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ABSTRACT 
 
 
 

CHARACTERIZING FOREST BIOMASS AND THE IMPACTS OF BARK BEETLES AND 

FOREST MANAGEMENT IN THE SOUTHERN ROCKY MOUNTAINS, USA 

 
 

Overview: Forest carbon sequestration is key in mitigating rising atmospheric carbon 

concentrations. Recent bark beetle (Curculionidae: Scolytinae) outbreaks have decreased forest 

carbon stocks across millions of hectares of the western United States (U.S.) since the mid-

1990s. Bark beetle outbreaks cause forests to temporarily act as a carbon source and also alter 

resistance to future disturbances by impacting species composition and forest structure. This 

dissertation first assesses the quantity and distribution of forest biomass in northern Colorado 

and southern Wyoming from the tree to landscape scale. In my first chapter, I compare 

variability and uncertainty in biomass estimates using different allometric biomass equations. In 

the next chapter, I map tree mortality in lodgepole pine (Pinus contorta var. latifolia Engelm. ex 

Wats.) forests of Colorado, Wyoming, Montana, and Idaho to quantify bark beetle impacts and 

infer bark beetle population dynamics. In the third chapter, I present a new approach for mapping 

standing dead biomass, summarizes standing aboveground biomass pools by species and forest 

type, and provides an assessment of potentially accessible biomass for bioenergy scenarios. 

Lastly, I simulate the impacts of salvage logging beetle killed stands on aboveground biomass 

and susceptibility to future mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks 

and fire. 
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Chapter 1: Biomass maps are valuable tools for estimating forest carbon and forest planning. 

Individual-tree biomass estimates made using allometric equations are the foundation for these 

maps, yet the potentially high uncertainty and bias associated with individual-tree estimates is 

commonly ignored in biomass map error. I developed allometric equations for lodgepole pine, 

ponderosa pine (Pinus ponderosa Douglas ex Lawson), and Douglas-fir (Pseudotsuga menziesii 

[Mirb.] Franco) in northern Colorado. Plot-level biomass estimates were combined with Landsat 

imagery and geomorphometric and climate layers to map aboveground tree biomass. I compared 

biomass estimates for individual trees, plots and at the landscape-scale using locally-developed 

allometric equations, equations applied across the U.S., and the Forest Inventory and Analysis 

Component Ratio Method (FIA-CRM). Total biomass map uncertainty was calculated by 

propagating errors from allometric equations and remote sensing model predictions. Two 

evaluation methods for the allometric equations were compared in the error propagation; errors 

calculated from the equation fit (equation-derived) and errors from an independent dataset of 

destructively-sampled trees (n = 285). Tree-scale error and bias of allometric equations varied 

dramatically between species, while local equations were generally most accurate. Depending on 

the allometric equation and evaluation method, allometric uncertainty contributed 30%-75% of 

total uncertainty, while remote sensing model prediction uncertainty contributed 25%-70%. 

When using equation-derived allometric error, local equations had the lowest total uncertainty 

compared to the nationwide equations and the FIA-CRM (root mean square error percent of the 

mean [% RMSE] = 50%). This is likely due to low-sample size (10-20 trees sampled per species) 

allometric equations and evaluation not representing true variability in tree growth forms. When 

independently evaluated, allometric uncertainty outsized remote sensing model prediction 

uncertainty. Biomass across the 1.56 million ha study area and uncertainties were similar for 
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local (2.1 billion Mg; % RMSE = 97%) and nationwide (2.2 billion Mg; % RMSE = 94%) 

equations, while FIA-CRM estimates were lower and more uncertain (1.5 billion Mg; % RMSE 

= 165%). Allometric equations should be selected carefully since they drive substantial 

differences in bias and uncertainty. Biomass quantification efforts should consider contributions 

of allometric uncertainty to total uncertainty, at a minimum, and independently evaluate 

allometric equations when suitable data are available. 

 

Chapter 2: Lodgepole pine has been especially hard-hit by widespread tree mortality over the 

last two decades, largely due to mountain pine beetle outbreaks triggered by drought conditions 

and sustained by large swaths of mature host trees. Associated tree mortality has been accurately 

mapped across relatively small regions using moderate resolution (30 m x 30 m or less) satellite 

imagery, but accurate estimates of tree mortality across large areas (i.e., multiple states) are 

needed to assess the impacts and dynamics of these recent outbreaks. In this study, I first mapped 

mortality severity (i.e., dead canopy area) across the lodgepole pine forests of Colorado, 

Wyoming, Montana, and Idaho. I then compared modeled mortality severity and extent with U.S. 

Forest Service Aerial Detection Survey (ADS) observations and field measurements at Forest 

Inventory and Analysis plots. Attributing summarized ADS data to the models of severity 

allowed for characterization of outbreak dynamics that would not otherwise be possible using my 

mortality maps alone, such as the relationship between mortality severity and the timing and 

duration of events. I found that mountain pine beetle-caused tree mortality dwarfed other insect 

and disease caused mortality between 2001 and 2013. Colorado and Wyoming experienced 

higher severity lodgepole pine forest mortality than Idaho and Montana. Mortality severity and 

variability in severity increased with duration of mountain pine beetle outbreak in a given stand. 
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Temporal outbreak severity dynamics suggest that host limitation played an important role in the 

decline of the recent mountain pine beetle outbreaks. I present a promising method of combining 

the strengths of satellite remote sensing (more accurate assessment of mortality severity and 

extent) with the strengths of aerial forest insect and disease surveys (identification of the cause 

and timing of mortality) that can elucidate spatiotemporal forest disturbance dynamics across 

large geographic extents. 

 

Chapter 3: Tree mortality caused by bark beetle outbreaks have dramatically altered forest 

carbon cycles. Yet, there are significant uncertainties surrounding estimates of dead tree carbon 

and biomass resulting from these bark beetle outbreaks. Refining these estimates can improve 

understanding of how bark beetles impact the forest carbon cycle, and also inform bioenergy and 

bioproduct industries interested in utilization of beetle-killed wood. The quantification of tree 

mortality and total biomass are sources of uncertainty in methods to map standing dead biomass. 

In this study, I use improved estimates of tree mortality severity along with biomass maps and 

Forest Inventory and Analysis data to map standing dead aboveground biomass in north-central 

Colorado and southern Wyoming, one of the most severe bark beetle impacted areas of the 

western U.S. Individual tree dead biomass is calculated by adjusting for structural loss and 

density reduction. I then tested a number of models to map standing dead biomass; the random 

forest model performed best (root mean square error = 28.8 Mg ha-1, R2 = 0.4719). Maps of 

standing dead biomass were subtracted from total biomass maps to estimate standing live 

biomass. The plot data showed more live than dead lodgepole pine, the preferred host for the 

mountain pine beetle outbreaks that impacted this region. According to the biomass maps, about 

a third of total biomass was dead in lodgepole pine and spruce-fir forests. This approach for 
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mapping standing dead tree biomass from biotic disturbances, such as bark beetles, relies upon 

existing, continuing, and free data sources and thus has potential to be repeated elsewhere and 

scaled up. The biomass maps were used to approximate potentially accessible dead, live, and 

total aboveground biomass at hypothetical bioenergy and bioproduct production sites for four 

production scenarios. Higher-elevation sites with more accessible biomass could support 20 

years of bioenergy production with between 0.4% and 23.7% of potentially accessible biomass, 

depending on the bioenergy production scenario. Standing dead biomass accounted for up to a 

third of this feedstock. At lower-elevation, low-biomass sites, the high feedstock demand 

scenario is unlikely to be feasible, requiring nearly 70% of accessible biomass over a 20 year 

period. More accurate dead tree biomass quantification can better characterize disturbance 

impacts on the forest carbon cycle and can be used to assess the potential for utilization in 

bioenergy production.  

 

Chapter 4: Post bark beetle outbreak salvage harvesting is common in Rocky Mountain forests. 

Decisions to salvage harvest will have lasting legacies on forest carbon storage and resistance 

and resilience to future disturbances. Stand recovery will unfold in the context of climate change 

impacts to regeneration, growth, and mortality. The objective of this chapter was to simulate the 

stand-level impacts of harvesting bark beetle-impacted stands and climate change on forest 

carbon, fuels, and susceptibility to future mountain pine beetle outbreaks. I used the Forest 

Vegetation Simulator to project growth in 47 mountain pine beetle-impacted lodgepole pine 

stands in northern Colorado and southern Wyoming for 100 years. I compared salvage harvest to 

an untreated scenario, with and without climate change. In the absence of climate change, 

salvage harvesting reduced total stand carbon for roughly 80 years and also lessened 
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susceptibility to future mountain pine beetle outbreaks. Impacts on canopy fuel characteristics 

were more nuanced and temporally variable. Climate change substantially reduced suitability of 

this study area for lodgepole pine, which caused mountain pine beetle susceptibility and live 

forest carbon stocks to plummet. The impacts of climate change on stand structure, forest carbon, 

and disturbance susceptibility outsized the effect of salvage treatments. Future work should 

explore the variability in stand responses to salvage harvesting and account for spatial 

disturbance interactions. This study underscores the importance of including climate change 

impacts when evaluating management actions, despite the difficulties and uncertainties it 

presents. 
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INTRODUCTION 
 

 
 

Forests play an important role in the global carbon cycle. Forest and forest products of 

the U.S. store 216-313 Tg carbon annually, offsetting about 10-20% of annual U.S. fossil fuel 

emissions (Mckinley et al., 2011). Forest carbon uptake is spatially and temporally variable; 

carbon is released through decomposition and combustion, in the case of fire, following 

disturbances and is then recaptured when forests regrow. As forests cycle through disturbance 

and recovery, they change between capturing more carbon than they release (carbon sink) and 

releasing more carbon than they capture (carbon source). These processes tend to balance out, 

making forest carbon stocks relatively stable over large spatial and temporal scales (Kashian et 

al., 2006). However, disturbance regime changes and interactions can alter carbon storage 

(Kashian et al., 2006; Smithwick et al., 2007). North American forests were a carbon source 

during the 19th century due to extensive timber harvesting, fires, and land use change. These 

forests then became carbon sinks in the 20th century as the forests recovered. United States 

forest carbon stocks are increasing by 190 Tg C yr-1, contributing 17% of the global forest 

carbon increase (Williams et al., 2016).  

Harvesting was responsible for the most mean annual tree mortality (23.0 ± 2.8 Tg C yr-1) 

in the western U.S. between 2003 and 2012, followed by bark beetles (Curculionidae: 

Scolytinae; 14.6 ± 7.0 Tg C yr-1) and fire (8.2 ± 6.2 Tg C yr-1) (Berner et al., 2017). Forests 

recover to become carbon sinks for 5-23, 4-34, or 1-15  years after fire, insect outbreak, or 

timber harvest, respectively, and recover to pre-disturbance carbon stocks after 30-78, 7-76, or 

12-88 years (Raymond et al., 2015). The rate of carbon recovery is sensitive to disturbance type, 

disturbance severity, and pre-disturbance carbon levels (Hicke et al., 2012; Raymond et al., 
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2015). Many models of carbon recovery after disturbances make the assumption of an 

undisturbed recovery (Caldwell et al., 2013; Pfeifer et al., 2011; Raymond et al., 2015). In 

reality, disturbances affect ecosystem resistance (likelihood, extent, and severity) and resilience 

(recovery rate or trajectory) to future disturbances (Buma, 2015). Research is needed to 

understand how recent disturbances have impacted forest carbon, and how the interaction of 

disturbances may impact carbon storage over time. The uncertainty of how climate change may 

impact disturbance severity and frequency, and growth rates adds to the challenge of predicting 

carbon trajectories (Bentz et al., 2010; Crookston et al., 2010; Loudermilk et al., 2013; 

Westerling et al., 2011). 

Rocky mountain forests are in a period of historically high tree mortality from wildfire 

(Westerling et al., 2006) and bark beetle activity (Raffa et al., 2008). Climate change has, and 

will likely continue to, contribute to the increasing extent and severity of these disturbances 

through drought and warmer temperatures (Cudmore et al., 2010; Sidder et al., 2016; Westerling, 

2016). While mountain pine beetle outbreaks are temporally cyclical within a given area (Taylor 

et al. 2006), new areas of intensive mortality have been observed consistently for decades. The 

mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks that impacted lodgepole 

pine (Pinus contorta var. latifolia Engelm. ex Wats.) forests across western North America 

between the 1990s and 2010s caused tree mortality across millions of acres of lodgepole pine 

forest (Raffa et al., 2008).  

Consistent data on the extent and severity of biotic disturbances is needed (Kautz et al., 

2017). Monitoring of these forest disturbances and tree mortality is critical to the accurate 

measurement of forest carbon (Hicke et al., 2013; Volkova et al., 2018), and to effectively 

manage beetle-affected forest systems and timber resources. Images from the Landsat series of 
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satellites have been used to map the severity of tree mortality caused by bark beetles (Bode et al., 

2018; Long and Lawrence, 2016; Vorster et al., 2017; Woodward et al., 2018), but these methods 

have not been scaled up to multi-state extents. Landsat is moderate-resolution (30m x 30m pixel 

size), multispectral, free, and has an extensive historical record spanning 1972 to present, making 

it an ideal candidate for ecological monitoring (Young et al., 2017). Landsat has also been 

frequently utilized to map forest biomass and structure (Hall et al., 2006; Kelsey and Neff, 2014; 

López-Serrano et al., 2016; Powell et al., 2010). 

With such high attention on forest carbon sequestration, it is critical to understand current 

forest carbon stocks and how these stocks respond to disturbance, management, and climate 

changes (Williams et al., 2016). There are many sources of error when estimating forest biomass 

such as error from the allometric equations used to estimate individual tree biomass and error 

from the remote sensing models used to extrapolate biomass estimates across the landscape 

(Chave et al., 2004; Chen et al., 2015; Stovall and Shugart, 2018). Research is needed to 

understand the total and relative contributions of these error sources. Methods to advance 

mapping of bark beetle-killed biomass are also needed (Ghimire et al., 2015). Such refinements 

to forest carbon accounting methodologies are improving our understanding of the forest carbon 

cycle. For example, taking a field-based approach to estimating standing dead tree carbon rather 

than a model-based approach used in the U.S. National Greenhouse Gas Inventory revealed that 

model-based methods were over-estimating dead tree carbon by nearly 100%, which was 

inflating total forest carbon estimates for the U.S. (Woodall et al., 2012).  

The use of forests to mitigate climate change has received considerable attention in 

science and policy discussions (Keith et al., 2015; Schulze et al., 2012). Policies, such as the 

recent Clean Energy Plan (among many others), classify forest bioenergy as carbon neutral 



4 
 

because forests recapture carbon when they regrow. The literature shows this to be false, 

however, because it does not consider the growth in the absence of bioenergy production, carbon 

emissions needed to harvest, transport, and produce the bioenergy and the elevated atmospheric 

carbon concentrations while the forest is recovering (Keith et al., 2015; Schulze et al., 2012; Ter-

mikaelian et al., 2015). Forest bioenergy production results in a carbon debt for decades to 

centuries (Holtsmark, 2012; Schulze et al., 2012) and in some cases it may never be favorable 

(Hudiburg et al., 2011). The carbon footprint of forest bioenergy depends on many factors, such 

as the fossil fuel being replaced and the local forest carbon cycle. The comparison of bioenergy 

harvested forest stands to the untreated alternative need to extend for long time periods (>100 

years), and thus should account for the uncertain impacts of climate change.  

It is possible that one system where bioenergy production would have climate change 

mitigation benefits is bark beetle-impacted, fire-prone forests (Hudiburg et al., 2011). Bioenergy 

produced from these forests may have a favorable carbon footprint because carbon that would be 

released by decomposition or fire is instead used to displace fossil fuels. Interest in utilizing 

beetle-killed wood goes beyond carbon storage considerations; concerns about public safety 

from falling dead trees, forest health, fire behavior, and loss of timber value have motivated 

utilization. These concerns contributed to the 2.5-fold increase in timber harvesting from the 

1990’s to 2000’s in northern Colorado (Collins et al., 2010). The use of beetle-killed wood for 

bioenergy production has been proposed (Campbell et al., 2018; Field et al., 2018). Producing 

bioenergy from beetle-killed biomass is attractive because it requires no cultivation, would create 

a market for low-value biomass, avoids the food versus fuel debate, and potentially has a 

favorable carbon balance compared to fossil fuels. However, the feasibility and carbon 

consequences of using beetle-killed wood as a biofuel are poorly understood. Information about 
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the quantity, distribution, and condition of beetle-killed biomass is needed to assess the 

feasibility and sustainability of such an industry. This work will contribute to this feasibility and 

sustainability assessment. 

In the four chapters that follow, I address these knowledge gaps through the following 

objectives: 

Chapter 1 Objectives 

 Develop local allometric biomass equations for lodgepole pine, ponderosa pine (Pinus 

ponderosa Douglas ex Lawson), and Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) 

and use them to estimate biomass in forest inventory plots. 

 Combine field data and remote sensing to map standing aboveground forest biomass for 

montane and subalpine forests in northern Colorado and southern Wyoming. 

 Analyze the biomass differences at the tree, plot, and landscape scale between locally-

developed allometric equations and two widely-used allometric biomass equations. 

 Propagate the allometric error measured against an independent validation dataset and the 

remote sensing modeling error to quantify biomass map total uncertainties and the 

relative importance each error source. 

Chapter 2 Objectives 

 Model dead canopy area (mortality) across lodgepole pine forests in four Rocky 

Mountain states impacted by severe mountain pine beetle outbreaks between 2000 and 

2013. 

 Compare modeled mortality severity and extent with Aerial Detection Surveys (ADS) 

and field observations. 
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 Fuse ADS and modeled mortality severity to characterize mortality severity relative to 

timing, duration, and region. 

Chapter 3 Objectives   

 Test new methods for mapping aboveground standing dead biomass in a landscape 

impacted by numerous bark beetle outbreaks.  

 Evaluate the distribution of dead and live standing aboveground biomass by species and 

forest type. 

 Use live, dead, and total biomass maps to quantify potentially accessible biomass for 

hypothetical bioenergy production scenarios and facility locations. 

Chapter 4 Objectives   

 Simulate the stand-level impacts of harvesting bark beetle-impacted stands on forest 

carbon, fuels, and susceptibility to future mountain pine beetle outbreaks. 

