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ABSTRACT

ADVANCES IN STATISTICAL ANALYSIS AND MODELING OF EXTREME VALUES MOTIVATED

BY ATMOSPHERIC MODELS AND DATA PRODUCTS

This dissertation presents applied and methodological advances in the statistical analysis

and modeling of extreme values. We detail three studies motivated by the types of data found in

the atmospheric sciences, such as deterministic model output and observational products. The

first two investigations represent novel applications and extensions of extremes methodology

to climate and atmospheric studies. The third investigation proposes a new model for areal

extremes and develops methods for estimation and inference from the proposed model.

We first detail a study which leverages two initial condition ensembles of a global climate

model to compare future precipitation extremes under two climate change scenarios. We fit

non-stationary generalized extreme value (GEV) models to annual maximum daily precipita-

tion output and compare impacts under the RCP8.5 and RCP4.5 scenarios. A methodological

contribution of this work is to demonstrate the potential of a “pattern scaling” approach for

extremes, in which we produce predictive GEV distributions of annual precipitation maxima

under RCP4.5 given only global mean temperatures for this scenario. We compare results from

this less computationally intensive method to those obtained from our GEV model fitted di-

rectly to the RCP4.5 output and find that pattern scaling produces reasonable projections.

The second study examines, for the first time, the capability of an atmospheric chemistry

model to reproduce observed meteorological sensitivities of high and extreme surface ozone

(O3). This work develops a novel framework in which we make three types of comparisons be-

tween simulated and observational data, comparing (1) tails of the O3 response variable, (2) dis-

tributions of meteorological predictor variables, and (3) sensitivities of high and extreme O3 to

meteorological predictors. This last comparison is made using quantile regression and a recent

tail dependence optimization approach. Across all three study locations, we find substantial
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differences between simulations and observational data in both meteorology and meteorolog-

ical sensitivities of high and extreme O3.

The final study is motivated by the prevalence of large gridded data products in the atmo-

spheric sciences, and presents methodological advances in the (finite-dimensional) spatial set-

ting. Existing models for spatial extremes, such as max-stable process models, tend to be geo-

statistical in nature as well as very computationally intensive. Instead, we propose a new model

for extremes of areal data, with a common-scale extension, that is inspired by the simultane-

ous autoregressive (SAR) model in classical spatial statistics. The proposed model extends re-

cent work on transformed-linear operations applied to regularly varying random vectors, and

is unique among extremes models in being directly analogous to a classical linear model. We

specify a sufficient condition on the spatial dependence parameter such that our extreme SAR

model has desirable properties. We also describe the limiting angular measure, which is dis-

crete, and corresponding tail pairwise dependence matrix (TPDM) for the model.

After examining model properties, we then investigate two approaches to estimation and

inference for the common-scale extreme SAR model. First, we consider a censored likelihood

approach, implemented using Bayesian MCMC with a data augmentation step, but find that

this approach is not robust to model misspecification. As an alternative, we develop a novel

estimation method that minimizes the discrepancy between the TPDM for the fitted model

and the estimated TPDM, and find that it is able to produce reasonable estimates of extremal

dependence even in the case of model misspecification.
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Chapter 1

Introduction

1.1 Motivation

In September 2013, Colorado experienced its second most costly natural disaster (Lukas

et al., 2014). Severe flooding inundated the Front Range during one of the region’s most ex-

treme rainfall events on record. In total, there were eight flood-related fatalities and damages

exceeded $2 billion (Gochis et al., 2015). This flooding event, and others like it, are extreme

events. Such events occur infrequently but can impose a high cost on society. Extreme value

theory (EVT) was developed in the early part of the 20th century to understand the asymptotic

distribution of the largest order statistic. Development of statistical methodology for extreme

events was spurred by the devastating North Sea flood of 1953 that killed more than 1800 people

in the Netherlands, and statistical analyses contributed to decision making about the height of

the Dutch dykes (de Haan, 1990). While the earliest applications of EVT focused primarily on

hydrology and civil engineering, these days the need to characterize the likelihood and severity

of extreme events applies to a wide variety of fields, including atmospheric science, finance,

telecommunications, forest fire science, and public health.

This dissertation presents applied and methodological advances in the analysis of extreme

values. The main goal of an extreme value analysis is to describe the upper (or lower) tail of a

probability distribution. In the univariate case, the aim is to characterize the tail of the distribu-

tion of a single variable, such as daily precipitation at a weather station. A multivariate analysis

may consider the joint tail (i.e., the tail dependence structure) of several variables, such as daily

ozone levels and air temperature at a certain location, or, in the spatial setting, a single variable

measured at several neighboring locations. Traditional statistical methods that aim to describe

the bulk of a distribution, and may employ such summary measures as means, variances or

correlations, are not useful for describing the tail. Because the focus is on the tail, extreme

value analyses typically use only the extreme observations, discarding the bulk of the data. By
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definition, extremes are rare, so in the study of extremes we are always data poor. Moreover,

extreme value analyses often require estimating the probability of events that are more extreme

than any that have previously been observed. EVT provides a theoretical framework for such

extrapolations, with extreme value models generated by asymptotic arguments.

The work in this dissertation is largely motivated by the types of data found in the atmo-

spheric sciences. We consider large ensembles of global climate model output (Chapter 2),

compare high resolution atmospheric chemistry model output to station observations and re-

analysis (Chapter 3), and propose a new model and develop new inference methods for areal

extremes motivated by the prevalence of atmospheric datasets that are indexed by regular grids

(Chapter 4 and Chapter 5).

1.2 Outline

The remainder of this chapter (Chapter 1) provides an overview of EVT concepts essential

to this dissertation. We first briefly review classical univariate EVT, including block maxima and

threshold exceedance approaches. We then introduce the framework of multivariate regular

variation and tie it back to multivariate extreme value distributions. We end with a few notes on

extremes in the (spatial) process setting. Our review is far from exhaustive, thus we point the

reader to several excellent books on the probability theory underlying the study of extremes,

including Resnick (1987) and de Haan and Ferreira (2006), as well as the statistical analysis of

extremes, such as Coles (2001) and Beirlant et al. (2006).

Chapter 2 leverages two initial condition ensembles of a global climate model to compare

future precipitation extremes under two climate change scenarios. A methodological contribu-

tion of this work is to demonstrate the potential of a “pattern scaling" approach for extremes.

This chapter is based on an article published in Climatic Change.1

1Fix, M. J., Cooley, D., Sain, S. R., & Tebaldi, C. (2018). A comparison of US precipitation extremes under RCP8.5

and RCP4.5 with an application of pattern scaling. Climatic Change, 146(3):335–347.
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Chapter 3 considers the complex question of how to evaluate the ability of a high resolution

atmospheric chemistry model to reproduce observed relationships between meteorology and

high or extreme surface ozone. A contribution of this work is to develop a novel framework for

comparing simulations and observational data products. We uniquely investigate meteorologi-

cal sensitivities, extending a recent approach relating extreme responses to a set of atmospheric

drivers. This chapter is based on an article published in Atmospheric Environment.2

Chapter 4 is motivated by the preponderance of large gridded products in the atmospheric

sciences. Existing models for spatial extremes, such as max-stable process models, tend to be

geostatistical in nature as well as very computationally intensive. The goal of this work is to

develop a simple spatial extremes model that is computationally feasible for high-dimensional

areal data. To this end, Chapter 4 proposes extremal versions of the classical simultaneous au-

toregressive (SAR) model. Linear models are ubiquitous in traditional (non-extreme) statistics,

but to our knowledge this is the first extremes model that is directly analogous to a classical lin-

ear model. One property of our extreme SAR model is that its limiting angular measure, which

characterizes the tail dependence structure, is discrete in nature. Similar extremal models have

been found to be challenging for inference. Chapter 4 also describes the tail pairwise depen-

dence matrix (TPDM) which summarizes this dependence.

Building upon Chapter 4, Chapter 5 presents several approaches to estimation and infer-

ence for the extreme SAR model, and discusses their respective challenges. We investigate a

Bayesian approach, which relies on a likelihood specification. Likelihood approaches for ex-

tremes models with discrete dependence structure have not been previously investigated. We

also develop a novel estimation method that minimizes the discrepancy between the TPDM

for the fitted model and the estimated TPDM, and find that it is able to produce reasonable

dependence estimates even in the case of model misspecification.

2Fix, M. J., Cooley, D., Hodzic, A., Gilleland, E., Russell, B. T., Porter, W. C., & Pfister, G. G. (2018). Observed and

predicted sensitivities of extreme surface ozone to meteorological drivers in three US cities. Atmospheric Environ-

ment, 176:292–300.
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Finally, Chapter 6 concludes the dissertation with a brief summary of the work completed

and remarks on future extensions of each of the projects.

1.3 Univariate Extremes

1.3.1 Block maxima approach

Asymptotic theory

Classical extreme value models arise from arguments regarding the limiting distribution of

suitably renormalized block maxima. Let X1, . . . , Xn represent independent copies of a random

variable X with common (“parent") distribution function F . Consider Mn = max(X1, . . . , Xn),

and note that P(Mn ≤ x) = F n(x). For F (x) < 1, F n(x) → 0 as n → ∞, so F n(x) converges to a

degenerate distribution function with a point mass at the upper endpoint sup{x : F (x) < 1}.

Instead, we consider limiting distributions of renormalized maxima
Mn−bn

an
, for appropriate

choices of an > 0 and bn ∈ R. The Extremal Types Theorem, first introduced by Fisher and

Tippett (1928) and later rigorously proven by Gnedeko (1943), provides a fundamental result. If

there exist sequences of constants an > 0 and bn such that, as n →∞,

P

(
Mn −bn

an
≤ x

)
= F n(an x +bn) →G(x) (1.1)

for some non-degenerate distribution function G , then G must belong to one of the following

types of extreme value distributions:

Type I (Gumbel): G(x) = exp{−exp(−x)} , x ∈R (1.2)

Type II (Fréchet): G(x) =





0, x ≤ 0,

exp(−x−α), x > 0

(1.3)
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Type III (reverse Weibull): G(x) =





exp(−(−x)α), x < 0,

1, x ≥ 0

(1.4)

for some α> 0. This result is powerful because when the limiting distribution G exists, it follows

one of the above distributions irrespective of the parent distribution F . We say F is in the max-

domain of attraction (MDA) of G . The extreme value distributions are equivalent to the max-

stable distributions, defined as the distributions for which there exist sequences an > 0 and

bn ∈R such that Gn(an x +bn) =G(x) for all positive integers n and all x ∈R.

The three extremal types above can be combined into a single parametric family known as

the generalized extreme value (GEV) distribution with the form

G(x) = exp

{
−

[
1+ξ

(x −µ

σ

)]−1/ξ

+

}
, (1.5)

where µ ∈R is the location parameter, σ> 0 is the scale parameter, ξ ∈R is the shape parameter,

and y+ := max(y,0). The support of G is {x ∈R : 1+ξ(x−µ)/σ> 0}. The shape parameter ξ deter-

mines the tail behavior (see Figure 1.1). If ξ= 0 (we take the limit of (1.5) as ξ→ 0), then the tail

is light and G is Gumbel. The Gamma and Gaussian distributions are examples of distributions

that are in the MDA of G with ξ= 0. If ξ> 0, then the tail is heavy and G is Fréchet. The Student

t distribution is in the MDA of G with ξ= 1
d . f .

> 0. If ξ< 0, then the upper tail is bounded and G

is reverse Weibull. The Beta distribution is in the MDA of G with ξ< 0.

Statistical inference

In practice, the limit in (1.1) is interpreted as an approximation for large n, and the GEV

family can be used for modeling the distribution of block (e.g., annual or seasonal) maxima. We

do not need to estimate the renormalizing sequences an and bn because they can be absorbed

into the µ and σ parameters of the GEV (Coles, 2001). Suppose one begins with iid data xb,i in-

dexed by block b = 1, . . . ,B and time-within-block i = 1, . . . ,n. Letting mn,b = maxi=1,...,n xb,i , one

obtains B block maxima from which the parameters of the GEV distribution can be estimated

5
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Figure 1.1: Illustration of the three extremal types: standard Gumbel (black), unit Fréchet (blue), and

unit reverse Weibull (red) density functions.

via maximum likelihood (Prescott and Walden, 1980; Smith, 1985) or moment-based methods

like probability-weighted moments (Hosking et al., 1985). From the fitted model, we can obtain

estimates of high quantiles (so-called “return levels" in environmental science) along with the

associated uncertainties.

The extreme value distributions can be thought of as “ultimate" approximations that hold

in the limit, i.e., as block size n goes to infinity. In practice, accuracy may be increased by us-

ing a penultimate approximation to the distribution of Mn for finite n (Embrechts et al., 2012;

Katz, 2013). This was noted as early as Fisher and Tippett (1928), who showed that taking ξ< 0

(reverse Weibull type) provides a better approximation for maxima of finite samples from the

Gaussian distribution than does the limiting Gumbel distribution. This means that there is no

advantage to constraining the estimation procedure to ξ = 0 even if the correct limiting distri-

bution is known to be Gumbel (Furrer and Katz, 2008).
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1.3.2 Threshold exceedance approach

Asymptotic theory

A disadvantage of the block maxima approach is that it may be wasteful of data. Although

many extreme events could have occurred in the same block, only one event per block is re-

tained and the rest discarded. An alternative is to fix a high threshold u and retain all observa-

tions above this threshold. The classical asymptotically motivated model for exceedances over

a high threshold is the generalized Pareto distribution (GPD). Suppose F is in the MDA of a

GEV distribution G . Then for large enough u, the distribution function of threshold excesses is

approximately given by the GPD:

P (X −u ≤ x | X > u) ≈ 1−
(
1+

ξx

σu

)−1/ξ

+
, (1.6)

where ξ is equivalent to the shape parameter of the GEV distribution and σu = σ+ ξ(u −µ)

(Balkema and de Haan, 1974; Pickands, 1975). In the case ξ → 0, the right-hand side of (1.6)

becomes 1−exp(−x/σu).

Below we outline a justification for the GPD from Coles (2001). Assume X , X1, X2, . . . ,
i i d∼ F

and F ∈ MDA(G). Then for large enough n, following from (1.1) we have the approximation

n logF (x) ≈−
[

1+ξ
(x −µ

σ

)]−1/ξ

+
. (1.7)

For large values of x, a Taylor expansion gives logF (x) ≈−[1−F (x)]. Hence for large u,

1−F (u) ≈ n−1
[

1+ξ
(u −µ

σ

)]−1/ξ

+
, (1.8)

and similarly for x > 0,

1−F (u +x) ≈ n−1
[

1+ξ
(u +x −µ

σ

)]−1/ξ

+
. (1.9)

Thus for sufficiently large u, we obtain
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P (X > u +x|X > u) =
1−F (u +x)

1−F (u)

=
n−1

[
1+ξ

(u+x−µ
σ

)]−1/ξ

+

n−1
[
1+ξ

(u−µ
σ

)]−1/ξ

+

=
(
1+

ξx

σu

)−1/ξ

+
, (1.10)

where σu =σ+ξ(u −µ) and (1.10) is the survival function of the GPD.

Statistical Inference

The result (1.6) suggests a framework for statistical modeling of threshold exceedances.

Starting with the original data x1, . . . , xN , extreme events can be identified by selecting a high

threshold u above which the distribution’s tail is well approximated by a GPD. The observations

that exceed u, i.e., {xi : xi > u}, can be labeled x(1), . . . , x(Nu ), where Nu is the number of ex-

ceedances. Then the threshold excesses y j = x( j ) −u, j = 1, . . . , Nu , can be used to estimate the

parameters σu and ξ by either numerical maximum likelihood or moment-based approaches.

Statistical application of the GPD requires the choice of a suitable threshold, which involves

a bias-variance tradeoff. The threshold must be sufficiently high for the GPD to be an appro-

priate model for the tail. On the other hand, raising the threshold reduces the sample size and

thus increases the variance of the parameter estimates. In practice there are several diagnostic

aids for threshold selection. Scarrott and MacDonald (2012) provide a review of some of the

existing approaches. The penultimate approximation described in Section 1.3.1 for the GEV

distribution applies equally well to the corresponding GPD (Furrer and Katz, 2008).

1.4 Multivariate Extremes and Regular Variation

There are several related approaches for modeling multivariate extremes. The classical ap-

proach is based on the multivariate extreme value distributions (MVEVDs; see Section 1.4.2).

These arise as the limiting distributions of suitably normalized componentwise maxima and

can be developed in a multivariate analogue to the argument leading to the Extremal Types
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Theorem and the GEV distribution (de Haan and Ferreira, 2006, Sections 6.1 and 6.2). As such,

MVEVDs provide sensible models for componentwise sample maxima. Note that componen-

twise maxima are not an entirely intuitive concept, as maxima in different components can

occur at different times.

Akin to univariate extremes, threshold exceedance approaches can also be taken for mod-

eling multivariate extremes. Such approaches require defining what is meant by a multivariate

threshold exceedance. The multivariate GPD of Rootzén and Tajvidi (1997) can be used when

thresholds are defined in terms of each univariate marginal, i.e., extreme events are described

in terms of Cartesian coordinates. The probabilistic framework of multivariate regular variation

(MVRV; see Section 1.4.1) is well-suited for defining a threshold in terms of a vector norm, and

is easily described in terms of pseudo-polar coordinates.

The above approaches to multivariate extreme value modeling share several commonal-

ities. In all cases, there is no finite parameterization for the class of dependence structures

(but parametric models may be specified). For each approach, characterization of the depen-

dence structure is made easier by imposing assumptions on the marginal behavior, and conse-

quently estimation of the dependence structure from data often requires transformation of the

marginals. As in the univariate case, models for multivariate extremes are fit only to observa-

tions deemed extreme. The approaches are also theoretically linked, as each can be tied to the

so-called angular measure, which we will describe in more detail in Section 1.4.1. This angular

measure fully characterizes dependence in the limit.

Within this dissertation, we will focus on the MVRV framework for modeling multivariate

threshold exceedances. MVRV provides a probabilistic characterization of the joint (upper) tail

of a random vector, and is defined entirely in terms of the joint tail. The MVRV framework

assumes the heavy-tailed case, i.e., it implies that the joint tail decays like a power function.

MVRV is most easily understood via a pseudo-polar decomposition. The limiting angular mea-

sure mentioned above arises from this decomposition. Below we provide definitions and back-
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ground on MVRV (Section 1.4.1), explain its connection to MVEVDs for componentwise max-

ima (Section 1.4.2), and discuss methods of inference (Section 1.4.3).

Although MVRV can be defined on R
p (Resnick, 2007, Section 6.5.5), we model in the non-

negative orthant to focus attention on the upper tail. In applications, there is often a natural di-

rection in which one wants to assess risk. Consider wildfire risk, which is related to many factors

including fuel and weather conditions. For example, high windspeed and low humidity (high

dryness) are associated with increased fire risk. The left panel of Figure 1.2 shows daily sum-

mary measures for windspeed and dryness at a weather station in southern California. More

details about these data can be found in Cooley et al. (2018). Wildfires, such as those indicated

by the colored points, tend to occur in the upper right, when both variables are high. Thus this

is the direction of interest. Note that the raw data are not regularly varying, so for a MVRV analy-

sis it is necessary to perform a marginal transformation as discussed earlier. As an example, the

right panel of Figure 1.2 shows the same data after transformation to Fréchet(α= 2) marginals.

With the transformed data, one could use the MVRV on the nonnegative orthant to model the

tail dependence between the daily windspeed and dryness variables, and ultimately estimate

the probabilities associated with risk regions where both variables are high.

1.4.1 Asymptotic theory of multivariate regular variation

Resnick (2007) presents several equivalent definitions of MVRV, including the following. Let

Z be a random vector taking values in the nonnegative orthant Rd
+ = [0,∞)d . Let M+(C) denote

the space of nonnegative Radon measures on C = [0,∞]d \ {0}. We say Z is regularly varying if

there exists a sequence cn →∞ and a limit measure ν(·) on the Borel subsets of Rd
+ such that

nP

(
Z

cn
∈ ·

)
v→ ν(·) (1.11)

in M+(C) as n → ∞, where
v→ denotes vague convergence of measures. One recognizes from

(1.11) the Poisson convergence, and in fact Resnick and other authors give equivalent defini-
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Figure 1.2: Illustration of the directionality of risk: wildfire example. Left: daily summary measures of

windspeed and dryness at a weather station in southern California during the years 1973-2015. Right:

Transformed data with Fréchet(α= 2) marginals. Black circles indicate observations exceeding the 0.975

quantile of the radial component (L2 norm). In both panels, orange and red points correspond to the

initial days of two of the most destructive wildfires during the observation period.

tions of MVRV in terms of counting measures converging to a Poisson random measure with

mean measure ν (Resnick, 2007, Section 6.2).

The limit measure ν can be shown to have the scaling property

ν(p A) = p−αν(A) (1.12)

for any set A ⊂C and any p > 0, where α> 0 is termed the tail index and determines the power-

law behavior of the tail. We denote a d-dimensional regularly varying random vector Z with tail

index α by Z ∈ RV d
+ (α).

The scaling property (1.12) suggests a transformation to pseudo-polar coordinates, and

leads to an equivalent definition of MVRV. Given any norm || · ||, denote the nonnegative unit

sphere S
d−1
+ =

{
z ∈R

d
+ : ||z|| = 1

}
. We define “radial" and “angular" components by R = ||Z|| and

Θ= ||Z||−1Z, respectively. Then the random vector Z is regular varying if there exists a sequence

cn →∞ and a finite measure H on S
d−1
+ such that for any H-continuity Borel set B ⊂S

d−1
+ , and

for r > 0,
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nP

(
R

cn
> r,Θ ∈ B

)
v→ r−αH(B) (1.13)

as n →∞. The right-hand side of (1.13) is a product measure, indicating that the radial and an-

gular components become independent in the limit. H is termed the angular measure (some-

times also referred to as the spectral measure), and completely characterizes the limiting tail

dependence structure of Z. The normalizing sequence {cn} can be chosen such that H is a prob-

ability measure, although in many modeling situations it may make sense for H to have total

mass other than one. It is often assumed that Z has common marginal distributions, which

imposes the following balance condition on H (Resnick, 1987):

∫

S
d−1
+

θ1H(dθ) =
∫

S
d−1
+

θ j H(dθ), j = 2, . . . ,d . (1.14)

To provide some intuition on the angular measure, consider the bivariate case Z = (Z1, Z2)⊤ ∈

RV 2
+(α) with common marginal distributions. There are two limiting cases. If Z exhibits perfect

dependence, i.e., if Z1 determines Z2 exactly, then H consists of a single point mass on the in-

terior of S1
+. In the asymptotic independence case, i.e., if limz→∞P (Z2 > z|Z1 > z) = 0, then H

consists of two point masses, one at each end of the one-dimensional unit sphere. In general,

dependence increases as the mass of H concentrates toward the center of Sd−1
+ and decreases

as it moves towards the edges and vertices of Sd−1
+ .

Although the polar-coordinate geometry is natural for describing regular variation, it can

be hard to reconcile with the Cartesian geometry required by cumulative distribution functions

and other familiar notions. Geometric arguments can give needed expressions. For a given

norm || · ||, tail index α, and angular measure H , consider the set A = [0,z]c for z = (z1, . . . , zd )⊤ ∈

C. Then

ν(A) =
∫

A
αr−α−1dr d H(θ)

=
∫

S
d−1
+

∫∞

r=∧d
i=1

zi
θi

αr−α−1dr d H(θ)

12



=
∫

S
d−1
+

d∨

i=1

(
zi

θi

)−α
H(dθ). (1.15)

1.4.2 Link to multivariate extreme value distributions

Analogous to the univariate block maxima approach described in Section 1.3.1, classical

multivariate EVT considers the limiting distribution of the vector of appropriately renormal-

ized componentwise maxima. Let X = (X1, . . . , Xd )⊤ be a d-dimensional random vector with

marginals F1, . . . ,Fd and joint distribution F . Suppose we have n iid replicate vectors {Xi }n
i=1

and define the vector of componentwise maxima Mn =
(∨n

i=1
Xi ,1, . . . ,

∨n
i=1

Xi ,d

)⊤
. Note that Mn

does not necessarily correspond to an observed data point, as maxima may not occur at the

same time in each margin. If there exist renormalizing sequences of vectors an ≥ 0 and bn ∈R
d

such that

P

(
Mn −bn

an
≤ z

)
= F n(anz+bn) →G(z) (1.16)

(non-degenerate) as n →∞, where all operations are componentwise, then G is a multivariate

extreme value distribution (MVEVD). A sequence of random vectors can only converge if all

the marginals converge, so F n
j

(anz+bn) → G j (z) for j = 1, . . . ,d . Thus G has univariate GEV

marginals. Although the marginals are fully parameterized, no finite parameterization exists

for the dependence structure of the d components.

