
DISSERTATION

APPROXIMATE DYNAMIC PROGRAMMING APPLICATION TO INVENTORY

MANAGEMENT

Submitted by

Tatpong Katanyukul

Department of Mechanical Engineering

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Spring, 2010

COLORADO STATE UNIVERSITY

April 6, 2010

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER OUR

SUPERVISION BY TATPONG KATANYUKUL ENTITLED APPROXIMATE DYNAMIC PRO-

GRAMMING APPLICATION TO INVENTORY MANAGEMENT BE ACCEPTED AS FULFILL-

ING IN PART REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY.

Committee on Graduate work

Allan T. Kirkpatrick

Christian Puttlitz

Edwin K. P. Chong

Advisor: William S. Duff

Department Head: Allan T. Kirkpatrick

ii

ABSTRACT OF DISSERTATION

APPROXIMATE DYNAMIC PROGRAMMING APPLICATION TO INVENTORY

MANAGEMENT

This study has developed a new method and investigated the performance of current Approxi-

mate Dynamic Programming (ADP) approaches in the context of common inventory circumstances

that have not been adequately studied in the literature. The new method uses a technique similar

to eligibility trace[113] to improve performance of the residual gradient method[7]. The ADP ap-

proach uses approximation techniques, including learning and simulation schemes, to provide the

flexible and adaptive control needed for practical inventory management. However, though ADP

has received extensive attention in inventory management research lately, there are still many issues

left uninvestigated. Some of the issues include (1) an application of ADP with a scaleable, linear

operating capable, and universal approximation function, i.e., Radial Basis Function (RBF); (2)

performance of bootstrapping and convergence-guaranteed learning schemes, i.e., Eligibility Trace

and Residual Gradient, respectively; (3) an effect of latent state variables, introduced by recently

found GARCH(1,1), to a model-free property of learning-based ADPs; and (4) a performance com-

parison between two main ADP families, learning-based and simulation-based ADPs. The purpose

of this study is to determine appropriate ADP components and corresponding settings for practical

inventory problems by examining these issues.

A series of simulation-based experiments are employed to study each of the ADP issues. Due to

its simplicity in implementation and popularity as a benchmark in ADP research, the Look-Ahead

method is used as a benchmark in this study. Conclusions are drawn mainly based on the significance

test with aggregate costs as performance measurement. The performance of each ADP method was

tested to be comparable to Look-Ahead for inventory problems with low variance demand and shown

to have significantly better performance than performance of Look-Ahead, at 0.05 significance level,

for an inventory problem with high variance demand. The analysis of experimental results shows that

(1) RBF, with evenly distributed centers and half midpoint effect scales, is an effective approximate

cost-to-go method; (2) Sarsa, a widely used algorithm based on one-step temporal difference learning

iii

(TD0), is the most efficient learning scheme compared to its eligibility trace enhancement, Sarsa(λ),

or to the Residual Gradient method; (3) the new method, Direct Credit Back, works significantly

better than the benchmark Look-Ahead, but it does not show significant improvement over Residual

Gradient in either zero or one-period leadtime problem; (4) a model-free property of learning-based

ADPs is affirmed under the presence of GARCH(1,1) latent state variables; and (5) performance of

a simulation-based ADP, i.e., Rollout and Hindsight Optimization, is superior to performance of a

learning-based ADP. In addition, links between ADP setting, i.e., Sarsa(λ)’s Eligibility Trace factor

and Rollout’s number of simulations and horizon, and conservative behavior, i.e., maintaining higher

inventory level, have been found.

Our conclusions show agreement with theoretical and early speculations on ADP applicability,

RBF and TD0 effectiveness, learning-based ADP’s model-free property, and that there is an ad-

vantage of simulation-based ADP. On the other hand, our findings contradict any significance of

GARCH(1,1) awareness, identified by Zhang [130], at least when a learning-based ADP is used. The

work presented here has profound implications for future studies of adaptive control for practical

inventory management and may one day help solve the problem associated with stochastic supply

chain management.

Tatpong Katanyukul

Department of Mechanical Engineering

Colorado State University

Fort Collins, Colorado 80523

Spring, 2010

iv

ACKNOWLEDGEMENTS

First of all, I am pleased to thank my father Weerawuth, my mother Petch and my brother

Nitipat Katanyukul for major financial, morale and spiritual support before and throughout this

academic pursuit. I am grateful to my advisor, Dr. William Duff, for his guidance, patience and

Mettā (Buddhism loving kindness); to Dr. Edwin Chong for his counseling, encouragement and

positive attitude toward this learning process, research, academic career and life; to Dr. Charles

Anderson for his suggestion, comments and passion on machine learning that carries on to inspire

parts of this research.

I would also appreciate Dr. Allan Kirkpatrick and Dr. Christian Puttlitz for serving as my

committee members; Karen Mueller for copying editing this dissertation; NPSpecies project manager

and my boss Alison Loar for providing me a student friendly and international student permitted

job that helps support my living as well as broaden my perspective on biodiversity, conservation,

nature, history, recreation, public work and national park roles in nurturing society; Adam Berrada

and his father for proof-reading the first draft of my proposal; Ivan Rivas for encouraging and lending

me Bolker’s Writing Your Dissertation in Fifteen Minutes a Day that, though I spent more than

15 minutes a day, helps persevere me on writing this dissertation; Direk Khajonrat for assisting

me on Matlab and Latex as well as sharing his academic pursuit experience; Manupat and Ornrat

Lohitnavy for helping me settle down in Fort Collins when I first came; Sirirat Niyom for listening,

understanding and comforting my frustration and anxiety later of this pursuit; and who I did not

mention their names here including other professors, extended family members, friends and friendly

people around for inspiring, motivating, encouraging, supporting, comforting and helping me in my

study or other aspects of life that complement this learning process of mine.

v

TABLE OF CONTENTS

Abstract of Dissertation ii

Acknowledgements iv

Table of Contents v

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Research Framework . 2

1.2 Research Statement . 5

1.3 Literature Review . 6

1.4 Research Evaluation . 8

2 Background 13

2.1 Inventory . 14

2.1.1 Economic Order Quantity . 16

2.1.2 (s,S) Policies . 17

2.2 Inventory Studies . 18

2.3 Markov decision problems . 25

2.3.1 Dynamic Programming . 25

2.4 Approximate Dynamic Programming . 30

2.4.1 Learning-based ADP . 33

2.4.2 Function Approximation . 40

2.4.3 Updating scheme . 51

2.4.4 Simulation-based ADP . 55

vi

3 A Radial Basis Function as a cost-to-go approximator 58

3.1 Inventory problem with AR1 demand . 59

3.2 Preliminary-Experiments . 62

3.3 RBF Scales set up . 66

3.4 Experiments . 67

3.5 Experimental results . 69

3.6 Discussions and Conclusions . 75

4 Learning based controllers 79

4.1 Residual Gradient Method . 80

4.2 Direct Credit Back . 81

4.3 Experiments: a zero leadtime problem . 84

4.4 Experimental results: a zero leadtime problem . 87

4.5 Discussions: a zero leadtime problem . 95

4.6 Experiments: one-period leadtime problem . 99

4.7 Experimental results: one-period leadtime problem 101

4.8 Discussions and Conclusions . 112

5 An inventory problem with high variance demand 116

5.1 An inventory problem with AR1/GARCH(1,1) demand 117

5.2 Experiments . 118

5.3 Experimental Results . 121

5.4 Discussions and Conclusions . 132

6 Conclusions 137

6.1 Summary of Research Issues . 138

6.1.1 Investigation of Function Approximation . 138

6.1.2 Investigation of Learning Strategies . 139

6.1.3 Investigation of the Effect of GARCH Variables 139

6.1.4 Investigation of Simulation-based Methods 139

6.2 Summary of Research Approach . 140

6.2.1 Function Approximation . 140

6.2.2 Learning Strategies . 140

6.2.3 The Effect of GARCH Variables and Simulation-based Methods 141

6.2.4 Research Results . 141

vii

6.3 Discussion of Research Results . 142

6.3.1 Function Approximation . 142

6.3.2 Learning Strategies . 142

6.3.3 The Effect of GARCH variables . 144

6.3.4 Simulation-based Methods . 144

6.4 Limitations of the Research . 145

6.5 Ideas for Future Research . 146

Bibliography 150

7 Appendices 160

7.1 Finite range normal function . 161

viii

LIST OF FIGURES

2.1 Reward and its back tracing (based on Sutton and Barto [114, backward view]) . . . 38

2.2 One-dimension RBF by using K-means design . 48

2.3 One-dimension RBF by using OLS design . 50

2.4 McClain step size . 54

2.5 BAKF step size . 55

3.1 Single-echelon inventory problem . 60

3.2 The first set data points and RBF centers . 64

3.3 The first set data points and RBF output . 65

3.4 The second set data points and RBF centers . 65

3.5 The second set data points and RBF output surface 65

3.6 RBF centers and middle points . 66

3.7 Average inventory level and single cost of H1 (No C2G) and H1 TD(0) 70

3.8 Midpoint comparisons . 72

3.9 RBF bases with unity weight: 1/10-midpoint . 72

3.10 RBF bases with unity weight: 1/2-midpoint . 73

3.11 RBF bases with unity weight: 9/10-midpoint . 73

3.12 Center gap comparisons . 75

3.13 Boxplot and average AIC’s of controllers with different center gap sizes 77

3.14 Boxplot and average common-data AIC’s of different center spacing size. 78

4.1 Average aggregate costs obtained from Look-Ahead on L0 93

4.2 Average aggregate costs obtained from Sarsa on L0 93

4.3 Average aggregate costs obtained from Sarsa(0), Sarsa(0.5), and Sarsa(1) on L0 . . . 94

4.4 Average aggregate costs obtained from Residual Gradient on L0 94

4.5 Average aggregate costs obtained from Direct Credit Back on L0 94

4.6 Average aggregate costs obtained from different methods on L0 96

4.7 Results of Sarsa and Sarsa(λ); L0 . 97

ix

4.8 Inventory and period costs of Sarsa and Sarsa(λ); L0 98

4.9 Average aggregate costs obtained from Look-Ahead and (s,S) on L1 104

4.10 Average aggregate costs obtained from Sarsa on L1 105

4.11 Average aggregate costs obtained from Sarsa(0), Sarsa(0.5), and Sarsa(1) on L1 . . . 105

4.12 Average aggregate costs obtained from Residual Gradient on L1 106

4.13 Average aggregate costs obtained from Direct Credit Back on L1 106

4.14 Average aggregate costs obtained from Rollout on L1 107

4.15 Results of Sarsa and Sarsa(λ); L1 . 113

4.16 Inventory and period costs of Sarsa and Sarsa(λ); L1 113

5.1 Relative cost deviation (%) showing GARCH significance 120

5.2 Average aggregate costs from Sarsa; GARCH(1,1) 122

5.3 Average aggregate costs from Sarsa and Sarsa w/o z & σ2; GARCH(1,1) 127

5.4 Average aggregate costs from Rollout; GARCH(1,1) 127

5.5 Average aggregate costs from HO; GARCH(1,1) . 129

5.6 Average aggregate costs from different methods; GARCH(1,1) 129

5.7 Average inventory and average and maximum costs from Rollout 133

5.8 CDF Plot of inventory and single-period cost for each Rollout setting. 134

7.1 PDF and CDF of finite range normal distribution . 161

7.2 Plot of squared error from rounding off in erf−1(erf(x)) 162

x

LIST OF TABLES

2.1 Backward Dynamic Programming Algorithm . 27

2.2 Value Iteration Algorithm . 28

2.3 Policy Iteration Algorithm . 30

2.4 Linear Program for Markov Decision Process . 30

2.5 Illustration of Curses of Dimensionality . 32

2.6 First-visit Monte Carlo method for estimating cost function 36

2.7 ǫ-greedy on-policy Monte Carlo control . 36

2.8 Sarsa algorithm . 37

2.9 Q-learning algorithm . 38

2.10 Sarsa(λ) algorithm with replacing Eligibility Trace 40

2.11 Cluster assignment . 47

2.12 Cluster centroids . 47

2.13 Cluster RSS and AIC . 47

2.14 OLS trial design . 49

2.15 OLS design . 49

2.16 Bias-Adapted Kalman Filter step size rule . 54

3.1 Pre-stage Experimental results . 64

3.2 Significance tests: H1 and H1 TD(0) with different learning rates 69

3.3 Significance tests: H1 and H1 TD(0) with different scales 71

3.4 Significance tests: H1 and H1 TD(0) with center gap of 5 74

3.5 Significance tests: H1 and H1 TD(0) with center gap of 15 74

4.1 Direct Credit Back with linear RBF . 84

4.2 Simulated Annealing . 85

4.3 Significance tests: Look-Ahead . 87

4.4 Significance tests: Sarsa . 87

4.5 Significance tests: Sarsa(λ) . 88

xi

4.6 Significance tests: Residual Gradient . 88

4.7 Significance tests: Direct Credit Back . 89

4.8 Cross significance tests: Look-Ahead . 90

4.9 Cross significance tests: Sarsa . 91

4.10 Cross significance tests: Sarsa(λ) . 91

4.11 Cross significance tests: Residual Gradient . 91

4.12 Cross significance tests: Direct Credit Back . 92

4.13 Cross comparison of different methods . 95

4.14 Significance tests: Look-Ahead and (s,S) policies on one-period leadtime case 101

4.15 Significance tests: Sarsa on one-period leadtime case 101

4.16 Significance tests: Sarsa(λ) on one-period leadtime case 102

4.17 Significance tests: Residual Gradient on one-period leadtime case 102

4.18 Significance tests: Direct Credit Back on one-period leadtime case 103

4.19 Significance tests: Rollout on one-period leadtime case 104

4.20 Cross significance tests: Look-Ahead and (s,S) on one-period leadtime case 107

4.21 Cross significance tests: Sarsa on one-period leadtime case 108

4.22 Cross significance tests: Residual Gradient one one-period leadtime case 108

4.23 Cross significance tests: Sarsa(λ) on one-period leadtime case 109

4.24 Cross significance tests: Direct Credit Back on one-period leadtime case 110

4.25 Cross significance tests: different methods on one-period leadtime case 111

4.26 Rollout numbers of simulations and total costs on one-period leadtime case 114

5.1 Significance tests: Look-Ahead and Sarsa; GARCH(1,1) 121

5.2 Significance tests: Sarsa w/o z & σ2; GARCH(1,1) 122

5.3 Significance tests: Rollout; GARCH(1,1) . 123

5.4 Significance tests: Hindsight Optimization; GARCH(1,1) 124

5.5 Cross significance tests: Look-Ahead and Sarsa; GARCH(1,1) 125

5.6 Cross significance tests: Look-Ahead, Sarsa, and Sarsa w/o z & σ2; GARCH(1,1) . . 126

5.7 Cross significance tests: Look-Ahead and Rollout; GARCH(1,1) 128

5.8 Cross significance tests: Look-Ahead and HO; GARCH(1,1) 130

5.9 Cross significance tests: Look-Ahead, Sarsa, Rollout and HO; GARCH(1,1) 131

5.10 Rollout numbers of simulations and total costs . 135

xii

CHAPTER 1

INTRODUCTION

“The most important dimension of ADP is ‘learning how to learn’, and as a result the process

of getting approximate dynamic programming to work can be a rewarding educational experience.”

- Warren B. Powell [97].

1.1 Research Framework

Inventory management is a major function of many businesses, especially in wholesaling, retailing

and manufacturing. Proper management of inventory can help corporations reduce costs and stay

competitive. Hence, there have been many inventory management studies since Harris (1913), who

is credited with making the first real inventory study[40]. The motivation of our study originated

from recurring problems of inefficient inventory control of an agrochemical-product distributor in

Thailand. Inefficient inventory control causes the business to be short of cash from time-to-time and

may result in unnecessary expenditures.

A multi-period inventory management problem can be modeled as a Markov Decision Process.

It can be solved by problem specific analyses or dynamic programming methods. The structure

of these approaches are often too problem specific[73, 118]. In addition, they frequently require

hard-to-obtain information, like a transition probability in case of exact dynamic programming1.

Analytical approaches to inventory problems have been studied extensively. These approaches

can provide optimal solutions when its assumptions are justified. However, due to a variety of

inventory structures, inventory problems appear in various forms and their forms often change over

time. Since an analytical approach is usually highly problem specific and requires high levels of

analytical skills and much effort[64, 73]. Therefore, these are usually not suitable approaches for

practical inventory management, especially for small businesses which have limited resources.

Exact dynamic programming is based on an analytical analysis and it is designed to obtain an

optimal answer, called a control policy. It is based on searching all state-action space as well as the

calculation of expected values. An expectation calculation requires knowing a transition probability

and calculation of all possible states, making exact dynamic programming inefficient for problems

with a large state-action space. This is referred to as the curse of dimensionality[13]2.

In order to obtain good control within a Markov Decision Process, the future consequence of

current control has to be taken into the account. Cost-to-go is a simple term often referred to as this

future consequence. The exact cost-to-go solution is extremely difficult, if not impossible, to obtain

in practice for any stochastic problem. Exact dynamic programming uses expectation calculations

for this cost-to-go solution. Expectation calculations often have high computational requirements

1 Werbos [126] uses term exact dynamic programming to distinguish it from approximate dynamic programming.
2 An example to illustrate the curse of dimensionality is provided in §2.4.

2

and require hard-to-obtain transition probabilities. Obtaining an exact solution usually requires a

rigorous analysis[73] and other hard-to-obtain information. Often, rigid assumptions are made in

order to develop a solution. Van Roy et al. [118] also raises the issue of inflexibility. That is, exact

solutions tend to be too problem specific and cannot be adapted well to a change in the environment.

And, they are likely to perform poorly when the underlying assumptions are violated. Many articles,

such as Silver [109], Lee and Billington [77], and Bertsimas and Thiele [16] to name a few, address

the need for an efficient flexible inventory solution that is simple to implement in practice.

Recently the use of Approximate Dynamic Programming (ADP) has received growing attention

for many decision and automatic control applications. ADP solution approaches tend to be more

flexible and adaptable than analytical or exact dynamic programming approaches. This property

makes ADP suitable for practical decision applications, including inventory management. ADP

approaches use various approximation techniques, depending on each ADP method, to overcome

difficulties, such as the high computation/memory and transition probability requirements of exact

dynamic programming.

The adaptability of ADP is attributed in part to a learning-based ADP structure. With observed

information, a learning-based ADP method uses a learning scheme to correct a relation between the

state-action and its consequence. In addition to learning-based ADP, there is simulation-based ADP.

A simulation-based ADP method is a good alternative for inventory problems, since a simulation

model of a particular application is relatively easy to develop. With the model, a simulation-based

ADP method uses simulation to assist in inventory decisions. The types of ADPs to use, how they

can be used, and other major ADP associate issues are investigated in the current study.

A mechanism of learning-based ADPs is generally achieved with two main components: a learning

strategy and a function approximation. A function approximation is a method to memorize relations

that have been learned. There are broad ranges of possible implementation choices for a learning

strategy and an approximation function. An inappropriate choice could lead to divergence and poor

performance, as discussed by Bertsekas and Tsitsiklis [15] and Falas and Stafylopatis [41]. Sutton

and Barto [114] suggest a function belonging to a linear family for a cost-to-go approximation. As

discussed by Barreto and Anderson [9], the Radial Basis Function (RBF) is in the linear family and is

one of the most widely-used approximation functions. However, the RBF has not been studied with

ADP for inventory problems. While the RBF approach is well-developed for supervised learning

applications, such as regression and classification, applying ADP with RBF to inventory problems

is much less so. A supervised learning application has all data available, allowing for a data design

approach, such as Chen et al. [26]’s Orthogonal Least Square (OLS) with a single scale. In an ADP

3

context, data is obtained incrementally. The RBF has to be designed either from initial data or

from another RBF design scheme. For inventory problems, reasonable ranges of a system state and

action can be estimated. This domain information can then be used in an RBF design. We propose

an intuitive RBF design, show its advantage over an OLS design, and develop a systematic approach

to determine associated parameters.

The other component of a learning-based ADP method is a learning strategy. A learning strategy

is a method to correct learned relations using observed information. Due to its effectiveness and its

link to mammal learning processes, one-step temporal-difference learning, TD(0), is one of the most

widely studied learning strategies. Eligibility Trace, TD(λ), is a bootstrapping technique used to

speed up a learning process in TD(0). It has been shown to be an effective method in many studies,

including Tesauro [116] and Gelly and Silver [43]. However, TD(λ) has never been studied for

inventory problems before. Experiments in the current research use Sarsa as an implementation of

TD(0) and Sarsa(λ) as an implementation of TD(λ). The results show no performance improvement

of Sarsa(λ) over Sarsa. However, unexpectedly, a link between a degree of bootstrapping and

conservative behavior was found.

Residual Gradient is a learning strategy designed to be used with function approximation. Its

convergence is guaranteed, but performance is slow comparing to Sarsa. [See 7, for details]. In order

to improve the Residual Gradient approach, we took the idea of Eligibility Trace and developed the

Direct Credit Back (DCB) method. Our experiments indicate that DCB’s average costs were lower

than those when using the Residual Gradient method, but the significance tests could not confirm

the difference at 0.05 significance level.

Recently, Zhang [130] has found evidence of temporal demand heteroscedasticity, GARCH(1,1),

in inventory data and showed a significant cost penalty was incurred when the GARCH(1,1) model

was not accounted for. The GARCH(1,1) model introduces two extra state variables, which are

unobservable without a correct model of the problem. These latent state variables posted relate to a

model-free property of a learning-based ADP method. Without a complete model, these latent state

variables will be unintentionally left out. It should be noted that this is unlike a case of a Partially

Observable Markov Decision Process (POMDP)[See 66, 79, for a short introduction to POMDP],

because we are unaware of these latent state variables and they are not taken into account. Our

experiments showed robustness of a learning-based ADP method against the missing information

and provided evidence that the model-free property of a learning-based ADP method is viable.

When a model of a problem is available, a simulation-based ADP method is an alternative.

With a model, a simulation-based ADP method uses simulation to generate possible consequences

4

from candidate actions. The action is then chosen based on information obtained from simulated

consequences. Simulation-based ADP, Rollout and Hindsight Optimization, are investigated here.

They are shown to perform better than learning-based ADP with Sarsa. Similar to Sarsa(λ), a link

between Rollout parameters and their conservative behavior consequence is also found.

The findings here provide guidance for a practical approach to designing an ADP method for

an inventory problem and an insight into relations of ADP components, performance, and control

behavior. In addition, the results reaffirm the model-free property of a learning-based ADP method

even in the presence of latent state variables introduced by the GARCH(1,1) model. These findings

are expected to improve the efficiency of inventory management and convey the merit of ADP

research into practice.

1.2 Research Statement

Although ADP has been used for inventory management, many of its aspects have not been in-

vestigated. Our study addresses many of the unanswered or inadequately answered questions: How

should RBF be set up for ADP, can Eligibility Trace improve TD(0) performance for inventory prob-

lems, how does TD(0) perform without the latent state variables introduced by the GARCH(1,1)

model and how do simulation-based ADP methods do compared to learning-based ADP methods.

RBF has strong potential for ADP applications beyond single-echelon inventory problems. A sys-

tematic approach for setting up RBF will yield benefits for problems studied here as well as larger

and more complicated problems.

Eligibility Trace is seen as a technique that can speed up the learning process and improve

ADP performance. However, the use of Eligibility Trace in inventory management has not yet been

studied. The investigation of its application here will promote understanding of how Eligibility Trace

affects decisions and provides an assessment of whether it is worth an extra effort to implement it.

The study here of TD(0) performance in the absence of latent state variables will provide ev-

idence supporting or contradicting a model-free attribute of a learning-based ADP method under

GARCH(1,1) latent state variables. That is, the results here may support or contradict Zhang [130]’s

concern about the presence of the GARCH(1,1) model in inventory data.

Lastly, an examination of simulation-based ADP methods may focus renewed attention on a less

studied family of ADP methods.

Findings in this research are expected to provide an improved capability for finding practical

solutions for inventory control as well as establish new insights into ADP behavior in general.

5

1.3 Literature Review

ADP has been recently introduced into inventory management research by Van Roy et al. [118],

Godfrey and Powell [48], Pontrandolfo et al. [93], Giannoccaro and Pontrandolfo [47], Shervais

et al. [108], Kim et al. [70], Choi et al. [30], Topaloglu and Kunnumkal [117], Iida and Zipkin [62],

Chaharsooghi et al. [25], Kim et al. [71], Kwon et al. [75], and Jiang and Sheng [64].

Of all these authors, only Choi et al. [30] investigates the application of simulation-based ADP.

Simulation was used to provide reduced state space, reduced action space, and approximate tran-

sition probabilities for a dynamic program, which in turn was solved with either value iteration or

Rollout. Rollout uses simulation to provide approximate state-action costs. The simulation requires

a control method to provide decisions in simulation. Such a control method is called a base pol-

icy. For their base policy, Choi et al. used an (s,S) policy whose parameters were obtained from

a heuristic search over pre-defined sets. The pre-defined sets of parameters used in Choi et al. are

problem specific and it is unclear how Choi et al. obtained them. Rollout is also investigated in our

study. We use a simple formula based on the well-known Economic Order Quantity (EOQ) equation

to determine parameters for the base policy. In addition to Rollout, Hindsight Optimization (HO),

introduced by Chong et al. [31], has never been investigated for inventory problems. It is another

simulation based ADP approach that does not require a base policy. Therefore we investigate HO

for its own virtues as well as to provide a useful measure of how simulation-based ADP performs

without the choice of a base policy.

Authors studying learning-based ADP methods investigated several learning schemes. Van Roy

et al. [118] used one-step temporal difference learning (TD0). Chaharsooghi et al. [25] used Q-

learning, an off-policy variation of TD(0). Kim et al. [70] used an action-value method whose learning

scheme was based on a weighted average value of a current approximation and a new observation.

Their approach is similar to TD(0), but it only approximates a current state-action value without

a value-to-go. Kwon et al. [75] and Jiang and Sheng [64] used the case-based myopic reinforcement

learning (CMRL) method developed by Kwon et al. CMRL is based on a combination of an action-

value method and a case-based reasoning technique. Case-based reasoning is state aggregation with

an ability to create a new aggregation when an observed state value may vary over a preset range of

any existing aggregation group. Kim et al. [71] proposed and used an asynchronous action-reward

learning method. For a fast changing inventory system they assumed that information of action-

consequence relations, regardless of state, was sufficient for decision making. Their asynchronous

action-reward learning scheme is developed based on characteristics of inventory problems that

allows simultaneously multiple action updates. Multiple action updates help accelerate the learning

6

process to enable it to catch up with changes in the system. Instead of only updating an action-

reward value for an action taken, approximate values of actions not taken were updated as well.

Given an observation of an exogenous variable, such as demand, consequences of actions not taken

can be calculated and the multiple updates achieved with these computed consequences. Shervais

et al. [108] used the dual heuristic programming method (DHP), introduced by Werbos [124]. DHP is

a learning ADP scheme that updates a control policy directly using derivatives of the cost function.

It should be noted that inclusion of a set up cost, formulated as a mathematical step function,

renders this method inapplicable to the problems addressed in our study, because a step function is

not differentiable3.

Giannoccaro and Pontrandolfo [47] used the SMART algorithm, developed by Das et al. [36]. The

SMART algorithm is similar to Q-learning, developed by Watkins [123]. In Q-learning, every time

step is assumed to be equal. Giannoccaro and Pontrandolfo studied an inventory problem whose

time response is a function of a current state, a next state and a current action. To handle varied

time response, SMART uses a time correction term and its associate procedures to approximate

an average state-action value. Our work investigates TD(0) implementation Sarsa and Eligibility

Trace implementation Sarsa(λ). In addition, to improve Residual Gradient performance a Residual

Gradient method, developed and guaranteed to converge by Baird [7], and a Direct Credit Back

method, developed in our current research, are included in our study. A learning scheme used in

Van Roy et al. [118, §6.2] is equivalent to Sarsa. The Sarsa(λ) and Residual Gradient approaches

have never been studied for inventory problems before. The development of the Direct Credit Back

method is original with our analysis.

For the issue of function approximation, Jiang and Sheng [64], Kim et al. [71], Kwon et al. [75],

Kim et al. [70] used a Look-Up table to implement a cost-to-go approximation. A Look-Up table

is a simple index table whose entry, such as an approximate cost, can be acccessed by an index,

such as a state-action pair. Giannoccaro and Pontrandolfo [47] and Chaharsooghi et al. [25] used

an Aggregation. An Aggregation is an ehhanced version of a Look-Up table. It is a Look-Up table

with a group of indices, instead of a single index. Any indexing value falling within the same index

group will be linked to the same entry. For the same problem, an Aggregation will need a smaller

size table than a Look-Up table. Van Roy et al. [118] experimented with a linear combination of

features and the Multilayer Percentron Neural Network (MLP). Shervais et al. [108] also used MLP

for an approximate cost-to-go. Among these approximation choices, a Look-Up table is simplest to

3 There is a method to approximate a step function with a sigmoid function. A sigmoid function is differentiable.
However, our pre-experiments showed that even though an approximate step function was differentiable, simple
approximation of a step funciton with a sigmoid function has lead to highly inefficient computation.

7

implement, but it suffers from a scalability issue. An Aggregation is a good alternative, but a size

of its aggregation step needs to be carefully designed. A linear combination of features provides the

efficiency of a linear computation, but it requires a customized selection of features specific to each

problem. MLP is a very powerful approximation function, but its highly nonlinear nature makes it

difficult to fine tune with ADP. A Radial Basis Function (RBF) is a universal approximation function.

It can be operated in a linear mode, which results in a more stable ADP approach. RBF is a linear

combination of locally active functions. Therefore it can be viewed either as a smooth interpolation

of an Aggregation or as a linear combination of features, which are the Radial Bases. Our study

investigates an application of ADP with RBF to inventory problems to provide information of this

unexplored alternative for a cost-to-go approximation.

Among previous authors applying ADP to inventory problems, no one has investigated the perfor-

mance differences between simulation-based and learning-based ADP, the performance of bootstrap-

ping for TD(0), applicability to inventory problems of ADP with RBF, nor the effect of GARCH(1,1)

latent state variables in learning-based ADP. The intent of our study is to provide insights into these

unexplored issues in order to foster ADP application to practical inventory management.

1.4 Research Evaluation

From the point-of-view of the inventory research community, Simchi-Levi et al. [111] pointed to

an evaluation of inventory solutions as a fundamental research question and identified empirical com-

parisons, worst-case analysis and average-case analysis as three commonly used methods. However,

Simchi-Levi et al. [111] commented that analysis of a worst-case or average-case performance may

be technically very difficult, especially for complicated systems. Expressed as a similar view from

the ADP research community, Powell [97] also referred to such an evaluation as one of the major

issues in ADP research. A common stratagy is to compare ADP to benchmarks, such as an opti-

mal solution in a simplified problem, an optimal deterministic solution and a simple-to-implement

Look-Ahead method, sometimes referred to as a rolling horizon policy.

Previous authors applying ADP to inventory problems also use empirical comparisons to evaluate

their performance. Those authors are Van Roy et al. [118], Godfrey and Powell [48], Shervais et al.

[108], Kim et al. [70], Topaloglu and Kunnumkal [117], Choi et al. [30], Iida and Zipkin [62] and Lu

et al. [80]. Their evaluations vary depending on objectives and criteria of problems and on research

questions posed in each individual work. Benchmarks used are different among different studies. So

are the performance measurements. Total cost, total profit, and their other variations are among

the most commonly used performanace measurements.

8

Van Roy et al. [118] investigated the potential of two ADP methods: an approximate policy

iteration method and a TD(0) method. They studied them using two different problems: (1) a

system having one warehouse and one retailer and (2) a system having one warehouse and ten

retailers with a significant transportation delay. The ADP methods were used to determine a base-

stock parameter for a base-stock policy. (See Nahmias and Smith [86] for a base stock policy.)

Van Roy et al. [118] used an average cost as a performance indicator. These results were compared

with a base-stock policy whose parameters were determined by exhaustive search. Van Roy et al.

[118] used a lengthy simulation to allow enough time for ADP performance to converge. It should

also be noted that latter studies have put more effort into stabilizing ADP control. Shervais et al.

[108] used a more stable control to start up the system. Kim et al. [70] used a combination of a

deterministic method and ADP. The ADP method was used to control only the uncertainty parts

of the system via a mechanism of safety factors. Choi et al. [30] and Iida and Zipkin [62] used

simulation-based ADP methods to provide more stable control.

Kim et al. [70] investigated the combination of ADP and a deterministic approach. They use

ADP to control only the uncertainty part of the problem and use the deterministic approach to

handle the more predictable parts of the problem. This was done to stabilize the system while

allowing the solution to still be adaptive enough to handle uncertainty and changes. A Temporal

Difference learning method and a softmax method were used to determine parameters that handled

uncertainty, a safety leadtime and safety stocks. Then a safety leadtime and safety stocks were put

into a deterministic forecasting formula to determine a replenishment order. Kim et al. [70] investi-

gated both centralized and distributed control structures for two-echelon inventory problems. Their

objective was to control service levels to a predefined target. The target service level is the percent-

age of customer demand that has to be satisfied during the time interval between order placement

and inventory replenishment. Their simulation results were presented with service levels versus iter-

ations and service levels versus different non-stationary conditions. Looking at service levels versus

iterations shows how much a service level deviates from the target as time progresses. Looking at

service levels versus different non-stationary conditions allows for a comparison of their different

approaches, such as centralized and distributed controls. Since they intended to investigate the

multi-echelon strategies between centralized and distributed controls, they compared decentralized

and centralized results with one another. The results showed that the centralized control is more

stable than the distributed control, as the centralized control can deliver more consistent service

levels throughout different scenarios.

Godfrey and Powell [48] investigated a single-period inventory problem, often called a newsven-

dor problem. Unlike a multi-stage problem, a decision in each time period of a newsvendor problem

9

will have no consequence in latter periods. They proposed a concave piecewise linear approxima-

tion method, referred to as CAVE, and used it to approximate a relation between profit and a

replenishment order. Since the problem is single period, this relation can be used to determine a

replenishment order directly. Godfrey and Powell [48] used a total profit as a performance measure-

ment. Their objective was mainly to demonstrate how their proposed CAVE method could be used

to approximate the concave relation without any assumption or prior knowledge of a distribution of

demand. They used an inventory control based on a Guassian model as a benchmark to show how

robust CAVE was compared to a model-based method. As expected, their simulation results showed

that a Gaussian based method performed better when demands were generated from Gaussian and

Poisson distributions with large means. The CAVE approach worked better than a Gaussian based

method when demand was generated from a uniform distribution.

Shervais et al. [108] studied an application of Dual Heuristic Programming (DHP) by Werbos [124]

on a mixed inventory and transportation problem in a two-echelon structure under both stationary

and non-stationary customer demands. They used a more stable control, a linear programming (LP)

method or a genetic algorithm (GA), to initialize the system and later switched to DHP, which is more

adaptive, to improve the initial performance. The objective of their study was to investigate that

particular combination control strategy. That is, the use of a stable control to stabilize operations

during initial runs and then using an adaptive control to improve later performance. They then

compared results obtained from the combination control to each stable control alone. The stable

control used was a fixed control policy obtained initially from either LP or GA. They conducted

simulations with stationary, smooth increase and step increase demands to evaluate their approach.

They claimed the validity of pink noise, also known as a 1/f distribution, to model demand used in

their study. A total cost was used as a performance measurement. Their results showed that DHP

improves performance of each stable control significantly. The combination of GA initialized control

and DHP delivered the best performance among all test scenarios.

Topaloglu and Kunnumkal [117] studied approaches to solve multi-echelon problems with mul-

tiple suppliers. They proposed two approaches: an approach using linear programming to solve a

linear approximation of the problem and an approach using Lagrangian relaxation, discussed by

Hawkins [54], to relax the constraints that link decisions to suppliers. Topaloglu and Kunnumkal

[117] evaluated both approaches with simulation of different scenarios. The total expected profit was

used as a performance measurement and the eight-period Look-Ahead method was used as a bench-

mark. Their results showed that the Lagrangian relaxation-based method outperformed the linear

programming-based method and both of their methods outperformed the eight-period Look-Ahead

method.

10

Choi et al. [30] proposed a method, called DP in a heuristically restricted state space, to obtain

a dynamic program with reduced state space of multi-echelon inventory problems. To improve

efficiency of dynamic programming and to provide required information, they used simulation of

various potential scenarios for generating approximating information, such as reduced state space,

reduced action space, and approximate transition probabilities. Total profit was their performance

measure. Their approach is evaluated with simulation-based experiments and a heuristic search is

used as a benchmark. A similar heuristic search was also used as a base policy in a simulation that

generates approximate information. Choi et al. [30] claimed their proposed method achieved about

4.5 % performance improvement over the heuristic control alone.

Iida and Zipkin [62] used the Martingale Model of Forecast Evolution (MMFE)[53, 57] to ex-

plicitly incorporate the demand forecast into an inventory model. Without a set up cost in their

problems, Iida and Zipkin arranged the one-period cost formulation such that the one-period cost

was not a function of an initial inventory. Then, with an approximation of a cost function as a

piecewise linear function, the problem was solved backward to obtain the optimal base-stock level.

It should be noted that the presence of a set up cost in our investigation does not allow for a similar

rearrangement of the one-period cost formulation. Iida and Zipkin [62] analyzed performance bounds

and used simulation-based experiments to evaluate their proposed method. An estimate expected

total cost was used as a performance measurement. Since the purpose of their study was to inves-

tigate the effect of a forecast horizon, performance of their methods with different forecast horizons

were compared. Their results showed that there was no significant difference in performance among

one- to four-period forecast horizons and led to a conclusion that a one-period forecast has the most

significant effect.

Similar to Iida and Zipkin [62], Lu et al. [80] investigated an inventory problem with MMFE. Lu

et al. [80] used an analysis of a sample path, a concept based on a sequence of events, to develop

upper and lower bounds of the optimal base-stock level. Then, they determined the base-stock

level from a weighted combination of the two bounds whose weights minimized an upper bound of

a relative cost error. Lu et al. [80] used the Iida and Zipkin [62] method as a benchmark. Their

simulation results showed that their solution yielded lower values of an upper bound of relative cost

errors in most of the cases they examined. However, it should be noted that while Iida and Zipkin

[62]’s method is ready to use without significant extra analytical work, the method of Lu et al. [80]

requires extra work in the form of determining an expectation of the sample path, to implement it

in practice.

As a commonly accepted approach to evaluate an ADP solution for an inventory problem, our

study also employs simulation-based experiments. A Look-Ahead method is used as a benchmark.

11

An aggregate cost is used as the main performance measurement. Other observations are included

when needed or to enhance the analysis.

12

CHAPTER 2

BACKGROUND

This chapter explains a background for this research. The content is organized into three sections:

(1) inventory types and classical inventory management, (2) previous inventory studies and our

original research motivation, (3) a Markov Decision Process and classical Dynamic Programming

methods and (4) Approximate Dynamic Programming and its related issues.

2.1 Inventory

Inventory management is activities of planning and maintaining an appropriate inventory level

in a storage, e.g., a warehouse, in order to keep operating costs low without jeopardizing customer

service or disrupting other activities, e.g., production (production inventory), maintenance and

preventive maintenance (spare part inventory). Due to the amount of capital tied up in inventory,

the cost of expediting replenishment or a potentially negative consequence of inventory shortages,

an inventory decision is a major concern in management. Silver [110] provided practical examples

illustrating benefits of inventory modeling. They are (1) a case of $20-million-a-year savings for IBM

by using a new spare part multi-echelon inventory system; (2) a case of $2-million-a-year savings

for US Navy by using an approach based on inventory modeling; and (3) a case of $23.9-million-

savings and 95% drop in backorders over 3-year period for Pfizer Pharmaceuticals by using inventory

modeling.

Inventory plays many important roles in a firm. Lambert et al. [76] identifies these roles as a way

to benefit from economy of scale, to balance supply and demand, to gather products from different

manufacturers in one place and to buffer uncertainty in supply and demand1.

Inventory can be categorized from many points of view, for example, its function, how it is

modeled, items it held and how it is managed. Lambert et al. [76] classified inventory by a function

or a purpose of the inventory into cycle stocks, in-transit stocks, safety stocks, speculative stocks

and seasonal stocks. Cycle inventories are items stocked to supply the predicted demand. Generally,

they refer to a repeated replenishment cycle. In-transit inventories are items in transit from one

location to another. They are considered not available to serve demand. Once they arrive at their

destination, they will become another kind of inventory. Safety or buffer inventories are items held

in excess of a cycle stock to handle uncertainties in demand or supply. Speculative inventories are

items held for special benefit such as taking advantage of economics of scale. Seasonal inventories

are items held for either seasonal supply or seasonal demand. Dead inventories are items having no

demand for a specified period of time. Usually, these inventories refer to obsolete items.

1 Currently an inventory role as a buffer easing down uncertainty is disputable. Many works, including a well-
known work of Lee et al. [78], showed how inventories, without proper coordination, amplified uncertainty in a supply
chain.

14

Waters [122] classified inventory by the type of items into raw materials, work in process, finished

goods, spare parts and consumables. Raw materials are items to be processed before they can be

used. Work-in-process are items being processed but not completely finished. Finished goods are

items ready to be used. Spare parts are items to replace other similar type items that are defective

or scheduled for replacement. Consumables are items such as oil and fuel.

Brown [20] classified inventory by the way it is managed into pull and push systems. In pull sys-

tems, no inventory status information is shared with suppliers. Inventory is managed by an inventory

owner. Suppliers are unaware of a status of the inventory. The inventory is viewed as it is pulled

from suppliers by a replenishment order from an inventory owner. In push systems, some inventory

information is shared with suppliers. A shared inventory status lets suppliers better plan to provide

enough supply for an inventory. The inventory owner still manages the inventory. In addition,

Vendor-Managed Inventory (VMI), rather than just share information, lets suppliers manage its

inventory directly, usually under agreed constraints, e.g. maintaining a customer service level within

a specific range. From a modeling point of view, VMI can be modeled as multi-echelon inventory as

if inventories and suppliers are only facilities of different hierarchies in the same organization.

Quantitative studies classified inventory by their modeling characteristics. (1) On-hand invento-

ries are items held in stock and ready to deliver to customers immediately. A cycle stock, a safety

stock, a speculative stock, a seasonal stock or a dead stock is an on-hand inventory. (2) On-order

inventories are items in transit. Many Operations Research practitioners combine on-hand and on-

order inventories as an inventory status variable, an inventory level, in order to simplify modeling

and to avoid multiple orders during the replenishment period. In addition to tangible on-hand and

on-order inventories, an abstract inventory can be established to handle certain modeling situations.

For example, a backlog order is an abstract inventory used to handle shortages. When there is an

inventory shortage, a situation where demand exceeds an inventory level, either a backlog order or

lost sales is a common assumption in inventory modeling. We assumes that a customer will wait

until the items arrive under a backlog assumption. A backlog assumption allows an inventory level

to be negative to represent the unfulfilled demand. We assumes that a customer will go to another

company and the excess demand is lost under a lost sale assumption. A lost sale assumption simply

discards the unfulfilled demand, but the shortage may be recorded in order to measure a customer

service level. Silver [109] mentions a substitution as another assumption for shortages. This as-

sumption allows substitution for shortage items. However, this assumption is rarely seen in the

more recent literature, with the exception of Karakul [68].

15

2.1.1 Economic Order Quantity

Economic Order Quantity (EOQ) is a dominant method in inventory control, as mentioned by

Waters [122]. This method uses order quantities to determine replenishment orders. The order

quantity is calculated to minimize cost for an inventory problem having a single item with a set up

cost, a constant demand rate and a constant holding cost rate.

EOQ has several variations. The method described here is based on Waters [122], where an order

quantity is considered as a combination of a cycle stock and a safety stock. For a cycle stock, a total

cost C can be formulated as in Equation 2.1,

C = total reorder costs + total holding costs

= K ·D/Q+ h ·Q/2 (2.1)

where K is a set up cost ($/order), D is a demand rate (units/week), Q is a replenishment size for

each order(items) and h is a holding cost ($/unit for a week).

EOQ can be found by a derivative of a cost C with respect to an order size Q. The standard

formula for EOQ is shown in Equation 2.2.

EOQ = Q =

√

2 ·K ·D
h

(2.2)

The length of a decision period, or a stock cycle, Tq can be simply calculated from Tq = Q/D.

Since the replenishment requires a leadtime for delivery, it should be ordered when current stock

will last until the next replenishment quantity arrives. A reorder level r is a stock level that signals

when it is time to place a replenishment order. It is obtained from r = L × D, where L is the

leadtime. In general, when a leadtime is shorter than a stock cycle, the calculation r = L × D is

sufficient. However, if a leadtime is longer than a stock cycle, it results in a reorder level that is

greater than the highest stock level and consequently the reorder level will not be reached. For a

case of L > Tq, a replenishment order has to be placed L div Tq cycle(s) earlier with the reorder level

r = (L ·D) mod Q. The operators div and mod result, respectively, in a quotient and a remainder

of their first argument divided by their second argument.

Originally EOQ was developed for deterministic problems, however a modification has been made

to extend it to handle uncertainty by introducing a safety stock. (See Axsäter [6] for error bound of

EOQ in stochastic problems.) A safety stock rss will not change the order quantity, but it will act

as an offset for the reorder level, as shown in Equation 2.3.

r = (L ·D) mod Q+ rss (2.3)

16

A safety stock is used to balance a trade-off between holding cost and the possibility of inventory

shortage. For a demand rate D̃ having a Normal distribution of mean D and variance σ2, a safety

stock can be obtained as shown in Equation 2.4.

rss = Z · σ ·
√
L (2.4)

A factor Z is used to control the possibility of shortage, e.g. Z = 3 allows about 0.1% chance

of shortage within a stock cycle. Given 100 · α percentage of allowable shortage within the stock

cycle, the value of z can be obtained from z = N−1(1 − α) where N−1(·) is an inverse cumulative

distribution of a standard Normal distribution and α ∈ (0, 1).

2.1.2 (s,S) Policies

An (s,S) policy is a periodic review inventory policy where inventory level is reviewed at specific

periods. If the level is at or below a reordering point s, a replenishment order of sufficient size will

be placed to attain an inventory level of S.

An (s,S) policy is one of the most widely used inventory policies. It has many variations cor-

responding to different inventory problem structures. An (s,S) policy has been proved to be the

optimum approach by using a concept of K-convexity. (See Simchi-Levi et al. [111] for detail.)

Parameters of an (s,S) policy can be determined by dynamic programming.

For example2, a stochastic stationary inventory problem in with zero leadtime and backlogging

system has an objective function as shown in Equation 2.5.

Ct(xt) = min
yt≥xt

E
[

K · δ(yt − xt) + c · (yt − xt) + h+ ·max(yt −Dt, 0) + h− ·max(Dt − yt, 0)
]

+E[α · Ct+1(yt −Dt)]

= min
yt≥xt

R(xt, yt) + α · E[Ct+1(yt −Dt)] (2.5)

where Ct(xt) is the expected cost accumulating since period t, xt is an initial inventory level, yt is

an inventory level immediately after replenishment, K is a set up cost, δ(·) is a step function defined

as δ(a) = 1 if a > 0 and δ(a) = 0 if a ≤ 0, c is a unit cost, Dt is the demand during period t, h+ is

a unit holding cost for a period, h− is a unit shortage penalty cost for a period, α is a discounted

factor, E[·] is the expectation over random demand, R(xt, yt) is the expectation of a one-period cost

and CT+1(·) = 0.

The operator mina∈A f(a) is a minimization operator returning the minimum value of f(a) by

choosing value a from members of set A. Operator max(A,B) represents a maximum function return-

ing a value of either A or B, whichever is larger. The optimal set of actions ~y∗ = {y∗t , y∗t+1, ..., y
∗
T },

2 This presentation is based on Simchi-Levi et al. [111].

17

can be obtained by solving Equation 2.5. Equation 2.5 is calculated with T − t+ 1 variables. Given

that a policy of the form (s,S) is optimal, Equation 2.5 can be simplified to Equation 2.6. Equation

2.6 is solved for only two variables: a reorder point s and an order-upto-level S. Under a stationary

problem, an (s,S) policy provides a simpler calculation, especially when a decision horizon is long.

The Bellman equation for the (s,S) policy is

Ct(xt) = min
(s,S)

R(xt, xt + π(xt; s, S)) + α · E[Ct+1(xt + π(xt; s, S)−Dt)] (2.6)

where π(xt; s, S) is a policy function, shown in Equation 2.7, returning an order quantity. The (s,S)

policy equation is

π(yt; s, S) =

{

0, if yt > s

S − yt, otherwise.
(2.7)

2.2 Inventory Studies

Hax and Candea [55] classified decisions into three levels: (1) a strategic level where decisions

have a long-lasting effect; (2) a tactical level where decisions may be required weekly, monthly or

quarterly, e.g. inventory policies; and (3) an operational level where decisions are made on a day-

to-day basis. Inventory studies reviewed here focus on the tactical level of decisions to determine

proper policies to manage an inventory level.

The use of operations research approaches to inventory management has been practiced for many

years. The origin could be dated back to 1913 when Harris [52] developed the Economic Order

Quantity (EOQ) approach. The EOQ approach is based on a deterministic model. Scarf [103] and

Arrow [4] credit Arrow et al. [5] as pioneers of stochastic inventory research. Arrow et al. [5] studied

3 types of problems: deterministic problems and single-period and multi-period stochastic problems.

For a multi-period stochastic problem with a set up cost, Arrow et al. used an analytical method to

determine parameters of an (s,S) policy.

Since then, a wide variety of inventory problems have been studied. Inventory problems can be

categorized by combinations of different characteristics. This categorization is not into mutually

exclusive sets as the choice of certain characteristics may exclude some other types of included

characteristics. For example, an infinite horizon problem can be multi-period, but it will not be a

single-period problem because a horizon is specified in a single-period problem. The characteristics

classified here are based on the survey works of Silver [109] and Silver [110] with some additions.