 Project the potential impacts of climate change on forest development after salvage 

harvest. 
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CHAPTER 1 — VARIABILITY AND UNCERTAINTY IN FOREST BIOMASS ESTIMATES 
FROM THE TREE TO LANDSCAPE SCALE: THE ROLE OF ALLOMETRIC EQUATIONS 

 

 

 

Introduction 

Spatially explicit aboveground biomass estimates are critical for monitoring forest carbon 

storage and for strategic forest planning (Dilling et al., 2016; Graham et al., 2017; McRoberts et 

al., 2019). They provide baseline inventories that capture the legacy of past land use and 

disturbance while serving as a reference point for studying the impacts of subsequent 

disturbances (Baccini et al., 2012). Forest biomass maps are also a critical tool for measuring, 

reporting, and verifying forest carbon stocks (Baker et al., 2010). Programs such as Reducing 

Emissions from Deforestation and forest Degradation (REDD+) and California cap-and-trade 

seek to mitigate rising greenhouse gas concentrations by storing carbon in forests. The financial 

incentives tied to forest carbon in these programs have led countries and forest landowners to 

closely track their forest carbon. Individual-tree biomass calculated from allometric equations are 

the foundation for these estimates, but can have high uncertainty and bias that propagate to 

biomass/carbon estimates (Chave et al., 2004; Mitchard et al., 2014). Widely-used allometric 

equations must be independently evaluated using tree biomass datasets to identify error and bias 

(Duque et al., 2017). 

Allometric equations provide biomass estimates from tree measurements, such as 

diameter at breast height (DBH), height, and/or wood density. These equations capture the 

scaling relationships between tree form and function to predict total and component (e.g., branch, 

needle, bark, bole, root) biomass (West et al., 1999). Allometric relationships are commonly 

developed from trees sampled across large areas (Chojnacky et al., 2014; Jenkins et al., 2003; 

Ter-Mikaelian and Korzukhin, 1997). In the U.S., two widely-applied allometric equations are 
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the Forest Inventory and Analysis Component Ratio Method (FIA-CRM) (Heath et al., 2009; 

Woodall et al., 2011) and from Jenkins et al. (2003). The FIA-CRM is used to calculate forest 

carbon for the U.S. Environmental Protection Agency’s (EPA) annual greenhouse gas inventory 

(Environmental Protection Agency, 2018) and for California cap-and-trade projects. The Jenkins 

et al. (2003) equations were used for the EPA annual greenhouse gas inventory in the past, are 

part of the FIA-CRM, and are an option in the Fire and Fuels Extension of the Forest Vegetation 

Simulator (Rebain et al., 2010).  

Allometric equations are frequently applied outside populations from which they were 

developed, potentially leading to significant biomass estimation errors (Weiskittel et al., 2015). 

Allometric relationships vary spatially with differences among trees (i.e., species and genetics) 

and growing conditions (i.e., site productivity arising from nutrient availability, soil type, and 

climate, competition and tree age) (Feldpausch et al., 2011; Peichl and Arain, 2007; Yang et al., 

2019). Where available, locally-developed equations offer an alternative to more generic 

equations and can be better tuned to local species, growth forms, and environments. However, 

locally-developed allometric equations are typically developed from small sample sizes, 

potentially rendering them biased, unreliable, and prone to measurement error (Chave et al., 

2004; Weiskittel et al., 2015). Some studies suggest locally-developed allometric equations are 

more accurate (Daba and Soromessa, 2019; van Breugel et al., 2011; Zhao et al., 2012), while 

other studies have found that generic allometric equations perform better (Feldpausch et al., 

2011; Montagu et al., 2005; Rutishauser et al., 2013). Another method for developing more 

robust allometric equations is to tune generic allometric equations to better represent local 

growth forms. For example, the FIA-CRM uses regional stem volume equations to rescale 

biomass predictions made by generic allometric equations (Heath et al., 2009). Ultimately, those 
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conducting biomass inventories are left with the choice of selecting allometric equations, or must 

take on the time-consuming, expensive, and difficult task of building their own allometric 

equations. The choice of allometric equation can have significant impacts on biomass estimates 

(Phillips et al., 2016; van Breugel et al., 2011).  

To map biomass across landscapes, allometric biomass equations are applied to 

individual tree measurements, which are summed across forest inventory plots that calibrate 

larger-scale remote sensing datasets (e.g., Phillips et al., 2016). Biomass and forest structure are 

frequently mapped using freely-available images from Landsat satellites (Hall et al., 2006; 

Kelsey and Neff, 2014; López-Serrano et al., 2016; Powell et al., 2010). Landsat satellites 

acquire moderate resolution (30m x 30m pixel size) multispectral data that have an extensive 

historical record spanning 1972 to present, making these sensors ideal candidates for ecological 

monitoring and estimating forest productivity (Boisvenue et al., 2016). Landsat spectral bands, 

vegetation indices, and texture metrics are useful predictors of forest biomass (Eckert, 2012; 

Kelsey and Neff, 2014; Lu, 2005; Lu and Batistella, 2005; Zhao et al., 2016). Since Landsat and 

other optical sensors rely on detectable changes in canopy closure, one issue is underestimation, 

or saturation, of predictions at high biomass values and in closed-canopy forests. Landsat-based 

biomass mapping may, however, be aided in the western U.S. by the strong biophysical gradients 

of forest type and biomass and the open canopies of some of the forests (Powell et al., 2010). 

Biomass predictions can be improved by supplementing remote sensing imagery with climate, 

topography, and landform data that are correlated with forest biomass (Swetnam et al., 2017). 

Active sensors, such as LiDAR (Light Detection and Ranging), can also improve Landsat-based 

biomass estimates by providing accurate information about forest structure and height (Zolkos et 

al., 2013), but spatial and temporal data coverage is limited and collection is expensive. 
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There are many sources of uncertainty when mapping biomass, such as tree 

measurements, allometric models, plot representativeness, and remote sensing model fitting and 

prediction (Chave et al., 2004; Chen et al., 2015). Biomass maps are commonly evaluated by 

comparing predicted pixel biomass to observed plot biomass values, treating the plot biomass as 

“truth.”  This approach only captures one source of error; variability or errors in the remote 

sensing model. While this is certainly a major error source, failing to account for other error 

sources underlying tree and thus plot-level biomass calculations underestimates uncertainty 

(Chen et al., 2015; Mitchard et al., 2014). Allometric model uncertainty accounts for the majority 

of the tree-level uncertainty, and can be biased (Chave et al., 2004; Stovall and Shugart, 2018). 

Tree measurement errors of attributes, such as DBH and height, can also be significant (Chen et 

al., 2015). Since allometric error is generally calculated from the same trees used to develop the 

equations (i.e. lacking independent validation), issues such as sampling bias may not be captured 

in uncertainty measures. Although it is rare to have an independent dataset of destructively 

sampled trees, allometric error and bias are best captured by comparing predictions to trees 

within the study area that are independent of the allometric equation generation.  

In this study, I estimate standing aboveground forest biomass using multiple allometric 

equations for montane and subalpine forests in the southern Rocky Mountains. I developed local 

allometric biomass equations for lodgepole pine, ponderosa pine, and Douglas-fir, and use them 

to estimate biomass in Forest Inventory and Analysis (FIA) plots. With these plot-level biomass 

estimates, Landsat Enhanced Thematic Mapper Plus (ETM+) imagery, and geomorphometric 

and climate layers I use a machine learning algorithm to calibrate several biomass maps covering 

1.56 million ha. I analyzed the magnitude and patterns of biomass differences at the tree, plot, 

and landscape scale between locally-developed allometric equations and two widely-used 
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allometric biomass equations: Jenkins et al. (2003) and the FIA-CRM (Heath et al., 2009; 

Woodall et al., 2011). Using an independent validation dataset (Radtke et al., 2015), I evaluated 

accuracy and bias of the three allometries. Finally, I propagated allometric error to the final 

remote sensing calibration model to quantify biomass map uncertainties and the relative 

importance each error source.  

Methods 

Study Area 

This study was conducted across 1.56 million ha of forest in northern Colorado and 

southern Wyoming bound by Landsat scene path 34, row 32 (Figure 1.1). Mean temperature and 

precipitation vary along an elevation gradient from 52 °C and 31 cm at lower elevation montane 

forests to -3 °C and 180 cm at higher elevation subalpine forests (Wang et al., 2016). Forest 

species composition also changes with elevation and aspect. Montane forests dominated by 

ponderosa pine start between 1,540 m and 1,845 m above sea level (asl) and become more mixed 

with Douglas-fir and quaking aspen (Populus tremuloides Michx.) as elevation increases 

(Huckaby et al., 2003). Douglas-fir is particularly common on north-facing slopes. Lodgepole 

pine and limber pine (Pinus flexilis James) join the species mix at about 2,460 m asl. Lodgepole 

pine is the dominant tree species above 2,770 m, mixed with quaking aspen, limber pine, 

subalpine fir (Abies lasiocarpa [Hook.] Nutt.) and Engelmann spruce (Picea engelmannii Parry 

ex Engelm.). These lodgepole pine forests experienced extensive mountain pine beetle induced 

tree mortality starting at low levels in the early 2000s, peaking between 2006 and 2009, and 

declining in 2010 (Walter and Platt, 2013). Subalpine fir and Engelmann spruce take over as the 

predominant tree species between 3,077 m and treeline (~ 3,540 m asl) (Huckaby et al., 2003).  
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Figure 1.1. Study area map showing the destructive sampling sites, the approximate locations of 
Forest Inventory and Analysis (FIA) plots, and the forest extent within Landsat scene path 34, 
row 32. 
 

Allometric Equations 

Destructive Sampling 

The destructive biomass sampling required to build the local allometric biomass 

equations was conducted at two sites (Figure 1.1). Lodgepole pine was sampled at the Colorado 

State Forest and the ponderosa pine and Douglas-fir trees were sampled at the Ben Delatour Boy 

Scout Ranch. I selected trees free of deformities that represented the diameter range in each area: 

20 lodgepole pine, 10 ponderosa pine, and 10 Douglas-fir. The larger-diameter lodgepole pine (n 

= 14) were sampled in a mature, even-aged stand at 2,700 m asl that was impacted by a mountain 

pine beetle outbreak around 2007 which killed 75% of the basal area, as measured by inventory 

plots around the destructively sampled trees. The smaller trees (<14 cm; n = 6) were sampled 
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near the mature lodgepole pine sampling site in a regenerating clearcut at 2,800 m asl that was 

pre-commercially thinned a year prior to destructive sampling. Both stands were lodgepole pine-

dominated. The ponderosa pine trees were sampled from a mixed-age forest at 2,300 m asl that 

had irregular structure consisting of patches of trees as well as open-grown trees. While 

ponderosa pine was the dominant tree in this area, Rocky Mountain juniper (Juniperus 

scopulorum Sarg.) were interspersed. The Douglas-fir were sampled from a Douglas-fir-

dominated stand at 2,300 m asl that also contained ponderosa pine and Rocky Mountain juniper.  

The destructive sampling procedure (Chung et al., 2017; Stovall et al., 2017) was 

designed to measure dry biomass of the bole, bark, branch, and foliage components, as well as 

total aboveground biomass of each tree. The bole is the main stem (without bark) between the 1-

foot stump and where the bole reaches a 10.2 cm (4 inch) diameter, hereafter referred to as the 

10.2 cm top. The bark component is all bark on this same portion of the main stem. Foliage 

represents all needles on the tree. Branch biomass includes wood and bark of the main stem 

above the 10.2 cm top and all other branches. In the destructive sampling procedure, the wet 

mass of the whole tree was weighed as components in the field and then subsamples were 

retained to determine moisture contents. These methods are described in detail in Stovall et al. 

(2017) and Appendix 1.1. Methods for calculating the biomass of each component are also 

detailed in Appendix 1.1.  

Allometric Equation Calculation 

Allometric biomass equations for the components of each tree were generated using 

nonlinear seemingly unrelated regression. Seemingly unrelated regression is well-suited for 

allometric biomass equations because it allows for dependencies between error terms of the 

component equations and the equations can be constrained to ensure tree components sum to 
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total aboveground biomass (Carvalho and Parresol, 2003; Chung et al., 2017; Parresol, 2001; 

Poudel and Temesgen, 2016). I used the logarithmic model form,  

(1) 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = exp(𝑎11 + 𝑎12 ∗ ln(𝐷𝐵𝐻))  
which is commonly used for tree biomass estimation (Jenkins et al., 2003; Nay and Bormann, 

2014; Poudel and Temesgen, 2016) and appeared to fit scatterplots of the biomass data for all 

three species. I implemented the nonlinear model form rather than the log–log transformed linear 

model to avoid back-transformations and to allow for the inclusion of component zero values for 

trees too small to have bole and bark biomass under the component definitions. Nonlinear 

seemingly unrelated regression was implemented in SAS OnDemand software (SAS Institute 

Inc, 2017) to estimate parameters for the following set of equations for lodgepole pine, 

ponderosa pine, and Douglas-fir: 

(2) 𝐵𝑜𝑙𝑒 = exp(𝑎11 + 𝑎12𝑋) 
(3) 𝐵𝑎𝑟𝑘 = exp(𝑎21 + 𝑎22𝑋) 
(4) 𝐹𝑜𝑙𝑖𝑎𝑔𝑒 = exp(𝑎31 + 𝑎32𝑋) 
(5) 𝐵𝑟𝑎𝑛𝑐ℎ = exp(𝑎41 + 𝑎42𝑋) 
(6) 𝑇𝑜𝑡𝑎𝑙 = exp(𝑎11 + 𝑎12𝑋) + 𝑒 xp(𝑎21 + 𝑎22𝑋) + exp(𝑎31 + 𝑎32𝑋) + exp(𝑎41 + 𝑎42𝑋) 

where aij are the regression parameters (j = 1,2) to be estimated for each component (i = 1,2,3,4) 

and X is the natural logarithm of DBH in cm. Biomass values are in dry kg. Parameter start 

values were estimated by solving the linear version of each component model using ordinary 

least squares (Parresol, 2001).   
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Allometric Equation Comparison 

I estimated aboveground biomass for trees in FIA plots within the study area using three 

sets of allometric equations. The three sets of allometric equations tested were: (1) the equations 

presented in Jenkins et al. (2003), (2) the FIA-CRM and (3) a local set of equations. The 

allometric biomass equations presented by Jenkins et al. (2003) for U.S. tree species were 

developed using pseudodata generated from published allometric equations. These equations 

predict total aboveground biomass and component biomass (i.e., foliage, coarse roots, stem bark, 

stem wood, and branches) as a proportion of aboveground biomass for species groups (e.g., pine, 

spruce, true fir/hemlock, etc.) from tree DBH. The FIA-CRM method estimates biomass using a 

fusion of Jenkins et al. (2003) equations and regional stem volume equations compiled in 

Woodall et al. ( 2011). Regional equations are used to estimate volume of the merchantable stem, 

which is then converted to biomass using specific gravity values found in Miles and Smith 

(2009). Volume estimates account for species, diameter, height, and atypical tree form to deduct 

missing or rotten bole mass (Heath et al., 2009). The FIA-CRM equations do not estimate foliage 

biomass. Additional information about how biomass is calculated using FIA-CRM can be found 

in Appendix 1.1.  

Local biomass estimates were made from a variety of allometric equations depending on 

species. As described above, I developed equations for three dominant tree species in the study 

area: lodgepole pine, ponderosa pine, and Douglas-fir. For other species, I used equations from 

the literature that were developed as near as I could find to the study area. I applied equations 

from Landis and Mogren (1975) for Engelmann spruce and Johnston and Bartos (1977) for 

aspen. Species covered by the allometry presented in this paper and local equations from the 

literature accounted for 77% of the basal area in the FIA plots used in this study. I estimated 
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biomass for all other species (23% of plot basal area) using the FIA-CRM biomass since the 

FIA-CRM estimates are designed to be more tuned to local conditions.  

Biomass estimation 

Forest Inventory Data 

I used FIA plot data to evaluate biomass variability between allometric equations at the 

plot scale and to map standing aboveground tree biomass. The FIA program is responsible for 

systematically monitoring U.S. forests on a 5-10 year cycle (Tinkham et al., 2018). Each FIA 

plot consists of four 7.3 m radius circular subplots where trees with a DBH of 12.70 cm or 

greater are measured. Saplings, defined as having a DBH between 2.54 and 12.70 cm, are 

measured in 2.1 m radius microplots nested within the subplots. Sapling biomass was included in 

this analysis, but biomass of trees less than 2.54 cm diameter was excluded. I calculated and 

compared standing aboveground tree biomass at FIA plots measured between 2002 and 2015 (n 

= 418) using Jenkins et al. (2003), FIA-CRM and the local set of allometric equations. FIA 

remeasures plots in Colorado about every ten years—only data from the measurement closest to 

the satellite imagery capture date (2001) were used. I also only used plots designated as a single 

condition (i.e., forest or land cover type) to avoid spectral confusion that could be caused by 

heterogeneous plots (Ohmann et al., 2014).  

Plots sampled between 2002 and 2015 and satellite imagery from 2001 were used to map 

total aboveground standing biomass before the mountain pine beetle epidemic caused 

widespread lodgepole pine mortality in the study area. Plot measurements captured tree mortality 

not reflected by the 2001 imagery, especially for plots sampled at the latter end of this sampling 

timeframe. I mitigated differences between image and sampling conditions by including all 

standing trees, both living and dead, in plot biomass estimates. While some localized areas may 
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have had significant treefall by 2015, a study in this same area found no change in downed 

woody material seven years after this outbreak (Klutsch et al., 2009). Most plots were measured 

towards the beginning of this sample period when dead trees were likely to still be standing. 

Between 35 and 46 plots were sampled annually between 2002 and 2011 for a total of 393 plots, 

while only 25 total plots were sampled between 2012 and 2015. Another discrepancy between 

plot data and the imagery is that the plots continued to grow between image capture and the date-

of-sampling. This discrepancy was minor considering the relatively slow growth in this region 

(e.g., average of 0.94 cm decade-1 diameter increment for lodgepole pine) [Bagdon, B., Nguyen, 

T., Vorster, A.G., Paustian, K., Field, J., unpublished observations] and the other, larger sources 

of uncertainty. Errors resulting from the temporal mismatch between imagery and plot 

measurement were deemed worth the tradeoff for more plots to train the remote sensing models.  

