 

 

Crop yield reduction due to salinity in fields in the Lower Arkansas River Basin in 

Colorado has been estimated to be between 0% and 75%, with a total revenue loss ranging 

from $0-$750/ha based on 1999 crop prices (Gates et al., 2012). Soil salinity datasets were 
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collected in two fields in the study area shown in Figure 4.1. Summary statistics of the soil 

salinity datasets collected in these fields are provided in Table 4.1. 

 

Table 4.1: Summary statistics of the soil salinity datasets collected in the alfalfa and corn fields. 

Dataset   N Min. Max. Mean Std_dev Area (m2) 

Alfalfa 102 2.70 10.91 4.91 1.82 122,665 

Corn 132 3.64   7.30 4.96 0.94 423,529 

 

4.3.2 Data Collection 

The study area soils, where soil salinity data were collected using an electromagnetic 

induction instrument (EM-38), can be termed as hyper-electrolytic, where the ratio of the 

ECa/clay is larger than ~5 (ECa measured in mS/m and clay in mass percentage) McBratney 

et al. (2005). Therefore, the ECa measured in this soil can only be used for determining 

salinity levels, which was the main use of the EM-38 instrument developed by Rhoades et al. 

(1989). A calibrated equation was developed by Wittler et al. (2006) for the same area where 

the data for this study was collected.  As part of their study a total of 414 sites were sampled, 

and EM-38 readings were taken at each site for calibration. At each calibration site, soil 

samples were collected at the surface, 0.3, 0.6, 0.9, and 1.2 m depths from the left, center, and 

right location of where the EM-38 readings were taken, for a total of 15 samples per 

calibration site. While collecting soil from the center hole, soil temperatures were taken at 

every depth and additional soil was collected at every depth for use in measuring the 

gravimetric soil-water content. 

The major crops in the Lower Arkansas River Valley in Colorado in order of cropped 

area are alfalfa, corn, grass hay, wheat, sorghum, dry beans, cantaloupe, watermelon, and 

onions (USDA NASS Colorado Field Office, 2009).  Alfalfa (Hedicago sativa) and corn (Zea 

mays) were selected as the crops to use in this study because they are the prevailing crops in 
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the study area. Also, alfalfa represents a moderately tolerant crop to soil salinity, while corn 

represents a moderately sensitive crop.  

 

Table 4.2: Soil salinity threshold values (dS/m) of different yield potential (YP) for corn and alfalfa. 

 YP Alfalfa Thresholds (dS/m) Corn Thresholds (dS/m) 

1.0 2.0 1.7 

0.9 3.4 2.5 

0.75 5.4 3.8 

0.50 8.8 5.9 

0.0 15.5 10.0 
 

Table 4.2 shows the expected YP of alfalfa and corn that corresponds to the soil salinity 

thresholds of both crops. The soil salinity thresholds and the corresponding YP were adapted 

from Ayers and Westcot (1985). To estimate crop yield, six crop biomass samples were 

collected in each field. For alfalfa, biomass samples were collected at each sampling location 

by either of the following two methods: 1) If the crop was not cut, all vegetation was cut on a 

1 meter square and placed in a mesh onion sack for greenhouse drying; and 2) If the crop was 

cut into windrows, a length of windrow was measured, collected and placed in a mesh onion 

sack for greenhouse drying. In addition, the distance from the centerline of the windrow to 

the centerline of an adjacent windrow was measured and recorded for the purpose of 

calculating the biomass/area. For corn, crop biomass samples were collected, by cutting a 

number of plants in each sampling location and placing them into a mesh onion sack for 

greenhouse drying. Crop biomass samples were allowed to air dry for a minimum of 3 weeks 

in a low humidity greenhouse environment. After drying, crop samples were weighed and 

normalized. Alfalfa biomass data were normalized by dividing by an estimated maximum 

yield per cutting of 7.4 ton/hectare while corn samples were divided by 81.5 ton/hectare, 

which was the maximum yield suggested by the Colorado Agricultural Experiment Station 

(2008). 
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4.3.3 Using Nonlinear Geostatistical Models to Generate CP Maps 

In geostatistics, maps can be generated to estimate either a value or an indicator of the 

variable of interest (CP maps). Estimating a value of the variable of interest has been 

investigated thoroughly; however, estimating an indicator (CP maps) has not been given 

enough attention. This research investigates the CP maps of YP that were generated using 

three nonlinear geostatistical models: DK, IK, and PK.  In order to generate CP maps, a 

variable of interest may be converted into a binary variable (0 or 1) by choosing a threshold. 