These characteristics are listed as follows:

1. Multiplicity of items

Inventory problems may be studied for either a case of single type of item or a case of multiple

18

types of items. The multiple-item problems may have extra characteristics: (i) a constraint on

overall space or budget, (ii) an opportunity to save on fixed ordering costs through coordinated

control, (iii) an opportunity to offer a substitution to a customer and (iv) dependency on

different demands of different types of items.

2. A demand assumption

Demand is a major source of uncertainty in inventory problems. Various types of demand have

been studied: (i) deterministic demand, (ii) demand from a known probability distribution,

e.g. Normal and Poisson distributions, (iii) demand from other special known distributions

such as an intermittent distribution representing occasional large demands intermixed with

small demands and (iv) Bayesian demands (assuming a known distribution, but with unknown

parameters).

Problems with deterministic demand, also known as lot size problems, are widely studied.

Most studies in this category are based on an EOQ approach and its variations. Problems

with known probability demand are also widely studied. Most studies in this category are

based on problem specific analysis which requires very high analytical skill to make estimates.

In addition to the demand assumptions mentioned above, recent inventory research uses ap-

proaches allowing a distribution-free assumption. Van Roy et al. [118], Godfrey and Powell

[48], Kleinau and Thonemann [73], Kim et al. [70], Choi et al. [30], Topaloglu and Kunnumkal

[117] and others have used such new approaches, like approximate dynamic programming and

genetic programming, to solve inventory problems that require no assumption on a demand

distribution.

3. Types of items held

Types of items held are classified as (i) consumable, (ii) returnable or (iii) repairable. Most

inventory studies investigate consumable items. Returnable items are products that can be

returned after sale, where re-stocking and associated costs are accounted for in modeling.

Repairable items are associated with maintenance items, e.g. spare parts. Sherbrooke [107]

studied spare-part inventory problems for repairable items.

4. A decision period

A decision period, also known as a decision epoch, is an inter-arrival time between two con-

secutive actions. There are two types of decision periods: (i) single periods and (ii) multiple

periods.

19

A single-period problem is a problem where the effect of an action in one period has no effect

on later periods. In this case inventory is ordered once at the beginning of a period, and

inventory remaining at the end of the period cannot be used for a following period. The

remaining inventory may be sold as scrap at a much lower price, be thrown away with no price

or cost, or be disposed with a salvage cost.

A multiple-period problem is a problem where an effect of an action in one period will be

carried over to a following period, i.e. remaining inventory from one period may still be used

in subsequent periods.

5. Shelf life

Items may be considered to be (i) perishable or (ii) non-perishable. A perishable or short

shelf-life item may have a considerably shortened shelf life by becoming obsolete or having

greatly dropped in price or quality. A non-perishable item has a very long shelf life. Note

that a problem with short shelf-life items is different from a single-period problem. In a short

shelf-life problem, replenishment inventory may be reordered multiple times before items run

out of shelf life. In a single period problem, replenishment inventory is ordered once, or not

ordered at all, at the beginning of decision period.

6. Continuity of time

Time can be either (i) continuous or (ii) discrete.

7. Time dependency

A problem may be assumed to be (i) stationary or (ii) time dependent. The latter has at least

one parameter assumed to be a function of time.

8. Nature of supply

Supply characteristics can vary from (i) a highly reliable nature with unlimited capacity and

fixed leadtime, (ii) an uncertain delivery nature (for example, replenishment has a random

leadtime with known distribution), (iii) an uncertain capacity nature (for example, supply

capacity is random such that there is a chance that only part of a replenishment order can be

delivered), (iv) a limited nature (for example, suppliers have a capacity restriction).

9. A supply constraint

The supplier may have an order constraint e.g., a minimum order size, a fixed batch size.

10. A cost structure

Ordering cost can have both (i) a fixed ordering cost per transaction, also known as a setup

20

cost, and (ii) a variable cost. Variable costs can be a fixed rate (e.g. cost per unit) or various

fixed rates that are a function of order quantity (e.g. a large quantity discount). In addition

to these structures, some inventory studies consider salvage cost, which is a cost to remove

unwanted items. You [129] studied large quantity discount problems where the cost structure

is a piecewise linear function.

11. Shortage handling

When a shortage happens, the excess demands are taken either as (i) lost sales or as (ii) backlog

orders, where it is assumed that the customer is willing to wait until the items are available.

12. Shortage control mechanism

The chance of inventory shortage can be controlled by a mechanism of a penalty cost or a

customer service level cost consequence.

13. Multiplicity of stocking points

Stocking points of inventory can be structured as (i) a single stocking point, known as a single

echelon, (ii) multiple stocking points, known as multi-echelon, or (iii) horizontal multiplicity,

which is organized in hierarchy as multi-echelon but allowing transshipments among stocking

points at the same echelon level.

14. A decision horizon

Performance of inventory solutions can be considered over (i) a finite horizon or (ii) an infinite

horizon. Performance of finite horizon problems will be considered over a specific number

of periods. For example, the inventory may be reviewed every week and inventory cost of a

whole year will be used to evaluate the inventory policy. In this case, the decision epoch is

one week and the horizon is about 52 epochs. Performance of infinite horizon problems will

be considered over infinite number of periods.

15. A discount factor in decision horizon

A discount factor is a weighting factor of values over time. It is used as a mechanism to adjust

values that occur in different time periods. A discount factor can be (i) one (no discounting

effect), (ii) constant, between 0 and 1, or (iii) a function of time.

16. Inventory reviewing

An inventory level is reviewed for replenishment needs. An inventory can be reviewed (i)

periodically or (ii) continuously. A periodic-review system checks inventory at a particular

time point e.g., the beginning of each epoch. If replenishment is issued, it will be issued at that

21

particular time. A continuous-review system continuously checks inventory and replenishment

can be issued at any time.

17. Observable information

From a modeling point of view, the information can be assumed to be (i) obtained perfectly

(e.g. a perfect demand information), (ii) acquired partially (such as sales information which

indicates censored demand information) and (iii) shared among partners.

18. Information acquisition

Inventory information can be acquired (i) continuously or (ii) at a discrete point in time.

19. Marketing interaction

Instead of treating demand as a given, there is ongoing research attempting to maximize

profit by synchronizing inventory control with marketing campaigns. A variation can be (i)

no interaction, considering marketing and inventory control independent, (ii) an attempt to

regulate demand directly with marketing tools such as price or promotion or (iii) an attempt

to affect demand information in advance by using an incentive for early ordering.

Pricing strategy has been studied with inventory management as an approach to regulate de-

mand to some degree. Petruzzi and Dada [92] reviewed pricing strategies for single-period

inventory problems. Karakul [68] extended the Petruzzi and Dada results for problems with

two item types. Federgruen and Heching [42] studied pricing strategies for multi-period prob-

lems. Chen and Simchi-Levi [27] studied an (s,S) policy and proposed their (s, S, A, p) policy

for multi-period problems. These works formulated demand as a monotonic function of price

with white noise error. Chen and Simchi-Levi [28] extended Chen and Simchi-Levi [27] to

infinite horizon problems. They used a supremum limit3 when the time period approached

infinity to set the objective function. In addition to using price to influence demand, inventory

on display can be exploited as a marketing tool. Gerchak and Wang [46] studied inventory

problems where demand depended on a level of inventory on display. Instead of trying to

influence demand by a pricing strategy, Özer and Wei [88] studied opportunities to use an

incentive to get advanced demand information for better inventory planning. In addition to

combining marketing and inventory management, Simchi-Levi et al. [111] integrated decision

theory into inventory management and developed a risk averse inventory model to include risk

aversion as an additional factor.

3 Personal comment from the author is that Veinott and Wagner [119] had justified the use of infimum limit on a
cost function. Therefore, it implicitly justified supremum limit on a profit function.

22

However, integration of marketing or a decision theory into inventory management results in

complicated models. Pricing strategies here need to be applied carefully. Each type of demand

has its own level of stimuli tolerance. For example, cheaper luxury consumer products may be

able to attract more demand when there is a large potential for this. On the other extreme,

cheaper fertilizer may not stimulate any more demands, when farmers have already fertilized

their crops. Furthermore, in terms of marketing itself, pricing techniques should be applied

cautiously. It may end up that downstream retailers overstock the promoted items, which

may deceivingly show a monotonic relationship in the beginning, but cause an unpredictable

demand pattern later. This marketing disturbance can cause amplification of demand variance

upstream, known as a bullwhip effect, as systematically pointed out by Lee et al. [78].

An inventory problem is defined by a combination of the above characteristics. Some combina-

tions are widely studied and have been uniquely named. A stationary problem with deterministic

demand is also known as a lot size problem, or an economic lot size problem. The most widely

known solution approach for a lot size problem is EOQ.

A non-stationary problem with deterministic demand is also known as a dynamic lot size problem,

as indicated in works by Wagner and Whitin [121], Paterson and Silver [91], Buzacott [22], Brown

[19] and Naddor [84].

A single-period problem is often referred to as a newsvendor, a newsboy, or a Christmas-tree

problem. Khouja [69] provided a comprehensive survey for literature of this type. A problem with

significant shelf-life items is also known as a problem with perishable items. Nahmias [85] studied

inventory problems with perishable items. Zipkin [132], Porteus [94] and Simchi-Levi et al. [111]

provided more recent reviews of these inventory problems.

One advantage of information sharing is to extend inventory management to larger and more

complicated inventory systems (for example, a vendor-managed inventory (VMI) and supply chain

management (SCM)). Both VMI and SCM are used to reduce the Bullwhip effect. The Bullwhip

effect, made well known by Lee et al. [78], is an effect where demand variation of an inventory

unit causes higher demand variation of an upstream partner of that inventory unit. For example, a

retailer observing a surge from variation of an end customer demand wrongly perceives an uptrend

demand and raises inventory with speculation of an upturn. Consequently, the wholesaler observing

a surge in a retailer’s order wrongly perceives a business upturn and raises inventory. Variation in

end customer demand amplifies variation in the retailer’s order; variation in a retailer order amplifies

variation in a wholesaler order and so on.

23

The popularity of VMI and SCM is credited to Lee et al. [78] who investigated the Bullwhip

effect in 1997, but earlier studies of inventory on a macro level by Caplin [24] in 1985 showed that

order variance exceeded sales variance, contradicting the intuition that the retail inventory acts as

a buffer between a producer and consumers.

The idea of SCM is relatively recent. The inventory aspect of SCM has been studied in the

context of a multiple-stocking-point problem, also known as a multi-echelon problem, in Clark and

Scarf [33] in 1960. Earlier, the multi-echelon inventory model is studied in the context of an intra-

organization management. Later, the concept of information sharing makes corporate barriers more

transparent and allows the model to be used for multiple inventories in a supply chain. Although

information sharing can help reduce supply chain cost, Zhao and Xie [131] showed that it may

increase costs for retailers, especially when there is high prediction error on the value of information

sharing between retailers and a supplier. Hence it is important to consider every partner’s costs as

well as the entire chain cost.

In addition to the above characteristics, it is worth mentioning another management approach

related to inventory management. Lean management, such as JIT, as discussed in Hirano and Furuya

[60], accentuates the role of information and transportation in managing inventory flow such that a

cost of holding inventory can be reduced dramatically or eliminated completely.

The original motivation of our study originated from recurring problems of inefficient inventory

control of a small agrochemical-product distributor in Thailand. Inefficient inventory control caused

the business to be short of cash and sometimes resulted in unnecessary loans. Characteristics of this

inventory problem are described as follows.

• The inventory behavior usually is one-hierarchy, or single echelon.

• The distributor is not ready for a concept of extensive information sharing central to vendor-

managed inventory and supply chain management models.

• Unlike on-shelf sales, the distributor takes purchase orders from downstream retailers. So,

they generally can perceive all orders regardless of inventory level status, or at least they know

when demand has exceeded their inventory. This situation provides more information than a

censored data assumption studied by Godfrey and Powell [48]. Making a purchase order in this

manner also decouples dependency between demand and inventory level. Therefore, demand

can be considered to be independent from the effects of inventory levels, unlike a case studied

by Gerchak and Wang [46].

24

• Costs, prices or marketing campaigns may be implemented and changed in a variety of ways.

Although price can fluctuate and can be used as a marketing tool, it is indirectly regulated

by fierce competition. Demand for agrochemical products can also tolerate some degree of

price change without effect. For example, farmers do not want to over fertilize plants, or

overstock fertilizers just because cheaper fertilizers are available. Hence, the price-demand

relation in this case may not be simply estimated with a monotonic function, as in studies

of Federgruen and Heching [42] and Chen and Simchi-Levi [27]. Furthermore, in terms of

the marketing itself, pricing techniques should be cautiously applied, because it may only

let downstream retailers overstock promotional items and may not be able to significantly

stimulate real demand. Therefore, our study treats price as an exogenous factor.

• Since a supplier’s capacity is usually much larger than the business volume of the distributor,

supply can be assumed to be unlimited. In addition, because of the reliability of the delivery

channel, a leadtime can be assumed to be a known constant.

2.3 Markov decision problems

A Markov decision problem is an optimization problem involving a Markov decision process or

a Markov decision chain. A Markov decision process is a system having a sequence of interrelated

decisions. It is a system such that the decision for one period does not only yield an immediate

return for that period but also affects outcomes of later periods. A Markov process is a continuous-

time system. A Markov chain is a discrete-time system. The immediate return may be referred to

as a reward in a maximization problem or as a period cost in a minimization problem. Our study

uses these terms: period cost, reward, one-period value, one-period cost and immediate return,

interchangeably.

2.3.1 Dynamic Programming

White III [128] defined Dynamic Programming as a problem solving approach that can be effec-

tively applied to mathematically describable problems having a sequence of interrelated decisions.

There are many approaches to solving Markov decision problems. Dynamic programming is more

efficient than direct search or linear programming. Bellman [13] is credited as a pioneer work on

dynamic programming. White III [128] provided key references to dynamic programming including

Bertsekas [14], Denardo [39], Heyman and Sobel [58], Hillier and Lieberman [59] and Ross [100].

Dynamic Programming uses an objective function to facilitate the search for the optimal policy.

A policy is a rule to map a state to an action. An optimal policy is a policy that gives the optimal

25

value of the objective function over a specific horizon, regardless of an initial state. A general

objective function can be written as Equation 2.8,

Ct(St) =

T
∑

i=t

αi−t ·Ri(Si)

= Rt(St) + α · Ct+1(St+1) (2.8)

where Ct(St) is the total cost over all decision periods from t to T , St is a state at period t, Rt(St)

is a cost for period t for the given St, α is a discount factor and St+1 is a next state which is a

function of current state St.

A period cost of Equation 2.8 is Rt(St). The effect of a decision on later periods may be referred

to as a future value, a value-to-go, a future cost, or a cost-to-go. The cost-to-go of Equation 2.8 is

Ct+1(St+1). Equation 2.8 is referred to as a Bellman equation or a Hamilton-Jacobi-Bellman equa-

tion. A stochastic version of this equation can be written as Ct(St) = E [Rt(St) + α · Ct+1(St+1)|St],

where E[·|·] is a conditional expectation on St (with respect to all states). In order to emphasize

the role of the policy, the objective function can be written as Equation 2.9,

Cπ
t (St) = E[Rπ

t (St)|St] + αE
[

Cπ
t+1(St+1)|St

]

= rπ
t (St) + α

∑

s′∈S

pπ(s′|St)C
π(s′) (2.9)

where Cπ
t (St) is a cost function when starting from period t with state St and using policy π, rπ

t (St)

is the expected cost of state St at period t given policy π and pπ(s′|St) is the transition probability

of state St to s′ given policy π.

There are many dynamic programming algorithms. The algorithms described in the following

are based on Powell [96], Sutton and Barto [114] and Puterman [98].

Finite Horizon Problems

In a finite horizon problem a number of decision periods is known and finite. The optimization

equation can be written as Equation 2.10. The terminating value CT (ST) is assumed to be obtainable

(either CT (ST) is known or it can be easily calculated). The equation is

Ct(St) = min
at∈A

E[Rt(St, at) + αCt+1(St+1)|St]

= min
at∈A







rt(St, at) + α
∑

St+1∈S

p(St+1|St, at) · Ct+1(St+1)







(2.10)

where A is a set of possible actions, S is a set of possible states, rt(St, at) is an expected cost at

period t for the given state St and the given action at and p(St+1|St, at) is a transition probability

26

that a state St will become St+1 when an action at is taken. It should be noted that equations

presented here are for a maximization problem while the objective function shown in Equation 2.5

is for a minimization problem.

Table 2.1 illustrates the backward dynamic programming algorithm. The calculation starts from

the last period value and is computed backward to period 0. Powell [96] suggested setting a model

horizon T to be substantially larger than the actual decision horizon in order to improve the quality

of the obtained optimal action a∗.

Table 2.1: Backward Dynamic Programming Algorithm

• Step 1: Initialization
Initialize CT (ST).
Set t := T − 1.

• Step 2: Evaluation
Calculate Equation 2.10 for all St ∈ S.

• Step 3: Loop and Termination
Check if t > 0, set t := t− 1 and go to step 1, otherwise stop.

• Result
Result is a sequence of optimal actions a∗ = {a∗0, a∗1, ..., a∗T−1}.

Equation 2.10 is a backward recursion. It can be formulated as a forward recursion as shown in

Equation 2.11.

Ck+1(Sk+1) = min
ak+1

{Rk+1 + α
∑

Sk

p(Sk|Sk+1, ak+1) · Ck(Sk)} (2.11)

where k is a number of period(s) before the terminating period.

Infinite Horizon Problems

In an Infinite Horizon Problem, a number of total decision periods is unknown or infinite. When

a sequence {Ck}, of Equation 2.11, converges as k → ∞, the subscript k can be dropped as shown

in Equation 2.12,

C(s) = min
a∈As

{

r(s, a) + α
∑

s′∈S

p(s′|s, a)C(s′)

}

(2.12)

where s is a state, s ∈ S; s′ is a state following state s; S is a set of states and As is a set of possible

actions for the given state s.

Puterman [98] identified three classical algorithms to solve infinite horizon problems. They are

(1) Value Iteration, (2) Policy Iteration and (3) Linear Programming for a Markov decision process.

27

Value Iteration: For each state s, the Value Iteration algorithm draws an arbitrary value from a

set of feasible values of C(s). Then it recalculates a value of C(s) and repeats the calculation until

a value of C(s) converges. So C(s) ≈ mina{r + α
∑

s′ p(s|s′, a) · C(s′)}. An action a at equilibrium

is the optimal solution. Table 2.2 shows a procedure of a Value Iteration algorithm. Since the

optimal actions a is obtained with a tolerance of ǫ, this algorithm may be referred to as a ǫ-optimal

stationary policy.

Table 2.2: Value Iteration Algorithm

• Step 1: Initialization
specify a tolerance ǫ > 0
Initialize c(0)(s) ∈ C(s) for each s ∈ S.
Set n := 0.

• Step 2: For each s ∈ S
updating:
c(n+1)(s) = mina∈As

{

r(s, a) + α
∑

s′∈S p(s
′|s, a)c(n)(s′)

}

and
a(n+1)(s) = arg mina∈As

{

r(s, a) + α
∑

s′∈S p(s
′|s, a)c(n)(s′)

}

• Step 3: Loop and Termination
Check if ‖c(n+1) − c(n)‖ ≥ ǫ 1−α

2α , set n := n+ 1 and go to step 2,
otherwise stop.

• Result
The result with tolerance of ǫ is:

the action a(n+1) giving the cost c(n+1).

‖x‖ is a euclidean distance, ‖x‖ =
√

x2
1 + x2

2 + ...+ x2
D

where x is a vector and its elements are x1, x2, ..., xD.

Puterman [98] showed a justification for the termination condition, ‖c(n+1) − c(n)‖ ≥ ǫ 1−α
2α , and

a convergence proof for value iteration algorithms. A Gauss-Seidel variation of the value iteration

algorithm improves the convergence rate by substituting equations in Step 2 of Table 2.2 with

Equation 2.13 and 2.14. Rather than updating costs with calculated costs obtained in the last

iteration, the Gauss-Seidel variation updates costs with the most recent calculated costs. The

substitute equations are

c(n+1)(s) = min
a∈As







r(s, a) + α ·





∑

s′<s

p(s′|s, a)c(n+1)(s′) +
∑

s′≥s

p(s′|s, a)c(n)(s′)











(2.13)

and

a(n+1)(s) = arg min
a∈As







r(s, a) + α ·





∑

s′<s

p(s′|s, a)c(n+1)(s′) +
∑

s′≥s

p(s′|s, a)c(n)(s′)











. (2.14)

28

Policy Iteration: The Policy Iteration algorithm uses a two-phase strategy. In phase 1, a Policy

Iteration algorithm calculates cost functions for a given policy. This phase is called a policy eval-

uation. In phase 2, a Policy Iteration algorithm searches for the best policy based on calculated

cost functions. This phase is called a policy improvement. The Policy Iteration algorithm calculates

value functions and searches for the best policy based on the calculated values. With the new best

policy, this algorithm recalculates cost functions, searches for the new best policy and repeats these

two phases until a termination criterion is met.

Similar to Equation 2.12, the Bellman equation for the given policy π is written as shown in

Equation 2.15,

Cπ(s) = rπ(s) + α
∑

s′∈S

pπ(s′|s)C(s′) (2.15)

where Cπ(s) is a cost of state s given policy π, rπ(s) is a period cost of state s given policy π, α is

a discount factor and pπ(s′|s) is a probability that the following state is s′ given current state s and

policy π.

Equation 2.15 can be written in an equilibrium matrix form, as in Equation 2.16. That is,










Cπ(s1)
Cπ(s2)

...
Cπ(s|S|)











=











rπ(s1)
rπ(s2)

...
rπ(s|S|)











+α·











pπ(s1|s1) pπ(s2|s1) · · · pπ(s|S||s1)
pπ(s1|s2) pπ(s2|s2) · · · pπ(s|S||s2)

...
...

. . .
...

pπ(s1|s|S|) pπ(s2|s|S|) · · · pπ(s|S||s|S|)











·











Cπ(s1)
Cπ(s2)

...
Cπ(s|S|)











(2.16)

where |S| is a number of states.

Equation 2.16 can be simplified as,

Cπ = rπ + α · Pπ · Cπ

= (I − αPπ)−1rπ (2.17)

where Cπ, rπ and Pπ are matrices of a state cost, a period cost, and a transition probability,

respectively.

The Policy Iteration algorithm can also evaluate stationary values of state costs based on the

matrix calculation in Equation 2.17. However, matrix calculations can be computationally expensive

for a large state space. Puterman [98] and Powell [96] discussed this issue and its remedy. Table 2.3

shows the procedure of the Policy Iteration algorithm.

Linear Programming for Markov Decision Process: Linear Programming can be used to

solve Markov decision problems. The Bellman equation can be expressed as a primal linear program

as shown in Table 2.4. Hence any method developed for linear programming can be used to solve

the problem.

29

Table 2.3: Policy Iteration Algorithm

• Step 1: Initialization
Initialize policy π(0) ∈ Π
Set n := 0.

• Step 2: Policy Evaluation
obtaining c(n) by solving:
(I − αPπ)c(n) = rπ

• Step 3: Policy Improvement
Find π(n+1) = arg minπ∈Π{rπ + αPπc(n)}
If there is a tie, choose π(n+1) that is equal to π(n) if possible.

• Step 4: Loop and Termination
Check if π(n+1) 6= π(n), set n := n+ 1 and go to step 2,

otherwise stop.
• Result

The result is:
the policy π(n+1) giving the value c(n).

Π is a set of possible policies.

Table 2.4: Linear Program for Markov Decision Process

minc(s)

∑

s∈S βsc(s)
subject to:

c(s) ≤ r(s, a) +
∑

s′∈S αp(s
′|s, a)c(s′) for all s

In Table 2.4, s ∈ S is a state. a ∈ As is a feasible action for state s. βs is a weighting factor for

each state s. Weights βs can be set to be equal for all s’s when each state cost is equally important.

Puterman [98] identified the strength of linear programming for its comprehensively studied

theories, sensitivity analysis and ease of positing constraints. However, both Puterman [98] and

Powell [96] commented that linear programming was not an efficient approach for a Markov decision

problem with large state or large action space.

2.4 Approximate Dynamic Programming

Approximate Dynamic Programming (ADP), also known as neuro-dynamic programming, rein-

forcement learning, and heuristic dynamic programming, is an approach to solving Markov decision

problems with approximation techniques. It can be considered as a computational modification to

overcome limitations of dynamic programming, such as the curse of dimensionality and the require-

ment of perfect information.

30

Exact dynamic programming can be used to solve Markov decision problems when the size

of state-action space is finite and computationally practical. Higher dimensional state or action

spaces cause methods in exact dynamic programming to suffer from the need for a great number of

iterations. For example, the Value iteration algorithm has to iterate over all states, search for the

optimal action from all actions, calculate an expectation over all possible next states and repeat these

procedures until the termination criteria is met. This shortcoming of exact dynamic programming

is often referred to as curse of dimensionality, as identified by Bellman [13].

Illustration of the curses of dimensionality. To illustrate curses of dimensionality, first con-

sider an example of a simple one-echelon inventory system. Its state is modeled with a variable for

inventory level. Its action is modeled with a variable for a replenishment order. Suppose a possible

inventory level can be anything from -30 to 200 and the value of a replenishment order can be any

value between 0 and 200. Then the size of state space will be 231 and the size of action space will

be 201. It should be noted that it is common in inventory modeling to allow an inventory level to

have a negative value. This negative inventory represents an inventory shortage and a promise to

deliver the unfulfilled demand in the following period. (See Silver [109] for discussion on modeling

an inventory shortage.)

If this problem is solved by a value iteration method (Table 2.2), then 231 objective functions of

each state are calculated at each iteration until they converge. To calculate each objective function,

all possible choices of action will be searched. Each choice of action will be evaluated with an

expectation calculation. Each expectation calculation is a summation over probability products

corresponding to each state. Roughly, there will be summations over 231 product terms for 46,431

times in each iteration. Suppose it takes 1,000 iterations to converge. The value iteration will

be required to calculate an expectation 46,431,000 times. Each time 230 summations and 231

multiplications are required.

The above example shows the case of a simple one-echelon system. Consider a larger system,

a two-echelon system of a single warehouse with two retailers that only receive their replenishment

from the single warehouse. Each facility state is modeled with a variable for its inventory level.

Each facility action is modeled with a variable for its replenishment order. A state of a whole

system has three dimensions; each dimension corresponds to a single facility’s inventory level. An

action of a whole system has three dimensions; each corresponds to a single facility’s replenishment

order. Suppose a possible value of a retailer’s inventory level is between -30 and 200; a value of a

replenishment order can be between 0 and 200; a warehouse inventory level is between -100 and 500;

a warehouse replenishment order is between 0 and 500. Hence the size of a system state space will

31

be 601 × 231 × 231 = 32,069,961 and the size of a system action space will be 501 × 201 × 201 =

20,240,901. Suppose it also takes the value iteration algorithm 1,000 iterations to converge. This

problem requires calculation of expectation for about 646 trillion times and each time about 32

million summations and 32 million multiplications are required. If this value iteration is computed

by the fastest computer4 IBM Roadrunner at its 1.105 petaflop/s, it would take roughly about 37.42

million seconds, or 433 days to finish the calculation. Thus, brute force application of exact dynamic

programming is not a practical approach for an inventory problem.

Table 2.5 further shows how the value iteration calculation required by single-echelon and two-

echelon systems increases.

Table 2.5: Illustration of Curses of Dimensionality

System # of facilities size computation required
state space action space summation multiplication

single-echelon 1 231 201 1.0679E+10 1.0726E+10
two-echelon 3 32,069,961 20,240,901 2.0672E+22 2.0672E+22

The size of state or action space increases exponentially for each dimension added so that the cal-

culation requirement increases dramatically for each extra dimension in either state or action space.

This example illustrates how quickly the required computations grow given additional dimensions.

In addition to the curse of dimensionality, dynamic programming also requires an assumption

of perfect information about the model, including transition probabilities p(s′|s, a) (Equation 2.12)

or Pπ (Equation 2.17). In many problems, transition probability information might not be easily

obtained. For example, in a stochastic inventory control problem, the transition probability is a

function of demand, which is a random variable. In order to obtain the transition probability, an

assumption of demand distribution has to be made and corresponding transition probability has to

be analyzed.

Unlike exact dynamic programming, ADP uses approximations to overcome computational dif-

ficulties. There are two main approaches for these approximations investigated in our study. The

first approach is learning-based ADP (Section 2.4.1). A learning-based method ADP uses a learning

technique along with function approximation to provide approximate state-action costs. The sec-

ond approach is simulation-based ADP (Section 2.4.4). A simulation-based ADP uses simulation to

provide approximate state-action costs.

4 Los Alamos lab claimed the title based on the 33rd edition of the list of the worlds TOP500 supercomputers
released on June 23, 2009. source: http://www.lanl.gov/roadrunner

32

It should be noted that a mainstream study of learning-based ADP uses a learning scheme to

approximate state-action cost and a decision is made based on the state-action cost. However, there

is active research on policy gradient, e.g. Baxter and Bartlett [11], Baxter et al. [12] and Sutton

et al. [115], attempting to shortcut this mainstream procedure by using a learning scheme to update

policy parameters directly without approximation of state-action cost.

Look-Ahead: Look-Ahead, also known as Rolling-horizon, is a simple method to control a Markov

decision process based on future projection. It is often used as a benchmark for other methods in

inventory management research. Look-Ahead uses a problem model to project events ahead and

chooses actions to minimize the projected cost of a specific number of period(s) ahead. Then the

action taken is the first action in a sequence obtained from a Look-Ahead search (shown in Equation

2.18) or at = a(1),

~a = arg min
~a

H
∑

i=1

αi−1c̄(s̄t+i−1, a
(i)) (2.18)

where ~a = [a(1) a(2) a(3) . . . a(H)]′, c̄(s, a) is a projected period cost, s̄t+1, ..., s̄t+H−1 are projected

states at time t+ 1, ..., t+H − 1 respectively and s̄t is an initial state (s̄t = s).

2.4.1 Learning-based ADP

Learning-based ADP, often called Reinforcement Learning (RL), uses an approximation func-

tion to assist with calculating the objective function or its variations. An approximation function

estimates the objective function or its variations5 from data either in a batch or incremental mode.

In a batch learning scheme the approximation function uses a batch of data to approximate the

target value. In an incremental learning scheme, the approximation function uses ongoing data from

continuous action to improve the estimate.

A learning-based ADP has three general characteristics (1) a balance between exploitation and

exploration, (2) a choice of how an algorithm is set up and (3) a choice of function approximation.

These characteristics are not mutually exclusive. A good balance between exploration and exploita-

tion can improve the quality of function approximation. How an algorithm is set up can improve

computational efficiency and can reduce accuracy required from approximation without compromis-

ing quality. For example, policy approximation requires a less accurate approximation function than

value approximation, as discussed by Anderson [2].

5 Instead of approximating an objective function value, Baxter and Bartlett [11] approximated policy parameters
directly from estimated gradient of an objective function.

33

Balance between exploitation and exploration

A learning-based ADP optimizes an objective function based on approximated information, as

it simultaneously improves the approximation from chosen actions. However, the chosen action

is determined by approximate information. Unless the action space is well explored, approximate

state-action costs might not accurately represent the real values of state-action costs. With poor

approximation, an action decision might not be close to an optimal action. The relation between

a decision, which is based on obtained information, and information observation, which in turn

is influenced by a previous decision, raises the issue of balancing exploitation and exploration.

Exploitation is utilization of approximate values for a decision purpose. Exploration is a mechanism

to improve the quality of approximate values. For exploitation, the decision is to choose an action

expected to give optimal value. For exploration, the decision is to choose an action rarely tried6.

Both exploitation and exploration are important components in learning-based ADPs. There are

many ways to add exploration into ADP. A greedy policy, an ǫ-greedy policy, and a softmax policy

are all general policies often seen in the ADP literature.

A greedy policy is a policy that always selects an action that seems to get the optimal return.

This policy does not have exploration, because it always chooses an action estimated to give the

optimal return without exploring other choices. A greedy policy can be formulated as Equation 2.19,

π(s, a) =

{

1, if a = arg mina Q(s, a)

0, if a 6= arg mina Q(s, a)
(2.19)

where π(s, a) is a probability of selecting action a for the given state s and Q is an approximate

state-action cost.

An ǫ-greedy policy is a policy that selects an action â = arg mina Q(s, a) with probability 1− ǫ

and any action a, including â, with probability ǫ. It can be written as Equation 2.20,

π(s, a) =

{

1− ǫ+ ǫ
|A(s)| , if a = â

ǫ
|A(s)| , if a 6= â

(2.20)

where |A(s)| is a number of possible actions for the given state s.

A softmax policy is a policy that selects an action with a probability proportional to its corre-

sponding approximate value. A softmin policy is an equivalent policy for a minimization problem.

In a softmin policy, if an action is estimated to result in a lower cost, it has a higher chance of being

selected. Equation 2.21 shows a softmin policy,

π(s, a) =
exp (−Q(s, a)/τ)

∑

b∈A(s) exp (−Q(s, b)/τ)
(2.21)

6 This has meaning in a loose sense. In implementation, it may only have a probability such that every action has
a chance to be chosen.

34

where τ is a parameter to control a degree of exploration and a higher value of τ gives a greater

degree of exploration.

For a problem with numerical actions, e.g., replenishment orders, noise can be used to add

a degree of exploration. The action taken can be obtained from ǫ + arg minaQ(s, a), where ǫ is

random noise such that the final action is still feasible. A distribution of noise ǫ controls the degree

of exploration.

How the algorithm is set up

Learning-based ADPs are set up in different ways. Since ADP is studied by people from different

fields, ADP algorithms are classified by different perspectives. Sutton and Barto [114] classify an

algorithm setup by how a cost function is calculated7. Dynamic Programming uses an expectation

to calculate a cost function. An expectation requires a transition probability to evaluate all possible

following states and their corresponding costs or cost-to-go, e.g., Ct+1(St+1) in Equation 2.8. Monte

Carlo is a method that uses a sampling approach to predict a target value of state cost. An average

of sampled values is used as an estimation of a target value. The Monte Carlo approach calculates a

target value by using only sampled data and it does not require a transition probability. However, in

a Markov decision problem, a total cost is determined over multiple periods. Here the Monte Carlo

approach has to sample a total cost in order to be able to evaluate a state cost. This means that

the Monte Carlo approach will need to wait until some total costs are known before it can average

those values and use the average as an approximation of the state cost.

The most widely used Monte Carlo method is one that is called a First-visit method. A First-visit

Monte Carlo method for estimating state cost is shown in Table 2.6.

The return Rs(1) is a combination of all period costs after state s occurs the first time. So

Rs(1) =
∑T

t=ts
rt where rt is a cost at period t and ts is the first time state s occurs. A trajectory,

also known as an episode, is a series of events that is terminated, where total cost is known. A

trajectory can be obtained by any observation tool in a real-world or computer simulation. It

provides information on states visited, actions taken, and corresponding period costs in sequence.

Period costs recorded in a trajectory can be used to calculate total cost.

Monte Carlo methods can be used with a control policy to optimize Markov decision problems.

Monte Carlo control uses a two-phase strategy to combine value estimation and policy improvement.

Table 2.7 shows a combination of Monte Carlo value estimation with an ǫ-greedy policy. In Table

2.7, R(s,a)(1) is a return following the first occurrence of s and a.

7 Sutton and Barto [114] used a term “backup”, when they referred to how a cost function is calculated.

35

Table 2.6: First-visit Monte Carlo method for estimating cost function

• Step 1: Initialization
Initialize C(s) as an arbitrary value

Initialize return record R̂(s) as an empty list for all s ∈ S
• Step 2: Repetition

Obtain a series of states s and actions a in an observed trajectory
For each state s appearing in the trajectory:

R(s)← Rs(1)

Append R(s) to R̂(s)

C(s)← average(R̂(s))
Repeat step 2

• Result
The result is:

the estimated value C(s)
Rs(1) is a return following the first occurrence of s.
(This table is based on Sutton and Barto [114]: First visit MC method for estimating Cπ.)

Table 2.7: ǫ-greedy on-policy Monte Carlo control

• Step 1: Initialization

Initialize record R̂(s, a) as an empty list for all s ∈ S and a ∈ A(s)
• Step 2: Repetition

Given policy π, obtain a series of states s and actions a
Evaluate policy cost: for each pair s and a appearing in the episode:

R(s, a)← R(s,a)(1)

Append R(s, a) to R̂(s, a)

Q(s, a)← average(R̂(s, a))
Improve policy: for each s in the episode:

a∗ = arg minaQ(s, a)
For all a ∈ A(s):

π(s, a)←
{

1− ǫ+ ǫ
|A(s)| , if a = a∗

ǫ
|A(s)| , if a 6= a∗

Repeat step 2
• Result

The result is:
the optimal policy π

(This table is based on Sutton and Barto [114]: an ǫ-greedy on-policy Monte Carlo control.)

36

Table 2.8: Sarsa algorithm

• Step 1: Initialization
Initialize Q(s, a) for all states and actions

• Step 2:
Initialize state s
Choose action a← π(s|Q)
Repeat until s is the terminal state

Take action a, observe period cost r and next state s′

Choose action a′ ← π(s′|Q)
Update action-state cost Q by:

Q(s, a)← Q(s, a) + ρ · (r + α ·Q(s′, a′)−Q(s, a))
Move to next step: s← s′ and a← a′

• Result
The result is:

the approximate state-action cost Q and
a series of actions a, decided by policy π

π(s|Q) is a policy function taking state s and returning action a for the given state-action cost Q.
ρ is an improvement step size, also known as a learning rate.
α is a discount factor.
(This table is based on Sutton and Barto [114]: Sarsa: An on-policy TD control algorithm.)

A Monte Carlo approach does not require a complete model, but, when applying it to Markov

decision problems, it has to wait until the end of a trajectory when the total cost is available. A One-

step Temporal-Difference method, abbreviated as TD(0) or TD0, is a method that, in each decision

period, uses a period cost recently observed and a current estimate to improve the estimation. So,

TD(0) does not have to wait until a trajectory is over to improve its approximation. TD(0) improves

the quality of its approximation in every time step. The Sarsa algorithm, as shown in Table 2.8, is

a well-known implementation of TD(0).

Sarsa is an on-policy algorithm because it uses an actual chosen action to update a state-action

cost. In an on-policy algorithm the action for updating a state-action cost is always the same as

the actual action that will be taken. The algorithm, shown in Table 2.9, is an off-policy algorithm

because it uses a greedy action for a state-action cost update. The greedy action for updating a

state-action value may or may not be the same action that will be taken.

A policy determining an actual action is called a behavior policy. A policy determining a spec-

ulated action for state-action cost update is called an estimation policy. In Table 2.9, the behavior

policy of Q-learning is π, which can be any policy, but its estimation policy is a greedy policy. It

should be noted that Baird [7] showed that off-policy algorithms may be unstable when used with

function approximation.

37

Table 2.9: Q-learning algorithm

• Step 1: Initialization
Initialize Q(s, a) for all states and actions

• Step 2:
Initialize state s
Repeat (for each step of episode) Until s is the terminal state

Take action a← π(s|Q) calculated with current values of Q
Observe period cost r and next state s′

Update state-action cost by:
Q(s, a)← Q(s, a) + ρ · (r + α ·mina′ Q(s′, a′)−Q(s, a))

Move to next step: s← s′

• Result
The result is:

the estimated state-action cost Q and
series of estimate optimal actions a decided by policy π

(This table is based on Sutton and Barto [114]: Q-learning: An off-policy TD control algorithm.)

The multiple-step Temporal-Difference method, abbreviated as TD(λ), is similar to the one-

step temporal-difference method, but instead of improving an approximation one step at a time, it

improves the approximation based also on multiple prior steps.

Figure 2.1 illustrates how information about a one-period reward of period t, as a result of state

st, can be used to improve an approximation of the value of state st, as in TD(0).

Figure 2.1: Reward and its back tracing (based on Sutton and Barto [114, backward view])

The new value of state st can subsequently be used to improve approximations of values of prior

states st−1, st−2, st−3 and so on. So the current result can be used to improve the cost approximation

of multiple states that sequentially lead to the new result. Since state st is closer to the result rt, it

should be more heavily weighted than any other prior states. Hence the closer the state to the result,

the more weighting it should receive for the result. An Eligibility Trace of each state is defined such

a way that its value will be greatest if the information is a direct consequence of that state, and

38

then the value of an Eligibility Trace will decrease by each earlier time step.

A state Eligibility Trace8 can be formulated as et(s) = α · λ · et−1(s) when s 6= st and et(s) = 1

when s = st. Singh and Sutton [112] proposed a state-action Eligibility Trace for control applica-

tion. This state-action Eligibility Trace is similar to a typical state Eligibility Trace, but it has an

additional rule for actions. Equation 2.22 shows this type of state-action Eligibility Trace,

et(s, a) =











1, if s = st and a = at

0, if s = st and a 6= at

α · λ · et−1(s, a), if s 6= st

(2.22)

where et(s, a) is an Eligibility Trace at period t of state s and action a, st is a state at period t, at

is an action taken in period t, α is a discount factor and λ is an eligibility factor, also known as a

trace-decay parameter.

An eligibility factor λ controls the degree of back tracing weights. A higher λ weights prior

states more heavily than a lower λ. When λ = 0, an Eligibility Trace credits only one step prior and

is equivalent to TD(0). The Eligibility Trace approach is an extension of the temporal difference

learning technique. A one-step temporal difference learning approach is denoted TD(0) and an

Eligibility Trace is denoted TD(λ), where λ is the eligibility factor. An Eligibility Trace version of

Sarsa, called Sarsa(λ), is shown in Table 2.10.

It should be noted that Q(s, â) is an approximate state-action cost where state s is the current

state but action â is not the current action. It does not get updated because it may take a different

action and should not be given any weights from the consequence of state s and action a.

Unlike classification by the method of calculating a cost function suggested by Sutton and Barto

[114], Werbos [126] viewed classification by how the algorithm is set up using a starting point or an

objective function. A state cost function, Cπ(s), is used as an objective function in methods such as

Dynamic Programming. An alternative can be a state-action cost function, Qπ(s, a), that is used in

methods such as Sarsa and Q-learning. In addition to state cost and state-action cost, a derivative

of cost-to-go can be used to improve policy in a Markov decision problem. An algorithm based on

a derivative of cost-to-go is referred to as Dual Heuristic Programming (DHP), as introduced by

Werbos [125]. Venayagamoorthy et al. [120] provided a comparison of DHP with other methods

using a Turbogenerator application. Shervais et al. [108] applied DHP to a combined inventory-

transportation problem. Baxter and Bartlett [11] proposed a similar approach, but they emphasized

its role as a policy approximation compared to a cost approximation used by most researchers.

Anderson [2] discussed an advantage of policy approximation over cost approximation. In addition

to state cost, state-action cost, and a derivative, a hybrid design can be used. A hybrid design

8 Eligibility Trace, presented here is a replacing Eligibility Trace[114].

39

Table 2.10: Sarsa(λ) algorithm with replacing Eligibility Trace

• Step 1: Initialization
Initialize Q(s, a) for all states and actions
Initialize e(s, a)← 0 for all s, a

• Step 2:
Initialize state s
Choose action a← π(s|Q)
Repeat until s is the terminal state

Take action a, observe period cost r and next state s′

Choose action a′ ← π(s′|Q)
δ ← r + α ·Q(s′, a′)−Q(s, a)
e(s, a)← 1
Q(s, a)← Q(s, a) + ρ · δ
For all actions â 6= a

e(s, â)← 0
For all states ŝ 6= s and all actions â

e(ŝ, â)← α · λ · e(ŝ, â)
Q(ŝ, â)← Q(ŝ, â) + ρ · δ · e(ŝ, â)

Move to next step: s← s′ and a← a′

• Result
The result is:

the approximate state-action cost Q and
a series of approximate optimal actions a decided by policy π

is a combination of multiple ADP systems with other systems. That is the use of hybrid control,

artificial intelligence, and spatial structure, in order to scale solutions up to larger problems. (See

Werbos [126] for discussion about hybrid design.)

2.4.2 Function Approximation

Learning-based ADPs use a lookup table as a method to store predicted cost function. In some

circumstances, however, state or state-action cost functions may not be represented efficiently by a

simple lookup table. For example, the state-action space may be too large or it may be continuous.

In such circumstances, an approximation function is often used.

There are many available approximation functions that are either parametric or non-parametric.

A parametric function is based on a model with a fixed number of parameters and this number is

generally small. This is often referred to as a model-based function. A non-parametric function is

based on a model with a variable number of parameters and the number can be large. Geman et al.

[44] studied the approximation approach and its associated errors. They classified approximation

error into its components of bias error and variance error. A bias error is the expected squared

difference between the expected target values and their approximate values with respect to training

samples. A variance error is the variance of the approximation function itself with respect to training

40

samples. A good approximation function requires the error levels to be small. (See Geman et al.

[44] for discussion about bias/variance dilemma.)

With a limited number of parameters, a parametric function has limited flexibility. Therefore,

a parametric function model has to be carefully selected to accurately represent a target variable.

When an approximation function cannot estimate a target value well, it causes a high bias estimation

error.

With a changeable number of parameters, a non-parametric function has substantial flexibility. It

can be tuned to have a low bias error. It should be noted that it also can be tuned to have a zero bias

error, but this approach comes with a risk of an extremely high variance error. A choice of a model

in this case is not as critical as the case of a parametric model. However, a non-parametric function

is susceptible to a high variance error because there are more free parameters to be determined.

Consequently, to minimize bias and variance errors, a non-parametric function generally requires

more data and greater computation effort and a mechanism such as cross-validation, regularization

or a bayesian approach to prevent overfitting. Overfitting happens when an approximation function

is tuned to fit a specific data sample but poorly represents another sample from the same data. (See

Bishop [18] for detail of overfitting and its remedies.)

There are many well-studied general non-parametric functions and they can be classified by

how the output value relates to adjustable parameters. A linear basis approximation function has

an output value of a linear combination of weighted bases. Parameter values of a linear basis

approximation function are relatively easy to determine. An artificial neural network is the most

widely used general non-linear nonparametric function. Its output is not a linear combination

of parameters. A neural network is able to represent an arbitrary complex function with fewer

parameters than a linear nonparametric function at the same accuracy, as discussed by Werbos

[126]. However, determining parameters of a neural network is more difficult than determining

parameters of a linear approximation function.

Among non-parametric functions, a two-layer feedforward neural network (FFNet) and a radial

basis function (RBF) are among the most widely used approximation functions. FFNet has been

shown to be a universal approximation function by Cybenko [35], Hornik et al. [61] and Barron

[10]. RBF has been shown to be a universal approximation function by Powell [95] and Park and

Sandberg [89]. A universal approximation function is able to approximate an arbitrary continuous

function when there is an adequate number of parameters.

41

Two-layer Feedforward Neural Network

A Feedforward Neural Network (FFNet)9, also known as a Multilayer Perceptron Neural Network

(MLP), is a general non-parametric approximation function. The FFNet variation presented here

is a two-layer version. A two-layer FFNet is a weighted summation of nonlinear elements that are

hyperbolic tangent functions of weighted summations of the inputs. (See Hagan et al. [51] and

Bishop [18] for general discussion about an Artificial Neural Network.) Equation 2.23 shows output

~y ∈ ℜK of FFNet of M hidden units for the given input ~x ∈ ℜD,

yk = w0,k +
M
∑

m=1

wm,k · h
(

v0,m +
D
∑

d=1

vd,m · xd

)

for k = 1, . . . ,K (2.23)

where vd,m and wm,k are function parameters for d = 0, . . . ,D, m = 0, . . . ,M and k = 1, . . . ,K and

h(x) is a hyperbolic tangent (h(x) = tanh(x)).

To determine FFNet parameters, a data set is required. This data set is usually referred to as

training data. Given samples of training data, parameters of FFNet can be determined by a method

of error backpropagation, as discussed by Rumelhart et al. [101]. Parameter values of the v’s and

w’s are determined to minimize a mean squared error between training data outputs and FFNet

approximate outputs. It should be noted that a method of maximum likelihood is a widely-used

alternative to determine these parameters.

Equation 2.24 shows the (half) squared error for output of nth sample. Equation 2.25 shows the

total squared error of all N samples.

ξn =
1

2

K
∑

k=1

(yk(~xn)− tk,n)
2

(2.24)

ξ =
N
∑

n=1

ξn (2.25)

where ~xn is the training data input of the nth sample (each input has D dimension(s) or xn =

[xn,1 . . . xn,D]), tk,n is the training data output at kth dimension of the nth sample and yk(~xn) is the

FFNet approximate output at kth dimension when taking the input ~xn.

9 Material for FFNet presented here is mainly based on Anderson [3].

42

Partial derivative of two-layer networks are shown in Equation 2.26 and 2.27.

∂ξn
∂wm,k

= (yk(~xn)− tk,n) · ∂yk(~xn)

∂wm,k

= (yk(~xn)− tk,n) ·
{

1 for m = 0

zm(~xn) for m = 1, . . . ,M

= (yk(~xn)− tk,n) · zm(~xn) (2.26)

∂ξn
∂vj,m

=

K
∑

k=1

(yk(~xn)− tk,n) · wm,k ·
∂zm(~xn)

∂vj,m

=

K
∑

k=1

(yk(~xn)− tk,n) · wm,k · h′
(

v0,m +

D
∑

d=1

vd,m · xn,d

)

·
{

1 for j = 0

xn,j for j = 1, . . . ,D

=
K
∑

k=1

(yk(~xn)− tk,n) · wm,k · h′
(

v0,m +
D
∑

d=1

vd,m · xn,d

)

· xn,j (2.27)

where zm(~xn) = h
(

v0,m +
∑D

d=1 vd,m · xn,d

)

for m = 1, . . . ,M , z0(~xn) = 1, h(a) is a transfer

function, h′(a) is a derivative of h(a) and xn,d is the nth sample input at dth dimension, with

xn,0 = 1.