Mapping Aboveground Forest Biomass 

I used a combination of geomorphometric, topographic, climatic, and spectral predictor 

variable layers to map biomass. Spectral bands, vegetation indices, and image textures were all 

generated from a Level 1 Terrain-corrected (L1T) Landsat 7 ETM+ image captured on 

September 24, 2001. The image was accurately geometrically registered (Root Mean Square 

Error [RMSE] = 3.2m). Areas flagged by the C Function of Mask (CFMask) algorithm as water, 

cloud shadow, snow, or cloud overlapped with 0.04% of the forested area and were removed 

from the study. I used digital number for the ETM+ bands, texture, and most vegetation indices 

since the study encompassed a single scene and point in time (Young et al., 2017). Some 

vegetation indices required top-of-atmosphere reflectance (second modified soil-adjusted 

vegetation index, Tasseled Caps, soil-adjusted vegetation index) or surface reflectance (enhanced 

vegetation index). For these indices, the top-of-atmosphere reflectance and Landsat Climate Data 
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Record surface reflectance products were used. I used the least processed imagery necessary for 

each predictor variable (Young et al., 2017). In addition to ETM+ bands, vegetation indices, and 

texture (Kelsey and Neff, 2014; Lu, 2005; Lu and Batistella, 2005; Zhao et al., 2016), I also 

generated topographic, geomorphometric, and climatic predictor variables that correlate with tree 

species and biomass distributions (Evans and Cushman, 2009; Swetnam et al., 2017). See 

Appendix 1.1 for more information about how these predictor variables were generated and 

Table A1.1.4 for a list of all predictor variables generated. I had 302 total predictor variables 

between all band (n = 7), index (n = 16), texture (n = 240), climate (n = 16), and topography and 

geomorphology layers (n = 23). Values of each predictor variable were extracted for FIA plots 

using a 3x3 pixel mean since the four FIA subplots cover an area roughly this size (Ohmann et 

al., 2014).  

I mapped biomass only within forested pixels in the study area, as defined by a forest 

mask developed for this area (Bode et al., 2018). This mask only includes pixels with greater 

than or equal to ten percent canopy cover as defined by the LANDFIRE Existing Vegetation 

Cover (LANDFIRE, 2008) product. This aligns with the ten percent canopy cover requirement 

component of the FIA forest definition. 

I mapped standing aboveground tree biomass using a random forest model which is 

commonly used for remote sensing applications and biomass mapping (Liu et al., 2017; 

Pflugmacher et al., 2014; Powell et al., 2010). Random forest models are efficient, non-

parametric, have strong prediction accuracy, can handle large numbers of predictor variables, 

and are robust to noise and outliers (Breiman, 2001). In this approach, a regression tree is trained 

with a random subset of training data and with a random selection of predictor variables at each 

node. This process is repeated many times to build a “forest” of unpruned decision trees. 
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Predictions are made as the average of the predictions from all trees (Liaw and Wiener, 2002). 

Users define the number of trees (ntree) and number of parameters considered at each node 

(mtry), although the models are relatively stable to parameter adjustments. Data withheld from 

each tree (out-of-bag data) are used to calculate reliable estimates of error and variable 

importance, reducing the need to withhold test data (Breiman, 2001). I evaluated the random 

forest models using pseudo R2, RMSE, and bias. These three evaluation metrics are indicative of 

model fit: pseudo R2 indicates the proportion of the variability explained by the model, RMSE 

reflects the magnitude of errors between predicted and observed values, and bias shows the 

degree to which models tend to over- (positive bias) or under-predict (negative bias). Bias and 

RMSE are also reported as percentages of the observed mean.  

I had a large number of predictor variables, so I implemented a data-driven variable 

selection technique suitable for applications such as this study where prediction is the goal 

(Table A1.1.5) (Genuer et al., 2015). This method, Variable Selection Using Random Forest 

(VSURF) (Genuer et al., 2015), is described in Appendix 1.1. After implementing VSURF, I 

removed variables from variable pairs correlated by 0.7 or more, keeping the variable with the 

higher variable importance from a random forest model run with all variables in the VSURF 

prediction set. I measured predictor variable importance by the average decrease in the mean 

squared error attributable to a particular variable across all trees (Liaw and Wiener, 2002). 

Several variables correlated by up to 0.75 were retained if the correlated variables contained 

unique information and retaining both improved model performance.  

I repeated this variable selection routine for each set of biomass values (local, Jenkins et 

al., 2003, and FIA-CRM) and used the selected predictor variables in the randomForest package 

(Liaw and Wiener, 2002). I tested a range of mtry (1-# of predictors) and ntree (500, 1000, 1500, 
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2000, 3000, 4000, 5000) values in 10 iterations and selected the parameters that most frequently 

lead to the smallest out-of-bag errors.     

Biomass variability and uncertainty 

Biomass variability across tree, plot, and landscape scales 

At the tree-, plot-, and landscape-scales, I compared the magnitude and patterns of 

differences in biomass estimates between the three sets of allometric equations. At the tree-scale, 

component biomass and total biomass excluding foliage were compared for the species 

destructively sampled: lodgepole pine, ponderosa pine, and Douglas-fir. Only total biomass 

excluding foliage was compared for Engelmann spruce, subalpine fir, and aspen. At the plot- and 

landscape-scales, I compared aboveground biomass for all species.  

Some component definitions differed between the three sets of allometric equations so I 

made the necessary adjustments. Jenkins et al. (2003) and local equations estimated biomass for 

the same components: bole, bark, branch, and foliage. When comparing local to Jenkins et al. 

(2003) component biomass estimates, the only adjustment needed was to subtract stump biomass 

as calculated by FIA-CRM (Raile, 1982) from the Jenkins et al. (2003) branch biomass 

estimates. This branch component aligned with the FIA-CRM branch biomass definition 

(sometimes called the top component). The FIA-CRM bole component spanned the same portion 

of the tree as the local and Jenkins equations but included the bark. So, bole and bark together 

were compared across all three sets of allometric equations at the tree scale. Another difference 

in components between estimation methods is that FIA-CRM does not calculate foliage biomass. 

For tree-scale total biomass comparisons, foliage biomass is excluded from both local biomass 

estimates and Jenkins et al. (2003) estimates. However, foliage is included for local and Jenkins 

et al. (2003) estimates, but not FIA-CRM estimates, in plot and landscape-scale comparisons. 
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For the subset of tree species where local biomass estimates were generated from FIA-CRM 

equations, foliage biomass as estimated by Jenkins et al. (2003) was added to each tree for plot 

and landscape-scale local biomass estimates. Aboveground biomass included the stump for FIA-

CRM and Jenkins et al. (2003) estimates, but not for the local equations. I remedied this by 

adding stump biomass as estimated by FIA-CRM (Raile, 1982) to each tree when calculating 

local total biomass for tree, plot, and landscape scale analyses.  

 At all scales (tree, plot, and landscape), I measured variability between biomass estimates 

by calculating the mean difference and mean relative difference. The difference between each set 

of allometric equations was calculated at each scale: (1) local – Jenkins et al. (2003), (2) local – 

FIA-CRM, and (3) Jenkins et al. (2003) – FIA-CRM. I calculated relative differences by dividing 

differences by the minuend. I analyzed tree, plot, and landscape scale differences by calculating 

the mean and relative differences across all trees in the FIA plots, FIA plots (i.e., the sum of trees 

within each plot), and pixels. To better understand patterns in variability between allometric 

equations at the tree scale, I calculated biomass differences for each species I sampled (lodgepole 

pine, ponderosa pine, and Douglas-fir) for each component and in 20 cm diameter bins.  

At the plot scale, I identified the stand characteristics most correlated with biomass 

estimate differences between different sets of allometric equations. This was done using a 

random forest model to predict the plot biomass difference between allometric equations using 

stand structure and composition predictor variables. Details about this analysis can be found in 

Appendix 1.1. At the landscape scale, I evaluated patterns in allometric equation differences by 

summarizing biomass differences and relative differences by forest type in 2001 as defined by 

LANDFIRE version 1.0.5 Existing Vegetation Type (LANDFIRE, 2001).   
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Allometric error 

Allometric biomass error is not reported in some cases (e.g., FIA-CRM) and, when it is 

reported, the error is simply the error or variability in the model fit (e.g., Jenkins et al., 2003 and 

the local equations). To better understand the representativeness of allometric equations in the 

study area, I evaluated all three equations using an independent dataset of destructively sampled 

lodgepole pine, ponderosa pine, and Douglas-fir trees from the Legacy Tree Database (Radtke et 

al., 2015). Calculating precision and bias with an independent set of trees allowed us to compare 

allometric model performance in the study region, while also enabling error estimates for the 

FIA-CRM predictions.  

 I used 285 lodgepole pine, ponderosa pine, and Douglas-fir trees located in Colorado 

from the Legacy Tree Database (Table A1.1.6). No trees from Wyoming were available for these 

species. I used dry weights of all above-stump bark and wood for 73 lodgepole and ponderosa 

pine trees from near Red Feather Lakes in northern Colorado (Reid, 1974; Tossey, 1982) which 

is within the study area and is near the ponderosa pine and Douglas-fir sampling sites (Table 

1.1). Reid (1974) destructively sampled 19 lodgepole pine trees at around 3,000 m elevation. 

Tossey (1982) sampled seedlings and saplings across a range of site qualities, topographic 

positions, and habitat types between elevations of 1,700 m and 3,700 m. The other 212 Legacy 

trees used were sampled in National Forests within and just outside of the study area, but only 

green mass was reported (Sánchez Meador, 2007). For these trees, I converted above-stump 

green mass to dry mass using the steps described in Appendix 1.1. Comparing biotic and abiotic 

growth conditions (e.g., trees ha-1, basal area, site index, precipitation) between my sites and 

Legacy Tree sites could help explain differences between biomass observations and predictions, 

but comparable information was not available across studies. 
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Table 1.1: Destructively sampled trees used in this study (Legacy Trees and trees destructively 
sampled for this study), the number of trees sampled for each species, location, and study and a 
summary of the diameter at breast height (DBH). NF = National Forest, CO = Colorado 

Species Study Location n Mean DBH 
(cm) 

Min DBH 
(cm) 

Max DBH 
(cm) 

Lodgepole 
pine 
 

This study CO State Forest 20 16.3 2.5 29.9 
Reid et al., 1974 Near Red Feather 

Lakes, CO 
19 13.3 2.5 28.7 

Sánchez Meador, 
2007 

Pike, San Isabel, and 
Aarapaho NF 

69 13.2 1.5 32.0 

Tossey, 1982 Near Red Feather 
Lakes, CO 

26 5.4 1.0 11.4 

Ponderosa 
pine 

This study Ben Delatour Boy 
Scout Ranch 

10 34.0 4.9 61.8 

Sánchez Meador, 
2007 

Pike, San Isabel, and 
Aarapaho NF 

80 15.3 1.8 36.6 

Tossey, 1982 Near Red Feather 
Lakes, CO 

28 5.3 0.8 11.7 

Douglas-fir This study Ben Delatour Boy 
Scout Ranch 

10 24.9 2.4 46.6 

Sánchez Meador, 
2007 

Pike, San Isabel, and 
Aarapaho NF 

63 14.1 1.5 39.6 

 

For each Legacy tree, I estimated biomass using each set of allometric equations. I 

adjusted local, Jenkins et al. (2003), and FIA-CRM estimates to match components measured for 

the Legacy trees by subtracting foliage mass from local and Jenkins et al. (2003) estimates and 

by subtracting stump mass from Jenkins et al. (2003) and FIA-CRM estimates. For FIA-CRM, I 

did not have all information needed to calculate biomass of Legacy trees so I employed an 

alternative method. FIA-CRM biomass was estimated as the biomass of the tree in the FIA plot 

data most similar to the Legacy tree. I matched Legacy trees to a tree in the FIA plot data by 

extracting the 20 FIA trees most similar in DBH to the Legacy tree and then selecting the tree 

closest in height to the Legacy tree from this list of 20. The DBH of trees for which the FIA-

CRM biomass values were used matched Legacy trees within 0.1 cm DBH height on average (sd 

= 0.6 cm) and < 0.1 m height (sd = 0.5 m). I report relative and absolute RMSE and bias between 

Legacy tree biomass and predictions from each set of allometric equations. 
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Uncertainty propagation 

I propagated error from two important contributors to total biomass prediction 

uncertainty (Chave et al., 2004; Chen et al., 2015; Stovall and Shugart, 2018): error from 

allometric biomass equations (hereafter “allometric error”) and from the remote sensing model 

predictions used to map biomass (hereafter “prediction error”). I calculated uncertainty at the 

tree, plot, and pixel scale and compared the relative contributions of allometric error and 

prediction error using methods from Chen et al. (2015) and Stovall and Shugart (2018). I do not 

account for errors in the predictor variable measurement (i.e., DBH or spectral, topographic, and 

climatic layers) or model parameters of the allometric and remote sensing models and, thus, 

underestimate total uncertainty. Past work has highlighted allometric and prediction errors as the 

primary sources of biomass prediction error (Chen et al., 2015). Moreover, my primary goal was 

to better understand the relative contribution from each of these error sources, as opposed to 

quantifying total uncertainty in each scenario. I hypothesize adding the additional sources of 

error would scale the overall results, increasing the total amount of uncertainty, but relative 

contributions from allometry and remote sensing model-based predictions would likely remain 

similar. 

I propagated allometric error from two scenarios—one with the errors from the equation 

fit (equation-derived) and one using errors calculated from comparisons with the independent 

Legacy Tree Data. Both error scenarios were propagated for local and Jenkins et al. (2003) 

allometric equations, but I only propagate Legacy Tree Data allometric error for FIA-CRM since 

error is not reported for FIA-CRM equations. I only had error for the three focal species when 

propagating allometric error from Legacy Tree Data evaluations, so errors reported in Jenkins et 

al. (2003) were used for all other species across all three sets of allometric equations. For 
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equation-derived evaluation of local biomass estimates, allometric error (𝜎𝑡𝑟𝑒𝑒) for the three 

focal species was the total tree biomass relative RMSE from my equations (Figure 1.2). I used 

the standard error reported in Landis and Mogren (1975) for Engelmann spruce in the local 

equation-derived evaluation. The aspen biomass equations used in the local estimates (Johnston 

and Bartos, 1977) only reported R2, so I utilized Jenkins et al. (2003) uncertainty for these trees 

and for all other species. Jenkins et al. (2003) errors are reported as RMSE in natural log units. I 

calculated Jenkins et al. (2003) allometric error (𝜎𝑡𝑟𝑒𝑒, kg) for each tree using the following 

equation. 

(7)   𝜎𝑡𝑟𝑒𝑒 = 𝑒(𝛽0+𝛽1 ln𝐷𝐵𝐻)+1.96∗𝑅𝑀𝑆𝐸−𝑒(𝛽0+𝛽1 ln𝐷𝐵𝐻)−1.96∗𝑅𝑀𝑆𝐸2∗1.96          

Where 𝛽0, 𝛽1, and RMSE are species group-specific regression parameters and errors from Table 

4 of Jenkins et al. (2003). Allometric uncertainty is propagated to the plot level (𝜎𝑝𝑙𝑜𝑡, Mg ha-1) 

using the following equation (Chen et al., 2015; Stovall and Shugart, 2018) 

(8)   𝜎𝑝𝑙𝑜𝑡 =√∑ 𝜎𝑡𝑟𝑒𝑒,𝑖2𝑠𝑛𝑡𝑟𝑒𝑒,𝑝𝑙𝑜𝑡𝑖=1                                                 

where 𝑠 is the area of the plot in hectares.  

This plot-level allometric uncertainty was combined and propagated with remote sensing 

model prediction error (𝜎𝜖,�̂�𝑝𝑙𝑜𝑡) using the following equation. The model prediction error was 

the RMSE for the random forests model built with the respective set of allometric biomass 

equations. 

(9) 𝜎𝑝𝑟𝑒𝑑 =√𝜎𝜖,𝑝𝑙𝑜𝑡2 +𝜎𝜖,�̂�𝑝𝑙𝑜𝑡2                                                

where 𝜎𝑝𝑟𝑒𝑑 is the total uncertainty from allometric and prediction error in Mg ha-1. I calculated 

percent uncertainty by dividing by the mean plot-level biomass density and evaluate the relative 

contribution of each error source as the percentage of 𝜎𝑝𝑟𝑒𝑑.  
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Results 

Destructive sampling and local allometric equations 

Destructively sampled trees spanned the diameter range observed at each site (Table 1.2). 

The lodgepole pine tended to have the smallest DBH and grow at the highest density, while the 

ponderosa pine had the largest DBH and grew in the lowest densities. I calculated dry total and 

component biomass for each destructively sampled tree. The multiple regression equations 

(Table A1.1.2) developed for predicting single branch length, foliage mass, and wood mass 

performed strongly, with adjusted R2  values averaging 0.84 and ranging from 0.63 to 0.98 (Table 

A1.1.3). Predictions from these equations were used in combination with other in-field 

measurements to calculate component biomass (Table 1.2). For all species, the majority of 

aboveground biomass was in the bole and branch components, and trees had more biomass in the 

foliage than the bark (Figure A1.2.1). Moisture content for each component and species are 

presented in Table A1.2.1. Specific gravity of the bole increased from lodgepole pine (0.39) to 

ponderosa pine (0.42) to Douglas-fir (0.43). Table 1.3 presents regression coefficients for 

Equations 2-6 predicting component biomass from a tree’s DBH for each species. Parameter 

estimates were stable to variations in their start values. Allometric equations fit the data well, 

with all but two components having adjusted R2 values greater than 0.90 (Figure 1.2). Absolute 

RMSE values were highest for ponderosa pine, but lodgepole pine tended to have the highest 

relative errors (Figure 1.2). Across species, allometric equations over-estimated bark and bole 

biomass, but under-estimated foliage biomass (Figure 1.2).  
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Table 1.2. Height, diameter at breast height (DBH), and stand structure of destructively sampled 
trees and from 7.32 m radius plots measured around each tree and total and component biomass 
of the destructively sampled trees. PSME= Douglas fir (Pseudotsuga menziesii; n = 10); PICO= 
lodgepole pine (Pinus contorta; n = 20); PIPO= ponderosa pine (P. ponderosa; n = 10)  
 

 Species Mean Standard Deviation Min Max 
DBH (cm) PSME 24.9 15.4 2.4 46.6 

PICO 16.3 8.0 2.5 29.9 
PIPO 34.0 18.5 4.9 61.8 

Height (m) PSME 12.7 5.3 3.2 19.7 
PICO 12.2 6.5 3.2 21.1 
PIPO 11.3 4.3 3.0 16.8 

Tree density 
(trees ha-1) 

PSME 386 176 119 535 
PICO 921 414 238 2139 
PIPO 172 162 0 416 

Basal area (m2 

ha-1) 
PSME 15.6 6.5 7.2 30.3 
PICO 18.6 14.9 0.5 44.9 
PIPO 13.4 10.4 0 29.7 

Average plot 
DBH (cm) 

PSME 21.2 7.4 12.2 35.9 
PICO 15.3 7.2 4.9 27.0 
PIPO 26.6 17.6 0.0 65.0 

Total 
biomass* (kg) 

PSME 286.3 290.1 3.2 809.1 
PICO 117.6 114.7 1.7 358.4 
PIPO 710.4 751.7 5.7 2188.1 

Stem wood 
biomass** 
(kg) 

PSME 152.6 166.1 0 434.2 
PICO 72.1 83.5 0 247.2 
PIPO 270.4 268.1 0 738.5 

Stem bark 
biomass (kg) 

PSME 33.1 31.3 0 81.8 
PICO 5.3 5.6 0 15.8 
PIPO 35.5 32.3 0 89.7 

Foliage 
biomass (kg) 

PSME 28.2 25.4 1.2 72.1 
PICO 10.2 7.3 0.8 24.1 
PIPO 49.2 49.9 1.5 153.9 

Branch 
biomass (kg) 

PSME 72.4 70.5 2.0 220.9 
PICO 30.1 23.7 0.9 82.0 
PIPO 355.3 410.8 4.2 1206.0 

* Includes foliage 
** Stem wood does not include bark 

 

 
Figure 1.2. Evaluation metrics for allometric equations generated in this study for each 
component and species.  
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Table 1.3. Allometric biomass equation regression coefficients for Equations 2-6 for lodgepole 
pine, ponderosa pine, and Douglas-fir. Equations were fit using nonlinear seemingly unrelated 
regression to estimate component biomass (kg) from a tree’s diameter at breast height (cm). 
Values in parentheses are standard errors of the parameter values. Total biomass can be 
calculated as the sum of these four components. 
 