If values are above the threshold, they become 1, and if they are below the threshold, they 

become 0. Therefore, the interpolation is between 0 and 1, and the estimates can be 

interpreted as the probability of a variable being 1 (being in the class that is indicated by 1). If 

a threshold is used to create the indicator variable, then the resulting interpolated map shows 

the probabilities of exceeding or falling below the threshold. Crops are generally unaffected 

by soil salinity up to some threshold beyond which crop yield begins to decrease linearly as 

the soil salinity levels increase (Maas and Hoffman, 1977). This correlation between soil 

salinity and crop productivity was utilized to generate CP maps of YP.  Soil salinity threshold 

levels were considered as conditions for a given crop to reach a specific YP. In each of the 

two selected datasets, the three models were applied in order to generate CP maps.  These 

maps divide each field into zones with different probabilities to reach a specific YP according 

to the soil salinity thresholds of a crop (e.g., alfalfa and corn). 

 

4.3.4 Using Variogram Models 

The correlation among neighboring values are modeled as a function of the distance 

between the samples used in this study, defined as a variogram (Miller et al., 2007). The 

spatial distribution of the soil salinity data was analyzed using variograms, which have been 

widely used to analyze the spatial structures in ecology (Phillips, 1985; Robertson, 1987).  
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There are several terms that are often associated with the variogram. The height that the 

variogram reaches when it levels off is called the sill. It is often composed of two parts: the 

nugget, and the partial sill; added together, these give the sill. The distance at which the 

variogram levels off to the sill is called the range. Sample locations separated by distances 

closer than the range are spatially autocorrelated, whereas locations farther apart than the 

range are not. When the variogram is developed, the binned values are generated by grouping 

the variogram points together using square cells that are one lag wide, the average points are 

generated by binning the variogram points that fall within angular sectors, while the model 

shows the fitted curve to the points of the variogram. The binned points show local variation 

in the variogram values, whereas the average values show the smooth variogram variation. 

Geostatistical analysis can be used to optimize the variogram models, which are based on 

minimizing the mean square error. The variogram model parameters such as nugget and 

partial sill are optimized using cross-validation to estimate the range parameter. A variogram 

is estimated using the following equation: 

       
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
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   (4.1) 

where  h is the variogram values,   is̂  and  hsi ̂  are the estimated residuals from the 

multiple regression models at locations is  and hsi  , a location separated by a distance h; 

N(h) is the total number of pairs of samples separated by a distance h.  
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Threshold (dS/m) Nugget Partial Sill Range

3.4 0.08 0.07 102.91

5.4 0.45 0.21 107.81

8.8 0.03 0.05 251.03
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(b)  Variogram developed for IK model at threshold 5.4 dS/m (c)  Variogram developed for IK model at threshold 8.8 dS/m

(a)  Variogram developed for IK model at threshold 3.4 dS/m



 

Figure 4.2: Examples of variograms developed for the indicator kriging (IK) model at soil salinity 

thresholds of 3.4, 5.4, and 8.8 dS/m for the alfalfa field. 

 

Figure 4.2 shows three examples of the variograms developed for the IK model at soil 

salinity thresholds of 3.4, 5.4, and 8.8 dS/m for the soil salinity dataset collect in the alfalfa 

field. These three cases provided three different subsets of data, which require developing a 

specific variogram for each case. However, for the same data subset, only one variogram is 

developed for the three models. The values of the nugget, sill, and range were provided in 

Figure 4.2. The figure shows that case (b), where the soil salinity threshold was set to 5.4 

dS/m, has a better structure that the ones in cases (a) and (c). When the soil salinity threshold 

was set to ≤ 5.4 dS/m, it has a better structure than the ones in cases (a) and (c). The reason 

for that is when setting a soil salinity threshold value of 5.4 dS/m, it is close to the mean of 

the collected soil salinity data (4.91 dS/m) or in the middle of the collected samples at the 
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alfalfa field (table 2). Therefore, there are several points that satisfy this condition and these 

points take the value of 1 as well as several points that don't satisfy the condition and take the 

value of zero to generate the CP maps. In this case there are enough points that have values of 