Parameters v’s and w’s can be determined in a batch mode as shown in Equation 2.28 and 2.29.

Alternatively, they can be determined in an increment mode as shown in Equation 2.30 and 2.31,

where each batch update uses all data and incremental update uses one sample at a time.

Batch mode:

vj,m ← vj,m − ρh ·
1

N

N
∑

n=1

K
∑

k=1

{(yk(xn)− tk,n) · wm,k}h′
(

v0,m +

D
∑

d=1

vd,m · xn,d

)

· xn,j

(2.28)

wm,k ← wm,k − ρo ·
1

N

N
∑

n=1

(yk(xn)− tk,n) · zm(xn) (2.29)

Increment mode:

vj,m ← vj,m − ρh

K
∑

k=1

{(yk(xn)− tk,n) · wm,k}h′
(

v0,m +

D
∑

d=1

vd,m · xn,d

)

· xn,j (2.30)

wm,k ← wm,k − ρo · (yk(xn)− tk,n) · zm(xn) (2.31)

where ρh and ρo are step sizes.

In these formula, step sizes ρh and ρo must be selected. Small step size will cause slow conver-

gence. Large step size will cause unstable FFNet output.

Equations 2.28, 2.29, 2.30 and 2.31 are based on the Gradient Descent (GD) method. Batch

mode methods that are more efficient than the GD method include Levenberg-Marquardt (LM) as

discussed by Hagan and Menhaj [50]; Resilient Backpropagation (RP) as discussed by Riedmiller

and Braun [99]; and scale conjugate gradient (SCG) as discussed by Moller [83]. According to speed

43

and memory comparison and recommendation, as discussed in MathWorks document10, SCG stands

out among batch update methods because it performs efficiently across a wide range of applications

and can be used effectively with early stopping, a widely used method to prevent overfitting.

In addition to efficiency, while GD’s step size has to be chosen and is critical to the performance

of the GD method, SCG has no critical parameter as claimed by its inventor, Moller [83]. An SCG

method performs so well that, although it was designed for batch update, Falas and Stafylopatis

[41] attempted to apply this method in an increment mode with TD(0). However, the results were

unsatisfactory.

Radial Basis Function

A Radial Basis Function Network, or Radial Basis Function (RBF), is another general non-

parametric approximation function. The RBF used in our study is the RBF with Gaussian bases.

It is a weighted summation of Gaussian functions of scaled distances between inputs and centers.

Weights, scales and centers are parameters. Barreto and Anderson [9] mentioned the RBF as a

frequent choice for an ADP approximation function. Equation 2.32 shows output ~y ∈ ℜK for the

given input ~x ∈ ℜD when RBF has M hidden units,

yk = w0,k +

M
∑

m=1

wm,k · φ (‖~xn − ~vm‖Zm
) for k = 1, . . . ,K (2.32)

Zm =











z1,m 0 · · · 0
0 z2,m · · · 0
...

...
. . .

...
0 0 · · · zD,m











(2.33)

‖~xn − ~vm‖Zm
=

√

(~xn − ~vm)T · Zm · (~xn − ~vm)

=

√

√

√

√

D
∑

d=1

zd,m · (xn,d − vd,m)2 (2.34)

where Zm, ~vm, w0,k, and wm,k, for m = 1, . . . ,M and k = 1, . . . ,K, are parameters and φ(a) is a

radial basis function, which for our study is Gaussian or φ(a) = exp(−a2). It should be noted that

Zm is a D ×D matrix. The notation zd,m represents the dth element along diagonal of Zm matrix.

Compared to FFNet, RBF parameters are easier to determine. Clustering techniques, such as

the K-means algorithm, as discussed in MacQueen [81], and Self-organizing map, as discussed in

Kohonen [74], can be used to set up centers. Scales and weights can then be determined for the

designed centers.

10 1984-2006 The MathWorks, Inc.

44

K-means: A K-means algorithm is a widely used clustering method. Given a pre-specific number

of groups, it clusters multidimensional data points into groups such that differences among data

points in the same group are minimized. The result from a K-means approach is a group assignment

of data points and group centers. The data points of a K-means assignment are RBF inputs ~xn for

n = 1, ..., N . The K-means group centers will be used as RBF centers.

Given the number of clusters κ, the K-means procedure starts with κ centers, called centroids.

Each centroid corresponds to each cluster and has the same dimension as the data points. These

initial centroids can be assigned to any κ sampled data points drawn randomly from the entire data

set {~x1, . . . , ~xN}. In the K-means approach, each data point ~xn is assigned to the cluster where

the cluster’s centroid is closest to the data point. This distance is usually measured as a Euclidean

distance. An incremental mode K-means approach will re-estimate values of each centroid after each

data point assignment. A batch mode K-means approach will re-estimate values of each centroid

only once after all data points are assigned. A Centroid value is an average value of all data points

in its cluster. The process alternates between cluster assignment and centroid re-estimation, until

the termination criteria is met. The termination criteria is that changes in cluster assignment cease.

(See Bishop [18] for discussion about K-means, its issues and related methods.)

Once centers are determined, scales can be set to vary based on the reciprocal of maximum

distance between centers as shown in Equation 2.35.

zd,m =
1

maxm′=1,...,M |vd,m − vd,m′ | (2.35)

Then, weights, which are linear in the output, can be determined by linear least square methods

such as a singular value decomposition technique. (See Demmel [38] for more information about

linear least square methods.)

The number of clusters, which later will become the number of hidden units in RBF, has to

be specified for a K-means algorithm. This number can be determined by Akaike Information

Criteria, as discussed by Akaike [1]. Akaike Information Criteria (AIC)11 indicate a trade-off between

goodness-of-fit and complexity of a model. AIC is defined as AIC = −2 · logL+ 2 ·Mθ where logL

is the maximum log likelihood of the data and Mθ is the number of model parameters. The variable

Mθ in this context refers to the K-means parameters. Since the K-means approach has κ centers

and each center has D dimensions, Mθ = κ · D. The number of centers, M , determined by AIC

for the K-means approach is shown in Equation 2.36 [see 82, for detail]. The first term inside

11 Akaike is one of many approaches in model selection. Bishop [18] commented about AIC and its variations, e.g.
BIC, having excessive tendency toward a simple model. (See Burnham and Anderson [21] for model selection and Orr
[87] for model selection for RBF)

45

minimization is the Residual Sum of Squares (RSS) at an optimal clustering of κ clusters. The RSS

is a measurement of how well the K-means approach can cluster data into κ groups. The second

term in the minimization represents model complexity,

M = arg min
κ
{RSS∗(κ) + 2 · κ ·D} (2.36)

RSS∗(κ) = min
π∈Π(κ)

RSSπ(κ) (2.37)

RSSπ(κ) =

κ
∑

m=1

RSSπ
m (2.38)

RSSπ
m =

∑

~x∈Ωπ
m

‖~x− ~µπ
m‖2 (2.39)

where M is the number of the clusters, D is a number of dimensions of the data, RSSπ(κ) is RSS

of the κ clusters grouped by the assignment π, Π(κ) is a set of possible assignments of data for κ

clusters (a set of converged assignments from different initialization), ~x is a data point, RBF inputs,

~µπ
m is a centroid of the mth cluster when it is grouped by the assignment π, Ωπ

m is a set of data

points assigned to the group m and |Ωπ
m| is a number of data points in the group m.

RBF with K-means example: This is a simple example to illustrate how RBF can be designed

with K-means. (See Chapter 3 for an RBF design investigated in our study.)

Given the one-dimensional input ~x′ = [18, 14, 32, 13, 39, 14, 41, 7, 42, 41, 30] and output ~t′

= [-256.9, -262.7, -242.8, -264.4, -235.9, -263.6, -233.2, -270.7, -235.6, -235.5, -245.3], RBF can be

designed starting by determining RBF centers. Table 2.11 shows the K-means cluster assignment for

different κ’s. Each assignment is the best result, having the minimum RSS, out of ten replications12.

When κ = 1, every data point is assigned to the same cluster. When κ = 9 (this data set has only 9

distinct values), each data point is assigned to its own cluster. The value of each centroid is shown

in Table 2.12. Table 2.13 shows RSS of each assignment and corresponding AIC. The assignments

of 6 and 7 clusters have the minimum AIC. Therefore, the number of clusters will be chosen to be

6 according to AIC.

Choosing M = 6, RBF centers are ~v′ = [31, 13.67, 39, 18, 41.33, 7] and Zm = 0.0417, 0.0361,

0.0313, 0.0429, 0.0291, and 0.0291 for m = 1, ..., 6 respectively. Then weights can be calculated and

~w′ = [-263.3338, 17.8182, -1.5905, 6.8620, 7.3437, 22.7156, -7.0431]. Figure 2.2 shows the training

data and approximation result of obtained RBF.

12 The results are obtained from a modified version of MathWorks’ kmeans (revision 1.4.4.8). It is changed to start
with κ random samples of unique data points rather than of all data points.

46

Table 2.11: Cluster assignment

xn = 18 14 32 13 39 14 41 7 42 41 30
π at κ = 1 1 1 1 1 1 1 1 1 1 1 1
π at κ = 2 2 2 1 2 1 2 1 2 1 1 1
π at κ = 3 2 2 1 2 3 2 3 2 3 3 1
π at κ = 4 2 2 3 2 4 2 4 1 4 4 3
π at κ = 5 1 1 2 1 5 1 3 4 3 3 2
π at κ = 6 4 2 1 2 3 2 5 6 5 5 1
π at κ = 7 4 7 5 7 6 7 2 3 2 2 1
π at κ = 8 6 1 8 1 7 1 2 3 4 2 5
π at κ = 9 4 9 2 3 7 9 5 6 8 5 1

Table 2.12: Cluster centroids

v1 v2 v3 v4 v5 v6 v7 v8 v9
π at κ = 1 26.45 N/A N/A N/A N/A N/A N/A N/A N/A
π at κ = 2 37.50 13.20 N/A N/A N/A N/A N/A N/A N/A
π at κ = 3 31 13.20 40.75 N/A N/A N/A N/A N/A N/A
π at κ = 4 7 14.75 31 40.75 N/A N/A N/A N/A N/A
π at κ = 5 14.75 31 41.33 7 39 N/A N/A N/A N/A
π at κ = 6 31 13.67 39 18 41.33 7 N/A N/A N/A
π at κ = 7 30 41.33 7 18 32 39 13.67 N/A N/A
π at κ = 8 13.67 41 7 42 30 18 39 32 N/A
π at κ = 9 30 32 13 18 41 7 39 42 14

Table 2.13: Cluster RSS and AIC

κ RSS∗

1 RSS∗

2 RSS∗

3 RSS∗

4 RSS∗

5 RSS∗

6 RSS∗

7 RSS∗

8 RSS∗

9 RSS∗(κ) 2κD AIC
1 1806.7 1806.7 2 1808.7
2 133.5 62.8 196.3 4 200.3
3 2 62.8 4.7 69.5 6 75.5
4 0 14.7 2 4.7 21.4 8 29.4
5 14.7 2 0.7 0 0 17.4 10 27.4
6 2 0.7 0 0 0.7 0 3.4 12 15.4
7 0 0.7 0 0 0 0 0.7 1.4 14 15.4
8 0.7 0 0 0 0 0 0 0 0.7 16 16.7
9 0 0 0 0 0 0 0 0 0 0 18 18
AIC indicates M = 6 as a choice, because two AIC values tie and M = 6 is less complex.

47

5 10 15 20 25 30 35 40 45
−275

−270

−265

−260

−255

−250

−245

−240

−235

−230

input

ou
tp

ut

data
approximate

Figure 2.2: One-dimension RBF by using K-means design

Orthogonal Least Squares: In addition to clustering approach, a widely used alternative to

determine RBF centers is the Orthogonal Least Squares Learning algorithm (OLS), introduced by

Chen et al. [26]. OLS starts from one hidden unit and then keeps adding centers one by one until

RBF meets a pre-specific error goal. Each center is chosen from a data point13 that is projected to

reduce the largest error.

Chen et al. [26] recommended that after a few trials, residual variance, σ2
ξ ≈

PN
n=1(y(xn)−tn)2

N−1 ,

can be determined. Then the error goal can be set slightly higher than the ratio of residual variance

over target variance,
σ2

ξ

σ2
t

.

In addition to providing a guideline to set error goal, several trials can provide a guideline to set

up RBF scales. All scales, zd,m’s, can be set to M/∆2, where ∆ is the maximum distance between

any two centers. This makes ‖~xn−~vm‖Zm
= b‖~xn−~vm‖ where b = M/∆2. Increases in zd,m values

result in decreased basis spread.14 (See Chen et al. [26] and Haykin [56] for discussion about OLS.)

RBF with OLS example: To illustrate RBF design by using the OLS method, the one-dimensional

input ~x′ = [18, 14, 32, 13, 39, 14, 41, 7, 42, 41, 30] is used. Unlike a clustering method, OLS requires

training output as well. Suppose a training output data is that ~t′ = [-256.9, -262.7, -242.8, -264.4,

-235.9, -263.6, -233.2, -270.7, -235.6, -235.5, -245.3].

13 The explanation of OLS is based on Matlab implementation (newrb.m of revision 1.1.6.2).
14 Matlab implementation of RBF design (newrb revision 1.1.6.2) takes parameter sp as a user specific argument

and it defines all scales zd,m to be b = sqrt(-log(.5))/sp; where sp is called spread.

48

A trial design with OLS and default parameters is conducted15. An error goal is set to 0; a

spread is set to unity, zm = b =
√

− log(0.5) ≈ 0.8326 for all 11 hidden units. Table 2.14 shows

centers and weights obtained from the trial design. It should be noted that there are 3 zero weights

in this trial design. This makes the effective number of hidden units to 8, instead of the full 11.

With the obtained parameters, the maximum distance between any two centers is 35 and the

variance of residual is 0.2542. Therefore, the new spread will be 92.5061 (or zm = 11
352 ≈ 0.009, for

all m’s). Variance of the output (σ2
t) is 200.1249. Then, a new error goal is set to be slightly over

0.0013. RBF is designed with an error goal of 0.002 and a spread of 92.5061. Table 2.15 shows the

final RBF design. Again, there are 5 zero weights, hence only 6 effective hidden units. Figure 2.3

shows the training data and approximation obtained by the OLS design RBF.

Table 2.14: OLS trial design

m 0 1 2 3 4 5 6 7 8 9 10 11
centers vm N/A 14 41 7 30 18 32 39 13 42 14 41
spreads zm N/A 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83
weights wm -245.47 0 7.50 -25.23 0 -11.43 2.67 9.09 -13.46 6.10 -10.96 0

Table 2.15: OLS design

m 0 1 2 3 4 5 6 7 8 9 10 11
centers vm N/A 7 13 42 41 41 14 14 18 30 39 32

weights wm −4.46× 106 10.92 -38.91 -2.53 0 0 0 0 36.17 0 9.32 -14.96

OLS provides a convenient RBF design, because it determines a number of centers and center

values simultaneously. K-means requires a number of centers to be specified. Although, a number

of centers can be determined by AIC, multiple trials of different numbers are required to perform

AIC.

Incremental RBF: Similar to FFNet, RBF can be trained in either a batch mode, mentioned

above, or an incremental mode. For the incremental update, derivatives of error with respect to

RBF parameters can be derived in a similar manner to FFNet derivations. The derivative of the

Gaussian basis function with respect to its argument is φ′(a) = −2 · a · φ(a) and partial derivatives

15 The set up and result in this example are based on newrb (revision 1.1.6.2), which is MathWorks’ implementation
of RBF design.

49

5 10 15 20 25 30 35 40 45
−275

−270

−265

−260

−255

−250

−245

−240

−235

−230

input

ou
tp

ut

data
approximate

Figure 2.3: One-dimension RBF by using OLS design

of error with respect to w’s, z’s and v’s are shown in Equations 2.40, 2.41, and 2.42 respectively.

∂ξn
∂wm,k

= (yk(~xn)− tk,n) · ∂yk(~xn)

∂wm,k

= (yk(~xn)− tk,n) ·
{

1 for m = 0

φ(‖~xn − ~vm‖Zm
) for m = 1, . . . ,M

(2.40)

∂ξn
∂zd,m

=

K
∑

k=1

(yk(~xn)− tk,n) · wm,k · φ′(‖~xn − ~vm‖Zm
) · (xn,d − vd,m)2

2 · ‖~xn − ~vm‖Zm

= −
K
∑

k=1

(yk(~xn)− tk,n) · wm,k · φ(‖~xn − ~vm‖Zm
) · (xn,d − vd,m)2 (2.41)

∂ξn
∂vd,m

= −
K
∑

k=1

(yk(~xn)− tk,n) · wm,k · φ′(‖~xn − ~vm‖Zm
) · zd,m ·

(xn,d − vd,m)

‖~xn − ~vm‖Zm

= 2 ·
K
∑

k=1

(yk(~xn)− tk,n) · wm,k · φ(‖~xn − ~vm‖Zm
) · zd,m · (xn,d − vd,m) (2.42)

The incremental GD updates of RBF are shown in Equations 2.43, 2.44 and 2.45.

zd,m ← zd,m + ρz

K
∑

k=1

(yk(~xn)− tk,n) · wm,k · φn,m · (xn,d − vd,m)2 (2.43)

vj,m ← vj,m − ρv · 2 ·
K
∑

k=1

(yk(~xn)− tk,n) · wm,k · φn,m · zd,m · (xn,d − vd,m) (2.44)

w0,k ← w0,k − ρw(yk(~xn)− tk,n)

wm,k ← wm,k − ρw(yk(~xn)− tk,n) · φn,m for m = 1, . . . ,M (2.45)

where φn,m = φ(‖~xn − ~vm‖Zm
)

50

It should be noted that, after the RBF structure, i.e., centers and scales, are determined, a

conventional incremental RBF only updates the weights, which have a linear effect on the output

and leaves nonlinear parameters, centers and scales, unchanged. This is done to reduce the extent

of nonlinearities, which often relate to poor GD performance. This is discussed by Chen et al.

[26]. However, Haykin [56] discussed the benefit of updating RBF centers and scales and used

experimental results from Wetterschereck and Dietterich [127] to support his argument. In addition

to either no update at all or every step update, Haykin [56] recommended using a less frequent time

scale for updating RBF structure, while weights can be updated more frequently.

2.4.3 Updating scheme

An updating scheme is a procedure to improve the quality of approximation according to newly

obtained information by tuning parameters, e.g. RBF’s weights. The temporal-Difference method

(TD), discussed by Sutton [113], is used as an updating scheme in our study. TD is designed for

Markov decision processes. A dynamic program of a general Markov decision process, is shown in

Equation 2.46,

J(st) = min
u
E[r(s, a, s′) + α · J(s′)|s = st, a = u] (2.46)

where st is a current state; u is a current action; s′ is a next state (which is a consequence of taking

action u at state st); J(s) is a state cost function when starting with state s; r(s, a, s′) is a cost when

the current state is s, the control is a and the next state is s′; α is a discount factor and E[·|·] is a

conditional expectation operator.

Rather than expectation, TD uses sampled information with current approximation to calculate

a prediction difference and then uses this difference to update approximation parameters. The

prediction difference, called the temporal difference, is the difference between an approximate state

cost with recently obtained information and an approximate state cost for the same state, but without

that information. Equation 2.47 shows formulation of a temporal difference. It is a difference of

both approximations when their parameters are determined at time t.

ψt = rt+1 + α · Ĵt(st+1)− Ĵt(st) (2.47)

where st, at and st+1 are a current state, a current action and a next state, respectively; rt+1 is a

period cost and Ĵt(s) is a current approximate state cost. It should be noted that both st+1 and

rt+1 are sampled at time t+ 1.

The first two terms of Equation 2.47, or rt+1 + α · Ĵt(st+1), represent an approximate state cost

with newly obtained information, a single-period cost rt+1 and a next state st+1. This approximate

51

state cost is calculated from a combination of a single-period cost and a discounted approximate

cost-to-go.

The last term of Equation 2.47, or Ĵt(st), represents approximate state cost without new infor-

mation (rt+1). Without this information, the approximate state cost is approximated directly from

a function approximation of current state st.

An approximation parameter update can be formulated16 by TD as shown in Equation 2.48.

θ(t+1)
m = θ

(t)
m + β · ψt ·

∑t
k=0(αλ)t−k · ∇

θ
(t)
m
Ĵt(sk) ,∀m (2.48)

where θ
(t)
m is the mth approximation parameter at time t, β is an update step size, ψt is a temporal

difference, as defined in Equation 2.47, α is a discount factor, λ is an eligibility factor and ∇
θ
(t)
m
Ĵt(sk)

is a gradient of approximate state cost of sk with respect to parameter θ
(t)
m .

All parameters will be updated to have a new approximate state cost corresponding to newly

obtained information.

The term ψt ·
∑t

k=0(αλ)t−k ·∇
θ
(t)
m
Ĵt(sk) of Equation 2.48 is an update step of a gradient-descent

method, to minimize ψ2
t . It should be noted that a temporal difference, ψt, can be viewed as an

error between a sampled single-period cost rt+1 and its current approximation, r̂t+1 = Ĵt(st) − α ·

Ĵt(st+1). The term
∑t

k=0(αλ)t−k · ∇
θ
(t)
m
Ĵt(sk) can be viewed as a weighted gradient of the current

approximation with respect to the parameter. The weighted gradient is used to account for the fact

that a single-period cost rt+1 is a consequence of a series of states and so is the temporal difference

ψt. This weighted gradient is a mechanism to backward credit states in a sequence leading to

the current consequence. This backward crediting mechanism is called an Eligibility Trace. The

Eligibility Trace gives a recent state higher weight than an earlier state.

Equation 2.48 shows an update of TD with an arbitrary approximation function. Due to the

ease of integration of TD, Sutton and Barto [114] recommended using a function belonging to a

linear family. (See Sutton and Barto [114] for a discussion on choices of an approximation function

for TD, Bertsekas and Tsitsiklis [15] for issues of convergence and Barreto and Anderson [9] for a

proposed remedy for nonlinear RBF)

A linear family approximation function having M bases can be written as Ĵt(s) =
∑M

m=0 w
(t)
m ·

φm(s), where φm(s) is the mth basis given state s and w
(t)
m is the mth parameter at time t. Its

derivative is ∂Ĵt(s)/∂w
(t)
m = φm(s). Therefore, an update of TD with a linear family approximation

function can be simplified to Equation 2.49.

w(t+1)
m = w

(t)
m + β · ψt ·

∑t
k=0(αλ)t−k · φm(sk) ,∀m (2.49)

16 Updating formula, presented here, is based on TD with function approximation in Bertsekas and Tsitsiklis [15].

52

Equation 2.49 can be broken down into Equations 2.50 and 2.51.

w(t+1)
m = w(t)

m + β · ψt · ν(t)
m (2.50)

ν(t)
m = φm(st) + (αλ) · ν(t−1)

m (2.51)

where ν
(0)
m = 0 for all m’s.

TD with a linear approximation function can be implemented with all eligibilities, ν’s, initialized

to 0’s. At each time step, current eligibility can be computed from Equation 2.51 and then linear

parameters can be updated by Equation 2.50. This technique requires memory to store M entries of

previous eligibilities and computation for M eligibilities for each update. In practice, most of these

entries will have values close to 0. Cichosz [32] discussed Eligibility Trace efficiency and Eligibility

Trace implementation to improve efficiency.

Since RBF can be operated effectively in either linear or non-linear mode17, our study uses

RBF as a choice of an approximation function. When RBF is thus used, the basis φ0(s) = 1 and

φm(s) = exp(−‖s − vm‖2Zm
) for m = 1, . . . ,M . Here vm and Zm can be obtained by methods

mentioned in Section 2.4.2. (See Kaelbling et al. [65], Sutton and Barto [114] and Bertsekas and

Tsitsiklis [15] for review of Temporal Difference learning, ADP and related issues.)

Learning rate Powell [97] identified choosing a learning rate, β in Equation 2.50 , as a major

decision issue in ADP. A constant step size is the simplest and most widely used learning rate strat-

egy. Previous ADP studies, including Van Roy et al. [118], Godfrey and Powell [48], Pontrandolfo

et al. [93], Giannoccaro and Pontrandolfo [47], Shervais et al. [108], Kim et al. [70], Choi et al. [30],

Topaloglu and Kunnumkal [117], [62], Chaharsooghi et al. [25], Kim et al. [71], Kwon et al. [75], and

Jiang and Sheng [64], used a constant step size. Kim et al. [71] recommended a step size of 0.1 for a

nonstationary environment. More advanced step size selection strategies are the subject of ongoing

active research. Bertsekas and Tsitsiklis [15], Powell [96] and Powell [97] discussed utilization of a

step size that can be a function of time or observation. Powell [96] classified various advanced step

size selection strategies into deterministic and stochastic families.

McClain’s formula, shown in Equation 2.52, is a deterministic step size strategy.

βn =
βn−1

1 + βn−1 − β̄
(2.52)

where βn is a step size at iteration n.

Here the value of step size declines as the learning process converges to a user specific parameter

β̄. Figure 2.4 shows McClain step size with β0 = 1 and β̄ = 0.1 comparing to a 1/n step size strategy.

17 RBF is operated in linear mode when ρz and ρv (in Equations 2.43 and 2.44) are set to 0’s.

53

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n
st

ep
si

ze

step size strategy

1/n
McClain

Figure 2.4: McClain step size

The bias-adjusted Kalman filter (BAKF), as discussed by George and Powell [45], is a stochastic

step size strategy. It adjusts a step size according to its observation to minimize both bias and

variance approximation errors. Table 2.16 shows the BAKF procedure. Powell [96] recommended

setting η̄ ∈ (0.05, 0.10) for most applications.

Table 2.16: Bias-Adapted Kalman Filter step size rule

Step 0: Initialization
a) initialize step sizes, β0 = η0 = 1.
Note: setting β0 = η0 = 1 makes ψ̄0, b̄0, ν̄0, and λ̄0 effectless.
b) set n = 1.

Step 1: Observe a target, ψn.
Step 2: Smooth the baseline estimate.

ψ̄n = (1− βn−1)ψ̄n−1 + βn−1ψn

Step 3: Approximate parameters.
a) ǫn = ψ̄n−1 − ψn

b) b̄n = (1− ηn−1)b̄n−1 + ηn−1ǫn
c) ν̄n = (1− ηn−1)ν̄n−1 + ηn−1ǫ2n

d) σ̄2
n =

ν̄n−b̄2n
1+λn−1

Step 4: Calculate new step sizes.

a) βn =

(

1/(n+ 1), for n = 1, 2

1−
σ̄2

n
ν̄n
, for n = 3, 4, 5, ...

b) ηn =
ηn−1

1+ηn−1−η̄

Step 5: Compute a smoothing coefficient.
λ̄n = (1− βn−1)2λ̄n−1 + β2

n−1

Step 6: Repeat from step 1 until a termination condition is met.
n← n+ 1

An ǫn is an approximation error at iteration n.
A σ̄2

n is an estimate of a variance, of an approximation error, after iteration n.
A b̄n is an estimate of a bias, of an approximation error, after iteration n.
A ν̄n is an estimate of a variance of a bias after iteration n.
This table is based on Powell [96, Figure 6.8].

54

Figure 2.518 shows a step size obtained from BAKF of different prediction error patterns. When

a sequence of errors has alternating signs, BAKF reduces step sizes substantially. Although BAKF

seems to be very appealing, Powell [96] commented that BAKF performance deteriorates for systems

with high variance. In addition, use of step size functions is still undergoing active research for

learning-based ADPs. Our study uses a constant step size scheme for setting ADP learning rate.

See Powell [96] and George and Powell [45] for additional discussion of advanced step size strategies.

8 8 8 8 8 8 8 8 8 8
0

0.5

1

ε

st
ep

si
ze

constant positive ε

−8 −8 −8 −8 −8 −8 −8 −8 −8 −8
0

0.5

1

ε
st

ep
si

ze

constant negative ε

8 −8 8 −8 8 −8 8 −8 8 −8
0

0.5

1

ε

st
ep

si
ze

constant alternating sign ε

1 2 3 4 5 6 7 8 9 10
0

0.5

1

ε

st
ep

si
ze

growing positive ε

−1 −2 −3 −4 −5 −6 −7 −8 −9 −10
0

0.5

1

ε

st
ep

si
ze

growing negative ε

1 −2 3 −4 5 −6 7 −8 9 −10
0

0.5

1

ε

st
ep

si
ze

growing alternating sign ε

10 9 8 7 6 5 4 3 2 1
0

0.5

1

ε

st
ep

si
ze

shrinking positive ε

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1
0

0.5

1

ε

st
ep

si
ze

shrinking negative ε

10 −9 8 −7 6 −5 4 −3 2 −1
0

0.5

1

ε

st
ep

si
ze

shrinking alternating sign ε

BAKF
1/n

Figure 2.5: BAKF step size

2.4.4 Simulation-based ADP

When a model of the problem is available, simulation can be used to provide information that

helps to determine a proper action. Our study investigates two methods of simulation-based ADPs:

Roll-out and Hindsight Optimization.

Roll-out

Roll-out, discussed by Bertsekas and Tsitsiklis [15], decides an action based on approximate costs

that are obtained with simulation. An action is selected that minimizes an approximate immediate

state-action cost and an approximate cost-to-go. A cost-to-go value is obtained by simulating the

process with actions determined by a base policy π. Equation 2.53 is used to show how Roll-out

18 The plot is made with α0 = 1, η0 = 1 and η̄ = 0.09 (This setting render β0, ν0 and λ0 effectless).

55

determines an action

at = arg min
a

N
∑

n=1

{

ĉ(st, a) +

T
∑

i=1

αiĉπ(ŝt+i)

}

(2.53)

where at is the action chosen, N is the number of simulations, T is the simulation horizon, ĉ(s, a)

is the simulated immediate cost when action a is taken, ĉπ(s) is the simulated period cost when an

action is determined by base policy π and ŝt+i is the simulated state of time at t+ i.

Roll-out first simulates to obtain an immediate cost ĉ(st, a) and next state ŝt+1. Then the period

cost ĉπ(ŝt+1) is obtained by the simulation. The process keeps going until the end of simulation

horizon, denoted T . The second term in Equation 2.53 represents an approximate discounted cost-to-

go, given policy π. The combination of immediate cost and discounted cost-to-go is an approximated

cost of each action in a search space. To take into account process variation, multiple simulated

costs are generated and the decision based on their summation.

Hindsight Optimization

Similar to Roll-out, Hindsight Optimization (HO), introduced by Chong et al. [31], uses simu-

lation to estimate an immediate cost and a cost-to-go. An approximate immediate cost is obtained

directly with simulation. However, to estimate a cost-to-go a sequence of actions is required. Roll-

out uses a base policy to determine this sequence of actions. Unlike Roll-out, HO uses a special

simulation that does not require a base policy. HO first simulates a sequence of random variables

that are realizations of inventory demand. Then, given the known sequence of random variable

values, it chooses a sequence of actions to minimize the cost. Therefore, the cost obtained in HO is

the minimal cost achieved for that particular instance. Equation 2.54 summarizes this procedure,

at = arg min
a

N
∑

n=1

{

ĉ(st, a) + min
~u

(

T
∑

i=1

αiĉξn,i
(ŝt+i(ξn,i), u

(i))

)}

(2.54)

where ξn,i is a simulated uncertainty of the nth simulation at period t+i and ĉξn,i
(s, a) and ŝt+i(ξn,i)

are respectively simulated transition cost and state for the given value of ξn,i, with other variables

as mentioned earlier.

It should be noted that HO is different from Rollout with a Look-Ahead method as a base

policy. Rollout with a Look-Ahead base policy simulates events with actions that are determined

based on an average projection. A cost-to-go approximation in Rollout depends on the deviation

of each simulation from an average case. HO simulates events with actions that are determined

based on known realized values of random variables. A cost-to-go approximation in HO depends

on simulation-generated random variable values. To illustrate the difference, consider an example

56

of a positively skewed demand distribution whose mean is much greater than its median. Most

values of demand generated will be small and close to the median, with few very high values. HO

will approximate a low cost because simulated actions are determined with known demand, while

Rollout will approximate a very high cost because simulated actions are determined based on an

average demand. This is clearly much different than having mostly low values and few very high

values.

57

CHAPTER 3

A RADIAL BASIS FUNCTION AS A COST-TO-GO APPROXIMATOR

Learning-based ADP has recently received increased attention for inventory management re-

search. Its approximate cost-to-go is often implemented with a look-up table or aggregation, such

as works of Paternina-Arboleda and Das [90], Giannoccaro and Pontrandolfo [47], Kim et al. [70],

Chinthalapati et al. [29], Kwon et al. [75], Kim et al. [71], Chaharsooghi et al. [25] and Jiang and

Sheng [64]. Other alternatives include feedforward neural network used by Van Roy et al. [118], Das

et al. [36] and Shervais et al. [108] and a linear combination of features used by Van Roy et al. [118].

A look-up table becomes computationally inefficient for a large state-action space. The feedforward

neural network is highly nonlinear and requires skill and experience to determine its parameters

properly for learning-based ADPs. Bertsekas and Tsitsiklis [15] and Sutton and Barto [114] suggest

a linear family approximation function to use with ADP. One of these functions, the Radial Basis

Function (RBF), has been proved to be a universal approximation function, being able to approxi-

mate an arbitrary function when it is properly set up. See Powell [95] and Park and Sandberg [89].

RBF also can be operated in a linear mode. To operate RBF in linear mode, its structure, i.e.,

centers and scales, has to be pre-assigned. The literature search revealed no previous studies that

investigate the application of ADP with RBF to inventory management systems. This chapter ad-

dresses strategies to design RBF centers and scales for inventory management systems and provides

simulation-based experiments to evaluate performance.

3.1 Inventory problem with AR1 demand

Figure 3.1 shows a diagram of a single-echelon inventory system. This inventory system includes

both in-transit and on-hand inventories. A flow of items starts from a supplier’s delivery after

receiving a replenishment order. While items are being delivered, they become in-transit inventory.

After a given leadtime, items arrive in at a storage point and are classified as on-hand inventory.

These items are ready to be delivered to customers once there is a demand.

Problem: An inventory problem can be interpreted as a Markov decision process, where previous

demand, on-hand inventory, and in-transit inventory are defined as Markov states. The replenish-

ment order is Markov action. State transition is influenced by the current state and current action

A transition cost is a combination of costs for replenishment and handling.

State: On-hand inventory is available to serve the demand. Its level, x̊, is a non-negative integer.

In-transit inventory describes items that have been ordered, but have not been delivered. In-transit

inventory status, B, is a set of non-negative integers, B ⊂ {0} ∪ I+, where I+ is a set of positive

integers. A backlog order is a virtual inventory. A backlog order, x̊′, occurs when the demand

59

Figure 3.1: Single-echelon inventory problem

exceeds on-hand inventory. Once the items are available, after a replenishment has arrived, the

excess demand will be served. A backlog order is a negative inventory and it is represented by a

negative integer. It should be noted that an on-hand inventory level, x̊ ∈ {0, I+}, and a backlog

order, x̊′ ∈ I−, are mutually exclusive. For convenience, on-site inventory, x, is used to refer

to both on-hand inventory and backlog order quantities, such that non-negative x represents on-

hand inventory and negative x represents backlog order. Zhang [130] comments that the first order

Autoregressive model, or AR(1) is one of the most commonly adopted demand models. This study

investigates the case where demand is modeled by AR(1). Inventory x, in-transit inventory B, and

demand information are state variables of a Markov decision process for this inventory system.

Action: A replenishment order, denoted u, is a control to regulate this inventory system. The

amount of the replenishment order will be part of in-transit inventory, along with previous orders

that have not yet arrived. After a leadtime, that part of in-transit inventory will arrive at the

destination and the replenishment will be added to the on-site inventory. The replenishment order

is a non-negative integer. Hence, an action of this inventory system is a non-negative integer.

State transition: A next-stage inventory xt+1 equals a current inventory xt added to an in-transit

inventory that has currently arrived, reducing demand in a current period. Equation 3.1 shows this

60

transition.

xt+1 = xt +B
(t)
1 −Dt (3.1)

where xt+1 is the inventory at time t + 1 (beginning of period t + 1), xt is an inventory at time

t, B
(t)
1 is the part of the in-transit inventory that has arrived in period t, and Dt is a cumulative

demand during period t.

In-transit inventory at the next stage is its value at the current stage added to a new order and

less parts that have arrived. Suppliers’ delivery systems are assumed to be dependable and their

leadtimes are assumed to be constant at L period(s). For an inventory system with zero leadtime

(L = 0), let a replenishment order be ut, and then the next period inventory is xt+1 = xt + ut−Dt.

For an inventory system with non-zero constant leadtime (L > 0), in-transit inventory at time t can

be presented by a vector ~Bt : {0, I+}L. In-transit inventory entries are shown in Equation 3.2.

~B(t+1) = [B
(t+1)
1 , B

(t+1)
2 , B

(t+1)
3 , . . . , B

(t+1)
L−1 , B

(t+1)
L]T

= [B
(t)
2 , B

(t)
3 , B

(t)
4 , . . . , B

(t)
L , ůt]T (3.2)

For example, when L = 1, ~B(t+1) = [ut]. When L = 2, ~B(t+1) = [B
(t)
2 , ut]. When L = 3,

~B(t+1) = [B
(t)
2 , B

(t)
3 , ut] and so on.

The demand transition is modeled as AR(1): Dt − µ = a1 · (Dt−1 − µ) + et where µ is a mean

of an AR(1) process, a1 is an AR(1) parameter, et is a white noise with zero mean and σ2 variance,

and Dt−1 is a previous demand. This can be simplified, by a0 = µ − a1 · µ, as shown in Equation

3.3.

Dt = a0 + a1 ·Dt−1 + et (3.3)

The state transition of the AR(1) inventory system can be summarized as shown in Equation

3.5 where ~s represents the state.

























Dt

xt+1

B
(t+1)
1

B
(t+1)
2
...

B
(t+1)
L−1

B
(t+1)
L

























=























a1 0 0 0 0 . . . 0
−a1 1 1 0 0 . . . 0
0 0 0 1 0 . . . 0
0 0 0 0 1 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 1
0 0 0 0 0 . . . 0























·

























Dt−1

xt

B
(t)
1

B
(t)
2
...

B
(t)
L−1

B
(t)
L

























+























a0 + et

−a0 − et

0
0
...
0
ut























(3.4)

or ~st+1 = Λ · ~st + ~λut
(3.5)

where ~st+1, ~st and ~λut
are (2 + L) column vectors represented in Equation 3.4 as a vector on the

left, the first vector on the right and the last vector on the right respectively; Λ is a (2+L)× (2+L)

matrix and represented in Equation 3.4 as a matrix on a right hand side.

61

For the case of L = 0, Equation 3.5 is reduced to:

[

Dt

xt+1

]

=

[

a1 0
−a1 1

]

·
[

Dt−1

xt

]

+

[

a0 + et

−a0 − et + ůt

]

(3.6)

For the case of L = 1, Equation 3.5 is reduced to:





Dt

xt+1

B
(t+1)
1



 =





a1 0 0
−a1 1 1
0 0 0



 ·





Dt−1

xt

B
(t)
1



+





a0 + et

−a0 − et

ůt



 (3.7)

Transition cost: A transition cost is associated with the system changing from a current state

to a next state. A transition cost for this inventory system consists of a replenishment cost and an

inventory handling cost. The transition cost for this problem is

rt+1(st, ut, st+1) = Kt · δ(ut) + ct · ut + ht · (s(t+1)
2)+ + bt · (−s(t+1)

2)+ (3.8)

where Kt is a set-up cost, ct is a unit replenishment cost, ht is a unit holding cost, bt is a unit

backlogging cost, rt+1 is a transition cost whose value will be known at the end of period t, ut is

a replenishment order, s
(t+1)
2 is the second component of ~st+1, δ(·) is a step function and (·)+ is a

positive function, i.e., (a)+ = a · δ(a).

The replenishment cost is a combination of a setup cost and a per unit cost. A setup cost does

not depend on how many items are ordered. It is a fixed cost that is posted for every transaction.

The per unit cost is a variable cost. It is charged for each nit. A setup cost and a unit cost are the

first and second terms respectively of Equation 3.8.

An inventory handling cost is a cost for managing the inventory, it consists of holding costs and

backlogging costs. A holding cost is per period cost, charged for each item stored in inventory. A

backlogging cost is a cost charged per period when demand exceeds inventory. This cost is a penalty

when inventory is in shortage. It can be conceived as an expense associated with not losing the

customer. For simplicity in the holding and backlogging costs calculation is assumed to fall at the

beginning of the period. Holding cost and backlogging cost are the third and forth terms respectively

in Equation 3.8.

3.2 Preliminary-Experiments

A preliminary investigation assesses potential RBF center setups with a two-phase strategy and

OLS (Section 2.4.2). This approach requires data to design the RBF. Two data sets are investigated.

Both are obtained from simulations, but each has different data collection methods. The first data

set is collected at every state up to the simulation horizon. This data set will provide the frequency

of states visited. The second data set is collected at only initialized states that are pre-specified.

62

This data set may not provide information about frequency of states, but it provides better coverage

of the state space.

Multiple simulations are run. Each simulation has settings: Kt =$15; ct = $10/unit; ht =

$1/unit; and bt = $40/unit. This discounted problem has a discounting coefficient of α = 0.95 and

a zero leadtime (L = 0). The demand is modeled as AR1, where a0 = -5, a1 = 1, and demand noise

is normally distributed with a variance of 10. The simulated process is controlled with a 3-period

expected Look-Ahead method that selects an action based on the sum of 3 expected single-period

costs ahead. Equation 3.9 is the T-period expected look-ahead policy.

at = first

(

arg min
~u

T
∑

i=1

E[c(s̄t+i−1)|ut+i−1]

)

(3.9)

where ~u is a series of actions (~u = [ut ut+1 ... ut+T−1] and first(~u) = ut), E[c(s̄t+i−1)|ut+i−1] is an

expected period cost of the state s̄t+i−1 for the given action ut+i−1, and s̄t+i−1 = [D̄t+i−2 x̄t+i−1]
′

(D̄t−1 = Dt−1. x̄t = xt. D̄t+i−2 = a1D̄t+i−3 + a0 and x̄t+i−1 = x̄t+i−2 + ut+i−2 − D̄t+i−2 for i =

2, 3, 4, ...).

The first data set: The first dataset, a trajectory dataset, is simulated for 10 replications with

65 periods each. Since all states visited are recorded for this dataset, it provides 650 samples.

These samples are randomly separated into a training set of 500 samples and a validating set of 150

samples. The training set is used to design the RBF, while the validating set is used to validate

RBF approximation.

The second data set: The second dataset, a mesh dataset, records only initial states and their

consequences. To provide two separate datasets for training and validation, each dataset is generated

separately. A mesh dataset for training is generated for previous demands of 0, 50, 100, ..., 1000

and inventory levels of -500, -450, -400, ..., 0, 50, 100, ..., 1000. This makes a total of 651 samples.

A mesh dataset for validating is generated for previous demands of 0, 60, 120, ..., 900 and inventory

levels of -90, 0, 90, 180, 270, ..., 450, for a total of 112 samples.

One RBF is trained with the trajectory dataset and another RBF is trained with the mesh dataset.

Both RBFs are then validated with both the trajectory and mesh validating datasets.

Preliminary-Experiment results: Table 3.1 shows the validation mean squared error (MSE)

and mean relative absolute error (MRAE) of both RBFs on both validation data sets. The MSE

is obtained from 1
N

∑N
n=1(Ĉ(sn) − Cn)2 and MRAE is obtained from 1

N

∑N
n=1 |(Ĉ(sn) − Cn)/Cn|

63

Table 3.1: Pre-stage Experimental results

the first validating set the second validating set
MSE MRAE MSE MRAE

The first training set 9.6822 ×105 8.98% 7.3363 ×1013 343.17%
The second training set 1.8759 ×106 13.46% 7.5658 ×104 16.94%

where Cn is the nth data point obtained from simulation, Ĉ(sn) is a RBF output corresponding to

the nth data point; and N is the number of data points.

Figure 3.2 shows RBF centers designed with the first training data set.

−100 0 100 200 300 400
0

100

200

300

400

500

600

x

D
t−

1

data v.s. centers

train data
val. data
centers
eff. centers

Figure 3.2: The first set data points and RBF centers

Blue bubbles represent coordinates composed of inventory x and previous demand Dt−1, of the

training data. Green bubbles represent coordinates of the validating data. Yellow asterisks are

coordinates of the RBF centers designed by OLS. Although the design takes most of the data points

as RBF centers, only a few centers have non-zero weights, as shown by red plus-signs in Figure 3.2.

Figure 3.3 shows a 3D surface plot of RBF output when it is trained with the first training data

set. The top left and right plots show training data points in 3D, projected on each plane. These

two plots show the range of the state space that this data covers. The bottom left and right plots

show 3D and contour plots of RBF output.

Similarly, Figure 3.4 shows RBF centers trained with the second training data set. Figure 3.5

shows 3D surface plots and contour plots of the second training data set and RBF output when it

is trained with the second training data set.

Discussions and conclusions: RBF trained with the second data set shows more consistent

performance with different sets of validating data. Since this RBF will be used in the real learning

64

−200
0

200
400

0

500

0

1

2

x 10
4

x

training data

D
t−1

co
st

−200
0

200
400

0

500

0

1

2

x 10
4

x

plane−projected training data

D
t−1

co
st

−200
0

200
400

0

500

0

1

2

x 10
4

x

RBF output

D
t−1

co
st

x

D
t−

1

contour: RBF output

−200 0 200 400
0

100

200

300

400

500

600

Figure 3.3: The first set data points and RBF output

−600 −400 −200 0 200 400 600 800 1000

0

200

400

600

800

1000

x

D
t−

1

data v.s. centers

train data
val. data
centers
eff. centers

Figure 3.4: The second set data points and RBF centers

−500
0

500
1000

0

500

1000
0

2

4

x 10
4

x

training data

D
t−1

co
st

−500
0

500
1000

0

500

1000
0

2

4

x 10
4

x

RBF output

D
t−1

co
st

x

D
t−

1

contour: training data

−500 0 500 1000
0

200

400

600

800

1000

x

D
t−

1

RBF output

−500 0 500 1000
0

200

400

600

800

1000

Figure 3.5: The second set data points and RBF output surface

65

environment, this property is desirable. Therefore, RBF set up with evenly distributed centers is

recommended.

In addition, allocating RBF centers evenly throughout the state, or state-action, space is a

method for incorporating domain knowledge into ADP. Evenly distributed structure of RBF centers

is practical to set up; most adaptive inventory management schemes use either a look-up table or

an aggregation technique to implement cost-to-go approximation. Assigning RBF centers can be

located in the middle of each aggregate group. This affirms another advantage of RBF as a practical

choice for cost-to-go approximation over feedforward neural networks, because its structure is easier

to determine, especially in inventory management applications where range of state space is easily

specified.

3.3 RBF Scales set up

As discussed in Section 3.2, RBF centers are set up to be evenly distributed. RBF scales corre-

spond to centers, therefore, RBF scales can be set up to have the same values in each dimension.

This study proposes a setup strategy for RBF scales based on a relative basis effect at a midpoint.

A midpoint is a virtual point surround by centers and the midpoint location is the centroid of

the surrounding centers. The top right plot of Figure 3.6 shows midpoints marked as circles among

RBF centers.

0 50 100 150 200 250 300
−300

−200

−100

0

100

200

300

D
1

D
2

RBF centers

0 50 100 150 200 250 300
−300

−200

−100

0

100

200

300

D
1

D
2

RBF centers with middle points

−3 −2 −1 0 1 2 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

||x − v||
Z

φ

RBF basis effect v.s. distance

Figure 3.6: RBF centers and middle points

Each Gaussian basis has a peak value 1 at its center and declining as the distance from the

center increases at a rate exp(−d2
h), where dh is the scaled distance from its center. The lower plot

66

of Figure 3.6 shows the Gaussian basis value versus the distance from its center. Midpoint strategy

assigns scale values so the effect of each RBF center will drop to a specific fraction, e.g. half, of its

peak value at the midpoint. For convenience, this strategy will be referred to as a midpoint strategy

and the fraction will be prefixed to indicate the fraction of peak effect at the midpoint. Equation

3.10 shows a midpoint strategy formula to obtain scale along dth dimension.

zd = − 4

D ·∆2
d

· log φ (3.10)

where zd is a scale along dth dimension; D is the number of dimensions; ∆d is the gap between two

adjacent centers along dth dimension; and φ is the fraction of peak basis value at the midpoint, e.g.,

φ = 0.5 for the 1/2-midpoint strategy.

For example, 1/10-, 1/2- and 9/10-midpoint strategies assign scales such that the effects of each

RBF center will drop to 1/10, 1/2 and 9/10 of its peak value, respectively. It should be noted that

RBF has D ×M scales where D is a number of dimensions and M is a number of centers, but this

midpoint strategy, used with evenly distributed centers, assigns all scales of the same dimension

to the same value, i.e., zd,1 = zd,2 = zd,3 = ... = zd,M . Therefore, for simplicity, subscript m is

dropped.

3.4 Experiments

Pre-stage experiments investigate the structure of RBF centers. Using RBF with an inventory

controlled ADP, however, raises questions, such as whether it will work, how to design its scales and

how densely positioned RBF centers should be. To answer these questions, a series of simulation-

based experiments are conducted.

Each experiment is repeated 50 times. Each repetition has a 60-period horizon. The problem is

set up with Kt =$80; ct = $100/unit; ht = $0.05/unit; and bt = $180/unit. This is a discounted

problem with α = 0.95 and zero leadtime, L = 0. The demand is modeled with AR1, where a0

= 2, a1 = 0.8, and demand noise is normally distributed with variance of 2. Each experiment is

initialized at D0 = 50 and x1 = 10.