Species Component ai1 ai2 

Douglas-Fir Bole (i=1) -2.9162 (0.9896) 2.3437 (0.2647) 
Bark (i=2) -2.0888 (0.7021) 1.6911 (0.1903) 
Foliage (i=3) -3.3489 (0.8356) 1.9822 (0.2249) 
Branch (i=4) -3.7741 (1.0634) 2.3588 (0.2845) 

Lodgepole Pine Bole (i=1) -4.3642 (0.8611) 2.9255 (0.2634) 
Bark (i=2) -5.2333 (0.8573) 2.3723 (0.2646) 
Foliage (i=3) -2.0830 (0.6570) 1.5402 (0.2075) 
Branch (i=4) -1.0172 (0.9174) 1.5475 (0.2897) 

Ponderosa Pine Bole (i=1) -2.5513 (0.8855) 2.2322 (0.2231) 
Bark (i=2) -3.5399 (0.9608) 1.9588 (0.2432) 
Foliage (i=3) -5.75806 (1.2645) 2.6110 (0.3168) 
Branch (i=4) -5.2127 (1.6641) 2.9843 (0.4149) 

 
Tree-Scale Biomass Variability 

The 285 Legacy Tree Data trees used in this study were smaller in terms of DBH and 

height than the trees that I destructively sampled and there were more low than high biomass 

Legacy trees (Table 1.1; Figure 1.3; Table A1.1.6). Local equations had the lowest error and bias 

across all three species, although the bias was similar between local and Jenkins et al. (2003) 

equations (Table 1.4). In general, error and bias for each set of allometric equations differed 

dramatically for each species. Error values were as high as 113.7% of the mean (Jenkins et al. 

[2003] equations for Douglas-fir) and as low as 23.1% (local equations for ponderosa pine), 

while predictions were as biased as 54.0% (Jenkins et al. [2003] equations for Douglas-fir) and 

had as little bias as -4.5% (Jenkins et al. [2003] equations for ponderosa pine; Table 1.4). The 

Jenkins et al. (2003) equations predicted lodgepole pine biomass most accurately and performed 

similarly to the local equations for ponderosa pine. Local equations performed best for Douglas-

fir. The FIA-CRM equations underpredicted biomass for all species, while local and Jenkins et 

al. (2003) equations were less biased, but tended to overpredict biomass (Table 1.4; Figure 1.3).  
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Table 1.4. Comparison of biomass estimates measured in the Legacy Tree Database and 
predictions by three allometric biomass equations for the Legacy trees: local allometrics 
presented in this study, Jenkins et al. (2003), and the Forest Inventory and Analysis Component 
Ratio Method (FIA-CRM). Negative bias values indicate that the allometric equations are under-
predicting biomass compared to the Legacy Database biomass. 
 
 All Species (n = 285) Lodgepole pine (n = 114) Ponderosa pine (n = 108) Douglas-fir (n = 63) 

 RMSE Bias RMSE Bias RMSE Bias RMSE Bias 
 kg % kg % kg % kg % kg % kg % kg % kg % 

Local 27.9 46.3 9.1 15.1 30.7 71.3 16.0 37.1 16.6 23.1 3.8 5.2 36.6 51.7 5.8 8.2 

Jenkins 
et al. 
(2003) 

40.6 67.4 9.3 15.4 16.1 37.5 5.2 12.0 17.3 23.9 -3.3 -4.5 80.5 113.7 38.2 54.0 

FIA-
CRM 

37.3 62.0 -16.1 -26.8 23.0 53.5 -7.9 -18.3 45.4 62.9 -27.1 -37.6 42.5 60.0 -12.3 -17.4 

 
 

 
Figure 1.3: Scatter plots with regression lines and 95% confidence intervals comparing 
destructively-sampled biomass estimates from the legacy database to the three allometric 
equations used in this study (Jenkins et al., [2003], local, and FIA-CRM). Comparisons are made 
for three species, as shown in the legend. The 1:1 line of exact agreement between Legacy 
sampled biomass and allometric biomass is shown by the black line for reference. All biomass 
estimates shown in the figure exclude foliage and stump biomass to align with the Legacy 
measurements used. 
 

Differences between allometric equations at the tree scale varied by species, component, 

and diameter (Figure 1.4). Disagreement between allometric equations was minor for some 

species and components (e.g., total ponderosa pine biomass predicted by local and Jenkins) and 

large for others (e.g., total ponderosa pine biomass predicted by local and FIA-CRM; Figure 1.4 
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and Table A1.3.1). The FIA-CRM biomass estimates have a range for a given tree diameter (the 

spread of gray points in Figure 1.4) as opposed to a single line of biomass estimates like Jenkins 

et al. (2003) and local equations because FIA-CRM biomass estimates are based on more factors 

than just diameter, such as height and tree breakage or rot. Jenkins et al. (2003) allometric 

equations tend to predict the highest biomass values for Douglas-fir, while local equations 

predict the highest biomass for ponderosa and lodgepole pine. However, there is variability in 

this order by components. For example, local equations predict dramatically more ponderosa 

pine branch biomass than the other allometric equations, but Jenkins et al. (2003) predicts the 

highest ponderosa pine bole and bark biomass. The absolute difference between allometric 

equations tended to increase with diameter and the relative difference had mixed trends (Figure 

1.4 and Table A1.3.1). The relative difference sometimes increased with diameter but for other 

species and components, the relative difference decreased with diameter or remained relatively 

steady.  
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Figure 1.4. Comparison of the three sets of allometric equations used in this study (local 
equations presented in this study, Jenkins et al. (2003), and Forest Inventory and Analysis 
Component Ratio Method [FIA-CRM]). Comparisons are made for the three species that were 
destructively sampled in this study (Douglas-fir, lodgepole pine, and ponderosa pine), the total 
tree biomass and three components. The figure shows biomass for the trees in the FIA plots used 
in this study. Total biomass includes stump biomass, but excludes foliage since FIA-CRM does 
not estimate foliage biomass. Bole and bark biomass are combined for the sake of direct 
comparison since FIA-CRM does not separate these components. This component represents 
bole and bark of the merchantable portion of the tree between the 1-foot stump and 4-inch top.  
 

Engelmann spruce, subalpine fir, and aspen were all common in the plots, but were not 

destructively sampled in this study. Other allometric biomass equations were used for these 

species in the local biomass estimates for scaling to the plot and landscape-level. Engelmann 

spruce biomass from Landis and Mogren (1975) and aspen biomass from Johnston and Bartos 

(1977) both predicted higher biomass than FIA-CRM, but lower biomass than Jenkins et al. 
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(2003) (Table 1.5). The largest tree-level mean biomass difference for the non-focal species of 

this study was for Engelmann spruce between Jenkins et al. (2003) and FIA-CRM (83.4 kg) and 

the largest mean relative difference was for subalpine fir (-116.3%) between local (same as FIA-

CRM for subalpine fir tree-scale comparisons) and Jenkins et al. (2003).  

Table 1.5. Comparison of aboveground tree biomass (stump included, foliage excluded for all 
allometric equations) for tree species common in the study area, but not destructively sampled. 
Local biomass estimates for Engelmann spruce, subalpine fir, and aspen were made using 
allometric equations from Landis and Mogren (1975), FIA-CRM, and Johnston and Bartos 
(1977), respectively. The relative differences were calculated by dividing each tree biomass 
difference by the minuend. FIA-CRM was used to estimate tree-level biomass in both the local 
and FIA-CRM scenario, so their difference is not applicable. 
 

 Local - Jenkins Local – FIA-CRM Jenkins – FIA-CRM 
Species Mean Diff (kg) Mean Relative 

Diff (%) 
Mean Diff 
(kg) 

Mean Relative 
Diff (%) 

Mean Diff 
(kg) 

Mean Relative 
Diff (%) 

Engelmann 
spruce 

-20.2 -15.6 67.8 33.4 83.4 41.2 

Subalpine fir -60.8 -116.3 NA NA 60.8 44.2 
Quaking aspen -35.1 -30.0 12.4 23.3 47.9 41.2 

 

Plot-Scale Biomass Variability 

I calculated biomass at 418 FIA plots with each set of allometric equations. Plots ranged 

from dense (max basal area = 95.2 m2 ha-1, max trees ha-1 = 11,411) to sparse (min basal area = 

0.5 m2 ha-1, min trees ha-1 = 30), with an average basal area of 33.0 m2 ha-1 and 1,608 trees per 

hectare (Figure 1.5). Lodgepole pine accounted for 40.5% of the basal area, making it the most 

abundant species in these plots. Engelmann spruce (20.6%) and subalpine fir (17.1%) were also 

common, while aspen (7.6%), Douglas-fir (4.3%), ponderosa pine (3.5%), limber pine (2.0%), 

Utah juniper (1.4%), and pinyon pine (1.0%) made up small percentages of the plot basal area. 

Of the three species that I destructively sampled, ponderosa pine in the FIA plots tended to be the 

largest (mean average diameter = 23.2 cm, max = 64.3 cm, min = 2.5 cm), Douglas-fir in the 

middle (mean average diameter = 21.5 cm, max = 78.7 cm, min = 2.5 cm), and lodgepole pine 

the smallest (mean average diameter = 19.9 cm, max = 62.0 cm, min = 2.5 cm). 
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Figure 1.5. A) Summary of aboveground tree biomass at Forest Inventory and Analysis (FIA) 
plots as estimated by three allometric equations. FIA-CRM = FIA Component Ratio Method 
(does not estimate foliage mass); Jenkins = Jenkins et al. (2003); local = equations presented in 
this study. B and C) Histograms of basal area and the number of trees per hectare at the FIA 
plots. 
 

Biomass at the FIA plots tended to be highest when using Jenkins et al. (2003) equations 

(mean biomass = 144.4 Mg ha-1), followed by local equations (mean biomass = 137.5 Mg ha-1) 

and then FIA-CRM (mean biomass = 100.2 Mg ha-1, Figure 1.5). The differences between plot 

estimates made using Jenkins et al. (2003) and FIA-CRM were the largest, followed by local 

equations and FIA-CRM differences (Table 1.6). Local equations and Jenkins et al. (2003) plot 

biomass estimates were most similar, however differences between these two were larger when 

presented in terms of the absolute value of the biomass differences (Table 1.6). This reflects that 

plot biomass estimates made by local equations were sometimes higher and sometimes lower 

than Jenkins et al. (2003) estimates. Differences between local and FIA-CRM and Jenkins et al. 

(2003) and FIA-CRM changed little when the absolute values of the differences were considered, 

reflecting the consistent under-estimation of biomass by FIA-CRM. Random forests models of 

these differences in plot biomass estimates as a function of forest structure attributes showed that 

differences between allometric equations were larger in stands with higher basal area (Figures 

A1.3.1-A1.3.4). Forest structure attributes explained between 56.7% and 86.1% of the variance 

in plot biomass differences (Table A1.3.2). When the relative biomass between allometric 
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equations was modeled, less of the variance was explained by stand structure and composition 

(39.0% - 55.3%).  

Table 1.6. Summary of differences in plot biomass when calculated using different allometric 
equations: local (presented in this study), Forest Inventory and Analysis Component Ratio 
Method (FIA-CRM), and Jenkins et al. (2003). The mean of both the differences and the absolute 
value of the differences are presented as well as the mean relative difference.  
 

Allometric Equations 
Compared 

Mean Difference 
(Mg ha -1) 

Mean of Absolute 
Differences (Mg ha -1) 

Mean Relative 
Difference (%) 

Local – Jenkins et al. 
(2003) 

-6.9 25.9 -13.0 

Local – FIA-CRM 37.3 37.9 28.7 
Jenkins et al. (2003) – 
FIA-CRM 

44.2 44.8 32.9 

 
Plot-scale allometric uncertainty was lower when utilizing equation-derived allometric 

errors and was higher when propagating the independent Legacy evaluation (Figure 1.6). The 

equation-derived local allometric equation error values resulted in the lowest plot-level 

uncertainty (mean plot RMSE = 41.5 Mg ha-1). However, when evaluated against the 

independent Legacy Tree data, Jenkins et al. (2003) was lowest (mean plot RMSE = 90.9 Mg ha-

1), followed by local equations (mean plot RMSE = 108.4 Mg ha-1) and FIA-CRM (mean plot 

RMSE = 135.7 Mg ha-1). 

 
Figure 1.6. Boxplots showing plot-level allometric uncertainty for local equations (those 
presented in this study), Jenkins et al. (2003), and the Forest Inventory and Analysis Component 
Ratio Method (FIA-CRM). Allometric error was evaluated in two ways for Jenkins et al. (2003) 
and local equations: equation-derived evaluation and independent evaluation against Legacy 
Tree Data (“Jenkins Leg.” and “Local Leg.”). The FIA-CRM model was only evaluated against 
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Legacy tree data (“FIA-CRM Leg.”). Notches on the boxplots show roughly a 95% confidence 
interval for the medians. Diamonds are the mean. 
 
Landscape-Scale Biomass Variability 

 I developed three maps of standing aboveground tree biomass in 2001 using random 

forests models—one map for each set of allometric biomass equations. The three models 

performed similarly with 53.77- 59.36 percent variation explained and RMSEs ranging from 

40.8 Mg ha-1 to 54.8 Mg ha-1 and low bias (Table 1.7). The Normalized Difference Infrared 

Index (NDII) was an important variable in all models, and the Landsat 7 blue band (band 1) and 

digital elevation model were also important predictor variables (Table 1.7). Consistent with other 

studies that map biomass using passive remote sensing, the biomass predictions saturate in all 

three maps (Figure 1.7A). Models built from allometric equations that predict higher biomass in 

the FIA plots (local and Jenkins et al. [2003]) saturate at slightly higher levels than FIA-CRM, 

which estimated lower biomass at the FIA plots. 

Table 1.7: Out-of-bag model evaluation metrics (pseudo R2 and RMSE) from the Random Forest 
aboveground biomass models. These values are the prediction errors only, and do not include 
allometric error. FIA-CRM = Forest Inventory and Analysis Component Ratio Method, RMSE = 
root mean square error, NDII = normalized difference infrared index, DEM = digital elevation 
model, PAS = precipitation as snow, mtry = number of predictor variables randomly sampled at 
each split in model, ntrees = number of trees grown in model 
 

Allometric 
Equation 

RMSE RMSE percent of 
mean 

Pseudo R2 Percent 
Bias 

Number of Predictors 
(Top 3 Predictors) 

mtry ntrees 

Local 48.1 35.0 0.5936 0.9 11 (Band 1, NDII, DEM) 8 2000 
Jenkins et al. 
(2003) 

54.8 37.9 0.5377 0.9 10 (NDII, DEM, Band 1) 5 1500 

FIA-CRM 40.8 40.8 0.5463 1.1 9 (NDII, Band 2 
texture_5x5 mean, PAS) 

4 1000 

 
 I evaluated the contribution of two main sources of uncertainty to the biomass 

predictions: allometric error and prediction error from mapping biomass (Figure 1.7B). Total 

uncertainty was lowest for models constructed using equation-derived evaluation of local 

allometric equations (49.9%) and was highest for independently evaluated FIA-CRM models 
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(164.5%; Figure 1.7B). Model prediction error was relatively consistent across all models. The 

variability in total uncertainty was driven by allometric uncertainty, which ranged from 29.9% to 

75.2% of the total uncertainty (Figure 1.7B). Allometric errors were less than prediction errors 

only when equation-derived allometric errors were used.  

 

Figure 1.7. A) Observed plot aboveground biomass values and those predicted by the random 
forest models for generating biomass maps in three allometric biomass equation scenarios: local 
equations (those presented in this study), Jenkins et al. (2003), and the Forest Inventory and 
Analysis Component Ratio Method (FIA-CRM). Dashed grey line is the 1:1 line representing 
perfect model fit. B) Uncertainty contributions from the allometric model (dark grey) and 
random forest prediction (light grey). The printed percentages within each bar are the allometric 
and prediction uncertainties relative to total uncertainty. Total uncertainty is printed at the top of 
each bar. Allometric error was evaluated in two ways for Jenkins et al. (2003) and local 
equations: equation-derived and independent evaluation against Legacy tree data (“Jenkins Leg.” 
and “Local Leg.”). The FIA-CRM model was only evaluated against Legacy tree data (“FIA-
CRM Leg.”) because I was unable to locate FIA-CRM equation-derived errors.  
 
 Across all forested areas in the study area, maps generated using local allometric biomass 

equations estimate 2.066 billion Mg of standing aboveground biomass, while maps based on 

Jenkins et al. (2003) and FIA-CRM equations estimate 2.224 billion Mg and 1.502 billion Mg, 

respectively. The maps based on Jenkins et al. (2003) showed 7.6% more biomass than the local 

maps, while FIA-CRM maps showed 27.3% less biomass than local maps. These three biomass 
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maps were differenced to highlight areas of agreement and disagreement in the predicted amount 

of aboveground forest biomass (Figure 1.8). Differences between biomass in a given pixel were 

as large as 236.6 Mg ha-1. The largest differences between “Jenkins – FIA-CRM” and “local – 

FIA-CRM” were in spruce-fir forests (Figure 1.9). Local and Jenkins et al. (2003) predictions 

were remarkably similar for lodgepole pine forests and were most different for aspen forests 

(Figure 1.9).   
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Figure 1.8. Left column: Biomass maps created using three sets of allometric biomass equations: 
local equations presented in this study, Jenkins et al. (2003), and the Forest Inventory and 
Analysis Component Ratio Method (FIA-CRM). Middle and right columns: Maps of the 
difference and relative difference between the biomass maps, respectively. Note that FIA-CRM 
biomass estimates do not include foliage mass, but local and Jenkins et al. (2003) maps do. 
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Figure 1.9. Mean difference in biomass between maps produced from three sets of allometric 
biomass equations for the most common forest types in the study area. The mean was taken of all 
pixels within each forest type. Forest types are derived from LANDFIRE Existing Vegetation 
Type version 1.0.5—forest type names are simplified for this figure. Note that mapped Forest 
Inventory and Analysis Component Ratio Method (FIA-CRM) biomass estimates do not include 
foliage, but local and Jenkins et al. (2003) estimates do include foliage.  
 