1 as well as enough points that have values of zero, which make a good mixture of points that 

improve the structure of the variogram. However, setting soil salinity thresholds of 3.4 dS/m 

cases (a), and 8.8 dS/m case (c), these thresholds are close to the minimum and maximum of 

the collected soil salinity values collected at the alfalfa field (table 2). In both cases (a and b), 

only a few points have the value of 1 while the majority of the points have the value of zero 

(case a), or vise versa (case c). This makes the structure of the variogram not as good as in 

case (b). The table of the upper left of the Figure 2 shows the nugget, sill, and the range 

values for the three different variograms.  The range values of cases (a and b) indicate that the 

autocorrelation among the data extend for almost the same distance while the autocorrelation 

extend more for case (c). The higher sill value, the nugget added to the partial sill, in case (b) 

than the ones in cases (a) and (c) indicate that the variogram in case (b) was able to capture 

more variations rather than that in cases (a) and (c), which improve the structure of the 

variogram in case (b). This should have an impact on the performance of the models and will 

be explained later in this manuscript.  The better structure the variogram has, the better the 

model performs and the better the cross-validation statistics. 

 

4.3.5 DK Model Equations 

The DK model assumes an unknown constant mean and the general form can be written 

as follows: 

 )(μ))(( 1 ssZf       (4.2) 

where 1μ is an unknown constant and ))(( sZf  is an arbitrary function of )(sZ . The DK 

model requires that the data have a bivariate normal distribution. In order to satisfy this 
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assumption, the original soil salinity data, )(xZ , must be transformed into a new variable, 

)(xY , with a standard normal distribution where pairs of sample values are bivariate normal. 

The function )]([ xY , which describes this transformation, is as follows: 

 
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where the values for )(xY  are obtained by taking the inverse of the data, )]([)( 1 xZxY   

and )]([k xYH  are a Hermite polynomial of order k. The sC 'k  are the Hermitian coefficients, 

which are determined using the properties of orthogonality, and are generally determined 

using numerical integration, as follows: 

 



j

vvHvw
k

C
1i

2

iikiik ]2/exp[)()(
)2(!

1



   (4.4) 

where iv , and iw , are the abscissa and weight factors for the Hermite integration 

(Hochstrasser, 1965). The DK estimator is calculated from a sum of unknown functions of 

the transformed sample values, )( ixY . It is required that each unknown function, )]([ ii xYf , 

depend on only one transformed value, )( ixY . The DK estimator is calculated using the 

following equation: 
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where if  is the unknown function with respect to the transformed variable, and n is the 

number of samples. 

An unbiased estimator with the minimum estimation variance can be obtained using the 

following equations: 
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where 
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where the series in Eq. (4) has been truncated to K  terms, and ikb  are the DK weights. The 

)]([ o

*

k xYH  represents the estimated value of the thK  Hermite polynomial at the estimation 

location. The sum of these estimates multiplied by the coefficient, kC  [which transforms 

)(xY  into )(xZ ] makes up the DK estimate at ox .  

 Using nonlinear geostatistical models, the conditional probability that the value at 

an estimation point is greater than a selected critical value ( cy ) can be calculated. The CP is 

obtained by defining an indicator variable that is equal to unity if ci )( yxY   and is zero 

otherwise (Yates et al., 1986a, b).  This allows the CP to be written in terms of the 

conditional expectation and gives the estimator of the CP as: 
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where )( cyG  and )( cyg  are the cumulative and probability density functions, respectively, 

for a standard normal variable. 

 

IK Model Equations 

The IK model assumes an unknown constant mean and the general form can be written as 

follows: 

 )(μ)( ssI       (4.9) 

where μ  is an unknown constant and )(sI  is a binary variable. The indicator function under a 

desired cutoff value kz  can be written as follows: 
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The IK model estimator );( ki zxI  at the location can be calculated using: 
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And the IK system given 1i   is as follows: 

 



n

ixxxx
1j

oIijIj μ)()(          (4.12) 

where j  is the weight coefficient, I  is the semivariance of the IK codes at the respective 

lag distance, and μ  is the Lagrange multiplier. 