Experiments in this chapter investigate RBF as cost-to-go approximation. To focus on approxi-

mate cost-to-go and the learning aspect, H1 TD(0), a one-period Look-Ahead method with TD(0)

approximate cost-to-go is used. Equation 3.11 shows the formulation of H1 TD(0)’s action. One-

period expected Look-Ahead, H1, is used as a benchmark to clearly show the effect of the cost-to-go

approximation. H1 selects an action based on the expected cost only, i.e., at = arg minaE[c(st)|a].

at = arg min
a
E[c(st)|a] + αQ̂(s̄t+1, a) (3.11)

67

where at is a chosen action; E[c(st)|a] is an expected period cost of state st when action a is taken;

Q̂ is a state-action value, implemented by RBF and updated by TD(0); s̄t+1 is a projected state at

time t+1 and s̄t+1 = [x̄t+1; D̄t] when demand forecast D̄t = a1Dt−1 +a0 and projected next period

inventory x̄t+1 = xt + a− D̄t.

Given normally distributed demand noise, the expected single period cost E[c(st)|a] can be

obtained as shown in Equation 3.12.

E[c(st)|a] = E[c([Dt−1, xt]
′)|a]

= Kt · δ(a) + ct · a+ x̄t+1 · {(ht + bt) · N (x̄t+1)− bt}+ σ2 · (ht + bt) · n(x̄t+1)(3.12)

where σ, N , and n are the standard deviation, the cumulative Normal distribution function and

the probability Normal distribution function of demand noise respectively. The other variables were

previously defined.

Learning rate experiments: These experiments are designed to find a proper learning rate of

TD(0) with RBF for comparison to H1. The RBF centers are set to each combination of {-30, -20,

-10, 0, ..., 60} × {0, 10, 20, ..., 60} corresponding to x and Dt−1 respectively. All scales are set to

0.0139. Learning rates, β, are 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.96, 0.97 and 0.99.

RBF scale experiments: These experiments are designed to contrast different midpoint strate-

gies (Section 3.3), that is, the 0.1-, 0.2-, 0.3-, ..., and 0.9-midpoint strategies. Each treatment uses

a learning rate of 0.96 and RBF centers at each combination of {-30, -20, -10, 0, ..., 60} × {0, 10,

20, ..., 60}.

RBF centers are positioned with gaps of 10 for both dimensions, i.e., ∆1 = ∆2 = 10, and the

scales for both dimensions are the same, i.e., z1 = z2 = −4/(2 · 102) · log φ. Therefore, the scales

are 0.0461, 0.0322, 0.0241, 0.0183, 0.0139, 0.0102, 0.0071, 0.0045, and 0.0021 for 0.1-, 0.2-, 0.3-, ...,

0.9-midpoint strategies, respectively.

RBF center spacing experiments: Given evenly distributed RBF centers, their density is de-

termined by the gap sizes, or distances between two adjacent centers. These experiments explore

the proper choice of gap size. Gap sizes for both dimensions are set to be the same. Gap sizes of

5, 10, and 15 are investigated. For a gap size of 5, RBF centers are set up to each combination

{0,5,10,...,60} × {-30,-25,-20,...,60}. The scales are set to 0.0555. For gap size of 10, RBF centers

are set up to each combination {0,10,20...,60} × {-30,-20,-10...,60}. The scales are set to 0.0139. For

gap size of 15, RBF centers are set up to each combination {0,15,30,...,60} × {-30,-15,0,...,60}. The

scales are set to 0.0062. Learning rates of 0.90, 0.95, 0.96, 0.97, and 0.99 are run for each treatment.

68

3.5 Experimental results

Learning rate experiments: Table 3.2 shows results of the significance tests comparing H1

TD(0) with H1.

Table 3.2: Significance tests: H1 and H1 TD(0) with different learning rates

treatment sample BCa interval test reject H0 p value Rank sum Normal
β mean LCI UCI stat. Ha+ Ha− Ha+ Ha− H∗ p val.

Period 1-12; H1 (sample mean = 27,945.51; CI = [27,201.88 ; 28,710.86]); Normal test is passed
0.50 32,097.55 31,182.95 32,978.16 -6.85 0 1 1.00 0.00 1 0.00 0
0.60 32,802.80 31,886.64 33,736.48 -7.95 0 1 1.00 0.00 1 0.00 0
0.70 32,491.47 31,587.17 33,372.66 -7.60 0 1 1.00 0.00 1 0.00 0
0.80 33,632.55 32,757.14 34,568.96 -9.38 0 1 1.00 0.00 1 0.00 0
0.90 33,169.37 32,268.52 34,065.45 -8.67 0 1 1.00 0.00 1 0.00 0
0.95 33,059.94 32,019.30 34,255.84 -7.38 0 1 1.00 0.00 1 0.00 0
0.96 33,390.51 32,363.24 34,437.34 -8.31 0 1 1.00 0.00 1 0.00 0
0.97 33,506.77 32,449.63 34,591.54 -8.30 0 1 1.00 0.00 1 0.00 0
0.99 33,385.38 32,302.24 34,578.88 -7.82 0 1 1.00 0.00 1 0.00 0

Period 13-60; H1 (sample mean = 59,236.30; CI = [57,413.74 ; 61,195.24]); Normal test is passed
0.50 58,476.56 56,541.89 60,426.64 0.54 0 0 0.30 0.70 0 0.71 0
0.60 57,896.94 55,915.77 59,937.51 0.94 0 0 0.17 0.83 0 0.37 0
0.70 57,264.21 55,343.54 59,115.27 1.44 0 0 0.08 0.92 0 0.23 0
0.80 56,692.49 54,806.74 58,593.87 1.84 1 0 0.03 0.97 1 0.10 1
0.90 57,229.28 55,458.53 59,026.24 1.50 0 0 0.07 0.93 0 0.19 0
0.95 56,557.33 54,916.12 58,282.78 2.05 1 0 0.02 0.98 1 0.05 0
0.96 56,023.71 54,261.22 57,688.62 2.44 1 0 0.01 0.99 1 0.03 0
0.97 56,216.56 54,353.15 57,984.76 2.23 1 0 0.01 0.99 1 0.05 0
0.99 56,409.31 54,558.76 58,360.78 2.05 1 0 0.02 0.98 1 0.06 0

Period 1-60; H1 (sample mean = 87,181.81; CI = [85,118.41 ; 89,599.41]); Normal test is passed
0.50 90,574.11 88,350.81 92,997.43 -2.04 0 1 0.98 0.02 1 0.03 0
0.60 90,699.75 88,490.03 93,242.83 -2.11 0 1 0.98 0.02 1 0.03 0
0.70 89,755.68 87,506.21 91,800.18 -1.62 0 0 0.95 0.05 1 0.07 0
0.80 90,325.04 88,256.07 92,457.66 -1.96 0 1 0.97 0.03 1 0.03 1
0.90 90,398.66 88,429.16 92,683.24 -2.01 0 1 0.98 0.02 1 0.04 0
0.95 89,617.27 87,459.97 91,735.29 -1.52 0 0 0.93 0.07 1 0.09 0
0.96 89,414.22 87,398.37 91,526.66 -1.42 0 0 0.92 0.08 1 0.10 0
0.97 89,723.33 87,621.15 91,954.30 -1.59 0 0 0.94 0.06 1 0.06 0
0.99 89,794.69 87,605.54 92,055.05 -1.59 0 0 0.94 0.06 0 0.10 0

The results are shown separately for Period 1-12, Period 13-60 and Period 1-60. Learning rates

are shown in the column labeled treatment. Average aggregate cost is displayed. The Bias Corrected

and accelerated percentile method (BCa) is used to obtain a confidence interval. The lower and upper

levels of the 95% confidence interval are shown in columns LCI and UCI, under the BCa Interval.

T-test test statistics are shown in the column labeled test stat. One-sided test results are shown in

columns Ha+ and Ha− , under the label reject H0. An entry of 1 means H0 can be rejected in favor

of an alternative hypothesis. An entry of 0 means H0 can not be rejected. The rejection is at a

significance level of 0.05. A 1 in the null hypothesis H0 column indicates that two means of aggregate

cost show no significant differences. A 1 in the alternative hypothesis Ha+ column indicates that

the mean of the control, e.g., H1, is significantly higher than the mean of the treatment. A 1 in the

alternative hypothesis Ha− column indicates that the mean of the control is significantly lower than

69

the mean of the treatment. The two columns under label p value show the p values of the test given

the alternative hypothesis Ha+ and Ha− , as indicated. Two-sided Wilcoxon Rank Sum test results

with corresponding p values are shown in columns H∗ and p val located under label Rank sum. The

Wilcoxon Rank Sum test is done at a 0.10 significance level. Similarly, an entry of 1 in column H∗

indicates the median of the control is significantly different than a median of the treatment. An

entry of 0 indicates that the medians are not significantly different. Normality of the data is tested

with both Chi Square good-of-fit and Lilliefors tests. The normality test result is shown as 1 if either

the Chi Square good-of-fit or the Lilliefors test can reject the normality hypothesis (Data fails the

normal test.), otherwise it is shown as 0. Each normality test is done at a 0.05 significance level.

Figure 3.7 displays the average inventory level and single-period cost of H1 compared to H1

TD(0) with β = 0.96. Measurement of H1 is labeled No C2G and drawn with a solid line without

a marker. Measurement of H1 TD(0) is labeled TD0 and is drawn with a solid line and asterisk

markers.

1 12 24 36 48 60
−10

0

10

20

t

x

average inventory level

1 12 24 36 48 60
0

1000

2000

3000

4000

t

co
st

average single cost

No C2G
TD0

No C2G
TD0

Figure 3.7: Average inventory level and single cost of H1 (No C2G) and H1 TD(0)

RBF scale experiments: Similar to Table 3.2, Table 3.3 shows significance tests comparing H1

to H1 TD(0) with different RBF scales. The scale column shows scales of each treatment. Each

70

scale corresponds to each midpoint strategy, i.e., scale 0.0461 corresponds to the 1
10 -midpoint, 0.0322

corresponds to the 2
10 -midpoint, 0.0241 corresponds to the 3

10 -midpoint, 0.0183 corresponds to the

4
10 -midpoint, 0.0139 corresponds to the 5

10 -midpoint, 0.0102 corresponds to the 6
10 -midpoint, 0.0071

corresponds to the 7
10 -midpoint, 0.0045 corresponds to the 8

10 -midpoint, and 0.0021 corresponds to

the 9
10 -midpoint. The rest of the table is organized as Table 3.2.

Table 3.3: Significance tests: H1 and H1 TD(0) with different scales

sample BCa interval test reject H0 p value Rank sum Normal
scale mean LCI UCI stat. Ha+ Ha− Ha+ Ha− H∗ p val.

Period 1-12; H1 (sample mean = 27,945.51; CI = [27,221.40 ; 28,706.98]); Normal test is passed
0.0461 30,813.74 30,185.55 31,395.00 -5.80 0 1 1.00 0.00 1 0.00 0
0.0322 30,324.69 29,642.13 31,044.04 -4.50 0 1 1.00 0.00 1 0.00 1
0.0241 30,744.39 29,874.29 31,813.60 -4.48 0 1 1.00 0.00 1 0.00 0
0.0183 32,042.09 31,098.13 33,025.78 -6.52 0 1 1.00 0.00 1 0.00 0
0.0139 33,390.51 32,333.55 34,422.46 -8.31 0 1 1.00 0.00 1 0.00 0
0.0102 34,006.52 33,044.29 34,886.78 -9.88 0 1 1.00 0.00 1 0.00 0
0.0071 37,470.32 36,065.28 38,878.84 -11.51 0 1 1.00 0.00 1 0.00 0
0.0045 35,058.24 33,963.46 36,147.08 -10.49 0 1 1.00 0.00 1 0.00 0
0.0021 44,657.72 43,443.47 45,981.40 -21.93 0 1 1.00 0.00 1 0.00 0

Period 13-60; H1 (sample mean = 59,236.30; CI = [57,383.16 ; 61,111.33]); Normal test is passed
0.0461 57,556.31 55,850.66 59,336.09 1.26 0 0 0.10 0.90 0 0.23 0
0.0322 57,202.62 55,593.41 58,751.90 1.60 0 0 0.06 0.94 0 0.17 0
0.0241 57,508.72 55,702.23 59,334.28 1.27 0 0 0.10 0.90 0 0.27 0
0.0183 56,302.65 54,402.87 58,269.68 2.10 1 0 0.02 0.98 1 0.04 0
0.0139 56,023.71 54,279.13 57,716.59 2.44 1 0 0.01 0.99 1 0.03 0
0.0102 57,873.05 55,903.16 59,945.16 0.96 0 0 0.17 0.83 0 0.35 0
0.0071 61,268.59 59,230.55 63,442.47 -1.40 0 0 0.92 0.08 0 0.21 0
0.0045 59,020.39 57,150.08 60,939.16 0.16 0 0 0.44 0.56 0 0.90 0
0.0021 59,298.88 57,307.97 61,544.55 -0.04 0 0 0.52 0.48 0 0.77 1

Period 1-60; H1 (sample mean = 87,181.81; CI = [85,042.00 ; 89,547.36]); Normal test is passed
0.0461 88,370.05 86,443.68 90,494.27 -0.76 0 0 0.78 0.22 0 0.39 0
0.0322 87,527.31 85,646.92 89,506.70 -0.23 0 0 0.59 0.41 0 0.72 0
0.0241 88,253.11 86,053.77 90,537.55 -0.65 0 0 0.74 0.26 0 0.36 0
0.0183 88,344.74 86,084.97 90,697.38 -0.70 0 0 0.76 0.24 0 0.44 0
0.0139 89,414.22 87,368.81 91,490.51 -1.42 0 0 0.92 0.08 1 0.10 0
0.0102 91,879.57 89,716.74 94,235.22 -2.84 0 1 1.00 0.00 1 0.01 0
0.0071 98,738.91 96,243.49 101,529.59 -6.49 0 1 1.00 0.00 1 0.00 0
0.0045 94,078.62 92,111.74 96,235.68 -4.38 0 1 1.00 0.00 1 0.00 1
0.0021 103,956.60 101,606.90 106,612.12 -9.69 0 1 1.00 0.00 1 0.00 1

Figure 3.8 shows BCa confidence intervals of aggregate costs. It compares aggregate costs of H1,

labeled H1 No C2G, with scale H1 TD(0) labeled with a fraction of its midpoint effect.

Figures 3.9, 3.10, and 3.11 show RBF outputs when using a scale of 0.0461 (1/10-midpoint),

0.0139 (5/10-midpoint) and 0.0021 (9/10-midpoint) respectively. In the top left 3D plot, x is the

inventory level, Dp is the previous demand and a vertical axis is RBF output when all weights are

equal to one. The top right plot is a contour plot. The bottom right plot is a contour plot with

RBF centers as asterisks. The bottom left plot is a histogram of RBF output.

RBF center spacing experiments: Tables 3.4, 3.2 and 3.5 display significance test results of

H1 TD(0) with gaps of 5, 10 and 15, respectively, compared to H1.

71

H1 No C2G 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

3

3.5

4

4.5

x 10
4 Periods: 1−12

co
st

H1 No C2G 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5.4

5.6

5.8

6

6.2

6.4
x 10

4 Periods: 13−60

co
st

H1 No C2G 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

8.5

9

9.5

10

10.5

x 10
4 Periods: 1−60

co
st

Figure 3.8: Midpoint comparisons

−200 20 40 60

0

50
1

2

3

x

unity weight RBF output with scale = 0.046052

D
p

x

D
p

unity weight RBF output contour

−20 0 20 40 60
0

20

40

60

1.4 1.6 1.8 2 2.2
0

200

400

600
output range

−20 0 20 40 60
0

20

40

60

x

D
p

RBF centers over contour

Figure 3.9: RBF bases with unity weight: 1/10-midpoint

72

−200 20 40 60

0

50
2.5

3

3.5

x

unity weight RBF output with scale = 0.013863

D
p

x

D
p

unity weight RBF output contour

−20 0 20 40 60
0

20

40

60

2.5 3 3.5
0

500

1000

1500

2000
output range

−20 0 20 40 60
0

20

40

60

x

D
p

RBF centers over contour

Figure 3.10: RBF bases with unity weight: 1/2-midpoint

−200 20 40 60

0

50
0

10

20

x

unity weight RBF output with scale = 0.0021072

D
p

x

D
p

unity weight RBF output contour

−20 0 20 40 60
0

20

40

60

5 10 15 20
0

200

400

600

800
output range

−20 0 20 40 60
0

20

40

60

x

D
p

RBF centers over contour

Figure 3.11: RBF bases with unity weight: 9/10-midpoint

73

Table 3.4: Significance tests: H1 and H1 TD(0) with center gap of 5

treatment sample BCa interval test reject H0 p value Rank sum Normal
β mean LCI UCI stat. Ha+ Ha− Ha+ Ha− H∗ p val.

Period 1-12; H1 (sample mean = 27,945.51; CI = [27,216.45 ; 28,723.41]); Normal test is passed
0.90 30,699.01 29,820.25 31,608.59 -4.54 0 1 1.00 0.00 1 0.00 0
0.95 30,729.30 30,020.12 31,501.48 -5.14 0 1 1.00 0.00 1 0.00 0
0.96 30,699.32 30,040.50 31,423.11 -5.20 0 1 1.00 0.00 1 0.00 0
0.97 30,544.92 29,652.06 31,416.99 -4.39 0 1 1.00 0.00 1 0.00 0
0.99 30,895.72 29,977.35 31,864.04 -4.70 0 1 1.00 0.00 1 0.00 0

Period 13-60; H1 (sample mean = 59,236.30; CI = [57,428.56 ; 61,221.31]); Normal test is passed
0.90 58,070.28 56,178.54 60,167.56 0.82 0 0 0.21 0.79 0 0.39 0
0.95 57,811.53 55,965.00 59,674.92 1.04 0 0 0.15 0.85 0 0.35 0
0.96 58,176.84 56,417.72 60,021.68 0.78 0 0 0.22 0.78 0 0.43 0
0.97 58,567.34 56,718.75 60,532.27 0.49 0 0 0.31 0.69 0 0.64 0
0.99 57,949.32 56,059.71 59,975.40 0.92 0 0 0.18 0.82 0 0.39 0

Period 1-60; H1 (sample mean = 87,181.81; CI = [85,056.66 ; 89,563.37]); Normal test is passed
0.90 88,769.29 86,643.50 91,192.69 -0.96 0 0 0.83 0.17 0 0.36 0
0.95 88,540.83 86,447.22 90,828.79 -0.84 0 0 0.80 0.20 0 0.35 0
0.96 88,876.17 86,910.74 91,120.72 -1.07 0 0 0.86 0.14 0 0.26 0
0.97 89,112.26 86,942.07 91,454.39 -1.18 0 0 0.88 0.12 0 0.23 0
0.99 88,845.04 86,599.10 91,206.65 -1.01 0 0 0.84 0.16 0 0.24 0

Table 3.5: Significance tests: H1 and H1 TD(0) with center gap of 15

treatment sample BCa interval test reject H0 p value Rank sum Normal
β mean LCI UCI stat. Ha+ Ha− Ha+ Ha− H∗ p val.

Period 1-12; H1 (sample mean = 27,945.51; CI = [27,231.16 ; 28,706.11]); Normal test is passed
0.90 34,724.47 33,949.73 35,515.76 -12.13 0 1 1.00 0.00 1 0.00 0
0.95 34,344.83 33,306.64 35,327.53 -9.76 0 1 1.00 0.00 1 0.00 1
0.96 33,846.46 33,010.50 34,686.85 -10.14 0 1 1.00 0.00 1 0.00 0
0.97 33,918.59 33,002.98 34,808.41 -9.91 0 1 1.00 0.00 1 0.00 0
0.99 33,674.43 32,932.66 34,432.33 -10.39 0 1 1.00 0.00 1 0.00 0

Period 13-60; H1 (sample mean = 59,236.30; CI = [57,423.55 ; 61,215.04]); Normal test is passed
0.90 56,292.20 54,621.22 57,987.03 2.25 1 0 0.01 0.99 1 0.05 0
0.95 55,952.86 54,032.47 57,965.65 2.32 1 0 0.01 0.99 1 0.03 0
0.96 56,185.19 54,458.28 57,960.89 2.30 1 0 0.01 0.99 1 0.04 0
0.97 56,241.49 54,213.05 58,312.68 2.10 1 0 0.02 0.98 1 0.04 0
0.99 56,442.72 54,627.08 58,279.24 2.06 1 0 0.02 0.98 1 0.06 0

Period 1-60; H1 (sample mean = 87,181.81; CI = [84,958.70 ; 89,599.73]); Normal test is passed
0.90 91,016.67 89,178.58 93,164.61 -2.48 0 1 0.99 0.01 1 0.01 0
0.95 90,297.70 88,037.29 92,541.79 -1.90 0 1 0.97 0.03 1 0.04 0
0.96 90,031.66 87,937.24 92,228.63 -1.78 0 1 0.96 0.04 1 0.07 0
0.97 90,160.07 87,954.67 92,584.41 -1.78 0 1 0.96 0.04 1 0.07 0
0.99 90,117.15 88,116.10 92,277.22 -1.84 0 1 0.97 0.03 1 0.07 0

74

Figure 3.12 shows BCa intervals of aggregate cost obtained from RBFs with gaps of 5 (β = 0.95),

10 (β = 0.96), and 15 (β = 0.96), as indicated on x-axis.

5 10 15

3

3.2

3.4

x 10
4 Periods: 1−12

co
st

5 10 15
5.4

5.6

5.8

6
x 10

4 Periods: 13−60

co
st

5 10 15
8.6

8.8

9

9.2

x 10
4 Periods: 1−60

co
st

Figure 3.12: Center gap comparisons

3.6 Discussions and Conclusions

Learning rate: Using learning rates between 0.7 and 0.99 do not give significantly different results.

Table 3.2 shows that the sample means obtained from these learning rates are within any BCa interval

obtained from any learning rate between 0.7 and 0.99. H1 TD(0) with learning rate 0.8 and any

learning rate from 0.95 and higher produces significantly better performance than H1 in the later

48 periods. This data illustrates that TD(0) is working well in later periods. Figure 3.7 shows that

TD(0) increases average inventory level after the first few periods. As is typical of a learning-based

method, TD(0) requires several periods to tune its cost-to-go approximation. Then, once the cost-to-

go approximation is well tuned, it helps H1 TD(0) choose more appropriate actions. Consequently,

TD(0) helps lower inventory cost.

RBF scale: Table 3.3 and Figure 3.8 show that in the later 48 periods midpoint effects around

0.5 perform better than midpoint effects near the extreme ends.

Figure 3.9 shows that, for a 1/10-midpoint scale, RBF produces a pronounced many peaked

structure. A profile of the 3D surface plot on the top left of Fig. 3.9 shows many bumps, with each

peak at an RBF center. This bumpy profile indicates potentially insufficient coverage of the state

75

space. A contour plot, top right, displays low value points located in the middle of four surrounding

peaks. These points are at the midpoint locations, where combining basis function value is smallest.

In the lower right plot, peaks are located at each RBF center. Figure 3.11 shows that for a 9/10-

midpoint scale RBF produces a smooth structure. The 3D surface plot displays a smooth surface

with a single gently rising peak in the middle. The single gently rising peak indicates a potential

over-coverage of the state space. The single peak in the middle may be a result of overlapping

effects from several wide spreading radial bases. Figure 3.10 shows that the 1/2-midpoint scale RBF

has a sufficient degree of smoothness. The 3D surface plot displays a smooth flat surface. This

profile indicates a high likelihood of adequate coverage of the state space. The histogram of outputs

shows the majority of values being in the flat top. Half midpoint effect is intuitive in that it has

a combining effect that sufficiently covers the area without excessive overlap. The half midpoint is

also an effective RBF scale setting for a TD(0) application to inventory management, because it has

low aggregate costs in later 48 periods (Table 3.3 and Figure 3.8).

RBF center: Tables 3.4, 3.2, 3.5 and Figure 3.12 show that in the later 48 periods H1 TD(0) with

RBF center gaps of 10 and 15 perform better than those with a center gap of 5. The explanation

may lie in the variance error. (See Geman et al. [44] for discussion about approximation error.)

Using RBF gap of 5 results in having too many parameters, therefore more samples are required for

RBF to converge.

This issue is common in model selection. It is a trade-off between a large variance error associated

with too many parameters, and a large bias error associated with too few parameters. As discussed

in Section 2.4.2, Akaike Information Criteria (AIC) can be used to determine this trade-off. AIC

values of different controllers are displayed in Figure 3.13. For each controller, the numerical labels

indicate gap size and the letters indicate a learning rate. For example, a: β = 0.90, b: β = 0.95, c: β

= 0.96, d: β = 0.97, e: β = 0.99. For example, label 10c indicates an inventory control using TD(0)

with an RBF gap size of 10 and β = 0.96. Among three center gaps investigated, a center gap of 10

yields the lowest AIC value, which means it gives the best trade-off between approximation power

and model complexity.

AIC is calculated by first assigning states visited to groups, in which each group is characterized

by an RBF center. A state is assigned to a group where the RBF center is closest to the state

(Equation 3.13). Then the residual sum of squares of each group is calculated (Equation 3.14).

Then AIC is the summation of the total residual sum of squares (Equation 3.15) and the model

complexity (Equation 3.16).

76

It should be noted that multiple group assignment is possible when there is a state located in the

middle between two centers. However, this will result in the same AIC value, because the centroid

of each group is the RBF center, which is fixed. This is different from the application of K-means

(as discussed in Section 2.4.2), where an assignment can change a value of the centroid of the group

which the data point is assigned to.

ms = arg min
m′

‖~s− ~vm′‖ for all ~s (3.13)

RSSm =
∑

~s:ms=m

‖~s− ~vm‖2 (3.14)

RSS(M) =

M
∑

m=1

RSSm (3.15)

AIC(M) = RSS(M) + 2 ·M ·D (3.16)

where ~s is a state visited, ~vm is the mth radial basis center, ms is the group assignment of state ~s,

RSSm is the RSS value of the mth group, RSS(M) is the summation of RSS values of M groups and

AIC(M) is the AIC value of RBF having M centers.

In a clustering application, AIC can be calculated based on the same data set. However, states

visited in inventory control application depend on an inventory policy, which is in this case, H1

TD(0) with RBF. Therefore, with a different RBF, inventory may be controlled differently, which

may result in different states visited. Figure 3.13 shows AIC values of each controller.

5a 5b 5c 5d 5e 10a 10b 10c 10d 10e 15a 15b 15c 15d 15e

1000

1500

2000

2500

3000

3500

A
IC

box plot: AIC

control

5a 5b 5c 5d 5e 10a 10b 10c 10d 10e 15a 15b 15c 15d 15e
1000

1200

1400

1600

1800

2000

2200
average AIC

control

A
IC

Figure 3.13: Boxplot and average AIC’s of controllers with different center gap sizes

77

Each AIC value is calculated with corresponding data: for example, AIC of RBF with gap of 5

is calculated with data obtained from H1 TD(0) with RBF gap of 5. Using data obtained from each

controller makes this analysis available only after each controller has been deployed and its results

have been recorded.

Instead of using data obtained from each controller, common data may be used for AIC calcula-

tion to determine RBF structure for inventory control before implementing it. Figure 3.14 displays

AIC values of different gap sizes.

5 6 7 8 9 10 11 12 13 14 15

500

1000

1500

2000

A
IC

box plot: AIC on data from control without cost−to−go

center spacing size

5 6 7 8 9 10 11 12 13 14 15
600

800

1000

1200

1400

1600

1800
average AIC

center spacing size

A
IC

Figure 3.14: Boxplot and average common-data AIC’s of different center spacing size.

All AIC values shown in this figure are calculated with common data obtained from H1. In

practice, a history of an inventory system can provide this common data and, in a similar manner,

a proper gap size can be determined from AIC prior to deployment of learning-based ADPs. Figure

3.14 shows that gap sizes of 9, 10, and 11 give the lowest AIC values indicating they are better

settings than other gap sizes.

78

CHAPTER 4

LEARNING BASED CONTROLLERS

This chapter investigates solutions to inventory problems using the Temporal Difference (TD)

learning techniques Sarsa, Sarsa(λ) and a Residual Gradient method. A new extension to the

Residual Gradient method has also been developed as part of this research and is investigated. A

Look-Ahead method is used as a benchmark for performance comparisons. These approaches are

used both in a zero leadtime inventory problem and a one-period leadtime inventory problem. The

investigation of a Sarsa(λ) application to an inventory problem in this research is also new. The

development of Direct Credit Back is new as well.

4.1 Residual Gradient Method

The Residual Gradient method, introduced by Baird [7], is a learning-based ADP method similar

to Sarsa, but it is designed to be used with various approximation functions, including nonlinear

functions. Sarsa was originally designed to be implemented using a look-up table and later was

extended for use with an approximation function. The Residual Gradient method is based on the

temporal difference learning technique which uses information obtained at different times to update

the state value approximation. Parameters ~θ of a state cost approximation are updated with the

gradient descent method. Equation 4.1 shows a total mean squared error of the approximation as a

function of ~θ. The update formula is shown in Equation 4.3.

ξ(~θ) =

T
∑

t=1

ξt(~θ) (4.1)

ξt(~θ) =
1

2

(

Q(st)− Q̃(st|~θ)
)2

(4.2)

~θ ← ~θ − β · ∇~θξt(
~θ)

← ~θ − β ·
(

Q(st)− Q̃(st|~θ)
)

∇~θ

(

Q(st)− Q̃(st|~θ)
)

← ~θ + β ·
(

Q(st)− Q̃(st|~θ)
)

∇~θQ̃(st|~θ) (4.3)

where Q(st) is an actual state cost, Q̃(st|~θ) is an approximate state cost obtained with parameter

~θ, and β is a learning rate.

A linear parameter function is a function having a linear relationship between parameters and

output. An approximate state cost can be calculated with a linear parameter function as Q̃(st|~w) =

~wT · ~φ(st), where ~w is a parameter vector and ~φ(st) is a basis vector. This family of approximation

functions includes the linear-mode RBF technique as mentioned in Section 2.4.2. Parameters ~w can

be updated as shown in Equation 4.4.

~w′ = ~w + β
(

Q(st)− Q̃(st|~w)
)

~φ(st) (4.4)

80

Since the real value Q(st) is not known, the TD update formula approximates Q(st) with rt+1 +

αQ̃(st+1|~w). The TD update formulas for state cost and state-action cost are shown in Equation

4.5 and Equation 4.6, respectively.

~w′ = ~w + β
(

rt+1 + αQ̃(st+1|~w)− Q̃(st|~w)
)

~φ(st) (4.5)

~w′ = ~w + β
(

rt+1 + αQ̃(st+1, at+1|~w)− Q̃(st, at|~w)
)

~φ(st, at) (4.6)

where ~w′ is a vector of parameter values after an update.

The update formula of the Residual Gradient method is represented similarly. Rather than

delaying the approximation of Q(st) until after the gradient is determined, as in Equation 4.3, the

Residual Gradient method approximates a state cost when Q(st) first appears in Equation 4.2. The

Residual Gradient error at time t is shown in Equation 4.7.

ξ̃t(~θ) =
1

2

(

rt+1 + αQ̃(st+1|~θ)− Q̃(st|~θ)
)2

(4.7)

The Residual Gradient update formulas for a linear parameter function for state cost and state-

action cost are shown in Equation 4.8 and Equation 4.9, respectively.

~w′ = ~w − β
(

rt+1 + αQ̃(st+1|~w)− Q̃(st|~w)
)

·
(

α~φ(st+1)− ~φ(st)
)

(4.8)

~w′ = ~w − β
(

rt+1 + αQ̃(st+1, at+1|~w)− Q̃(st, at|~w)
)

·
(

α~φ(st+1, at+1)− ~φ(st, at)
)

(4.9)

The Residual Gradient method is used to control inventory in the same way as Sarsa, but the

approximation function parameters are updated with the Residual Gradient formula (Equation 4.9)

instead of Sarsa’s.

4.2 Direct Credit Back

The inventor, Baird [7], claims that the Residual Gradient method always converges. However,

it has been reported that the Residual Gradient method converges at a slower rate than Sarsa,

whenever Sarsa converges. To improve the convergence rate of the Residual Gradient method,

Direct Credit Back was developed in our research. It is seen to enhance the performance of the

Residual Gradient method by using the trajectory of prior states, or prior state-action pairs.

When new information, such as a period cost rt+1, is obtained, it can be used to update an

approximate cost of the most recent state or other prior states. When the new information is used

to update only an approximate cost of the most recent state, it is the update formula of the Residual

Gradient method (Equation 4.9). However, if we apply this new information further back in time,

then we will get a new updating formula, utilizing the trajectory of visited states.

81

For simplicity, consider state cost approximation first. Later the result can be extended to state-

action cost approximation. Given a period cost rt+1, a temporal difference of state st is noted as

ψ(st|rt+1) and can be calculated as shown in Equation 4.10.

ψ(st|rt+1) = rt+1 + αQ̃(st+1|~wt)− Q̃(st|~wt) (4.10)

Temporal Differences of prior states can be derived in the same way, as shown in Equation 4.11.

Equation 4.12 shows the recursive form of a temporal difference update.

ψ(st−1|rt+1) = rt + α · (rt+1 + αQ̃(st+1|~wt))− Q̃(st−1|~wt)

= rt + α · (ψ(st|rt+1) + Q̃(st|~wt))− Q̃(st−1|~wt)

ψ(st−2|rt+1) = rt−1 + α · (rt + αrt+1 + α2Q̃(st+1|~wt))− Q̃(st−2|~wt)

= rt−1 + α · (ψ(st−1|rt+1) + Q̃(st−1|~wt))− Q̃(st−2|~wt)

...

ψ(st−i|rt+1) = rt−i+1 + α · (rt−i+2 + αrt−i+3 + . . .+ αi−1rt+1 + αiQ̃(st+1|~wt))− Q̃(st−i|~wt)

= rt−i+1 +

i
∑

j=1

αjrt−i+j+1 + αi+1Q̃(st+1|~wt)− Q̃(st−i|~wt) (4.11)

= rt−i+1 + α ·
(

ψ(st−i+1|rt+1) + Q̃(st−i+1|~wt)
)

− Q̃(st−i|~wt) (4.12)

where i = 1, 2, . . . , t− 1.

The temporal error, ξt, can be written as shown in Equation 4.13.

ξt =
1

2
·

t−1
∑

i=0

ψ2(st−i|rt+1) (4.13)

Instead of directly crediting period cost backward, a credit back weight, λ, is introduced to

control the back crediting effect as shown in Equation 4.14. The weighted temporal error is denoted

as ξλ.

ξλ =
1

2
·

t−1
∑

i=0

λi · ψ2(st−i|rt+1) (4.14)

where a credit back weight λ ∈ (0, 1].

When λ equals one, Equation 4.14 is equivalent to Equation 4.13. When λ equals zero, Equation

4.14 is equivalent to the Residual Gradient method.

Parameter values ~w can be corrected with a gradient descent method using the gradient of the

total temporal error as shown in Equation 4.15.

~wt+1 = ~wt − β · ∇~wξλ

w(t+1)
m = w(t)

m − β
t−1
∑

i=0

λi · ∂
1
2ψ

2(st−i|rt+1)

∂wm
(4.15)

82

When the state cost is approximated with a linear parameter function Q̃(s|~w) = ~wT · ~φ(s), where

φ0(s) = 1, the update formula can be written as shown in Equations 4.16 and 4.17.

w
(t+1)
0 = w

(t)
0 − β

t−1
∑

i=0

λi · ψ(st−i|rt+1) ·
(

αi+1 − 1
)

(4.16)

w(t+1)
m = w(t)

m − β
t−1
∑

i=0

λi · ψ(st−i|rt+1) ·
(

αi+1 · φm(st+1)− φm(st−i)
)

for m = 1, ...,M (4.17)

where 0 < λ ≤ 1.

The implementation of Equation 4.16 and 4.17 requires computation and memory for the entire

trajectory of states visited, making this approach inefficient for a long horizon problem. Truncation

may be used as a simple expedient. Instead of crediting back to the beginning, a period cost can be

credited back to a certain number of prior states. With variable Ncb denoted as the number of prior

states to be credited, equation 4.18 shows a modified formula of the truncated Direct Credit Back

method.

~wt+1 = ~wt − β
min{Ncb,t−1}

∑

i=0

λi · ψ(st−i|rt+1) ·
(

αi+1 · ~φ(st+1)− ~φ(st−i)
)

(4.18)

where ~φ(s) = [1 ; φ1(s) ; φ2(s) ; . . . ; φM (s)].

ψ(st−i|rt+1) = rt−i+1 +
i
∑

j=1

αj · rt−i+j+1 + αi+1Q̃(st+1|~wt)− Q̃(st−i|~wt) (4.19)

= rt−i+1 + α ·
(

ψ(st−i+1|rt+1) + Q̃(st−i+1|~wt)
)

− Q̃(st−i|~wt) (4.20)

for i = 0, 1, 2, . . . ,min{Ncb, t− 1} and Ncb ∈ {0, 1, 2, ...}.

This method requires memory storage for st, st−1, ..., smax{1,t−Ncb} and rt+1, rt, ..., rmax{2,t−Ncb+1}.

When Ncb = 0, this update formula becomes the Residual Gradient update formula.

The update formula of state-action cost can be derived in a similar manner, as is shown in

Equation 4.23.

ψ(st, at|rt+1) = rt+1 + α · Q̃(st+1, at+1|~wt)− Q̃(st, at|~wt) (4.21)

ψ(st−i, at−i|rt+1) = rt−i+1 + α ·
(

ψ(st−i+1, at−i+1|rt+1) + Q̃(st−i+1, at−i+1|~wt)
)

− Q̃(st−i, at−i|~wt)

for i = 1, ...,min{t− 1, Ncb} (4.22)

~wt+1 = ~wt − β
min{Ncb,t−1}

∑

i=0

λi · ψ(st−i, at−i|rt+1) ·
(

αi+1 · ~φ(st+1, at+1)− ~φ(st−i, at−i)
)

(4.23)

where ~φ(s, a) = [1 , φ1(s, a) , φ2(s, a) , . . . , φM (s, a)] and Ncb ∈ {0, 1, 2, . . .}.

83

Direct Credit Back(λ,Ncb) can be used to control inventory in the same way as Sarsa. The

procedure is summarized in Table 4.1. The algorithm shown in Table 4.1 is similar to Sarsa(λ) but

the update formula is changed to the Direct Credit Back formula.

Table 4.1: Direct Credit Back with linear RBF

(1) Set t = 1
Set up RBF

a) determine M
b) determine ~vm and Zm for m = 1, ...,M
c) determine ~wt

(2) Observe state st

(3) Decide action, at ← π(st|Q̃)
(4) Take action (place replenishment order if decide to do so) according to action at

Observe the consequence:
a) record actual consequence and speculate next state st+1

b) evaluate period cost rt+1

c) speculate next action at+1 ← π(st+1|Q̃)
(5) Update an approximation function

a) Compute credit back TD

i) ψ(st, at|rt+1) = rt+1 + α · Q̃(st+1, at+1|~wt)− Q̃(st, at|~wt)

ii) ψ(st−i, at−i|rt+1) = rt−i+1 + α ·
(

ψ(st−i+1, at−i+1|rt+1) + Q̃(st−i+1, at−i+1|~wt)
)

−Q̃(st−i, at−i|~wt) for i = 1, ...,min{t− 1, Ncb}
b) Update weights

~w ← ~w − β∑min{Ncb,t−1}
i=0 λiψ(st−i, at−i|rt+1)

(

αi+1 · ~φ(st+1, at+1)− ~φ(st−i, at−i)
)

(6) Transition (to next period)
a) Set t← t+ 1
b) Repeat step (4) to (6)

4.3 Experiments: a zero leadtime problem

This section discusses the application of Sarsa, Residual Gradient, Sarsa(λ) and Direct Credit

Back to a zero leadtime inventory problem. Simulation-based experiments were conducted to eval-

uate how each method performs. Each experiment is repeated 50 times. Each repetition has a

60-period horizon. The problem is set up with Kt =$80, ct = $100/unit, ht = $0.05/unit, and bt =

$180/unit. This is a discounted problem with α = 0.95 and zero leadtime, L = 0. The demand is

modeled with AR1, where a0 = 2, a1 = 0.8, and the demand noise is normally distributed with a

variance of 2. Each experiment is initialized at D0 = 50 and x1 = 10. With zero leadtime, state st

has only two dimensions: previous demand Dt−1 and on-site inventory level xt.

Look-Ahead: The Look-Ahead method used in this section is based on average projection, as-

suming zero noise et = 0. Look-Ahead controllers are used with 1 to 5 look-ahead periods.

84

Sarsa: As introduced in Section 2.4, Sarsa is an algorithm to control processes with the temporal

difference learning technique and cost-to-go approximation. Four learning rates 0.01, 0.1, 1 and

10 are used. The decision is chosen based on approximate state-action costs. These experiments

utilize simulated annealing to search for an action having the minimum state-action cost for the

given state. The degree of exploration is assumed to be covered by zero initialization of approximate

state-action costs and heuristic nature of simulated annealing. Since this is a minimization problem

and state-action costs are non-negative values, initialization to zero of approximate state-action costs

will result in actions not previously taken being picked. A random start and the suboptimal nature

of simulated annealing also add a greater degree of exploration to the action selection process.

Simulated annealing, introduced by Kirkpatrick et al. [72], is a probabilistic search technique

for optimization problems. This technique was inspired by a metal annealing process developed to

control metal ductility and hardness by scheduling cool down time. While searching, the algorithm

uses an analog to time-temperature scheduling to control the degree of exploration and to provide a

mechanism to prevent the program from getting stuck at a local optimum. Schneider and Kirkpatrick

[104] explained that when the time-temperature schedule is slow enough, simulated annealing will

find the global optimal solution. Table 4.2 shows a simulated annealing algorithm. This table is

based on Russell and Norvig [102].

Table 4.2: Simulated Annealing

problem: find x = arg minx f(x) with subject to x ∈ Ω
input:

a) objective function f(x)
b) search space Ω
c) simulated annealing parameters: time-temperature mapping, i.e., τ = 1/ log(t)

(1) Initialize x
Set t = 1

(2) Calculate annealing temperature τ
Pick x′ from a neighborhood function Φ(x)
Set ∆f = f(x′)− f(x)

(3) If ∆f < 0
Then set x← x′

Else set x← x′ with probability exp(−∆f/T̊)
(4) Set t← t+ ∆t

Repeat step (2) to (3) until t has reached the maximum time tmax

The time-temperature mapping τ can be defined such that τ = 1/ log(t). At each step, a possible

solution x′ is picked from the neighborhood function, Φ(x). In this study, the neighborhood function

85

Φ(x) is a finite (truncated) Normal distributed function (Section 7.1) that is a feasible value chosen

to be close to x. A new solution x is chosen and the annealing time t is incremented by a time

step ∆t. The algorithm repeats this process until the final annealing time tmax is reached. The new

solution is chosen from either a current solution x or a candidate solution x′. A candidate solution

will be chosen under two circumstances: first, when it gives a lower cost than the current solution,

and second, if the candidate solution cannot give a lower cost, it will be chosen with probability such

that the candidate is more likely to be chosen if its cost is closer to the current solution cost. Such

a probability function can be formulated as exp(−∆f/τ) where ∆f = f(x′)− f(x). The probability

function exp(−∆f/τ) will equal one when a candidate results in the same cost function as the

current solution. Given ∆f ≥ 0, the exponential function will ensure that the probability will be

between 0 and 1. The non-negative annealing temperature τ controls sensitivity of the probability

to ∆f . Simulated annealing in this study is set up with time step ∆t of 0.01 and final time tmax of

6. (See Russell and Norvig [102] and Schneider and Kirkpatrick [104] for a discussion of Simulated

Annealing)

RBF is used as a state-action cost approximation function and it is set up with fixed cen-

ters and scales. Centers are three dimensional and evenly distributed. The three dimensions of

a RBF center correspond to previous demand, the on-site inventory level and the inventory level

after replenishment. The RBF structure has centers at each combination of {0, 10, 20, ..., 60} ×

{−30,−20,−10, 0, 10, ..., 60} × {0, 10, 20, ..., 60}. All RBF scales are set to 0.0139.

Eligibility Trace: An eligibility trace technique1 is an extension of Sarsa that utilizes a state-

action trajectory to improve learning speed. Instead of using new information to correct only the

most recent approximate state-action cost, The eligibility trace technique partially credits backward

through multiple prior state-action pairs.

Experiments here use a Sarsa version of an eligibility trace, Sarsa(λ), which is used with eligibility

factors λ of 0, 0.5 and 1. It should be noted that λ = 0 is equivalent to Sarsa (without eligibility

trace). Learning rates of 0.01, 0.1, 1 and 10 are investigated. Other parameters are specified as

Sarsa controllers (as mentioned in Sarsa paragraph).

Residual Gradient: Residual Gradient is implemented with the same settings as Sarsa. Four

learning rates β = 0.01, 0.1, 1 and 10 are investigated and RBF is used as a state-action cost

approximation function, as also was done with the Sarsa set up.

1 As discussed in Sutton and Barto [114], an eligibility trace technique is introduced by Watkins [123]. The version
used here is based on Sutton and Barto [114], which in turn contributed by Jaakkola et al. [63].

86

Direct Credit Back: Direct Credit Back controllers are investigated for the credit back horizon

Ncb = 0, 1, 10 and 100 with credit back weights λ = 0 , 0.5 and 1. It should be noted that when

Ncb = 0, the calculation is equivalent to the Residual Gradient method. Thus credit back weight

λ has no effect on the approximate cost. When Ncb = 100, the period cost will be credited back

through the entire trajectory2. Learning rates of 0.01, 0.1, 1 and 10 are used. RBF is used as a

state-action cost approximation function, also with the Sarsa set up.

4.4 Experimental results: a zero leadtime problem

The results of the significance tests of Look-Ahead, Sarsa, Sarsa(λ), Residual Gradient and Direct

Credit Back are shown in Tables 4.3 , 4.4 , 4.5 , 4.6 and 4.7, respectively.

Table 4.3: Significance tests: Look-Ahead

sample BCa interval test reject H0 p value Rank sum Normal
treatment mean LCI UCI stat. Ha+ Ha− Ha+ Ha− H∗ p val.

Period 1-12; H1 (sample mean = 27,789.58; CI = [27,148.48 ; 28,330.76]); normal test is passed.
H2 27,858.82 27,252.50 28,487.54 -0.16 0 0 0.56 0.44 0 0.91 0
H3 27,363.45 26,661.20 28,084.05 0.89 0 0 0.19 0.81 0 0.22 0
H4 27,032.24 26,366.66 27,695.39 1.65 0 0 0.05 0.95 1 0.07 0
H5 27,350.67 26,774.71 27,880.05 1.06 0 0 0.15 0.85 0 0.15 0

Period 13-60; H1 (sample mean = 58,060.49; CI = [56,219.24 ; 59,944.04]); normal test is passed.
H2 57,182.68 55,265.67 59,053.78 0.64 0 0 0.26 0.74 0 0.54 0
H3 56,605.75 54,861.59 58,494.28 1.09 0 0 0.14 0.86 0 0.29 0
H4 55,562.06 53,915.40 57,357.28 1.90 1 0 0.03 0.97 1 0.08 0
H5 54,266.68 52,607.94 55,940.83 2.92 1 0 0.00 1.00 1 0.01 0

Table 4.4: Significance tests: Sarsa

treatment sample BCa interval test reject H0 p value Rank sum Normal
β mean LCI UCI stat. Ha+ Ha− Ha+ Ha− H∗ p val.

Period 1-12; H1 (sample mean = 27,789.58; CI = [27,141.21 ; 28,323.89]); normal test is passed.
0.01 35,407.23 34,418.94 36,397.73 -12.89 0 1 1.00 0.00 1 0.00 0
0.1 34,632.42 33,719.20 35,565.06 -12.19 0 1 1.00 0.00 1 0.00 0
1 35,542.00 34,520.53 36,521.42 -12.76 0 1 1.00 0.00 1 0.00 0
10 34,981.11 33,906.57 36,043.67 -11.34 0 1 1.00 0.00 1 0.00 0

Period 13-60; H1 (sample mean = 58,060.49; CI = [56,209.72 ; 60,027.56]; normal test is passed.
0.01 53,143.27 51,605.57 54,942.06 3.80 1 0 0.00 1.00 1 0.00 0
0.1 51,535.10 49,579.96 53,645.14 4.59 1 0 0.00 1.00 1 0.00 1
1 51,213.10 49,279.76 53,309.58 4.83 1 0 0.00 1.00 1 0.00 0
10 54,160.33 52,496.55 56,019.67 2.95 1 0 0.00 1.00 1 0.01 0

The first column of Table 4.3, 4.4 and 4.6, the first two columns of Table 4.5 and the first

three columns of Table 4.7 indicate the settings of corresponding inventory control methods. The

tables also provide sample means and confidence intervals. The bias corrected and accelerated

percentile method (BCa) is used to obtain a confidence interval. The lower and upper levels of

2 Since the problem is set for a 60-period horizon, any Ncb ≥ 60 would result in the same learning process.

87

Table 4.5: Significance tests: Sarsa(λ)

treatment sample BCa interval test reject H0 p value Rank sum Normal
λ β mean LCI UCI stat. Ha+ Ha− Ha+ Ha− H∗ p val.