Discussion  

 Allometric equation selection is critical for accurately estimating regional biomass 

stocks. I evaluated the variability and accuracy of aboveground forest biomass estimates from 

three sets of allometric equations at the tree, plot, and landscape scale. Destructive sampling of 

even as few as ten trees per species generated relatively reliable allometric equations for the 

study area compared to existing equations. In an independent evaluation of these local equations, 

Jenkins et al. (2003), and FIA-CRM, the local equations performed best for Douglas-fir and 

comparably to Jenkins et al. (2003) for ponderosa pine. The local lodgepole pine equations had 

the highest error and bias of the allometric equations tested. While it is reasonable that the local 

equations would perform strongly in the areas near the destructive sampling sites, I was also 

surprised given the low sample sizes and potential for high bias (Duncanson et al., 2015). Due to 
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the low sample size sampled across small areas, the allometric equations presented in this study 

should be used cautiously if applied in other regions. More accurate local allometries could be 

developed by sampling additional trees representing a variety of genetic, abiotic, and biotic 

conditions and by incorporating more predictor variables in the allometric equations such as 

height and crown ratio.  

Accuracy of each of the equations differed substantially between species. For example, 

Jenkins et al. (2003) performed well compared to the Legacy Tree Data for lodgepole pine 

(RMSE = 16.1 kg; Table 1.4), but poorly for Douglas-fir (RMSE = 80.5 kg). Allometric 

performance should be tested for each species of interest when possible. The variability in 

biomass estimates across diameters (i.e., higher differences between allometrics at some 

diameters) suggests that equations should also be tested across the diameter range being used. 

The FIA-CRM equations, which are commonly used for forest carbon accounting (e.g., 

Environmental Protection Agency, 2018), consistently under-estimated biomass and generated 

the lowest estimates at the tree, plot, and landscape scales. Other studies have also found FIA-

CRM to under-estimate biomass (e.g., Duncanson et al., 2015; Heath et al., 2009). The FIA-

CRM plot and landscape-level estimates did not include foliage biomass, while estimates from 

the other allometric equations included foliage. Foliage accounted for an average of 14% of total 

aboveground biomass for the trees I destructively sampled. Differences between equations at the 

plot scale (28.7% mean difference between local and FIA-CRM and 32.9% difference between 

Jenkins and FIA-CRM) and across the entire study area (27.3% difference between local and 

FIA-CRM and 32.5% difference between Jenkins et al. (2003) and FIA-CRM) are influenced by 

the exclusion of foliage in FIA-CRM estimates. However, biomass differences exceeded what 

can be attributed to the exclusion of foliage, indicating that FIA-CRM underestimates the 
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biomass of other components. Foliage was excluded for the comparison of all allometric 

predictions to Legacy Trees to reduce impacts of the lack of foliage on FIA-CRM uncertainty 

propagation.  

Biomass differences between equations varied widely across species, DBH, and 

component, indicating that total tree biomass errors can’t be assumed to represent errors for a 

single component, or errors for another species or size class. For example, branch biomass 

predictions varied between equations (75% difference between local and Jenkins et al. [2003]) 

much more than total biomass (14% difference) for large ponderosa pine (40-60 cm DBH; Figure 

1.4; Table A1.3.1). This also highlights the potential pitfalls and strengths of local allometric 

equations. The local equations predict high branch biomass compared to other equations, 

potentially reflecting true differences in growth form between the study area and the areas from 

which trees were sampled to develop these other equations. However, the high branch estimates 

could also be the result of sampling bias. I sampled ponderosa pine in a variety of stand 

densities, but several of the large trees were more open grown and thus had more branch 

biomass, contributing to the high branch biomass predictions.  

The differences between allometric equation biomass predictions were frequently, but not 

always, largest for the biggest (60 – 80 cm DBH) trees (Table A1.3.1). This reflects an issue 

common for biomass allometry: large trees have the most biomass and greatest variation in 

growth form, but are rarely measured because they are the most difficult and expensive to sample 

(Stovall et al., 2018a). I had only one destructively sampled ponderosa pine tree in this upper 

diameter range, and lacked any trees this size for lodgepole pine or Douglas-fir. While it is 

problematic to predict outside the diameter range of sampled trees, this practice is commonplace 

in biomass assessments because few alternatives exist for most species and locations. Improved 
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allometric equation accuracy for large trees is needed to improve forest biomass estimates 

(Stovall and Shugart, 2018). The inclusion of large trees in the Jenkins et al. (2003) equations 

likely make the large tree biomass predictions more reliable than the local equations. However, 

allometric equations that don’t utilize tree height can overpredict large diameter tree biomass 

(Heath et al., 2009). 

Plot-level biomass estimates diverged with increasing basal area. Engelmann spruce-

subalpine fir forests are some of the higher basal area forests in the study area. The maps (Figure 

1.8) and summaries of biomass differences by forest type (Figure 1.9) both show high 

disagreement in these spruce-fir forests between all equations, highlighting it as a forest type 

where allometric equation selection is particularly important. Independent evaluation of the 

allometric equations for these species is needed to determine which allometric equation is best 

suited for this forest type. Allometric choice is also important in the lower elevation montane 

forests due to the high relative biomass difference between Jenkins and local equations (Figure 

1.8). The use of the local equations is advised for these montane forests in the study area based 

on the favorable performance of the local equations relative to the Legacy Tree data for Douglas-

fir and ponderosa pine. 

The tree biomass measurements needed to independently evaluate allometric accuracy are 

rare and valuable. These data are typically unavailable for a particular area or species, or are used 

in the development of the allometric equations themselves. Resources such as the Legacy Tree 

Database (Radtke et al., 2015) and efficient non-destructive biomass sampling methods (Stovall 

et al., 2017, 2018b) make independent allometric validation more feasible. Independent tree 

biomass datasets come with their own difficulties and biases due to the potential for biased 

sampling and inconsistent destructive sampling methodologies and component definitions. For 
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example, I converted green mass to dry mass and adjusted which components were included in 

the independent evaluation dataset. I also had a disproportionately high number of small trees in 

the Legacy Data (Table A1.1.6) that likely had the effect of underestimating allometric 

uncertainty of all allometric equations since allometric error tends to be less for smaller trees. I 

encourage biomass studies to openly share data (Table A1.4) to enable improved evaluation of 

existing allometric biomass equations and for updating or building new equations. Even if 

independent data are not available for all species within a study area, the most common species 

can be prioritized as they have a larger influence on biomass uncertainty than less abundant 

species. 

Independently evaluating tree-level allometry increased uncertainty estimates. Errors 

reported with allometric equations reflect allometric performance relative to samples used to 

build the equations, not necessarily for the application area. These samples may be a small, 

localized dataset (local equations) or from a large geographic area containing multiple species 

(Jenkins et al., 2003). When using equation-derived errors, local allometric equations had 11% 

lower total uncertainty than the Jenkins et al. (2003) equations (Figure 1.7B). However, 

evaluating both allometric equations with independent data resulted in similar and higher overall 

uncertainties. The increase in plot and landscape level uncertainty resulting from independent 

evaluation is likely an underestimate since I only had data to independently evaluate three 

species. To my knowledge, allometric errors are not reported for FIA-CRM equations, so 

independent evaluation is the only appropriate way to quantify FIA-CRM allometric error. 

Comparing allometric biomass predictions to independent biomass observations from the 

application area enables improved estimates of allometric uncertainty, and guides selection of the 

best allometric equations for a particular region or application. 
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Reporting remote sensing model prediction error alone, as is common in many studies, 

insufficiently represents biomass estimation uncertainty. Allometric error should be considered, 

and, if possible, should be based on independent evaluation of the allometric equations from the 

population of interest. The accuracy of each biomass map in this study appeared similar if only 

considering remote sensing model prediction error, but differed widely once allometric 

uncertainty was propagated (Figure 1.7B). Ignoring allometric uncertainty and only reporting 

model prediction uncertainty would have represented as little as a quarter of the total uncertainty, 

reflecting a false confidence in the biomass maps. Just as FIA-CRM had the highest tree-level 

errors, biomass maps built using FIA-CRM had the highest total uncertainty. Propagation of 

allometric uncertainty from an independent dataset revealed very high biomass estimate 

uncertainties, and improved accuracy by informing the selection of the most accurate allometric 

equations.  

Conclusion 

Allometric equation selection is a dominant influence on forest aboveground biomass 

estimates at the tree, plot, and landscape scale. Unless allometric uncertainty is propagated, total 

error in biomass estimates will be underestimated and uncertainty of estimates made with 

different allometric equations may look deceivingly similar, giving false confidence in mapped 

estimates of biomass. Allometric uncertainty can exceed the remote sensing model prediction 

uncertainty. Furthermore, regional evaluation is needed to quantify allometric performance in the 

study area. I found reported allometric equation error to underestimate error compared to an 

independent, regional, tree-level biomass validation dataset. Total uncertainty was comparable 

between estimates made using nationwide allometric equations (Jenkins et al., 2003) and local, 

low sample size equations. Both outperformed FIA-CRM equation uncertainty. Future efforts 
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should incorporate other sources of uncertainty not considered here (e.g. diameter and height 

measurements). Remote sensing model prediction uncertainty will be reduced as algorithms 

improve and LiDAR and synthetic aperture radar become more widely available (e.g., Stovall et 

al., 2018a), increasing the relative contribution of allometric uncertainty to total uncertainty 

(Stovall and Shugart, 2018). Efforts to quantify and reduce allometric uncertainty are also 

needed. Data repositories of individual tree biomass data (such as the Legacy Tree Database used 

in this study) will be key in building more robust and independently evaluated allometric 

equations at regional-scales. Additional destructive sampling and refinement of nondestructive 

sampling methods will help quantify and reduce allometric uncertainty.  
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CHAPTER 2 — FUSING SATELLITE MONITORING WITH AERIAL FOREST HEALTH 
SURVEYS TO CHARACTERIZE LODGEPOLE PINE FOREST MORTALITY DUE TO 

BARK BEETLE OUTBREAKS ACROSS THE INTERMOUNTAIN WEST, USA 
 
 
 
Introduction 

Climate change and susceptible forest stand conditions have created ideal conditions for 

reproduction, range expansion, and population growth of multiple bark beetle species native to 

the forests of western North America’s Rocky Mountains (Berg et al., 2006; Carroll et al., 2003; 

Cudmore et al., 2010; Sidder et al., 2016). The coniferous tree species these bark beetles utilize 

for shelter, food, and reproduction, however, have responded less favorably to these 

environmental changes (Mantgem et al., 2009; Williams et al., 2013). Drought events and 

temperature stress have weakened the ability of many vulnerable coniferous tree species to resist 

the effects of bark beetle occupation (Bentz et al., 2010). This, in combination with an 

abundance of host tree availability, has resulted in widespread and well-documented tree 

mortality across millions of acres of Rocky Mountain forests (Hicke and Jenkins, 2008; Raffa et 

al., 2008). Monitoring tree mortality from these disturbances informs our understanding of 

disturbance impacts (e.g., Kautz et al., 2017), disturbance dynamics (e.g., Meigs et al., 2015), 

and forest management (e.g., Vorster et al., 2017). The progression and severity of this 

historically unparalleled scale of mortality is difficult to monitor across large areas, and as a 

result, the associated ecosystem, economic, and social impacts are challenging to precisely 

quantify (Kurz et al., 2008; Patriquin et al., 2007). 

Lodgepole pine has experienced particularly high rates of mortality over the past two 

decades, largely as the result of landscape-scale mountain pine beetle outbreaks (Meddens and 

Hicke, 2014; Raffa et al., 2008). As a dominant tree species in many of western North America’s 
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iconic forests, lodgepole pine has long been valued for its aesthetic, ecological, recreational, and 

timber value across its range from southern Colorado, U.S. to the northern reaches of British 

Columbia, Canada. Often said to be “pole-like” in structure, the species regenerates from seed 

following intensive disturbance, particularly fire (Anderson and Romme, 1991; Turner et al., 

1999), but also harvest (Collins et al., 2011) and bark beetle attack (Kayes and Tinker, 2012). 

Although mountain pine beetles can impact many conifer tree species, lodgepole pine is a 

preferred host. 

Bark beetles are native to western North America, where they cycle through endemic 

population levels and large population eruptions that cause widespread disturbance (Raffa et al., 

2008). Mountain pine beetle outbreaks most recently arose across the western U.S. Rocky 

Mountain region between the mid-1990s and early 2010s, aided by drought and high 

temperatures (Chapman et al., 2012; Sidder et al., 2016). Populations concomitantly grew from 

multiple epicenters that commonly overlapped outbreak locations from previous decades 

(Chapman et al., 2012). Mountain pine beetle populations have since returned to endemic levels 

as the beetles exhausted their supply of suitable host trees (Creeden et al., 2014). Today, dead 

trees can be seen across large areas, which can remain standing for 10 or more years 

(Schoennagel et al., 2012). However, surviving trees and advanced regeneration are typically 

sufficient for these forests to recover (e.g., Nelson et al., 2014). Despite their initial disturbance, 

bark beetle outbreaks can lead to more heterogeneous forests that may reduce the impact of 

future insect outbreaks, although these forests may not necessarily be better suited to future 

drought conditions (Perovich and Sibold, 2016).  

The severity of tree mortality caused by mountain pine beetles ranges from low, where a 

few trees are dead, to stands where nearly all of the trees are dead (e.g., Vorster et al., 2017). The 
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ecological and hydrological impacts of bark beetle outbreaks vary along this severity gradient 

(Diskin et al., 2011; Hansen et al., 2015; Ivan et al., 2018; Perovich and Sibold, 2016; Pugh and 

Small, 2012; Rhoades et al., 2016, 2013). Forest susceptibility to bark beetles and resulting 

severity patterns are influenced by a number of factors, such as host abundance, stand density, 

tree size, topographic position, and beetle population pressure (Kaiser et al., 2013; Shore and 

Safranyik, 1992; Vorster et al., 2017). Forests with high numbers of larger, older pine trees in 

dry topographic positions are most susceptible during outbreaks, although susceptibility can 

change throughout an outbreak (Nelson et al., 2014). During the recent outbreaks in northern 

Colorado, beetles expanded into new stands in the earlier years, while their impacts intensified 

during the latter outbreak years (Bode et al., 2018; Meddens and Hicke, 2014). Beetles may 

impact stands for multiple years, and this duration decreases with high beetle pressure (Meddens 

and Hicke, 2014). Continued research is needed to evaluate bark beetle severity dynamics over 

time and across large extents.    

Broad-scale insect and disease monitoring of U.S. forests is conducted through the U.S. 

Forest Service’s Aerial Detection Survey (ADS). The program conducts annual forest monitoring 

via fixed wing aircraft that can be used for early detection of insect and disease outbreaks, and to 

track progression over space and time. Interpreters manually delineate the cause, host species, 

and severity of tree damage, defoliation, and mortality across millions of forested acres at an 

extremely fast pace from an airplane using a process called “sketch mapping” (Johnson and 

Wittwer, 2008). This program has proven cost-effective and generates data that are available 

soon after surveying. Errors in aerial surveys can arise from a number of factors including, but 

not limited to, observer differences, differentiating current from past year’s impacts, spatial 

accuracy, weather and viewing conditions during surveys, the timing of surveys relative to 



49 
 

phenology and pest impacts, and variability of the patch size, damage type (e.g. defoliation 

compared to tree mortality) and severity of forest pest impacts (Backsen and Howell, 2013; 

Coleman et al., 2018; Johnson and Ross, 2008; Taylor and Maclean, 2008). Aerial Detection 

Survey data captures trends, but may not be reliable for a specific point location; particularly 

because homogenous polygons are drawn to represent heterogeneous insect and disease patterns 

(G.W. Meigs et al., 2015). Evaluations of the accuracy of ADS data have found timing 

information to be reliable (Meigs et al., 2015) and damage type to be accurate (Coleman et al., 

2018), but severity (dead trees per ha) to be considerably underestimated (Backsen and Howell, 

2013; Meddens et al., 2012; Meigs et al., 2011) or overestimated (Coleman et al., 2018). The 

extent can be underestimated in some cases (Bode et al., 2018) and over-estimated in other cases 

(Meigs et al., 2015). Meigs et al. (2011) found dead trees per hectare recorded by ADS and field 

measurements to be positively correlated, but ADS underestimated mortality by an order of 

magnitude. Prominent and common damage agents, particularly those that have visible impacts 

(e.g., mountain pine beetle), are more accurately classified in ADS surveys than other damage 

agents (e.g., defoliators like western spruce budworm [Choristoneura occidentalis Freeman]); 

and estimates of dead trees per acre can be less accurate in areas of high mortality (Coleman et 

al., 2018; Johnson and Ross, 2008).  

Estimates of area impacted by insects and diseases often sum ADS polygons, including 

area covered by live trees or other cover types. Meddens et al. (2012) refined estimates of area 

impacted in western North America by estimating just the area covered by dead trees. Estimates 

of mortality area caused by mountain pine beetles in the western U.S. ranged by a factor of 16 

(201,582 ha to 3,384,471 ha) due to underestimation of severity by ADS, with the authors 

emphasizing more confidence in the higher estimate (Meddens et al., 2012). Recent research has 
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improved bark beetle monitoring and our understanding of outbreak dynamics through the 

integration of ADS data with satellite-based forest monitoring (G.W. Meigs et al., 2015; Meigs et 

al., 2011). Satellite monitoring can provide improved estimates of tree mortality extent and 

severity, while ADS data can describe causal agents and timing. 