 

PK Model Equations 

The PK model assumes two unknown constants and the general form can be written as 

follows: 

 )(μ))(()( 11 scsZIsI t           (4.13) 

where 

 )(μ)( 22 ssZ            (4.14) 

where 1μ  and 2μ  are unknown constants and )(sI  is a binary variable created by using a 

threshold indicator ))(( tcsZI  . There are two types of random errors, )(1 s  and )(2 s , 

which means that there is autocorrelation for each of them and cross-correlation between 

them. In other words, the PK model uses two variables, the main and auxiliary variables. 

);( kzxI  is assigned as the main variable while )(xU  is assigned as the auxiliary variable 

(uniform) in the cokriging estimator. The uniform value, also called the standardized rank, 

was reported in detail by Deutsch and Journel (1997) and is defined as follows: 
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n

r
xU )(            (4.15) 

where r  denotes the rank of the rth order statistic )(kz  located at x , and n  is the total number 

of observations (Goovaerts, 1997).  

The PK model estimator is defined by: 

  
 


n m

xUzxIzxI
1i 1l

lUlkiIiko

* )();();(          (4.16) 

where Ii  and Ul  are the weights associated with );( ki zxI  and )( lxU . 

A more comprehensive explanation about the three models can be found in Matheron 

(1976), Yates et al. (1986a, b), and Juang and Lee (2000). 

 

4.3.6 Model Evaluation 

The models used in this study were evaluated based on two criteria: the accuracy, and the 

successfulness of the model in estimating the variability. The accuracy was evaluated by 

comparing the yield data with the estimated values from the models. The value of each yield 

sample for alfalfa or corn was compared with the corresponding zone estimated by the 

different models.  If the value of the yield sample was located in a zone that complies with 

the estimates of Ayers and Westcot (1985) then the model was considered to be accurate. The 

accuracy of the models was also evaluated when selecting the variogram by using the root 

mean square error (RMSE) cross-validation statistic. The smaller the RMSE the closer the 

prediction was to the measured values. The model successfulness in assessing the variability 

was evaluated by using the root mean squared standardized error (RMSSE) cross-validation 
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statistic.  If the RMSSE is close to 1, the variability of the prediction is correctly assessed. 

The RMSE and RMSSE are calculated using the following equations (Ramos et al., 2008): 

 2

1

])()(ˆ[
1




N

i

ii xZxZ
N

RMSE          (4.17) 
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
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
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i i

ii

x

xZxZ

N
RMSSE


        (4.18) 

where )(ˆ
ixZ  is the predicted value at the cross-validation point,  )( ixZ  is the measured value 

at point )( ix , N is the number of measurements of the dataset, and )(2

ix  is the kriging 

variance at cross-validation point )( ix . 

 

4.4 Results 

Table 4.3 shows the cross-validation parameter errors for the alfalfa and corn datasets 

when applying the three models at different soil salinity thresholds.  The soil salinity dataset 

for the alfalfa field ranges allowed us to develop CP maps for three thresholds: 3.4, 5.4, and 

8.8 dS/m. However, the soil salinity dataset for the corn field only allowed us to develop CP 

maps for two thresholds: 3.8 and 5.9 dS/m. The smaller the RMSE the closer the prediction is 

to the measured values (Robinson and Metternich, 2006). The RMSE values for the alfalfa 

dataset for the three models are smaller at the threshold of 5.4 dS/m than at the thresholds of 

3.4 and 8.8 dS/m.  

 

Table 4.3: Cross-validation parameter errors for the two datasets of alfalfa and corn when applying 

the DK, IK and PK models at different soil salinity thresholds. 