Period 1-12; H1 (sample mean = 27,789.58; CI = [27,143.54 ; 28,323.55]); normal test is passed.
0 a 35,407.23 34,401.06 36,393.19 -12.89 0 1 1.00 0.00 1 0.00 0
0 b 34,632.42 33,730.15 35,564.37 -12.19 0 1 1.00 0.00 1 0.00 0
0 c 35,542.00 34,472.75 36,543.96 -12.76 0 1 1.00 0.00 1 0.00 0
0 d 34,981.11 33,898.95 36,082.69 -11.34 0 1 1.00 0.00 1 0.00 0

0.5 a 35,063.91 34,158.20 36,049.02 -12.77 0 1 1.00 0.00 1 0.00 0
0.5 b 36,297.45 35,322.81 37,374.35 -13.85 0 1 1.00 0.00 1 0.00 0
0.5 c 34,948.13 34,041.26 35,862.37 -12.88 0 1 1.00 0.00 1 0.00 0
0.5 d 35,006.06 34,148.65 36,049.04 -12.57 0 1 1.00 0.00 1 0.00 0

1 a 34,964.63 34,107.02 35,934.46 -12.79 0 1 1.00 0.00 1 0.00 1
1 b 35,913.01 35,105.20 36,872.71 -14.99 0 1 1.00 0.00 1 0.00 0
1 c 35,936.48 34,945.79 36,967.32 -13.44 0 1 1.00 0.00 1 0.00 0
1 d 36,247.73 35,455.49 37,110.80 -16.18 0 1 1.00 0.00 1 0.00 0

Period 13-60; H1 (sample mean = 58,060.49; CI = [56,236.47 ; 59,933.75]); normal test is passed.
0 a 53,143.27 51,638.36 54,958.73 3.80 1 0 0.00 1.00 1 0.00 0
0 b 51,535.10 49,578.76 53,632.41 4.59 1 0 0.00 1.00 1 0.00 1
0 c 51,213.10 49,277.47 53,342.58 4.83 1 0 0.00 1.00 1 0.00 0
0 d 54,160.33 52,475.18 55,954.37 2.95 1 0 0.00 1.00 1 0.01 0

0.5 a 54,491.72 52,769.12 56,226.62 2.70 1 0 0.00 1.00 1 0.01 0
0.5 b 53,875.38 52,275.92 55,500.08 3.28 1 0 0.00 1.00 1 0.00 0
0.5 c 52,816.64 51,247.53 54,407.37 4.13 1 0 0.00 1.00 1 0.00 0
0.5 d 53,929.55 52,248.13 55,576.51 3.19 1 0 0.00 1.00 1 0.00 0

1 a 54,732.18 53,271.92 56,242.39 2.69 1 0 0.00 1.00 1 0.01 0
1 b 54,825.50 53,322.65 56,397.54 2.59 1 0 0.01 0.99 1 0.01 0
1 c 54,274.57 52,741.28 55,900.43 2.99 1 0 0.00 1.00 1 0.00 0
1 d 52,163.76 50,605.74 53,756.90 4.67 1 0 0.00 1.00 1 0.00 0

Remark β coding: ‘a’ for β = 0.01, ‘b’ for β = 0.1, ‘c’ for β = 1, and ‘d’ for β = 10

Table 4.6: Significance tests: Residual Gradient

treatment sample BCa interval test reject H0 p value Rank sum Normal
β mean LCI UCI stat. Ha+ Ha− Ha+ Ha− H∗ p val.

Period 1-12; H1 (sample mean = 27,789.58; CI = [27,155.83 ; 28,341.06]); normal test is passed.
0.01 33,994.76 32,895.20 36,981.22 -6.77 0 1 1.00 0.00 1 0.00 1
0.1 33,755.77 32,819.06 35,101.80 -9.17 0 1 1.00 0.00 1 0.00 1
1 34,940.99 33,154.22 38,113.58 -5.80 0 1 1.00 0.00 1 0.00 1
10 34,014.70 32,729.09 36,150.75 -6.98 0 1 1.00 0.00 1 0.00 1

Period 13-60; H1 (sample mean = 58,060.49; CI = [56,171.34 ; 60,031.17]); normal test is passed.
0.01 55,587.89 53,615.89 57,903.67 1.69 1 0 0.05 0.95 1 0.06 0
0.1 54,700.96 52,900.14 57,335.16 2.27 1 0 0.01 0.99 1 0.01 0
1 57,498.39 54,208.76 64,295.62 0.22 0 0 0.41 0.59 1 0.03 1
10 56,820.45 54,100.01 66,549.99 0.48 0 0 0.31 0.69 1 0.02 1

the 95% confidence interval are shown in column LCI and UCI. T-test statistics are shown in a

column labeled “test stat”. One-sided test results are shown in columns Ha+ and Ha− , under the

label “reject H0”. An entry of 1 means H0 can be rejected in favor of an alternative hypothesis.

An entry of 0 means H0 cannot be rejected. The rejection is at a significance level of 0.05. An

entry of 1 in the null hypothesis H0 column indicates that two means of aggregate cost show no

significant differences. An entry of 1 in the alternative hypothesis Ha+ column indicates that the

mean of the control, H1, is significantly higher than the mean of the treatment. An entry of 1 in

88

Table 4.7: Significance tests: Direct Credit Back

treatment sample BCa interval test reject H0 p value Rank sum Normal
Ncb λ β mean LCI UCI stat. Ha+Ha− Ha+ Ha− H∗ p val.

Period 1-12; H1 (sample mean = 27,789.58; CI = [27,147.57 ; 28,320.51]); normal test is passed.
0 a 33,994.76 32,851.90 36,868.85 -6.77 0 1 1.00 0.00 1 0.00 1
0 b 33,755.77 32,821.09 35,168.64 -9.17 0 1 1.00 0.00 1 0.00 1
0 c 34,940.99 33,143.84 38,177.51 -5.80 0 1 1.00 0.00 1 0.00 1
0 d 34,014.70 32,724.35 36,180.87 -6.98 0 1 1.00 0.00 1 0.00 1
1 0.5 a 34,662.19 33,520.75 36,967.37 -7.87 0 1 1.00 0.00 1 0.00 1
1 0.5 b 34,638.65 33,313.37 37,220.83 -7.07 0 1 1.00 0.00 1 0.00 1
1 0.5 c 34,445.41 33,327.88 36,211.47 -8.60 0 1 1.00 0.00 1 0.00 1
1 0.5 d 36,779.08 35,588.14 38,554.10 -11.39 0 1 1.00 0.00 1 0.00 1
1 1 a 35,042.44 33,230.72 38,908.59 -5.51 0 1 1.00 0.00 1 0.00 1
1 1 b 34,772.67 33,750.64 37,022.29 -8.52 0 1 1.00 0.00 1 0.00 1
1 1 c 33,251.07 32,112.88 35,115.79 -6.94 0 1 1.00 0.00 1 0.00 1
1 1 d 36,206.79 35,165.39 37,568.92 -12.21 0 1 1.00 0.00 1 0.00 1

10 0.5 a 34,696.94 33,273.57 37,823.74 -6.43 0 1 1.00 0.00 1 0.00 1
10 0.5 b 34,401.69 33,285.30 36,216.70 -8.44 0 1 1.00 0.00 1 0.00 1
10 0.5 c 35,840.59 33,902.85 38,789.38 -6.35 0 1 1.00 0.00 1 0.00 1
10 0.5 d 37,007.59 36,096.72 38,111.27 -15.42 0 1 1.00 0.00 1 0.00 0
10 1 a 33,894.88 32,782.27 35,665.88 -7.83 0 1 1.00 0.00 1 0.00 1
10 1 b 33,297.36 32,327.45 34,693.63 -8.18 0 1 1.00 0.00 1 0.00 0
10 1 c 37,686.39 36,203.34 40,871.63 -8.83 0 1 1.00 0.00 1 0.00 1
10 1 d 36,607.43 35,696.05 37,663.84 -14.89 0 1 1.00 0.00 1 0.00 1

100 0.5 a 33,674.03 32,610.34 36,218.58 -6.84 0 1 1.00 0.00 1 0.00 1
100 0.5 b 34,173.42 33,048.01 35,615.84 -8.99 0 1 1.00 0.00 1 0.00 1
100 0.5 c 34,983.94 33,703.25 36,757.53 -8.62 0 1 1.00 0.00 1 0.00 1
100 0.5 d 36,284.28 35,192.89 37,609.53 -12.33 0 1 1.00 0.00 1 0.00 1
100 1 a 33,911.69 32,805.75 35,813.93 -7.78 0 1 1.00 0.00 1 0.00 1
100 1 b 35,397.40 33,960.78 37,679.13 -7.75 0 1 1.00 0.00 1 0.00 1
100 1 c 37,057.67 35,818.47 39,131.61 -10.71 0 1 1.00 0.00 1 0.00 1
100 1 d 35,880.47 34,876.03 37,194.22 -12.08 0 1 1.00 0.00 1 0.00 1

Period 13-60; H1 (sample mean = 58,060.49; CI = [56,242.83 ; 59,941.70]); normal test is passed.
0 a 55,587.89 53,650.13 57,926.67 1.69 1 0 0.05 0.95 1 0.06 0
0 b 54,700.96 52,914.53 57,267.32 2.27 1 0 0.01 0.99 1 0.01 0
0 c 57,498.39 54,248.41 64,125.98 0.22 0 0 0.41 0.59 1 0.03 1
0 d 56,820.45 54,063.00 66,043.75 0.48 0 0 0.31 0.69 1 0.02 1
1 0.5 a 55,779.59 53,454.00 58,997.83 1.35 0 0 0.09 0.91 1 0.02 1
1 0.5 b 55,659.78 53,584.87 60,991.67 1.27 0 0 0.10 0.90 1 0.01 1
1 0.5 c 56,138.67 54,130.99 60,493.63 1.09 0 0 0.14 0.86 1 0.05 1
1 0.5 d 54,252.52 52,664.92 55,805.66 3.02 1 0 0.00 1.00 1 0.00 0
1 1 a 56,821.23 54,146.38 62,302.00 0.58 0 0 0.28 0.72 1 0.09 1
1 1 b 55,233.58 53,419.52 57,643.19 1.99 1 0 0.02 0.98 1 0.02 0
1 1 c 55,931.36 54,199.29 57,808.99 1.59 0 0 0.06 0.94 0 0.13 0
1 1 d 54,060.46 52,591.25 55,729.11 3.15 1 0 0.00 1.00 1 0.00 0

10 0.5 a 55,946.79 53,896.58 60,175.03 1.20 0 0 0.12 0.88 1 0.03 1
10 0.5 b 56,797.08 54,976.69 59,566.73 0.85 0 0 0.20 0.80 0 0.17 1
10 0.5 c 58,607.22 56,068.21 62,165.90 -0.30 0 0 0.62 0.38 0 0.55 1
10 0.5 d 53,940.14 52,493.96 55,498.34 3.31 1 0 0.00 1.00 1 0.00 0
10 1 a 57,187.90 55,460.16 59,407.31 0.63 0 0 0.27 0.73 0 0.40 0
10 1 b 55,924.30 54,215.39 57,709.85 1.62 0 0 0.05 0.95 0 0.14 0
10 1 c 53,724.07 52,186.04 55,231.45 3.48 1 0 0.00 1.00 1 0.00 0
10 1 d 53,083.35 51,619.26 54,660.67 3.97 1 0 0.00 1.00 1 0.00 0

100 0.5 a 54,580.73 52,678.24 58,340.47 2.11 1 0 0.02 0.98 1 0.00 1
100 0.5 b 55,498.03 53,617.82 57,578.78 1.81 1 0 0.04 0.96 1 0.06 0
100 0.5 c 56,478.41 54,494.86 59,105.59 1.03 0 0 0.15 0.85 0 0.13 0
100 0.5 d 54,142.44 52,639.18 55,756.76 3.13 1 0 0.00 1.00 1 0.00 0
100 1 a 56,404.90 54,379.51 59,137.07 1.08 0 0 0.14 0.86 0 0.14 0
100 1 b 58,472.02 56,148.53 61,744.61 -0.24 0 0 0.60 0.40 0 0.56 1
100 1 c 52,944.13 51,432.91 54,518.54 4.07 1 0 0.00 1.00 1 0.00 0
100 1 d 52,686.71 51,084.22 54,386.88 4.16 1 0 0.00 1.00 1 0.00 0
β coding: ‘a’ for β = 0.01, ‘b’ for β = 0.1, ‘c’ for β = 1, and ‘d’ for β = 10

89

the alternative hypothesis Ha− column indicates that the mean of the control is significantly lower

than the mean of the treatment. The two columns under label “p value” show the p values of the

test, given the alternative hypothesis Ha+ and Ha− . The two-sided Wilcoxon Rank Sum test results

with corresponding p values are shown in columns “H∗” and “p val” located under the label “Rank

sum”. The Wilcoxon Rank Sum test is calculated at a 0.10 significance level. Similarly, an entry

of 1 in column H∗ indicates the median of the control is significantly different than the median of

the treatment. An entry of 0 indicates that the medians are not significantly different. Normality

of the data is tested at a 0.05 significance level with both χ2 goodness-of-fit and Lilliefors tests.

The normality test result is shown as 1 if either the χ2 goodness-of-fit or Lilliefors test can reject

a normality hypothesis. Otherwise it is shown as 0. The section heading indicates an aggregate

interval, a method used as the control, the control’s sample mean, confidence interval in parentheses

and normality test result.

In addition to the significance tests between the control and treatments, cross comparisons of

significance test results of various treatments are provided in Table 4.8, Table 4.9, Table 4.10, Table

4.11 and Table 4.12 for Look-Ahead, Sarsa, Sarsa(λ), Residual Gradient and Direct Credit Back

data, respectively.

Table 4.8: Cross significance tests: Look-Ahead

treatment sample mean H1 H2 H3 H4 H5
Period 1-12

H1 27,789.58 0 0 0 0 0
H2 27,858.82 0 0 0 -1 0
H3 27,363.45 0 0 0 0 0
H4 27,032.24 0 1 0 0 0
H5 27,350.67 0 0 0 0 0

Period 13-60
H1 58,060.49 0 0 0 -1 -1
H2 57,182.68 0 0 0 0 -1
H3 56,605.75 0 0 0 0 -1
H4 55,562.06 1 0 0 0 0
H5 54,266.68 1 1 1 0 0

The details of test statistics are omitted in these tables, showing test conclusions only. An entry

of ‘0’ means that average aggregate costs of row and column treatments are not significantly different.

An entry of ‘1’ means that an average aggregate cost of a row treatment is significantly lower than

an average aggregate cost of a column treatment. An entry of ‘-1’ means that average aggregate cost

of a row treatment is significantly higher than an average aggregate cost of a column treatment.

90

Table 4.9: Cross significance tests: Sarsa

treatment sample mean β=0.01 β=0.1 β=1 β=10
Period 1-12

β=0.01 35,407.23 0 0 0 0
β=0.1 34,632.42 0 0 0 0
β=1 35,542.00 0 0 0 0
β=10 34,981.11 0 0 0 0

Period 13-60
β=0.01 53,143.27 0 0 0 0
β=0.1 51,535.10 0 0 0 1
β=1 51,213.10 0 0 0 1
β=10 54,160.33 0 -1 -1 0

Table 4.10: Cross significance tests: Sarsa(λ)

treatment sample λ = 0 λ = 0.5 λ = 1
λ β mean a b c d a b c d a b c d

Period 1-12
0 0.01 35,407.23 0 0 0 0 0 0 0 0 0 0 0 0
0 0.1 34,632.42 0 0 0 0 0 1 0 0 0 1 1 1
0 1 35,542.00 0 0 0 0 0 0 0 0 0 0 0 0
0 10 34,981.11 0 0 0 0 0 1 0 0 0 0 0 1
0.5 0.01 35,063.91 0 0 0 0 0 1 0 0 0 0 0 1
0.5 0.1 36,297.45 0 -1 0 -1 -1 0 -1 -1 -1 0 0 0
0.5 1 34,948.13 0 0 0 0 0 1 0 0 0 0 0 1
0.5 10 35,006.06 0 0 0 0 0 1 0 0 0 0 0 1
1 0.01 34,964.63 0 0 0 0 0 1 0 0 0 1 1 1
1 0.1 35,913.01 0 -1 0 0 0 0 0 0 -1 0 0 0
1 1 35,936.48 0 -1 0 0 0 0 0 0 -1 0 0 0
1 10 36,247.73 0 -1 0 -1 -1 0 -1 -1 -1 0 0 0

Period 13-60
0 0.01 53,143.27 0 0 0 0 0 0 0 0 0 0 0 0
0 0.1 51,535.10 0 0 0 1 1 0 0 1 1 1 1 0
0 1 51,213.10 0 0 0 1 1 1 0 1 1 1 1 0
0 10 54,160.33 0 -1 -1 0 0 0 0 0 0 0 0 0
0.5 0.01 54,491.72 0 -1 -1 0 0 0 0 0 0 0 0 -1
0.5 0.1 53,875.38 0 0 -1 0 0 0 0 0 0 0 0 0
0.5 1 52,816.64 0 0 0 0 0 0 0 0 1 1 0 0
0.5 10 53,929.55 0 -1 -1 0 0 0 0 0 0 0 0 0
1 0.01 54,732.18 0 -1 -1 0 0 0 -1 0 0 0 0 -1
1 0.1 54,825.50 0 -1 -1 0 0 0 -1 0 0 0 0 -1
1 1 54,274.57 0 -1 -1 0 0 0 0 0 0 0 0 -1
1 10 52,163.76 0 0 0 0 1 0 0 0 1 1 1 0

Table 4.11: Cross significance tests: Residual Gradient

treatment sample mean β=0.01 β=0.1 β=1 β=10
Period 1-12

β=0.01 33,994.76 0 0 0 0
β=0.1 33,755.77 0 0 0 0
β=1 34,940.99 0 0 0 0
β=10 34,014.70 0 0 0 0

Period 13-60
β=0.01 55,587.89 0 0 0 0
β=0.1 54,700.96 0 0 0 0
β=1 57,498.39 0 0 0 0
β=10 56,820.45 0 0 0 0

91

Table 4.12: Cross significance tests: Direct Credit Back

Ncb = 0 Ncb = 1 Ncb = 10 Ncb = 100
sample λ = 0.5 λ = 1 λ = 0.5 λ = 1 λ = 0.5 λ = 1
mean a b c d a b c d a b c d a b c d a b c d a b c d a b c d

Period 1-12
0a 33,994.76 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1
0b 33,755.77 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1
0c 34,940.99 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1
0d 34,014.70 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1
Aa 34,662.19 0 0 0 0 0 0 0 1 0 0 -1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1
Ab 34,638.65 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1
Ac 34,445.41 0 0 0 0 0 0 0 1 0 0 -1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1
Ad 36,779.08 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1 0 -1 -1 0 0 -1 -1 -1 0 -1 -1 0 0
Ba 35,042.44 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1
Bb 34,772.67 0 0 0 0 0 0 0 1 0 0 -1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1
Bc 33,251.07 0 0 0 0 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 1 1 1
Bd 36,206.79 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1 1 -1 -1 0 0 -1 -1 -1 0 -1 -1 0 0
Ca 34,696.94 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1
Cb 34,401.69 0 0 0 0 0 0 0 1 0 0 -1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1
Cc 35,840.59 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1
Cd 37,007.59 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 0 0 -1 -1 -1 0 -1 -1 0 -1
Da 33,894.88 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 1
Db 33,297.36 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 1
Dc 37,686.39 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1 0 -1 -1 0 0 -1 -1 -1 0 -1 -1 0 0
Dd 36,607.43 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1 0 -1 -1 0 0 -1 -1 -1 0 -1 -1 0 0
Ea 33,674.03 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 1
Eb 34,173.42 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1
Ec 34,983.94 0 0 0 0 0 0 0 1 0 0 -1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1
Ed 36,284.28 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1 0 -1 -1 0 0 -1 -1 -1 0 -1 -1 0 0
Fa 33,911.69 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1
Fb 35,397.40 0 0 0 0 0 0 0 1 0 0 -1 1 0 0 0 1 -1 -1 1 1 -1 0 0 1 0 0 1 0
Fc 37,057.67 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1 0 -1 -1 0 0 -1 -1 -1 0 -1 -1 0 0
Fd 35,880.47 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1 1 -1 -1 0 0 -1 -1 -1 0 -1 0 0 0

Period 13-60
0a 55,587.89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 -1 -1
0b 54,700.96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0
0c 57,498.39 0
0d 56,820.45 0 -1 -1
Aa 55,779.59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0
Ab 55,659.78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0
Ac 56,138.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 -1 -1
Ad 54,252.52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0
Ba 56,821.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 -1 -1
Bb 55,233.58 0 1 -1 -1
Bc 55,931.36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 -1 -1
Bd 54,060.46 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 1 0 0
Ca 55,946.79 0 -1 -1
Cb 56,797.08 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 0 0 -1 -1 -1 0 0 -1 0 0 -1 -1
Cc 58,607.22 0 -1 0 0 -1 -1 0 -1 0 0 0 -1 0 0 0 -1 0 0 -1 -1 -1 0 0 -1 0 0 -1 -1
Cd 53,940.14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 0 0
Da 57,187.90 0 -1 0 0 -1 -1 0 -1 0 0 0 -1 0 0 0 -1 0 0 -1 -1 -1 0 0 -1 0 0 -1 -1
Db 55,924.30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 -1 -1 0 0 0 0 0 0 -1 -1
Dc 53,724.07 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 0 0
Dd 53,083.35 1 0 0 0 0 0 1 0 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0
Ea 54,580.73 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0
Eb 55,498.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 -1 -1
Ec 56,478.41 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 0 0 -1 -1 0 0 0 0 0 0 -1 -1
Ed 54,142.44 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0
Fa 56,404.90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 -1 -1 0 0 0 0 0 0 -1 -1
Fb 58,472.02 0 -1 0 0 -1 -1 0 -1 0 -1 0 -1 0 0 0 -1 0 0 -1 -1 -1 0 0 -1 0 0 -1 -1
Fc 52,944.13 1 0 0 1 0 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0
Fd 52,686.71 1 0 0 1 0 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0
treatment coding ‘Xx’: the first letter encodes Direct Credit Back parameters and the second encodes a learning rate.
First letter ‘0’: Ncb = 0; ‘A’: Ncb = 1, λ = 0.5; ‘B’: Ncb = 1, λ = 1
‘C’: Ncb = 10, λ = 0.5; ‘D’: Ncb = 10, λ = 1; ‘E’: Ncb = 100, λ = 0.5; ‘F’: Ncb = 100, λ = 1
Second letter ‘a’ for β = 0.01, ‘b’ for β = 0.1, ‘c’ for β = 1, and ‘d’ for β = 10
Remark: in Period 13-60, the significance tests show that the result of treatment 0c is not significantly different from
the treaments Fc and Fd and the treatment 0d has significantly higher costs than the treaments Fc and Fd, while the
treatment 0d’s sample mean is lower than the treatment 0c. This is because both data are skewed and fail normality
tests. Therefore, the conclusions are drawn from Wilcoxson Ranksum tests that do not use sample means.

92

Plots of sample means and BCa confidence intervals are provided in Figures 4.1, 4.2, 4.3, 4.4

and 4.5 respectively. To avoid cluttering in the plots, Direct Credit Back parameters (Ncb and λ)

are labeled with two-letter codes. The first letter indicates the direct credit back setting: ‘0’ means

Ncb = 0; ‘A’ means Ncb = 1, λ = 0.5; ‘B’ means Ncb = 1, λ = 1; ‘C’ means Ncb = 10, λ = 0.5; ‘D’

means Ncb = 10, λ = 1; ‘E’ means Ncb = 100, λ = 0.5; ‘F’ means Ncb = 100, λ = 1. The second

letter indicates a learning rate: ‘a’ means β = 0.01; ‘b’ means β = 0.1; ‘c’ means β = 1; and ‘d’

means β = 10.

1 2 3 4 5

2.65

2.7

2.75

2.8

2.85

x 10
4 Period 1−12

H

co
st

1 2 3 4 5
5.2

5.4

5.6

5.8

6

x 10
4 Period 13−60

H

co
st

Figure 4.1: Average aggregate costs obtained from Look-Ahead on L0

0.01 0.1 1 10

3.4

3.5

3.6

x 10
4 Period 1−12

β

co
st

0.01 0.1 1 10

5

5.2

5.4

5.6

x 10
4 Period 13−60

β

co
st

Figure 4.2: Average aggregate costs obtained from Sarsa on L0

93

0a 0b 0c 0d 0.5a 0.5b 0.5c 0.5d 1a 1b 1c 1d

3.4

3.5

3.6

3.7

x 10
4 Period 1−12

co
st

0a 0b 0c 0d 0.5a 0.5b 0.5c 0.5d 1a 1b 1c 1d

5

5.2

5.4

5.6

x 10
4 Period 13−60

co
st

Figure 4.3: Average aggregate costs obtained from Sarsa(0), Sarsa(0.5), and Sarsa(1) on L0

0.01 0.1 1 10

3.4

3.6

3.8

x 10
4 Period 1−12

β

co
st

0.01 0.1 1 10

5.5

6

6.5

x 10
4 Period 13−60

β

co
st

Figure 4.4: Average aggregate costs obtained from Residual Gradient on L0

0a 0b 0c 0d Aa Ab Ac Ad Ba Bb Bc Bd Ca Cb Cc Cd Da Db Dc Dd Ea Eb Ec Ed Fa Fb Fc Fd

3.2

3.4

3.6

3.8

4

x 10
4 Period 1−12

co
st

0a 0b 0c 0d Aa Ab Ac Ad Ba Bb Bc Bd Ca Cb Cc Cd Da Db Dc Dd Ea Eb Ec Ed Fa Fb Fc Fd
5

5.5

6

6.5

x 10
4 Period 13−60

co
st

Figure 4.5: Average aggregate costs obtained from Direct Credit Back on L0

94

Comparison of Look-Ahead, Sarsa and Residual Gradient methods: Table 4.13 shows a

cross comparison of Look-Ahead, Sarsa and Residual Gradient data.

Table 4.13: Cross comparison of different methods

sample Look-Ahead Sarsa Residual Gradient Direct Credit Back
mean H1 H2 H3 H4 H5 Sa Sb Sc Sd Ra Rb Rc Rd Ca Cb Cc Cd

Period 1-12
H1 27,789.58 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
H2 27,858.82 0 0 0 -1 0 1 1 1 1 1 1 1 1 1 1 1 1
H3 27,363.45 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
H4 27,032.24 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
H5 27,350.67 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
Sa 35,407.23 -1 -1 -1 -1 -1 0 0 0 0 -1 -1 -1 -1 -1 0 0 0
Sb 34,632.42 -1 -1 -1 -1 -1 0 0 0 0 -1 -1 1 -1 -1 0 1 0
Sc 35,542.00 -1 -1 -1 -1 -1 0 0 0 0 -1 -1 -1 -1 -1 0 0 0
Sd 34,981.11 -1 -1 -1 -1 -1 0 0 0 0 -1 -1 -1 -1 -1 0 0 0
Ra 33,994.76 -1 -1 -1 -1 -1 1 1 1 1 0 0 0 0 0 0 1 1
Rb 33,755.77 -1 -1 -1 -1 -1 1 1 1 1 0 0 0 0 0 0 1 1
Rc 34,940.99 -1 -1 -1 -1 -1 1 -1 1 1 0 0 0 0 0 0 1 1
Rd 34,014.70 -1 -1 -1 -1 -1 1 1 1 1 0 0 0 0 0 0 1 1
Ca 33,911.69 -1 -1 -1 -1 -1 1 1 1 1 0 0 0 0 0 0 1 1
Cb 35,397.40 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 1 0
Cc 37,057.67 -1 -1 -1 -1 -1 0 -1 0 0 -1 -1 -1 -1 -1 -1 0 0
Cd 35,880.47 -1 -1 -1 -1 -1 0 0 0 0 -1 -1 -1 -1 -1 0 0 0

Period 13-60
H1 58,060.49 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1
H2 57,182.68 0 0 0 0 -1 -1 -1 -1 -1 0 -1 1 -1 0 0 -1 -1
H3 56,605.75 0 0 0 0 -1 -1 -1 -1 -1 0 0 0 0 0 0 -1 -1
H4 55,562.06 1 0 0 0 0 -1 -1 -1 0 0 0 0 0 0 0 -1 -1
H5 54,266.68 1 1 1 0 0 0 -1 -1 0 0 0 0 0 0 1 0 0
Sa 53,143.27 1 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0
Sb 51,535.10 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0
Sc 51,213.10 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0
Sd 54,160.33 1 1 1 0 0 0 -1 -1 0 0 0 0 0 0 1 0 0
Ra 55,587.89 1 0 0 0 0 -1 -1 -1 0 0 0 0 0 0 0 -1 -1
Rb 54,700.96 1 1 0 0 0 0 -1 -1 0 0 0 0 0 0 1 0 0
Rc 57,498.39 1 -1 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0
Rd 56,820.45 1 1 0 0 0 0 -1 -1 0 0 0 0 0 0 0 -1 -1
Ca 56,404.90 0 0 0 0 0 -1 -1 -1 0 0 0 0 0 0 0 -1 -1
Cb 58,472.02 0 0 0 0 -1 -1 -1 -1 -1 0 -1 0 0 0 0 -1 -1
Cc 52,944.13 1 1 1 1 0 0 0 0 0 1 0 0 1 1 1 0 0
Cd 52,686.71 1 1 1 1 0 0 0 0 0 1 0 0 1 1 1 0 0
Remark
‘H’: Look-Ahead, ‘S’: Sarsa, ‘R’: Residual Gradient, and ‘C’: Direct Credit Back (Ncb = 100, λ = 1)
‘a’ for β = 0.01, ‘b’ for β = 0.1, ‘c’ for β = 1, and ‘d’ for β = 10

Look-Ahead is labeled ‘H’ with the following number indicating the number of period(s) looking

ahead. The Sarsa and Residual Gradient methods are labeled ‘S’ and ‘RG’ with the following lower-

case letter indicating a learning rate: ‘a’ means β = 0.01; ‘b’ means β = 0.1; ‘c’ means β = 1; and

‘d’ means β = 10. Figure 4.6 shows averages and confidence intervals of the Look-Ahead, Sarsa and

Residual Gradient data.

4.5 Discussions: a zero leadtime problem

Experimental results show that Sarsa is an effective method to control a zero leadtime inventory

problem compared to other methods. As expected, using a Look-Ahead method with a longer look-

95

H1 H2 H3 H4 H5 Sa Sb Sc Sd Ra Rb Rc Rd Ca Cb Cc Cd

3

3.5

4
x 10

4

co
st

H1 H2 H3 H4 H5 Sa Sb Sc Sd Ra Rb Rc Rd Ca Cb Cc Cd

5

5.5

6

6.5

x 10
4

co
st

Figure 4.6: Average aggregate costs obtained from different methods on L0

ahead horizon results in lower aggregate costs than using it with a shorter horizon. However, the

pairwise differences of aggregate costs of using one, two and three periods are not significant. Sarsa

performs significantly better than a one-period Look-Ahead method in the later 48 periods. Learning

rates of 0.1 and 1 produce lower aggregate costs than learning rates of 0.01 and 10. The significance

test confirms that using Sarsa with learning rates of 0.1 and 1 results in better performance than using

Sarsa with a learning rate of 10. Using an eligibility trace technique yields no improvement compared

to Sarsa. On the other hand, Sarsa (λ = 0) yields lower aggregate costs than Sarsa(λ > 0). The

explanation for this behavior may lie in the nature of this problem, where a period cost is immediately

observed, and the final outcome of an inventory problem is a summation of all period costs. Tesauro

[116] successfully applied an eligibility trace technique to a backgammon game, but this situation is

different from an inventory problem. While the final outcome of a zero leadtime inventory problem

is a combination of all period costs, where each is observed instantly after taking an action, the final

outcome of a Backgammon game is not known until the end. Therefore, bootstrapping a learning

process with eligibility trace that improves learning speed in a delayed-reward problem such as

Backgammon may not be suitable for a fast-return problem such as a zero leadtime inventory

problem. In addition, Sutton and Barto [114] suggested that an eligibility trace technique should be

96

applied only to problems with long delayed reward and recommended TD(0) for problems with fast

return.

The effect of eligibility trace on ADP performance is nevertheless worth further investigation.

Sarsa, Sarsa(0.5) and Sarsa(1), each with two best performing parameters, are investigated further

as shown in Figure 4.7.

12 24 36 48 60
1

1.5

2

2.5

3

3.5

4
x 10

4

t

co
st

average aggregated cost

0b
0c
5b
5c
Fc
Fd

0b 0c 5b 5c Fc Fd
7

7.5

8

8.5

9

9.5

10

10.5

11
x 10

4 statistics of total costs

co
st

0 2000 4000 6000 8000 10000 12000 14000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cost

cd
f

empirical cdf of single costs

0b
0c
5b
5c
Fc
Fd

2000 3000 4000 5000 6000 7000 8000

0.75

0.8

0.85

0.9

0.95

1

cost

cd
f

empirical cdf of single costs

0b
0c
5b
5c
Fc
Fd

Figure 4.7: Results of Sarsa and Sarsa(λ); L0

Labels 0b, 0c, 5b, 5c, Fc and Fd represent Sarsa with β = 0.1, Sarsa with β = 1, Sarsa(0.5) with

β = 0.1, Sarsa(0.5) with β = 1, Sarsa(1) with β = 1 and Sarsa(1) with β = 10, respectively. The

upper left plot of Figure 4.7 shows 12-period aggregate costs. On this plot, the x axis tick marks

indicate the last period of each 12-period aggregation. Sarsa with β of 0.1 and 1 deliver the lowest

average aggregate costs in most aggregate periods, except Period 25-36. These results confirm the

earlier conclusion that eligibility trace is not suitable for this type of problem. The upper right plot

displays minimum, 1st Quartile, median, 3rd Quartile, and maximum of period costs with labels

‘+’, ‘.’, ‘*’, ‘.’ and ‘+’ respectively. The average period costs are displayed in solid lines.

These statistics show that although Sarsa’s mean and median period costs are lower than values

of Sarsa(0.5) and Sarsa(1), the maximum period costs of Sarsa(0.5) and Sarsa(1) are lower than

that of Sarsa. Since the maximum period cost implies the worst-case performance, this result may

indicate that an eligibility trace may improve the worst-case performance of Sarsa. To examine this

characteristic, CDF plots are also provided in figure 4.7. The left and right lower plots show an

97

empirical CDF3 of period costs. The lower left plot displays the CDF for the complete range of

period costs. The lower right plot displays the CDF for a selected range of period costs. These plots

show that at high period costs the CDF values of Sarsa(λ > 0) are higher than Sarsa. Since the

greater CDF value at a greater period cost implies a better worst-case performance of Sarsa(λ > 0),

this may imply that Sarsa(λ > 0) improves the worst-case performance of Sarsa.

To investigate the relation of an eligibility factor λ to inventory control performance Figure 4.8

shows plots of an average on-site inventory level, an average period cost and a maximum period cost

versus an eligibility factor.

0 0.5 1.0

40

45

50

55

60

65

70

75

60 periods; mean

x

λ
0 0.5 1.0

1445

1450

1455

1460

1465

1470

1475

60 periods; mean

si
ng

le
 c

os
t

λ
0 0.5 1.0

1.22

1.23

1.24

1.25

1.26

1.27

1.28

1.29

x 10
4 60 periods; max

si
ng

le
 c

os
t

λ

0 0.5 1.0
35

40

45

50

55

60

65

70

75

80

85

later 48 periods; mean

x

λ
0 0.5 1.0

1065

1070

1075

1080

1085

1090

1095

1100

later 48 periods; mean

si
ng

le
 c

os
t

λ
0 0.5 1.0

7000

7500

8000

8500

9000

9500

10000

10500

11000

11500

later 48 periods; max

si
ng

le
 c

os
t

λ

Figure 4.8: Inventory and period costs of Sarsa and Sarsa(λ); L0

The plots are drawn with the best performing learning rates (Sarsa with β of 1, Sarsa(0.5) with

β of 1 and Sarsa(1) with β of 10). The upper plots show performance over 60 periods, and the

lower plots show performance of the later 48 periods. Although average period costs may seem to

be non-monotonic in the later 48 periods, with Sarsa showing the lowest average period costs, the

upward trend of the average inventory levels and downward trend of the maximum period costs are

apparent and may imply conservative behavior of Sarsa(λ). This conservative behavior is a result

of a higher eligibility factor and a higher inventory level.

In addition to Sarsa and its extension Sarsa(λ), the Direct Credit Back equation was developed

to improve Residual Gradient performance. Residual Gradient methods with learning rates of 0.01

3 These CDF values are obtained from MATLAB’s ecdf function, Revision 1.3.6.7, that uses a Kaplan-Meier
estimate, as discussed in Kaplan and Meier [67].

98

and 0.1 show significantly better performance than a one-period Look-Ahead method in the later

48 periods. Using a Direct Credit Back method with the full credit back setting (Ncb = 100 and

λ = 1) results in lower aggregate costs than the Residual Gradient method alone. Table 4.12 and

Figure 4.5 show experimental results when using Residual Gradient (labeled 0a, 0b, 0c and 0d) and

Direct Credit Back (labeled AA to Fd). Table 4.12 suggests that full Direct Credit Back improved

Residual Gradient performance, but significance tests could not confirm the difference.

Comparison between Sarsa and Residual Gradient: As might be expected, Table 4.13 and

Figure 4.6 show that the performance of a Look-Ahead method is better than that of the learning-

based methods in the first 12 periods. This is because the learning-based methods require initial

time to learn the process. In the later 48 periods, Sarsa, with learning rates of 0.1 and 1.0, performs

significantly better than the Look-Ahead and Residual gradient methods. The full Direct Credit

Back methods with learning rates of 1 and 10 improve Residual Gradient performance, as indicated in

lower aggregate costs. The performances of the full Direct Credit Back methods are not significantly

different from the performances of Sarsa.

4.6 Experiments: one-period leadtime problem

This section addresses the application of Sarsa, Sarsa(λ), Residual Gradient, Direct Credit Back,

an (s,S) policy and a Roll-out method to an inventory problem with a one-period leadtime. Having

a non-zero leadtime requires the inclusion of in-transit inventory. The state st is three-dimensional

and is composed of previous demand Dt−1, on-site inventory level xt and in-transit inventory B
(t)
1 ∈

{0, 1, 2, ...}. A replenishment leadtime is set to one, L = 1 with other problem settings as mentioned

in Section 4.3.

Look-Ahead: The Look-Ahead experiment is based on an average projection, using one to five

future periods.

(s,S) policy: An (s,S) inventory management policy is based on a decision rule of a reordering

point s and an order-up-to-level S. Section 2.1.2 discussed the (s,S) policy in detail.

The (s,S) policy investigated here has its parameters re-determined in each period after new

demand is observed. Both a reordering level s and an order-up-to-level S are initially set to 50,

which is also the initial value of previous demand. This is equivalent to a decision to fill an inventory

level up to 50 units. This set up provides initial values for both parameters. The parameters s and S

are revised each period using the Economic Order Quantity model (EOQ). The EOQ model requires

99

a demand rate, so for simplicity, the most recently observed demand will be treated as a demand

rate in unit(s) per period. Therefore, after demand is observed for each period, a reordering level s

is re-determined by Equations 2.3 and 2.4 and an order-upto-level S is re-determined by Equation

2.2. The factor Z and standard deviation σ in Equation 2.4 are set to 3 and
√

2, respectively. The

inclusive inventory Y , which is a combination of both on-site and in-transit inventories, is used as

the inventory level to determine a replenishment order.

Although the EOQ model may be somewhat inaccurate in determining (s,S) parameters, it may

be used as a base policy in the Rollout method. Despite simple application of EOQ to a stochastic

case, the EOQ model is easy to implement and it does not require much computation. This makes

an EOQ-parameterized (s,S) policy suitable for using as a base policy of the Rollout method.

Sarsa: Sarsa is used with RBF as its state-action cost approximation. A structure of RBF has

centers at each combination of {0, 10, 20, ..., 60} × {-30, -20, -10, ..., 60} × {0, 10, 20, ..., 60}
× {0, 10, 20, ..., 150}, corresponding to four state-action variables (previous demand Dt−1, on-site

inventory level xt, in-transit inventory B
(t)
1 and after-replenishment on-site inventory level yt). All

RBF scales are 0.0139. Learning rates are 0.01, 0.1, 1, and 10.

Sarsa(λ): Eligibility factors of 0.5 and 1 are investigated. Since Sarsa (without eligibility trace)

is equivalent to Sarsa with an eligibility factor of 0, experimental results of Sarsa will be labeled as

Sarsa(0). Other parameters are set as in the above Sarsa experiments.

Residual Gradient: Residual Gradient with learning rates of 0.01, 0.1, 1 and 10 are investigated

with RBF being used as a state-action cost approximation function. RBF parameters are set as in

the above Sarsa experiments.

Direct Credit Back: Direct Credit Back is used with the credit back horizon Ncb = 1, 10 and

100, and credit back weight λ = 0.5 and 1. Since Residual Gradient is equivalent to Direct Credit

Back with Ncb = 0, experimental results of Residual Gradient will be labeled as Ncb = 0. Other

parameters are set as in the Residual Gradient experiments.

Rollout: An EOQ-parameterized (s,S) policy is used as a base policy for Rollout because an EOQ-

parameterized (s,S) policy is easy to calculate. Since Rollout generally runs many simulations, an

easy computation of the Rollout base policy is favorable in term of time expended in the simula-

tion. The (s,S) parameters are initialized and redetermined as mentioned in the above (s,S) policy

experiments. The Rollout simulation horizon T of 12 periods is used. The numbers of simulations

N = 1, 10 and 100 are used.

100

4.7 Experimental results: one-period leadtime problem

As in the zero leadtime problem, conclusions are mainly based on significance tests and are

presented in the same way. Significance tests of the Look-Ahead and (s,S) policy approaches are

shown in Table 4.14. Since one-period Look-Ahead does not work well in the one-period-leadtime

problem, a two-period Look-Ahead method, H2, is used as the control in other tables. Tables 4.15,

4.16, 4.17, 4.18 and 4.19 show significance test results of Sarsa, Sarsa(λ), Residual Gradient, Direct

Credit Back and Rollout, respectively.

Table 4.14: Significance tests: Look-Ahead and (s,S) policies on one-period leadtime case

sample BCa interval test reject H0 p value Rank sum Normal
mean LCI UCI stat. Ha+ Ha− Ha+ Ha− H∗ p val.

Period 1-12; H1 (sample mean = 72,673.60; CI = [71,040.80 ; 74,291.60]; normal test is passed.
H1 72,673.60 71,086.77 74,360.00 0.00 0 0 0.50 0.50 0 1.00 0
H2 35,630.78 34,649.16 36,689.66 37.29 1 0 0.00 1.00 1 0.00 0
H3 34,762.85 33,965.52 35,625.46 39.90 1 0 0.00 1.00 1 0.00 0
H4 34,385.86 33,634.27 35,192.61 40.94 1 0 0.00 1.00 1 0.00 0
H5 34,645.59 33,872.19 35,460.49 40.51 1 0 0.00 1.00 1 0.00 0

(s,S) 61,463.21 60,836.22 62,045.12 12.48 1 0 0.00 1.00 1 0.00 0
Period 13-60; H1 (sample mean = 142,765.60; CI = [138,018.71 ; 147,670.80]; normal test is passed.

H1 142,765.60 138,058.14 147,677.97 0.00 0 0 0.50 0.50 0 1.00 0
H2 63,706.82 61,421.19 66,138.16 28.82 1 0 0.00 1.00 1 0.00 0
H3 59,672.99 57,620.37 61,777.54 30.99 1 0 0.00 1.00 1 0.00 0
H4 56,975.87 55,048.89 59,110.36 32.04 1 0 0.00 1.00 1 0.00 0
H5 55,407.55 53,636.86 57,137.10 33.30 1 0 0.00 1.00 1 0.00 0

(s,S) 39,153.62 36,976.74 41,336.25 38.27 1 0 0.00 1.00 1 0.00 1
Period 1-60; H1 (sample mean = 215,439.20 ; CI = [210,115.78 ; 221,150.82]; normal test is passed.

H1 215,439.20 210,162.22 220,968.06 0.00 0 0 0.50 0.50 0 1.00 0
H2 99,337.60 96,648.06 102,246.70 36.67 1 0 0.00 1.00 1 0.00 0
H3 94,435.84 92,123.61 96,992.73 39.11 1 0 0.00 1.00 1 0.00 0
H4 91,361.73 89,101.71 93,818.95 40.39 1 0 0.00 1.00 1 0.00 0
H5 90,053.13 88,116.54 92,264.27 41.55 1 0 0.00 1.00 1 0.00 0

(s,S) 100,616.83 98,272.78 103,166.20 37.14 1 0 0.00 1.00 1 0.00 1

Table 4.15: Significance tests: Sarsa on one-period leadtime case

sample BCa interval test reject H0 p value Rank sum Normal
β mean LCI UCI stat. Ha+ Ha− Ha+ Ha− H∗ p val.

Period 1-12; H2 (sample mean = 35,630.78; CI = [34,667.94 ; 36,673.67]; normal test is passed.
0.01 42,862.17 41,829.19 43,995.05 -9.46 0 1 1.00 0.00 1 0.00 0
0.1 42,886.75 41,844.51 44,049.53 -9.51 0 1 1.00 0.00 1 0.00 0
1 42,066.42 41,027.37 43,380.32 -8.06 0 1 1.00 0.00 1 0.00 1
10 43,000.04 42,092.51 44,131.26 -10.01 0 1 1.00 0.00 1 0.00 0

Period 13-60; H2 (sample mean = 63,706.82; CI = [61,457.47 ; 66,137.34]; normal test is passed.
0.01 53,199.16 51,766.05 54,584.75 7.46 1 0 0.00 1.00 1 0.00 0
0.1 52,213.12 50,562.59 53,937.92 7.72 1 0 0.00 1.00 1 0.00 0
1 51,757.42 50,150.16 53,557.94 8.06 1 0 0.00 1.00 1 0.00 0
10 53,691.24 52,058.63 55,366.00 6.77 1 0 0.00 1.00 1 0.00 0

101

Table 4.16: Significance tests: Sarsa(λ) on one-period leadtime case

sample BCa interval test reject H0 p value Rank sum Normal
λ β mean LCI UCI stat. Ha+ Ha− Ha+ Ha− H∗ p val.

Period 1-12; H2 (sample mean = 35,630.78; CI = [34,666.77 ; 36,710.18]; normal test is passed.
0 a 42,862.17 41,897.61 44,053.98 -9.46 0 1 1.00 0.00 1 0.00 0
0 b 42,886.75 41,852.66 44,012.81 -9.51 0 1 1.00 0.00 1 0.00 0
0 c 42,066.42 40,998.00 43,318.64 -8.06 0 1 1.00 0.00 1 0.00 1
0 d 43,000.04 42,106.61 44,132.35 -10.01 0 1 1.00 0.00 1 0.00 0

0.5 a 42,674.55 41,765.45 43,835.03 -9.48 0 1 1.00 0.00 1 0.00 0
0.5 b 42,237.61 41,127.92 43,504.22 -8.24 0 1 1.00 0.00 1 0.00 1
0.5 c 41,717.66 40,667.80 42,900.75 -7.85 0 1 1.00 0.00 1 0.00 0
0.5 d 42,227.65 41,284.23 43,339.82 -8.92 0 1 1.00 0.00 1 0.00 1

1 a 42,513.96 41,590.70 43,548.28 -9.55 0 1 1.00 0.00 1 0.00 0
1 b 42,602.56 41,543.07 43,838.00 -8.81 0 1 1.00 0.00 1 0.00 0
1 c 42,729.48 41,849.28 43,671.88 -10.08 0 1 1.00 0.00 1 0.00 0
1 d 43,031.49 42,049.97 44,095.19 -9.89 0 1 1.00 0.00 1 0.00 0

Period 13-60; H2 (sample mean = 63,706.82; CI = [61,424.18 ; 66,136.73]; normal test is passed.
0 a 53,199.16 51,797.36 54,621.32 7.46 1 0 0.00 1.00 1 0.00 0
0 b 52,213.12 50,586.74 53,977.45 7.72 1 0 0.00 1.00 1 0.00 0
0 c 51,757.42 50,185.24 53,519.84 8.06 1 0 0.00 1.00 1 0.00 0
0 d 53,691.24 52,029.20 55,375.97 6.77 1 0 0.00 1.00 1 0.00 0

0.5 a 53,768.84 52,242.59 55,282.39 6.91 1 0 0.00 1.00 1 0.00 0
0.5 b 53,860.34 52,353.84 55,498.64 6.75 1 0 0.00 1.00 1 0.00 1
0.5 c 53,211.24 51,889.25 54,676.29 7.48 1 0 0.00 1.00 1 0.00 0
0.5 d 54,006.68 52,307.92 55,653.21 6.52 1 0 0.00 1.00 1 0.00 0

1 a 54,561.77 52,838.48 56,297.46 6.07 1 0 0.00 1.00 1 0.00 0
1 b 54,394.90 52,886.28 55,993.07 6.40 1 0 0.00 1.00 1 0.00 0
1 c 53,864.51 52,274.98 55,569.68 6.68 1 0 0.00 1.00 1 0.00 0
1 d 52,898.46 51,281.67 54,564.44 7.32 1 0 0.00 1.00 1 0.00 0

Table 4.17: Significance tests: Residual Gradient on one-period leadtime case

sample BCa interval test reject H0 p value Rank sum Normal
treatment mean LCI UCI stat. Ha+ Ha− Ha+ Ha− H∗ p val.