The MVRV framework can be tied back to classical multivariate EVT, in that MVRV is a con-

dition implying that a distribution is in the MDA of a MVEVD (Beirlant et al., 2006; Resnick,

1987). Let Z ∈ RV d
+ (α) with limit measure ν as in (1.11), and let Mn be the vector of componen-

twise maxima of n iid realizations of Z. Then there exist renormalizing sequences of vectors

an ≥ 0 and bn ∈ R
d such that (1.16) holds with G(z) = exp{−ν[0,z]c}, and the marginals of G are

GEV with ξ= 1/α> 0. In other words, Z is in the MDA of a MVEVD with Fréchet(α) margins and

dependence structure characterized by the measure ν from (1.15).
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1.4.3 Statistical inference for multivariate extremes

The classical approach to statistical inference for multivariate extremes consists of parti-

tioning a sample of multivariate observations into blocks and fitting a MVEVD to the sample of

componentwise block maxima. Beirlant et al. (2006) describes both parametric and nonpara-

metric techniques to estimate the MVEVD dependence structure. More efficient inference can

be performed using threshold methods, and in this dissertation we focus on statistical inference

for multivariate threshold exceedances within the MVRV framework. There are several possible

approaches to define a threshold exceedance in the multivariate setting. Here we consider two

definitions, one in terms of the norm of a random vector, and one in terms of the marginals,

as illustrated in Figure 1.3. In the first case, an exceedance is defined as an observation whose

norm (radial component) exceeds a suitably high threshold. In the second case, a multivariate

observation is considered an exceedance if at least one of its components exceeds its marginal

threshold.
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Figure 1.3: Illustration of two definitions for multivariate threshold exceedances, for d = 2 and with unit

Fréchet margins. Colored points are exceedances, and dotted lines indicate the norm threshold (left) or

marginal thresholds (right). On the right, blue points are those which exceed the marginal threshold in

only one component; these observations would be censored under a censored likelihood approach.
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The MVRV framework implies that the marginal distributions are univariate regularly vary-

ing with common tail index α. In statistical practice, a standard approach is to transform the

univariate marginals to a convenient distribution with common α. This can be done by first

estimating the marginal distributions, either parametrically or nonparametrically, and then ap-

plying the probability integral transform. Doing so retains the tail dependence structure, as

Proposition 5.10 of Resnick (1987) shows the MDA is preserved under monotone transforma-

tions of the marginals. This approach is similar in spirit to a copula, but aims only to describe

the tail.

After estimating the marginal effects, it is possible to focus on estimating the tail depen-

dence structure, which is the crux of inference for multivariate extremes. Below we describe

two general approaches to likelihood inference, corresponding to two definitions of thresh-

old exceedances. The first approach consists of fitting an angular measure model to norm ex-

ceedances. Finite-sample estimation of the angular measure assumes that the limit (1.13) is an

equality for r > r0, where r0 is a sufficiently high threshold. Assume that H is continuously dif-

ferentiable with Radon-Nikodym derivative h(θ;η), which is termed the angular density. Then,

given a parametric model for the angular density (see, e.g., Ballani and Schlather, 2011; Coles

and Tawn, 1991; Cooley et al., 2010), it is possible to write down the corresponding likelihood

for the points z1, . . . ,zN0 for which ||zi || = ri > r0, which is given by a Poisson point process ap-

proximation:

L(η; z1, . . . zn) = exp

(
−

r0

cn

){
N0∏

i=1

(
αr−α−1

i /cn

)
h(θi ;η)

}
/N0!

∝
N0∏

i=1

h(θi ;η). (1.17)

Parameters can then be estimated via numerical maximum likelihood.

Alternatively, when an observation is defined to be a threshold exceedance if at least one of

its components exceeds its marginal threshold, a censored likelihood approach is often used,

where the non-extreme components are censored at their marginal thresholds (Ledford and
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Tawn, 1996; Smith et al., 1997). Censored likelihood approaches reduce the bias that may arise

from non-applicability of the limiting model in regions where not all components are extreme

(Huser et al., 2016). More details on inference via censored likelihood will be given in Chapter 5.

Likelihood-based inference for multivariate extremes can be challenging in high dimen-

sions. Moreover, some models may fail to yield densities. Non-likelihood approaches are par-

ticularly useful for models whose angular measures consist of discrete point masses, as we will

return to in Chapter 5. Recent examples include M-estimators based on the continuous ranked

probability score (Yuen and Stoev, 2014) and the stable tail dependence function (Einmahl et al.,

2016), both of which are related to the underlying multivariate cumulative distribution func-

tion. However, to our knowledge, applications of these methods to spectrally discrete models

have been restricted to low-dimensional examples.

1.5 Process Setting

Thus far, we have introduced EVT in a finite dimensional setting, i.e., extremes of random

variables or vectors. The asymptotic arguments of Section 1.3 can be extended to the infinite

dimensional setting, i.e., extremes of stochastic processes. Extremal processes have primarily

been used to model spatial extremes. Such models are typically geostatistical in nature, and

are also challenging to fit. In Chapters 4 and 5 we will introduce and fit a very different type of

spatial model than the extremal process models discussed here. Our proposed model is finite-

dimensional, so a process is not needed. This multivariate model is very simple and is best

suited for areal data, e.g., data on a regular grid. Our point in briefly discussing extremal process

models here is to serve as contrast to the model we propose. A more comprehensive overview

of statistical modeling for spatial extremes can be found in Davison et al. (2012).

1.5.1 Asymptotic theory

The natural extension of the GEV is the class of max-stable processes, which, under mild

conditions, are the only possible non-degenerate limits of rescaled pointwise maxima of iid
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random processes (de Haan, 1984). Let S be a compact subset of Rp , typically representing the

spatial region of interest. Consider a random process Y = {Y (s)}s∈S defined over S, with contin-

uous sample paths, and let Y1,Y2, . . . be independent replicates of Y . If there exist sequences of

continuous functions {an(s)}s∈S > 0 and {bn(s)}s∈S such that the limiting process Z = {Z (s)}s∈S

defined by

maxi=1,...,n Yi (s)−bn(s)

an(s)
→ Z (s), s ∈ S, n →∞, (1.18)

is non-degenerate, then Z must be a max-stable process (de Haan, 1984; de Haan and Ferreira,

2006). We say that Y is in the MDA of Z . The marginals of Z are GEV-distributed, and can

be transformed to a convenient distribution. For the remainder of this section, we will restrict

attention to the commonly used simple max-stable processes with unit Fréchet margins. For

every set of sites s1, . . . ,sd ∈ S,

P {Z (s1) ≤ z1, . . . , Z (sd ≤ zd } = exp{−V (z1, . . . , zd )} , z1, . . . , zd > 0, (1.19)

where the exponent measure function V satisfies V (kz1, . . . ,kzd ) = k−1V (z1, . . . , zd ), k > 0 and

V (∞, . . . ,∞, z,∞, . . . ,∞) = z−1.

Several stationary parametric models for simple max-stable processes have been proposed,

including the Smith (1990) process and the Schlather (2002) process. The popular Brown-

Resnick process (Brown and Resnick, 1977; Kabluchko et al., 2009) is a flexible model that has

been found valuable for a variety of applications. This process is defined by

Z (s) = max
i∈N

P−1
i exp

{
ǫi (s)−γ(0,s)

}
, s ∈ S, (1.20)

where {Pi }i∈N is a unit rate Poisson process on (0,∞), and the {ǫi (s)}s∈S are independent repli-

cates of a zero-mean Gaussian process with stationary increments and variogram 2γ(s,s′) =

E
[
{ǫ(s)−ǫ(s′)}2

]
, for s,s′ ∈ S. The dependence structure depends only on γ(·), and a large class

of models can be attained via the choice of different variograms. For example, the bivariate ex-
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ponent measure of a Brown-Resnick process Z (s) with unit Fréchet margins at the pair of sites

{s1,s2} is given by

V (z1, z2) =
1

z1
Φ

{
a

2
−

1

a
log

(
z1

z2

)}
+

1

z2
Φ

{
a

2
−

1

a
log

(
z2

z1

)}
, (1.21)

where z1 = z(s1), z2 = z(s2), a =
{
2γ(s1,s2)

}1/2
, and Φ(·) is the standard normal distribution

function (Huser and Davison, 2013).

1.5.2 Statistical inference for spatial extremes

Due to the complicated form of the distribution of a max-stable process, likelihood infer-

ence is computationally challenging, and often intractable, for high-dimensional data. For ex-

ample, although the d-dimensional distribution functions of the Brown-Resnick process are

known (Genton et al., 2011; Huser and Davison, 2013), the number of terms in the correspond-

ing d-variate density grows with dimension like the Bell numbers (Ribatet, 2013; Wadsworth

and Tawn, 2014). This computational burden has motivated development of less expensive

methods such as (pairwise) composite likelihood (Padoan et al., 2010) or the inclusion of par-

tition information (Stephenson and Tawn, 2005; Thibaud et al., 2016). Recently, more efficient

inference methods based on full (and possibly censored) likelihoods have been developed for

threshold exceedances of processes in the MDA of a Brown-Resnick process (Engelke et al.,

2015; Thibaud and Opitz, 2015; Wadsworth and Tawn, 2014), however these methods are still

computationally challenging and applications have been restricted to d ≈ 30 spatial locations.
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Chapter 2

A Comparison of US Precipitation Extremes Under RCP8.5 and

RCP4.5 with an Application of Pattern Scaling3

2.1 Introduction

Extreme weather events have serious environmental and socioeconomic impact. In order to

prepare for future impactful events, there has been recent effort to project how extreme weather

events will change in an altered climate. A recent IPCC report focusing on extreme events and

their impacts states “It is likely that the frequency of heavy precipitation or the proportion of to-

tal rainfall from heavy falls will increase in the 21st century over many areas of the globe" (IPCC,

2012, page 11). In an analysis of the CMIP5 multi-model ensemble, Kharin et al. (2013) found

that the magnitude of precipitation extremes over land will increase appreciably with global

warming, and return periods of late 20th century extreme precipitation events are projected to

become shorter.

In this chapter, we use general circulation model (GCM) output to investigate future ex-

treme precipitation associated with Representative Concentration Pathways (RCPs) 8.5 and 4.5

(Van Vuuren et al., 2011) over the contiguous United States. RCP8.5 corresponds to the path-

way with the highest greenhouse gas emissions, while RCP4.5 describes a moderate mitigation

pathway. This study is part of a larger project on the Benefits of Reducing Anthropogenic Cli-

mate changE (BRACE; O’Neill and Gettelman, 2018) which focuses on characterizing the differ-

ence in impacts driven by climate outcomes resulting from the forcing associated with these

two pathways. Specifically, we utilize a “Large Ensemble” of 30 perturbed initial condition runs

under RCP8.5 (CESM-LE; Kay et al., 2015) and a “Medium Ensemble” of 15 perturbed initial

condition runs under RCP4.5 (CESM-ME; Sanderson et al., 2018) to statistically model how ex-

3Fix, M. J., Cooley, D., Sain, S. R., & Tebaldi, C. (2018). A comparison of US precipitation extremes under RCP8.5

and RCP4.5 with an application of pattern scaling. Climatic Change, 146(3):335–347.
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treme precipitation is affected by changes in global mean temperature. All ensemble members

use a single CMIP5 coupled climate model: the NCAR Community Earth System Model, ver-

sion 1, with the Community Atmosphere Model, version 5 (CESM1(CAM5); Hurrell et al., 2013)

at approximately 1◦ horizontal resolution in all model components. Each member within an

initial condition ensemble has a unique climate trajectory due to small round-off level differ-

ences in the initial atmospheric state. The initial condition ensemble provides us with a large

data set of extreme precipitation events which allows us to reduce the uncertainty associated

with the quantities we estimate. This is in contrast to typical extreme value studies of either

observational data or single realizations of model output which often have large uncertainties

associated with quantities of interest such as return levels.

It is important to note that GCM precipitation output, particularly extreme precipitation

output, should not be interpreted in the same manner as observations recorded at weather

stations (the disparate nature of these two data types is illustrated in Figure 2.1 for Boulder,

CO). By their nature as point measurements, precipitation extremes obtained from individual

station records are not directly comparable to gridded model output, as Chen and Knutson

(2008) argue that it is more appropriate to interpret GCM output as an areal average, rather than

as an estimate corresponding to a point location. To link GCM output to station observations,

it could be necessary to resort to statistical or dynamical downscaling. The main value of GCMs

lies in describing how extreme precipitation is likely to change under an altered climate, and

in particular under various climate change scenarios. In this study, we restrict our focus to

studying the change in GCM output.

Since we analyze annual maximum daily precipitation, the generalized extreme value (GEV)

distribution forms the foundation of our statistical model. A number of studies have applied

the GEV distribution to describe the behavior of extreme precipitation from climate model

output (e.g., Beniston et al., 2007; Fowler et al., 2007; Kharin et al., 2013; Schliep et al., 2010;

Wehner, 2013). We employ a non-stationary GEV model (Coles, 2001, Ch. 6) because the cli-

mate model runs are transient, and we wish to model how extreme precipitation changes as
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Figure 2.1: Comparison of kernel densities of annual maximum daily precipitation (mm) for 1986-2005

based on the 30-member CESM1(CAM5) initial condition ensemble (blue shaded) at the grid cell closest

to Boulder, CO, and observations (black) from a weather station in Boulder, CO reveal a clear discrepancy

between GCM and observed maxima. However, projections based on GCMs are still useful for describing

how extreme precipitation may change in the future, as illustrated by the shifted kernel density of annual

precipitation maxima for 2081-2100 based on the CESM RCP8.5 runs (red shaded).

climate changes. A simple approach to model climate trends in time is to allow the GEV pa-

rameters to be parametric functions of time (e.g., Fowler et al., 2010), although these functions

may be too simple to accurately describe the time trend. Instead, we use a physical covariate

of global mean temperature, a proxy for climate state, to implicitly model time dependence.

There are several precedents for this approach. Brown et al. (2014), Hanel and Buishand (2011),

Kharin et al. (2013), Westra et al. (2013) all employ a global temperature covariate to model a

non-stationary GEV distribution.

The covariate of global mean temperature lends itself well to application of pattern scaling.

Pattern scaling is a method of generating projections of future climate via a statistical model

linking large-scale quantities (traditionally, global average temperature change) to local scale

climate (Santer et al., 1990). Pattern scaling produces summary measures of future climate

change at the regional scale without the need of running a fully coupled climate model for every

scenario of interest. Pattern scaling is used widely by the impact and integrated assessment

research communities, and Tebaldi and Arblaster (2014) provide a recent overview. Previously,

pattern scaling has been primarily used to provide projections of mean behavior, with only
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a limited number of investigations into pattern scaling for extremes (e.g., Brown et al., 2014;

Pausader et al., 2012). In this study, we investigate a pattern scaling approach in which we fit a

GEV model to only the CESM RCP8.5 runs, and then use this model to predict the distribution

of annual maximum precipitation associated with the global mean temperatures provided by

the RCP4.5 scenario. Having an ensemble of RCP4.5 runs allows us to evaluate this pattern

scaling approach. We compare U.S. precipitation extremes projected by pattern scaling to those

projected by a GEV model fitted directly to the RCP4.5 output.

The rest of the chapter is organized as follows. In Section 2.2, we describe our non-stationary

GEV models, and summarize the initial condition ensemble output used to fit and validate these

models. In Section 2.3, we present results from our fitted GEV models, which show that ex-

treme precipitation levels tend to increase with global mean temperature across the contiguous

U.S. Section 2.3.1 describes projections of future extreme precipitation under RCP8.5 based on

CESM-LE, while Section 2.3.2 compares these to projections under RCP4.5 based on CESM-ME.

In Section 2.3.3, we explore a pattern scaling approach to projecting extreme precipitation lev-

els under RCP4.5, and compare these results to those obtained from the model fitted directly to

the CESM-ME RCP4.5 output. Finally, Section 2.4 provides a summary and discussion.

2.2 Methods

2.2.1 Output from initial condition ensembles

Our statistical model is fit using precipitation and temperature output from two CESM1

(CAM5) initial condition ensembles. The 30-member CESM-LE uses historical (natural and

anthropogenic) forcings for the years 1920-2005, followed by the RCP8.5 forcing scenario for

the years 2006-2100. The 15-member CESM-ME uses the same historical forcings for the years

1920-2005 (and thus matches the first 15 members of CESM-LE during the historical period),

followed by the RCP4.5 forcing scenario for the years 2006-2080. Let y (i )
8.5(s, t ,d) and y (i )

4.5(s, t ,d)

denote the daily precipitation amount (mm) for grid cell s, year t , and day d for ensemble mem-

ber i from CESM-LE and CESM-ME, respectively. For each grid cell and each year, we retain
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the annual maximum daily precipitation amounts m(i )
8.5(s, t ) = maxd y (i )

8.5(s, t ,d) and m(i )
4.5(s, t ) =

maxd y (i )
4.5(s, t ,d). Treating the ensemble members as independent replicates yields an ‘artifi-

cially large’ data set; for each year at each grid cell, we have thirty and fifteen realizations of

annual maxima for CESM-LE and CESM-ME, respectively. We model extreme precipitation at

687 grid cells which are in the contiguous United States.

To obtain the annual global mean temperature (◦C) covariate for each ensemble member,

we calculate area-weighted global monthly average near-surface temperatures, then take the

mean of these monthly averages within each year. We denote the global mean temperature for

ensemble member i at year t as x(i )
8.5(t ) and x(i )

4.5(t ) for CESM-LE and CESM-ME, respectively.

The ensemble average over all thirty CESM-LE members is given by x̄8.5(t ) = 1
30

∑30
i=1 x(i )

8.5(t ),

and similarly the ensemble average over all fifteen CESM-ME members is given by x̄4.5(t ) =
1

15

∑15
i=1 x(i )

4.5(t ). The global mean temperature distributions produced by the ensembles under

RCPs 8.5 and 4.5 diverge by 2050 (Sanderson et al., 2018). The ensemble average global mean

temperature increases from approximately 14.5◦C in 2005 to approximately 17.9◦C in 2080 un-

der RCP8.5, compared to 16.4◦C under RCP4.5.

2.2.2 GEV modeling conditional on global mean temperature

Our statistical model is based on the GEV distribution (1.5) as it is the limiting distribution

of sample maxima of stationary sequences of random variables which meet mild mixing condi-

tions (Leadbetter, 1974). For the moment, we use generic notation as our model assumptions

are the same for both the RCP8.5 and RCP4.5 projections. Let M(s, t ) be the random variable

representing the annual maximum daily precipitation amount for grid cell s and year t . To

model how the distribution of annual maximum precipitation changes with the climate, we

assume

P (M(s, t ) ≤ y) =Gs,x(t )(y) = exp

[
−

(
1+ξ(s)

y −µ(s, x(t ))

σ(s, x(t ))

)−1/ξ(s)
]

(2.1)

defined on {y : 1+ ξ(s)
y−µ(s,x(t ))

σ(s,x(t ))
> 0}. The case of ξ(s) = 0 is interpreted as the limit of (2.1) as

ξ(s) → 0.
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We allow the GEV location and scale parameters µ and σ > 0 to vary both with grid cell

s and global mean temperature x(t ). Preliminary investigations provided little evidence for

significant climate driven changes in the shape parameter ξ, thus we assume that the shape

parameter ξ only varies by grid cell and does not change with climate. This is consistent with

some previous studies (e.g., Brown et al., 2014; Zhang et al., 2004) but in contrast to others (e.g.,

Hanel and Buishand, 2011; Kharin and Zwiers, 2005). Further, we assume

µ(s, x(t )) =µ0(s)+µ1(s)(x(t )−x(2005)), (2.2)

and

φ(s, x(t )) := log(σ(s, x(t ))) =φ0(s)+φ1(s)(x(t )−x(2005)), (2.3)

where x(2005) is the global mean temperature at year 2005. Thus the intercept parameters µ0(s)

and φ0(s) are defined as the value of the location parameter and log-scale parameter at year

2005. The slope parameters µ1(s) and φ1(s) can be interpreted as the change in the location

parameter and log-scale parameter associated with a 1◦C increase in global mean temperature.

For inference, we use CESM initial condition ensemble output to estimate model param-

eters via numerical maximum likelihood independently at each grid cell s. We let the super-

scripts “8.5” and “4.5” denote the parameters associated with the RCP8.5 scenario and the

RCP4.5 scenario, respectively. Our likelihood for CESM-LE is

L (µ8.5
0 (s),µ8.5

1 (s),φ8.5
0 (s),φ8.5

1 (s),ξ8.5(s)) =
2100∏

t=1920

30∏

i=1

g 8.5
s,x(t )

(
m(i )

8.5(s, t ), x(i )
8.5(t )

)
, (2.4)

where g 8.5
s,x(t )

is the density associated with G8.5
s,x(t )

. With 181 years and 30 members, each grid

cell has a total of 181×30=5430 data points to estimate the model parameters. Similarly, our

likelihood for CESM-ME is

L (µ4.5
0 (s),µ4.5

1 (s),φ4.5
0 (s),φ4.5

1 (s),ξ4.5(s)) =
2080∏

t=1920

15∏

i=1

g 4.5
s,x(t )

(
m(i )

4.5(s, t ), x(i )
4.5(t )

)
, (2.5)
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where g 4.5
s,x(t )

is the density associated with G4.5
s,x(t )

. With 161 years and 15 members, each grid

cell has a total of 161×15=2415 data points to estimate the model parameters. Standard error

estimates for the model parameters are obtained from the inverse of the numerically-estimated

Hessian of the negative log-likelihood surface at the maximum likelihood estimates. The anal-

ysis was conducted using the R package extRemes (Gilleland and Katz, 2016).

In traditional extremes studies, the quantity of interest is often a return level. An r -year re-

turn level is simply the 1−1/r quantile of the distribution of the annual maximum, and under

stationarity, r is the expected number of years between exceedances of the corresponding re-

turn level. The term ‘return level’ becomes ambiguous under non-stationarity (Cooley, 2012;

Rootzén and Katz, 2013). We will focus on the 1−1/100 quantile of the distribution of the an-

nual maximum, which is obtained by setting (2.1) equal to 0.99. Because this level changes

with year, we will eschew the term ‘return level’, and instead refer to this quantile as the ‘1%

annual exceedance probability (AEP) level’. To obtain a single AEP level from the ensemble, x̄(t )

is plugged in for x(t ) in (2.2) and (2.3). Note that we focus on the 1%-probability event only for

convenience, as we could use (2.1) to calculate any quantile of our estimated distribution.

2.2.3 Pattern scaling

The rationale for pattern scaling is that because our model (2.1) requires only a covariate

of global mean temperature, conceptually it could be used to estimate the distribution of the

annual maximum daily precipitation for any global mean temperature of interest. The CESM-

ME RCP4.5 runs give us an opportunity to evaluate the skill of a pattern scaling approach for

extreme precipitation. We construct predictive GEV distributions Ĝs,x4.5(t ) by letting the GEV

parameters be given by

µ̂(s, x4.5(t )) = µ̂8.5
0 (s)+ µ̂8.5

1 (s)(x4.5(t )−x4.5(2005)), (2.6)

σ̂(s, x4.5(t )) = exp{φ̂8.5
0 (s)+ φ̂8.5

1 (s)(x4.5(t )−x4.5(2005))}, (2.7)

and
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ξ̂(s) = ξ̂8.5(s). (2.8)

That is, we use the parameters estimated from the CESM-LE RCP8.5 runs and plug in the global

mean temperatures from the CESM-ME RCP4.5 runs. As the global mean temperatures pro-

duced by RCP4.5 are within the range of those of RCP8.5, we are not extrapolating the model to

temperatures outside the range to which the model was fit. We test the pattern scaling predic-

tive distributions by comparing the annual maxima m(i )
4.5(s, t ) to Ĝs,x4.5(t ).

2.3 Results

2.3.1 Estimates for CESM-LE (historical/RCP8.5)

Parameter estimates and standard errors for µ8.5
0 (s),µ8.5

1 (s),φ8.5
0 (s),φ8.5

1 (s), and ξ8.5(s) based

on CESM-LE are obtained for all grid cells in the contiguous United States (see Figure A.1).

The map of estimates for µ8.5
1 (s) (Figure A.1(c)) indicates that the location parameter is most

sensitive to changes in global mean temperature in the east and southeast U.S., and also in

northern California. The map of estimates for φ8.5
1 (s) (Figure A.1(g)) shows that the log-scale

parameter is most sensitive to changes in global mean temperature in the southeast and in a

region of the west between the coastal mountain ranges and the Rocky Mountains. P-values

associated with one-sided hypothesis tests of µ8.5
1 (s) ≤ 0 by grid cell (Figure A.2(a)) show that

this null hypothesis is rejected (for α = 0.05) at nearly all grid cells outside a small region near

the Mexican border, indicating that the GEV location parameter µ for extreme precipitation

increases with global mean temperature. Similarly, the null hypothesis of φ8.5
1 (s) ≤ 0 is rejected

at all but two grid cells in the U.S. (Figure A.2(b)), indicating that the log-scale parameter φ also

increases with global mean temperature. Standard model diagnostic plots revealed no issues

with model fit. We also assessed goodness of fit by applying the Anderson-Darling (AD) test to

each grid cell, and found that fewer than 4% of the grid cells reject at the α = 0.05 level (even

without accounting for multiple testing). (See Figure A.3.) Given that the GEV model is only
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asymptotically correct, that we fit a rather simplistic trend model, and that the 5430 points give

the AD test high power to reject, we find this model fit to be quite suitable.