Threshold (dS/m) RMSE RMSSE Threshold (dS/m) RMSE RMSSE 

Alfalfa; DK model Corn; DK model 

3.4 0.80 2.42 3.8 0.77 2.28 
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5.4 0.73 1.92 5.9 0.81 2.42 

8.8 0.94 4.52 10.0 NA NA 

Alfalfa; IK model Corn; IK model 

3.4 0.82 2.41 3.8 0.70 1.66 

5.4 0.69 1.60 5.9 0.85 2.67 

8.8 0.94 5.27 10.0 NA NA 

Alfalfa; PK model Corn; PK model 

3.4 0.81 2.46 3.8 0.70 1.66 

5.4 0.72 1.64 5.9 0.85 2.67 

8.8 0.93 4.32 10.0 NA NA 

 

This indicates that the middle threshold has a better performance than the lower and 

higher thresholds. However, the RMSE values for the corn dataset at the 3.8 dS/m threshold 

are better than at the 5.9 dS/m threshold. The closer the RMSSE values are to 1, the better the 

model performance (Robinson and Metternich, 2006). The RMSSE values for the alfalfa field 

dataset for the three models are smaller at the 5.4 dS/m threshold than at the 3.4 and 8.8 dS/m 

thresholds. Also, the RMSSE values for the corn dataset at the 3.8 dS/m threshold are better 

than the values at the 5.9 dS/m threshold. 
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Soil Salinity (dS/m)            

(a) Predicted Soil Salinity Surface and Alfalfa Samples

(b) Predicted Standard Error and Soil Salinity Samples

Potential

 

Figure 4.3: (a) Generated surface of predicted soil salinity using ordinary kriging (OK) and the alfalfa 

samples collected; (b) predicted standard error surface for the alfalfa field and the collected soil 

salinity samples. 

 

Figure 4.3(a) shows the predicted soil salinity surface using the ordinary kriging (OK) 

and the collected alfalfa yield samples. At the three levels of soil salinity (3.4, 5.4, and 8.8 

dS/m) that this field can reach, the expected alfalfa YP are 0.9, 0.75, and 0.5 respectively 

(Ayers and Westcot, 1985). Table 4.3 and Figure 4.3(a) show that some of the normalized 

alfalfa yield samples (0.88, 0.86, 0.64a) are located in soil salinity zones that match with the 

expected YP of these zones.  However, other normalized alfalfa yield samples (0.71, 0.64b, 

and 050) are slightly less than the expected YP of these zones. There are several reasons that 

the yield of a particular sample might be less or more than expected. Soil salinity has the 
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potential to impact crop yield, however irrigation management, fertilizer application, pest 

control, and seed germination also have the potential to impact crop yield.  

Figure 4.3(b) shows the prediction standard error surface of the generated soil salinity 

surface using the OK model and the collected soil salinity samples for the alfalfa field. The 

figure shows that the prediction standard error surface ranges from 0.54 to 1.32 dS/m. The 

prediction standard error values are small in the places where the soil salinity data were 

collected, while these values are larger in the places where no data were collected. Table 1 

shows that the soil salinity dataset for the alfalfa field has a high range, where the minimum 

and maximum values are 2.70 and 10.91 dS/m respectively, and a high standard deviation of 

1.82 dS/m. The high values of the range and the standard deviation can impact the values of 

the prediction standard error. 
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(a) Soil Salinity Threshold  ≤ 3.4 dS/m

(b) Soil Salinity Threshold  ≤ 5.4 dS/m (c) Soil Salinity Threshold  ≤ 8.8 dS/m

Potential

 

Figure 4.4: CP maps developed using the DK model at the soil salinity thresholds: (a) ≤ 3.4, (b) ≤ 5.4, 

and (c) ≤ 8.8 (dS/m), which are the conditions for alfalfa to reach: 0.9, 0.75, and 0.50 of YP 

respectively. 

 

Figure 4.4 shows the CP maps developed using the DK model at the soil salinity 

thresholds of: (a) ≤ 3.4, (b) ≤ 5.4, and (c) ≤ 8.8 (dS/m), which are the conditions for alfalfa to 

reach: 0.9, 0.75, and 0.50 of YP respectively. The values of the YP of the alfalfa samples, the 

predicted soil salinity, and the probability of the expected YP using the DK model for the 

different soil salinity thresholds are summarized in Table 4.4. The three CP maps displayed in 

Figure 4.4(a, b, c) show that with a low soil salinity threshold, large areas of the field have 

low probability that alfalfa can reach a specified YP. However, as the soil salinity thresholds 

increase, the low probability areas decrease while the high probability areas increase. The 

reason is that for alfalfa to reach a high YP a low soil salinity threshold is needed and vise 

versa. Therefore, the probabilities are low for alfalfa to reach a high YP under the soil salinity 
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conditions present in that field. Table 4.4 shows that at a soil salinity threshold of ≤ 3.4 

(dS/m) with an expected alfalfa YP of 0.90, the normalized alfalfa yield samples are less than 

expected.   