Period 1-12; H2 (sample mean = 35,630.78; CI = [34,656.50 ; 36,699.02]; normal test is passed.
0.01 41,220.53 40,365.30 42,181.01 -7.94 0 1 1.00 0.00 1 0.00 0
0.1 41,728.49 40,944.44 42,880.84 -8.58 0 1 1.00 0.00 1 0.00 1
1 41,993.03 40,787.53 43,448.58 -7.40 0 1 1.00 0.00 1 0.00 1
10 42,734.09 41,740.03 44,127.82 -8.89 0 1 1.00 0.00 1 0.00 0

Period 13-60; H2 (sample mean = 63,706.82; CI = [61,354.24 ; 66,158.33]; normal test is passed.
0.01 54,379.33 52,735.93 56,155.95 6.25 1 0 0.00 1.00 1 0.00 0
0.1 53,756.88 52,215.30 55,390.28 6.82 1 0 0.00 1.00 1 0.00 0
1 53,913.60 52,331.19 55,523.32 6.69 1 0 0.00 1.00 1 0.00 0
10 53,546.41 51,968.19 55,265.56 6.87 1 0 0.00 1.00 1 0.00 0

102

Table 4.18: Significance tests: Direct Credit Back on one-period leadtime case

treatment sample BCa interval test reject H0 p value Rank sum Normal
Ncb λ β mean LCI UCI stat. Ha+ Ha− Ha+ Ha− H∗ p val.

Period 1-12; H2 (sample mean = 35,630.78; CI = [34,670.63 ; 36,728.55]; normal test is passed.
0 a 41,220.53 40,353.40 42,173.06 -7.94 0 1 1.00 0.00 1 0.00 0
0 b 41,728.49 40,938.41 42,894.32 -8.58 0 1 1.00 0.00 1 0.00 1
0 c 41,993.03 40,773.89 43,465.71 -7.40 0 1 1.00 0.00 1 0.00 1
0 d 42,734.09 41,731.70 44,167.90 -8.89 0 1 1.00 0.00 1 0.00 0
1 0.5 a 41,496.50 40,564.26 42,459.08 -8.18 0 1 1.00 0.00 1 0.00 1
1 0.5 b 41,478.03 40,561.60 42,562.35 -7.94 0 1 1.00 0.00 1 0.00 0
1 0.5 c 42,119.94 41,340.61 42,854.63 -9.98 0 1 1.00 0.00 1 0.00 0
1 0.5 d 42,024.35 41,011.98 43,208.80 -8.26 0 1 1.00 0.00 1 0.00 1
1 1 a 42,380.75 41,341.73 43,530.92 -8.76 0 1 1.00 0.00 1 0.00 0
1 1 b 41,510.89 40,655.26 42,638.40 -8.12 0 1 1.00 0.00 1 0.00 0
1 1 c 41,242.89 40,405.05 42,650.34 -7.35 0 1 1.00 0.00 1 0.00 1
1 1 d 42,728.62 41,753.30 43,802.52 -9.56 0 1 1.00 0.00 1 0.00 0

10 0.5 a 41,617.49 40,731.59 42,562.86 -8.51 0 1 1.00 0.00 1 0.00 0
10 0.5 b 40,877.86 39,976.83 41,848.78 -7.41 0 1 1.00 0.00 1 0.00 0
10 0.5 c 41,952.28 41,068.39 42,772.25 -9.26 0 1 1.00 0.00 1 0.00 0
10 0.5 d 43,219.26 42,095.01 44,526.77 -9.27 0 1 1.00 0.00 1 0.00 1
10 1 a 41,711.66 40,823.11 42,602.52 -8.73 0 1 1.00 0.00 1 0.00 0
10 1 b 40,957.00 39,969.09 41,949.21 -7.28 0 1 1.00 0.00 1 0.00 0
10 1 c 43,012.52 41,877.94 44,702.65 -8.41 0 1 1.00 0.00 1 0.00 1
10 1 d 42,959.12 41,899.67 44,390.41 -9.03 0 1 1.00 0.00 1 0.00 0

100 0.5 a 42,065.56 40,969.59 43,554.89 -7.66 0 1 1.00 0.00 1 0.00 0
100 0.5 b 41,579.76 40,544.58 42,650.89 -7.81 0 1 1.00 0.00 1 0.00 0
100 0.5 c 41,730.99 40,943.56 42,801.60 -8.70 0 1 1.00 0.00 1 0.00 1
100 0.5 d 42,997.33 42,077.39 44,255.02 -9.64 0 1 1.00 0.00 1 0.00 0
100 1 a 42,114.12 41,090.35 43,137.61 -8.77 0 1 1.00 0.00 1 0.00 0
100 1 b 42,401.19 41,297.12 43,854.70 -8.14 0 1 1.00 0.00 1 0.00 1
100 1 c 43,728.34 42,532.09 45,178.26 -9.40 0 1 1.00 0.00 1 0.00 1
100 1 d 42,871.54 41,940.52 44,087.97 -9.59 0 1 1.00 0.00 1 0.00 1

Period 13-60; H2 (sample mean = 63,706.82; CI = [61,481.80 ; 66,204.13]; normal test is passed.
0 a 54,379.33 52,738.62 56,150.66 6.25 1 0 0.00 1.00 1 0.00 0
0 b 53,756.88 52,210.66 55,409.56 6.82 1 0 0.00 1.00 1 0.00 0
0 c 53,913.60 52,342.37 55,597.10 6.69 1 0 0.00 1.00 1 0.00 0
0 d 53,546.41 51,959.35 55,245.20 6.87 1 0 0.00 1.00 1 0.00 0
1 0.5 a 54,180.98 52,519.50 56,103.78 6.25 1 0 0.00 1.00 1 0.00 0
1 0.5 b 54,390.28 52,734.67 56,086.30 6.28 1 0 0.00 1.00 1 0.00 1
1 0.5 c 53,113.71 51,421.07 54,781.96 7.12 1 0 0.00 1.00 1 0.00 0
1 0.5 d 53,889.64 52,259.42 55,618.04 6.60 1 0 0.00 1.00 1 0.00 0
1 1 a 53,393.71 51,803.45 55,129.41 6.99 1 0 0.00 1.00 1 0.00 0
1 1 b 54,064.22 52,429.70 55,797.30 6.44 1 0 0.00 1.00 1 0.00 0
1 1 c 53,767.45 52,204.41 55,421.15 6.74 1 0 0.00 1.00 1 0.00 0
1 1 d 53,851.08 52,284.81 55,627.02 6.61 1 0 0.00 1.00 1 0.00 0

10 0.5 a 54,501.87 52,666.41 56,798.84 5.77 1 0 0.00 1.00 1 0.00 1
10 0.5 b 55,380.61 53,580.04 57,292.49 5.40 1 0 0.00 1.00 1 0.00 0
10 0.5 c 54,181.77 52,621.73 55,785.89 6.54 1 0 0.00 1.00 1 0.00 0
10 0.5 d 53,159.79 51,686.64 54,695.83 7.31 1 0 0.00 1.00 1 0.00 0
10 1 a 53,429.03 51,597.32 55,417.66 6.59 1 0 0.00 1.00 1 0.00 0
10 1 b 54,210.30 52,599.84 55,890.55 6.44 1 0 0.00 1.00 1 0.00 0
10 1 c 53,751.83 52,278.16 55,236.14 6.96 1 0 0.00 1.00 1 0.00 1
10 1 d 52,360.43 50,793.10 53,983.73 7.75 1 0 0.00 1.00 1 0.00 0

100 0.5 a 54,225.79 52,784.91 55,703.31 6.64 1 0 0.00 1.00 1 0.00 0
100 0.5 b 54,787.97 53,237.64 56,441.04 6.11 1 0 0.00 1.00 1 0.00 0
100 0.5 c 53,776.81 52,318.75 55,299.78 6.94 1 0 0.00 1.00 1 0.00 0
100 0.5 d 53,540.84 51,970.52 55,218.08 6.93 1 0 0.00 1.00 1 0.00 0
100 1 a 52,741.89 51,182.94 54,411.64 7.50 1 0 0.00 1.00 1 0.00 0
100 1 b 54,899.91 53,290.65 56,646.51 5.93 1 0 0.00 1.00 1 0.00 0
100 1 c 52,600.06 51,044.17 54,198.59 7.64 1 0 0.00 1.00 1 0.00 0
100 1 d 52,926.75 51,293.73 54,601.60 7.34 1 0 0.00 1.00 1 0.00 0

103

Table 4.19: Significance tests: Rollout on one-period leadtime case

sample BCa interval test reject H0 p value Rank sum Normal
Nsim mean LCI UCI stat. Ha+ Ha− Ha+ Ha− H∗ p val.

Period 1-12; H2 (sample mean = 35,468.76; CI = [34,520.06 ; 36,500.66]; normal test is passed.
1 41,459.08 40,853.92 42,082.70 -9.95 0 1 1.00 0.00 1 0.00 0
10 41,468.17 41,043.71 41,887.68 -10.73 0 1 1.00 0.00 1 0.00 0
100 38,659.19 38,001.00 39,321.34 -5.17 0 1 1.00 0.00 1 0.00 0

Period 13-60; H2 (sample mean = 64,207.21; CI = [61,871.35 ; 66,602.66]; normal test is passed.
1 52,418.65 50,989.97 53,939.56 8.24 1 0 0.00 1.00 1 0.00 0
10 53,425.59 52,213.94 54,718.66 7.84 1 0 0.00 1.00 1 0.00 0
100 53,167.47 51,892.10 54,326.28 8.12 1 0 0.00 1.00 1 0.00 1

Period 1-60; H2 (sample mean = 99,675.97; CI = [96,993.50 ; 102,578.79]; normal test is passed.
1 93,877.73 92,161.51 95,635.34 3.44 1 0 0.00 1.00 1 0.00 0
10 94,893.76 93,674.04 96,255.56 3.03 1 0 0.00 1.00 1 0.01 1
100 91,826.66 90,491.79 93,118.44 4.97 1 0 0.00 1.00 1 0.00 0

Figures 4.9, 4.10, 4.11, 4.12, 4.13 and 4.14 show mean and confidence intervals of aggregate costs

obtained from Look-Ahead and (s,S) policy, Sarsa, Sarsa(λ), Residual Gradient, Direct Credit Back

and Rollout, respectively.

H1 H2 H3 H4 H5 (s,S)
3
4
5
6
7

x 10
4 Period 1−12

co
st

H2 H3 H4 H5 (s,S)

4

5

6

x 10
4 Period 1−12

co
st

H1 H2 H3 H4 H5 (s,S)

5

10

15
x 10

4 Period 13−60

co
st

H2 H3 H4 H5 (s,S)

4

5

6

x 10
4 Period 13−60

co
st

H1 H2 H3 H4 H5 (s,S)

1

1.5

2

x 10
5 Period 1−60

co
st

H2 H3 H4 H5 (s,S)

9

9.5

10

x 10
4 Period 1−60

co
st

Figure 4.9: Average aggregate costs obtained from Look-Ahead and (s,S) on L1

104

0.01 0.1 1 10

4.1

4.2

4.3

4.4

x 10
4 Period 1−12

co
st

0.01 0.1 1 10

5

5.2

5.4

x 10
4 Period 13−60

co
st

Figure 4.10: Average aggregate costs obtained from Sarsa on L1

0a 0b 0c 0d 0.5a 0.5b 0.5c 0.5d 1a 1b 1c 1d

4.1

4.2

4.3

4.4

x 10
4 Period 1−12

co
st

0a 0b 0c 0d 0.5a 0.5b 0.5c 0.5d 1a 1b 1c 1d
5

5.2

5.4

5.6

x 10
4 Period 13−60

co
st

Figure 4.11: Average aggregate costs obtained from Sarsa(0), Sarsa(0.5), and Sarsa(1) on L1

105

0.01 0.1 1 10
4

4.1

4.2

4.3

4.4

x 10
4 Period 1−12

co
st

0.01 0.1 1 10

5.2

5.3

5.4

5.5

5.6

x 10
4 Period 13−60

co
st

Figure 4.12: Average aggregate costs obtained from Residual Gradient on L1

0a 0b 0c 0d Aa Ab Ac Ad Ba Bb Bc Bd CaCb Cc Cd DaDb Dc Dd Ea Eb Ec Ed Fa Fb Fc Fd

4

4.1

4.2

4.3

4.4

4.5

x 10
4 Period 1−12

co
st

0a 0b 0c 0d Aa Ab Ac Ad Ba Bb Bc Bd CaCb Cc Cd DaDb Dc Dd Ea Eb Ec Ed Fa Fb Fc Fd

5.1

5.2

5.3

5.4

5.5

5.6

5.7

x 10
4 Period 13−60

co
st

Figure 4.13: Average aggregate costs obtained from Direct Credit Back on L1

106

H2 RO1 RO10 RO100

3.5

4

x 10
4 Periods: 1−12

co
st

H2 RO1 RO10 RO100
5

6

x 10
4 Periods: 13−60

co
st

H2 RO1 RO10 RO100
9

9.5

10

x 10
4 Periods: 1−60

co
st

Figure 4.14: Average aggregate costs obtained from Rollout on L1

Tables 4.20, 4.21, 4.22, 4.23 and 4.24 show a summary of cross significance tests of a Look-Ahead

method and an (s,S) policy, Sarsa, Residual Gradient, Sarsa(λ) and Direct Credit Back. Table 4.25

shows a summary of cross significance tests among different methods including Rollout.

Table 4.20: Cross significance tests: Look-Ahead and (s,S) on one-period leadtime case

treatment sample mean H1 H2 H3 H4 H5 (s,S)
Period 1-12

H1 72,673.60 0 -1 -1 -1 -1 -1
H2 35,630.78 1 0 0 -1 0 1
H3 34,762.85 1 0 0 0 0 1
H4 34,385.86 1 1 0 0 0 1
H5 34,645.59 1 0 0 0 0 1
(s,S) 61,463.21 1 -1 -1 -1 -1 0

Period 13-60
H1 142,765.60 0 -1 -1 -1 -1 -1
H2 63,706.82 1 0 -1 -1 -1 -1
H3 59,672.99 1 1 0 -1 -1 -1
H4 56,975.87 1 1 1 0 0 -1
H5 55,407.55 1 1 1 0 0 -1
(s,S) 39,153.62 1 1 1 1 1 0

All Periods
H1 215,439.20 0 -1 -1 -1 -1 -1
H2 99,337.60 1 0 -1 -1 -1 0
H3 94,435.84 1 1 0 -1 -1 1
H4 91,361.73 1 1 1 0 0 1
H5 90,053.13 1 1 1 0 0 1
(s,S) 100,616.83 1 0 -1 -1 -1 0

107

Table 4.21: Cross significance tests: Sarsa on one-period leadtime case

treatment sample mean 0.01 0.1 1 10
Period 1-12

0.01 42,862.17 0 0 0 0
0.1 42,886.75 0 0 0 0
1 42,066.42 0 0 0 0
10 43,000.04 0 0 0 0

Period 13-60
0.01 53,199.16 0 0 0 0
0.1 52,213.12 0 0 0 0
1 51,757.42 0 0 0 0
10 53,691.24 0 0 0 0

Period 1-60
0.01 96,061.33 0 0 0 0
0.1 95,099.86 0 0 0 0
1 93,823.84 0 0 0 1
10 96,691.28 0 0 -1 0

Table 4.22: Cross significance tests: Residual Gradient one one-period leadtime case

treatment sample mean 0.01 0.1 1 10
Period 1-12

0.01 41,220.53 0 0 0 1
0.1 41,728.49 0 0 0 0
1 41,993.03 0 0 0 0
10 42,734.09 -1 0 0 0

Period 13-60
0.01 54,379.33 0 0 0 0
0.1 53,756.88 0 0 0 0
1 53,913.60 0 0 0 0
10 53,546.41 0 0 0 0

Period 1-60
0.01 95,599.85 0 0 0 0
0.1 95,485.37 0 0 0 0
1 95,906.63 0 0 0 0
10 96,280.50 0 0 0 0

108

Table 4.23: Cross significance tests: Sarsa(λ) on one-period leadtime case

treatment sample λ = 0 λ = 0.5 λ = 1
λ β mean a b c d a b c d a b c d

Period 1-12
0 a 42,862.17 0 0 0 0 0 0 0 0 0 0 0 0
0 b 42,886.75 0 0 0 0 0 0 0 0 0 0 0 0
0 c 42,066.42 0 0 0 0 0 0 0 0 0 0 0 0
0 d 43,000.04 0 0 0 0 0 0 -1 0 0 0 0 0
0.5 a 42,674.55 0 0 0 0 0 0 0 0 0 0 0 0
0.5 b 42,237.61 0 0 0 0 0 0 0 0 0 0 0 0
0.5 c 41,717.66 0 0 0 1 0 0 0 0 0 0 0 1
0.5 d 42,227.65 0 0 0 0 0 0 0 0 0 0 0 0
1 a 42,513.96 0 0 0 0 0 0 0 0 0 0 0 0
1 b 42,602.56 0 0 0 0 0 0 0 0 0 0 0 0
1 c 42,729.48 0 0 0 0 0 0 0 0 0 0 0 0
1 d 43,031.49 0 0 0 0 0 0 -1 0 0 0 0 0

Period 13-60
0 a 53,199.16 0 0 0 0 0 0 0 0 0 0 0 0
0 b 52,213.12 0 0 0 0 0 0 0 0 1 1 0 0
0 c 51,757.42 0 0 0 0 1 1 0 1 1 1 1 0
0 d 53,691.24 0 0 0 0 0 0 0 0 0 0 0 0
0.5 a 53,768.84 0 0 -1 0 0 0 0 0 0 0 0 0
0.5 b 53,860.34 0 0 -1 0 0 0 0 0 0 0 0 0
0.5 c 53,211.24 0 0 0 0 0 0 0 0 0 0 0 0
0.5 d 54,006.68 0 0 -1 0 0 0 0 0 0 0 0 0
1 a 54,561.77 0 -1 -1 0 0 0 0 0 0 0 0 0
1 b 54,394.90 0 -1 -1 0 0 0 0 0 0 0 0 0
1 c 53,864.51 0 0 -1 0 0 0 0 0 0 0 0 0
1 d 52,898.46 0 0 0 0 0 0 0 0 0 0 0 0

Period 1-60
0 a 96,061.33 0 0 0 0 0 0 0 0 0 0 0 0
0 b 95,099.86 0 0 0 0 0 0 0 0 0 0 0 0
0 c 93,823.84 0 0 0 1 1 0 0 0 1 1 1 0
0 d 96,691.28 0 0 -1 0 0 0 0 0 0 0 0 0
0.5 a 96,443.40 0 0 -1 0 0 0 0 0 0 0 0 0
0.5 b 96,097.95 0 0 0 0 0 0 0 0 0 0 0 0
0.5 c 94,928.90 0 0 0 0 0 0 0 0 0 0 0 0
0.5 d 96,234.33 0 0 0 0 0 0 0 0 0 0 0 0
1 a 97,075.73 0 0 -1 0 0 0 0 0 0 0 0 0
1 b 96,997.46 0 0 -1 0 0 0 0 0 0 0 0 0
1 c 96,593.99 0 0 -1 0 0 0 0 0 0 0 0 0
1 d 95,929.94 0 0 0 0 0 0 0 0 0 0 0 0
Remark β coding: ‘a’ for β = 0.01, ‘b’ for β = 0.1
‘c’ for β = 1, and ‘d’ for β = 10

109

Table 4.24: Cross significance tests: Direct Credit Back on one-period leadtime case

NCB = 1 NCB = 10 NCB = 100
sample NCB = 0 λ = 0.5 λ = 1 λ = 0.5 λ = 1 λ = 0.5 λ = 1
mean 0a 0b 0c 0d AaAbAcAdBaBbBcBdCaCbCcCdDaDbDcDdEa Eb Ec Ed Fa Fb Fc Fd

Period 1-12
0a 41,221 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1
0b 41,728 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
0c 41,993 0 1 0
0d 42,734 -1 0 0 0 0 0 0 0 0 0 -1 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0
Aa 41,497 0 1 0
Ab 41,478 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1
Ac 42,120 0 0 0 0 0 0 0 0 0 0 -1 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0
Ad 42,024 0 1 0
Ba 42,381 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0
Bb 41,511 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1
Bc 41,243 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 1 1
Bd 42,729 -1 -1 0 0 0 -1 0 0 0 -1 -1 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0
Ca 41,617 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0
Cb 40,878 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0 1 1
Cc 41,952 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cd 43,219 -1 0 0 0 0 -1 0 0 0 -1 -1 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0
Da 41,712 0 1 0 0 1 0
Db 40,957 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1
Dc 43,013 -1 0 0 0 0 0 0 0 0 0 -1 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0
Dd 42,959 -1 0 0 0 0 -1 0 0 0 -1 -1 0 -1 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0
Ea 42,066 0 1 0
Eb 41,580 1 0 0 1 0
Ec 41,731 0 1 0
Ed 42,997 -1 -1 0 0 0 -1 0 0 0 -1 -1 0 -1 -1 0 0 -1 -1 0 0 0 -1 0 0 0 0 0 0
Fa 42,114 0 0 0 0 0 0 0 0 0 0 -1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Fb 42,401 0
Fc 43,728 -1 -1 -1 0 -1 -1 0 -1 0 -1 -1 0 -1 -1 0 0 -1 -1 0 0 -1 -1 -1 0 0 0 0 0
Fd 42,872 -1 0 0 0 0 -1 0 0 0 -1 -1 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0

Period 13-60
0a 54,379 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0
0b 53,757 0
0c 53,914 0
0d 53,546 0
Aa 54,181 0
Ab 54,390 -1 0 0 0 0 0 0 0 0
Ac 53,114 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ad 53,890 0
Ba 53,394 0
Bb 54,064 0
Bc 53,767 0
Bd 53,851 0
Ca 54,502 0
Cb 55,381 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 -1 0 0 0 -1 0 0 0 0 -1 0 -1 -1
Cc 54,182 0
Cd 53,160 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Da 53,429 0
Db 54,210 0
Dc 53,752 0
Dd 52,360 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0
Ea 54,226 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0
Eb 54,788 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 -1 0 -1 0
Ec 53,777 0
Ed 53,541 0
Fa 52,742 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0
Fb 54,900 -1 0 0 0 0 -1 0 -1 0
Fc 52,600 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0
Fd 52,927 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Label ‘Xx’ encodes Direct Credit Back parameters and learning rate.
First letter ‘0’: Ncb = 0; ‘A’: Ncb = 1, λ = 0.5; ‘A’: Ncb = 1, λ = 1
‘C’: Ncb = 10, λ = 0.5; ‘D’: Ncb = 10, λ = 1; ‘E’: Ncb = 100, λ = 0.5; ‘A’: Ncb = 100, λ = 1;
Second letter ‘a’ for β = 0.01, ‘b’ for β = 0.1, ‘c’ for β = 1, and ‘d’ for β = 10

110

Table 4.25: Cross significance tests: different methods on one-period leadtime case

sample Look-Ahead Sarsa: β R: β full DCB: β (s,S) RO: Nsim
mean H1 H2 H3 H4 H5 0.01 0.1 1 10 0.01 0.1 1 10 0.01 0.1 1 10 1 10 100

Period 1-12

H1 72,423 0 -1
H2 35,469 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
H3 34,957 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
H4 34,386 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
H5 34,646 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sa 42,862 1 -1 -1 -1 -1 0 0 0 0 -1 -1 0 0 0 0 0 0 1 -1 -1 -1
Sb 42,887 1 -1 -1 -1 -1 0 0 0 0 -1 -1 0 0 0 0 0 0 1 -1 -1 -1
Sc 42,066 1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 -1
Sd 43,000 1 -1 -1 -1 -1 0 0 0 0 -1 -1 -1 0 0 0 0 0 1 -1 -1 -1
0a 41,221 1 -1 -1 -1 -1 1 1 0 1 0 0 0 1 0 0 1 1 1 0 0 -1
0b 41,728 1 -1 -1 -1 -1 1 1 0 1 0 0 0 0 0 0 1 0 1 0 0 -1
0c 41,993 1 -1 -1 -1 -1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 -1
0d 42,734 1 -1 -1 -1 -1 0 0 0 0 -1 0 0 0 0 0 0 0 1 -1 -1 -1
Fa 42,114 1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1
Fb 42,401 1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1
Fc 43,728 1 -1 -1 -1 -1 0 0 -1 0 -1 -1 -1 0 0 0 0 0 1 -1 -1 -1
Fd 42,872 1 -1 -1 -1 -1 0 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 -1
SS 61,934 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1
RO1 41,459 1 -1 -1 -1 -1 1 1 0 1 0 0 0 1 0 0 1 0 1 0 0 -1
RO2 41,468 1 -1 -1 -1 -1 1 1 0 1 0 0 0 1 0 0 1 0 1 0 0 -1
RO3 38,659 1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Period 13-60

H1 142,522 0 -1
H2 64,207 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
H3 60,193 1 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
H4 56,976 1 1 1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1
H5 55,408 1 1 1 0 0 -1 -1 -1 0 0 0 0 0 -1 0 -1 -1 -1 -1 -1 -1
Sa 53,199 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0
Sb 52,213 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 -1 0 0 0
Sc 51,757 1 1 1 1 1 0 0 0 0 1 1 1 0 0 1 0 0 -1 0 0 0
Sd 53,691 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0
0a 54,379 1 1 1 1 0 0 -1 -1 0 0 0 0 0 0 0 0 0 -1 -1 0 0
0b 53,757 1 1 1 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 -1 0 0 0
0c 53,914 1 1 1 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 -1 0 0 0
0d 53,546 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0
Fa 52,742 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0
Fb 54,900 1 1 1 0 0 0 -1 -1 0 0 0 0 0 -1 0 -1 0 -1 -1 0 0
Fc 52,600 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0
Fd 52,927 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0
SS 38,303 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
RO1 52,419 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 -1 0 0 0
RO2 53,426 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0
RO3 53,167 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0

Period 1-60

H1 214,945 0 -1
H2 99,676 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 0 -1 -1 -1
H3 95,150 1 1 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1
H4 91,362 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0
H5 90,053 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
Sa 96,061 1 1 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1
Sb 95,100 1 1 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1
Sc 93,824 1 1 0 0 -1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0
Sd 96,691 1 1 0 -1 -1 0 0 -1 0 0 0 0 0 0 0 0 0 1 -1 0 -1
0a 95,600 1 1 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1
0b 95,485 1 1 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1
0c 95,907 1 1 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1
0d 96,281 1 1 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1
Fa 94,856 1 1 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1
Fb 97,301 1 0 0 -1 -1 0 0 -1 0 0 0 0 0 0 0 0 0 1 -1 0 -1
Fc 96,328 1 1 0 -1 -1 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 -1
Fd 95,798 1 1 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1
SS 100,237 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1
RO1 93,878 1 1 0 -1 -1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 -1
RO2 94,894 1 1 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1
RO3 91,827 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0

Remark ‘H#’ is for Look-Ahead and # is number of period(s) looking ahead
‘Sx’, ‘0x’ and ‘Fx’ are for Sarsa, Residual Gradient and full Direct Credit Back, respectively
‘a’ is for β = 0.01, ‘b’ is for β = 0.1, ‘c’ is for β = 1, ‘d’ is for β = 10
‘SS’ is for (s,S) policy
‘RO#’ is for Rollout and #: 1, 2, and 3 are for 1, 10, and 100 repetition(s), respectively

111

4.8 Discussions and Conclusions

One-period leadtime problem: A one-period Look-Ahead method, H1, did not work well com-

pared to other methods. The explanation is that H1 does not look ahead far enough to see benefit

of replenishment that has not yet come within the one period. Therefore, H1 chooses the mini-

mum allowable replenishment order to minimize aggregate cost by minimizing the replenishment

cost. This leads to extremely low inventory levels and an inventory shortage, resulting in a much

higher cost. For Look-Ahead methods with one to four look-ahead periods, the monotonic trend is

apparent in aggregate costs that are reduced as the look ahead time is increased. A lower aggregate

cost indicates a better cost performance. Performance of a Look-Ahead method with 5 look ahead

periods is significantly better than the method with 4 periods.

The cost performance of an (s,S) policy is comparable to H2 for a total of 60 periods. However,

performance of an (s,S) policy in the first 12 periods and the last 48 periods are significantly different

than other methods. An (s,S) policy seems to overstock in the first 12 periods, which results in a

disproportionately high cost in the first 12 periods, but yields an equally disproportionately low cost

in the last 48 periods. Overall cost performance of an (s,S) policy, which is considered for an entire

horizon of 60 periods, is comparable to the H2 method.

Using Sarsa with learning rates of 0.1 and 1 results in lower total costs than with learning rates

of 0.01 and 10. Using Sarsa(0), or Sarsa without the eligibility trace, yields lower total costs than

Sarsa(λ > 0).

As in the zero leadtime case, it is worth investigating further the conservative behavior of

Sarsa(λ). Figure 4.15 shows average aggregate costs in the upper left plot. The upper right plot

shows statistics of total costs (minimum, 1st quartile, median, 3rd quartile and maximum). Average

total costs are shown as a solid line. The lower left plot displays the empirical CDF for the complete

range of period costs. The lower right plot displays the empirical CDF for a selected range of period

costs.

The CDF values of Sarsa(1), Sarsa(0.5) and Sarsa are respectively high to low at high period

cost. This result implies that a higher value of an eligibility factor has better worst-case performance.

Figure 4.16 also shows a monotonic trend between an inventory level and an eligibility factor. It

supports the assumption that a higher eligibility factor causes more conservative behavior when

inventory is kept at a higher level.

Residual Gradient and Direct Credit Back methods perform significantly better than H2. The

experimental results indicate that the Direct Credit Back method has potential for better results

than the Residual Gradient method, evidenced by the fact that the Direct Credit Back method

112

12 24 36 48 60
1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

t

co
st

average aggregate cost

0b
0c
5b
5c
10c
10d

0b 0c 5b 5c 10c 10d
7

8

9

10

11

12
x 10

4 statistics of total costs

co
st

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

cost

cd
f

empirical cdf of period costs

0b
0c
5b
5c
10c
10d

4000 4500 5000 5500 6000 6500 7000 7500

0.91

0.92

0.93

0.94

0.95

0.96

0.97

cost

cd
f

empirical cdf of period costs

0b
0c
5b
5c
10c
10d

Figure 4.15: Results of Sarsa and Sarsa(λ); L1

0 0.5 1.0

55

60

65

70

75

60 periods; mean

x

λ
0 0.5 1.0

1565

1570

1575

1580

1585

1590

1595

1600

60 periods; mean

pe
rio

d
co

st

λ
0 0.5 1.0

1.87

1.88

1.89

1.9

1.91

1.92

1.93

x 10
4 60 periods; max

pe
rio

d
co

st

λ

0 0.5 1.0
55

60

65

70

75

80

85
later 48 periods; mean

x

λ
0 0.5 1.0

1080

1085

1090

1095

1100

1105

1110

later 48 periods; mean

pe
rio

d
co

st

λ
0 0.5 1.0

6000

7000

8000

9000

10000

later 48 periods; max

pe
rio

d
co

st

λ

Figure 4.16: Inventory and period costs of Sarsa and Sarsa(λ); L1

113

yields lower average aggregate costs. However, this difference is not great enough to be confirmed

by the significance tests. It should be noted that the benefit of the Direct Credit Back method may

be more obvious for a delayed reward problem, but an investigation of longer leadtime inventory

problems or other pure delayed-reward problems, such as Backgammon, is not attempted in this

study.

For the last 48 periods, the Rollout method gives significantly better performance than the Look-

Ahead method. For a total of 60 periods, the Rollout method using 1 or 10 simulations performs

similarly to the three-period Look-Ahead method. The Rollout method using 100 simulations shows

similar results to the four-period and five-period Look-Ahead methods. Rollout with 100 simulations

has a total cost that is significantly lower than total costs obtained by using Rollout with 1 and 10

simulations. Table 4.26 shows means, standard deviations, minimums and maximums of total costs

when using the Rollout method with 1, 10 and 100 simulations.

Table 4.26: Rollout numbers of simulations and total costs on one-period leadtime case

N
N mean std min max 1 10 100
1 93,878 6,298 81,560 109,654 0 0 -1
10 94,894 4,732 84,666 106,840 0 0 -1
100 91,827 4,753 81,083 103,087 1 1 0

Comparison among four controllers: The experimental results suggest that Sarsa has better

inventory cost performance than other learning-based ADP methods in the last 48 periods. Sarsa

performed significantly better than all Look-Ahead methods and most of the Residual Gradient

methods. Using full Direct Credit Back or Rollout gives aggregate costs close to the costs achieved

when using Sarsa. It should be noted that the linearity of the RBF may allow Sarsa to have this

stability of inventory cost performance. Using a nonlinear approximation function may allow the

Residual Gradient and Direct Credit Back methods to show a performance superiority over Sarsa.

A nonlinear approximation function was not investigated in this study.

Regarding Rollout, the total cost of using the Rollout method with 100 simulations was not

significantly different than the cost of using the Look-Ahead method with looking four or five periods

ahead. The Rollout method performed significantly better than the Residual Gradient and full Direct

Credit Back methods. With the best choice of parameters, using the Rollout method gave a lower

total cost than Sarsa.

In conclusion, among learning-based methods, Sarsa outperformed the Sarsa(λ), Residual Gradi-

ent and Direct Credit Back methods for inventory problems. In addition to its requirement for more

114

computation time and memory, an eligibility trace technique seems not suitable for this fast-return

problem structure. It had a higher aggregate cost as indicated by experimental results when using

Sarsa(λ)

In addition to Sarsa, Rollout is a good alternative method when a model of the problem is

available. Another benefit of Rollout is that it does not require a warm-up period and it performs

consistently well from the outset.

115

CHAPTER 5

AN INVENTORY PROBLEM WITH HIGH VARIANCE DEMAND

Recently Zhang [130] found evidence of the GARCH(1,1) model in inventory data and showed

that there are significant costs when GARCH(1,1) is not accounted for. He used an analytical

approach to develop a formula for an order-up-to-level policy for an AR1/GARCH(1,1) problem

without a setup cost, however, his analytical approach was too problem specific. A slight change

to this problem structure requires rigorous reanalysis of the problem and subsequent redevelopment

of the solution. The problem investigated in our study includes the setup cost, making the cost

function highly non-linear, which in turn, makes an analytical solution difficult to achieve.

Approximate Dynamic Programming (ADP) has been shown to have generality and flexibility

to overcome the shortcomings of most analytical approaches. As a result, ADP has gained much

attention in inventory management research. However, none of the previous ADP studies have in-

vestigated an inventory problem with the GARCH(1,1) model structure included. The GARCH(1,1)

model introduces two latent state variables that inadvertently will be left out if GARCH(1,1) is not

accounted for. This has posed a challenge to a model-free property of a learning-based ADP method.

In addition to learning-based ADP, there is simulation-based ADP which has received less atten-

tion in inventory research. A simulation-based ADP method uses simulation, instead of a learning

scheme, to provide an approximate state-action cost function. Since no analytical model of the

problem is required, a learning-based ADP method needs only initial periods to attain good approx-

imation of state-action costs. When a model of the problem is provided, the model can be integrated

into the simulation-based ADP.

This chapter investigates the application of a learning-based method Sarsa and two simulation-

based methods Rollout and Hindsight Optimization (HO) to an inventory problem with AR1/GARCH(1,1)

demand. Inventory cost performance of each method is evaluated through simulation-based experi-

ments.

5.1 An inventory problem with AR1/GARCH(1,1) demand

The problem investigated here is similar to the one-period leadtime inventory problem discussed

in Chapter 4, but the demand is modeled with AR1/GARCH(1,1). An inventory problem with

AR1/GARCH(1,1) demand has a system state s = (Dt, zt, σ
2
t , xt+1, B

(t+1)
1 , · · · , B(t+1)

L). The

state transition is shown in Equations 5.1, 5.2, 5.3, 5.4 and 5.5.

117

Dt = a0 + a1 ·Dt−1 + zt

= a0 + a1 ·Dt−1 + et ·
√

ν + α · z2
t−1 + β · σ2

t−1 (5.1)

zt = et · σt

= et ·
√

ν + α · z2
t−1 + β · σ2

t−1 (5.2)

σ2
t = ν + α · z2

t−1 + β · σ2
t−1 (5.3)

xt+1 = xt +B
(t)
1 −Dt

= xt +B
(t)
1 − a0 − a1 ·Dt−1 − et ·

√

ν + α · z2
t−1 + β · σ2

t−1 (5.4)

B
(t+1)
1 = B

(t)
2

...
...

...

B
(t+1)
L−1 = B

(t)
L

B
(t+1)
L = ut (5.5)

where et is white noise distributed N(0, 1), ut is a replenishment order and t = {2, 3, 4, . . .}.

The transition cost (Equation 3.8) is not affected by the GARCH(1,1) model.

5.2 Experiments

Simulation-based experiments are conducted to evaluate Sarsa, Rollout and HO. Each inventory

controller is run for 50 replications of each of 60 time-unit-indeterminate periods. The problem

is set up with Kt =$80, ct = $100/unit, ht = $1/unit and bt = $180/unit. An undiscounted

one-period leadtime problem (α = 1 and L = 1) is investigated. The demand is modeled with

AR1/GARCH(1,1), where the AR1’s a0 = 2 and a1 = 0.8 and GARCH(1,1)’s ν0 = 70, ν1 = 0.1 and

ν2 = 0.8. Each experiment is initialized at D0 = 50, z0 = 10, σ2
0 = 400, x1 = 10 and B(1) = 0.

Look-Ahead: Look-Ahead is used for comparison to other methods. The cost and state projec-

tions in this experiment are average projections assuming zero demand noise.

Sarsa: Sarsa in this experiment is conducted with an RBF whose centers are located at each

combination of {0, 100, 200, 300} × {-200, -100, 0, 100, 200} × {0, 800, 1600, 2400, 3200} ×

{-300, -200, -100, ..., 300 } × {0, 100, 200, 300, 400} × {0, 100, 200, 300, 400 }, corresponding

to previous demand, demand noise, demand noise variance, on-site inventory, in-transit inventory

and replenishment order respectively. The RBF scales are set up with a 1/2-midpoint strategy.

118

Therefore the RBF scales corresponding to previous demand, demand noise, on-site inventory, in-

transit inventory and replenishment order are 0.4621×10−4 and the scales corresponding to demand

noise variance are 0.0072× 10−4.

An exhaustive search is used to determine an action with the lowest Q-value for the given state.

Consistent with Van Roy et al. [118], noise1 is added to the optimal replenishment order found by

the exhaustive search to create an explorative mechanism.

Sarsa without latent state variables: Demand Dt, on-site inventory xt+1 and in-transit inven-

tory B(t+1) of the AR1 model can be observed directly. The GARCH model introduces two extra

variables zt−1 and σ2
t−1 and these two variables are less observable. Current literatures, including

Das et al. [36], indicate a general belief that Sarsa and other learning-based ADP methods are model-

free approaches that do not require an accurate model of the problem. However, the GARCH(1,1)

variables will be left out if the GARCH(1,1) model is not to be accounted for. Our experiment

investigates the application of Sarsa to AR1/GARCH(1,1) problems when the GARCH(1,1) model

is not accounted for. Sarsa without the GARCH(1,1) variables is used with the RBF centers located

at each combination of {0, 100, 200, 300} × {-300, -200, -100, ..., 300 } × {0, 100, 200, 300, 400 } ×

{0, 100, 200, 300, 400 }, corresponding to previous demand, on-site inventory, in-transit inventory

and replenishment order. All RBF scales are 0.6931.

It should be noted that the extra state variables introduced by the GARCH(1,1) model differ

from unobservable variables in a Partially Observable Markov Decision Problem (POMDP). When

the GARCH(1,1) model is not accounted for, there is no extra effort made to handle the missing

information. By contrast, POMDP provides a method to handle unknown values of unobservable

variables.

Simulation-based ADP methods: Two simulation-based ADP methods, Rollout and Hindsight

Optimization, are used. The Rollout method uses simulation to provide approximate state-action

costs, which in turn are used for determining actions. The Rollout simulation requires a base policy

to determine actions for the simulated events. This experiment uses an (s,S) policy for Rollout’s base

policy. The (s,S) policy parameters are determined by the Economic Order Quantity (EOQ) and

safety stock calculation, as discussed in Section 4.6. The Hindsight Optimization (HO) is another

simulation-based ADP method, HO does not require a base policy. HO uses a special simulation,

which is discussed in Section 2.4.4. Both Rollout and HO used 1, 5, 10 and 50 simulations and 1, 3,

6 and 12 simulation horizons.
1 Noise is limited normal, as being discussed in Section 7.1, and rounded to integer. According to experimental

results from preliminary tests, this study uses 100 for standard deviation of this limited normal noise.

119

−1 −0.5 0 0.5 1
11

12

13

14

15

16

17

18

19

20

P15: Relative % cost deviation, σ
0
2 = 400, σ

t
2 = 639.239

rho (AR1: a1)

%
 r

el
co

st

L0
L1
L2
L3
L4

Figure 5.1: Relative cost deviation (%) showing GARCH significance

Evaluation: Aggregate costs are used as performance indicators. They are aggregated in the first

12 periods, the subsequent 48 periods (Period 13-60), and the total 60 periods. Statistical significance

tests are used to compare results. A one-sided t test is used when the normality assumption of

experimental results holds. The normality assumption is tested at a 5% significance level with both

Lilliefors and χ2 goodness-of-fit tests. When it is suspected that the normality assumption does not

hold, a Wilcoxon rank sum test is used in place of the t test.

Problem selection: The problem in this Chapter is selected to investigate the effect of the

GARCH(1,1) model on the performance of the ADP approach. Zhang’s [130, Eq. 28, pp. 136]

relative cost deviation is displayed in Figure 5.1. The relative cost deviation shows the estimated

effect of the GARCH(1,1) model. The parameter σ2
t is set to 639.239, an average σ2

t obtained from

a preliminary experiment. With AR1’s a1 = 0.8 and L = 1, the inventory cost is expected to be

around 18% higher when the GARCH(1,1) model is not accounted for. It should be noted that

Zhang’s relative cost deviation formula is developed without a setup cost, but with the assumption

that his formula is sufficient to show the significance of the GARCH(1,1) model in this problem.

120

5.3 Experimental Results

Tables 5.1, 5.2, 5.3 and 5.4 show the significance test results of Sarsa, Sarsa without GARCH(1,1)

state variables, Rollout and Hindsight Optimization, respectively.

Table 5.1: Significance tests: Look-Ahead and Sarsa; GARCH(1,1)

sample BCa interval test reject H0 p value Rank sum Normal
mean LCI UCI stat. Ha+ Ha− Ha+ Ha− H∗ p val.

Period 1-12; H2 (sample mean = 72,219.00; CI = [61,635.36 ; 85,434.64]; both normal tests are failed.
H6 61,453.86 52,057.07 72,818.43 1.33 0 0 0.09 0.91 0 0.23 1
H12 69,539.66 62,858.25 77,525.38 0.37 0 0 0.35 0.65 0 0.64 0
S0.1 82,247.48 76,947.54 88,473.33 -1.49 0 0 0.93 0.07 1 0.05 0
S0.3 81,375.74 76,598.65 86,846.95 -1.38 0 0 0.91 0.09 1 0.06 1
S0.4 81,445.44 77,012.61 85,718.19 -1.43 0 0 0.92 0.08 1 0.06 0
S0.5 80,044.56 75,640.90 84,428.21 -1.21 0 0 0.88 0.12 1 0.09 0
S0.6 81,874.68 76,537.04 87,949.14 -1.43 0 0 0.92 0.08 1 0.04 0
S0.7 84,121.70 79,057.02 89,714.21 -1.79 0 1 0.96 0.04 1 0.03 0
S1.0 84,668.28 79,143.84 92,172.33 -1.80 0 1 0.96 0.04 1 0.03 1

Period 13-60; H2 (sample mean = 310,081.52; CI = [277,459.44 ; 346,678.20]; normal test is passed.
H6 239,951.12 213,764.32 267,080.89 3.12 1 0 0.00 1.00 1 0.01 0
H12 200,561.66 177,978.85 226,373.99 5.04 1 0 0.00 1.00 1 0.00 0
S0.1 176,901.12 160,481.52 195,396.90 6.65 1 0 0.00 1.00 1 0.00 0
S0.3 176,856.26 160,289.96 194,486.32 6.68 1 0 0.00 1.00 1 0.00 0
S0.4 176,286.74 160,383.55 194,096.69 6.73 1 0 0.00 1.00 1 0.00 0
S0.5 176,637.76 160,971.83 194,546.18 6.72 1 0 0.00 1.00 1 0.00 0
S0.6 176,629.98 159,947.35 194,697.34 6.65 1 0 0.00 1.00 1 0.00 0
S0.7 175,695.92 160,340.18 193,554.60 6.77 1 0 0.00 1.00 1 0.00 0
S1.0 175,630.16 158,708.16 192,933.09 6.75 1 0 0.00 1.00 1 0.00 0

Period 1-60; H2 (sample mean = 382,300.52; CI = [345,731.40 ; 425,668.27]; normal test is passed.
H6 301,404.98 273,115.26 333,919.71 3.13 1 0 0.00 1.00 1 0.00 0
H12 270,101.32 246,114.90 300,273.64 4.54 1 0 0.00 1.00 1 0.00 0
S0.1 259,148.60 240,910.38 279,723.02 5.42 1 0 0.00 1.00 1 0.00 0
S0.3 258,232.00 239,619.98 278,937.07 5.44 1 0 0.00 1.00 1 0.00 0
S0.4 257,732.18 240,081.09 277,395.21 5.51 1 0 0.00 1.00 1 0.00 0
S0.5 256,682.32 238,793.59 276,053.08 5.55 1 0 0.00 1.00 1 0.00 0
S0.6 258,504.66 239,196.04 280,014.28 5.40 1 0 0.00 1.00 1 0.00 0
S0.7 259,817.62 242,301.72 280,859.67 5.38 1 0 0.00 1.00 1 0.00 0
S1.0 260,298.44 241,840.00 282,450.66 5.32 1 0 0.00 1.00 1 0.00 0

Figure 5.2 shows BCa confidence intervals and means of 2-period Look-Ahead, 6-period Look-

Ahead, 12-period Look-Ahead and Sarsa with learning rates of 0.1, 0.3, 0.4, 0.5, 0.6, 0.7 and 1.0.

A Look-Ahead method is labeled “H#” where the suffix number indicates a number of period(s)

looking ahead. Sarsa is labeled “S#” where the suffix number indicates a learning rate.

Table 5.5 shows a summary of the cross significance tests of aggregate costs obtained with Look-

Ahead and Sarsa. The tables and figures are organized as described in Chapter 4.

121

Table 5.2: Significance tests: Sarsa w/o z & σ2; GARCH(1,1)

sample BCa interval test reject H0 p value Rank sum Normal
β mean LCI UCI stat. Ha+ Ha− Ha+ Ha− H∗ p val.

Period 1-12; H2 (sample mean = 72,219.00; CI = [61,543.17 ; 85,084.63]; both normal tests are failed.
0.1 83,090.02 77,930.31 89,536.62 -1.61 0 0 0.94 0.06 1 0.04 1
0.2 80,536.30 75,597.50 86,361.28 -1.25 0 0 0.89 0.11 1 0.05 0
0.3 80,929.28 76,053.04 86,377.47 -1.32 0 0 0.90 0.10 1 0.07 0
0.4 81,578.92 76,425.25 87,485.67 -1.40 0 0 0.92 0.08 1 0.05 0
0.5 81,300.24 76,236.28 86,914.50 -1.36 0 0 0.91 0.09 1 0.04 0
0.6 80,347.90 75,841.16 85,496.90 -1.24 0 0 0.89 0.11 1 0.08 1
0.7 81,980.48 76,901.17 88,182.61 -1.45 0 0 0.92 0.08 1 0.04 0
0.8 80,287.12 75,699.18 84,847.97 -1.24 0 0 0.89 0.11 1 0.07 0
0.9 79,466.22 74,409.33 84,936.58 -1.09 0 0 0.86 0.14 1 0.09 0
1.0 82,813.74 77,280.74 89,766.41 -1.55 0 0 0.94 0.06 1 0.04 1

Period 13-60; H2 (sample mean = 310,081.52; CI = [277,301.94 ; 346,957.31]; normal test is passed.
0.1 175,832.94 159,935.69 193,806.61 6.74 1 0 0.00 1.00 1 0.00 0
0.2 175,862.76 159,558.54 192,986.43 6.73 1 0 0.00 1.00 1 0.00 0
0.3 177,015.94 161,040.13 195,081.39 6.65 1 0 0.00 1.00 1 0.00 0
0.4 176,668.10 159,656.01 194,492.90 6.66 1 0 0.00 1.00 1 0.00 0
0.5 176,597.12 159,917.07 195,650.91 6.66 1 0 0.00 1.00 1 0.00 0
0.6 176,949.54 160,130.27 194,464.77 6.67 1 0 0.00 1.00 1 0.00 0
0.7 176,977.76 160,411.47 195,557.06 6.63 1 0 0.00 1.00 1 0.00 0
0.8 173,607.68 157,701.36 190,363.00 6.91 1 0 0.00 1.00 1 0.00 0
0.9 176,304.38 159,047.17 194,841.89 6.69 1 0 0.00 1.00 1 0.00 0
1.0 176,714.20 160,429.65 194,898.88 6.67 1 0 0.00 1.00 1 0.00 0

Period 1-60; H2 (sample mean = 382,300.52; CI = [344,932.50 ; 425,016.47]; normal test is passed.
0.1 258,922.96 239,988.88 279,664.00 5.39 1 0 0.00 1.00 1 0.00 0
0.2 256,399.06 238,177.11 275,617.06 5.57 1 0 0.00 1.00 1 0.00 0
0.3 257,945.22 239,505.39 278,329.29 5.46 1 0 0.00 1.00 1 0.00 0
0.4 258,247.02 239,215.03 279,068.45 5.42 1 0 0.00 1.00 1 0.00 0
0.5 257,897.36 239,607.37 278,761.04 5.45 1 0 0.00 1.00 1 0.00 0
0.6 257,297.44 239,455.99 277,267.63 5.50 1 0 0.00 1.00 1 0.00 0
0.7 258,958.24 239,961.61 279,510.56 5.39 1 0 0.00 1.00 1 0.00 0
0.8 253,894.80 237,033.02 271,632.70 5.74 1 0 0.00 1.00 1 0.00 0
0.9 255,770.60 237,566.39 276,135.57 5.54 1 0 0.00 1.00 1 0.00 0
1.0 259,527.94 241,685.66 279,388.09 5.41 1 0 0.00 1.00 1 0.00 0

H2 H6 H12 S0.1 S0.3 S0.4 S0.5 S0.6 S0.7 S1.0

5

6

7

8

9

x 10
4 Periods: 1−12

co
st

H2 H6 H12 S0.1 S0.3 S0.4 S0.5 S0.6 S0.7 S1.0

1.5

2

2.5

3

3.5

x 10
5 Periods: 13−60

co
st

H2 H6 H12 S0.1 S0.3 S0.4 S0.5 S0.6 S0.7 S1.0

2.5

3

3.5

4

x 10
5 Periods: 1−60

co
st

Figure 5.2: Average aggregate costs from Sarsa; GARCH(1,1)

122

Table 5.3: Significance tests: Rollout; GARCH(1,1)

sample BCa interval test reject H0 p value Rank sum Normal
treatment mean LCI UCI stat. Ha+ Ha− Ha+ Ha− H∗ p val.