Although the GEV parameter estimates completely determine the fitted distribution of an-

nual maximum daily precipitation, the parameters themselves have limited interpretability. Us-

ing the parameter estimates, we are able to produce estimates of the 1% AEP level for any partic-

ular year. Figure 2.2 shows 1% AEP level estimates for the years 2005 and 2080. These estimates

range between 26.8-144.8 mm in 2005, compared to 32.6-164.6 mm in 2080. Standard errors

calculated via the delta method (Coles, 2001, Section 2.6.4) range from 0.5-4.6 mm in 2080 (see

Figure A.4). Between the years 2005 and 2080, the 1% AEP level is projected to increase for all

grid cells under RCP8.5, with a U.S. median percentage increase of 17%. Changes in magni-

tude are most noticeable in California and along the Eastern seaboard, but percentage changes

(Figure 2.2(c)) are also more than 30% in the Basin and Range area of the west where current

levels are quite low. Another way to understand the change in extreme precipitation is to con-

sider the annual exceedance probability for a given level of daily precipitation, say the 1% AEP

level in 2005. Under RCP8.5, the 2005 1% AEP level corresponds to a higher annual exceedance

probability in 2080 across the contiguous U.S. (Figure 2.2(d)). In some areas such as southwest-

ern Idaho and southern Appalachia, a 1-in-100-chance event in 2005 is projected to become a

1-in-15 or higher chance event in 2080.

2.3.2 Comparison with CESM-ME (RCP4.5)

Parameter estimates and standard errors for µ4.5
0 (s),µ4.5

1 (s),φ4.5
0 (s),φ4.5

1 (s), and ξ4.5(s) based

on CESM-ME are obtained for all grid cells in the contiguous United States (see Figure A.5).

Maps of estimates for µ4.5
0 (s),φ4.5

0 (s), and ξ4.5(s) (Figure A.5(a), (e), and (i)) are very similar to

those estimated from CESM-LE. On the other hand, estimates of the slope parameters µ4.5
1 (s)

and φ4.5
1 (s) differ somewhat from those based on CESM-LE. Plots of these differences are given

in Figure A.6(c) and (d). Null hypotheses of µ4.5
1 (s) ≤ 0 and φ4.5

1 (s) ≤ 0 are still rejected in over

90% of the grid cells (Figure A.6(a) and (b)), agreeing with our finding from CESM-LE that the
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Figure 2.2: Point estimates for the 1% AEP level (in mm precipitation) for the years 2005 (a) and 2080

(b), based on CESM-LE simulations of annual maximum daily precipitation under RCP8.5. Percentage

increase in the point estimate of 2080 from 2005 is shown in (c), while (d) maps the AEP (%) in 2080

corresponding to a 1% AEP level in 2005.

GEV location parameter and log-scale parameter tend to increase with global mean tempera-

ture. Standard model diagnostic plots revealed no issues with model fit. This was confirmed by

applying the AD goodness of fit test to each grid cell (see Figure A.7), and only 2 of the grid cells

rejected at the α= 0.05 level.

Based on the GEV parameter estimates from CESM-ME, we can again produce estimates of

the 1% AEP level for a given year. For the years 2006-2080, these 1% AEP level estimates cor-

respond to projections under the RCP4.5 scenario. (For the historical period 1920-2005, note

that the 1% AEP level estimates from CESM-ME do not perfectly match those from CESM-LE;

however, they are not significantly different given the associated standard errors.) Spatial pat-

terns of the 1% AEP level estimates under RCP4.5 are similar to those under RCP8.5, but with

decreased magnitude (see Figure A.8(b)). Figure 2.3(a) shows the percentage change in 1% AEP

level between 2005 and 2080 under RCP4.5, on the same scale as Figure 2.2(c). For 95% of the
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grid cells in the U.S., the relative change from 2005 to 2080 is reduced under RCP4.5. Similarly,

Figure A.8(c) shows the annual exceedance probability in 2080 under RCP4.5 for the 2005 1%

AEP level, on the same scale as Figure 2.2(d).
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Figure 2.3: Projected U.S. 1% AEP levels under RCP4.5 (based on CESM-ME simulations of annual max-

imum daily precipitation) compared to RCP8.5. Percentage increase under RCP4.5 in the 1% AEP level

of 2080 from 2005 is shown in (a), which can be compared to Figure 2.2(c). Reductions in magnitude of

the projected 2080 1% AEP level under RCP4.5 relative to RCP8.5 are mapped in (b) for grid cells with a

significant difference between scenarios. Example trajectories of the estimated 1% AEP level over time

under RCP4.5 (blue) and RCP8.5 (red) are given for the grid cells closest to Charlotte, NC (c) and Fort

Collins, CO (d), along with 95% confidence bands approximated via the delta method.

Figure 2.3(b) maps the difference in magnitude (mm) for the 2080 1% AEP level between

the two scenarios, showing only the grid cells for which this difference is significant. One such

grid cell is that corresponding to Charlotte, NC. As Figure 2.3(c) illustrates, Charlotte’s RCP8.5

1% AEP level is projected to diverge from the RCP4.5 level by the mid-21st century. On the

other hand, although Fort Collins, CO, shows a similar trend in 1% AEP level over time (see

Figure 2.3(d)), the uncertainty around these estimates is too great to conclude significant dif-
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ference. All significant differences in the 2080 1% AEP level represent reductions under RCP4.5.

We note that for some areas such as the Basin and Range region of the west, the magnitude

of this reduction is small, but corresponds to a high percentage reduction (see Figure A.8(d)).

Across all grid cells in the contiguous U.S., we find a 7% median percentage reduction in the

2080 1% AEP level under RCP4.5 compared to RCP8.5, with reductions as large as 18% for some

grid cells.

2.3.3 Results of pattern scaling

Given the parameter estimates from the CESM-LE RCP8.5 runs and the global mean tem-

peratures from the CESM-ME RCP4.5 runs, predictive GEV distributions Ĝs,x4.5(t ) for RCP4.5 are

produced by letting the GEV parameters be given by (2.6), (2.7) and (2.8). We evaluate the skill

of this pattern scaling method by comparing the annual precipitation maxima m(i )
4.5(s, t ) to the

predictive distribution Ĝs,x4.5(t ) using AD tests at each grid cell. Results of the pattern scaling

approach indicate reasonable fit, as for 84% of the grid cells in the contiguous U.S., the AD

test fails to reject the null hypothesis that the annual maxima m(i )
4.5(s, t ) come from the pattern-

scaled GEV distribution. We again note that the sample size of 2415 gives the AD test prodi-

gious power to reject the null hypothesis. Figure 2.4(a) maps locations with AD p-values less

than α = 0.05. For a grid cell in SE Colorado which had a particularly low p-value of < 0.001,

Figure 2.4(b) compares the densities of the pattern-scaled GEV distribution and the GEV distri-

bution fitted directly to the RCP4.5 maxima for a global mean temperature change of 1.5◦C from

2005 (corresponding to the average global mean temperature change in 2080). Although the AD

test soundly rejects these are the same distribution (with high power due to large sample size),

we see that qualitative differences in the distributions are slight.

We also compare the 1% AEP levels projected by our pattern scaling method to those pro-

jected by the GEV model fitted directly to the CESM-ME RCP4.5 runs. For this same SE Col-

orado grid cell, the pattern-scaled point estimate of the 1% AEP level in 2080 is 92.6 mm with

a delta-based 95% confidence interval of 89.4-95.7 mm, whereas fitting the RCP4.5 output di-
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Figure 2.4: Evaluation of pattern scaling precipitation extremes for global mean temperatures under

RCP4.5. P-values are shown in (a) for grid cells where the Anderson-Darling test rejects the null hy-

pothesis that the annual precipitation maxima m(i )
4.5(s, t ) come from the pattern-scaled GEV distribution

Ĝs,x4.5(t ) at the α = 0.05 level. For a grid cell in SE Colorado with an especially low p-value of < 0.001,

(b) compares the densities of the pattern-scaled GEV distribution (black) and the GEV distribution fitted

directly to the RCP4.5 precipitation maxima (red) for a global mean temperature change of 1.5◦C from

2005.

rectly yielded a point estimate of 97.3 mm with confidence interval of 90.7-104 mm. These

intervals overlap, indicating that even significant differences in distribution have relatively lit-

tle consequence for the 1% AEP level. The differences between 1% AEP levels across the US are

illustrated in Figure A.9. Compared to RCP8.5, results using the pattern-scaled distribution are

similar to those produced by fitting directly to the RCP4.5 output: we still find an overall 7% me-

dian percentage reduction in the 2080 1% AEP level under RCP4.5 compared to RCP8.5 across

all grid cells in the contiguous U.S.

2.3.4 Ensemble advantage for shape parameter estimation

For observational data and typical climate model output, each year yields only a single an-

nual maximum. Here, CESM-LE provides 30 independent realizations of the annual maximum,

{m(i )(s, t )}30
i=1

, so we have the luxury of using an artificially large data set to estimate the GEV

parameters. Of particular interest is the shape parameter ξ(s) as this parameter is both influen-

tial for estimating high quantiles and particularly difficult to estimate. Figure 2.5 compares the

point estimate for ξ(s) using all 30 ensemble members versus an estimate from a single ensem-

ble member. Qualitatively the maps show similar behavior, with higher values of ξ in the Great
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Plains and Gulf Coast. However, due to the single ensemble member’s limited information, the

upper right panel shows much more spatial variability. This is also reflected in the standard er-

rors (not shown) where the standard error for the single ensemble member’s estimates were on

average 5.97 times greater than those of the 30-member ensemble. We note this is quite close

to
p

30 ≈ 5.48, which it should be theoretically.
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Figure 2.5: Comparison of ξ̂(s). Shape parameter estimates utilizing all 30 ensemble members (top left),

and from a single ensemble member (top right). A spatially smoothed estimate of the single ensemble

member is on the bottom left, and bottom right shows the “bias" from smoothing (smoothed estimate

minus full ensemble estimate).

The spatial variability in ξ̂(s) from the single ensemble member likely arises from where this

particular ensemble’s most extreme events happened to occur, as Tye and Cooley (2015) have

shown that estimates of ξ can be sensitive to the occurrence of an extreme event in the data

record. To decrease spatial variability, it is common to “borrow strength" across spatial loca-

tions when estimating ξ and other GEV parameters and various methods have been suggested

(Cooley et al., 2007; Hosking and Wallis, 1997; Sang and Gelfand, 2010). Borrowing strength has
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the effect of spatially smoothing the estimates. The lower left panel of Figure 2.5 shows the result

of applying a relatively simple smoothing method (Tye and Cooley, 2015) to the estimates from

the single ensemble member. Qualitatively, the smoothed estimates seem similar to those of

the full ensemble in the upper left panel. However, smoothing also has the effect of introducing

bias. The lower right panel shows the difference between the estimates from the full ensemble

and the spatially smoothed estimates. Compared to the estimates of the 30-member ensem-

ble, the spatially smoothed estimate underestimates the shape parameter in Florida, Texas and

Nevada, and overestimates this parameter in Idaho and much of the southeast US.

2.4 Discussion

This study takes advantage of two CESM initial condition ensembles to present a detailed

analysis of U.S. precipitation extremes under two climate change scenarios, RCP8.5 and RCP4.5.

Using the covariate of global mean temperature, we fit a non-stationary GEV model to annual

precipitation maxima simulated from each ensemble at each grid cell. Our model shows that

the 1% AEP level for precipitation increases with global mean temperature. Under RCP8.5, we

find the projected median increase in the 1% AEP level is 17% between 2005 and 2080. Given

that the change in global mean temperature is about 3.3◦C over this time period, this is consis-

tent with the 4-10%/◦C range found by Kharin et al. (2013) for CMIP5 models, and is roughly in

line with the Clausius-Clapeyron relationship that predicts an increase in moisture availability

of about 6-7%/◦C (Allen and Ingram, 2002). In terms of reducing impacts, we find that RCP4.5

reduces the 1% AEP level by 7% on average over the contiguous United States compared to levels

predicted under RCP8.5, and projected reductions are as large as 18% in some grid cells.

We also investigate a pattern scaling approach in which we use our GEV model fit to an-

nual precipitation maxima under the RCP8.5 scenario to create a predictive distribution of an-

nual precipitation maxima for global mean temperatures under the RCP4.5 scenario. We find

that these predictive distributions are well calibrated with the annual maxima produced by the

CESM-ME RCP4.5 runs, and that estimates of tail quantities of interest such as the 1% AEP level
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produced by the pattern-scaling approach are similar to those from directly modeling the GCM

output. There are some slight differences, such as in the region just east of the Rocky Mountains,

and Florida, where we surmise that the change in extreme precipitation is not fully described

by the change in global mean temperature, or at least not by our statistical model’s relatively

simple linear functions in the GEV parameters. We expect scenarios driven mainly by a mono-

tonic growth in greenhouse gases to be good candidates for the same type of approximations,

while strongly mitigated scenarios where forcings plateau or decrease may present problems

to the general pattern scaling approach (e.g., RCP2.6; Tebaldi and Arblaster, 2014). We would

also caution against applying pattern scaling to a projection whose temperatures are out of the

range of the fitted projection.

While the foci of this work have been to compare projected extreme precipitation under

the two scenarios and to evaluate a pattern scaling approach for extremes, the Large Ensemble

allows us a unique opportunity to investigate parameter uncertainty. Having multiple ensemble

members allows us to more precisely estimate the GEV parameters than in the usual situation

of a single realization or with observational data. In Section 2.3.4 we investigate the spatial

behavior of the shape parameter ξ, which is a parameter of great interest in extremes and which

is typically the most difficult GEV parameter to estimate. In the typical situation when one only

has a single realization, we see that the estimates for ξ are highly variable in space. Spatial

smoothing methods can achieve point estimates whose spatial characteristics resemble those

we see with the ensemble, but we also find that spatial smoothing methods introduce bias into

the estimates as expected.

There are several things to keep in mind with regards to this study and future impacts of

extreme events. Like the other studies in the BRACE project, we address scenario differences

accounting for the uncertainty that originates from different initial conditions, but do not ad-

dress uncertainties due to different climate models’ structural choices. The results here rep-

resent only one climate model’s version of what the future climate could be, and are therefore

necessarily affected by structural uncertainty (Knutti et al., 2010), i.e. the effects of a particu-
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lar model’s choices of what processes to represent or parameterize, its resolution, and its pa-

rameter settings. Further work is needed to explore the robustness of our findings when other

climate models are used. Note, though, that recently Seneviratne et al. (2016) showed how lin-

ear relations between global average temperature and several aspects of climate extremes at

regional levels apply across the whole CMIP5 ensemble, which leads us to believe that other

models would be amenable to the same approach that we apply here to CESM. Another con-

cern is that we analyze output with relatively low spatial resolution, thus assessing local impacts

of these changes in extreme precipitation behavior would require downscaling. We also only

consider annual maximum precipitation and do not consider seasonal effects. We summarize

changes in extreme precipitation primarily in terms of the 1% AEP level; however, we point

out that our methodology allows us to characterize changes in any tail quantity of interest. Al-

though the precipitation AEP level by itself does not quantify risk say due to flooding, changes

in AEP level are an important piece of assessing the changing risk of such events.
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Chapter 3

Observed and Predicted Sensitivities of High and Extreme

Surface Ozone to Meteorological Drivers in Three US Cities4

3.1 Introduction

Surface ozone (O3) is one of the major air pollutants associated with adverse health effects.

According to the US Environmental Protection Agency (EPA), current scientific evidence sup-

ports a causal relationship between short-term exposures to O3 and respiratory health effects,

and a likely to be causal association with total mortality (IHME, 2013). The O3 health effects

have been found to be non-linear, and may be especially detrimental at high levels of O3 (Wil-

son et al., 2014). In addition, ambient air quality standards for “criteria" pollutants such as O3

typically impose a penalty for exceeding a high concentration threshold. Thus for both air qual-

ity regulation and human health concerns, it is important to understand the conditions lead-

ing to the most extreme O3 levels and to be able to reliably predict these extreme levels under

present and future climate via atmospheric chemistry models.

Processes controlling O3 concentrations are relatively well understood (Seinfeld et al., 1998).

Surface O3 is mostly a summertime pollutant produced by photochemical oxidation of volatile

organic compounds (VOCs) by hydroxyl radical (OH) in the presence of nitrogen oxides (NOx)

and sunlight. Most efficient losses of surface O3 include the removal by dry deposition uptake to

vegetation, and its photolysis in the presence of water vapor which leads to the formation of OH.

It is also well known that O3 concentrations near the surface are strongly affected by meteoro-

logical parameters including (but not limited to) the boundary layer winds (mixing/dispersion),

temperature which influences the emissions of biogenic precursors, and cloudiness which in-

fluences the radiation fluxes available for photolytic reactions.

4Fix, M. J., Cooley, D., Hodzic, A., Gilleland, E., Russell, B. T., Porter, W. C., & Pfister, G. G. (2018). Observed and

predicted sensitivities of extreme surface ozone to meteorological drivers in three US cities. Atmospheric Environ-

ment, 176:292–300.
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Accurate estimation of O3 sensitivity to individual meteorological variables is challenging

due to the complex interdependencies and processes at play. Research conducted across many

settings, including both observational and model perturbation studies, suggests that elevated

O3 concentrations are most strongly linked with increases in temperature (Jacob and Winner,

2009; Pearce et al., 2011). Exceptionally high O3 levels were observed in Europe in August 2003

associated with hot and dry heat-wave conditions (Vautard et al., 2007). In an analysis of co-

variance performed on observed daily O3 maxima in Switzerland during the 1992-2002 period,

Ordónez et al. (2005) found that temperature and global radiation accounted for most of the

meteorological variability in summer O3 concentration. In a model perturbation study over the

eastern US during July 2001, Dawson et al. (2007) found that on average temperature had the

largest (positive) effect on maximum daily 8-hour average (MDA8) O3. Absolute humidity had

a smaller but appreciable (negative) impact. Also focusing on the eastern US, Camalier et al.

(2007) were able to explain up to 80% of the variability in observed MDA8 O3 with a generalized

linear model. They found regional variability in the prevailing meteorological parameters driv-

ing O3 response, with temperature most dominant in the northeast US and relative humidity

playing a more significant role in the southeast US. Transport distance and direction also had

strong effects in some areas.

The studies referenced above focus on the average O3 response. However, meteorological

sensitivities at high quantiles of O3 have been shown to differ from those of the overall median

(Baur et al., 2004; Porter et al., 2015). In the present study we focus on high and extreme O3

levels, thus requiring specialized tools such as quantile regression and extreme value analysis.

Quantile regression is beginning to be recognized as a powerful tool in air pollution studies

(Zhao et al., 2016). For instance, Otero et al. (2016) applied quantile regression to estimate the

meteorological influence on the 0.95 quantile of MDA8 O3 over Europe during 1998-2012. In

summer months, they found that maximum temperature and southerly flow were selected as

predictors in over 80% of the models, with relative humidity and surface solar radiation follow-

ing closely behind. Porter et al. (2015) applied quantile regression to observed daily O3 levels
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across the US during 2004-2012, and found maximum temperature to be the dominant driver

of 0.95 quantile MDA8 O3 in the summer. Consistent with the analysis of Camalier et al. (2007),

they also found a strong negative relationship of relative humidity with O3 in many locations,

especially in the southern US. For extremely high quantiles, quantile regression suffers from

data scarcity and extreme value analysis is needed. Russell et al. (2016b) developed a method

to optimize tail dependence between O3 and a linear combination of meteorological drivers.

Russell et al. (2016a) applied this method to a spatial study of extreme summer MDA8 O3 in the

southeast and mid-Atlantic region of the US, and similarly found that air temperature was more

important in the northern portion of the region while low humidity was more influential in the

southern portion of the region.

Atmospheric chemistry models are essential for making short-term predictions of air qual-

ity, as well as projections of future air quality under climate change. Reproducing observed

sensitivities of pollutants to meteorology is needed for building confidence in such model pro-

jections, but evaluation of model performance is lacking for air quality at high and extreme lev-

els. The goal of this chapter is to evaluate model skill in reproducing observed relationships be-

tween meteorology and O3 extremes in the US, such as those explored in Porter et al. (2015) and

Russell et al. (2016b). We utilize a set of high resolution, regional scale atmospheric chemistry

model simulations by Pfister et al. (2014). Although our focus is on the relationship between

high/extreme O3 and meteorological predictors, it is also necessary to examine the marginal

distributions of both response and predictor variables individually. Thus, as illustrated in Fig-

ure 3.1, our study framework includes three types of comparisons between simulated and ob-

servational data, comparing (1) the O3 response variable, (2) the meteorological predictor vari-

ables, and (3) the sensitivities of high and extreme O3 to meteorological predictors. The first

two are comparisons of distributions, and for the O3 response we largely focus on comparing

the distributions’ tails. The comparison of sensitivities is made using two methods: quantile

regression and the tail dependence optimization method developed by Russell et al. (2016b).

To our knowledge, this is the first study to apply these statistical methods to O3 simulated from
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an atmospheric chemistry model, as well as the first study to compare the meteorological sen-

sitivities of high/extreme O3 between simulated and observed O3.

NRCM-Chem

simulated O3

Distribution

GPD for tail
Observed O3

Sensitivities

0.95 quantile

regression and

tail dependence

optimization

NRCM-Chem

simulated

meteorology
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tail dependence
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NARR
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Distribution

summary

measures
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Figure 3.1: Illustration of the framework used in this study to compare simulated and observational data.

3.2 Inputs

3.2.1 Observations and NARR

We analyze surface O3 measurements from the EPA’s air quality system (AQS5) for summers

(JJA) during the years 1996-2005. For consistency with the EPA’s National Ambient Air Quality

Standards (NAAQS), we extract MDA8 O3 concentrations for our analysis. Because the statisti-

cal methodology is computationally costly, we focus on a case study of three AQS monitoring

stations: station 13-121-0055 in Atlanta, station 48-201-0046 in Houston, and station 04-013-

3002 in Phoenix. There were at most 5 days of data missing out of 920 days total at each of

the stations. These three US cities have historically high levels of O3, and fall within 8-hour

O3 nonattainment areas as designated by the EPA. Atlanta, Houston, and Phoenix represent a

5https://www.epa.gov/outdoor-air-quality-data
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range of regional climates across the southern US, and belong to EPA regions 4, 6, and 9, re-

spectively. However, we do not view this as a comprehensive study of these regions. These

stations all reflect urban environments, however exploratory analysis found that a rural station

in moderate proximity to Atlanta showed strong correlation to the urban Atlanta station, thus

the sensitivities of high and extreme ozone to NARR meteorology would be very similar.

Following Porter et al. (2015) and Russell et al. (2016b), we obtain meteorological variables

from the National Centers for Environmental Prediction (NCEP) North American Regional Re-

analysis (NARR) product (Mesinger et al., 2006), which combines model and assimilated obser-

vational datasets. NARR is a gridded product with a spatial resolution of 32 km and 8 output

fields per day (representing 3-hour means). There is a spatial mismatch between the point-

located O3 observations and the gridded NARR meteorology. We use output from the NARR grid

cell whose midpoint is closest to the AQS monitoring station of interest. NARR has been used

previously to examine meteorological drivers of observed air pollution (e.g. Tai et al., 2010). In

addition, the NARR output is complete and does not need additional quality control.

3.2.2 NRCM-Chem simulations

We utilize a set of climate simulations conducted by Pfister et al. (2014) using the nested

regional climate model with chemistry (NRCM-Chem), which is based on the regional Weather

Research and Forecasting model with chemistry (WRF-Chem, version 3.3). WRF-Chem is a fully

coupled chemical transport model (Grell et al., 2005), which was run at a high spatial resolution

of 12 km providing hourly outputs for the variables that we consider. We extract MDA8 O3

concentrations from the NRCM-Chem gridpoint closest to each of the AQS stations. Daily me-

teorological variables (see Section 3.2.3) are also extracted from the NRCM-Chem simulations

at these gridpoints.

We use the present time NRCM-Chem simulations for the 10 summers (1996-2005). Sim-

ulations are initialized each April, and we analyze output from June through August to allow

for a 2 month spin-up phase. Meteorological initial conditions (IC) and boundary conditions
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(BC) driving the NRCM-Chem simulations are provided by a NRCM 36 km domain simulation

described in Done et al. (2015). Chemical IC and BC for trace gases and aerosols were taken

from a global simulation with the Community Atmosphere Model with Chemistry (CAM-Chem

V4) detailed in Lamarque et al. (2011). Each present time NRCM-Chem year uses the same

chemical IC and BC based on the CAM-Chem output for the year 2000. More details about the

simulations can be found in Pfister et al. (2014).

3.2.3 Selecting meteorological predictors

To compare the sensitivities to meteorology between observed and simulated O3, we must

choose meteorological predictor variables which are available both in NARR and NRCM-Chem

output. Based on results from previous studies, we select five meteorological predictors of in-

terest (see Table 3.1). These variables represent a subset of those found by Otero et al. (2016),

Porter et al. (2015), and Russell et al. (2016b) to be key drivers of high or extreme observed

summer O3. To examine the relationship between meteorology and MDA8 O3, which is a daily

quantity, daily summary measures are chosen for each predictor variable. For consistency be-

tween NRCM-Chem and NARR output, which is available as 3-hour means, we first convert the

NRCM-Chem output to 3-hour means before taking the daily maximum.

Table 3.1: Meteorological predictors and corresponding daily summary measures used in the analysis,

for both NARR and NRCM-Chem outputs.