Satellite remote sensing is a viable tool for monitoring biotic forest disturbances (i.e., 

insects and diseases; Bode et al., 2018; Long and Lawrence, 2016; Meddens et al., 2013; 

Woodward et al., 2018), and can be conducted using a range of sensor technologies across spatial 

and spectral resolutions (Wulder et al., 2006). These efforts to map forest insect and disease 

impacts are typically limited to specific case studies and need to be developed across larger 

geographic extents (Senf et al., 2017). Remote sensing methods are well established for 

monitoring disturbances that result in high magnitude tree mortality, such as fire and harvest, and 

have been successfully  applied across large regions and national scales (e.g., Eidenshink et al., 

2007; Hermosilla et al., 2016; Vogeler et al., 2020). However, biotic disturbances resulting in 

less severe tree mortality have less spectral change and can be difficult to detect (Cohen et al., 

2018). Recent advancements in remote sensing software, data storage and transfer, and cloud 

based image calibration and processing (Gorelick et al., 2017) have enabled improved broad-

scale monitoring and detection of vegetation and disturbance (Vogeler et al., 2018; Woodward et 

al., 2018). These tools can integrate ADS products with remotely sensed maps of mortality 

severity across large areas, reducing uncertainty, improving our ability to measure forest 

mortality, and allowing us to better understand patterns of disturbance over time (Bode et al., 

2018a; Ghimire et al., 2015; Meigs et al., 2015). Improved estimates of mortality severity and 

spatial extent have considerable potential to refine estimates of the impacts of bark beetles on a 
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range of landscape-scale ecosystem processes (Ghimire et al., 2015; Hicke et al., 2016, 2013; 

Volkova et al., 2018). 

The goal of this study was to fuse ADS data and satellite remote sensing to monitor and 

understand mortality in lodgepole pine forests across four Rocky Mountain states impacted by 

severe mountain pine beetle outbreaks between 2000 and 2013. My objectives were to 1) model 

dead canopy area (mortality) across lodgepole pine forests; 2) compare modeled mortality 

severity and extent with ADS and field observations, and; 3) characterize mortality severity 

relative to timing, duration, and region by attributing summarized ADS data to the modeled 

mortality. I used this information to provide refined area estimates of dead lodgepole pine forests 

and investigate how severity of mountain pine beetle caused mortality varied with timing and 

duration of the outbreak across multiple spatial scales. 

Methods 

Study Area 

This analysis covered the four state Intermountain West region of Idaho, Montana, 

Wyoming and Colorado (Figure 2.1). I restricted this analysis to lodgepole pine forests within 

this region as defined by the Landscape Fire and Resource Management Planning Tools Program 

(LANDFIRE, 2017). Within the Existing Vegetation Type LANDFIRE layer, the “Rocky 

Mountain Lodgepole Pine Forest” and “Rocky Mountain Poor-Site Lodgepole Pine Forest” 

classes were combined to delineate the study area of lodgepole pine dominated forests. I 

excluded areas that burned between 1984 and 2013, as defined by the Monitoring Trends in Burn 

Severity dataset (Eidenshink et al., 2007), resulting in a study area covering 248,642 ha. 

Montana contained the largest area of lodgepole pine forest, followed by Colorado, Wyoming, 
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and Idaho (Table 1). Lodgepole pine forests in the study area were found in dry montane and 

subalpine areas between 425 and 3,650 m a.s.l. 

 

Figure 2.1: The study area encompassed lodgepole pine forests across Colorado (CO), Idaho 
(ID), Montana (MT), and Wyoming (WY). This map shows the points distributed across 
lodgepole pine forests that were ocularly sampled with National Agriculture Imagery Program 
(NAIP) to train mortality severity models. Forest Inventory and Analysis plots (FIA; 
approximate locations shown) were used to evaluate the mortality severity model and Aerial 
Detection Surveys. 

Table 2.1. Summary of area, elevation, temperature, and precipitation of the lodgepole pine 
forests (Pinus contorta; PICO) of each state in this study (PRISM, 2004).  
 

State Area (ha) Lowest 
elevation (m) 

Highest 
elevation (m) 

Mean annual 
temp (OC) 

Mean annual 
precip (mm) 

Colorado 67,901 1,612 3,650 2.4 645.5 

Wyoming 50,771 1,522 3,357 2.1 701.5 

Montana 94,216 587 3,163 2.9 808.7 

Idaho 35,754 425 3,185 3.3 985.3 
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 Digital Sampling 

I randomly generated 997 sampling locations distributed within lodgepole pine forests to 

use for model training. A 30 x 30 m boundary with a 100-point grid was placed at each plot 

location, matching the pixel size of Landsat imagery. Ocular estimation of four cover classes was 

conducted at each plot from National Agriculture Imagery Program (NAIP) imagery at 1 m 

resolution from 2012 (WY) and 2013 (CO, MT, ID). National Agriculture Imagery Program and 

Landsat imagery have geolocational accuracies that are well suited for paired image 

interpretation and analysis (Long and Lawrence, 2016; Woodward et al., 2018). Using Google 

Earth Engine (Gorelick et al., 2017), I mosaiced NAIP quarter quad tiles and created a graphical 

user interface to record ocular estimates of percent cover for four classes at each plot: live tree 

canopy, dead tree canopy, shadow, and other (i.e. bareground, urban, water, etc.). Two trained 

image interpreters calibrated their estimates on calibration plots before sampling the training 

plots. 

Imagery Acquisition and Processing 

All image collection and preprocessing were performed in Google Earth Engine. I 

imported reflectance and thermal imagery from USGS Landsat 5 Collection 1 Tier 1 TOA 

Reflectance, USGS Landsat 5 Surface Reflectance Tier 1 collection, USGS Landsat 8 Collection 

1 Tier 1 TOA Reflectance, USGS Landsat 8 Surface Reflectance Tier 1 collection and synthetic 

aperture radar imagery from European Space Agency Copernicus Sentinel-1A. The analysis 

spanned multiple scenes and time periods, so I used surface reflectance and land surface 

temperature for the most consistency in spectral values despite different atmospheric conditions 

between images (Young et al., 2017). Top-of-atmosphere (TOA) reflectance was used to derive 

tasseled cap indices (Baig et al., 2014; Crist, 1985).  
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I explored different combinations of years and length of season within years to represent 

pre- and post-outbreak conditions using Google Earth Engine. I optimized model performance 

among permutations where image availability, image clarity and sensor consistency could be 

evaluated. This included considering images from 1999-2001 for pre-outbreak years and 2011-

2013 for post-outbreak years and exploring months within years ranging from June to October. 

Using preliminary results from these permutations, I selected the conditions for the final model. 

 Landsat images were filtered to the years 2001 and 2013 to represent pre- and post-

outbreak conditions, respectively. Images acquired between June 1 - October 31 of each year 

were considered to capture the peak of the growing season and leaf-on conditions of deciduous 

trees. I used a median composite of the growing season to represent each year. A mask was 

applied to all Landsat images to remove clouds, cloud shadows, snow and ice using the qa band 

for each image. Once the images were masked, I selected the median pixel of the remaining 

imagery to represent each collection. These were then used to calculate indices that included 

Normalized Difference Vegetation Index (NDVI), Normalized Difference Moisture Index 

(NDMI), Normalized Burn Ratio (NBR), and tasseled cap greenness, wetness, brightness and 

angle. I also calculated the difference between these indices from 2001 and 2013. The derived 

indices (NDVI, NDMI, tasseled cap), the near infrared (NIR), shortwave infrared 1 (SWIR1), 

shortwave infrared 2 (SWIR2) and thermal bands from 2013 in addition to the differences 

indices were considered for modeling (Table A2.2). These indices and differenced indices were 

selected because of their inclusion in other studies to detect bark beetle caused tree mortality 

(e.g., Bode et al., 2018; Vorster et al., 2017; Woodward et al., 2018). Finally, I used vertical 

transmit-vertical receive polarisation (VV) backscatter signal from European Space Agency’s 
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(ESA) Sentinel-1 radar data that provides a measure of features on the earth surface based on the 

active signals that are returned back to the sensor.  

I also considered alternative methods for deriving Landsat variables. These included 

informative variables and harmonized (i.e., fitted) spectral predictors from LandTrendr products 

(Kennedy et al., 2018, 2010; Vogeler et al., 2018). These relatively new methods to preprocess 

Landsat spectral data for time series analyses perform well and address some of the radiometric 

complications with these types of analyses (Vogeler et al., 2018; Woodward et al., 2018). 

However, these products did not perform as well as the median composites predictor variables 

described above when model performance was evaluated among the approaches and, therefore, I 

did not use these for final dead canopy area models (hereafter referred to as mortality severity 

products).  

Aerial Detection Survey Processing 

The Aerial Detection Survey (ADS) data for 2001 to 2013 were obtained from the USDA 

Forest Service Data Portal. Aerial survey data were used to attribute information about the cause 

and timing of tree mortality to the modeled mortality severity products and as a comparison to 

the extent and severity shown in the modeled products. Aerial surveys are flown each year and 

observers in airplanes delineate polygons of areas impacted mainly by insect and disease. For 

each polygon of forest impacted by insect and/or disease, I used the following attributes: area, 

damage causal agents (DCA), damage type, forest type, host tree species and measure of 

mortality (dead trees per acre [TPA]). These polygons may have up to three damage causal 

agents, damage type, forest type, host tree species and measures of mortality. Since not all 

forested areas are flown each year, I calculated the percent of the study area covered by annual 

aerial surveys (Figure 2.2).   
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Figure 2.2. (A) Area and percent of lodgepole pine mask impacted by insect or disease in 
Colorado, Wyoming, Montana, and Idaho, as indicated by Aerial Detection Survey (ADS) data. 
Calculated using the pixel count of the area attribute in the ADS data, which includes polygons 
that had NoData values as damage causal agents. (B) Area and percent of lodgepole pine in the 
study area flown by ADS from 2001 to 2013.   
 

I converted ADS polygon data to rasters for compatibility with modeled mortality 

severity products and to allow for summarization of ADS data across years for each pixel (e.g., 

Meddens et al., 2012; Meigs et al., 2015; Meigs et al., 2011). The ADS rasters were created at 30 

m grain size to align with modeled mortality severity. All ADS data manipulation and processing 

was done in R statistical software (R Core Team, 2018). I first converted the polygons to raster 

format and then clipped them to the lodgepole pine study area. Attributes of interest were 

summarized and extracted as rasters from the stack to determine the timing and causes of 

modeled mortality severity and information summarizing mortality dynamics. These attributes 

included highest dead TPA value, DCA for the year with the highest dead TPA, first year of 

mortality, last year of mortality, most severe year of mortality, number of years with mortality, 

most common DCA across all years, and cumulative mortality. The only ADS damage type used 

to create these rasters was current year mortality and previously undocumented mortality. 
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Mortality is defined by ADS as, “Standing dead trees that have died since the last survey” 

(Forest Health Monitoring Program, 1999). Note that the year I report is the year of detection, 

which is typically one year later than the year of infestation. 

Mapping and Evaluating Dead Canopy Cover 

I used random forests to model dead canopy cover using digital sampling training plots 

and remotely-sensed predictor variables. Random forest models are commonly used in remote 

sensing analyses of forest characteristics because of their high performance, resistance to 

overfitting, and ability to handle non-parametric data (Belgiu and Drăgu, 2016; Breiman, 2001). 

Variable Selection Using Random Forest (VSURF) was first used to select predictor variables 

suitable for prediction (Genuer et al., 2015). Then, for each pair of variables correlated >= |0.7|, I 

removed the variable with lower variable importance from a random forest run with the 

prediction variables selected by VSURF. I ran a random forest model for this refined list of 

predictor variables in R with 500 trees and two variables considered at each split (Liaw and 

Wiener, 2002).  

Model performance was evaluated using a proportion of variance explained (R2), root 

mean squared error (RMSE), scatter plots of predicted vs. observed, comparisons of field 

measurements to model predictions, and through visual evaluation of model predictions over 

aerial imagery. Out-of-bag error metrics generated from randomly subsetting training data and 

predictor variables during the model fitting process are robust measures of model performance 

(Breiman, 2001). I evaluated model performance using out-of-bag measures of the RMSE and 

the R2. 

I also evaluated the mortality severity predictions and ADS cumulative mortality through 

comparisons with standing dead basal area at U.S. Forest Service Forest Inventory and Analysis 
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(FIA) field plots from an area in northern Colorado and a sliver of southern Wyoming defined by 

the extent of Worldwide Reference System 2 path 34, row 32 (hereafter referred to as Colorado 

plots) and the Idaho portion of path 42, row 28 (Figure 2.1). Exact plot locations were obtained 

through a non-disclosure agreement with FIA. I only used plots that fell within the lodgepole 

pine forest extent and that were sampled between 2012 and 2015 since mortality in lodgepole 

pine forests had slowed substantially by 2012. This resulted in 99 Colorado plots and 17 Idaho 

plots. 

In addition, I randomly generated 2,000 samples within the lodgepole pine extent across 

each state (total of 8,000 samples) to evaluate trends across the study area. These samples were 

used to compare modeled mortality severity to ADS cumulative mortality, duration of impact, 

and first, most severe, and last year of impact. The samples were restricted to the overlap 

between where ADS surveys existed and the modeled lodgepole mortality extent so that 

comparisons could be made between the two products and because I was using attributes from 

both ADS and modeled mortality severity. I compared mean modeled mortality with these 8,000 

points between states using an ANOVA, and evaluated significant differences between states 

using a Tukey’s range test (McDonald, 2014). A threshold was needed to categorize the 

continuous mortality map into areas of presence or absence of tree mortality to allow comparison 

to the extent of mortality shown by ADS. I calculated the threshold as the y-intercept from a 

linear model of the relationship between predicted and observed values at the training points. 

This threshold value (7.5) represents the average minimum detectable tree mortality from my 

approach (Wulder et al., 2010). I also tested thresholds of 5 and 10 percent dead canopy cover to 

explore sensitivity of agreement between the model predictions and ADS to threshold selection. 
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When ADS surveys are conducted, tree mortality <¼ TPA is considered background mortality 

and is typically not recorded.   

Results 

Comparison between modeled mortality severity and Aerial Detection Surveys 

Mortality severity predictions captured heterogeneity in tree mortality patterns at a finer 

scale than ADS surveys (Figure 2.3). The final random forests model performed reasonably well 

in modelling mortality severity across the expansive four-state region (R² = 44.5, RMSE = 13.6 

%; Figure 2.4; Figure A2.4). Visual evaluation of the model predictions over aerial imagery 

showed that the model captured landscape mortality trends (Figure 2.3). The final mortality 

severity model included six predictor variables (Figure A2.2). The normalized difference 

moisture index, which represents a difference between pre- and post-outbreak imagery, was the 

strongest predictor variable.  

 

Figure 2.3. Comparison of the same area in (A) aerial imagery, (B) mortality detected by 2005 
and 2007 Aerial Detection Surveys (ADS), and (C) mortality severity predictions. Grey areas in 
the aerial imagery are standing dead trees, and green areas are forests with little mortality. The 
grey gaps in model predictions in panel C are areas outside of the LANDFIRE derived lodgepole 
pine forest type mask.  
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Figure 2.4. Modeled mortality severity across the study area and for geographic subsets in 
Colorado and Montana (right side). Colorado (CO), Idaho (ID), Montana (MT), and Wyoming 
(WY) 
 

Modeled mortality severity and ADS cumulative dead TPA were significantly, but 

weakly correlated (Figure A2.3). When compared to dead basal area in FIA plots, the mortality 

severity model predictions were more correlated (R² = 0.32, p < .0001) than ADS cumulative 

mortality (R² = 0.03, p = 0.04; Figure 2.5). The mortality severity model, which mapped percent 

dead canopy, reasonably represents dead basal area, a field-based measurement that is also 

highly correlated with dead biomass. Higher mortality severity predictions have larger errors 

than low mortality predictions.  
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Figure 2.5. Dead basal area measured in FIA plots in Colorado and Idaho compared to (A) 
modeled mortality severity and (B) Aerial Detection Survey (ADS) cumulative mortality. The 
black lines show a linear model with the 95% confidence interval. 
 

Comparison to FIA data shows differences in ADS severity observations between 

Colorado and Idaho. For similar dead basal area values, Colorado ADS data record higher 

cumulative mortality values than Idaho (Figure 2.5). All Idaho values are less than 2,000 dead 

TPA compared to Colorado values that reach 8,000. Dead basal area measured at these FIA plots 

does show lower mortality in Idaho, but to a much lesser degree than ADS (Figure A2.1). Both 

field-measured FIA dead basal area and modeled mortality at the FIA plot locations show an 

overlapping distribution of mortality in Colorado relative to Idaho, with Colorado having slightly 

higher and more variable mortality. In contrast, the distribution of ADS cumulative dead TPA is 

substantially lower in Idaho than in Colorado (Figure A2.1). 

Both modeled mortality severity and ADS data indicated that Colorado and Montana had 

the most lodgepole pine forest impacted by recent mountain pine beetle outbreaks, followed by 

Wyoming and Idaho (Figure 2.6). Using the calculated threshold of 7.5 on the mortality severity 
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model, 1.61 million ha was mapped as impacted by mortality. This changed to 1.84 million ha 

when a threshold of 5 was applied, and 1.52 million ha for a threshold of 10. Of the 1.61 million 

ha of lodgepole pine forests flagged as impacted by either ADS or thresholded model 

predictions, modeled mortality severity predictions and ADS data were in agreement over about 

half of this area (855,883 ha). Roughly a quarter of this area was unique to modeled mortality 

severity predictions (370,650 ha) and a quarter unique to ADS (383,796 ha, Figure 2.6). Modeled 

mortality severity was highest in areas where ADS and the thresholded model overlapped (mean 

= 21.6%, standard deviation [sd] = 12.7%), followed by mortality areas shown to have mortality 

according to the thresholded model, but not ADS (mean = 13.4%, sd = 7.3%). Areas where only 

ADS indicated mortality had the lowest mean mortality severity (mean = 4.5%, sd = 1.8%). 

 

Figure 2.6. (A) Comparison between mortality severity predictions and Aerial Detection Surveys 
(ADS) cumulative dead TPA at 8,000 points randomly generated across the study area. (B) 
Agreement and disagreement in the area impacted according to mortality severity predictions and 
ADS, shown for each state: Colorado (CO), Idaho (ID), Montana (MT), and Wyoming (WY). 
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Outbreak Dynamics 

 Information about the timing and cause of mortality from ADS was paired with modeled 

mortality severity where they overlapped to better understand lodgepole pine mortality 

dynamics, as this information cannot be captured by using the modeled severity alone. The tree 

mortality in the study area was predominantly caused by mountain pine beetle outbreaks peaking 

between 2007 and 2011 (Figure 2.2). Newly-impacted area (e.g., first year of ADS tree mortality 

detected for each pixel) increased until 2009, after which few areas were newly impacted (Figure 

2.7). Pixels first impacted later in the outbreaks (e.g., after 2008) were less severely impacted 

than areas impacted early in the study period and during the peak of the outbreaks. Stands only 

impacted early in the outbreak (represented by stands with a last year of mortality before 2006), 

were few and experienced relatively low mortality. The most severe year of mortality (e.g., the 

year with the highest ADS dead TPA for each pixel) covered more area starting in 2006, and 

then sharply declined in 2012, the same year that the last year of mortality declined.  