Period 1-12; H2 sample mean = 72,219.00; CI = [61,331.91 ; 84,708.83]; both normal tests are failed.
RN 62,495.86 53,789.17 72,589.31 1.25 0 0 0.11 0.89 0 0.39 0

Rollout
N T
1 1 101,167.74 85,644.63 119,331.87 -2.76 0 1 1.00 0.00 1 0.02 1
1 3 80,196.92 68,595.30 94,978.69 -0.88 0 0 0.81 0.19 0 0.41 1
1 6 60,048.68 52,967.20 72,415.84 1.58 0 0 0.06 0.94 0 0.25 1
1 12 63,978.64 57,645.82 73,378.15 1.14 0 0 0.13 0.87 0 0.73 1
5 1 74,833.02 64,589.02 86,419.51 -0.32 0 0 0.62 0.38 0 0.57 0
5 3 59,826.46 53,577.24 66,963.86 1.77 1 0 0.04 0.96 0 0.30 1
5 6 61,492.16 56,607.65 67,877.79 1.59 0 0 0.06 0.94 0 0.69 1
5 12 74,891.28 69,368.26 80,874.52 -0.40 0 0 0.65 0.35 0 0.24 0

10 1 74,359.86 64,502.87 85,269.06 -0.26 0 0 0.60 0.40 0 0.73 0
10 3 59,364.14 53,654.57 66,269.97 1.86 1 0 0.03 0.97 0 0.38 1
10 6 66,114.00 60,809.95 72,200.82 0.90 0 0 0.18 0.82 0 0.87 1
10 12 81,970.96 77,328.27 87,131.96 -1.49 0 0 0.93 0.07 1 0.04 0
50 1 69,701.82 59,602.14 81,436.04 0.30 0 0 0.38 0.62 0 0.91 1
50 3 60,928.78 55,422.18 67,343.71 1.66 0 0 0.05 0.95 0 0.55 1
50 6 68,874.68 62,630.03 76,801.54 0.47 0 0 0.32 0.68 0 0.73 1
50 12 80,876.42 74,905.56 88,518.78 -1.24 0 0 0.89 0.11 1 0.07 1

Period 13-60; H2 (sample mean = 310,081.52; CI = [276,704.79 ; 346,140.32]; normal test is passed.
RN 273,276.80 240,576.10 307,833.01 1.47 0 0 0.07 0.93 0 0.14 0

Rollout
N T
1 1 342,712.88 304,913.08 387,441.28 -1.18 0 0 0.88 0.12 0 0.42 1
1 3 265,272.58 233,899.42 303,190.44 1.78 1 0 0.04 0.96 1 0.08 0
1 6 231,378.82 205,984.42 263,420.39 3.41 1 0 0.00 1.00 1 0.00 1
1 12 170,396.46 154,913.57 188,978.48 7.02 1 0 0.00 1.00 1 0.00 0
5 1 297,242.04 260,620.18 347,165.95 0.45 0 0 0.33 0.67 0 0.34 0
5 3 168,878.42 152,996.68 187,051.86 7.11 1 0 0.00 1.00 1 0.00 0
5 6 164,868.72 148,795.65 184,455.37 7.21 1 0 0.00 1.00 1 0.00 0
5 12 168,837.32 155,064.61 182,918.80 7.30 1 0 0.00 1.00 1 0.00 0

10 1 272,222.48 242,427.04 310,826.80 1.51 0 0 0.07 0.93 0 0.12 0
10 3 176,742.46 159,749.01 199,556.10 6.50 1 0 0.00 1.00 1 0.00 0
10 6 148,003.02 134,818.24 163,325.81 8.37 1 0 0.00 1.00 1 0.00 0
10 12 174,005.32 162,155.82 186,587.10 7.17 1 0 0.00 1.00 1 0.00 1
50 1 251,982.76 225,997.85 281,880.16 2.54 1 0 0.01 0.99 1 0.02 0
50 3 152,749.60 140,935.69 165,580.55 8.29 1 0 0.00 1.00 1 0.00 0
50 6 158,996.16 145,802.27 173,903.91 7.84 1 0 0.00 1.00 1 0.00 1
50 12 162,406.70 149,755.37 176,269.81 7.73 1 0 0.00 1.00 1 0.00 0

Period 1-60; H2 (sample mean = 382,300.52; CI = [345,012.17 ; 423,990.21]; normal test is passed.
RN 335,772.66 299,997.40 378,289.64 1.62 0 0 0.05 0.95 1 0.09 0

Rollout
N T
1 1 443,880.62 400,238.40 497,362.78 -1.91 0 1 0.97 0.03 0 0.13 1
1 3 345,469.50 309,325.83 386,845.09 1.30 0 0 0.10 0.90 0 0.23 0
1 6 291,427.50 265,349.22 323,351.94 3.57 1 0 0.00 1.00 1 0.00 1
1 12 234,375.10 215,665.99 255,694.78 6.44 1 0 0.00 1.00 1 0.00 0
5 1 372,075.06 332,107.19 427,676.78 0.32 0 0 0.37 0.63 0 0.43 1
5 3 228,704.88 210,359.91 249,961.56 6.72 1 0 0.00 1.00 1 0.00 1
5 6 226,360.88 208,955.94 246,999.12 6.86 1 0 0.00 1.00 1 0.00 1
5 12 243,728.60 229,419.67 259,066.10 6.33 1 0 0.00 1.00 1 0.00 1

10 1 346,582.34 314,236.17 384,091.16 1.31 0 0 0.10 0.90 0 0.24 0
10 3 236,106.60 217,680.55 260,235.21 6.32 1 0 0.00 1.00 1 0.00 1
10 6 214,117.02 198,562.47 231,452.24 7.58 1 0 0.00 1.00 1 0.00 0
10 12 255,976.28 242,279.18 270,050.07 5.82 1 0 0.00 1.00 1 0.00 0
50 1 321,684.58 293,918.89 350,986.10 2.41 1 0 0.01 0.99 1 0.04 0
50 3 213,678.38 201,285.17 226,734.96 7.84 1 0 0.00 1.00 1 0.00 0
50 6 227,870.84 213,815.00 245,490.95 7.02 1 0 0.00 1.00 1 0.00 1
50 12 243,283.12 229,993.16 258,372.03 6.39 1 0 0.00 1.00 1 0.00 0

123

Table 5.4: Significance tests: Hindsight Optimization; GARCH(1,1)

HO sample BCa interval test reject H0 p value Rank sum Normal
N T mean LCI UCI stat. Ha+ Ha− Ha+ Ha− H∗ p val.

Period 1-12; H2 sample mean = 72,219.00; CI = [61,328.00 ; 85,232.99]; both normal tests are failed.
1 1 55,917.04 49,465.69 63,759.48 2.30 1 0 0.01 0.99 0 0.12 1
1 3 62,163.54 56,808.91 68,739.13 1.47 0 0 0.07 0.93 0 0.69 1
1 6 75,479.78 70,288.63 81,191.21 -0.49 0 0 0.69 0.31 0 0.24 0
1 12 79,341.64 75,085.30 84,086.20 -1.09 0 0 0.86 0.14 1 0.07 0
5 1 75,307.76 65,255.55 87,852.51 -0.37 0 0 0.64 0.36 0 0.48 1
5 3 77,061.54 73,457.84 81,639.81 -0.75 0 0 0.77 0.23 0 0.14 1
5 6 88,551.20 83,525.90 94,021.97 -2.46 0 1 0.99 0.01 1 0.00 0
5 12 86,208.66 81,674.15 92,063.01 -2.11 0 1 0.98 0.02 1 0.01 0

10 1 73,541.80 63,850.89 87,174.75 -0.16 0 0 0.56 0.44 0 0.59 1
10 3 80,412.50 76,238.45 85,358.87 -1.26 0 0 0.89 0.11 1 0.06 1
10 6 83,870.92 79,013.57 89,082.21 -1.76 0 1 0.96 0.04 1 0.03 0
10 12 84,325.66 79,719.89 90,354.48 -1.83 0 1 0.96 0.04 1 0.02 1

Period 13-60; H2 sample mean = 310,081.52; CI = [276,143.83 ; 345,924.87]; normal test is passed.
1 1 202,294.48 182,515.68 226,967.17 5.10 1 0 0.00 1.00 1 0.00 1
1 3 173,871.12 155,304.29 199,159.49 6.47 1 0 0.00 1.00 1 0.00 1
1 6 170,902.52 155,128.02 187,639.86 7.04 1 0 0.00 1.00 1 0.00 0
1 12 171,478.82 158,147.75 184,534.25 7.23 1 0 0.00 1.00 1 0.00 0
5 1 189,142.30 167,370.30 217,095.47 5.53 1 0 0.00 1.00 1 0.00 1
5 3 168,023.52 155,883.18 182,672.19 7.40 1 0 0.00 1.00 1 0.00 0
5 6 160,976.50 146,823.85 175,322.22 7.71 1 0 0.00 1.00 1 0.00 0
5 12 155,991.80 144,912.01 167,930.05 8.17 1 0 0.00 1.00 1 0.00 0

10 1 185,780.54 166,081.82 209,378.16 5.89 1 0 0.00 1.00 1 0.00 1
10 3 160,253.60 149,513.35 171,946.95 7.97 1 0 0.00 1.00 1 0.00 0
10 6 168,517.98 157,229.55 181,539.75 7.47 1 0 0.00 1.00 1 0.00 0
10 12 164,548.96 150,218.44 179,740.53 7.47 1 0 0.00 1.00 1 0.00 0

Period 1-60; H2 sample mean = 382,300.52; CI = [345,064.13 ; 423,971.07]; normal test is passed.
1 1 258,211.52 236,529.80 284,284.12 5.20 1 0 0.00 1.00 1 0.00 1
1 3 236,034.66 216,798.24 263,542.49 6.18 1 0 0.00 1.00 1 0.00 0
1 6 246,382.30 229,383.61 264,429.12 6.07 1 0 0.00 1.00 1 0.00 0
1 12 250,820.46 236,401.41 265,188.79 6.04 1 0 0.00 1.00 1 0.00 0
5 1 264,450.06 240,577.02 293,804.26 4.78 1 0 0.00 1.00 1 0.00 0
5 3 245,085.06 231,097.36 262,556.44 6.26 1 0 0.00 1.00 1 0.00 0
5 6 249,527.70 234,028.95 265,385.17 6.03 1 0 0.00 1.00 1 0.00 0
5 12 242,200.46 229,501.52 256,022.39 6.49 1 0 0.00 1.00 1 0.00 0

10 1 259,322.34 236,919.13 289,346.04 5.02 1 0 0.00 1.00 1 0.00 1
10 3 240,666.10 227,956.42 253,629.43 6.57 1 0 0.00 1.00 1 0.00 0
10 6 252,388.90 238,314.50 266,530.81 5.98 1 0 0.00 1.00 1 0.00 0
10 12 248,874.62 234,501.89 264,274.27 6.09 1 0 0.00 1.00 1 0.00 0

124

Table 5.5: Cross significance tests: Look-Ahead and Sarsa; GARCH(1,1)

sample Look-Ahead Sarsa
mean H2 H3 H4 H5 H6 H12 0.1 0.3 0.4 0.5 0.6 0.7 1

Period 1-12
H2 72,219.00 0 0 0 0 0 0 1 1 1 1 1 1 1
H3 64,071.36 0 0 0 0 0 0 1 1 1 1 1 1 1
H4 62,253.06 0 0 0 0 0 0 1 1 1 1 1 1 1
H5 59,859.90 0 0 0 0 0 0 1 1 1 1 1 1 1
H6 61,453.86 0 0 0 0 0 1 1 1 1 1 1 1 1
H12 69,539.66 0 0 0 0 -1 0 1 1 1 1 1 1 1
S0.1 82,247.48 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0
S0.3 81,375.74 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0
S0.4 81,445.44 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0
S0.5 80,044.56 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0
S0.6 81,874.68 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0
S0.7 84,121.70 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0
S1.0 84,668.28 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0

Period 13-60
H2 310,081.52 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
H3 270,369.24 1 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1
H4 254,758.30 1 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1
H5 243,655.04 1 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1
H6 239,951.12 1 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1
H12 200,561.66 1 1 1 1 1 0 0 0 0 0 0 0 0
S0.1 176,901.12 1 1 1 1 1 0 0 0 0 0 0 0 0
S0.3 176,856.26 1 1 1 1 1 0 0 0 0 0 0 0 0
S0.4 176,286.74 1 1 1 1 1 0 0 0 0 0 0 0 0
S0.5 176,637.76 1 1 1 1 1 0 0 0 0 0 0 0 0
S0.6 176,629.98 1 1 1 1 1 0 0 0 0 0 0 0 0
S0.7 175,695.92 1 1 1 1 1 0 0 0 0 0 0 0 0
S1.0 175,630.16 1 1 1 1 1 0 0 0 0 0 0 0 0

Period 1-60
H2 382,300.52 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
H3 334,440.60 1 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1
H4 317,011.36 1 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1
H5 303,514.94 1 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1
H6 301,404.98 1 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1
H12 270,101.32 1 1 1 0 0 0 0 0 0 0 0 0 0
S0.1 259,148.60 1 1 1 1 1 0 0 0 0 0 0 0 0
S0.3 258,232.00 1 1 1 1 1 0 0 0 0 0 0 0 0
S0.4 257,732.18 1 1 1 1 1 0 0 0 0 0 0 0 0
S0.5 256,682.32 1 1 1 1 1 0 0 0 0 0 0 0 0
S0.6 258,504.66 1 1 1 1 1 0 0 0 0 0 0 0 0
S0.7 259,817.62 1 1 1 1 1 0 0 0 0 0 0 0 0
S1.0 260,298.44 1 1 1 1 1 0 0 0 0 0 0 0 0

125

Sarsa does not show significant differences in performance for different learning rates. For sim-

plicity of presentation, Sarsa with the learning rate of 0.5 is selected to represent Sarsa in Table 5.6

and Figure 5.3.

Table 5.6: Cross significance tests: Look-Ahead, Sarsa, and Sarsa w/o z & σ2; GARCH(1,1)

sample Look-Ahead S Sarsa w/o GARCH(1,1) state variables
treatment mean 2 6 12 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Period 1-12
H2 72,219.00 0 0 0 1 1 1 1 1 1 1 1 1 1 1
H6 61,453.86 0 0 1 1 1 1 1 1 1 1 1 1 1 1
H12 69,539.66 0 -1 0 1 1 1 1 1 1 1 1 1 1 1
S 80,044.56 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0

A0.1 83,090.02 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0
A0.2 80,536.30 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0
A0.3 80,929.28 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0
A0.4 81,578.92 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0
A0.5 81,300.24 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0
A0.6 80,347.90 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0
A0.7 81,980.48 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0
A0.8 80,287.12 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0
A0.9 79,466.22 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0
A1.0 82,813.74 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0

Period 13-60
H2 310,081.52 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
H6 239,951.12 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
H12 200,561.66 1 1 0 0 0 0 0 0 0 0 0 -1 0 0
S 176,637.76 1 1 0 0 0 0 0 0 0 0 0 0 0 0

A0.1 175,832.94 1 1 0 0 0 0 0 0 0 0 0 0 0 0
A0.2 175,862.76 1 1 0 0 0 0 0 0 0 0 0 0 0 0
A0.3 177,015.94 1 1 0 0 0 0 0 0 0 0 0 0 0 0
A0.4 176,668.10 1 1 0 0 0 0 0 0 0 0 0 0 0 0
A0.5 176,597.12 1 1 0 0 0 0 0 0 0 0 0 0 0 0
A0.6 176,949.54 1 1 0 0 0 0 0 0 0 0 0 0 0 0
A0.7 176,977.76 1 1 0 0 0 0 0 0 0 0 0 0 0 0
A0.8 173,607.68 1 1 1 0 0 0 0 0 0 0 0 0 0 0
A0.9 176,304.38 1 1 0 0 0 0 0 0 0 0 0 0 0 0
A1.0 176,714.20 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Period 1-60
H2 382,300.52 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
H6 301,404.98 1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
H12 270,101.32 1 0 0 0 0 0 0 0 0 0 0 0 0 0
S 256,682.32 1 1 0 0 0 0 0 0 0 0 0 0 0 0

A0.1 258,922.96 1 1 0 0 0 0 0 0 0 0 0 0 0 0
A0.2 256,399.06 1 1 0 0 0 0 0 0 0 0 0 0 0 0
A0.3 257,945.22 1 1 0 0 0 0 0 0 0 0 0 0 0 0
A0.4 258,247.02 1 1 0 0 0 0 0 0 0 0 0 0 0 0
A0.5 257,897.36 1 1 0 0 0 0 0 0 0 0 0 0 0 0
A0.6 257,297.44 1 1 0 0 0 0 0 0 0 0 0 0 0 0
A0.7 258,958.24 1 1 0 0 0 0 0 0 0 0 0 0 0 0
A0.8 253,894.80 1 1 0 0 0 0 0 0 0 0 0 0 0 0
A0.9 255,770.60 1 1 0 0 0 0 0 0 0 0 0 0 0 0
A1.0 259,527.94 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5.3 displays BCa confidence intervals and means of aggregate costs obtained with the

2-period Look-Ahead method, 6-period Look-Ahead method, 12-period Look-Ahead method, Sarsa

with the learning rate of 0.5 and Sarsa without GARCH(1,1) state variables using learning rates from

0.1 to 1.0. The Sarsa method without GARCH(1,1) model state variables is labeled “A#” where

the suffix number indicates the learning rate. Table 5.6 shows a cross significance test summary of

the Look-Ahead method, Sarsa, and Sarsa without latent state variables.

In addition to Sarsa, Rollout is used with 1, 5, 10 and 50 simulations with simulation horizons of

1, 3, 6 and 12 periods. Table 5.7 shows a summary of the cross significance tests of aggregate costs

126

H2 H6 H12 S A0.1 A0.2 A0.3 A0.4 A0.5 A0.6 A0.7 A0.8 A0.9 A1.0
5

6

7

8

9

x 10
4 Periods: 1−12

co
st

H2 H6 H12 S A0.1 A0.2 A0.3 A0.4 A0.5 A0.6 A0.7 A0.8 A0.9 A1.0
1.5

2

2.5

3

3.5

x 10
5 Periods: 13−60

co
st

H2 H6 H12 S A0.1 A0.2 A0.3 A0.4 A0.5 A0.6 A0.7 A0.8 A0.9 A1.0

2.5

3

3.5

4

x 10
5 Periods: 1−60

co
st

Figure 5.3: Average aggregate costs from Sarsa and Sarsa w/o z & σ2; GARCH(1,1)

H2 RN Ra1 Ra3 Ra6 Ra Rb1 Rb3 Rb6 Rb Rc1 Rc3 Rc6 Rc Rd1 Rd3 Rd6 Rd

6

8

10

12
x 10

4 Periods: 1−12

co
st

H2 RN Ra1 Ra3 Ra6 Ra Rb1 Rb3 Rb6 Rb Rc1 Rc3 Rc6 Rc Rd1 Rd3 Rd6 Rd

2

3

4
x 10

5 Periods: 13−60

co
st

H2 RN Ra1 Ra3 Ra6 Ra Rb1 Rb3 Rb6 Rb Rc1 Rc3 Rc6 Rc Rd1 Rd3 Rd6 Rd

2

3

4

5
x 10

5 Periods: 1−60

co
st

Figure 5.4: Average aggregate costs from Rollout; GARCH(1,1)

obtained with Look-Ahead and Rollout. Figure 5.4 shows BCa confidence intervals and means of

aggregate costs obtained with 2-period Look-Ahead and Rollout. Rollout is labeled “Rx#” where

the uncapitalized letter denotes the number of simulations: ‘a’ for N = 1, ‘b’ for N = 5, ‘c’ for N

= 10, and ‘d’ for N = 50. The suffix number denotes the simulation horizon. The absence of this

number indicates 12-period horizon. For example, the label Rb3 means Rollout with 5 simulations

and a 3-period simulation horizon. The label Rd means Rollout with 50 simulations and 12-period

simulation horizon.

It should be noted that the label RN, shown in Table 5.7 and Figure 5.4, indicates a Rollout

method using an average projection. This Rollout method uses N = 1, T = 1, and an (s,S) policy

that, instead of using a regular simulation, uses an average projection to evaluate cost. It is run

only to be compared to a regular Rollout using N = 1 and T = 1 (labeled Ra1).

127

Table 5.7: Cross significance tests: Look-Ahead and Rollout; GARCH(1,1)

Look-Ahead Rollout
sample N = 1 N = 5 N = 10 N = 50
mean H2 H6 H12 RN 1 3 6 12 1 3 6 12 1 3 6 12 1 3 6 12

Period 1-12
H2 72,219.00 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
H6 61,453.86 0 0 1 0 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1
H12 69,539.66 0 -1 0 0 1 0 -1 0 0 -1 0 0 0 -1 0 1 0 0 0 1
RN 62,495.86 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1

Rollout
N T
1 1 101,167.74 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 0
1 3 80,196.92 0 -1 0 -1 1 0 -1 0 0 -1 0 0 0 -1 0 0 0 0 0 0
1 6 60,048.68 0 0 1 0 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1
1 12 63,978.64 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
5 1 74,833.02 0 -1 0 -1 1 0 -1 0 0 -1 0 0 0 -1 0 0 0 0 0 0
5 3 59,826.46 0 0 1 0 1 1 0 0 1 0 0 1 1 0 0 1 0 0 1 1
5 6 61,492.16 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
5 12 74,891.28 0 -1 0 -1 1 0 -1 -1 0 -1 -1 0 0 -1 -1 1 -1 -1 -1 0

10 1 74,359.86 0 -1 0 0 1 0 -1 0 0 -1 0 0 0 -1 0 0 0 0 0 0
10 3 59,364.14 0 0 1 0 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1
10 6 66,114.00 0 -1 0 0 1 0 -1 0 0 0 0 1 0 -1 0 1 0 0 0 1
10 12 81,970.96 -1 -1 -1 -1 0 0 -1 -1 0 -1 -1 -1 0 -1 -1 0 -1 -1 -1 0
50 1 69,701.82 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
50 3 60,928.78 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
50 6 68,874.68 0 -1 0 0 1 0 -1 0 0 -1 0 1 0 -1 0 1 0 0 0 1
50 12 80,876.42 -1 -1 -1 -1 0 0 -1 -1 0 -1 -1 0 0 -1 -1 0 -1 -1 -1 0

Period 13-60
H2 310,081.52 0 -1 -1 0 0 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1
H6 239,951.12 1 0 -1 0 1 0 0 -1 1 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1
H12 200,561.66 1 1 0 1 1 1 0 -1 1 -1 -1 -1 1 0 -1 0 1 -1 -1 -1
RN 273,276.80 0 0 -1 0 1 0 -1 -1 0 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1

Rollout
N T
1 1 342,712.88 0 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
1 3 265,272.58 1 0 -1 0 1 0 0 -1 0 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1
1 6 231,378.82 1 0 0 1 1 0 0 -1 1 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1
1 12 170,396.46 1 1 1 1 1 1 1 0 1 0 0 0 1 0 -1 0 1 0 0 0
5 1 297,242.04 0 -1 -1 0 1 0 -1 -1 0 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1
5 3 168,878.42 1 1 1 1 1 1 1 0 1 0 0 0 1 0 -1 0 1 0 0 0
5 6 164,868.72 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0
5 12 168,837.32 1 1 1 1 1 1 1 0 1 0 0 0 1 0 -1 0 1 -1 0 0

10 1 272,222.48 0 0 -1 0 1 0 0 -1 0 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1
10 3 176,742.46 1 1 0 1 1 1 1 0 1 0 0 0 1 0 -1 0 1 -1 0 0
10 6 148,003.02 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 0 0
10 12 174,005.32 1 1 0 1 1 1 1 0 1 0 0 0 1 0 -1 0 1 -1 -1 0
50 1 251,982.76 1 0 -1 0 1 0 0 -1 1 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1
50 3 152,749.60 1 1 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 0 0 0
50 6 158,996.16 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 1 1 0 0 0
50 12 162,406.70 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0

Period 1-60
H2 382,300.52 0 -1 -1 0 0 0 -1 -1 0 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1
H6 301,404.98 1 0 0 0 1 1 0 -1 1 -1 -1 -1 1 -1 -1 -1 0 -1 -1 -1
H12 270,101.32 1 0 0 1 1 1 0 -1 1 -1 -1 0 1 -1 -1 0 1 -1 -1 -1
RN 335,772.66 0 0 -1 0 1 0 0 -1 0 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1

Rollout
N T
1 1 443,880.62 0 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
1 3 345,469.50 0 -1 -1 0 1 0 -1 -1 0 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1
1 6 291,427.50 1 0 0 0 1 1 0 -1 1 -1 -1 -1 1 -1 -1 0 1 -1 -1 -1
1 12 234,375.10 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 1 1 -1 0 0
5 1 372,075.06 0 -1 -1 0 1 0 -1 -1 0 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1
5 3 228,704.88 1 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1
5 6 226,360.88 1 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1
5 12 243,728.60 1 1 0 1 1 1 1 0 1 -1 -1 0 1 0 -1 0 1 -1 0 0

10 1 346,582.34 0 -1 -1 0 1 0 -1 -1 0 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1
10 3 236,106.60 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 1 1 0 0 0
10 6 214,117.02 1 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1
10 12 255,976.28 1 1 0 1 1 1 0 -1 1 -1 -1 0 1 -1 -1 0 1 -1 -1 0
50 1 321,684.58 1 0 -1 0 1 0 -1 -1 0 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1
50 3 213,678.38 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1
50 6 227,870.84 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 1 1 0 0 0
50 12 243,283.12 1 1 1 1 1 1 1 0 1 -1 -1 0 1 0 -1 0 1 -1 0 0

128

H2 Ha1 Ha3 Ha6 Ha Hb1 Hb3 Hb6 Hb Hc1 Hc3 Hc6 Hc

5
6
7
8
9

x 10
4 Periods: 1−12

co
st

H2 Ha1 Ha3 Ha6 Ha Hb1 Hb3 Hb6 Hb Hc1 Hc3 Hc6 Hc

1.5

2

2.5

3

3.5
x 10

5 Periods: 13−60

co
st

H2 Ha1 Ha3 Ha6 Ha Hb1 Hb3 Hb6 Hb Hc1 Hc3 Hc6 Hc
2

3

4

x 10
5 Periods: 1−60

co
st

Figure 5.5: Average aggregate costs from HO; GARCH(1,1)

Figure 5.5 shows BCa confidence intervals and means of aggregate costs obtained with 2-period

Look-Ahead and HO. The HO method is labeled “Hx#”, where the uncaptalized letter indicates

the number of simulations and the suffix number indicates the duration of the simulation horizon.

Due to the high computation requirement, HO is used with N = {1, 5, 10} (labeled Ha, Hb, Hc)

and T = {1, 3, 6, 12} (labeled 1, 3, 6 and the absence of number respectively). Table 5.8 shows a

summary of the cross significance tests of aggregate costs obtained with Look-Ahead and HO.

Using HO with different parameters does not significantly affect inventory cost. For simplicity

of presentation HO with N = 1 and T = 3 is selected to represent HO compared to other methods

as shown in Figure 5.6 and Table 5.9.

H2 H6 H12 S Ra1 Ra3 Ra6 Ra Rb1 Rb3 Rb6 Rb Rc1 Rc3 Rc6 Rc Rd1 Rd3 Rd6 Rd HO

6

8

10

12

x 10
4 Periods: 1−12

co
st

H2 H6 H12 S Ra1 Ra3 Ra6 Ra Rb1 Rb3 Rb6 Rb Rc1 Rc3 Rc6 Rc Rd1 Rd3 Rd6 Rd HO

2

3

4
x 10

5 Periods: 13−60

co
st

H2 H6 H12 S Ra1 Ra3 Ra6 Ra Rb1 Rb3 Rb6 Rb Rc1 Rc3 Rc6 Rc Rd1 Rd3 Rd6 Rd HO

2

3

4

5

x 10
5 Periods: 1−60

co
st

Figure 5.6: Average aggregate costs from different methods; GARCH(1,1)

129

Table 5.8: Cross significance tests: Look-Ahead and HO; GARCH(1,1)

Look-Ahead Hindsight Optimization
sample N = 1 N = 5 N = 10

treatment mean H2 H6 H12 1 3 6 12 1 3 6 12 1 3 6 12
Period 1-12

H2 72,219.00 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1
H6 61,453.86 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1
H12 69,539.66 0 -1 0 -1 0 0 1 0 1 1 1 0 1 1 1
HO

N T
1 1 55,917.04 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1
1 3 62,163.54 0 0 0 -1 0 1 1 0 1 1 1 0 1 1 1
1 6 75,479.78 0 -1 0 -1 -1 0 0 -1 0 1 1 0 0 1 1
1 12 79,341.64 -1 -1 -1 -1 -1 0 0 -1 0 1 1 -1 0 0 0
5 1 75,307.76 0 -1 0 -1 0 1 1 0 1 1 1 0 1 1 1
5 3 77,061.54 0 -1 -1 -1 -1 0 0 -1 0 1 1 -1 0 1 1
5 6 88,551.20 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 0 0
5 12 86,208.66 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 0 0

10 1 73,541.80 0 -1 0 -1 0 0 1 0 1 1 1 0 1 1 1
10 3 80,412.50 -1 -1 -1 -1 -1 0 0 -1 0 1 1 -1 0 0 0
10 6 83,870.92 -1 -1 -1 -1 -1 -1 0 -1 -1 0 0 -1 0 0 0
10 12 84,325.66 -1 -1 -1 -1 -1 -1 0 -1 -1 0 0 -1 0 0 0

Period 13-60
H2 310,081.52 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
H6 239,951.12 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
H12 200,561.66 1 1 0 0 0 -1 -1 0 -1 -1 -1 0 -1 -1 -1
HO

N T
1 1 202,294.48 1 1 0 0 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1
1 3 173,871.12 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
1 6 170,902.52 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 12 171,478.82 1 1 1 1 0 0 0 0 0 0 -1 0 0 0 0
5 1 189,142.30 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
5 3 168,023.52 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
5 6 160,976.50 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
5 12 155,991.80 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0

10 1 185,780.54 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
10 3 160,253.60 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
10 6 168,517.98 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
10 12 164,548.96 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

Period 1-60
H2 382,300.52 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
H6 301,404.98 1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
H12 270,101.32 1 0 0 0 -1 0 0 0 0 0 -1 0 -1 0 0
HO

N T
1 1 258,211.52 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 3 236,034.66 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 6 246,382.30 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 12 250,820.46 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
5 1 264,450.06 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
5 3 245,085.06 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
5 6 249,527.70 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
5 12 242,200.46 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

10 1 259,322.34 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
10 3 240,666.10 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
10 6 252,388.90 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
10 12 248,874.62 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

130

Table 5.9: Cross significance tests: Look-Ahead, Sarsa, Rollout and HO; GARCH(1,1)

Look-Ahead S Rollout HO
sample N = 1 N = 5 N = 10 N = 50
mean H2 H6 H12 1 3 6 12 1 3 6 12 1 3 6 12 1 3 6 12

Period 1-12
H2 72,219.00 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
H6 61,453.86 0 0 1 1 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0
H12 69,539.66 0 -1 0 1 1 0 -1 0 0 -1 0 0 0 -1 0 1 0 0 0 1 0
S 80,044.56 -1 -1 -1 0 0 0 -1 -1 0 -1 -1 0 0 -1 -1 0 -1 -1 -1 0 -1

Ra1 101,167.74 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 0 -1
Ra3 80,196.92 0 -1 0 0 1 0 -1 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0
Ra6 60,048.68 0 0 1 1 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0
Ra 63,978.64 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
Rb1 74,833.02 0 -1 0 0 1 0 -1 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0
Rb3 59,826.46 0 0 1 1 1 1 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0
Rb6 61,492.16 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
Rb 74,891.28 0 -1 0 0 1 0 -1 -1 0 -1 -1 0 0 -1 -1 1 -1 -1 -1 0 -1
Rc1 74,359.86 0 -1 0 0 1 0 -1 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0
Rc3 59,364.14 0 0 1 1 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0
Rc6 66,114.00 0 -1 0 1 1 0 -1 0 0 0 0 1 0 -1 0 1 0 0 0 1 0
Rc 81,970.96 -1 -1 -1 0 0 0 -1 -1 0 -1 -1 -1 0 -1 -1 0 -1 -1 -1 0 -1
Rd1 69,701.82 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
Rd3 60,928.78 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
Rd6 68,874.68 0 -1 0 1 1 0 -1 0 0 -1 0 1 0 -1 0 1 0 0 0 1 0
Rd 80,876.42 -1 -1 -1 0 0 0 -1 -1 0 -1 -1 0 0 -1 -1 0 -1 -1 -1 0 -1
HO 62,163.54 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0

Period 13-60
H2 310,081.52 0 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1
H6 239,951.12 1 0 -1 -1 1 0 0 -1 1 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1 -1
H12 200,561.66 1 1 0 0 1 1 0 -1 1 -1 -1 -1 1 0 -1 0 1 -1 -1 -1 0
S 176,637.76 1 1 0 0 1 1 1 0 1 0 0 0 1 0 -1 0 1 -1 0 0 0

Ra1 342,712.88 0 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Ra3 265,272.58 1 0 -1 -1 1 0 0 -1 0 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1 -1
Ra6 231,378.82 1 0 0 -1 1 0 0 -1 1 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1 -1
Ra 170,396.46 1 1 1 0 1 1 1 0 1 0 0 0 1 0 -1 0 1 0 0 0 0
Rb1 297,242.04 0 -1 -1 -1 1 0 -1 -1 0 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1
Rb3 168,878.42 1 1 1 0 1 1 1 0 1 0 0 0 1 0 -1 0 1 0 0 0 0
Rb6 164,868.72 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0
Rb 168,837.32 1 1 1 0 1 1 1 0 1 0 0 0 1 0 -1 0 1 -1 0 0 0
Rc1 272,222.48 0 0 -1 -1 1 0 0 -1 0 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1 -1
Rc3 176,742.46 1 1 0 0 1 1 1 0 1 0 0 0 1 0 -1 0 1 -1 0 0 0
Rc6 148,003.02 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 0 0 0
Rc 174,005.32 1 1 0 0 1 1 1 0 1 0 0 0 1 0 -1 0 1 -1 -1 0 0
Rd1 251,982.76 1 0 -1 -1 1 0 0 -1 1 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1 -1
Rd3 152,749.60 1 1 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 0 0 0 0
Rd6 158,996.16 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0
Rd 162,406.70 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0
HO 173,871.12 1 1 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0

Period 1-60
H2 382,300.52 0 -1 -1 -1 0 0 -1 -1 0 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1
H6 301,404.98 1 0 0 -1 1 1 0 -1 1 -1 -1 -1 1 -1 -1 -1 0 -1 -1 -1 -1
H12 270,101.32 1 0 0 0 1 1 0 -1 1 -1 -1 0 1 -1 -1 0 1 -1 -1 -1 -1
Sarsa 256,682.32 1 1 0 0 1 1 0 0 1 -1 -1 0 1 -1 -1 0 1 -1 -1 0 0
Ra1 443,880.62 0 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Ra3 345,469.50 0 -1 -1 -1 1 0 -1 -1 0 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1 -1
Ra6 291,427.50 1 0 0 0 1 1 0 -1 1 -1 -1 -1 1 -1 -1 0 1 -1 -1 -1 -1
Ra 234,375.10 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 -1 0 0 0
Rb1 372,075.06 0 -1 -1 -1 1 0 -1 -1 0 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1 -1
Rb3 228,704.88 1 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 0
Rb6 226,360.88 1 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 0
Rb 243,728.60 1 1 0 0 1 1 1 0 1 -1 -1 0 1 0 -1 0 1 -1 0 0 0
Rc1 346,582.34 0 -1 -1 -1 1 0 -1 -1 0 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1 -1
Rc3 236,106.60 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0
Rc6 214,117.02 1 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 0
Rc 255,976.28 1 1 0 0 1 1 0 -1 1 -1 -1 0 1 -1 -1 0 1 -1 -1 0 0
Rd1 321,684.58 1 0 -1 -1 1 0 -1 -1 0 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1 -1
Rd3 213,678.38 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 0
Rd6 227,870.84 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0
Rd 243,283.12 1 1 1 0 1 1 1 0 1 -1 -1 0 1 0 -1 0 1 -1 0 0 0
HO 236,034.66 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0

131

Figure 5.6 shows the BCa confidence intervals and means of aggregate costs obtained with Look-

Ahead, Sarsa (labeled S), Rollout (labeled Rx#), and HO (labeled HO). Table 5.9 shows a summary

of cross significance tests of aggregate costs obtained with Look-Ahead, Sarsa, Rollout and HO.

Regarding computation time expended, the experiments of Sarsa without the GARCH(1,1) state

variables required only around 1 to 10 percent of the the time expended for Sarsa with all state

variables included. HO experiments required approximately 4 to 60 times the computation time

required for Rollout with equivalent settings of N and T . While computation time required when

using Sarsa depends mainly on the size of the RBF, time required for Rollout and HO depend on the

number of simulations and simulation horizons. With an (s,S) policy as its base policy, Rollout with

N = 50, T = 12, requires the most computation time compared to other settings, roughly the same

amount of time as Sarsa with all state variables. Rollout with other settings required much less time

than Sarsa. It should be noted that the timing information mentioned here is only a rough estimate,

since experiments were not run in a controlled environment, rather in a multi-server/multi-user

computing system with variable computational loads.

5.4 Discussions and Conclusions

Both with and without GARCH(1,1) state variables, Sarsa performs effectively when compared

to Look-Ahead methods. Using learning rate values within the tested range (β = {0.1, 0.2, ..., 1.0})

does not significantly change aggregate costs. They all work equally well. Inventory cost performance

using Sarsa without GARCH(1,1) state variables does not differ significantly from using Sarsa with

all state variables included. This finding mitigates a concern about the effect of the latent variables

introduced by the GARCH(1,1) model when applying a learning-based ADP. The explanation may

be that these latent state variables do not have a direct effect on a transition cost. They only give

extra information about uncertainty in the variance in the demand forecast. The robust nature of

Sarsa with some information missing shown in our experiments confirms the conclusions made by

Csáji and Monostori [34] that temporal difference learning can, to some extent, tolerate inaccurate

information.

While the inventory cost performance is not significantly different, Sarsa without GARCH(1,1)

state variables requires less computation time than Sarsa with all state variables. Sarsa, with

all state variables, is used with RBF having 175,000 centers for a 6-dimension state-action space.

Sarsa without GARCH(1,1) state variables is used with RBF having only 700 centers, for a 4-

dimension state-action space. Using Sarsa with 700 RBF centers requires less than 1 percent of the

132

computation time to update weight2 required by Sarsa with 175,000 RBF centers. The exploitation

of reduced state representation is worth further investigation. Sutton and Barto [114] and Bertsekas

and Tsitsiklis [15] discuss using feature extraction, which is a general concept of preparing ADP state

variables by preprocessing the system raw state variables to extract some of the more important

aspects of a state. Sutton and Barto [114] commented that feature extraction allows utilization of

domain knowledge in a learning-based ADP.

Regarding to the performance of Rollout, Rollout yields significantly lower aggregate costs than

the Look-Ahead method when Rollout is used with an adequate number of simulations with a long

enough simulation horizon. Rollout with one simulation (N = 1) shows a monotonic trend in relation

to average total cost and the simulation horizon. This monotonic trend is not observed when using

Rollout with N > 1. Figure 5.7 displays plots of average on-site inventory levels (mean x), average

period costs (mean cost) and the maximum period costs (max cost) for the Rollout simulation.

T1 T3 T6 T12

0

50

100

mean x:N1

T1 T3 T6 T12

4000

5000

6000

7000

mean cost:N1

T1 T3 T6 T12

6

7

8

x 10
4 max cost:N1

T1 T3 T6 T12

0

50

100

150

200

250

mean x:N5

T1 T3 T6 T12

4000

4500

5000

5500

6000

mean cost:N5

T1 T3 T6 T12

7

8

9

10
x 10

4 max cost:N5

T1 T3 T6 T12
0

50

100

150

200

250

mean x:N10

T1 T3 T6 T12

3500

4000

4500

5000

5500

mean cost:N10

T1 T3 T6 T12

4.5

5

5.5

6

x 10
4 max cost:N10

T1 T3 T6 T12
0

100

200

300

mean x:N50

T1 T3 T6 T12
3500

4000

4500

5000

5500
mean cost:N50

T1 T3 T6 T12

4.5

5

5.5

6
x 10

4 max cost:N50

Figure 5.7: Average inventory and average and maximum costs from Rollout

2 The actual total time expended when using Sarsa without GARCH(1,1) state variables is around 1 to 10 percent
of the amount of time expended when using Sarsa with all state variables. As mentioned earlier, time expended for
each experiment is only a rough estimate of computation required by each method. There were many uncontrollable
factors including different server computing capabilities and loads. In addition, this total time includes all activities
in experiments including accessing disk storage to save data.

133

For every N , the plots show an upward trend of on-site inventory levels with increasing T . The

downward trend is more apparent in average costs when using the lower N and in the maximum

cost when using the higher N . The explanation for this may lie in the role of parameters N and T in

approximating state-action cost. With a few simulations (small N) Rollout may not have seen many

rare demand surges, so a longer horizon (large T) helps promote a more representative averaging

effect, which results in a better decisions for the average case. With more simulations and a longer

horizon (large N and T) Rollout may have a better chance to see rare demand surge, which, even

though rare, can substantially effect the total cost. Such a surge may drive Rollout to choose a more

conservative action, such as stocking a higher inventory level, to safeguard against such a negative

effect. Therefore, it results in higher average cost, but lower maximum cost. Figure 5.8 displays

empirical CDF of on-site inventory and period cost.

−300 −200 −100 0 100 200 300
0

0.2

0.4

0.6

0.8

1
cdf x:N1

0 2 4 6 8 10

x 10
4

0

0.2

0.4

0.6

0.8

1
cdf cost:N1

0.5 1 1.5 2 2.5

x 10
4

0.6

0.7

0.8

0.9

zoom cdf cost:N1

−400 −200 0 200 400 600
0

0.2

0.4

0.6

0.8

1
cdf x:N5

0 2 4 6 8 10

x 10
4

0

0.2

0.4

0.6

0.8

1
cdf cost:N5

2.46 2.48 2.5 2.52 2.54 2.56

x 10
4

0.94

0.95

0.96

0.97

0.98

0.99

zoom cdf cost:N5

−400 −200 0 200 400 600
0

0.2

0.4

0.6

0.8

1
cdf x:N10

0 2 4 6 8

x 10
4

0

0.2

0.4

0.6

0.8

1
cdf cost:N10

4.435 4.44 4.445 4.45 4.455 4.46

x 10
4

0.996

0.998

1

zoom cdf cost:N10

−200 0 200 400 600
0

0.2

0.4

0.6

0.8

1
cdf x:N50

0 1 2 3 4 5 6

x 10
4

0

0.2

0.4

0.6

0.8

1
cdf cost:N50

4 4.01 4.02 4.03 4.04 4.05

x 10
4

0.994

0.996

0.998

1

zoom cdf cost:N50

T1
T3
T6
T12

Figure 5.8: CDF Plot of inventory and single-period cost for each Rollout setting.

It shows that for most cases a longer simulation horizon the CDF approaches 1.0 more quickly.

This scenario means that the likelihood of having high costs is lower, when using a longer simulation

horizon. This supports the explanation that using a larger T make Rollout choose actions more

conservatively.

134

Regarding the number of simulations used in Rollout, Table 5.10 displays the average, standard

deviation, minimum total costs and maximum total costs in the columns labeled ‘mean’, ‘std’, ‘min’

and ‘max’, respectively. A summary of cross significance tests for Rollout is also provided in Table

5.10. Note that the table has a rearranged order of the presentation of simulation horizon and

number of simulation(s).

Table 5.10: Rollout numbers of simulations and total costs

Rollout
Rollout T = 1 T = 3 T = 6 T = 12
N T mean std min max 1 5 10 50 1 5 10 50 1 5 10 50 1 5 10 50
1 1 443,881 175,337 176,611 889,314 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
5 1 372,075 171,653 172,034 930,075 1 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
10 1 346,582 127,031 137,375 727,967 1 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
50 1 321,685 102,817 118,110 553,761 1 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
1 3 345,470 138,251 99,055 734,338 1 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
5 3 228,705 71,590 117,153 409,686 1 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1
10 3 236,107 76,082 113,408 538,262 1 1 1 1 1 0 0 0 1 0 0 0 0 0 1 0
50 3 213,678 45,829 133,999 343,796 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1
1 6 291,428 106,443 78,198 624,453 1 1 1 1 1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 -1
5 6 226,361 69,516 132,268 402,963 1 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1
10 6 214,117 59,941 119,637 362,721 1 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1
50 6 227,871 56,781 143,600 387,366 1 1 1 1 1 0 0 0 1 0 0 0 0 0 1 0
1 12 234,375 73,380 113,876 456,552 1 1 1 1 1 0 0 -1 1 0 0 0 0 0 1 0
5 12 243,729 54,109 157,341 373,204 1 1 1 1 1 -1 0 -1 1 -1 -1 0 0 0 0 0
10 12 255,976 50,269 157,244 362,195 1 1 1 1 1 -1 -1 -1 0 -1 -1 -1 -1 0 0 0
50 12 243,283 51,551 157,651 348,886 1 1 1 1 1 -1 0 -1 1 -1 -1 0 0 0 0 0

Using Rollout with 5, 10 or 50 simulations does not significantly alter total costs over all values of

the simulation horizon. When horizons of 1, 3 and 6 are used, Rollout with 5, 10 and 50 simulations

results in significantly lower total costs than Rollout with one simulation. However, Rollout with

one simulation has a lower total cost than Rollout with 5, 10 and 50 simulations when using a

12-period simulation horizon. The explanation for this may lie in the failure to capture variation in

cost performance. Although Rollout with one simulation has the lowest average cost, the variation

in its cost performance shows up in a high standard deviation (36% higher than the second largest

value), the lowest minimum cost and the highest maximum cost. In addition, Rollout with one

simulation has the greatest standard deviations for all lengths of the simulation horizon (T = 1, 3, 6

and 12). The greater number of simulations provides an improved consistency of cost performance,

as indicated in the values of standard deviation that decrease with more simulations (with a few

exceptions that may be caused by variations of a stochastic nature of the problem). It should be

noted that the non-monotonically downward trend in maximum costs when using a higher number

of simulations is evident.

An alternative to Rollout, HO is another simulation-based ADP. HO performs significantly better

than the Look-Ahead method. The two parameters, N and T , of HO are not as critical as in Rollout.

In addition, HO does not require extra decisions in its set up. The non-criticality of its parameter

135

values makes HO an attractive alternative to providing a good measure of how a simulation-based

ADP method performs without a choice of a base policy or criticality of choices of its parameter

values.

When Sarsa, Rollout and HO methods are compared, Rollout (with N = 5 to 50 and T = 3 to

6) performs significantly better than the 12-period Look-Ahead method and Sarsa over a total of 60

periods. Rollout (with N = 10, T = 6 and N = 50, T = 3) can outperform Sarsa significantly in

the last 48 periods. Rollout and HO performance appear to be equivalent. Although not confirmed

with significance tests, Rollout (with N = 10, T = 6 and N = 50, T = 3) has a noticeable lower

average total cost than HO. Sarsa, Rollout and HO can be used for an inventory problem with

AR1/GARCH(1,1) demand and can outperform a simple controller such as the Look-Ahead method.

Sarsa can be employed when a model of the problem is not available. Using Sarsa without latent state

variables introduced by the GARCH(1,1) model is seen to not deteriorate inventory cost performance.

On the other hand, leaving out the latent state variables is beneficial because the computation times

are reduced. When there is a model of the problem, Rollout is recommended for better performance.

HO can deliver similar performance to Rollout. Using HO does not involve determining critical

parameter values, but HO requires substantially longer computation times.

136

CHAPTER 6

CONCLUSIONS

6.1 Summary of Research Issues

Inventory management is one of the major functions of business. A well-managed inventory can

help business stay competitive by keeping its cash flow at a controllable level. Since inventory man-

agement is an essential operation in many different businesses, inventory problems appear in various

forms and the forms often change over time. Recently, Zhang [130] found evidence of temporal de-

mand heteroscedasticity, GARCH(1,1), in inventory data and showed that there are significant costs

when GARCH(1,1) has not been accounted for. He proposed an analytical solution to the problem.

However, his analytical approach is too problem specific. A slightly change in the structure of the

problem requires rigorous reanalysis of the problem and redevelopment of the solution. However,

Approximate Dynamic Programming (ADP) has been shown to have the generality and flexibility

to overcome the shortcomings of this and many other analytical approaches. Accordingly, ADP has

gained much attention in inventory management research.