Meteorological predictor Abbreviation Definition

Air temperature at 2m T Daily maximum

Wind speed at 10m WS Daily mean

Relative humidity RH Daily mean

Height of the planetary boundary layer HBL Daily maximum

Downward shortwave radiation flux DSR Daily maximum

41



3.3 Statistical Methods

3.3.1 Marginal analysis of extreme O3

In addition to using standard summary statistics to compare the distributions of MDA8

O3 between observations and NRCM-Chem simulations, we employ extreme value theory to

analyze the tails of these distributions. We use the generalized Pareto distribution (GPD) to

model exceedances of a sufficiently high threshold u. The threshold exceedance approach is

frequently applied because it offers greater efficiency of data usage over block-maxima ap-

proaches, and has been used previously to model the tail behavior of O3 (e.g., Phalitnonkiat

et al., 2016; Rieder et al., 2013). The GPD is parameterized by scale and shape parameters

σu > 0 and ξ, and can be defined as in (1.6). When ξ < 0 there is an upper limit such that

u < x < u −σu/ξ, i.e. the tail is bounded. The cases ξ = 0 and ξ > 0 correspond to light and

heavy tails, respectively.

To maintain a consistent approach among our analyses, for each series we choose our thresh-

old, u, such that approximately 5% of the O3 values exceed it. Standard diagnostics such as the

mean residual life plot (Coles, 2001) confirm that this threshold appears to be high enough that

the limiting GPD is a good approximation for the exceedance distribution, while at the same

time this threshold retains a reasonable number of exceedances for the analysis. As a result of

emissions controls, concentrations of surface O3 have been decreasing over much of the US in

recent years (Lefohn et al., 2008). We see this downward trend in observed O3 at the Atlanta and

Houston stations (see Figure 3.2), and account for this non-stationarity by setting a linearly-

varying threshold in time, uy , via 0.95 quantile regression (Koenker and Bassett Jr, 1978). The

quantile regression coefficient for year is significantly less than zero at Atlanta and Houston

(point estimates and standard errors are given in Table 3.2). Because the NRCM-Chem simu-

lations use anthropogenic emission inputs from the year 2000 for the entire time period, we

do not observe the same downward trend as in the observations, and thus employ a constant

threshold u for simulated O3 which is the empirical 0.95 quantile over the entire series at a given

location. Given the threshold estimate, GPD parameters are estimated by maximum likelihood,
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and standard errors are obtained via standard likelihood-based procedures. These standard

error estimates do not take into account threshold uncertainty.
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Figure 3.2: Distribution of observed summer (JJA) MDA8 O3 by year at three AQS monitoring stations.

The 0.95 quantile regression line represents the linearly-varying threshold in time used for the marginal

analysis of extreme O3. The trend in year is significantly less than zero for Atlanta and Houston stations,

but not for the Phoenix station.

The usual likelihood formed by the product of GPD densities assumes independence of

threshold excesses. However, initial examination of the O3 series reveals short-term tempo-

ral dependence in the exceedances – if O3 concentration exceeds the threshold today, it is more

likely to exceed the threshold tomorrow compared to if it did not exceed today. Fitting the GPD

to all exceedances using the usual likelihood in the presence of such serial correlation would re-

sult in underestimated standard errors. We avoid this issue by declustering the excesses prior to

model fitting. We use the intervals method proposed by Ferro and Segers (2003) to estimate run

length, and then apply runs declustering (Leadbetter et al., 1989) with clusters restricted to oc-

cur within the same year. Once a cluster is identified, it is replaced with the cluster maximum.

The GPD is fit to the declustered series, with parameters computed via numerical maximum

likelihood estimation. Sample sizes before and after declustering are given in Table 3.2. Analy-

ses are done using the extRemes package (Gilleland and Katz, 2016) in R (R Core Team, 2015).

Using the fitted GPD, we can estimate high quantiles of the O3 distributions. In this study we
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report estimates of the 0.99 quantile, with confidence intervals obtained by profile likelihood to

account for asymmetry in the likelihood surface.

3.3.2 Relating high and extreme O3 to meteorological drivers

We use two methods to examine the sensitivities of high or extreme O3 to the selected me-

teorological predictors: quantile regression and the tail dependence optimization method de-

veloped by Russell et al. (2016b). The two frameworks are described below. In both approaches,

we fit statistical models relating (a) NRCM-Chem O3 to NRCM-Chem meteorology and (b) ob-

served O3 to NARR meteorology. The fitted models include the five meteorological predictor

variables found in Table 3.1 for both NRCM-Chem and NARR, allowing us to compare the esti-

mated model coefficients which represent the sensitivities of the O3 response to the meteoro-

logical drivers.

Quantile regression

In contrast to ordinary least squares regression, which models the linear relationship be-

tween one or more predictor variables X and the conditional mean of a response variable Y

given X = x, quantile regression (Koenker and Bassett Jr, 1978) extends the regression model to

conditional quantiles of the response Y given X = x. For τ ∈ (0,1), we define the τth conditional

quantile of Y by

QY |X(τ) = inf{y : Pr (Y ≤ y |X = x) ≥ τ}.

Our model assumes a linear relationship between the conditional quantile and the p predictors,

i.e.

QY |x(τ) = xTα(τ) =α0 +α1x1 +·· ·+αp xp . (3.1)

The coefficients α(τ) = (α0,α1, . . . ,αp ) of the linear conditional quantile function can be esti-

mated by solving

α̂(τ) = argmin
α∈Rp

n∑

i=1

ρτ(yi −xT
i α), (3.2)
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whereρτ(·) represents the check functionρτ(u) = u(τ−I(u < 0)) and I(·) is the indicator function.

In this study, τ= 0.95 because we are interested in a high level of ozone.

Because the distributions of O3 and meteorology may differ between NRCM-Chem simu-

lations and observational products (see Sections 3.4.1 and 3.4.2), we center and scale both the

O3 response and each of the meteorological predictors so as to be able to compare the esti-

mated coefficients between the two analyses. We also center the year variable so that the in-

tercept is at the year 2000. We implement quantile regression using the quantreg package

(Koenker, 2016) in R, with standard errors obtained by paired bootstrap (Givens and Hoeting,

2013, §9.2.3). Specifically, we fit a model for the conditional 0.95 quantile with all five meteoro-

logical main effects. Note that these quantile regression models are different from the quantile

regression used for threshold estimation in Section 3.3.1, which included only year as a predic-

tor to account for non-stationarity in the tail.

Tail dependence optimization

Quantile regression is not well-suited to modeling extremely high quantiles for which there

may be inadequate data above the desired quantile for quantile regression estimation methods

to succeed. To understand the meteorological variables associated with the highest O3 levels,

we apply the method developed by Russell et al. (2016b) to find the linear combination of a

set of meteorological predictors which has the strongest tail dependence with the O3 response.

This approach is based on the multivariate (in this case, bivariate) regular variation framework

for multivariate extremes (see Section 1.4 for background).

The procedure of Russell et al. (2016b) aims to optimize a metric of tail dependence γ, where

γ = 0 corresponds to perfect asymptotic dependence, while γ = 1 corresponds to asymptotic

independence. Because the regular variation framework requires heavy-tailed marginals, the

procedure requires transformation of both the response and predictor functional. Let Yt be the

random variable representing the response at time t , and let X t ,i be value of the i th predictor

at time t , for i = 1, . . . ,k. First we transform the response to be approximately unit Fréchet

by letting Y ∗∗
t = G−1[F̂Y (Yt )] where G is the unit Fréchet distribution function and F̂Y is an
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estimate of the marginal distribution of Yt . Next we apply a two-step transformation procedure

to the predictors. In the first step, each predictor is transformed to the standard Gaussian scale

using X ∗
t ,i

=Φ
−1[F̂Xi

(X t ,i )] where Φ is the standard Gaussian distribution function. We consider

linear combinations of the form X
∗′
t
β = β1X ∗

t ,1 + ·· · +βk X ∗
t ,k

, where X∗
t = (X ∗

t ,1, . . . , X ∗
t ,k

). For

identifiability purposes, β is constrained such thatβ′Cov(X∗
t )β= 1, and then X

∗′
t
β is assumed to

be approximately standard Gaussian. In the second step, this linear combination is transformed

back to be approximately unit Fréchet using X ∗∗
t (β) =G−1[Φ(X

∗′
t
β)].

Our modeling framework assumes the random vector (X ∗∗
t (β),Y ∗∗

t ) is bivariate regularly

varying, and we seek the vector of coefficients β̃ whose linear combination has the highest de-

gree of tail dependence with the response. We find

β̃= argmin
{β∈Rk :β′Cov(X∗

t )β=1}

γ̂(β),

where the estimator

γ̂(β) =

∑n
t=1δ(x∗∗

t (β)+ y∗∗
t )

|x∗∗
t (β)−y∗∗

t |
x∗∗

t (β)+y∗∗
t∑n

t=1δ(x∗∗
t (β)+ y∗∗

t )
, (3.3)

and δ : R+ → [0,1] is a non-decreasing weighting function. More details can be found in Russell

et al. (2016b). Russell (2015) found that tail dependence optimization outperformed regression

approaches, including quantile regression and logistic regression, as well as other extreme value

approaches in terms of concordance in the upper tail. One disadvantage, however, is the large

uncertainty in parameter estimates inherent to this and other extreme value methods.

We obtain 95% confidence intervals for parameter estimates using paired bootstrap and the

percentile method (Givens and Hoeting, 2013). Model comparison can be achieved via cross-

validation. Specifically, we use 10-fold cross-validation, in which the data is partitioned into

10 subsets. For each fold, the optimization is done on the training set (90% of the data) and γ̂

is calculated for the test set (the remaining 10% of the data). The cross-validation score γ̂CV is

then the average over all 10 test sets.
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3.4 Results

3.4.1 Comparing tails of O3 response

Having implemented the procedure described in Section 3.3.1, Figure 3.3 compares the

distribution of summer MDA8 O3 between observations and NRCM-Chem simulations at our

three study locations. In each panel between boxplots, the estimated 0.99 quantile for the year

2000 is shown with the corresponding 95% profile likelihood confidence interval. The 0.99

quantile roughly corresponds to the annual 4th highest MDA8, which forms the basis of the

NAAQS for O3. These extreme quantile estimates are made using the GPD fit to each series. The

fitted GPD parameters are given in Table 3.2. In Atlanta and Phoenix, we see relatively good cor-

respondence between observations and NRCM-Chem simulations, and 0.99 quantile estimates

are not significantly different. In Houston, there is a noticeable difference in the upper tail, and

the 0.99 quantile estimate is significantly lower for simulated O3. This result is consistent with

the tendency of regional air quality models to underpredict the high O3 events, as found by Im

et al. (2015) for example.
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Figure 3.3: Boxplots of summer MDA8 O3 during the years 1996-2005 from NRCM-Chem simulations

(Sim) and AQS observations (Obs) at the three study locations. In each panel between the boxplots is the

0.99 quantile for the year 2000 estimated by fitting a GPD to threshold exceedances of simulations (left)

and observations (right). Upper and lower limits are given for the corresponding 95% profile likelihood

confidence intervals of each quantile estimate.
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Table 3.2: GPD parameter estimates (standard errors in parentheses) for simulated (Sim) and observed

(Obs) summer MDA8 O3 at the three study locations. σu is the scale parameter, ξ is the shape parame-

ter, u is the threshold, and nexc is the number of exceedances after declustering (before declustering in

parentheses). For Sim, u is set to the empirical 0.95 quantile. For Obs, uy is a linearly-varying thresh-

old in time with 0.95 quantile regression coefficients α0 and α1, where the intercept α0 represents the

threshold for the year 2000. Standard errors for threshold parameters are obtained via bootstrapping.

Atlanta Houston Phoenix

σu
Sim 11.88 (2.50) 7.84 (2.56) 6.36 (1.70)

Obs 23.91 (5.20) 17.09 (3.89) 6.03 (1.62)

ξ
Sim -0.26 (0.13) 0.00 (0.30) -0.19 (0.20)

Obs -0.66 (0.17) -0.52 (0.18) -0.20 (0.21)

u

Sim 109.74 (1.80) 76.62 (1.07) 76.11 (0.72)

Obs α0 101.00 (1.74) 82.60 (1.75) 75.33 (0.81)

Obs α1 -3.00 (0.56) -3.40 (0.61) -0.33 (0.34)

nexc
Sim 34 (46) 31 (46) 32 (46)

Obs 32 (43) 37 (45) 32 (42)

3.4.2 Comparing meteorological predictors

As in Section 3.4.1, we compare the distributions of meteorological variables. We do this

because the NRCM-Chem simulations are not driven by reanalysis. We find that the distribu-

tions of the selected meteorological predictors differ considerably between NRCM-Chem and

NARR output. NRCM-Chem tends to underestimate daily maximum air temperature and daily

mean relative humidity, and exhibits much larger variability in these predictors than seen in

the NARR product (Figure 3.4 top, center). In Atlanta, for example, the summer median for rel-

ative humidity according to NRCM-Chem is 55% compared to 74% based on NARR. In Phoenix,

the summer median for relative humidity is 16% in NRCM-Chem vs. 23% in NARR, however

NRCM-Chem records a summer maximum of 79% daily mean relative humidity compared to

NARR which has a maximum value of 52%. NRCM-Chem also tends to underestimate daily

maximum height of the planetary boundary layer compared to the NARR product (Figure 3.4

bottom).

The discrepancy between the meteorology in NRCM-Chem and NARR is not explained by

their difference in spatial resolution. We explored taking the average of the nine NRCM-Chem

grid cells surrounding each location, to obtain 36 km resolution similar to NARR’s 32 km reso-
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lution. However, the NRCM-Chem simulations are so strongly correlated between neighboring

grid cells that the results are extremely similar to what is shown in Figure 3.4.
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Figure 3.4: Kernel density plots of NRCM-Chem simulated (Sim, dashed lines) and NARR (Obs, solid

lines) daily maximum air temperature at 2m (top row), daily mean relative humidity (center row), and

daily maximum height of the planetary boundary layer (bottom row) for summers (JJA) during 1996-2005

at the three study locations.

49



3.4.3 Comparing relationships between O3 and meteorology

Quantile regression

The left column of Figure 3.5 presents the estimated coefficients of the fitted 0.95 quan-

tile regression models at each location for two analyses. The first analysis (in triangles) relates

NRCM-Chem O3 to NRCM-Chem meteorology, and the second (in circles) relates observed O3

to NARR meteorology. Year is included as a predictor for observed O3, to account for the down-

ward trend observed in Figure 3.2. As expected, we find a significant negative year trend for

observed O3 in both Atlanta and Houston that is not present in the NRCM-Chem simulations

(not shown). Coefficients are shown for the five meteorological predictors included as main ef-

fects in the full model. Some coefficients are not significantly different from zero, as indicated

by the 95% confidence interval intersecting zero. We explored using backwards stepwise selec-

tion to remove nonsignificant predictors, however we found that in all cases the full model had

the best (lowest) Akaike information criterion (AIC) value, so we report results for this model.

For both analyses across the three study locations, in most cases we see that daily mean

wind speed (WS) and relative humidity (RH) have negative effects on the 0.95 quantile of MDA8

O3. In Atlanta and Phoenix, daily maximum air temperature (T) has a positive effect. (The

negative coefficient for T in Houston is evidence of multicollinearity, as a quantile regression

model including only T results in a positive coefficient for T.) When the daily maximum height

of the planetary boundary layer (HBL) is significant, it appears to have a positive effect. Daily

maximum downward shortwave radiation flux (DSR) does not have a significant effect in any of

the fitted models.

At each location, we find differences in the fitted full model for NRCM-Chem simulated vs.

observed O3. These differences are not consistent across study locations. In Atlanta, T has a

significant (positive) effect on observed O3, however it is borderline nonsignificant for NRCM-

Chem simulations. WS has the strongest (negative) effect on simulated O3, but not a significant

effect on observed O3. In Houston, in contrast, WS has a significantly more negative effect on

observed O3. Unlike at other locations, there is a similar (significant, positive) effect of HBL on
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Figure 3.5: Parameter estimates with 95% confidence intervals for 0.95 quantile regression (left column)

and tail dependence optimization (right column) at Atlanta (top), Houston (center), and Phoenix (bot-

tom). Triangles indicate estimates from models relating NRCM-Chem O3 to NRCM-Chem meteorology,

while circles indicate estimates from models relating observed O3 to NARR meteorology. Estimates in

gray correspond to a reduced tail dependence model including only T, WS, and RH as predictors.
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both simulations and observations in Houston. In Phoenix, the largest difference is in relative

humidity: RH has a significant negative effect on simulated O3, but a significant positive effect

on observed O3, conditional on the other predictors. T has a significant effect for simulations

but not for observations, while HBL is significant for observations but not for simulations. In

contrast to the other two locations, there is a similar negative effect of WS on both simulated

and observed O3 in Phoenix.

Tail dependence optimization

Unlike quantile regression, where we directly model the effect of year for observed O3, the

tail dependence optimization method of Russell et al. (2016b) requires stationary data. To ac-

count for non-stationarity in observed O3, we transform the response variable by using 0.95

quantile regression to obtain the linearly-varying threshold in time as in Section 3.3.1. We then

fit a gamma distribution to observations below and a GPD to observations above this year-

varying 0.95 quantile, as explained in Russell et al. (2016b). This detrended response is then

transformed to unit Fréchet as required by the method.

The right column of Figure 3.5 presents parameter estimates with bootstrap confidence in-

tervals (based on 1000 bootstrap replicates) for tail dependence optimization applied to the

two analyses at each of the three study locations. Similar to quantile regression, across all loca-

tions and analyses we see that T tends to have a positive relationship with extreme O3, while WS

tends to have a negative relationship. When RH is found to be significant, it has a negative rela-

tionship with extreme O3. These three predictors have significant effects in at least some cases,

while confidence intervals for HBL and DSR cover zero in all cases. Therefore, in addition to the

full model with all five meteorological variables, we also fit a model with only T, WS, and RH as

predictors (see Figure 3.5 results in gray). In all cases this improves (lowers) the cross-validation

score γ̂CV .

Parameters obtained by tail dependence optimization are less straightforward to interpret

than those obtained by quantile regression. For a given model fit, we can compare relative mag-

nitudes and signs of the estimated parameters. Some differences are evident between model fits
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for simulated vs. observed extreme O3. In Atlanta, as was the case for quantile regression, there

appears to be a more negative effect of WS on simulated than observed O3. In Houston, RH

has the strongest effect for simulated O3, while T and WS appear to have stronger effects on

observed O3. In almost all cases, the point estimate for RH differs in sign between analyses for

simulated and observed O3, although the bootstrap confidence intervals are too wide to con-

clude any significant difference. In all three locations, DSR is estimated to have a negative effect

on simulated O3 and a positive effect on observed O3, though again we are not able to conclude

a significant difference.

3.5 Summary and Discussion

In this case study of summer surface O3 in three US cities, we employ a set of high reso-

lution NRCM-Chem simulations to make three types of comparisons between simulated and

observational data, comparing (1) tails of the O3 response, (2) distributions of meteorological

predictor variables, and (3) sensitivities of high and extreme O3 to meteorological predictors.

This last comparison is made using both quantile regression, for the 0.95 quantile of O3, and

the tail dependence method of Russell et al. (2016b), which is used to investigate even higher

O3 extremes. To our knowledge, ours is the first study to apply quantile regression and tail de-

pendence optimization to O3 simulated from an atmospheric chemistry model. Additionally,

this is the first study to compare the meteorological sensitivities of high/extreme O3 between

simulations and observational data.

Results from comparing the distributions of the O3 response variable show that NCRM-

Chem represents O3 adequately overall, but underestimates extreme quantiles of O3 in Hous-

ton. Results from comparing the distributions of meteorological predictors show clear discrep-

ancies between the meteorology produced by NARR and that found in the NRCM-Chem sim-

ulations at all three locations. We recognize that NARR, being a reanalysis product, will not

exactly match weather station data. There are further questions about NARR, for example the

diagnostic parameter HBL is likely too high in NARR, e.g. a comparison with the MERRA re-
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analysis found that NARR is more than 500m higher over the western US (McGrath-Spangler

and Denning, 2012). However, we see surprising meteorology produced by NRCM-Chem, for

instance the very low RH levels in Atlanta. These drier model conditions could increase the

lifetime of O3, as lower water vapor leads to reduced loss of O3. The bias in the NRCM-Chem

meteorology could be at least partially due to known SST errors in the model runs (Pfister et al.,

2014).

Comparisons of the sensitivities of high and extreme O3 to meteorological drivers also show

clear differences between simulations and observational data. These differences are not con-

sistent across the three study locations. For both high and extreme O3 in Atlanta, simulations

significantly overpredict the strength of the (negative) effect of WS. For the 0.95 quantile in

Houston, we see the opposite, in that simulations significantly underpredict the effect of WS. In

Phoenix, the quantile regression coefficient for RH is negative for simulated O3, but positive for

observed O3. We also see a sign difference in the Phoenix point estimates for RH from the tail

dependence method, however the confidence intervals are too large to conclude significance.

Differences in the sensitivities of observed vs. simulated O3 could be driven by differences in

how meteorological variables interact with O3 formation and removal processes. For example,

previous studies of average MDA8 O3 over the eastern US have found that air quality models

underpredict the strength of the effects of T and RH (Davis et al., 2011; Rasmussen et al., 2012).

In Atlanta, we similarly find that our 0.95 quantile regression coefficients underestimate the ef-

fects of T and RH, though not significantly. Kavassalis and Murphy (2017) suggest that such a

discrepancy may result from the lack of vapor pressure deficit-dependent dry deposition in the

chemical transport model. Differences in Houston may be attributed to the difficulty in repre-

senting coastal dynamics such as recirculation patterns (e.g., Russo et al., 2016). Coastal areas

often show a diurnal cycle in wind patterns, which in some cases can lead to either stagnancy,

or the recirculation of polluted air away and then back to the original location. Poorly repre-

senting these coastal wind patterns, and how the observed recirculation or stagnancy affect O3

levels, could explain the discrepancies in sensitivities for both WS and RH.
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An important finding of this study is that the distribution of simulated O3 matches ob-

served O3 quite well at two out of the three locations, despite rather large differences – and

in some cases even sign reversal – in the meteorological sensitivities. It is possible that the dif-

ferences in modeled and observed sensitivities are superficial, and that the underlying mecha-

nisms leading to extreme O3 formation and loss are still being represented, even if attribution is

not identical between model and observation. It may be that the linearity assumption inherent

to both quantile regression and tail dependence optimization methods is too simple to capture

the complex relationship between O3 and meteorology. In addition, models with multiple pre-

dictors face issues of collinearity in the predictors which increase the uncertainty. Future work

could relax linearity assumptions or investigate interaction effects between predictor variables.

However, our finding raises a concern for modelers that the O3 distributions are matching

up well for the wrong reasons, due to parameter tuning within the model. Modeled chemistry

related to O3 formation, for example, has been steadily evolving and improving, but some of

the improvements actually worsen agreement with observations because other processes are

not included yet, or else have been misrepresented (see, e.g., Porter et al., 2017; Sherwen et al.,

2016). If we seek modeling tools that can adapt to changing emissions and climatology, it is

important to not only capture the current pollutant distribution, but also the relationships be-

tween the pollutant and its drivers. Our results suggest that, even in the locations where O3

seems to be fairly well represented, NCRM-Chem may not be accurately representing the mech-

anisms behind O3 formation or loss. Correctly describing current levels of O3, while failing to

capture the key mechanisms responsible, implies that our predictions will be unable to adapt

to a changing climate. The poor agreement of meteorological sensitivities may evidence a need

for mechanism improvement, either in terms of chemistry or physical dynamics.

We have proposed and applied a framework for comparing the meteorological sensitivities

of high/extreme O3 between observed data and simulated output. While this study analyzes

only one atmospheric chemistry model, our methodology could be applied to any pairs of ob-

servational and simulated O3-meteorology data. Despite having only 10 years of data which is
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a very short record for an extreme value analysis, we find important differences between the

observed and simulated O3, the driving meteorology, and the sensitivities linking these. How-

ever, there are large uncertainties in parameter estimates, as evidenced by the wide confidence

intervals in Figure 3.5. Such uncertainty is inherent to extremes approaches which focus on

the most extreme values and thus use only a small subset of the data. In addition, this case

study was a detailed analysis of only a few urban locations. Future work could consider aggre-

gating results or conducting a spatial analysis over a larger region, as borrowing strength across

locations could reduce uncertainties in parameter estimates (Russell et al., 2016a).

56



Chapter 4

Simultaneous Autoregressive Models for Spatial Extremes

4.1 Introduction

Natural hazards, such as floods and heatwaves, arise as extremes of physical processes that

are inherently spatial. Spatial modeling of extremes can reduce uncertainty of risk estimates

at a single location by borrowing strength across spatial locations, as well as capture spatial

dependence between locations. When estimating joint risk over a region, e.g., for planning or

insurance purposes, it is essential to account for spatial dependence in the tail. Classical spatial

statistics is unsuited to extremal modeling because it is largely based on Gaussian distributions

and its methods are best suited for describing mean behavior. It is well known that the tails of

the multivariate Gaussian distribution lead to independent extremes (Sibuya, 1960), which can

result in potentially catastrophic underestimation of joint risk. In recent years, there has been

much interest in developing spatial models appropriate for extremes (see, e.g., Cooley et al.,

2012a; Davison et al., 2012, for reviews).

In classical spatial statistics, two common approaches are geostatistical models and areal

data models. Geostatistical models are process models designed for point-referenced data,

where we assume we have sampled d of an infinite number of potential spatial locations. If

isotropy is assumed, spatial correlation is modeled as a function of distance, and spatial pre-

diction can be done using kriging. In areal data models, on the other hand, the entire domain

is partitioned into d regions and values are associated with these regions. Areal data models,

then, are not process models but rather multivariate models incorporating spatial (neighbor-

hood) structure. As such, spatial prediction is not done for areal models. The simultaneous

autoregressive (SAR; Whittle, 1954) and conditional autoregressive (CAR; Besag, 1974) are two

well-known areal models.