 

Table 4.4: Summary of the normalized yield of alfalfa samples, the predicted soil salinity, and the 

probability of the expected YP at the locations of the alfalfa samples. 

Normalized 

Yield  

of Alfalfa  

Samples 

Predicted Soil  

Salinity (dS/m)  

Probability of the Expected YP at Different Soil  

Salinity Thresholds 

≤ 3.4 (dS/m) 

YP = 0.9 

≤ 5.4 (dS/m) 

YP = 0.75 

≤ 8.8 (dS/m) 

YP = 0.50 

0.86 2.85 - 4.00 40% - 60% 80% - 100% 80% - 100% 

0.88 4.00 - 5.00 0% - 20% 80% - 100% 80% - 100% 

0.71 2.85 - 4.00 20% - 40% 80% - 100% 80% - 100% 

0.64 (a) 6.00 - 7.00 0% - 20% 20% - 40% 80% - 100% 

0.64 (b) 4.00 - 5.00 0% - 20% 40% - 60% 80% - 100% 

0.50 4.00 - 5.00 0% - 20% 60% - 80% 80% - 100% 
 

At a soil salinity threshold of ≤ 5.4 with an expected alfalfa YP of 0.75, the first two 

samples exceed the YP expectations, the third one is slightly less than expected, and the last 

three samples are less than the expected. At a soil salinity threshold of ≤ 8.8 with an expected 

alfalfa YP of 0.50, all samples exceed the YP expectations.  A reason that some normalize 

crop yield samples exceed the YP expectation is that for any specific threshold, the actual soil 

salinity might be less than that the specified threshold, i.e., for the soil salinity threshold of ≤ 

3.4 (dS/m), there is a chance that the soil salinity might be 2.0 dS/m or less, which gives a 

higher probability that the normalized yield sample will exceed the YP expectation at this 

location. 
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(a) Predicted Soil Salinity Surface and Corn Samples

(b) Predicted Standard Error and Soil Salinity Samples

Potential

.50

.00
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50

Potential

 

Figure 4.5: (a) Generated surface of predicted soil salinity using the OK model and the alfalfa samples 

collected; (b) predicted standard error surface for the corn field and the collected soil salinity samples. 

 

Figure 4.5(a) shows the predicted soil salinity surface using the OK and the normalized 

corn yield samples.  At the two levels of soil salinity (3.8 and 5.9 dS/m) that this field can 

reach, the expected corn YP are 0.75 and 0.5 respectively (Ayers and Westcot, 1985).  Table 

4.4Table 3.4 and Figure 4.5(a) show that the YP of all the corn samples exceed the expected 
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values. As discussed earlier with Figure 4.3(a), there are several factors that have the 

potential to impact YP. 

Figure 4.5(b) shows the prediction standard error surface of the generated soil salinity 

surface using the OK model and the collected soil salinity samples for the corn field. The 

prediction standard error surface shows a range of values from 0.54-1.32 dS/m. The figure 

shows that the majority of the field has small values of prediction standard error which ranges 

from 0.23 to 0.34 dS/m. The outer part of the field have prediction standard errors that range 

from 0.35 to 0.56 dS/m, and some small areas in the outer part of the field range from 0.57 to 

0.80. This can be explained by the fact that there are a lot of data points that were collected 

inside the field whereas there were no data points collected in the outer part of the field.  

Therefore the prediction standard error in the outer part of the field is based on extrapolation, 

which makes the prediction standard error higher. Table 4.1 shows that the soil salinity 

dataset for the corn field has a fairly low range of soil salinity (3.64 to 7.30 dS/m), while the 

standard deviation is 0.94 (dS/m). These values are relatively low which have a smaller 

impact on the prediction standard error compared to the values for the alfalfa field. 
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(a) DK Model 

(b) IK Model (c) PK Model 

Potential

 

Figure 4.6: CP maps developed using the DK, IK, and PK models for the scenario of planting corn (a 

moderately salt sensitive crop) in field DS09 for a soil salinity threshold of ≤ 5.9 dS/m for it to reach a 

productivity of 0.50 of YP. 