 

Figure 2.7. (A) Modeled mortality severity between 2001 and 2013 in the first, most severe, and 
last year of mortality using 8,000 random points distributed across the four-state study area. (B) 
Area impacted each year that was a pixel’s first, most severe, or last year of mortality. Black 
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represents areas where model predictions overlap with ADS polygons, and grey represents ADS 
polygons where models did not predict mortality greater than 7.5%. Areas where model 
predictions show mortality greater than 7.5%, but where ADS polygons are absent are not shown 
because I do not have information about the year of mortality from ADS for these areas. 

Mean mortality between states was variable (F[3, 7,996]= 209.6, p =<0.0001). Post hoc 

testing showed that all states had statistically significant differences in mortality (p < 0.0001) 

except Colorado and Wyoming (p = 0.97). The Colorado and Wyoming lodgepole pine forests 

experienced higher severity lodgepole pine mortality than Idaho and Montana (Figure 2.8).   

 

Figure 2.8. Histograms of modeled mortality severity for each state at 8,000 randomly distributed 
points across the study area. (CO = Colorado, ID = Idaho, MT = Montana, WY = Wyoming) 

Low severity mortality (10-20% dead canopy) was the most common in all states, and 

area declined as severity increased. Mortality greater than 40% was particularly rare in Idaho and 

Montana (Figure 2.8). The models show the most mortality area (canopy area of dead trees) in 

Colorado (107,626 ha) and Montana (94,846 ha). Wyoming had roughly half the mortality area 

(46,042 ha) of Colorado and Montana, but more than Idaho (28,339 ha) because it had slightly 



65 
 

more impacted lodgepole pine forest, and because the severity was higher in Wyoming than 

Idaho. 

 When aggregating data across all four states, mortality severity increased with the 

number of years mortality was observed for a given location by ADS (Figure 2.9A). There was a 

similar amount of area impacted for one, two, or three years, which then successively declined as 

the duration increased past four years (Figure 2.9B). Few areas had active mortality for more 

than six years. Additionally, agreement between ADS and modeled mortality severity improved 

as duration, and presumably severity, increased.   

 

Figure 2.9. (A) Box plots of modeled mortality severity grouped by duration (years) bins of the 
8,000 points randomly generated across the study area. (B) The relationship between area 
impacted by tree mortality and duration of mortality detected by Aerial Detection Surveys (ADS) 
or both ADS and thresholded modeled mortality severity. 
 

These relationships between duration and mortality severity differed for some states 

(Figure A2.6). Increasing mortality severity with duration holds for all states except Idaho. This 

may be influenced by the fact that little area in Idaho was impacted for more than three years. 
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Lodgepole pine forests were most commonly impacted for one year in Idaho and Montana, and 

for three years in Colorado. 

Discussion 

In this study, I mapped tree mortality in lodgepole pine forests from insects and disease 

across Colorado, Idaho, Montana, and Wyoming. The methodology relies on free and publically-

available data sources that are continually collected (e.g., Landsat, NAIP, and FIA), thus lending 

itself well to efficient applications across large areas in other regions with similar satellite image 

availability. The maps of mortality severity capture cumulative mortality from 2001 to 2013, 

showing both area impacted and mortality area at 30 m2 spatial resolution. Satellite-derived 

estimates of tree mortality capture the extent and severity of tree mortality at a finer spatial 

resolution than aerial detection surveys, are more consistent across large areas, and can have 

better spatial coverage. When compared to independent FIA field data, the maps were better 

correlated with mortality severity than aerial detection surveys. However, aerial detection 

surveys provide additional information about the timing, type (e.g., defoliation or mortality), 

causal insect or disease, and host tree species. I combined these complementary data sources to 

characterize bark beetle dynamics in lodgepole pine forests. 

Mountain pine beetles were the primary cause of insect and disease caused tree mortality 

between 2001 and 2013 (Figure 2.2; Berner et al., 2017; Meddens et al., 2012). These outbreaks 

resulted in 276,854 ha of mortality area, most of which was low severity (10-20% mortality; 

Figure 2.8; Meddens et al., 2012). Meddens et al. (2012) estimated that mortality area of 

lodgepole pine from mountain pine beetles across the entire western U.S. ranged between 

160,541 ha and 2,858,860 ha, with greater confidence in the higher estimate. While it is difficult 

to make a direct comparison to this study because I mapped a subset of the states they covered, 
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and I had different methods for determining the extent of lodgepole pine, my estimate of 

mortality area (276,854 ha) exceeds the low estimate, supporting the claim by Meddens et al. 

(2012) that the low estimate is unrealistically low.     

 Expansion of the mountain pine beetles to new areas during the early and late stages of 

the outbreaks was much less than during peak years (Figure 2.7). Additionally, it was rare for 

stands to only be impacted early in the outbreaks. Stands were commonly impacted for up to five 

years. Thus, stands impacted early in the outbreak can be expected to continue experiencing 

mortality if suitable host trees are present. Meddens and Hicke (2014) found temporal 

characterization of bark beetle outbreaks to be scale-sensitive, and also report most pixels were 

impacted for five or less years in northern Colorado. I found that the longer stands were 

impacted, the higher the mortality severity tended to be (Figure 2.9). Meigs et al. (2011) also 

reported a positive relationship between duration and mortality severity in Oregon’s eastern 

Cascade Range. These long duration and high mortality severity stands are likely highly 

susceptible to bark beetles because they have abundant, large pine trees, and thus can support 

bark beetle populations for a longer duration than low susceptibility stands. Additionally, with 

many host trees, these stands have the potential to be severely impacted, while a stand with only 

a few host trees will have low mortality severity as measured by dead canopy area even if all 

hosts are killed.  

The outbreak expanded to new areas most rapidly between 2007 and 2009 (Figure 2.7). 

The area impacted for the first time in each year represents the degree to which outbreaks were 

spreading (Figure 2.7). Over the four state region, there was a sharp drop in the areas the beetle 

was spreading after 2010. At the state scale, bark beetles slowed their spread earlier in Wyoming 

(2009) and Colorado (2010), than in Montana and Idaho (both 2011). The two states with the 
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greatest mortality area, Montana and Colorado, exhibited different outbreak dynamics. 

Colorado’s outbreak was consistently sustained over more years, while Montana had a more 

pronounced peak in bark beetle activity (Figure 2.7).  

This study emphasizes that outbreak patterns should be analyzed at multiple scales. 

Outbreak dynamics at the four-state scale do not always reflect dynamics at the state level, and 

the patterns in states with less mortality area (i.e., Idaho) can be washed out by patterns in more 

severely impacted states (i.e., Colorado and Montana). This study analyzed coarse scale patterns, 

and different patterns may emerge at finer scales. The occurrence of these outbreaks across this 

region suggests large-scale climatic drivers such as drought and elevated temperatures triggered 

and maintained these outbreaks (Chapman et al., 2012; Creeden et al., 2014). Yet, fine scale 

variation in forest structure, composition, and management history shape local mortality severity 

patterns (Raffa et al., 2008; Vorster et al., 2017). Bark beetles are the dominant cause of tree 

mortality in Colorado and Wyoming, whereas fire and harvest contribute more of the tree 

mortality in Idaho and Montana (Berner et al., 2017). While I removed burned areas from this 

analysis, I did not remove areas where forest management occurred because I am not aware of 

data across this region that reliably delineates forest management.  

The fact that beetle pressure was still high in 2011 (as evidenced by the large amount of 

area that suffered its most severe year of mortality in Figure 2.7), yet the area impacted for the 

first time was low, indicates that mountain pine beetles had likely diminished their supply of host 

trees, leading to their population decline. These low-severity stands first impacted late in the 

outbreak are likely poor stands for mountain pine beetles (Nelson et al., 2014). The beetles 

intensified their impacts within the stands they were already in towards the end of the outbreaks, 

as opposed to expansion to new areas as they did earlier in the outbreaks (Figure 2.7). This 
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observation of extensification followed by intensification was also reported by Meddens and 

Hicke (2014) and Bode et al. (2018) in northern Colorado. 

Mortality severity was lower early in the outbreaks, and forest recovery and snagfall has 

had longer to occur in areas impacted early in the outbreaks. These factors give us reduced 

confidence in the accuracy of the mortality severity predictions in these early-outbreak areas. It 

is also possible that I underestimated mortality in areas that recover quickly, such as productive 

sites with rich understory or areas with abundant advanced regeneration (Meigs et al., 2011). A 

time series approach to mapping bark beetle mortality (e.g., Meigs et al., 2015) could help with 

these issues. However, the models I constructed using LandTrendr disturbance metrics 

performed relatively poorly (R² = 36.0, RMSE = 14.6 %). Spectrally harmonized images, such as 

the LandTrendr-fitted images I tested, can reduce noise in spectral values over time. When I used 

these LandTrendr-fitted images from two points in time (pre and post outbreak), models 

performed nearly as well (R² = 43.0, RMSE = 14.0 %) as the final model. Further research is 

needed to determine whether harmonizing images across time improves detection of forest insect 

and disease impacts, or if it removes the signal of these minor spectral changes.  

 This methodology could also be improved with the use of field data to train models rather 

than points collected through ocular sampling of aerial imagery. Interpreting NAIP imagery is 

time efficient and low-cost, but can pose challenges, with some locations having better image 

clarity than others. Field plots would capture tree mortality more accurately, but are more time-

consuming and expensive to collect and are harder to distribute across the landscape and across 

ownerships. The FIA plot network would be an ideal dataset, since it is already being collected 

across forested areas in the U.S. With this approach, a different mortality metric than dead 

canopy area would have to be modeled, such as dead basal area or number of dead trees. 
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Aerial detection survey data are a valuable resource for monitoring insect and disease 

impacts, providing an unparalleled historical record of forest insect and disease mortality. 

However, such an ambitious monitoring program has significant limitations that should be 

considered when interpreting these findings. Surveys are conducted by different individuals 

across states and Forest Service regions, leading to issues such as inconsistent estimates of dead 

trees per acre. This was evident in the comparison of aerial detection surveys to FIA plots—

Colorado aerial detection surveys had higher cumulative dead trees per acre values compared to 

Idaho aerial detection surveys for plot locations with similar dead basal area (Figure 2.5; Figure 

A2.1). Since ADS observers survey the same regions each year, ADS accuracy and bias varies 

geographically. Other factors can contribute to biased differences between ADS observations and 

field observations such as the type of insect or disease, damage type, severity and forest type. 

These factors may help explain why some studies have found ADS to underestimate mortality 

severity (Backsen and Howell, 2013; Meddens et al., 2012; Meigs et al., 2011), while others 

have found ADS to overestimate (Coleman et al., 2018). Caution is advised when comparing 

ADS dead TPA values across multiple states or U.S. Forest Service regions. Remote sensing 

modeling approaches to mapping mortality severity are better suited for comparisons of mortality 

severity across large extents since they provide consistent mortality severity estimates. 

I compared ADS, remotely sensed, and field measurements of tree mortality to help 

define uncertainty surrounding ADS severity and extent. One issue with these comparisons is 

that ADS polygons are not intended to represent a specific point like remote sensing pixels or 

field plots. They are intended to provide data to inform forest insect and disease trends and to 

flag forest conditions to be investigated more closely at the local scale. However, ADS data are 

being applied at smaller scales for management and research and thus need to be evaluated at 
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these scales. Like another comparison of forest insect and disease detection between Landsat-

based detection, ADS, and field data, I found remote sensing insect and disease detection to be 

better correlated with field measurements than ADS was with field measurements (Meigs et al., 

2011). Meigs et al. (2011) report higher correlations between field measurements and ADS 

cumulative dead TPA (adjusted R² = 0.37) than I did in this study (R² = 0.03). While correlated, 

Meigs et al. (2011) found dead tree counts were an order of magnitude higher in plot 

measurements. One reason for the lower correlation in this study may be that I measured 

mortality severity in field plots in terms of dead basal area, while Meigs et al. (2011) used dead 

tree count, which is the same metric as ADS. Another possible factor contributing to the lower 

correlation between FIA and ADS is that while Meigs et al. (2011) mapped mortality in a single 

state and U.S. Forest Service region, I mapped mortality across four states and three Forest 

Service regions. Observer differences across such a large area could reduce correlations between 

ADS and field observations.  

In comparisons of the mortality extent between ADS and my maps, I found agreement in 

roughly half of the area impacted, and these areas had more severe tree mortality than areas only 

shown by one source (Figure A2.5). A quarter of the total area impacted was solely detected by 

ADS, and the mortality model solely detected another quarter of the total area impacted (Figure 

2.6). A number of factors are likely contributing to the large area only detected by one of the data 

sources. One factor is scale—ADS maps mortality at a coarser scale, and the polygons likely 

overestimate the area impacted by mortality since the polygons cover heterogeneous mortality 

patterns (Meigs et al., 2015). These polygons span areas with and without mortality and even 

non-forested areas, while the remote sensing products are detecting mortality in 30 m x 30 m 

pixels (Backsen and Howell, 2013; Meigs et al., 2015). The areas detected solely by the model 
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could represent areas that were not flown by ADS surveys (Figure 2.2), impacted forests that 

were not captured in ADS surveys, or modeled false positives. These areas generally represented 

forests with lower severity tree mortality (Figure A2.5). Low severity mortality is the most 

difficult to detect with satellite spectral remote sensing, and has the highest potential for 

commision and omission errors (Cohen et al., 2018; Goodwin et al., 2008; White et al., 2007).  

 In the areas shown to have mortality by my models, but not by ADS, I analyzed the 

predicted mortality severity and the FIA plots to determine if these are true or false positives for 

the models. Pixels indicated to have mortality by the morality models but not by ADS had a 

mean modeled severity of 13.4%. In comparisons of mortality severity predictions to FIA field 

measurements, predictions above 13% consistently correctly identified plots as having mortality 

(Figure 2.5). Additionally, the comparison of FIA dead basal area to ADS cumulative dead TPA 

showed that ADS is prone to false negatives—plot locations where ADS does not capture 

mortality measured by FIA (Figure 2.5). Therefore, much of the area predicted to have mortality 

by the thresholded model, but not by ADS, likely represents areas with true mortality. Aerial 

detection surveys are likely overestimating mortality extent within the polygons, and are not 

capturing other areas on the landscape with mortality, particularly low-severity mortality (Bode 

et al., 2018). My best estimate of mortality impacted lodgepole pine forest area is the sum of the 

overlapping areas and the model-only areas (1.23 million ha). Thus, the remote sensing method 

presented in this study seems to better capture both the extent and severity of forest mortality 

than ADS. These findings suggest that approaches relying on ADS to define the extent of 

mortality may not capture a substantial amount of impacted forest.  
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Conclusion 

Tree mortality severity is a major determinant of bark beetle’s ecological impact—the 

alterations to forest structure and species composition initiated by these disturbances (Abella and 

Fornwalt, 2014; Collins et al., 2011) are expected to work in concert with climate change to 

accelerate forest change (Foster et al., 2018). Consistent representations of the extent and 

severity of bark beetle outbreaks across large extents is needed. This study addressed this need 

by mapping mortality severity in lodgepole pine forests across Colorado, Idaho, Montana, and 

Wyoming. I combined the strengths of satellite remote sensing (detecting canopy change, or 

mortality severity) with the strengths of existing Aerial Detection Surveys (identifying mortality 

causal agent and timing) to characterize lodgepole pine forest mortality, with a focus on 

mountain pine beetles—the dominant causal agent in the 2000s. This method is efficient, as it 

relies on existing aerial forest health surveys and free satellite imagery, along with aerial image 

interpretation substituted for field assessments. Remote sensing based estimates can provide a 

better estimate of both the area impacted and the mortality area, thus more accurately reflecting 

impacts of disease and insects, and providing a more accurate basis for management planning 

and for evaluating the insect and disease impacts on ecosystem processes. This approach offers 

promise for large-area disturbance monitoring.  
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CHAPTER 3 — QUANTIFYING STANDING DEAD FOREST BIOMASS FROM BARK 
BEETLE OUTBREAKS AND EVALUATING BIOENERGY PRODUCTION SCENARIOS IN 

THE SOUTHERN ROCKY MOUNTAINS, USA 
 
 
 
Introduction 

Widespread tree mortality caused by native bark beetles across western North America 

has significantly impacted the forest carbon cycle (Hicke et al., 2013; Kurz et al., 2008). These 

outbreaks transfer carbon from live to dead trees, where the carbon is slowly released to the 

atmosphere as the dead trees decompose. Growth rates of surviving vegetation typically increase, 

facilitating the forest’s return to serving as a carbon sink within several years to several decades 

(Hansen, 2013; Raymond et al., 2015). National carbon inventories, like those mandated by the 

United Nations Framework Convention on Climate Change (UNFCCC, 1992), track and report 

these forest carbon sources and sinks. Deadwood is one important forest carbon pool (Goodale et 

al., 2002) that can also benefit biodiversity (Harmon et al., 1986) and forest resilience (Marzano 

et al., 2013). Methods for improved deadwood estimation are being actively developed (Domke 

et al., 2011; Woodall et al., 2019) and are improving our understanding of the forest carbon cycle 

(e.g., Woodall et al., 2012).  

Ecosystem models of forest carbon trajectories following bark beetle outbreaks rely on 

estimates of dead tree biomass (Ghimire et al., 2015), which can be difficult to quantify with 

remote sensing. Previous work has combined information about bark beetle outbreak severity, 

extent and timing with biomass estimates to create spatially-explicit dead biomass estimates. 

Estimates of bark beetle-killed carbon and biomass across the western U.S. forests range from 5 

to 15 Tg C yr-1 (2002 – 2009; Ghimire et al., 2015), 2 to 24 Tg C yr-1 (1997 – 2010; Hicke et 

al., 2013), and 14.6 ± 7.0 Tg C yr-1 (2003 – 2012; Berner et al., 2017). Much of the uncertainty in 
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beetle-killed carbon estimates results from the lack of detailed information about bark beetle 

outbreak extent and severity (Ghimire et al., 2015). Aerial detection surveys are often the 

primary data source for insect and disease caused tree mortality used in these dead carbon 

estimates. Remote sensing analyses more accurately capture the extent and severity of bark 

beetle outbreaks than ADS (Vorster et al., in prep), and remote sensing captures cumulative, 

rather than annual mortality. Cumulative mortality severity has been mapped for multiple bark 

beetle species (Long and Lawrence, 2016; Woodward et al., 2018), annually (Bode et al., 2018), 

and across large extents (Vorster et al., in prep). Using these maps of cumulative mortality 

severity paired with biomass data is a promising method for mapping dead biomass. Disturbance 

mapping using Landsat time series algorithms such as LandTrendr have also been used as the 

basis for mapping forest insect-killed carbon, basal area, and biomass (e.g., Bright et al., 2014; 

Hudak et al., 2013; Meigs et al., 2015; Pflugmacher et al., 2012).  