Existing models for spatial extremes, such as max-stable process models (see Section 1.5),

tend to be geostatistical in nature. Despite recent advances, current models are also compu-
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tationally intensive and inference has generally been limited to a moderate number (d ≈ 30)

of spatial locations. Larger problems require methods such as composite likelihood (Padoan

et al., 2010). Only very recently (Reich and Shaby, 2018) have areal models been considered for

spatial extremes. Unlike the Reich and Shaby (2018) approach, which accounts for spatial de-

pendence via latent clustering of neighboring regions, our approach is more directly analogous

to classical areal models.

The goal of this work is to develop a simple spatial extremes model that is computation-

ally feasible for high-dimensional areal data. We propose a new class of multivariate extremes

models inspired by the simultaneous autoregressive (SAR) model in classical spatial statistics.

Our extremal SAR models employ the framework of multivariate regular variation (MVRV; see

Section 1.4) on the nonnegative orthant. Section 4.2 provides background from two disparate

directions: Section 4.2.1 covers the classical SAR model and Section 4.2.2 reviews recent work

on transformed-linear operations applied to regularly varying random vectors. On this foun-

dation, Section 4.3 develops two versions of an extremal SAR model, the first closely connected

to the classical SAR model, and the second an extension more amenable to extreme analysis.

Section 4.4 discusses advantages and possible further extensions of the proposed models.

4.2 Background

4.2.1 Classical SAR model

First introduced by Whittle (1954), the simultaneous autoregressive (SAR) model is a simple

model for areal data which can capture spatial dependence via a neighborhood structure. The

classical SAR model can be specified by

Y = SY+ǫ, (4.1)

where S is a d ×d matrix (not necessarily symmetric) whose diagonal elements are zero, and ǫ

is a d ×1 vector of independent zero-mean errors. In general, it is assumed ǫ∼ N (0,Λ) with Λ
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diagonal. We can rewrite (4.1) as

(I −S)Y = ǫ, (4.2)

and, if (I −S) is nonsingular, then

Y = (I −S)−1ǫ. (4.3)

Note that we begin with an independent vector ǫ and induce dependence in Y, specifically

Y ∼ N
[

0, (I −S)−1
Λ(I −S)−1⊤

]
. In the case of iid Gaussian errors, Λ = σ2I and we have Y ∼

N
[

0, σ2(I −S)−1(I −S)−1⊤
]

.

To include spatial information in S, the typical approach (e.g., Anselin, 1988; Cliff and Ord,

1973) is to let S = ρW , where ρ is a single spatial dependence parameter and W is a d×d spatial

proximity matrix that specifies the neighborhood structure. Many options for spatial proximity

measures can be considered. In a simple case, W has entries that are 1 or 0 according to whether

or not unit i and unit j are classified as neighbors (with wi i = 0). Two common neighborhood

definitions are the rook’s case, in which neighbors share a common edge, and the queen’s case,

in which neighbors share a common edge or a common vertex (see Figure 4.1 for an illustration

on a regular grid). More complex definitions of W which extend non-zero values further can

induce longer-range dependence.

Figure 4.1: Two common neighborhood definitions for the classical SAR model: the rook’s case (left) and

the queen’s case (right). X marks the grid cell under consideration and the shaded cells are its neighbors.
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To ensure invertibility of (I − ρW ), ρ is required to satisfy ρλi 6= 1 for i = 1, . . . ,d , where

λ1 < λ2 < ·· · < λd are the ordered eigenvalues of W (Kelejian and Robinson, 1995). In practice,

ρ is almost always restricted to the interval (λ−1
1 , λ−1

d
), or (0 , λ−1

d
) when negative spatial auto-

correlation is not of practical interest (Haining, 1990; Song and De Oliveira, 2012; Wall, 2004).

In some cases, one may wish to adjust for the total number of neighbors to each areal region

by using a row standardized matrix W̃ , where w̃i j = wi j /wi+ and wi+ =
∑d

j=1 wi j . A sufficient

condition for invertibility of (I −ρW̃ ) is |ρ| < 1 (Banerjee et al., 2014; Waller and Gotway, 2004).

4.2.2 Transformed-linear operations on regularly varying random vectors

The classical SAR model based on Gaussian errors is unsuitable for modeling extremal de-

pendence. Instead, we work in the MVRV framework for multivariate threshold exceedances, as

defined in Section 1.4.1. The classical SAR construction relies on linear operations. As we model

in the nonnegative orthant to focus attention on upper tail, this naturally raises the question of

how to define a vector space on the nonnegative orthant. To this end, we employ “transformed-

linear" operations as defined by Cooley and Thibaud (2018).

Vector space via transformation

Let t be a bijection from R onto some open set X, with t−1 its inverse. For vectors, we apply

t and t−1 componentwise. Define vector addition in X
d by x1⊕x2 = t {t−1(x1)+ t−1(x2)}. For any

a ∈ R, define scalar multiplication of a vector in X
d by a ◦x = t {at−1(x)}. The additive identity

in X
d is defined by 0

Xd = t (0), and the additive inverse of any x ∈ X
d is −x = t {−t−1(x)}. Then,

Cooley and Thibaud (2018) show that Xd is a vector space under these operations, which we

refer to as transformed-linear operations.

Notable for our purposes is the transformed-linear analogue of matrix multiplication. Let

A = (a1, . . . ,aq ) be a d ×q matrix of real numbers, and let x ∈X
q . Then we can define A ◦x = a1 ◦

x1⊕·· ·⊕aq ◦xq = t
{

At−1(x)
}
∈X

d . If Id×d is the usual identity matrix, then I ◦x = t
{

I t−1(x)
}
= x.

For a nonsingular matrix Bd×d , we define the inverse operator B−1 to be a matrix such that

B−1 ◦ (B ◦x) = B ◦ (B−1 ◦x) = x. This coincides with the usual matrix inverse.
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In the next subsection, we will apply these transformed-linear operations to regularly vary-

ing random vectors. We will use the specific transform t : R→ (0,∞) defined by

t (v) = log{exp(v)+1}, (4.4)

with inverse t−1(x) = log{exp(x)−1}. This bijection has the important property that

lim
v→∞

t (v)

v
= lim

x→∞
t−1(x)

x
= 1. (4.5)

In other words, the transform and its inverse have a negligible effect on large values; they leave

the upper tail alone (see Figure 4.2). Thus with this particular transform, regular variation will

be preserved under transformed-linear operations. We extend the definition of t such that

t (−∞) = 0, t−1(0) = −∞, and t (∞) = t−1(∞) = ∞. So t : R̄d → X̄
d , where R̄

d = [−∞,∞]d and

X̄
d = [0,∞]d .

−4 −2 0 2 4

0
1

2
3

4
5

v

t(
v
)

Figure 4.2: The specific transform t (black) given by (4.4) that is used for transformed-linear operations.

The red dashed line is the 1:1 line.

Transformed-linear operations applied to multivariate regular varying random vectors

Suppose X ∈ RV d
+ (α) as defined by (1.11) and (1.13). We say that X has limiting measure

νX and angular measure HX when renormalized by {cn}. Throughout this chapter, we assume
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X ∈ RV d
+ (α) verifies the lower tail condition

nP
{

Xi ≤ exp(−kcn)
}
→ 0, k > 0, i = 1, . . . ,d , (4.6)

as n →∞. Condition (4.6) is met by standard regular varying distributions such as the Pareto

and the Fréchet. The following results from Cooley and Thibaud (2018) show that MVRV is

preserved by transformed-linear operations with t given by (4.4). Furthermore, the limiting

measures ν are known.

Proposition 4.2.1 (Cooley and Thibaud, 2018). Let X1 ∈ RV d
+ (α) such that nP(c−1

n X1 ∈ ·) v→ νX1 (·)

and X2 ∈ RV d
+ (α) such that nP(c−1

n X2 ∈ ·) v→ νX2 (·), with X1, X2 independent. Then X1 ⊕ X2 ∈

RV d
+ (α), and nP

{
c−1

n (X1 ⊕X2) ∈ ·
} v→ νX1 (·)+νX2 (·).

Proposition 4.2.2 (Cooley and Thibaud, 2018). Let X ∈ RV d
+ (α) such that nP(c−1

n X ∈ ·) v→ νX(·).

Then for a ∈R, nP
{
c−1

n (a ◦X ) ∈ ·
} v→ aανX(·) if a > 0, and nP

{
c−1

n (a ◦X ) ∈ ·
} v→ 0 if a ≤ 0.

Prior to these results, traditional linear algebra operations had not previously been linked

to methods for extremes. Max-linear approaches (e.g., Davis and Resnick, 1989; Strokorb and

Schlather, 2015) had been explored, but these are not directly analogous because of the max-

imum operation. Propositions 4.2.1 and 4.2.1 pave the way for constructing new models for

extremal dependence within the MVRV framework.

Construction method via the matrix A

In the non-extreme setting, one can construct a correlated Gaussian random vector by ap-

plying a matrix to a vector of iid standard Gaussians, i.e., by letting Y = AZ, where A ∈ R
d×q

and Z ∼ N (0, Iq×q ). Propositions 4.2.1 and 4.2.2 imply a similar method for constructing regular

varying random vectors by applying transformed-linear matrix multiplication to a vector of iid

regularly varying random variables.

Corollary 4.2.1 (Cooley and Thibaud, 2018). Let A = (a1, . . . ,aq ) ∈ R
d×q with maxi=1,...,d ai j >

0 for all j = 1, . . . , q. Let Z = (Z1, . . . , Zq )⊤ be a vector of iid regular varying random variables
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with tail index α such that nP
(
Z j > cn z

)
→ z−α and nP

{
Z j ≤ exp(−kcn)

}
→ 0 for any k > 0,

j = 1, . . . , q. Then A ◦Z ∈ RV d
+ (α) and when renormalized by {cn} has limiting angular measure

HA◦Z(·) =
q∑

j=1

||a(0)
j
||αδ

a(0)
j

/||a(0)
j
||(·), (4.7)

where δ is the Dirac mass function, and a(0)
j

= [max(a1 j ,0), . . . ,max(ad j ,0)]⊤, j = 1, . . . , q.

Thus, by applying the matrix A to a vector of independent regularly varying random vari-

ables, we obtain a regularly varying random vector with extremal dependence structure de-

scribed by HA◦Z. The angular measure HA◦Z is discrete, with point masses corresponding to the

normalized columns of A. In fact, it is the same limiting angular measure as for the max-linear

construction A ×max Z =
(
max j=1,...,d a1 j Z j , . . . ,max j=1,...,d ad j Z j

)⊤
(e.g., Fougères et al., 2013).

Although the constructions A ◦Z and A×max Z are similar, they differ in their realizations. Large

realizations of the max-linear construction tend to have angular components which correspond

exactly to the normalized columns of A. In contrast, large realizations of the transformed-linear

construction have angular components near but not exactly at these discrete locations.

The construction method in Corollary 4.2.1 works for any A ∈R
d×q meeting maxi=1,...,d ai j >

0 for all j = 1, . . . , q . However, due to the zeroing operation, different matrices can result in the

same limiting angular measure. Let A(0) = (a(0)
1 , . . . ,a(0)

q ). If A 6= A′ but A(0) = A′(0), then we still

have HA◦Z = HA′◦Z. Thus it may be desirable to consider only matrices A with nonnegative

entries, as we will do with the extremal SAR models. Further, Cooley and Thibaud (2018) show

that the class of angular measures arising from the construction of Corollary 4.2.1 is dense in the

class of possible angular measures, and this result only requires consideration of nonnegative

matrices (see Proposition 4.2.3). The approximation to a continuous angular measure improves

as the number of columns of A increases.

Proposition 4.2.3 (Cooley and Thibaud, 2018). Given any angular measure H, there exists a

sequence of nonnegative matrices {Aq }, q = 1,2, . . . , such that HAq◦Zq

w→ H.
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Tail pairwise dependence matrix

The angular measure (4.7) completely characterizes the extremal dependence of A ◦Z. We

can also construct a matrix that summarizes this dependence via second-order properties of

the angular measure. If we assume tail index α = 2 and use the L2 norm for the pseudo-polar

decomposition, we can show that a suitably defined matrix has properties akin to those of a co-

variance matrix. Suppose X = (X1, . . . , Xd )⊤ ∈ RV d
+ (2) such that nP

(
n−1/2X ∈ ·

) v→ νX(·), where

νX(dr × dθ) = 2r−3dr d HX(θ) with HX a Radon measure on the nonnegative L2 unit sphere

S
d−1
+(2)

= {θ ∈ X̄
d : ||θ||2 = 1} Then Cooley and Thibaud (2018) define the d ×d tail pairwise de-

pendence matrix (TPDM) as ΣX = (σXi k )i ,k=1,...,d , where

σXi k =
∫

S
d−1
+(2)

θiθk d HX(θ) (4.8)

is the extremal dependence measure defined in the bivariate case by Larsson and Resnick (2012).

The TPDM ΣX has many properties that are analogous to those of a covariance matrix. Like

a covariance matrix, it can be shown that ΣX is positive semidefinite. The proof starts with (4.8)

and proceeds in a similar manner to that for a covariance matrix. Also similar to a covariance

matrix, the diagonal entries of ΣX provide information about the scale of the components of X.

Specifically, σXi i is equal to the square of the marginal scale parameter of Xi . We can see this by

considering the following. Given α= 2, we have

lim
n→∞

nP
(
n−1/2Xi > x

)
=

∫

S
d−1
+(2)

∫∞

x/θi

2r−3dr d HX(θ) = x−2

∫

S
d−1
+(2)

θ2
i d HX(θ) = x−2σXi i (4.9)

by definition (4.8). Suppose Xi has scale 1, defined as nP
(
n−1/2Xi > x

)
= x−2. This implies

nP
(
n−1/2c Xi > x

)
= c2x−2, so we can see from (4.9) that σXi i is the square of the scale of Xi .

Because we use the L2 norm,
∑d

i=1σXi i =
∫
S

d−1
+(2)

d H(θ), i.e., the diagonal elements of ΣX sum to

the total mass of the angular measure. Another property of the TPDM is that the case of σXi k = 0

corresponds to asymptotic independence of the components Xi and Xk . This is because σXi k =

0 if and only if HX({θ ∈
∫
S

d−1
+(2)

: θi > 0,θk > 0}) = 0.
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Regular varying random vectors constructed in the manner of Corollary 4.2.1 have a special

form of the TPDM. Let A = (a1, . . . ,aq ) ∈ R
d×q and Z = (Z1, . . . , Zq )⊤ satisfy the conditions of

Corollary 4.2.1 with α= 2 and cn = n1/2. We further assume q ≥ d . Then, using the form of the

angular measure (4.7), we can see that the (i ,k)th entry of ΣA◦Z is

σA◦Zi k =
∫

S
d−1
+(2)

θiθk d HA◦Z(θ) =
q∑

j=1




a(0)
i j

||a(0)
j
||2







a(0)
k j

||a(0)
j
||2


 ||a(0)

j
||22 =

q∑

j=1

a(0)
i j

a(0)
k j

, (4.10)

so ΣA◦Z = A(0) A(0)⊤. Note that this bears a striking resemblance to the traditional covariance

matrix of AZ in the case of independent Z with unit variance, especially if A is nonnegative.

4.3 Extreme SAR Models

In this section we propose multivariate extreme analogues of the classical SAR model pre-

sented in Section 4.2.1. These extremal models apply the transformed-linear operations from

Section 4.2.2 to multivariate regularly varying random vectors in the nonnegative orthant.

4.3.1 A SAR-inspired model for areal extremes

Formulation

Let Z = (Z1, . . . , Zd )⊤ be a vector of iid regularly varying random variables with tail index α

and meeting condition (4.6). Let S be a d ×d matrix whose diagonal elements are zero, and

satisfying (I − S) nonsingular where I is the d ×d identity matrix. Then, using transformed-

linear operations, we can define the equivalent expressions:

Y = S ◦Y⊕Z, (4.11)

(I −S)◦Y = Z, (4.12)

and

Y = (I −S)−1 ◦Z. (4.13)
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Below we show that (4.11)⇔(4.12)⇔(4.13) by performing the full expansions.

Y = S ◦Y⊕Z (4.11)

⇔ Y = t {St−1(Y)}⊕Z

⇔ Y = t
(
t−1

[
t {St−1(Y)}

]
+ t−1(Z)

)

⇔ t {I t−1(Y)} = t {St−1(Y)+ t−1(Z)}

⇔ I t−1(Y) = St−1(Y)+ t−1(Z)

⇔ I t−1(Y)−St−1(Y) = t−1(Z)

⇔ (I −S)t−1(Y) = t−1(Z)

⇔ t {(I −S)t−1(Y)} = Z

⇔ (I −S)◦Y = Z (4.12)

⇔ (I −S)−1 ◦ {(I −S)◦Y} = (I −S)−1 ◦Z

⇔ t
[
(I −S)−1t−1{(I −S)◦Y}

]
= (I −S)−1 ◦Z

⇔ t
(
(I −S)−1t−1

[
t {(I −S)t−1(Y)}

])
= (I −S)−1 ◦Z

⇔ t {(I −S)−1(I −S)t−1(Y)} = (I −S)−1 ◦Z

⇔ t {t−1(Y)} = (I −S)−1 ◦Z

⇔ Y = (I −S)−1 ◦Z. (4.13)

Following the usual single-parameter scheme for the classical SAR model (see Section 4.2.1),

we choose to let S = ρW , where ρ is a single spatial dependence parameter and W is a nonneg-

ative spatial proximity matrix. This results in the model formulation

Y = (I −ρW )−1 ◦Z. (4.14)

For simplicity of notation, we denote the matrix (I −ρW )−1 by A = (a1,a2, . . . ,ad ). Thus, we can

write Y = A ◦Z , matching the construction of Corollary 4.2.1.
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Condition on ρ

Recall from our discussion of Corollary 4.2.1 that it is desirable for A to have nonnegative

entries. Using results from nonnegative matrix theory, we can show that in the case of A =

(I −ρW )−1, if ρ takes on a similar restriction as for the classical SAR, then A is both well-defined

and nonnegative. The proof relies on the notion of M-matrices. The class of M-matrices is a

proper subclass of the class of d ×d Z -matrices (Plemmons, 1977), where a Z -matrix is simply

a matrix with nonpositive off-diagonal entries (Fiedler and Ptak, 1962). An M-matrix can be

defined as an d×d Z -matrix B that can be expressed in the form B = sI−P , where P is entrywise

nonnegative and s is at least as large as the spectral radius of P , defined as the maximum of the

absolute values of the eigenvalues of P (Johnson, 1982). Plemmons (1977) lists 40 equivalent

characterizations of nonsingular M-matrices, including inverse-positivity. Below we specify a

sufficient condition on ρ such that A is an inverse M-matrix and hence entrywise nonnegative.

Proposition 4.3.1. Let W be a d ×d spatial proximity matrix whose diagonal elements are zero

and off-diagonal entries are nonnegative. Let λ1 < λ2 < ·· · < λd denote the ordered eigenvalues

of W . If

ρ ∈
(
0 , min

{
|λ1|−1, |λd |−1

})
, (4.15)

then A = (I −ρW )−1 exists and is a nonnegative matrix.

Proof. Notice that if ρ > 0, then ρW is a nonnegative matrix. This implies that I −ρW is a d ×d

Z -matrix of the required form B = sI −P , where s = 1 and P = ρW is entrywise nonnegative.

Since ρ > 0, the ordered eigenvalues of P are ρλ1 < ρλ2 < ·· · < ρλd . If ρ further meets condition

(4.15), then the spectral radius of P is strictly less than s = 1:

max
i=1,...,d

|ρλi | = max
{
ρ|λ1|,ρ|λd |

}

< max
{
min

{
|λ1|−1, |λd |−1

}
|λ1|,min

{
|λ1|−1, |λd |−1

}
|λd |

}

= 1.
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By the above result, B = I −ρW satisfies the definition of an M-matrix, specifically a nonsingu-

lar M-matrix because the inequality is strict (Johnson, 1982; Plemmons, 1977). By equivalent

characterization of nonsingular M-matrices, B is inverse-positive. That is, the inverse M-matrix

B−1 = (I −ρW )−1 = A exists and A is entrywise nonnegative.

Note that for square lattices with W a binary proximity matrix under the rook neighborhood

specification (recall Figure 4.1), λ1 ↓ −4 and λd ↑ 4 as d →∞ (Haining, 1990), so ρ ∈ (0,0.25) is a

sufficient restriction to ensure A exists and is entrywise nonnegative. Note that this is the same

restricted range for ρ that is commonly used for the traditional (non-extreme) SAR.

Intuition

In the context of areal data, the d-dimensional vector Z represents the values at d areal re-

gions, and W encodes the neighborhood structure between these regions. Akin to the classical

Gaussian case, given W , applying the matrix A to the independent vector Z induces spatial de-

pendence in Y that is described by the single ρ parameter. Under usual matrix multiplication,

A ·Z can be written as
∑d

i=1 ai · Zi , i.e., the sum of each column of A multiplied by each ele-

ment of Z. Although the transformed-linear matrix multiplication changes this slightly, it is still

instructive to consider the columns of A to gain insight into how the extremal SAR model is in-

ducing spatial dependence. The top row of Figure 4.3 shows some examples of the columns of

A (in lattice form) when Z is on a 10×10 square lattice (d = 100) and W is the binary proximity

matrix with rook structure. Each column ai of A forms a kernel with its mode at the element i

it corresponds to. The range or bandwidth of the kernel increases as ρ increases. If the corre-

sponding element is large in the given realization of Z, then the kernel will essentially smooth

out the large spike at that location. The bottom row of Figure 4.3 shows (from left to right) a

realization of the independent Z and the corresponding Y = A ◦Z for ρ = 0.2 and ρ = 0.24.

Properties

By Proposition 4.3.1, we know A = (I −ρW )−1 exists and is entrywise nonnegative. By defi-

nition, A is nonsingular. If A contained a column of zeros, it would be singular, thus it must be
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Figure 4.3: Illustration of how the extremal SAR model induces spatial dependence, shown on a 10×10

square lattice with rook neighborhood structure. Top (from left to right): column 43 of A for ρ = 0.2,

column 78 of A for ρ = 0.2, and column 78 of A for ρ = 0.24. Bottom (from left to right): a realization of

Z
i i d∼ RV 100

+ (α= 2) with a large spike at element 78, Y = A ◦Z for ρ = 0.2, and Y = A ◦Z for ρ = 0.24.

true that maxi=1,...,d ai j > 0 for all j = 1, . . . ,d . By Corollary 4.2.1, Y = A◦Z ∈ RV d
+ (α). If ρ satisfies

(4.15), then A is a nonnegative matrix. Therefore, when renormalized by {cn}, Y has limiting

angular measure

HY(·) = HA◦Z(·) =
d∑

j=1

||a j ||αδa j /||a j ||(·) (4.16)

(see (4.7) for comparison). Recall that this is a discrete angular measure, with point masses

corresponding to the columns of A, normalized by their norm. Models with similar angular

measures have proven challenging to fit, as mentioned in Section 1.4.3. We will discuss these

challenges more fully in Chapter 5.

In the case of α = 2 and the L2 norm, assuming Z meets the conditions of Corollary 4.2.1

with cn = n1/2, the TPDM simplifies to

ΣY =ΣA◦Z = A A⊤ = (I −ρW )−1(I −ρW )−1⊤, (4.17)
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which is reminiscent of the covariance matrix in the classical Gaussian case.

It is well-known that the covariance structure implied by the classical SAR model is not

marginally stationary even for square lattices. The diagonal elements (variances) of the covari-

ance matrix are not identical, and there are unequal covariances between regions that are the

same number of neighbors apart (Haining, 1990; Wall, 2004). This issue persists for the TPDM

given in (4.17), in particular the marginal scale parameters given by the square-root of the diag-

onal elements of ΣY are not identical (see Figure 4.4, left) and depend on ρ. This dependence on

ρ poses a challenge for the usual two-stage inference procedure for multivariate extremes, as

described in Section 1.4.3, in which one first estimates the marginal effects and then estimates

the tail dependence structure after marginal transformation.

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

Figure 4.4: Tail pairwise dependence matrices for Y = A◦Z (left) and Y = Ã◦Z (right), with d = 25, ρ = 0.2,

and W a binary proximity matrix following the rook neighborhood structure. The diagonal elements σYi i

are equal to the square of the scale of Yi . The case of Y = Ã ◦Z (right) has a common scale of 1.

4.3.2 An extreme SAR model with common scale

We have seen that the extremal SAR model proposed in Section 4.3.1 results in unequal

marginal scale parameters that depend on the spatial dependence parameter ρ. If ρ was known,

it would be possible to transform the marginals accordingly, but here ρ is unknown and must be

estimated. To address this issue, we propose the following extension, which results in common
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(unit) marginal scale parameters and is thus more amenable to the usual two-stage inference

procedure for multivariate extremes.

Let Z = (Z1, . . . , Zd )⊤ be a vector of iid regularly varying random variables with tail index

α= 2 such that nP
(
n−1/2Z j > z

)
→ z−2 and nP

{
Z j ≤ exp(−kn1/2)

}
→ 0 for any k > 0, j = 1, . . . ,d .