 

Figure 4.6 shows the CP maps developed using the DK, IK, and PK models at the soil 

salinity threshold of ≤ 5.9 dS/m, a condition for corn to reach a productivity of 0.50 of YP. 

The values of the normalized yield of the corn samples, the predicted soil salinity, and the 

probability of the expected YP using the three models at soil salinity threshold ≤ 5.9 dS/m 

were summarized in Table 4.5.  
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Table 4.5: Summary of the normalized yield of corn samples, the predicted soil salinity, and the 

probability of the expected YP using the three models (DK, IK, and PK) for a soil salinity threshold 

(≤ 5.9 dS/m) at the locations of the corn samples. 

Normalized 

Yield  

of Corn  

Samples 

Predicted Soil 

Salinity (dS/m) 

Probability of the Expected YP Using the Three Models 

(DK, IK, and PK) for a Soil Salinity Threshold (≤ 5.9 dS/m) 

DK IK PK 

1.00 4.25 - 5.00 80% - 100% 80% - 100% 80% - 100% 

0.74 5.00 - 5.75 60% - 80% 80% - 100% 80% - 100% 

0.82 4.25 - 5.00 80% - 100% 80% - 100% 80% - 100% 

0.72 6.50 - 7.15 40% - 60% 40% - 60% 40% - 60% 

0.84 4.25 - 5.00 80% - 100% 80% - 100% 80% - 100% 

0.64 5.75 - 6.50 40% - 60% 40% - 60% 40% - 60% 
 

The three CP maps show that there are a lot of similarities among the three models. 

However, the IK and DK models are almost identical. The three maps show that there are a 

few areas of the field that have a low probability that corn can reach 0.50 of YP under a soil 

salinity threshold of ≤ 5.9 dS/m. Therefore, most of the field has a high probability that corn 

can reach at least a 0.5 of YP. Both Figure 6 and Table 5 show that all the normalized yield 

samples have higher yields than expected.  
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Figure 4.7: Percentages of zones of different probabilities generated from the CP maps developed for 

the two datasets of soil salinity collected for the alfalfa and corn fields when applying the three 

models at different soil salinity thresholds. 
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Figure 4.7 shows the bar charts of the estimated zones generated by the three models for 

both alfalfa and corn samples. Figure 4.7(a) shows the bar charts for the zones created using 

the three models for three soil salinity thresholds of 3.4, 5.4, and 8.8 dS/m for conditions of 

alfalfa reaching YPs of 0.9, 0.75, and 0.5. Figure 7b shows the bar charts for the zones 

created using the three models for two soil salinity thresholds of 3.8, and 5.9 dS/m as 

conditions for corn to reach YPs of 0.75, and 0.5. There is a clear trend when moving from 

low to high soil salinity thresholds for both alfalfa and corn when using the three models. 

High probability zones are small with low soil salinity thresholds and the zones get larger as 

the soil salinity thresholds increase. At the same time, low probability zones are large with 

small soil salinity thresholds and the zones get smaller as the soil salinity thresholds increase. 

With small soil salinity thresholds, the expectations are for high YP, which are not easy to 

accomplish, while with high soil salinity thresholds, the expectations are for low YP, which 

are easy to accomplish. The differences in the performance of the three models can be 

attributed to the fact that the DK model uses all the information in a dataset, while the IK and 

PK models do not use all of the data. 

 

4.5 Conclusions 

The CP maps generated using the nonlinear kriging techniques provide quantitative 

information about the expected yield of fields as well as the zones of risk for poor yield as a 

result of soil salinity. The CP maps were developed for soil salinity datasets at different 

thresholds for two dominant crops in the study area - alfalfa, a moderately tolerant crop to 

soil salinity, and corn, a moderately sensitive crop to soil salinity. Crop yield and soil salinity 

samples were collected for both alfalfa and corn in order to match the CP maps with the 

actual yield data. The models were evaluated using cross-validation, which helped to select a 
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well-structured variogram that led to improved model performance. The models were also 

evaluated by comparing the actual alfalfa and corn yield samples with the CP maps 

developed by the models. The results presented in this manuscript show that in most cases 

there is good agreement between the alfalfa and corn yield samples and the estimated CP 

maps of the three models. Most of the alfalfa and corn yield samples were located in zones 

that matched what was expected from the models according to Ayers and Westcot (1985). 