The main research objective here is to design a more general ADP solution approach for practical

inventory problems. This objective can be broken down into the following four research investigations

corresponding to major issues of ADP applications.

6.1.1 Investigation of Function Approximation

One of the reasons ADP is gaining interest is its model-free property1 associated with learning-

based ADP. A learning-based ADP method uses updatable function approximation along with a

learning strategy to determine how to control a process without needing assumptions about a demand

distribution. A Radial Basis Function (RBF) and other approximation functions belonging to a

linear family are recommended by Sutton and Barto [114] for learning-based ADP. According to

Barreto and Anderson [9], RBF is one of the most widely-used choices for function approximation

for most applications, but, as the time of this writing, it has not yet been applied to an inventory

problem. RBF has three sets of parameters: centers, scales and weights. In order to operate RBF in

a linear mode, RBF centers and scales are predefined. RBF weights will be updated online during

the learning process. Billings et al. [17] commented that RBF is normally set up with a single scale

and then Chen et al. [26]’s Orthogonal Least Square Learning Algorithm (OLS) is used to determine

its centers. This conventional setup is developed for supervised learning applications where data is

available before RBF is designed. Therefore, when the conventional RBF setup is used with ADP,

initial data is required. However, RBF performance may deteriorate, when data acquired online is

different from the initial data. For inventory problems, a restricted range of the state-action space

1 A model-free property means that an inventory solution technique can work well without requires the knowledge
of a demand distribution.

138

can be reasonably estimated. Therefore, it was possible to specify RBF centers based on this domain

knowledge. How RBF should be set up, either with initial data or with prior knowledge, had not

been explored previously.

6.1.2 Investigation of Learning Strategies

The second essential issue of learning-based ADP is a learning strategy. There are many learning

strategies. (See Gosavi [49] for recent review of learning-based ADP.) Sarsa is a well-known learning-

based ADP method. It uses a one-step temporal difference learning (TD0) technique. Sarsa(λ) is

Sarsa bootstrapped by Eligibility Trace. Eligibility Trace is intended to speed up the learning process

in TD(0). An Eligibility Trace technique has been applied successfully in many other applications,

including studies of Tesauro [116] and Gelly and Silver [43], but it has never been investigated for an

inventory problem before. The use of Residual Gradient guarantees convergence of the algorithm,

but associated slow learning speed have been reported by Baird [7]. To improve Residual Gradient

learning speed, Direct Credit Back was developed here using a bootstrapping technique similar

to Eligibility Trace. An explicit evaluation of these learning ADP methods for different kinds of

inventory problems had not been developed previously.

6.1.3 Investigation of the Effect of GARCH Variables

Recently, the GARCH(1,1) model has been found in inventory data. It has been shown to be

significant in inventory control performance by Zhang [130]. The GARCH(1,1) model introduces

latent state variables. These latent state variables will be inadvertently left out if the GARCH(1,1)

model is not accounted for. This has posed a challenge to a model-free property of a learning-based

ADP method. How a learning-based ADP method performs under the absence of these latent state

variables had not been studied previously.

6.1.4 Investigation of Simulation-based Methods

In addition to a learning-based ADP method, there is a simulation-based ADP method. A

simulation-based ADP method is an approach intermediate between an analytical approach and a

learning-based ADP method. An analytical approach requires a model of a problem and a rigorous

development of an analytical solution. A learning-based ADP method requires minimum knowledge

of the problem. A simulation-based ADP method requires a model of a problem and, rather than

using a rigorous analysis, it uses a simulation to provide information for assisting action selection.

Rollout, one of the simulation-based ADP methods investigated here, uses the model and a pre-

specified base policy in its Monte Carlo simulator to evaluate the consequence of actions. Hindsight

139

Optimization (HO) uses the hindsight simulator to provide approximate costs. Though it has been

used in other applications, Rollout had been investigated for inventory problems in only one study.

HO had not been studied for an inventory problem previously. Also, how these simulation-based ADP

methods perform compared to a learning-based ADP method had not been investigated previously.

6.2 Summary of Research Approach

To answer the research questions above, simulated-based experiments are conducted. Each in-

ventory controller is run for 50 replications of each of 60 time-indeterminate periods. An aggregate

cost is used as a performance indicator. Conclusions are drawn mainly from statistical significance

tests, either the T test or the Wilcoxon Rank Sum test, depending on degree of normality of the

data.

6.2.1 Function Approximation

A learning-based ADP method has two major components: a learning strategy and a function

approximation. In Chapter 3, a Radial Basis Function is investigated for a function approximation.

First, to emphasize the benefit of RBF as an approximation function for a cost-to-go value, one-

period Look-Ahead (H1) with an approximate cost-to-go is compared to H1 without a cost-to-go.

Second, different RBF scales are investigated. The midpoint strategies (strategies for setting RBF

scales) are experimentally investigated for midpoint parameters from 0.1 to 0.9. Third, different

numbers of RBF centers are investigated. Evenly distributed structure RBFs are experimentally

investigated for center gap sizes of 5, 10 and 15. Experiments for RBF scales and centers use a

Look-Ahead method with approximate cost-to-go as an inventory controller. The Look-Ahead’s

cost-to-go is approximated with RBF and updated with TD(0). Use of this controller allows us to

study the effect of a cost-to-go approximation more effectively when compared with regular Look-

Ahead, which does not have an approximate cost-to-go. The inventory problem investigated in

this Chapter is a zero leadtime problem with AR1 demand. This problem has a two-dimensional

state-action space, which allows simple visualization.

6.2.2 Learning Strategies

In Chapter 4, learning strategies are investigated. A new development of Direct Credit Back,

based on the Residual Gradient method and the Eligibility Trace technique, is discussed. The well-

known Sarsa method, its bootstrapping extension Sarsa(λ), the guaranteed convergence Residual

Gradient method and the method developed in this research, Direct Credit Back, are investigated in

both zero and one-period leadtime problems. Running experiments with both zero and one-period

140

leadtime problems allows us to study the performance of each learning scheme in different leadtime

settings. In a nonzero leadtime inventory problem, there is a partially delayed return, because the

delivery leadtime affects only a part of its single-period cost. A holding or shortage cost is delayed

according to a leadtime, but a replenishment cost is still immediately affected by an action.

6.2.3 The Effect of GARCH Variables and Simulation-based Methods

In Chapter 5, both learning- and simulation-based ADP methods are investigated. All methods

are investigated using a one-period leadtime problem with AR1/GARCH(1,1) demand. This problem

allows investigation of the ADP performances under the presence of the GARCH(1,1) model. Based

on conclusions from Chapter 3 and 4, Sarsa is chosen as a learning-based ADP method to compare

with simulation-based ADP methods, Rollout and HO. First, Sarsa, with all state variables, is

compared to Sarsa without GARCH(1,1)’s latent state variables to study an effect of the missing

variables. Then Sarsa, Rollout and HO are compared.

6.2.4 Research Results

The experimental results have shown the effectiveness of the evenly distributed structure of RBF

centers for cost-to-go approximation. The density of RBF centers can be determined with Akaike

Information Criteria (AIC) when sample data is available. RBF scales can be efficiently assigned

with the half-midpoint strategy.

Comparing to Sarsa(λ) and Residual Gradient, our experiments show Sarsa to be the most

suitable learning strategy for both zero- and one-period inventory problems. Eligibility Trace, rep-

resented by Sarsa(λ), did not show any potential to improve Sarsa performance in either problem.

Although Direct Credit Back achieved lower average costs than Residual Gradient, the improvement

is not confirmed by significance tests at a 0.05 significance level.

For a problem with the AR1/GARCH(1,1) demand, Sarsa performed indifferently either with or

without the latent state variables. These results support the robustness of learning-based ADP and

the adequacy of ADP’s model-free property. Sarsa’s learning rate value between 0.1 to 1.0 did not

show a significantly different performance.

Simulation-based ADP Rollout showed significantly better performance than learning-based ADP

Sarsa. Use of different Rollout parameters (the number of simulations N at a horizon T) produced

significantly different performance. With N > 1, Rollout delivers a better average performance, but,

with a very high N and a long T , Rollout shows conservative behavior. That is a higher inventory

level with its accompanying slightly higher average cost was produced, but with a lower maximum

cost. HO performance is very close to Rollout, but choices of its parameters are not as critical.

141

6.3 Discussion of Research Results

6.3.1 Function Approximation

To address the issue of function approximation the evenly distributed structure and the midpoint

strategy were used and were effective in setting up RBF. Setting up RBF with these strategies

is a more general systematic approach as compared to other choices made in previous studies of

ADP application to inventory problems. A Look-up table, used by Jiang and Sheng [64], Kim

et al. [71], Kwon et al. [75] and Kim et al. [70], is the most widely-used implementation for an

approximate cost-to-go in ADP inventory control. A Look-up table is simple to implement, but

it can not be scaled up to handle large state-action space. An aggregation, used by Giannoccaro

and Pontrandolfo [47] and Chaharsooghi et al. [25], is an extension of a Look-up table. It is simple

to implement, but its parameter aggregation size is domain specific. Setting this size too large

causes a too coarse discretization and low approximation quality. Setting this size too small causes

a slow learning process. A smaller aggregation size causes a requirement of more entries to cover the

same state-action space. Since the major learning scheme TD(0) is very localized, the more entries

an aggregation has, the more well-distributed samples are required to allow the learning process

to converge. RBF can be conceived as a way to interpolate coarse size aggregations, where RBF

centers are entry points and RBF scales are interpolation parameters. In addition, RBF’s ability to

deliver continuous approximation makes it more suitable for a wider range of applications, including

real-time feedback control. (See Balakrishnan et al. [8] for a review of ADP applications to feedback

controllers.) A linear combination of features, used by Van Roy et al. [118], is a good alternative

for an approximate cost-to-go. Its drawback would only be that it is very problem specific and

there is as yet no systematic approach to it. A Multilayer Perceptron Neural Network (MLP), used

by Van Roy et al. [118] and Shervais et al. [108], requires high technical and domain expertise to

tune it for learning-based ADP. RBF, with the setting strategies developed in our research, have

filled in a gap in the current spectrum of approximate cost-to-go choices. RBF provides a smoother

function approximation than an aggregation and our setting strategies provide a more systematic

setup than either a linear combination of features or MLP. Although conclusions here are drawn

from experiments with ADP methods for inventory problems, RBF and the set up strategies, the

evenly distributed structure and the midpoint strategy developed here, are not limited to ADP or

to inventory problems. They can be used for other applications as well.

6.3.2 Learning Strategies

For the issue of a learning strategy, Sarsa is found to be more suitable for an inventory problem

than Sarsa(λ), Residual Gradient and Direct Credit Back. Sarsa(λ) is expected to be an improve-

142

ment over Sarsa for a delayed-return problem. Even though a leadtime may be nonzero, an inven-

tory problem is not a delayed-return problem. Although a realization of a holding or penalty cost

is delayed according to a leadtime, a replenishment cost and an in-transit inventory are observed

immediately after an action is taken. Therefore Sarsa(λ) could not provide an improvement over

the average performance of Sarsa. Sarsa(λ) is an implementation of Eligibility Trace and Sarsa is

an implementation of Temporal Difference learning, TD(0). Eligibility Trace is a bootstrap learn-

ing process in TD(0) with a state-action trajectory. As illustrated in Sutton and Barto [114], its

parameter λ controls how much bootstrapping there will be. When λ is closer to one, the behavior

of the learning process will be closer to a Monte Carlo method, which fully bootstraps state-action

cost approximation with the whole trajectory. When λ is closer to zero, the behavior of the learning

process will be closer to TD(0), which corrects the state-action cost approximation only based on

the most recent state-action pair.

Although a bootstrapping technique in Sarsa(λ) did not show an improvement on average perfor-

mance, it was determined that it may help safeguard against a worst-case scenario. The investigation

in Chapter 4 shows the relations between a high value of bootstrapping parameter λ and conser-

vative actions. These relations are similar to high values of N and T in the Rollout method as

discussed in Chapter 5. Both high value of λ in Sarsa(λ) and high values of N and T in Rollout

cause a high degree of bootstrapping in a corresponding method. The relations between a high

degree of bootstrapping and conservative behavior may reflect the fact that an approximate state-

action cost is closer to an expected value. Since a consequence of an inventory shortage is usually

substantially worse than a cost of an overstock, this may lead ADP to associate a riskier action to

a higher expected cost and eventually make ADP behave conservatively. In addition to decision

and control applications, temporal difference learning has been utilized to model and study brain

function, as discussed by Schultz et al. [105], Seymour et al. [106] and Dayan [37]. The found insights

into the stronger relationship between bootstrapping experience and conservative behavior may help

neuroscientists understand how we make decisions in relating experience to risk taking preference.

Motivated by the bootstrapping approach, we developed Direct Credit Back to improve perfor-

mance of the Residual Gradient method. Direct Credit Back uses bootstrapping to speed up the

learning process in the Residual Gradient method. The experimental results indicated that Direct

Credit Back had lower average aggregate costs than the Residual Gradient method. This suggests a

potential for improvement, but the limited range of problems investigated here may not fully have

identified bootstrapping potential. Within the scope of delayed-return problems, Direct Credit Back

may have a better chance to show an advantage over the Residual Gradient method.

143

6.3.3 The Effect of GARCH variables

Relative to the issue of GARCH(1,1)’s latent state variables, Sarsa’s ability to work well with

some information missing is in agreement with Csáji and Monostori [34] in that TD(0) can tolerate

some degree of inaccurate information. The explanation may be that these latent state variables do

not have a direct effect on the cost function. They only give extra information about the uncertainty

of the variance in the estimate of the demand. The results shown here reaffirm that Sarsa is a model-

free solution and assuage Zhang [130]’s concern about the significance of the GARCH(1,1) model.

6.3.4 Simulation-based Methods

Despite receiving less attention, Rollout was shown to be the best option when a model of

the problem is available. Rollout has been investigated in Choi et al. [30]. Choi et al. [30] used

heuristic search over sets of pre-specified (s,S) policies as Rollout’s base policy. The heuristic search

is computationally time consuming compared to the EOQ parameterized (s,S) policy used in our

study. Rollout parameters, N and T , were shown to be critical to the overall performance, but it is

safe to set them to high values, e.g., N = 10; T = 6, to produce an averaging effect. If N and T

happen to be set too high, Rollout just takes more computation and behaves more conservatively.

Flexibility of a learning-based ADP method may be a factor that would make it more appealing

than a simulation-based ADP method. However, most inventory problems can be easily formulated

given known uncertainty in demand, leadtime and production capacity. In addition, there are many

available forecasting techniques that provide a fair estimate of uncertainty. A forecasting technique

and an update scheme can be incorporated into a simulation-based method to provide estimates of

the unknown values and their variance for a simulation. The estimates can be updated periodically,

rather than preset as in conventional simulation-based ADP. Then, given the estimates, the simu-

lation can use a model of known system dynamics to simulate system transition and consequences.

Having the notion of uncertainty separated from the known dynamics allows flexibility of implemen-

tation and increases adaptability of a simulation-based ADP solution. For example, when a cost

structure changes, only a model of a known system dynamics will be updated. The demand forecast

does not need to be revised.

Lastly, what we found in this study provides the bases for improved strategies to design an

appropriate ADP method for inventory problems. The results help assuage the concern about

learning-based ADP’s performance in an environment with latent state variables. Furthermore it

provides insights into relations among simulation parameters, behaviors and the performance of both

Rollout and Hindsight Optimization. These findings can become building blocks for larger and more

144

complex applications. The greater understanding hopefully will help promote efficient inventory

management and aid in the transfer of inventory research into practice.

6.4 Limitations of the Research

Powell [97] identified three issues in ADP. They are (1) step sizes, (2) balancing exploration and

exploitation and (3) the evaluation of ADP solutions. Our experimental results show insignificant

difference among step sizes (in some literature learning rates), between 0.1 and 1.0. However, it is

possible that we may have passed a specific learning rate that would make Sarsa perform at its best

and this could change the conclusions. Rollout and HO are simulation-based ADP, so they are not

subjected to an issue of step sizes nor to a balance between exploration and exploitation.

Exploration of Sarsa and Sarsa(λ) in Chapter 4 is performed in the context of zero initialization

of the cost-to-go values in a minimization problem and a heuristic search using simulated anneal-

ing. In addition to zero initialization, exploration of Sarsa in Chapter 5 is done more explicitly

with the addition of noise to the optimal action which was found by an exhaustive search. Both

approaches were tested to assure that they resulted in reliable and comparable inventory controllers.

In addition, there are some differences in code implementation over the period of the research. The

differences include restructuring the code to be compliant with the then new version 7.7.0 of Matlab

and to be more computationally efficient, as more complicated problems were investigated. These

implementation differences were tested to ensure consistency in the results.

It should be noted that the optimal action search, a∗ = arg mina∈A(s) f(s, a) where f(s, a) is a

cost function, is done over a feasible set of actions, A(s). A feasible set is obtained from a set of

only the actions that are projected to an operating condition. Much too low replenishment that

could most certainly lead to inventory shortage and much too high replenishment that could most

certainly lead to excess inventory capacity are excluded from the feasible set. This mechanism of

obtaining A(s), used for all methods, helps make fair comparisons among different methods. It

also helps stabilize learning-based ADP control in its early stages and allows faster convergence for

learning-based ADP methods. However, since A(s) is obtained from an average projection based on

an inventory model, this makes Sarsa not operate under a completely model-free setting. This issue

should not affect the conclusions on robustness of Sarsa over GARCH(1,1)’s latent state variables,

because two GARCH(1,1)’s variables, z and σ2, have only an effect on variance of demand and this

variance is discarded in an average projection. Therefore, awareness or knowledge of GARCH(1,1)’s

variables does not affect feasible sets used in our experiments. Both affirmation of Sarsa’s robustness

against GARCH(1,1) latent state variables and its contradiction to Zhang [130]’s significance of

GARCH(1,1) in inventory management are still valid.

145

Our conclusions are drawn from experimental results comparing different ADP methods to a

benchmark Look-Ahead method as well as to each other. To evaluate inventory control, Simchi-Levi

et al. [111] identified three approaches. They are empirical comparison, worst-case analysis and

average-case analysis, but Simchi-Levi et al. [111] observed that worst-case or average-case analysis

may be technically very difficult. From an ADP research perspective, Powell [97] identified the

comparison to a benchmark as a significant approach to evaluate ADP methods. Therefore, even

though this may not be the best way to evaluate the method theoretically, empirical comparison with

a benchmark may currently be the best practical way to evaluate ADP, as well as other inventory

management solution approaches.

In order to draw conclusions from a variety of results, we used statistical significance tests as

a main analysis tool. Although this approach helps confirm the differences and rule out confusion

brought on by the results’s inherent variability, it may overlook small differences when a null hy-

pothesis cannot be rejected. There are many results in our experiments indicating consistent trends

in average values, but significance tests did not confirm the differences. The use of significance tests

may have caused us to miss some important relations.

Lastly, RBF, our choice for a cost-to-go approximation, was not specifically compared to an

aggregation approach. Sarsa with an aggregation approach requires less computation. We did,

however, include an aggregation approach in our pre-experiments. They show that the aggregation

approach performs well as an alternative to a cost-to-go approximation. It is possible that an

aggregation approach may be more suitable than RBF for this problem setting (a single echelon

inventory problem with discrete-value state/action variables). However, we investigated RBF for its

potential for scalability and applicability beyond single-echelon inventory management.

6.5 Ideas for Future Research

The most direct extension to this study is to investigate how learning-based and simulation-based

ADP methods perform in a multi-echelon inventory problem. For a single-echelon problem, we were

able to directly use a system state as an ADP state and a system action, which is a scalar, as an

ADP action. A multi-echelon problem deals with more inventory units. Its system state and action

will have more dimensions. Using a system state and a system action as an ADP state and an

ADP action poses substantial computational difficulties. In addition to general ADP techniques for

scalability, domain knowledge should be exploited.

On the issue of an objective function, some previous multi-echelon inventory studies used a target

service level as an objective rather than operating costs. Relying on a target service level alone may

146

not be a good idea, because a deviation from a target level may have an asymmetrical consequence.

For example, a service level that is slightly over a target level may be preferable to a service level

that is slightly under a target level. In addition, distribution of costs among inventory units, which

may represent different business entities, may be unfair, as is discussed in Zhao and Xie [131]. The

issue of cost/profit distribution should be taken into account in order to scale inventory control to

multi-echelon cases.

Regarding evaluation, independent Rollout setups for each inventory unit can serve as bench-

marks in multi-echelon problems. Also, our findings in single-echelon inventory problems serve as

building blocks to the attainment of a practical solution for multi-echelon problems, with some ad-

ditional challenges, including coordinating among each inventory unit, composing an appropriate

objective function, establishing problem criteria and handling of larger state and action space.

In addition to its potential extension to a multi-echelon system, this study has laid the foundation

for investigating many issues warranting further investigation. Serendipitously, this study found

a link between high bootstrapping parameters and ADP conservative behavior. This finding is

new and needs further study to further confirm its nature as well as to better formulate the new

relationship. Understanding this relationship may contribute to a new design of ADP, which may

explicitly incorporate a factor to control conservative behavior, or to create a systematic strategy to

determine ADP parameters to balance out average and worst case performance.

In addition to the investigation of and extension of existing methods, Direct Credit Back is

newly developed here. Though significance tests did not confirm, its average costs indicated that

Direct Credit Back has a potential improvement over the Residual Gradient method, but with extra

requirements of memory, computation and implementation effort. The development of Direct Credit

Back may be said to be still in an early stage of development. A better credit back mechanism should

be established to make it simpler to implement and more efficient to employ. Though the benefit

of Direct Credit Back was not be shown to be significant here, possibly because of a nature of an

inventory problem as a fast-return problem, the potential of Direct Credit Back is worth investigation

in a delayed-return problem. In addition, using linear approximation RBF allows Sarsa to perform

stably. Investigation of a nonlinear approximation function, e.g. MLP, may allow Residual Gradient

and Direct Credit Back to show greater viability. Since the Residual Gradient method is guaranteed

to converge, Direct Credit Back, as the Residual Gradient extension, should be investigated to see

if its convergence is guaranteed.

On the issue of ADP robustness against the GARCH(1,1) model, our results support ADP model-

free robustness and agree with Csáji and Monostori [34]’s work. This contradicts Zhang [130]’s claim

147

of the significance of GARCH(1,1) in inventory problem, at least when an inventory is managed by a

learning-based ADP method. Our experiments of simulation-based ADP methods assume a known

correct model of the problem. The performance of a simulation-based ADP method when its model

does not include GARCH(1,1) is unexplored. The investigation of simulation-based ADP robustness

against the GARCH(1,1) model may agree with Zhang [130] or eliminate concern about GARCH(1,1)

completely, when ADP is applied.

The current study compares learning-based and simulation-based ADP methods to each other.

As mentioned earlier, each method has its own strength. Learning-based ADP is more adaptive.

Simulation-based ADP is more effective at reducing cost and does so more reliably. A combination of

learning-based and simulation-based schemes may provide a good balance between adaptibility and

reliability. A forecasting technique can be used to estimate uncertainty and variance, or a distribu-

tion, for a simulation. Then, with known system dynamics, simulation can be used to approximate

a state-action value. A forecasting technique provides adaptibility, while a simulation provides reli-

ability as it reduces variation in control quality. A hybrid system may provide a new adaptive and

reliable solution for an inventory problem as well as for other decision/control applications. Kim

et al. [71] has started in this direction. They used known system dynamics to simulate consequences

of actions not taken, after demand is observed. Then, not only is a value of a taken action updated,

but values of all other actions are also updated. Therefore, their approach provides a fast-adapting

inventory control system. However, Kim et al.’s work is limited to a stateless inventory problem.

The extension to a state-based case will produce a wider range of applications.

Another issue worth mentioning is that of a large action search space. In ADP, the decided action

is either a found as an optimal action, at = mina∈A(s) Ĉ(st, a), or its explorative modification, e.g.

noise addition, softmax and ǫ-greedy. When an action is multi-dimensional, the action search space

can be quite large. A heuristic search is generally a way to alleviate the problem of searching over

a large space. Another option is a policy gradient method, which has been investigated in Baxter

and Bartlett [11], Baxter et al. [12], Sutton et al. [115] and Cao [23]. Rather than relying on an

approximate state-action cost, their policy gradient method uses an approximate policy, π(st, at; θ) =

Pr[a = at|s = st, θ], to determine an action directly. A temporal difference learning technique

corrects approximate state-action costs and the decision is made based on these approximate costs.

A policy gradient method does not keep track of state-action costs. It corrects policy parameters θ

according to a new observation and the decision is made based on the approximate policy π(·, ·; θ).

This approach is still an active research area. When it yields a stable controller, policy gradient is

expected to be more efficient, especially when the state-action space is large. Therefore, the policy

gradient method is worth investigation for a multi-echelon problem.

148

Finally, as mentioned in Section 6.4, we did not spend much effort in fine tuning Sarsa’s learning

rate. Given a constant step size strategy, fine tuning a learning rate seems to be a daunting task,

especially when each experiment is computationally expensive to conduct. Powell [97] provides a

recent review of advanced step size strategies. Some of advanced step size schemes, e.g. BAKF, can

adjust themselves according to observed regression errors. However, determining a learning rate for

ADP is a different problem from determining a step size for a regression application, this being an

issue of exploration/exploitation balance. It may be more suitable for ADP to have a learning rate

strategy adjusting a learning rate according to a degree of exploration, instead of regression errors.

Nevertheless, an advanced learning rate strategy may help mitigate an issue of fine tuning a learning

rate and this is worth investigating.

149

BIBLIOGRAPHY

[1] H. Akaike. A new look at the statistical model identification. IEEE Transactions on automatic

control, 19(6):716–723, 1974.

[2] C. W. Anderson. Approximating a policy can be easier than approximating a value function,

computer science technical report cs-00-101. Technical report, Colorado State University, 2000.

[3] C. W. Anderson. CS545: Machine Learning (Fall 2006), Class Lecture, 2006.

[4] K. J. Arrow. The genesis of “optimal inventory policy”. Operations Research, 50(1):1–2, 2002.

[5] K. J. Arrow, T. Harris, and J. Marschak. Optimal inventory policy. Econometrica, 19(3):

250–272, 1951.

[6] S. Axsäter. Using the deterministic eoq formula in stochastic inventory control. Management

Science, 42(6):830–834, 1996.

[7] L. Baird. Residual algorithms: Reinforcement learning with function approximation. In Pro-

ceedings of the 12th International Conference on Machine Learning, pages 30–37. Morgan

Kaufmann, 1995.

[8] S. N. Balakrishnan, J. Ding, and F. L. Lewis. Issues on stability of adp feedback controllers for

dynamic systems. IEEE Transactions on Systems, Man, and Cybernatics-Part B, (4):913–917,

2008.

[9] A. M. S. Barreto and C. W. Anderson. Restricted gradient-descent algorithm for value-function

approximation in reinforcement learning. Artificial Intelligence, 172:454–482, 2008.

[10] A. R. Barron. Universal approximation bounds for superpositions of a sigmoidal function.

IEEE Transactions on Information Theory, 39(3), 1993.

[11] J. Baxter and P. Bartlett. Direct gradient-based reinforcement learning: I. gradient estimation

algorithms. Technical report, Computer Sciences Laboratory, Australian National University,

1999.

[12] J. Baxter, L. Weaver, and P. Bartlett. Direct gradient-based reinforcement learning: Ii. gra-

dient ascent algorithms and experiments. Technical report, Computer Sciences Laboratory,

Australian National University, 1999.

[13] R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, 1957.

[14] D. P. Bertsekas. Dynamic Programming: Deterministic and Stochastic Models. Prentice-Hall,

NJ, 1987.

[15] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, Belmont,

MA, USA, 1996.

[16] D. Bertsimas and A. Thiele. A robust optimization approach to inventory theory. Operations

Research, 54(1):150–168, 2006.

[17] S. A. Billings, H. L. Wei, and M. A. Balikhin. Generalized multiscale radial basis function

networks. Neural Networks, 20:1081–1094, 2007.

[18] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[19] R. G. Brown. Decision rules for inventory management. 1967.

[20] R. G. Brown. Production and Inventory Control Handbook, James H. Greene editor, chapter

Inventory Control Theory. McGraw-Hill, 3rd edition, 1997.

[21] K. P. Burnham and D. Anderson. Model Selection and Multi-Model Inference. Springer, 3rd

edition, 2003.

[22] J. A. Buzacott. Economic order quantities with inflation 1975. Operational Research Quarterly,

26(3):553–558, 1975.

[23] X.-R. Cao. A basic formula for online policy gradient algorithms. IEEE Transactions on

Automatic Control, 50(5):696–699, 2005.

[24] A. S. Caplin. The variability of aggregate demand with (s,s) inventory policies. Economica,

53(6):1395–1409, 1985.

[25] S. K. Chaharsooghi, J. Heydari, and S. H. Zegordi. A reinforcement learning model for supply

chain ordering management: An application to the beer game. Decision Support System, 45:

949–959, 2008.

151

[26] S. Chen, C. F. N. Cowan, and P. M. Grant. Orthogonal least square learning algorithm for

radial basis function networks. IEEE Transactions on Neural Networks, 2(2):302–309, Mar

1991.

[27] X. Chen and D. Simchi-Levi. Coordinating inventory control and pricing strategies with

random demand and fixed ordering cost: The finite horizon case. Operations Research, 52(6):

887–896, 2004.

[28] X. Chen and D. Simchi-Levi. Coordinating inventory control and pricing strategies with

random demand and fixed ordering cost: The infinite horizon case. Mathematics of Operations

Research, 29(3):698–723, 2004.

[29] V. L. R. Chinthalapati, N. Yadati, and R. Karumanchi. Learning dynamic prices in multiseller

electronic retail markets with price sensitive customers, stochastic demands, and inventory

replenishments. IEEE Transactions on Systems, Man, and Cybernatics Part C, 36:92–106,

2006.

[30] J. Choi, M. J. Realff, and J. H. Lee. Approximate dynamic programming: Application to

process supply chain management. AIChe Journal, 52(7), 2006.

[31] E. K. P. Chong, R. L. Givan, and H. S. Chang. A framework for simulation-based network

control via hindsight optimization. In Proceedings of the 39th IEEE Conference on Decision

and Control, 2000.

[32] P. Cichosz. Truncating temporal differences: On the efficient implementation of TD(λ) for

reinforcement learning. Journal of Artificial Intelligence Research, 2:287–318, 1995.

[33] A. J. Clark and H. E. Scarf. Optimal policies for a multi-echelon inventory problem. Manage-

ment Science, 6(4):475–490, 1960.

[34] B. C. Csáji and L. Monostori. Value function based reinforcement learning in changing marko-

vian environments. Journal of Machine Learning Research, 9:1679–1709, 2008.

[35] G. Cybenko. Approximations by superpositions of a sigmoidal functions. Mathematics of

Control, Signals, and Systems, 2:303–314, 1989.

[36] T. K. Das, A. Gosavi, S. Mahadevan, and N. Marchalleck. Solving semi-markov decision

problems using average reward reinforcement learning. Management Science, 45(4):560–574,

1999.

152

[37] P. Dayan. Prospective and retrospective temporal difference learning. Computation in Neural

Systems, 20(1):32–46, 2009.

[38] J. W. Demmel. Applied Numerical Linear Algebra. Society of Industrial and Applied Mathe-

matics, 1997.

[39] E. V. Denardo. Dynamic Programming: Models and Applications. Prentice-Hall, NJ, 1982.

[40] D. Erlenkotter. Ford whitman harris and the economic order quantity model. Operations

Research, 38(6):937–946, Nov-Dec 1990.

[41] T. Falas and A. Stafylopatis. Implementing temporal-difference learning with the scaled gra-

dient algorithm. Neural Processing Letters, 22:361–375, 2005.

[42] A. Federgruen and A. Heching. Combined pricing and inventory control under uncertainty.

Operations Research, 47(3):454–475, 1999.

[43] S. Gelly and D. Silver. Combining online and offline knowledge in UCT. In ICML ’07:

Proceedings of the 24th international conference on Machine learning, pages 273–280, New

York, NY, USA, 2007. ACM.

[44] S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance dilemma.

Neural Computation, 4(1):1–58, Jan 1992.

[45] A. George and W. B. Powell. Adaptive stepsizes for recursive estimation with applications in

approximate dynamic programming. Machine Learning, 65:167–198, 2006.

[46] Y. Gerchak and Y. Wang. Periodic-review inventory models with inventory-level-dependent

demand. Naval Research Logistics, 41:99–116, 1994.

[47] I. Giannoccaro and P. Pontrandolfo. Inventory management in supply chains: a reinforcement

learning approach. International Journal of Production Economics, 78:153–161, 2002.

[48] G. A. Godfrey and W. B. Powell. An adaptive, distribution-free algorithm for the newsvendor

problem with censored demands, with applications to inventory and distribution. Management

Science, 47(8):1101–1112, Aug 2001.

[49] A. Gosavi. Reinforcement learning: A tutorial survey and recent advances. INFORMS Journal

on Computing, 21(2):178–192, 2009.

[50] M. T. Hagan and M. Menhaj. Training feed-forward networks with the marquardt algorithm.

IEEE Transactions on Neural Networks, 5(6):989–993, Mar 1994.

153

[51] M. T. Hagan, H. B. Demuth, and M. H. Beale. Neural Network Design. Martin Hagan, 2002.

[52] F. W. Harris. How many parts to make at once. Factory, The Magazine of Management, 10:

135–136, 152, 1913.

[53] W. H. Hausman. Sequential decision problems: A model to exploit existing forecasts. Man-

agement Science, 16:B93–B111, 1969.

[54] J. Hawkins. A Lagrangian Decomposition Approach to Weakly Coupled Dynamic Optimization

Problems and its Applications. PhD thesis, Massachusetts Institute of Technology, Cambridge,

MA, 2003.

[55] A. C. Hax and D. Candea. Production and Inventory Management. Prentice-Hall, 1984.

[56] S. Haykin. Neural Networks: A Comprehensive Foundation. Macmillan College Publishing

Company, Inc., 1994.

[57] D. Heath and P. Jackson. Modeling the evolution of demand forecasts with application to

safety stock analysis in production/distribution systems. IIE Transactions, 26:17–30, 1994.

[58] D. P. Heyman and M. J. Sobel. Stochastic Models in Operations Research, Vol. II. McGraw-

Hill, NY, 1984.

[59] F. S. Hillier and G. J. Lieberman. Introduction to Operations Research. McGraw-Hill, NY,

6th edition, 2000.

[60] H. Hirano and M. Furuya. Jit Is Flow. PCS Press, 2006.

[61] K. Hornik, M. Stinchcombe, and H. White. Multi-layer feedforward networks are universal

approximators. Neural Networks, 2:359–366, 1989.

[62] T. Iida and P. H. Zipkin. Approximate solutions of a dynamic forecast-inventory model.

Manufacturing and Service Operations Management, 8(4):407–425, Fall 2006.

[63] T. Jaakkola, S. P. Singh, and M. I. Jordan. On the convergence of stochastic iterative dynamic

programming algorithms. Neural Computation, 6:1185–1201, 1994.

[64] C. Jiang and Z. Sheng. Case-based reinforcement learning for dynamic inventory control in a

multi-agent supply chain system. Expert Systems with Applications, 36:6520–6526, 2009.

[65] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey. Journal

of Artificial Intelligence Research, 14:237–285, 1996.

154

[66] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially

observable stochastic domains. Artificial Intelligence, 101:99–134, 1998.

[67] E. L. Kaplan and P. Meier. Nonparametric estimation from incomplete observations. Journal

of the American Statistical Association, 53(282):457–481, 1958.

[68] M. Karakul. Combined Pricing and Procurement Decisions in Stochastic Inventory Control

Theory. PhD thesis, University of Toronto, Canada, 2004.

[69] M. Khouja. The single-period (news-vendor) problem: literature review and suggestions for

future research. Omega, 27:537–553, 1999.

[70] C. O. Kim, J. Jun, J. K. Baek, R. L. Smith, and Y. D. Kim. Adaptive inventory control models

for supply chain management. International Journal of Advanced Manufacturing Technology,

26:1184–1192, 2005.

[71] C. O. Kim, I. H. Kwon, and J. G. Baek. Asynchronous action-reward learning for nonstationary

serial supply chain inventory control. Applied Intelligence, 28:1–16, 2008.

[72] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,

220:671–680, 1983.

[73] P. Kleinau and W. Thonemann. Deriving inventory-control policies with genetic programming.

OR Spectrum, 26:521–546, 2004.

[74] T. Kohonen. Self-Organizing Maps. Springer, 1995.

[75] I. H. Kwon, C. O. Kim, J. Jun, and J. H. Lee. case-based myopic reinforcement learning for

satisfying target service level in supply chain. Expert Systems with Applications, 35:389–397,

2008.

[76] D. Lambert, J. R. Stock, and L. M. Ellram. Fundamentals of Logistics. McGrawHill/Irwin,

1998.

[77] H. L. Lee and C. Billington. Managing supply chain inventory: Pitfalls and opportunities.

Sloan Management Review, Spring 1992.

[78] H. L. Lee, V. Padmanabhan, and S. Whang. Information distortion in a supply chain: The

bullwhip effect. Management Science, 43(4):546–558, 1997.

[79] M. L. Littman. A tutorial on partially observable markov decision processes. Journal of

Mathematical Psychology, 53:119–125, 2009.

155

[80] X. Lu, J.-S. Song, and A. Regan. Inventory planning with forecast updates: Approximate

solutions and cost error bounds. Operations Research, 54(6):1079–1097, November-December

2006.

[81] J. MacQueen. Some methods for classification and analysis of multivariate observation. In

Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability (L.M.

LeCun and J. Neyman, eds.), volume 1, pages 281–291. Berkeley: University of California

Press, 1967.

[82] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval. Cam-

bridge University Press, 2008.

[83] M. F. Moller. A scaled conjugate gradient algorithm for fast supervised learning. Neural

Networks, 6:1525–533, 1993.

[84] E. Naddor. Inventory Systems. John Wiley & Sons, 1966.

[85] S. Nahmias. Myopic approximations for the perishable inventory problem. Management Sci-

ence, 22:1002–1008, 1976.

[86] S. Nahmias and S. A. Smith. Optimizing inventory levels in a two echelon retailer system with

partial lost sales. Management Science, 40:582–596, 1994.

[87] M. J. L. Orr. Introduction to radial basis function networks. Technical report, Institute for

Adaptive and Neural Computation, Division of Informatics, Edinburgh University, 1996. URL

http://www.anc.ed.ac.uk/∼mjo/papers/intro.ps.

[88] O. Özer and W. Wei. Inventory control with limited capacity and advance demand information.

Operations Research, 52(6):988–1000, Nov-Dec 2004.

[89] J. Park and W. Sandberg. Universal approximation using radial-basis-function networks.

Neural Computation, 3:246–257, 1991.

[90] C. D. Paternina-Arboleda and T. K. Das. Intelligence dynamic control policies for serial

production lines. IIE Transactions, 33:65–77, 2001.

[91] R. Paterson and E. A. Silver. Decision Systems for Inventory Management and Production

Planning. John Wiley & Sons, 1979.

[92] N. C. Petruzzi and M. Dada. Pricing and the newsvendor problem: A review with extensions.

Operations Research, 47(2):183–194, 1999.

156

http://www.anc.ed.ac.uk/~mjo/papers/intro.ps

[93] P. Pontrandolfo, A. Gosavi, and O. G. Okobaa. Global supply chain management: a rein-

forcement learning approach. International Journal of Production Research, 40(6):1299–1317,

2002.

[94] E. L. Porteus. Foundations of Stochastic Inventory Theory. Stanford University Press, 2002.

[95] M. J. D. Powell. Radial basis function approximations to polynomials. In Proceeding 12th

Biennial Numerical Analysis Conference (Dundee), pages 223–241, 1987.

[96] W. B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimensionality.

Wiley, 2007.

[97] W. B. Powell. What you should know about approximate dynamic programming. Naval

Research Logistics, 56:239–249, 2009.

[98] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.

John Wiley and Sons, 1994.

[99] M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation learning:

The rprop algorithm. In Proceedings of the IEEE International Conference on Neural Networks,

1993.

[100] S. M. Ross. Introduction to stochastic Dynamic Programming. Academic Press, NY, 1983.

[101] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-

propagating errors. Nature, 323:533–536, 1986.

[102] S. Russell and P. Norvig. Artificial Intelligence A Modern Approach. Prentice Hall, 2nd edition,

2003.

[103] H. E. Scarf. Inventory theory. Operations Research, 50(1):186–191, 2002.

[104] J. J. Schneider and S. Kirkpatrick. Stochastic Optimization. Springer, 2006.

[105] W. Schultz, P. Dayan, and P. R. Montague. A neural substrate of prediction and reward.

Science, 275:1593–1599, 1997.

[106] B. Seymour, J. P. O’Doherty, P. Dayan, M. Koltzenburg, A. K. Jones, R. J. Dolan, K. J.

Friston, and R. S. Frackowiak. Temporal difference models describe higher-order learning in

humans. Nature, 429:664–667, 2004.

157

[107] C. C. Sherbrooke. Optimal Inventory Modeling of Systems. Kluwer Academic, 2nd edition,

2004.

[108] S. Shervais, T. T. Shannon, and G. G. Lendaris. Intelligent supply chain management us-

ing adaptive critic learning. IEEE Transactions on Systems, Man, and Cybernetics-Part A:

Systems and Humans, 33(2), March 2003.

[109] E. A. Silver. Operations research in inventory management: A review and critique. Operations

Research, 29(4), Jul-Aug 1981.

[110] E. A. Silver. Inventory modeling, encyclopedia of operations research and management science.

2001.

[111] D. Simchi-Levi, X. Chen, and J. Bramel. The Logic of Logistics: Theory, Algorithms, and

Applications for Logistics and Supply Chain Management. Springer, 2nd edition, 2005.

[112] S. P. Singh and R. S. Sutton. Reinforcement learning with replacing eligibility traces. Machine

Learning, 22:123–158, 1996.

[113] R. S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning,

3:9–44, 1988.

[114] R. S. Sutton and A. G. Barto. Reinforcement Learning. MIT Press, 1998.

[115] R. S. Sutton, D. Mcallester, S. Singh, and Y. Mansour. Policy gradient methods for reinforce-

ment learning with function approximation. In In Advances in Neural Information Processing

Systems 12, pages 1057–1063. MIT Press, 1999.

[116] G. J. Tesauro. TD-gammon, a self-teaching backgammon program, achieves master level play.

Neural Computation, 6(2):215–219, 1994.

[117] H. Topaloglu and S. Kunnumkal. Approximate dynamic programming methods for an inven-

tory allocation problem under uncertainty. Naval Research Logistics, 53, 2006.

[118] B. Van Roy, D. P. Bertsekas, Y. Lee, and J. N. Tsitsiklis. A neuro-dynamic programming ap-

proach to retailer inventory management. In Proceedings of the IEEE Conference on Decision

and Control, 1997.

[119] A. F. Veinott and H. M. Wagner. Computing optimal (s,s) inventory policies. Management

Science, 11(5):525–552, 1965.

158

[120] G. K. Venayagamoorthy, R. G. Harley, and D. C. Wunsch. Comparison of heuristic dynamic

programming and dual heuristic programming adaptive critics for neurocontrol of a turbogen-

erator. IEEE Transactions on Neural Networks, 13(3), 2002.

[121] H. M. Wagner and T. M. Whitin. Dynamic version of the economic lot size model. Management

Science, 5(1):89–96, 1958.

[122] C. D. J. Waters. Logistics: An Introduction to Supply Chain Management. Palgrave Macmillan,

2003.

[123] C. J. C. H. Watkins. Learning from Dalayed Rewards. PhD thesis, Cambridge University,

1989.

[124] P. Werbos. Handbook Intelligent Control, D. White and D. Sofge Eds., chapter Neurocontrol

and supervised learning: An overview and evaluation. Van Nostrand Rheinhold, New York,

1992.

[125] P. Werbos. Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches, eds.

White, D. A. and Sofge, D. A., chapter Approximate Dynamic Programming for Real-Time

Control and Neural Modeling. Multiscience Press Inc., 1992.

[126] P. Werbos. ADP: Goals, Opportunities and Principles. IEEE Press, 2004.

[127] D. Wetterschereck and T. Dietterich. Improving the performance of radial basis function

networks by learning center locations, pages 1133–1140. Morgan Kaufmann, San Mateo, CA,

1992.

[128] C. C. White III. Encyclopedia of Operations Research and Management Science, edited by

Gass and Harris, chapter Dynamic Programming. Kluwer, 2001.

[129] P. S. You. A heuristic approach for multiple item and location ordering problem with quantity

discount and capacity constraint. Journal of the Operational Research Society, 56(3):307–316,

2005.

[130] X. Zhang. Inventory control under temporal demand heteroscedasticity. European Journal of

Operational Research, 182:127–144, 2007.

[131] X. Zhao and J. Xie. Forecasting errors and the value of information sharing in a supply chain.

International Journal of Production Research, 40(2):311–335, 2002.

[132] P. H. Zipkin. Foundations of Inventory Management. McGraw-Hill/Irwin, 2000.

159

CHAPTER 7

APPENDICES

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5
PDF: a = −1, b = 2

norm
finite norm

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
CDF

Figure 7.1: PDF and CDF of finite range normal distribution

7.1 Finite range normal function

The finite range Normal function, denoted as f(x;µ, σ2, a, b) to indicate all parameters or f(x)

when omitting parameters, is a proper probability function, i.e., f(x) ≥ 0 for all x,
∫∞
−∞ f(x)dx = 1,

and
∫ β

α
f(x)dx = Pr[α ≤ x ≤ β]. It behaves similar to a Normal probability function when x falls

within allowed range, x ∈ [a, b], and f(x) = 0 otherwise.

Equation 7.3 shows how a uniform random number F0 is mapped to finite range normal xF0
such

that xF0
∈ [a, b] and that its value is more likely to be close to µ. Figure 7.1 shows the PDF and

CDF of finite Normal distributions of a = −1, b = 2, µ = 0, and σ = 1.

The finite Normal distribution is shown in a solid line and the regular Normal distribution is

shown in a dashed line. It should be noted that the new distribution may have mean and variance

different from µ and σ2 and it can be very skewed.

It should also be noted that, in implementation, round-off plays an important role and can cause

xF0
to be out of range. For example, when a′ = 2, erf(a′ = 2) ≈ 0.9953 and when a′ = 3, with

4 decimal precision, the error function will be rounded to 1 and when it is reinverted, it may not

fall back to a′. Figure 7.2 shows this round off error. The plot is prepared with four-decimal-point

calculation.

161

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

x
sq

 e
rr

squared error from round−off: (x − erf−1(erf(x))).2

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

x

sq
 e

rr

squared error from round−off: (x − erf−1(erf(x))).2

4 4.5 5 5.5 6
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

x

sq
 e

rr

squared error from round−off: (x − erf−1(erf(x))).2

5.5 5.6 5.7 5.8 5.9 6
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

x

sq
 e

rr

squared error from round−off: (x − erf−1(erf(x))).2

Figure 7.2: Plot of squared error from rounding off in erf−1(erf(x))

f(x) =







1

σ
√

π/2·(erf(b′)−erf(a′))
· exp(−(x−µ)2

2σ2) , x ∈ [a, b]

0 , x < a or x > b
(7.1)

F (x) =















1
erf(b′)−erf(a′) ·

(

erf(x−µ

σ
√

2
) + erf(a′)

)

, x ∈ [a, b]

0 , x < a

1 , x > b

(7.2)

xF0
= µ+ σ

√
2 · erf−1 (F0 · {erf(b′)− erf(a′)}+ erf(a′)) , F0 ∈ [0, 1] (7.3)

where a′ = (a− µ)/(σ
√

2); b′ = (b− µ)/(σ
√

2); the error function1 erf(x) = 2√
π

∫ x

0
exp(−t2)dt; and

erf−1 is an inverse error function.

As a → −∞ and b → ∞, f(x) will degenerate to a normal probability function. When F0 = 0,

xF0
= µ+ σ

√
2 · erf−1(erf(a′)) = a. When F0 = 1, xF0

= µ+ σ
√

2 · erf−1(erf(b′)) = b.

1Although not defined in closed form, this error function is available in Matlab as erf. The inverse error function
erf−1 is also available in Matlab as erfinv.

162

	Abstract of Dissertation
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Research Framework
	Research Statement
	Literature Review
	Research Evaluation

	Background
	Inventory
	Economic Order Quantity
	(s,S) Policies

	Inventory Studies
	Markov decision problems
	Dynamic Programming

	Approximate Dynamic Programming
	Learning-based ADP
	Function Approximation
	Updating scheme
	Simulation-based ADP

	A Radial Basis Function as a cost-to-go approximator
	Inventory problem with AR1 demand
	Preliminary-Experiments
	RBF Scales set up
	Experiments
	Experimental results
	Discussions and Conclusions

	Learning based controllers
	Residual Gradient Method
	Direct Credit Back
	Experiments: a zero leadtime problem
	Experimental results: a zero leadtime problem
	Discussions: a zero leadtime problem
	Experiments: one-period leadtime problem
	Experimental results: one-period leadtime problem
	Discussions and Conclusions

	An inventory problem with high variance demand
	An inventory problem with AR1/GARCH(1,1) demand
	Experiments
	Experimental Results
	Discussions and Conclusions

	Conclusions
	Summary of Research Issues
	Investigation of Function Approximation
	Investigation of Learning Strategies
	Investigation of the Effect of GARCH Variables
	Investigation of Simulation-based Methods

	Summary of Research Approach
	Function Approximation
	Learning Strategies
	The Effect of GARCH Variables and Simulation-based Methods
	Research Results

	Discussion of Research Results
	Function Approximation
	Learning Strategies
	The Effect of GARCH variables
	Simulation-based Methods

	Limitations of the Research
	Ideas for Future Research

	Bibliography
	Appendices
	Finite range normal function