Let A = (I −ρW )−1 as before, and let D = diag(||A1·||2, . . . , ||Ad ·||2) denote the diagonal matrix of

the L2 norms of the rows of A. Then the common-scale model is defined as follows:

Y = Ã ◦Z = D−1 A ◦Z. (4.18)

Note that D , like A, depends on the value of ρ.

If ρ meets condition (4.15), then A is nonnegative and has positive row norms. Thus Ã is

also nonnegative, and the modified formulation (4.18) results in the TPDM

ΣY =ΣÃ◦Z = Ã Ã⊤ = D−1 A A⊤D−1, (4.19)

which has diagonal elementsσYi i = ||Ai ·||−1
2 ||Ai ·||22||Ai ·||−1

2 = 1 (Figure 4.4, right). This means the

components of Y have a common marginal scale parameter of 1, i.e., limn→∞ nP
(
n−1/2Yi > y

)
=

y−2, i = 1, . . . ,d . The limiting angular measure for this common-scale model is

HY(·) = H Ã◦Z(·) =
d∑

j=1

||ã j ||22 δã j /||ã j ||2 (·), (4.20)

where ã j denotes the j th column of Ã, for j = 1, . . . ,d . Again, this is a discrete angular measure,

with point masses corresponding to the columns of Ã normalized by their L2 norm.

4.4 Discussion

We have proposed a new model for extremes of areal data, with a common-scale exten-

sion. This multivariate model is inspired by the SAR model from classical spatial statistics, and

utilizes recent results on transformed-linear operations applied to regularly varying random
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vectors. Like the classical SAR under the single-parameter scheme, our spatial dependence pa-

rameter ρ is interpretable, as the degree of spatial dependence increases with ρ. Also similar

to the classical case, given a spatial proximity matrix W that characterizes neighborhood struc-

ture, we can define restrictions on ρ such that the model has desirable properties. Given ρ and

W , we can summarize the spatial tail dependence via the TPDM, which is similar to the covari-

ance matrix in the Gaussian case. We can also write down the limiting angular measure, from

which we could calculate the probability of landing in any risk region of interest.

This chapter has focused on the single-parameter scheme for the extreme SAR model, as

is often done in the classical SAR literature. In addition, we have illustrated this simple model

with the simplest possible binary proximity matrix W with rook neighborhood structure. This

setup is more suitable for modeling shorter range dependence, however localized behavior is

not appropriate for certain types of data, such as temperature extremes. Many extensions are

possible. In the single-parameter scheme, W is flexible – its only restriction is to be a nonneg-

ative matrix with zeros on the diagonal – and can be tailored to the application. In addition,

higher-order SAR models could be used that include more than one spatial proximity or spa-

tial weights matrix. Instead of S = ρW , one could have S = ρ1W1 +ρ2W2 +·· ·+ρkWk with {Wi }

specifying neighbors at different distances (Haining, 1990).

Areal models have only recently become a topic of interest in the spatial extreme value anal-

ysis literature. Such models are needed, especially in atmospheric sciences, because much of

the spatial data available for analysis are indexed by regular grids. For example, climate analyses

often draw on gridded climate model output, or direct observations that are converted to grid-

ded “data products" to, among other reasons, facilitate comparison to numerical climate model

output. Recently, Reich and Shaby (2018) proposed a method for areal extremes that accounts

for spatial dependence using latent clustering of neighboring regions. To our knowledge, our

extreme SAR model is the only model proposed for areal extremes that is directly analogous to

the areal models in classical spatial statistics. It is also to our knowledge the only areal model

proposed in the MVRV framework.

72



A potential future use of the extreme SAR model could be in a hierarchical setting. In many

extremes problems, marginal behavior is of primary interest, such as in estimating high quan-

tiles (return levels) or occurrence probabilities at individual locations. In such cases, it may

be effective and computationally efficient to use hierarchical approaches (e.g., Cooley et al.,

2007) that spatially model the parameters of univariate extremes. Most such hierarchical mod-

els assume extremes at different spatial locations are independent conditional on the latent

processes. This conditional independence assumption ignores the fact that multiple locations

can be affected by the same event (e.g., storm). Replacing the conditional independence like-

lihood with one which accounts for spatial dependence is challenging, and the extreme SAR

model could potentially fill this gap.
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Chapter 5

Estimation and Inference for Extreme SAR Models

5.1 Introduction

Although our interest is in spatial applications, the extremal SAR models proposed in Chap-

ter 4 are fundamentally multivariate. The current chapter focuses on using multivariate thresh-

old exceedances to estimate and perform inference for ρ, the parameter that characterizes de-

pendence in the joint upper tail. As discussed in Section 1.4.3, statistical modeling of multivari-

ate extremes typically involves two stages: marginal estimation and dependence estimation. In

the MVRV framework this involves transforming the univariate marginals to a convenient reg-

ularly varying distribution (e.g., Fréchet) with common tail index α. Such a transformation re-

tains the tail dependence structure (Resnick, 1987, Proposition 5.10). To facilitate the two-stage

inference procedure, as discussed in Section 4.3.2, we restrict attention to the common-scale

formulation given by (4.18). Thus, the methods that we propose for dependence estimation

assume regularly varying marginals with common α= 2 and scale = 1.

The beauty of classical areal models such as the SAR and CAR is their simplicity: spatial

dependence is induced by a single parameter ρ and pre-determined spatial proximity matrix

W . However, this overly simplistic representation of dependence can lead to difficulties for

inference. For example, Besag and Kooperberg (1995) note that a common issue with the CAR

is that appreciable correlations between neighboring sites require parameter values extremely

close to the boundary of the parameter space.

In the extremes setting, there are further challenges to estimation and inference. Likelihood-

based procedures are common for estimating tail dependence parameters. However, likeli-

hoods can be difficult to compute in higher dimensions, leading many current methods to be

based on composite likelihoods (e.g., Davison and Gholamrezaee, 2012; Genton et al., 2011;

Huser and Davison, 2013; Padoan et al., 2010). The discrete nature of the limiting angular mea-

sure of the extreme SAR model poses an additional challenge. To our knowledge, likelihood-
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based inference has not been attempted for existing models with discrete angular measures,

such as max-linear models (Fougères et al., 2013; Wang and Stoev, 2011). Instead, several min-

imum distance methods have been proposed. Yuen and Stoev (2014) propose an M-estimator

based on the continuous ranked probability score of multivariate cumulative distribution func-

tions. Einmahl et al. (2016) also propose an M-estimator, theirs based on the stable tail de-

pendence function, which is related to the upper tail of the underlying cumulative distribution

function. Einmahl et al. (2018) extend the previous approach with an adaptive weighted least-

squares procedure. The max-linear examples examined in the aforementioned studies are of

dimension d = 4, whereas in this chapter we consider an extreme SAR model of dimension

d = 400.

The remainder of the chapter is organized as follows. Section 5.2 describes the simulations

we use to test our inference procedures, and the gridded precipitation observations we use for

the data application. We use simulations from the true extreme SAR model as well as from a

Brown-Resnick process with similar pairwise extremal dependence, which we derive for α =

2 and the L2 norm. We investigate two approaches to estimation and inference. Section 5.3

presents a censored likelihood approach in which censored components below a threshold are

imputed within a Bayesian framework. This method performs very well for simulations from

the true model, but is not robust to model misspecification. Section 5.4 presents an alternative

approach that matches an empirical estimate of the TPDM to the model-based TPDM, with

respect to the Frobenius matrix norm. Development of this method requires mitigating bias

inherent to finite-sample estimation of the TPDM. After addressing this challenge, we are able

to produce reasonable estimates for ρ even in the case of model misspecification.

5.2 Data

We will investigate our inference procedures on three different categories of data, each de-

scribed in a subsection below. In each category, we consider n realizations or observations of

a spatial field with d areal regions (grid cells). Note that this differs from the typical setup in
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spatial statistics, which includes only one observation of a spatial field, but is standard for the

analysis of multivariate and spatial extremes.

5.2.1 Simulation from the true model

To demonstrate our methods for estimation and inference, we begin by simulating real-

izations from the true extreme SAR model (4.18). We select two values of ρ for simulations:

ρ = 0.1 (weaker dependence) and ρ = 0.2 (stronger dependence). For each value of ρ, we

simulate n = 10,000 independent realizations of a d = 400-dimensional random vector Z
i i d∼

Fréchet(α= 2, scale = 1). Each realization of Z represents values found on a 20×20 square lattice.

Let W be the 400×400 binary proximity matrix following the rook neighborhood specification.

To each realization of Z, we apply transformed-linear multiplication with the Ã matrix corre-

sponding to W and the given value of ρ, to obtain n independent realizations of Y. These real-

izations {yt }n
t=1 are independent temporal replicates of heavy-tailed spatial fields whose spatial

extremal dependence is specified by (4.18).

Since we do not believe that real world data will follow the true model exactly, it is important

to investigate how our estimation and inference procedures react to deviations from the true

model. A first step is to add light-tailed noise. For purposes of illustration, we add ζt
i i d∼ Exp(2)

to each realization yt . At moderate thresholds we expect this independent noise to dilute the

spatial dependence and lead to underestimation of ρ. Because the noise is light-tailed, we ex-

pect its effect to diminish as the threshold increases.

5.2.2 Simulation from a Brown-Resnick process

Our second category of data comprises simulations from a Brown-Resnick process (Brown

and Resnick, 1977; Kabluchko et al., 2009). Brown-Resnick processes form a flexible class of

max-stable processes constructed from intrinsically stationary Gaussian processes parameter-

ized by variograms (see Section 1.5.1). As a more realistic deviation from the true model (4.18),

we simulate n = 10,000 independent realizations from a Brown-Resnick process at the set of

d = 400 grid cell centers. We use the variogram

76



2γ(s,s′) = 2(||s−s′||2/λ)κ, (5.1)

where s, s′ denote locations of grid cell centers, and λ > 0 and κ ∈ (0,2] control the range and

the smoothness, respectively (Thibaud et al., 2016). Although the Brown-Resnick processes are

max-stable, the processes observed at a finite number of locations are also multivariate regular

varying, so long as their marginal distributions are GEV with ξ> 0.

To mimic the tail dependence structure of the true extreme SAR model at the settings de-

scribed in Section 5.2.1, we choose λ and κ to minimize the squared error between TPDM val-

ues from the true model (as given by (4.19)) and pairwise extremal dependence measures for

the Brown-Resnick model. We derive the latter below. We start with the known bivariate distri-

bution function for the simple Brown-Resnick process (α = 1 and L1 norm) and from it obtain

the corresponding bivariate angular density. We then make a conversion to the case with α= 2

and the L2 norm to enable comparison with the TPDM of the extreme SAR.

Case of α= 1 and L1 norm

Recall from Section 1.5.1 that the bivariate distribution function of a Brown-Resnick pro-

cess Z (s) with unit Fréchet margins at the pair of sites {si ,s j } is exp{−V (zi , z j )}, with exponent

measure given by

V (zi , z j ) =
1

zi
Φ

{
a

2
−

1

a
log

(
zi

z j

)}
+

1

z j
Φ

{
a

2
−

1

a
log

(
z j

zi

)}
, (5.2)

where zi = z(si ), z j = z(s j ), a =
{
2γ(si ,s j )

}1/2
with 2γ(·) given in (5.1), and Φ(·) is the standard

normal distribution function (Huser and Davison, 2013). Following Coles and Tawn (1991),

we can obtain the bivariate angular density by taking partial derivatives of V . Let φ(·) be the

standard normal density, and φ′(·) be its first derivative. We find

∂V

∂zi∂z j
=−

1

az2
i

z j

φ

{
a

2
−

1

a
log

(
zi

z j

)}
−

1

azi z2
j

φ

{
a

2
−

1

a
log

(
z j

zi

)}
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−
1

a2z2
i

z j

φ′
{

a

2
−

1

a
log
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−
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a2zi z2
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φ′
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1

a
log
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=−(zi + z j )−3hL1

(
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,
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)

=−r−3hL1 (θi ,θ j ),

where

hL1 (θi ,θ j ) =
1

aθ2
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θ j

φ

{
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a
log
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+

1
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log

(
θ j

θi

)}
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1
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−
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log
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+

1

a2θiθ
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−

1

a
log

(
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=
1

aθiθ j

[
1

θi
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f1(a,θ)

a
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φ
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f1(a,θ)

}
+

1

θ j

{
1−

f2(a,θ)

a

}
φ

{
f2(a,θ)

}]
, (5.3)

with f1(a,θ) = a
2
− 1

a
log

(
θi

θ j

)
and f2(a,θ) = a

2
− 1

a
log

(
θ j

θi

)
. The simplification follows because

φ′(y) =−yφ(y).

Note that this bivariate angular density lives on the 1-dimensional L1 simplex, so we could

also write θ = (θi ,θ j ) as (θ,1−θ). If desired, we could then use the alternative notation

hL1 (θ) =
1

aθ(1−θ)

[
1

θ

{
1−

f1(a,θ)

a

}
φ

{
f1(a,θ)

}
+

1

1−θ

{
1−

f2(a,θ)

a

}
φ

{
f2(a,θ)

}]
, (5.4)

where f1(a,θ) = a
2
− 1

a
log

(
θ

1−θ

)
and f2(a,θ) = a

2
− 1

a
log

(
1−θ
θ

)
.

Case of α= 2 and L2 norm

The extremal dependence measure depends on the choice of norm and the angular measure

associated with that norm (Larsson and Resnick, 2012). Therefore, to allow comparison to the

TPDM values of the extreme SAR model, we must apply the necessary transformations to (5.3)

to obtain the bivariate angular density for the case of α= 2 and the L2 norm.

First, we transform from L1 polar coordinates (r,θ) back to Cartesian coordinates z = (zi , z j ).

By Proposition 1 in Cooley et al. (2012b), the Jacobian of the transformation is |J1| = ||z||−1
1 , such
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that

ν(dr ×dθ) = r−2hL1 (θ)dr dθ

= ||z||−2
1 hL1

(
z||z||−1

1

)
||z||−1

1 dz

= ||z||−3
1 hL1

(
z||z||−1

1

)
dz = ν(dz).

Next, to change the tail index from α= 1 to α= 2, let y = (yi , y j ), where y2
i
= zi and y2

j
= z j . The

Jacobian of this transformation is |J2| = 4yi y j , so we can write

ν(dz) =
{
||y||22

}−3
hL1

(
y2

i

||y||22
,

y2
j

||y||22

)
4yi y j dy = ν(dy).

Finally, we transform to L2 polar coordinates by letting s = ||y||2 and v = (vi , v j ) with vi = yi s−1,

and v j = y j s−1. By Lemma 1.1 in Song and Gupta (1997), the Jacobian is |J3| = sv j
−1, so we have

ν(dy) =
{

s2
}−3

hL1

(
v2

i , v2
j

)
4svi sv j sv j

−1d sdv

= 2s−32vi hL1 (v2
i , v2

j )d sdv

= 2s−3hL2 (v)d sdv = ν(d s ×dv).

Recognizing that the angular density hL2 (v) lives on the 1-dimensional L2 simplex S
1
+(2), so

v = (vi , v j ) can be written as (v,
p

1− v2), we obtain

hL2 (v) = 2v
1

av2(1− v2)

[
1

v2

{
1−

g1(a, v)

a

}
φ

{
g1(a, v)

}
+

1

1− v2

{
1−

g2(a, v)

a

}
φ

{
g2(a, v)

}]

=
2

av(1− v2)

[
1

v2

{
1−

g1(a, v)

a

}
φ

{
g1(a, v)

}
+

1

1− v2

{
1−

g2(a, v)

a

}
φ

{
g2(a, v)

}]
, (5.5)

where g1(a, v) = a
2
− 1

a
log

(
v2

1−v2

)
and g2(a, v) = a

2
− 1

a
log

(
1−v2

v2

)
. Note that

∫1
0 hL2 (v)d v = 2. The

angular density in (5.5) represents a projection from S
1
+(2), defined by v2

i
+v2

j
= 1, down to [0,1].
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Pairwise extremal dependence measure and Brown-Resnick parameters

Plugging in the angular density (5.5) derived above, we can now obtain the pairwise extremal

dependence measure for each pair of grid cell centers (si ,s j ):

σBR
i j =

∫1

0
v
√

1− v2hL2 (v)d v

=
∫1

0

2

a
p

1− v2

[
1

v2

{
1−

g1(a, v)

a

}
φ

{
g1(a, v)

}
+

1

1− v2

{
1−

g2(a, v)

a

}
φ

{
g2(a, v)

}]
d v,

(5.6)

where, as before, a =
{
2γ(si ,s j )

}1/2
, g1(a, v) = a

2
− 1

a
log

(
v2

1−v2

)
and g2(a, v) = a

2
− 1

a
log

(
1−v2

v2

)
.

Let ΣBR =
(
σBR

i j

)
i , j=1,...,d

. For a given value of ρ and corresponding TPDM ΣY = Ã Ã⊤ for the

true model, we can choose Brown-Resnick parameters that minimize the squared Frobenius

norm ||ΣY −Σ
BR ||2F =

∑d
i=1

∑d
j=1 |σYi j −σBR

i j
|2. When ρ = 0.2, we find λ = 0.431,κ = 1.148 to be

optimal. When ρ = 0.1, we find λ= 0.254,κ= 1.341 to be optimal. Figure 5.1 compares the pair-

wise extremal dependence measures for a Brown-Resnick process with our chosen parameters

to the TPDM values of the true extreme SAR model when ρ = 0.2 (left) and ρ = 0.1 (right).

Figure 5.1: Derived pairwise extremal dependence measures {σBR
i j

}, plotted against Euclidean distance,

for the Brown-Resnick process (red) with range and smoothness parameters that minimize squared error

with respect to the TPDM values {σYi j } of the true extreme SAR model (blue) when ρ = 0.2 (left) and

ρ = 0.1 (right). The range of distances along the x-axis has been selected for visual clarity.
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5.2.3 Gridded precipitation observations

For our data application, we use the Climate Prediction Center (CPC) unified gauge-based

analysis of daily precipitation provided by NOAA Earth System Research Laboratory’s Physical

Sciences Division (PSD).6 This is a gridded product with 0.25◦ resolution over the contiguous

United States and daily observations for the 59 years between 1948-2006. We choose a region of

20×20 grid cells containing northeastern Colorado, and restrict our attention to precipitation

between May 1st and September 30th of each year.

Unlike the simulated data in Section 5.2.1 and Section 5.2.2, which already have appropri-

ate regularly varying marginals, the precipitation data requires transforming the marginal dis-

tributions to be approximately Fréchet with α = 2 and scale = 1 before fitting our dependence

model. There are many possible ways to implement such a marginal transformation. Below we

describe our chosen procedure, which uses a parametric form for the upper tail and a nonpara-

metric form below a marginal threshold.

Denote our original observations by xt = (xt1, xt2, . . . , xtd ), t = 1, . . . ,n, where d = 400 grid

cells and n = 9027 days. Let ûi be the empirical 0.96 quantile for the i th marginal, i = 1, . . . ,d ,

where the marginal threshold quantile is chosen using standard diagnostic techniques. Above

this threshold, we first fit a GPD at each individual grid cell. We then smooth the individual

GPD scale and shape parameter estimates using a thin plate spline regression, to obtain more

spatially coherent GPD parameter estimates. Let ψ̂ui
and ξ̂i , i = 1, . . . ,d denote the smoothed

GPD scale and shape estimates. To handle the issue of days with zero precipitation, we also add

Unif(0,1×10−5) noise to any zero observations. Next, we let

F̂i (x) =





(n +1)−1 ∑n
t=1 I (xt i ≤ x) , x ≤ ûi ,

1−0.04
(
1+ ξ̂i (x − ûi )/ψ̂ui

)−1/ξ̂i
, x > ûi .

(5.7)

6https://www.esrl.noaa.gov/psd/
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Let G denote the standard Fréchet distribution function (1.3) with α= 2. Then our transformed

observations are given by yt =
(
G−1(F̂1(xt1)),G−1(F̂2(xt2)), . . . ,G−1(F̂d (xtd ))

)
, t = 1, . . . ,n. As an

example, Figure 5.2 shows a day with heavy precipitation over northeastern Colorado on the

original scale (left) as well as the transformed data on the Fréchet scale (right).
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Figure 5.2: Example of daily precipitation data from the CPC unified gauge-based analysis on the original

scale (left) and after transformation to Fréchet(α= 2, scale=1) marginals (right). Gray lines indicate state

borders, and white X’s mark three cities in Colorado.

5.3 Censored Likelihood with Bayesian Data Augmentation

5.3.1 Methods

Density for a model constructed by Ã ◦Z

If we assume a specific regularly varying distribution for Z, it is straightforward to derive the

joint density of Y = Ã ◦Z. Here we assume the distribution is Fréchet. In the tail, the density

obtained under this distributional assumption for Z is essentially equivalent to the density with

any other regularly varying random vector with the same tail index and scale.

Consider for the moment a single replicate of a spatial field with d areal regions. Let Z ∈ R
d
+

be iid Fréchet(α= 2, scale = 1), such that

82



fZ(z1, . . . , zd ) =
d∏

i=1

{
2 z−3

i exp(−z−2
i )

}
, zi > 0, i = 1, . . . ,d .

Now let Y = Ã ◦Z = B̃−1 ◦Z = t (B̃−1t−1(Z)), where B = (I −ρW ) and B̃ = BD . Then we have

Z = B̃ ◦Y = t (B̃(t−1(Y))). Recall that the transformations t and t−1 are applied componentwise,

where t (v) = log{exp(v)+1} and t−1(x) = log{exp(x)−1}.

We derive the density of Y in three steps:

1. Let U = t−1(Z) ⇔ Z = t (U). Then the Jacobian J1 of this transformation is the deter-

minant of the diagonal matrix diag(t ′(u1), . . . , t ′(ud )), where t ′(ui ) = exp(ui )
1+exp(ui )

. Therefore

|J1| =
∏d

i=1 |t
′(ui )|, and

fU(u1, . . . ,ud ) =
d∏

i=1

{
2 t (ui )−3 exp

(
−t (ui )−2

)
|t ′(ui )|

}
.

2. Now let V = B̃−1U ⇔ U = B̃V. Then fV(v) = fU(B̃v) 1

|det(B̃−1)| = fU(B̃v)|det(B̃)|, i.e.,

fV(v1, . . . , vd ) = |det(B̃)|
d∏

i=1

{
2 t (B̃i ·v)−3 exp

(
−t (B̃i ·v)−2

)
|t ′(B̃i ·v)|

}
,

where B̃i · denotes the i th row of B̃ .

3. Finally, let Y = t (V) ⇔ V = t−1(Y). Then the Jacobian J3 of this transformation is the de-

terminant of the diagonal matrix diag(t−1′(y1), . . . , t−1′(yd )), where t−1′(yi ) = exp(yi )

exp(yi )−1
. So

|J3| =
∏d

i=1 |t
−1′(yi )|, and our final density is

fY(y1, . . . , yd ) = |det(B̃)|
d∏

i=1

{
2 t (B̃i ·t

−1(y))−3 exp
(
−t (B̃i ·t

−1(y))−2
)
|t ′(B̃i ·t

−1(y))| |t−1′(yi )|
}

.

(5.8)

Censored likelihood approach

Following the usual philosophy of extremes, we wish to fit our model using only data which

are large, and here we will use threshold exceedances. There are many ways to define a multi-
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variate threshold exceedance (see Section 1.4.3 for example). Here, we will consider threshold

exceedances defined in terms of the marginals. Suppose our complete data {yt }n
t=1 has appro-

priate regularly varying marginals with common α = 2 and scale = 1. An observation will be

considered a threshold exceedance if at least one of its d components is above a high marginal

threshold T . We denote these exceedances by {ytk
}

nT

k=1
, where nT is the number of exceedances

and nT /n is small. We assume the threshold exceedances are independent in time.

We adopt a censored likelihood approach to fitting our model to the threshold exceedances.

Under this approach, components above the marginal threshold T are taken at face value. Com-

ponents falling below T are censored at T , i.e., we assume only that they fall somewhere in the

interval (0,T ). Fitting a censored likelihood is a common practice to prevent low values from af-

fecting estimation of the extremal dependence structure. Censored likelihood approaches were

first proposed by Ledford and Tawn (1996) and Smith et al. (1997), then more recently extended

to the spatial framework by Wadsworth and Tawn (2014) and Thibaud and Opitz (2015). It is

well-established that censored approaches reduce bias in the estimation of dependence pa-

rameters by accounting for misspecification below the marginal threshold (Huser et al., 2016).

Let D := {1, . . . ,d} and Ck ⊂D be the subset of indices denoting which components of ytk
fall

below T , i.e., ytk , j ≤ T for j ∈ Ck , and ytk , j > T for j ∈ Ek := D \ Ck , for k = 1, . . . ,nT . In other

words, we can split each threshold exceedance ytk
into a vector yEk

:= {ytk , j : j ∈ Ek } of “exact"

components above T and a vector yCk
:= {ytk , j : j ∈ Ck } of censored components belonging to

the interval (0,T ). We assume that the density fY(y) is a suitable model for y j > T , j = 1, . . . ,d .