The results show a lot of similarities between the IK and PK models in estimating the zones 

of different probabilities of the CP maps. However, both the IK and PK models have a slight 

difference from the DK model in the areas of the estimated zones. The differences in the 

performance of the three models, can be attributed to the fact that the DK model makes use of 

all information in a dataset, IK uses most of it, while the PK recovered some of the 

information lost in the conversion of a continuous variable to a discontinuous one. The 

information provided in this study can be implemented by using the output of the models as 

an input for decision making in precision management of agricultural resources. The CP 

maps developed by the three models can provide information about the estimated yield for a 

field with a given crop and the zones that are at risk for producing a poor yield with certain 

soil salinity conditions. The visual and quantitative information presented in the CP maps 

provides information on the variability of the probability of YP in the different zones of a 

specific field. With this information, several actions can be considered to enhance the 

productivity. One possible action might be to switch to another crop. This action depends on 

several factors, such as: crop price, the initial and farming costs of the crop, water 

consumption of the crop and water availability, and marketability. Once a crop is selected, 

growers can improve the productivity by improving the management of low productivity 

zones to alleviate the impact of soil salinity. Fertilizer application and number of seeds 

planted can be applied based on the expected spatial yield variability. 
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5 SUMMARY AND FINAL REMARKS 

The water of the Arkansas River is used to irrigate crops grown in its alluvial valley, and 

farmers are facing decreasing crop yields due in part to the high levels of salinity. In some 

areas, land is being taken out of production due to unsustainable crop yields. Attempts to 

improve the salt tolerance of crops through conventional breeding programs have met with 

very limited success due to the complexity of the salt tolerance both genetically and 

physiologically (Flowers, 2004). In the mean time, leaching of soil salinity requires a source 

of fresh or low salinity water, while land reclamation is expensive. The presented approach in 

this research is aimed to reach high productivity and live with soil salinity in its current 

condition without leaching or land reclamation efforts. Geostatistical methods are used in this 

research to map soil salinity and investigate the heterogeneity of its spatial distribution. The 

crop productivity is then investigated based on the spatial distribution of soil salinity and the 

crop tolerance. The threshold values of the investigated crops were used as input values for 

the geostatistical models to generate CP maps for YP% under different conditions of soil 

salinity thresholds. The CP maps were used as a quantitative method for making management 

decisions. 

The findings of this research suggest that the CP maps developed using nonlinear 

geostatistical models can be used for effective assessment of the impact of the soil salinity on 

the spatial variability of YP. Throughout this research, the accuracy of the three nonlinear 

geostatistical models was evaluated using the cross-validation parameters. The results of this 

research indicated that most of the yield samples were located in the same zones as that 

estimated by the models. The results imply that there were a lot of similarities between the 

estimated zones of the IK and PK models, while these zones were slightly different from the 

zones generated using the DK model. According to these results, the similarities or the 

existing of slight differences among the three nonlinear geostatistical models suggest that any 
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of these models can be used to develop the CP maps. This is mainly due to the fact that all the 

three models have the ability to take data uncertainty into account (Goovaerts, 1994; Oyedele 

et al., 1996). However, the crops investigated in this research is limited to alfalfa and corn, 

which is not enough to cover all the crops in the study area. Moreover, soil salinity was 

considered to be the only variable that impacting the YP, which may be not in some 

instances. In addition, the possible impacting of some other parameters on YP such as 

fertilizer application, irrigation and drainage schemes, and insect infestations was neglected. 

Along with more field variables, there is still a great deal of future work to be done in this 

domain. This research can be improved by taking into consideration some other parameters in 

addition to soil salinity and by selecting a wide varieties of crops. Finally, the results of this 

research indicate that the CP maps of the nonlinear geostatistical models are potentially 

useful tool for farmers and researchers in order to control and manage YP with soil salinity. 