Suppose we reorder the arguments of fY to be (yCk
,yEk

). Let y be a dummy variable with dimen-

sion equal to the cardinality of the set Ck , denoted by card(Ck ). Then for each partially censored

observation, the likelihood contribution will be

pT (ytk
;ρ) =

∫T

0
· · ·

∫T

0︸ ︷︷ ︸
card(Ck )

fY(y,yEk
;ρ)dy. (5.9)

For nT independent threshold exceedances, the overall censored likelihood is then
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LT (ρ) =
nT∏

k=1

pT (ytk
;ρ). (5.10)

The likelihood in (5.10) is not available analytically. Furthermore, due to the relatively lo-

calized behavior of our model, we anticipate that card(Ck ) will be much larger than card(Ek )

for all k. Thus, numerical integration will be computationally impractical, especially for large

d . Rather than working with the censored likelihood directly, as most previous studies have

done, we instead propose a data augmentation method via Bayesian Markov chain Monte Carlo

(MCMC).

Data augmentation via Bayesian MCMC

We use Bayesian MCMC methods to fit partially censored threshold exceedances and es-

timate the posterior distribution of ρ. Let Y = Ã ◦Z, where Z
i i d∼ Fréchet(α = 2, scale = 1). To

complete the Bayesian model specification, we use the proper prior ρ ∼ Unif(0,ρmax), where

ρmax = min
{
|λ1|−1, |λd |−1

}
. For square lattices with the rook neighborhood structure, we use

ρmax = 0.25 as explained in Section 4.3.1.

As discussed earlier, the overall censored likelihood (5.10) is not available either analytically

or via numerical integration. Instead, we use data augmentation (e.g., De Oliveira, 2005; Morris

et al., 2017; Tanner and Wong, 1987) to incorporate information from censored components. In

the data augmentation step of the MCMC algorithm detailed below, we impute censored values

below the threshold T such that the estimation of ρ can be based on the “complete" vector

(YCk
,yEk

), where YCk
is drawn from the distribution of censored values given the observed exact

components yEk
.

We implement our model using a Gibbs sampler with Metropolis-Hastings steps (Hastings,

1970; Metropolis et al., 1953). The sampler alternates between updating YCk
via the data aug-

mentation step and updating ρ. At each iteration (m + 1), after imputing the censored com-

ponents for each of the nT partially censored threshold exceedance observations, we sample
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ρ(m+1) ∼ p(ρ|y(m+1)
t1

, . . . ,y(m+1)
tnT

). The ρ update is accomplished with a random walk Metropolis-

Hastings step on the logit scale (e.g., Givens and Hoeting, 2013, §7.1.2).

At the data augmentation step, for each partially censored d-dimensional threshold ex-

ceedance ytk
(k = 1, . . . ,nT ), we sample Y(m+1)

Ck
∼ p(YCk

|yEk
,ρ(m)) using a Metropolis-Hastings

update. Our Metropolis-Hastings proposal for YCk
exploits the transformed-linear relationship

between Y and Z. Let Ztk
denote a vector of latent iid Fréchet(α= 2, scale = 1) random variables

which could generate ytk
given the current state of the matrix Ã(m). As with ytk

, we can split

Ztk
into ZEk

:= {Ztk , j : j ∈ Ek } and ZCk
:= {Ztk , j : j ∈ Ck }. For any d ×d matrix M , denote the

submatrix of M lying in rows I ⊂D and columns J ⊂D by M [I ,J ]. We can write

ZEk
= t

{
Ã(m)[Ek ,Ek ]

−1 (
t−1(yEk

)− Ã(m)[Ek ,Ck ] t−1(ZCk
)
)}

, (5.11)

which in turn allows us to write YCk
in terms of yEk

, Ã(m), and ZCk
:

YCk
= Ã(m)[Ck ,Ek ]◦ZCk

⊕ Ã(m)[Ck ,Ck ]◦ZEk

= t
{

Ã(m)[Ck ,Ek ]Ã(m)[Ek ,Ek ]
−1

t−1(yEk
)

+
(

Ã(m)[Ck ,Ck ]− Ã(m)[Ck ,Ek ]Ã(m)[Ek ,Ek ]
−1

Ã(m)[Ek ,Ck ]
)

t−1(ZCk
)
}

. (5.12)

Note that det
(

Ã[Ek ,Ek ]
)
= det

(
D−1[Ek ,Ek ] A[Ek ,Ek ]

)
=

{∏
i∈Ek

1
||Ai ·||2

}
det(A[Ek ,Ek ]) > 0 since

A is an inverse M-matrix and thus has positive principal minors (Johnson and Smith, 2011).

Therefore Ã(m)[Ek ,Ek ]
−1

always exists. To generate a proposal candidate for the censored com-

ponents at iteration (m+1), we sample Z∗
Ck

i i d∼ Fréchet(α= 2, scale = 1), and use (5.12) to gener-

ate Y∗
Ck

. The proposal procedure does not guarantee Y∗
Ck

≤ T := (T, . . . ,T )⊤ ∈R
card(Ck )
+ , so we also

reject any proposals such that Y∗
Ck

�T.

In many cases B := I −ρW is a sparse matrix, as Bi j = 0 whenever components i and j are

not neighbors, and consequently B̃ := BD inherits this sparsity. We are able to speed up com-

putation for high dimension d by implementing sparse matrix operations (e.g., multiplication

and inversion) via thespam package (Furrer and Sain, 2010) inR. In addition, instead of directly
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calculating the determinant of B̃ within the Metropolis-Hastings ratios, we use the property

det(B) =
∏d

i=1(1−ρλi ) (Ord, 1975), which implies det(B̃) = det(B)det(D) =
∏d

i=1{(1−ρλi )||Ai ·||2}.

This is advantageous because we only need to calculate the eigenvalues {λi }d
i=1

of W once for

the entire sampler.

Algorithm

• Initialize ρ(0), y

• At iteration m +1, given ρ(m)

1. For k = 1, . . . ,nT

Sample Z j
i i d∼ Fréchet(α= 2,scale = 1), j = 1, . . . ,card(Ck ). Call this ZCk

.

Generate a candidate Y∗
Ck

using Equation (5.12), with A(m) = (I−ρ(m)W )−1 and Ã(m) =

diag
(
1/||A(m)

1· ||2 , . . . , 1/||A(m)
d · ||2

)
A(m).

Take

Y(m+1)
Ck

=





Y∗
Ck

with probability min
{

R
(
y(m)

Ck
,Y∗

Ck

)
, 1

}
,

y(m)
Ck

otherwise,

where R
(
y(m)

Ck
,Y∗

Ck

)
=

f
(
Y∗

Ck
|yEk

,ρ(m)
)

f
(
y(m)

Ck
|yEk

,ρ(m)
)

g
(
y(m)

Ck
|y(m)

Ek
,ρ(m)

)

g
(
Y∗

Ck
|yEk

,ρ(m)
) =

f
(
(Y∗

Ck
,yEk

)|ρ(m)
)

f
(
(y(m)

Ck
,yEk

)|ρ(m)
)

g
(
y(m)

Ck
|yEk

,ρ(m)
)

g
(
Y∗

Ck
|yEk

,ρ(m)
) , and

the proposal density g can be derived in a similar manner as (5.8).

2. Generate a candidate ρ∗ such that logit
(

ρ∗

ρmax

)
∼ N

(
logit

(
ρ(m)

ρmax

)
,σ2

)
.

Take

ρ(m+1) =





ρ∗ with probability min
{
R

(
ρ(m),ρ∗)

, 1
}

,

ρ(m) otherwise,

where R
(
ρ(m),ρ∗)

=
∏nT

k=1
f
(
(Y(m+1)

Ck
,yEk

)|ρ∗
)

∏nT
k=1

f
(
(Y(m+1)

Ck
,yEk

)|ρ(m)
)

ρ∗
(
1− ρ∗

ρmax

)

ρ(m)

(
1− ρ(m)

ρmax

) .
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5.3.2 Results

Simulation from the true model

Table 5.1 shows results from applying the our censored likelihood approach with Bayesian

data augmentation to data simulated from the true extreme SAR model (see Section 5.2.1). We

start with the base case of ρ = 0.2, a threshold T such that 1−nT /n = 0.975, and no added

noise (first row). Each subsequent row of the table represents a change to either the true ρ, the

threshold, or the presence of noise, from this base case. Parameter estimates are taken to be

posterior means. In all cases, the 95% highest posterior density interval (HPDI) covers the true

value of ρ.

Table 5.1: Results from the censored likelihood approach for data simulated from the true model.

Columns represent (from left to right): the true value of ρ, threshold proportion, presence of light-tailed

noise, posterior mean, and 95% highest posterior density interval (HPDI) for ρ.

ρ 1−nT /n noise ρ̂ 95% HPDI

0.2 0.975 no 0.20002 (0.19991, 0.20012)

0.1 0.975 no 0.09997 (0.09974, 0.10018)

0.2 0.950 no 0.19996 (0.19986, 0.20006)

0.2 0.975 yes 0.19998 (0.19987, 0.20007)

MCMC chains were run for 31,000 iterations with a burn-in of 1,000 iterations, then thinned

to 10,000 final iterations. Acceptance rates for ρ proposals ranged from 40% to 44%, and inspec-

tion of trace plots indicated that the ρ chains were mixing well. Some example diagnostic plots

are given in Figure 5.3. In addition, Figure 5.4 illustrates mixing of the censored components

below the threshold that are sampled in the data augmentation step. As desired, the sampled

components cover a large range of values below the threshold.

Simulation from a Brown-Resnick process

While Table 5.1 indicates that the censored likelihood approach works quite well for data

simulated from the true model, the method is not robust to model misspecification. Applying

our MCMC algorithm to simulations from a Brown-Resnick process (see Section 5.2.2) results in
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Figure 5.3: Example MCMC diagnostic plots for the ρ parameter chain for data simulated from the true

model in the base case with true ρ = 0.2, 1−nT /n = 0.975, and no added noise. Diagnostic plots for other

cases are very similar. Top: trace plot (left) and histogram (right) corresponding to the thinned chain.

Blue lines indicate the true value of ρ, while red lines indicate the posterior mean (solid) and 95% HPDI

(dotted). Bottom: autocorrelation plots before (left) and after (right) thinning.

ρ̂ being driven to zero. A likely explanation is that the extreme SAR model is not flexible enough.

Even though realizations from the extreme SAR model do not have to correspond exactly to the

point masses in the discrete angular measure, we hypothesize that the likelihood decays too

rapidly away from these point masses. The Brown-Resnick simulations deviate too much from

the extreme SAR model, so the likelihood does not agree with the data.

In diagnosing this issue, we examined differences in likelihood contributions by threshold

exceedance between a starting value ρ0 and a proposed value ρ∗ > ρ0, where each threshold

exceedance is a 20×20 regular grid. Certain grids exhibit extremely large likelihood differences

(see Figure 5.5 for example). Some grids with large likelihood differences contain a single com-

ponent that exceeds the threshold by a large margin. For these grids, our intuition is that the
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Figure 5.4: Illustration of y sampling for data simulated from the true model in the base case with true

ρ = 0.2, 1−nT /n = 0.975, and no added noise. The left panel corresponds to a row of a single 20×20 grid

containing three "exact" components above the threshold (blue line), while the right panel corresponds

to another row of the same grid with all components below the threshold. Black points are the original

observations for each row, while gray lines show accepted y proposals over the final 10,000 iterations.

model wants ρ as small as possible because otherwise we should have observed some neigh-

boring grid cells that exceed the threshold as well. Other grids with large likelihood differences

contain large, irregular groupings of cells which exceed the threshold (e.g., Figure 5.5). Again,

the best SAR approximation for these grids is obtained for ρ near zero, which corresponds to

the observed pattern being obtained purely by chance.

Gridded precipitation observations

Results for the gridded precipitation observations described in Section 5.2.3 are similar to

those for the Brown-Resnick simulations, and we omit them here.

In the next section, we propose an alternative inference procedure for the extreme SAR

model. This method is not likelihood-based, and instead approaches model fitting via the

TPDM. Using this approach, we are able to obtain reasonable estimates of dependence even

in the case of model misspecification.
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Figure 5.5: Example of issues with the censored likelihood approach when applied to data simulated

from a Brown-Resnick process (λ = 0.431, κ = 1.148). Left: differences in likelihood contributions by

threshold exceedance grid between a proposed value of ρ = 0.1750 and starting value of ρ = 0.1749, after

one full iteration of sampling components below the threshold. Right: components above the threshold

for grid 173, which corresponds to the most negative difference in likelihood contribution in this case.

5.4 Fitting via the TPDM

5.4.1 Methods

The TPDM ΣY is a useful summary of the extremal dependence of Y. Hence, in this section,

we propose an approach to model fitting that is based on the TPDM. The goal of this approach

is to find the value of ρ whose corresponding theoretical TPDM most closely matches the ob-

served tail pairwise dependence structure with respect to the Frobenius norm. Implementing

this method involves several considerations. First, we must obtain an estimate of the TPDM

from the data. We will consider two threshold-based estimators for the TPDM, one defined us-

ing a d-dimensional vector norm and the other a pairwise estimator. It is well-known that in

cases of moderate to weak extremal dependence, threshold-based estimators tend to overes-

timate dependence (Huser et al., 2016). To mitigate this bias, we propose a simple method to

obtain a bias-corrected estimate of the TPDM, Σ̃Y. Finally, we find ρ̂ such that we minimize

the squared Frobenius norm of ΣY − Σ̃Y, and estimate uncertainty via bootstrapping. Below we

describe each of these steps in more detail.
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Estimation of the TPDM

We consider two estimators of the TPDM, each of which replaces the true angular mea-

sure with an empirical estimate. The first estimator was proposed by Cooley and Thibaud

(2018), and extends an estimator given by Larsson and Resnick (2012) to dimension d > 2. Let

yt = (yt1, yt2, . . . , ytd ), t = 1, . . . ,n, denote our observations with the appropriate regularly vary-

ing marginals. Note that this may require first performing a suitable marginal transformation

such as the one described in Section 5.2.3. Let the radial component rt = ||yt ||2, and the angu-

lar component θt = yt r−1
t . Set a suitably high threshold r0 for the radial components, and let

nexc =
∑n

t=1 I(rt > r0) be the number of threshold exceedances. In practice, it is convenient to

define r0 in terms of an empirical quantile of the data, which we will denote by qr0 . We define

σ̂Yi j = m̂

∫

S
d−1
+(2)

θiθ j d N̂Y(θ) =
m̂

nexc

n∑

t=1

θt iθt j I(rt > r0), (5.13)

where NY(·) = m−1HY(·), and m̂ is an estimate of HY(Sd−1
+(2)

). In application, because we either

simulate or pre-process our data to have common unit scale, m = d and does not need to be

estimated.

Let Σ̂Y =
(
σ̂Yi j

)
i , j=1,...,d

. Note that Σ̂Y is a symmetric matrix by definition. Σ̂Y is also guar-

anteed to be positive semidefinite, as Σ̂Y = n−1
excm̂Θ̂

⊤
Θ̂, where Θ̂ is a matrix whose rows are the

vectors θt for which rt > r0. The estimator (5.13) is of a form widely used in extreme analy-

ses. Resnick (2004) and Larsson and Resnick (2012) show consistency of such estimators using

standard intermediate asymptotic arguments.

Since the TPDM summarizes pairwise dependence, heuristically it is conceivable that es-

timation of ΣY could be improved by focusing on extreme instances of each pair of compo-

nents. Thus we also consider a pairwise estimator of the TPDM. For each pair (i , j ) of compo-

nent indices (i = 1, . . . ,d , j = 1, . . . ,d), we denote yt (i , j ) = (yt i , yt j ) for t = 1, . . .n. Let rt (i , j ) =

||yt (i , j )||2, and θt (i , j ) =
(
θt i (i , j ),θt j (i , j )

)
= yt (i , j )rt (i , j )−1. We choose a high pairwise norm

threshold r0(i , j ) and let nexc(i , j ) =
∑n

t=1 I
(
rt (i , j ) > r0(i , j )

)
. It is convenient to set r0(i , j ) to a
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common empirical quantile qr0 for all pairs (i , j ). We define

σ̂
pair

Yi j
=

2

nexc(i , j )

n∑

t=1

θt i (i , j )θt j (i , j )I
(
rt (i , j ) > r0(i , j )

)
. (5.14)

The factor of two arises because the data are simulated or pre-processed to have a common

unit scale and we are considering pairs.

Let Σ̂
pair
Y =

(
σ̂

pair

Yi j

)
i , j=1,...,d

. Note that Σ̂
pair
Y is symmetric with ones on the diagonal, as σ̂

pair

Yi j
=

σ̂
pair

Y j i
for all (i , j ), and σ̂

pair

Yi i
= 2nexc(i , i )−1 ∑n

t=1

y2
t i

2y2
t i

I (rt (i , i ) > r0(i , i )) = 1 for all i . Unlike Σ̂Y, the

pairwise estimator Σ̂
pair
Y is not guaranteed to be positive semidefinite. Other theoretical prop-

erties of Σ̂
pair
Y are under development and require understanding heretofore unexplored bivari-

ate (and more generally, lower-dimensional) angular measures of higher-dimensional regularly

varying random vectors. This work is outside the scope of this dissertation.

Bias correction of the estimated TPDM

We anticipate that finite-sample estimates of ΣY will be biased. In particular, threshold-

based estimators are known to overestimate dependence when true dependence is moderate

to weak (Huser et al., 2016), such as is the case when the distance between grid cell pairs is

moderate to large for the extreme SAR. Naively minimizing ||ΣY(ρ)− Σ̂Y||2F or ||ΣY(ρ)− Σ̂
pair
Y ||2F

would result in an overestimate of ρ. Instead, we propose an intermediate step to obtain a bias-

corrected estimate of the TPDM, denoted by Σ̃Y. Our bias correction approach makes use of our

knowledge that the true pairwise tail dependence should be close to zero at large distances. We

provide more details on our proposed approach in Section 5.4.2.

Estimation of ρ

Recall from Section 4.3.2 that the theoretical TPDM for the common-scale formulation of

the extreme SAR model is

ΣY = Ã Ã⊤ = diag(1/||A1·||2, . . . ,1/||Ad ·||2)A A⊤diag(1/||A1·||2, . . . ,1/||Ad ·||2), (5.15)
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where A = (I − ρW )−1. We will use the notation ΣY(ρ) to emphasize the dependence of the

TPDM on the parameter ρ. After estimating Σ̂Y and performing bias correction to obtain Σ̃Y,

the final step is to find

ρ̂ = argmin
ρ∈(0 , min{|λ1|−1,|λd |−1})

||ΣY(ρ)− Σ̃Y||2F , (5.16)

where λ1 < ·· · < λd are the ordered eigenvalues of W , and the restriction on ρ follows from

Proposition 4.3.1. We find ρ̂ using numerical optimization in R.

We estimate uncertainty via a nonparametric bootstrap procedure. Specifically, we first

sample with replacement from the original n observations (each of which is d-dimensional),

ensuring the preservation of the dependence structure. This step would occur after marginal

transformation if necessary. Then for each bootstrap replicate, we perform the inference pro-

cedure described above, starting with estimating the TPDM and ending with estimating ρ. The-

oretical properties of the bootstrap are just beginning to be examined by the extremes commu-

nity (Zhou, 2018).

5.4.2 Results

Below we investigate fitting via the TPDM for our three categories of data: simulations from

the true extreme SAR model, simulations from a Brown-Resnick process with similar pairwise

tail dependence, and gridded precipitation observations.

Simulation from the true model

For simulations from the true extreme SAR model, we know both the true ρ and the true

ΣY(ρ). Below, we use the base case of data simulated from the true model with ρ = 0.2 with no

added noise to illustrate our modeling choices in each of the steps described in Section 5.4.1.

Estimation ofΣY and hence ofρ depends on the threshold quantile. We choose the 0.99 quantile

for our initial illustration. We then explore the effect of varying the threshold quantile, and

present results for various combinations of the true ρ, threshold quantile, and presence of light-

tailed noise.
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Estimation of the TPDM

Figure 5.6 shows results of estimating the TPDM for the base case using the two estimators

defined in Section 5.4.1. As expected, both estimators tend to overestimate the tail pairwise de-

pendence, especially at moderate to large distances when true dependence is weak. Σ̂Y exhibits

more variability than Σ̂
pair
Y , but has substantially lower bias on average. For this reason, and

because Σ̂Y has nice theoretical properties as outlined in Section 5.4.1, we choose to use this

estimator for the remainder of the analysis.

Figure 5.6: Comparison of two estimators of ΣY for data simulated from the true extreme SAR model with

ρ = 0.2, qr0
= 0.99, and no added noise. True values {σYi j } (blue) and estimates {σ̂Yi j } (gray) and {σ̂

pair

Yi j
}

(black) are plotted against pairwise Euclidean distance. The right plot shows means of the estimates at

each distance, revealing that Σ̂Y is less biased on average than Σ̂
pair
Y .

Bias correction of the estimated TPDM

Based on the results of estimating ΣY, we propose a simple bias correction method which

reflects our knowledge that the true pairwise extremal dependence should be close to zero when

the distance is large enough between grid cell centers. We temporarily view σ̂Yi j as a function

of pairwise distance, and fit the curve σ̂ = β0e−β1∗distance +β2 to the estimated TPDM values

(see left panel of Figure 5.7). Then β̂2 is our estimate for the horizontal asymptote. In the base

case of ρ = 0.2 and qr0 = 0.99, we obtain β̂2 = 0.134. Note that σYi i is unbiased on average (see

right panel of Figure 5.6), so it is only necessary to bias-correct the off-diagonal entries of Σ̂Y.
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We make a simplifying assumption of constant bias for for pairwise distances greater than zero.

Our bias-corrected estimate of the TPDM is then Σ̃Y =
(
σ̃Yi j

)
i , j=1,...,d

, where

σ̃Yi j =





σ̂Yi j , i = j ,

(
σ̂Yi j − β̂2

)
+ , i 6= j .

(5.17)

We take the positive part in the latter case because we know that ΣY is entrywise nonnegative for

the true extreme SAR under our model specifications. The right panel of Figure 5.7 compares

the bias-corrected Σ̃Y to the true ΣY for the base case.

Figure 5.7: Illustration of the proposed approach to bias correction of Σ̂Y for data simulated from the true

model. Left: exponential curve (black line) fitted to {σ̂Yi j } as a function of pairwise Euclidean distance.

Right: means of bias-corrected {σ̃Yi j } at each distance (red) compared to the true TPDM values {σYi j }

(blue) for the extreme SAR model when the true ρ = 0.2.

Better results could potentially be obtained by letting the bias correction vary by distance.

We also explored bias-correction via shrinkage or tapering, but there was not a clear choice of

shrinkage target or taper function. These extensions could be avenues of future investigation.

Estimation of ρ

For the base case, minimizing the squared Frobenius norm ||ΣY(ρ)− Σ̃Y||2F results in an es-

timate of ρ̂ = 0.197, which is quite close to the true value of ρ = 0.2. The corresponding 95%
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bootstrap confidence interval based on 1,000 bootstrap replicates is (0.192,0.202), which cov-

ers the true value.

Estimation of a risk region occurrence probability

We can also compare the probability of an event occurring in a given risk region between

the true and fitted extreme SAR models. Let us define a risk region by

R = {y ∈R
d
+ : max

i∈DR

yi > y0}, (5.18)

where DR ⊂ D = {1, . . . ,d}. Our goal is to estimate pR = P(Yt ∈ R). We choose this particular

form of the risk region for ease of calculation, but note that occurrence probabilities can be

estimated in a similar manner for any risk region of interest. For the extreme SAR model, we

first derive

ν(R) =
∫

(r,θ)∈R
2r−3dr d H(θ)

=
∫

θ∈Sd−1
+(2)

∫∞

r=mini∈DR

y0
θi

2r−3dr d H(θ)

=
∫

θ∈Sd−1
+(2)

max
i∈DR

(
θi

y0

)2

d H(θ)

=
∫

θ∈Sd−1
+(2)

max
i∈DR

θ2
i

y2
0

||ã j ||22 I

(
θ =

ã j

||ã j ||2

)

=
d∑

j=1

max
i∈DR

(
Ãi j

||ã j ||2

)2

y2
0

||ã j ||22

=
1

y2
0

d∑

j=1

max
i∈DR

Ã2
i j . (5.19)

Next we obtain our occurrence probability estimate. We assume n is fixed and large enough

such that the convergence (1.11) implies the approximate equality

nP

(
Y

cn
∈ S

)
≈ ν(S),
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where the appropriate normalizing constant in this case is cn = n1/2. Letting S = n−1/2R, we get

nP
(
n−1/2Yt ∈ n−1/2R

)
≈ ν(n−1/2R)

⇒P (Yt ∈R) ≈ n−1ν(n−1/2R)

⇒P (Yt ∈R) ≈ ν(R), (5.20)

where the last line follows from the scaling property (1.12) of ν. Since the risk region occurrence

probability depends on Ã, which in turn depends on ρ, we will use the notation pR(ρ).

As an example, suppose DR = {174,193,194,195,214}, corresponding to a plus-shaped re-

gion of grid cells within the 20 × 20 grid, and let y0 = 30. For the true extreme SAR model

with ρ = 0.2, we can use (5.19) and (5.20) to obtain pR(ρ) ≈ 4.57×10−3. Our fitted model with

ρ̂ = 0.197 yields the estimate p̂R = pR(ρ̂) ≈ 4.63×10−3, which is very similar. Plugging in our

1,000 bootstrapped estimates for ρ, we obtain a corresponding 95% confidence interval for the

probability estimate of (4.52×10−3,4.70×10−3), which covers the true pR(ρ). For reference, the

empirical occurrence probability based on our simulation of 10,000 grids was 5.70×10−3.

Sensitivity to threshold selection, true dependence, and noise

Here, we investigate the sensitivity of our estimation method to threshold, different levels

of true dependence, and presence of light-tailed noise. Estimation of ΣY, and therefore of ρ,

depends on the choice of threshold. Figure 5.8 illustrates the effect of threshold selection on

estimates of ρ. We let the threshold r0 be the empirical qr0 -quantile of data simulated from the

true model, for qr0 = 0.95, 0.975, 0.99, 0.995, and 0.999. Figure 5.8 shows the corresponding

estimates for ρ using our chosen bias-corrected method (in red) as well as the estimates we

would have obtained if we did not bias correct Σ̂Y and instead minimized ||ΣY(ρ)− Σ̂Y||2F (in

black). We see that as qr0 increases, point estimates from both methods get closer to the true

value of ρ. Also in both cases, the uncertainty increases with qr0 since the sample size (number

of exceedances) decreases. As we would expect based on the consistency of Σ̂Y, omitting bias

correction of Σ̂Y leads to accurate estimates of ρ when qr0 is high enough (e.g., when qr0 =
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0.999). However, at less extreme threshold quantiles corresponding to a reasonable number of

exceedances in practice, our bias-corrected method performs much better and is effective in

reducing the bias in estimation of ρ.

Figure 5.8: Effect of varying threshold quantile qr0
on estimates of ρ using our proposed bias-corrected

method (red) and estimates without bias-correction (black) for data simulated from the true extreme

SAR model with ρ = 0.2 (left) and ρ = 0.1 (right). Dashed lines indicate the true value of ρ. Solid vertical

lines represent 95% bootstrap confidence intervals.

In addition to varying the threshold quantile, we also explored different values of the true ρ

and the effect of adding light-tailed noise. Similar to Table 5.1, Table 5.2 gives point estimates for

ρ along with 95% confidence intervals based on 1,000 bootstrap replicates for four cases. The

first row starts with the base case of ρ = 0.2, qr0 = 0.990, and no added noise. Each subsequent

row of the table represents a change to either the true ρ, the norm threshold quantile, or the

presence of light-tailed noise, from this base case. We see that the estimates for ρ are slightly

biased low in all cases, and as expected the bias increases when the threshold is lowered or noise

is added. However, the 95% bootstrap confidence interval covers the true value of ρ in all cases.

Simulation from a Brown-Resnick process

In contrast to simulations from the true extreme SAR model, there is no true ρ for simula-

tions from a Brown-Resnick process. However, given the range and smoothness parameters of
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Table 5.2: Results from fitting via the TPDM for data simulated from the true model. Columns represent

(from left to right): the true value of ρ, norm threshold quantile, presence of light-tailed noise, point

estimate, and 95% bootstrap confidence interval for ρ.

ρ qr0 noise ρ̂ 95% CI

0.2 0.990 no 0.197 (0.192, 0.202)

0.1 0.990 no 0.098 (0.097, 0.103)

0.2 0.975 no 0.196 (0.193, 0.200)

0.2 0.990 yes 0.196 (0.191, 0.202)

the Brown-Resnick process, we can derive the true Σ
BR , whose entries σBR

i j
are given by (5.6).

(Note that we know σBR
i j

as a function of the distance between grid cell centers, whereas for the

extreme SAR model we know σYi j for each pair of grid cells.) We can also calculate the theoret-

ical occurrence probability for any risk region of interest.

Below, we use the base case of data simulated from a Brown-Resnick process with λ= 0.431,

κ= 1.148 to illustrate the steps of our inference procedure. Recall from Section 5.2.2 that these

particular Brown-Resnick parameters were chosen to match as closely as possible the pairwise

tail dependence of an extreme SAR model with ρ = 0.2. We choose the 0.99 quantile for the

threshold in our initial illustration, then explore the effect of varying the threshold quantile.

Estimation of the TPDM

Figure 5.9 shows results of estimating the TPDM for the base Brown-Resnick case using the

two estimators defined in Section 5.4.1. As with data simulated from the true extreme SAR

model (recall Figure 5.6), we see that Σ̂Y is more variable but less biased on average than Σ̂
pair
Y ,

and choose to use Σ̂Y for the rest of the analysis.

Bias correction of the estimated TPDM

Using the same bias correction procedure as for simulations from the true model, we obtain

a bias-corrected estimate Σ̃Y with entries given by (5.17). The left panel of Figure 5.10 shows the

exponential curve fitted to the estimated tail pairwise dependence measures. Our resulting es-

timate for the horizontal asymptote is β̂2 = 0.045, and we subtract this constant bias correction
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Figure 5.9: Comparison of two estimators of ΣY for data simulated from a Brown-Resnick process with

λ = 0.431, κ = 1.148, and qr0
= 0.99. True pairwise extremal dependence measures {σBR

i j
} (blue) and

estimates {σ̂Yi j } (gray) and {σ̂
pair

Yi j
} (black) are plotted against pairwise Euclidean distance. The right plot

shows means of the estimates at each distance, revealing that Σ̂Y is less biased on average than Σ̂
pair
Y .

factor from the off-diagonal entries of Σ̂Y, taking the positive part as before. The right panel of

Figure 5.10 compares the bias-corrected Σ̃Y to the true Σ
BR for the base case.

Figure 5.10: Illustration of bias correction of Σ̂Y for data simulated from a Brown-Resnick process. Left:

exponential curve (black line) fitted to {σ̂BR
i j

} as a function of pairwise Euclidean distance. Right: means

of bias-corrected {σ̃Yi j } at each distance (red) compared to the true pairwise extremal dependence mea-

sures {σBR
i j

} (blue) for a Brown-Resnick process with parameters λ= 0.431 and κ= 1.148.
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Estimation of ρ

For the base Brown-Resnick case, minimizing ||ΣY(ρ)− Σ̃Y||2F results in an estimate of ρ̂ =

0.192 with a corresponding 95% bootstrap confidence interval of (0.188,0.199). Although there

is no true ρ in the case of the Brown-Resnick simulations, we can assess our performance based

on the known pairwise tail dependence. Figure 5.11 compares the theoretical TPDM ΣY(ρ̂)

based on the fitted extreme SAR model to the true pairwise extremal dependence measures

{σBR
i j

} of the Brown-Resnick process that we simulated from. Even though we are fitting the

wrong model to the data, we are able to estimate dependence relatively well. Compared to the

true pairwise dependence, the fitted extreme SAR model slightly underestimates dependence,

especially at shorter distances.

Figure 5.11: Comparison of the TPDM ΣY(ρ̂) for the fitted extreme SAR model (red) and the true Σ
BR of

the Brown-Resnick process with λ= 0.431 and κ= 1.148 (blue).

Estimation of a risk region occurrence probability

We can also compare the theoretical occurrence probability for a given risk region to the

estimated probability based on the fitted extreme SAR model. Again, we define a risk region R

by (5.4.2). For the Brown-Resnick process, we can use the known exponent measure to calculate

pBR
R

=P(Yt ∈R). Specifically,
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P(Yt ∈R) = 1−P(Yt i ≤ y0 for all i ∈DR)

= 1−exp{−V (y0)}, (5.21)

where y0 = (y0, . . . , y0) is a vector of dimension card(DR). For the same plus-shaped example of

DR = {174,193,194,195,214} and y0 = 30 as before, we obtain pBR
R

= 4.18×10−3. In comparison,

the probability estimate for the fitted extreme SAR model is pR(ρ̂) = 4.71×10−3, with a corre-

sponding 95% bootstrap confidence interval of (4.60×10−3,4.77×10−3). By fitting the extreme

SAR model to simulations from a Brown-Resnick process, we slightly overestimate the occur-

rence probability. For our particular form of risk region, this corresponds to slightly underes-

timating the tail dependence, as we already saw from Figure 5.11. For reference, the empirical

occurrence probability for our 10,000 simulated Brown-Resnick fields was 4.30×10−3.

Sensitivity to threshold selection and true dependence

We investigate the effect of threshold selection on our estimation and inference of ρ in the

same manner as we did for simulations from the true model. We let the threshold r0 be the em-

pirical qr0 -quantile of data simulated from a given Brown-Resnick process, for qr0 = 0.95, 0.975,

0.99, 0.995, and 0.999. Figure 5.12 shows the estimates for ρ at each threshold quantile using

our chosen bias-corrected method (in red) as well as the estimates we would have obtained

if we did not bias correct Σ̂Y and instead minimized ||ΣY(ρ)− Σ̂Y||2F (in black). The left panel

shows results for data simulated from the base case, with Brown-Resnick parameters chosen

to mimic pairwise tail dependence of the extreme SAR model with ρ = 0.2. The right panel

presents analogous results for data simulated from a Brown-Resnick process with parameters

chosen to match the pairwise tail dependence of the extreme SAR model with ρ = 0.1. We see

that as qr0 increases, the point estimates from the two methods get closer to each other, while

the uncertainty of these estimates increases.

For easy comparison to Table 5.2, Table 5.3 gives point estimates for ρ along with 95% confi-

dence intervals based on 1,000 bootstrap replicates for three cases. The first row starts with the

base case of qr0 = 0.990 and Brown-Resnick parameters λ= 0.431 and κ= 1.148, which give rise
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Figure 5.12: Effect of varying threshold quantile qr0
on estimates of ρ using our proposed bias-corrected

method (red) and estimates without bias-correction (black) for data simulated from a Brown-Resnick

process with parameters λ = 0.431, κ = 1.148 (left) and λ = 0.254, κ = 1.341 (right). Solid vertical lines

represent 95% bootstrap confidence intervals.

to the TPDM values closest to the extreme SAR model with ρ = 0.2 (see Section 5.2.2). Each sub-

sequent row of the table represents a change to either the Brown-Resnick parameters (to those

which minimize the squared error to TPDM values for the extreme SAR model with ρ = 0.1) or

the norm threshold quantile from this base case.

Table 5.3: Results from fitting via the TPDM for data simulated from a Brown-Resnick process. Columns

represent (from left to right): the range and smoothness parameters of the Brown-Resnick simulations,

norm threshold quantile, point estimate, and 95% bootstrap confidence interval for ρ.

λ κ qr0 ρ̂ 95% CI

0.431 1.148 0.990 0.192 (0.188, 0.199)

0.254 1.341 0.990 0.101 (0.091, 0.112)

0.431 1.148 0.975 0.186 (0.183, 0.191)

Gridded precipitation observations

Here we apply our inference procedure to the CPC unified gauge-based analysis of daily pre-

cipitation introduced in Section 5.2.3. Recall we have n = 9,027 daily precipitation observations

on a 20×20 grid that contains northeastern Colorado. As described in Section 5.2.3, the orig-
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inal observations have been transformed to have approximately Fréchet marginals with α = 2

and scale = 1. We select qr0 = 0.99 as our threshold quantile. Following the same procedure

as for simulations from the true model and simulations from a Brown-Resnick process, we first

estimate the TPDM from the data, then bias-correct to obtain Σ̃Y. The left panel of Figure 5.13

shows the fitted exponential curve used for bias correction, with estimated horizontal asymp-

tote β̂2 = 0.165. Minimizing ||ΣY(ρ)−Σ̃Y||2F leads to an estimate of ρ̂ = 0.236, with corresponding

95% bootstrap confidence interval (0.230,0.241). The right panel of Figure 5.13 compares fitted

TPDM ΣY(ρ̂) (in pink) to the means at each distance of the bias-corrected {σ̃Yi j } (in purple).

The discrepancy shown here, as well as the fact that our estimate for ρ is near its upper bound

of 0.25, indicate that our model is not able to full capture the longer-range dependence (i.e.,

larger storm sizes) apparent in the data. This is likely due, at least in part, to the rook neighbor-

hood specification that we use for W .

Figure 5.13: Results from fitting via the TPDM for the CPC unified gauge-based analysis of daily pre-

cipitation. Left: exponential curve (black line) fitted to {σ̂Yi j } (gray points) as a function of pairwise

Euclidean distance. Right: The TPDM ΣY(ρ̂) for the fitted extreme SAR model (pink) compared to means

of bias-corrected {σ̃Yi j } at each distance (purple).

As previously done with the simulated data, we consider a risk region R defined by (5.4.2).

Now the set of component indices DR = {174,193,194,195,214} corresponds to the grid cell con-

taining Wray, Colorado, and its four nearest neighbors. As before, we let y0 = 30. Our risk region
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occurrence probability can be interpreted as the probability of daily precipitation exceeding 30

mm in at least one of the five grid cells under consideration. Based on the fitted extreme SAR

model, we estimate this probability to be pR(ρ̂) = 3.4×10−3 with bootstrap confidence interval

(3.0×10−3,3.7×10−3). Although we don’t know the true occurrence probability, we can com-

pare to the empirical probability 3.1×10−3, which falls within the confidence interval for our

fitted model. Thus, even in the face of obvious model misspecification, it seems that we can do

a reasonable job of assessing risk.

5.5 Discussion

In this chapter, we investigated two approaches to estimation and inference for the common-

scale extreme SAR model proposed in Chapter 4. The first method we explored took a censored

likelihood approach, and was implemented using Bayesian MCMC with a data augmentation

step that imputes censored components below a marginal threshold. To our knowledge, no

previous studies have attempted likelihood-based inference for extremal dependence models

with discrete limiting angular measures. Due to the transformed-linear construction and unlike

max-linear construction, realizations from our model have angular components close but not

equal to the the discrete locations for which the angular measure has mass, thus allowing us

to perform likelihood inference in a manner unachievable by these other extremes models with

discrete angular measure. Our approach was successful at fitting to data arising from the model,

even when lighter-tailed noise was added. However, we learned that our model is not flexible

enough, in that the censored likelihood approach was not robust to model misspecification.

As an alternative, we developed a method to fit the extreme SAR model via the TPDM. This

non-likelihood-based approach first estimates the TPDM from data, then performs a simple

bias correction to the estimated TPDM. Finally, we estimateρ by minimizing the squared Frobe-

nius norm of the difference between the model-based TPDM ΣY(ρ) and the bias-corrected esti-

mate Σ̃Y. Fitting via the TPDM is able to produce reasonable estimates of extremal dependence

and corresponding risk region occurrence probabilities even in the case of model misspecifica-
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tion. We are able to asses this using simulations from a Brown-Resnick process, for which we

derive the true pairwise extremal dependence measures. An additional advantage is that fit-

ting via the TPDM is much faster than running our MCMC algorithm. Still, inference questions

remain. Although not directly related to our SAR model, estimates of extremal dependence in

cases of weak dependence exhibit bias, and we developed a simple but effective method for

correcting for this bias. While the bias of dependence estimates is well known in the extremes

community, the level of bias we found to be surprising.

We also explore fitting the extreme SAR model via the TPDM to a set of gridded precipi-

tation observations. We find that these data imply longer-range dependence than our model

can achieve, at least under the simple rook neighborhood specification. Similar issues arise in

traditional non-extreme areal models (Besag and Kooperberg, 1995). Future work could define

a neighborhood structure with longer range dependence, as well as consider model selection

between different forms of W .

It is worthwhile to point out that the spatial data sets upon which we illustrate our two in-

ference methods are very large by extremes standards. Our methods were quite feasible on a set

of 400 locations, and there is no obvious reason that they could not be applied to problems of

much greater size.

There are other possible inference methods for the extreme SAR model beyond the two

which we explored in depth in this chapter. We also conducted preliminary investigations of

several other approaches. For example, we tried fitting our model using the approach of Ein-

mahl et al. (2018), who minimize a functional of the distance between the empirical and model

exponent measure functions. Einmahl et al. (2018) used this approach to fit a max-linear model

of dimension d = 4, but in our attempt to apply their algorithm to our extreme SAR model,

we found that this approach was computationally infeasible for d = 100. We also considered a

kernel-based method to make the limiting angular measure more flexible. This approach would

place kernels at each of the discrete locations for which our SAR model’s angular measure has

mass, essentially smoothing out the point masses. However, developing appropriate kernels
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on the L2 nonnegative unit sphere proved challenging. Instead, we explored a version of the

extremal SAR model with α= 1 and L1 norm, applying standard L1 Dirichlet kernels. Although

results were promising for lower dimensions, we encountered severe numerical problems with

the Dirichlet kernels in higher dimensions. Lastly, we also considered another minimum dis-

tance method in which we first assign observed angular components to clusters and then mini-

mize a distance between weighted cluster centroids to the normalized columns of Ã. One issue

with this approach was the ad-hoc nature of cluster assignment, however this idea could po-

tentially be made more formal by treating cluster assignment in an EM-like manner. Other

methods for inference warrant future investigation, and we comment on some additional ideas

in Chapter 6.
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Chapter 6

Conclusions and Future Work

This dissertation presents applied and methodological advances in the statistical analysis

and modeling of extreme values. Our contributions are largely motivated by the types of data

found in the atmospheric sciences, including gridded observational data products and numer-

ical model output from both climate models and atmospheric chemistry models. Employing

theory from both univariate and multivariate extremes, we develop new models and propose

new inference methods for the univariate, multivariate, and (finite-dimensional) spatial set-

tings. To model tail dependence, both between an extreme response and covariates as well as

in a spatial context, we use the framework of multivariate regular variation (MVRV). This prob-

abilistic framework characterizes the joint tail and is useful for modeling multivariate threshold

exceedances.

In Chapter 2, we used large initial-condition ensembles of global climate model output to

compare future precipitation extremes under two climate change scenarios. Our study revealed

the advantage of using such ensembles to estimate parameters of extreme value distributions,

especially the shape parameter which is often difficult to estimate but influential in quantifying

high quantiles (return levels). Thus, our study provides important insight about how internal

variability affects inference of extreme values. We also demonstrated the value of a pattern

scaling approach for extremes. Pattern scaling techniques like ours, which assume that large-

scale patterns of regional change will scale with global temperature change, can be used to

generate regional projections for scenarios that are not readily available in databases of climate

model simulations. Future work could examine pattern scaling extremes using a larger suite

of climate models. It could also be interesting to investigate applying a similar pattern scaling

approach to combine models and data in simulations of future climate extremes, for example

following the philosophy of Leeds et al. (2015) and Poppick et al. (2016). These works advocate

the “delta method," in which one models differences between past and future model runs, then
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applies that to observations such that future simulations preserve some of the characteristics

of the observations.

In Chapter 3, we extended methodology for quantile regression and in particular tail depen-

dence optimization in a novel study in atmospheric science. For the first time, a framework was

proposed and applied for comparing the meteorological sensitivities of high and extreme O3

between simulated and observational data. We found substantial differences between NRCM-

Chem-modeled and observed sensitivities of high levels of O3 to meteorological drivers that

were not consistent among the three study locations. These results raise concerns for modelers

that NCRM-Chem may not be accurately representing the mechanisms behind O3 formation or

loss. In fact, a recent multi-model evaluation conducted by Otero et al. (2018) found consider-

able differences in the sensitivities of MDA8 O3 (via multiple linear regression) to the different

meteorological factors among five different chemical transport models. It seems further inves-

tigation into potential sources of variation is needed. In addition, future work could extend

Chapter 3 by conducting a spatial analysis over a larger region, as borrowing strength across

spatial locations could reduce uncertainties in parameter estimates.

Motivated by the prevalence of gridded climate model output and other gridded data prod-

ucts in the atmospheric sciences, Chapter 4 proposed a new model for extremes of areal data,

with a common-scale extension. The proposed model extends recent work on transformed-

linear operations applied to regularly varying random vectors, and is unique in being tied very

directly to areal models from classical spatial statistics. Specifically, our model is a multivariate

extreme analogue of the simultaneous autoregressive (SAR) model. In Chapter 4 we specified a

sufficient condition on the spatial dependence parameter ρ such that the extreme SAR model

has desirable properties. We also described the limiting angular measure and corresponding

tail pairwise dependence matrix (TPDM) for the model.

In Chapter 5, we investigated two approaches to estimation and inference for the common-

scale extreme SAR model proposed in Chapter 4. First, we considered a censored likelihood

approach, implemented using Bayesian MCMC with a data augmentation step. We found that
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this method was not robust to model misspecification, as evidenced by a poor fit to simula-

tions from a Brown-Resnick process with similar pairwise tail dependence to an extreme SAR

with known dependence parameter. As a result, we developed an alternative method to model

fitting based on the TPDM. This method is able to produce reasonable estimates of extremal

dependence even in the case of model misspecification. This is an especially noteworthy ac-

complishment considering that our example datasets are of dimension d = 400, which is an

order of magnitude greater than what most existing methods for spatial extremes can handle.

In Chapter 5, we briefly described several other inference procedures that we explored. We

consider some additional ideas here. Likelihood-based methods are desirable because they

can be used within a Bayesian hierarchical framework, and computationally efficient Bayesian

hierarchical models that account for spatial dependence are largely missing in the extremes

literature. Our censored likelihood approach struggled with general data because our extreme

SAR model was too rigid. Intuitively, we could think about adding noise to make the model

more flexible. A natural approach to adding noise would be to let Y = A ◦Z1 ⊕Z2. However,

instead of smoothing the point masses, this approach would just add more point masses at the

vertices, and the likelihood would not agree better with the data. Possible ways forward include

introducing noise in the matrix A, or potentially adapting the sum characterization of hidden

regular variation developed by Weller and Cooley (2014).

More generally, transformed-linear operations applied to regularly varying random vectors

have potential to characterize and construct many new models for extremal dependence within

the MVRV framework. Our extreme SAR model is but one example. Transformed-linear ana-

logues can also be defined for many time series models, including moving average models

and autoregressive models, since these are just linear combinations of previous observations

or white noise terms. Tail pairwise dependence could also be examined between lagged obser-

vations from such models. However, inference for such models will undoubtedly be challenging

just as we found for the SAR. Further research is needed in this area.
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Appendix A

Supplementary Material for Chapter 2
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Figure A.1: Parameter estimates (left) and standard errors (right) for the GEV parameters (from top to

bottom) µ8.5
0 (s),µ8.5

1 (s),φ8.5
0 (s),φ8.5

1 (s), and ξ8.5(s), based on CESM-LE simulations of annual maximum

daily precipitation under historical and RCP8.5 forcings over the contiguous United States.
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Figure A.2: Normal-based p-values associated with one-sided hypothesis tests of µ8.5
1 (s) ≤ 0 (a) show that

this null hypothesis is rejected at the α= 0.05 level for nearly all grid cells outside a small region near the

Mexican border. Similarly, p-values associated with the one-sided hypothesis tests of φ8.5
1 (s) ≤ 0 (b) show

that this null hypothesis is rejected at all but two grid cells in the contiguous U.S.
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Figure A.3: Results of the Anderson-Darling (AD) tests for goodness of fit at each grid cell for the GEV

model fitted to CESM-LE annual precipitation maxima. AD p-values are given in (a), and (b) shows

which p-values are less than 0.05 in red (less than 4% of the grid cells reject at the α= 0.05 level).
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Figure A.4: Delta-method-based standard error estimates in 2005 (a) and 2080 (b) for the 1% AEP level

estimated from CESM-LE annual precipitation maxima. These correspond to Figure 2.2(a) and (b) in the

main text.
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Figure A.5: Parameter estimates (left) and standard errors (right) for the GEV parameters (from top to

bottom) µ4.5
0 (s),µ4.5

1 (s),φ4.5
0 (s),φ4.5

1 (s), and ξ4.5(s), based on CESM-ME simulations of annual maximum

daily precipitation under historical and RCP4.5 forcings over the contiguous United States. Parameter

estimates (left column) are on the same scales as their counterparts in Figure A.1 for easy comparison.
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Figure A.6: Top: Normal-based p-values for one-sided hypothesis tests of µ4.5
1 (s) ≤ 0 (a) and φ4.5

1 ≤ 0

(b). Bottom: Comparison of slope parameters estimated from CESM-ME vs. CESM-LE. The difference

between estimates ofµ4.5
1 (s) andµ8.5

1 (s) is shown in (c), where red cells indicate µ̂4.5
1 (s) > µ̂8.5

1 (s). Similarly,

the difference between estimates of φ4.5
1 and φ8.5

1 is shown in (d).
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Figure A.7: Results of the Anderson-Darling (AD) tests for goodness of fit at each grid cell for the GEV

model fitted to CESM-ME annual precipitation maxima. AD p-values are given in (a), and (b) shows

which p-values are less than 0.05 in red (only 2 grid cells reject at the α= 0.05 level).
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Figure A.8: Point estimates for the 1% AEP level (in mm precipitation) for the years 2005 (a) and 2080 (b),

based on the CESM-ME simulations of annual maximum daily precipitation under RCP4.5. These are

on the same scale as Figure 2.2(a) and (b) in the main text for easy comparison. The annual exceedance

probability (%) in 2080 under RCP4.5 corresponding to a 1% AEP level in 2005 is shown in (c), on the

same scale as Figure 2.2(d). Percentage reductions in the 2080 1% AEP level under RCP4.5 compared to

RCP8.5 are mapped in (d) for grid cells with a significant difference between scenarios.
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Figure A.9: Difference in the year 2080 between pattern-scaled projections of the 1% AEP level and the

projected 1% AEP level based on the GEV model fitted to CESM-ME RCP4.5 annual precipitation maxima.

Red cells indicate the 1% AEP level is overestimated by pattern scaling, while blue cells indicate the 1%

AEP level is underestimated by pattern scaling, relative to the direct model fit.
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