Uncertainty in bark beetle-killed carbon and biomass estimates also originates from 

underlying biomass maps. Biomass has been estimated from existing national biomass maps 

(Blackard et al., 2008; Hicke et al., 2013), an average of biomass maps (Berner et al., 2017), or 

by the county average aboveground tree biomass from Forest Inventory and Analysis plots (FIA; 

Ghimire et al., 2015). Berner et al. (2017) found that national biomass maps significantly 

disagreed, particularly at the pixel scale, and that addressing this disagreement resulted in 

improved dead carbon estimates. The use of biomass maps calibrated for smaller regions is a 

promising avenue for improving spatially explicit dead biomass estimates. 

 Beetle-affected stands can be left unutilized or salvage logged for timber, bioenergy, and 

bioproducts. With the tremendous quantities of beetle-killed biomass now spread across forests 

in the western U.S., utilization of beetle-killed biomass and low-value feedstocks such as slash 
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and small-diameter material has received interest as a feedstock for bioenergy and bioproducts 

(Campbell et al., 2018). This is an appealing prospect because this material is often left on site or 

is treated as a waste product that is burned on site for disposal. It is also a bioenergy feedstock 

that does not compete with food production. However, the ecological impacts of salvage 

harvesting (Fornwalt et al., 2018; Johansson et al., 2016; Riffell et al., 2011) and the climate 

impacts of forest bioenergy (Field et al., 2018; Zanchi et al., 2012) must also be considered. 

Additional uncertainty surrounds the economic viability of bioenergy from beetle-killed trees, 

although some bioenergy products may be viable (Campbell et al., 2018). Biomass maps can be 

used to assess feedstock quantity, location, condition, and accessibility to evaluate bioenergy 

economic scenarios and inform facility siting (Hogland et al., 2018). 

 Northern Colorado and southern Wyoming were some of the most severely bark beetle 

impacted areas in the western U.S. (Berner et al., 2017). The first objective in this study was to 

test new methods for mapping aboveground standing dead biomass. I calculated dead biomass at 

field plots, accounting for structural loss and density reduction in standing dead trees. I then 

paired this field data with mortality severity data, aboveground biomass, climate, and 

geomorphometric layers to map aboveground standing dead biomass at a moderate resolution (30 

m x 30 m). The second objective was to evaluate the distribution of live and dead biomass in this 

bark beetle-impacted landscape. I analyzed plot and landscape-scale biomass patterns by species 

and forest type. Lastly, the third objective was to use live, dead, and total biomass maps to 

quantify potentially accessible biomass for hypothetical bioenergy production scenarios and 

facility locations. 
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Methods 

Study Area 

 This study encompassed 1.52 million ha of forest in northern Colorado and southern 

Wyoming defined by the extent of the Worldwide Reference System 2 path 34, row 32 (Figure 

3.1). Elevations span from 1,553 m to 4,135 m above sea level, with mean temperature and 

precipitation ranging from 13 °C to 52 °C and 31 cm to 180 cm, respectively. Six forest types, as 

classified and mapped by the U.S. National Vegetation Classification and LANDFIRE (2017), 

account for 84% of the forested area (listed from most to least area): lodgepole pine forest and 

woodland; spruce-fir forest and woodland; aspen-mixed conifer forest and woodland; ponderosa 

pine forest, woodland and savanna; aspen forest, woodland, and parkland; Douglas-fir-ponderosa 

pine-lodgepole pine forest and woodland; and Douglas-fir forest and woodland. Forest types 

vary with moisture availability and growing conditions correlated with elevation and aspect. 

Ponderosa pine montane forests occupy lower elevations, transitioning to mixed conifer forests 

as elevation increases, to lodgepole pine forests, and to spruce-fir forests at high elevations 

(Huckaby et al., 2003). 
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Figure 3.1. Map of the study area showing the forest extent used in this study, hypothetical 
bioenergy and/or bioproduct facility locations with a 20-mile buffer used to evaluate potentially 
accessible biomass, the approximate locations of Forest Inventory and Analysis (FIA) plots, and 
the boundary of Worldwide Reference System 2 path 34, row 32.  
 
 Drought, warmer temperatures, and an abundance of host pine trees facilitated severe 

mountain pine beetle outbreaks in the study area (Chapman et al., 2012; Creeden et al., 2014). 

These outbreaks started in the early 2000’s, peaked from 2006 to 2009, and then began declining 

in 2010 (Walter and Platt, 2013). By 2013, mountain pine beetle activity had returned to low 

levels, with bark beetles impacting little new area, but continuing to cause some tree mortality 

within the stands already impacted (Bode et al., 2018). While mountain pine beetles can utilize 

all pine species in the study region, lodgepole pine experienced much higher severity impacts 

than ponderosa pine. Spruce beetle (Dendroctonus rufipennis Kirby) outbreaks also associated 

with drought caused substantial spruce mortality from 1997 – 2007 on the Routt National Forest 

and 2004 – 2010 on the Roosevelt National Forest (Hart et al., 2014).  
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I defined the forest extent within the study area as pixels with ten percent canopy cover or 

more in 2008 as mapped by LANDFIRE Existing Vegetation Cover (Bode et al., 2018; 

LANDFIRE, 2008). I excluded burned areas (Eidenshink et al., 2007) and clearcut harvests 

(Woodward et al., 2017) from the study area that occurred between 2001 and 2015. The total 

standing aboveground biomass layer represents the landscape as of 2001, while the plots I used 

were measured between 2012 and 2015. The 2001 total biomass layer would not represent 

biomass accurately in these areas that were subsequently disturbed by fire or harvest. 

Field Plot Data 

 The U.S. Forest Service FIA program monitors U.S. forest resources with a network of 

permanent plots distributed across forestlands of all ownerships (Tinkham et al., 2018). There is 

approximately one plot for every 2,428 ha (6,000 acres). Exact plot locations suitable for 

correlation with remotely sensed imagery were accessed through a non-disclosure agreement 

with FIA. To capture the impacts of the recent bark beetle outbreaks and to coincide with the 

2015 tree mortality map used for modeling, I only used FIA plots sampled after the peak of the 

recent mountain pine beetle outbreaks (2012 – 2015). These plots were measured soon enough 

after the majority of tree mortality to reduce the amount of snagfall. I utilized 181 plots: 45 

sampled in 2012, 45 sampled in 2013, 50 sampled in 2014, and 41 sampled in 2015. I calculated 

biomass for both mature trees (> 12.70 cm DBH) measured in four 7.3-m radius subplots and 

saplings (trees greater than 2.54 cm DBH, but less than 12.70 cm) measured in four 2.1 m radius 

microplots centered within the subplots. Only live saplings are measured, so I only included 

standing dead biomass of mature trees. Heterogeneous plots spanning multiple forest or land 

cover types (conditions) can have diverse spectral signatures, so I only used single-condition FIA 

plots defined as those that fall entirely within a single land cover (Ohmann et al., 2014).  
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 I calculated dead biomass at each FIA plot by first calculating biomass of each live tree 

using allometric biomass equations that predict live tree biomass from DBH (Jenkins et al., 

2003). These equations were selected because they more accurately predicted tree biomass than 

the FIA-CRM in this study area (Vorster et al., 2020; Woodall et al., 2011). Locally-developed 

allometric biomass equations are also available for this study area (Vorster et al., 2020), however 

these only apply to three species, while Jenkins et al. (2003) equations can be applied to all 

species in the study area. The Jenkins et al. (2003) equations were also used as the basis for the 

total (live and dead) standing aboveground biomass maps used in this study.  

 Dead trees lose biomass as they decompose through structural loss and density reduction. 

Failing to account for these biomass losses of standing dead trees leads to substantial over-

estimation of biomass (Domke et al., 2011). I reduced biomass for each tree using the framework 

developed by Domke et al., (2011). This approach modifies aboveground biomass for standing 

dead trees by subtracting structural and density changes from the live tree biomass calculated by 

allometric biomass equations. Both the structural loss adjustment factor and the density reduction 

factor vary with the decay class. Forest Inventory and Analysis crews qualitatively assign a 

decay class to each tree ranging from 1 (little decay) to 5 (highly decayed; O’Connell et al., 

2015). I first applied structural loss adjustment factors (Table 2 of Domke et al., 2011) to each 

biomass component calculated from the Jenkins et al. (2003) equations. This factor estimates the 

proportion of original biomass retained for each biomass component. A structural loss 

adjustment factor is not presented for foliage since these factors were designed for allometric 

biomass equations that don’t calculate foliage biomass, so I subtracted the entire foliage 

component from the live tree estimates (Chung et al., 2017). I next applied density reduction 

factors from Appendix D of Harmon et al. (2011), which reports density reduction factors for 
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standing dead trees by tree species and decay class. Density reduction factors are not presented 

for decay class five, so I used the same density reduction factor for decay classes four and five 

(Domke et al., 2011). Equations from Jenkins et al., (2003) do not calculate component biomass 

for woodland species (Juniperus osteosperma, Juniperus scopulorum, and Quercus gambelii), so 

I applied only the density reduction factor to these trees. There were only 33 woodland trees in 

the FIA plots I used. 

Analyses 

 I mapped dead biomass at a 30 m x 30 m spatial resolution by pairing FIA plot data with 

total biomass, tree mortality, climate, topography, and geomorphometric variables (Table A3.1). 

Total (live and dead) standing aboveground biomass and tree mortality are important predictor 

variables for mapping dead biomass. The total biomass layer represents biomass as of 2001 for 

this study area, as calculated by Jenkins et al.’s (2003) allometric equations (Vorster et al., 2020). 

The mortality layer depicts mortality as of 2015, at the tail end of the severe bark beetle 

outbreaks that occurred in the study area, showing percent mortality for each pixel (Bode et al., 

2018). Tree species composition and biomass, and thus dead biomass, correlate with climate, 

topography, and geomorphometry (Evans and Cushman, 2009; Swetnam et al., 2017). I 

downscaled 1961 – 1990 climate normals to align with the 30 m x 30 m resolution of other 

predictor variables (Wang et al., 2016). Topographic and geomorphometric variables derived 

from the National Elevation Dataset (Gesch et al., 2002; Gesch, 2007) were calculated using 

Spatial Analyst (Environmental Systems Research Institute, 2017) and the Geomorphometry and 

Gradient Metrics Toolboxes (Evans et al., 2014). A list of all 42 predictor variables considered in 

the dead biomass models can be found in Table A3.1.   
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 I used a random forest regression model to relate dead biomass at FIA plots to the 

predictor variable layers (Belgiu and Drăgu, 2016; Bright et al., 2014). Random forest is a 

decision tree based algorithm commonly used to map biomass because it is comparatively 

accurate, efficient, can handle many predictor variables, and is robust to noise, outliers, and 

overfitting (Breiman, 2001). The final model had 1,000 trees and considered three predictor 

variables at each split. I narrowed down the 42 predictor variables to a refined set of predictor 

variables suitable for modeling using a data-driven variable selection routine, Variable Selection 

Using Random Forest (VSURF; Genuer et al., 2015). VSURF selected eight “prediction” 

variables. I then removed the variable with the lower variable importance for any pair of these 

predictor variables correlated by 0.7 or more (Dormann et al., 2013).  

Models were evaluated using pseudo R2, root mean square error (RMSE), RMSE 

percentage of the mean, bias, and bias as a percentage of the mean. Out-of-bag pseudo R2 and 

RMSE were calculated, which are robust methods of calculating evaluation metrics where 

predictions are tested against the withheld data as each tree is built (Breiman, 2001). Pseudo R2 

indicates the proportion of variability in the observed data explained by the model and RMSE 

measures the magnitude of differences between predictions and observations. Bias measures the 

tendency for models to over or under-predict. Note that these error metrics only reflect the errors 

in the dead biomass mapping model prediction, but fail to capture other sources of error, such as 

error from tree measurement and allometric errors. 

 I mapped standing live aboveground biomass by subtracting dead biomass from the total 

biomass layer. Since I only quantified standing dead biomass, any biomass that fell since 2001 

ended up in the live biomass pool. This likely leads to over-estimation of live tree biomass. I 

next summarized dead, live, total, and the proportion of dead to total biomass by forest type 
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using LANDFIRE Existing Vegetation type 2014 version 1.4.0 (LANDFIRE, 2017). I show 

results for the six dominant forest types that made up 84% of the forested area. 

Feedstock supply 

 I approximated dead, live, and total standing forest aboveground biomass accessible to 

forest management for five hypothetical bioenergy and/or bioproduct facility sites. These sites 

were selected because they are sites where biomass utilization facilities exist, or have existed in 

the past. The sites are all in Colorado: Laporte, Longmont, Nederland, Kremmling, and Walden. 

The goal of this analysis was to evaluate the maximum potential feedstock supply and the 

feedstock mix between live and dead biomass within 20 miles of hypothetical sites. I defined 

accessible areas within a 20 mile radius around each site to limit the transportation distance to 

the facility. I do not consider road distance in this analysis. I then further refined the accessible 

areas using a map of clearcut harvest events that occurred across the study area between 1984 

and 2015 to define accessibility parameters (Woodward et al., 2017). I characterized the 95th 

percentile slope and distance from roads for this layer and used these parameters to identify areas 

accessible to timber harvest. Accessible slopes and distances from roads are dependent on local 

equipment and forestry practices—this approach of using historical harvests to characterize 

accessibility attempts to account for this. Forests on slopes below 16.6% and within 800 m of 

roads were considered to be accessible to timber harvesting equipment. Lastly, I removed forests 

from consideration designated as National Parks or wilderness areas, since their management 

makes it unlikely to be a commercial biomass source. This definition of accessibility makes 

many simplifying assumptions. The estimates of biomass within this accessible area represent a 

maximum biomass. Not all sites would be suitable for forest management, only a portion of the 

biomass within a treatment would be harvested, and not even all of the harvested biomass would 
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be utilized for bioenergy or bioproducts. I also do not consider patch size, riparian zones, or 

numerous other factors influencing forestry best practices.  

I next compared this maximum potentially accessible biomass to 20-year feedstock 

demand of four example bioenergy production scenarios. These production scenarios from 

Campbell et al. (2018) represent existing or planned technologies in the Rocky Mountain region 

and have been proposed as alternatives for utilizing beetle-killed biomass. In the biofuel 

scenario, wood chips are pyrolyzed to produce 1.8 million gallons of near “drop-in” liquid 

biofuel and 17,700 Mg biochar annually. The pellet scenario involves converting wood chips to 

56,500 Mg of pellets for retail and 620 Mg of biochar annually. In the heat scenario, 22,400 

million Btu of thermal energy is produced through combustion of wood chips at a distributed-

scale, highly-automated thermal power plant. This scenario could heat large buildings or building 

complexes (i.e., schools). The power scenario produces 89,100 MWh of electricity through 

combustion of wood chips, which is sent to the electric grid. The annual feedstock demand was 

calculated by multiplying the feedstock processing capacity (Mg h-1) by the annual operating 

time (h) from Table 1 of Campbell et al. (2018). This annual feedstock demand was multiplied 

by 20 to estimate the biomass required for 20 years of operation. I also report this 20-year 

demand as a percentage of the potentially accessible biomass for each site to understand near-

term feedstock demand relative to the current biomass at these locations.  

Results 

 Of the 9,502 trees measured in the FIA plots, 3,024 (32.8%) of the trees were dead. 

Lodgepole pine was by far the most common dead tree measured (n = 2,104 dead lodgepole 

pine), followed by subalpine fir (n = 326), Engelmann spruce (n = 239), and quaking aspen (n = 

198). Lodgepole pine was the most impacted species by standing aboveground biomass as well. 
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For lodgepole pine, the most abundant species in the plot data, dead biomass composed 65% of 

the total biomass stock (Figure 3.2). For all other species, live biomass far exceeded dead 

biomass (Figure 3.2). Engelmann spruce and subalpine fir, two other subalpine species, were the 

second and third most abundant species, respectively and also had the second (24%) and third 

(20%) highest proportions of dead to total biomass, respectively. 35% of all biomass in the FIA 

plots was dead. 

 

Figure 3.2. Dead, live, and total standing aboveground biomass measured in the Forest Inventory 
and Analysis (FIA) plots for the six most abundant species.  
 

Most dead trees were classified as being in the lower (i.e., less decayed) decay classes—

99% of the dead trees measured had a decay code of three or less, with 78% having a decay code 

of two or less. A decay class of two represents the following condition, “There are few limbs and 

no fine branches; the top may be broken; a variable amount of bark remains; sapwood is 

sloughing with advanced decay; heartwood is sound at base but beginning to decay in the outer 

part of the upper bole” (O’Connell et al., 2015). While decay class was concentrated in the lower 

decay classes for all species, lodgepole pine tended to be less decayed than other species, and 

quaking aspen was more decayed (Figure 3.3).  
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Figure 3.3. Boxplots comparing standing dead tree decay class codes for the most abundant 
species in this study.  
 
 Plots had an average of 131 Mg ha-1 (min = 3 Mg ha-1, max = 381 Mg ha-1) of total (live 

and dead) standing aboveground biomass and an average of 41 Mg ha-1 (min = 0 Mg ha-1, max = 

228 Mg ha-1) of standing dead biomass (Figure 3.4).  On average, 32.1% of standing 

aboveground biomass in plots was dead (min = 0%, max = 100%).  

 

Figure 3.4. a) Comparison of total (live and dead) and dead standing aboveground biomass at the 
Forest Inventory and Analysis (FIA) plots. Histograms of  (b) basal area and (c) trees ha-1 at the 
same FIA plots. 
 
 The random forest model predicted standing dead aboveground biomass with out-of-bag 

pseudo R2 = 0.47, RMSE = 28.8 Mg ha-1, % RMSE = 69.5%, bias = 1.08 Mg ha-1, and a % bias = 
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2.6%. Total aboveground biomass and 2015 mortality layers were the top predictor variables 

(Figure A3.1), followed by frost-free period, northness, elevation, heat load index, and roughness 

(27 x 27). The relationship between observed and predicted dead biomass shows decent model 

performance, particularly for plots up to about 100 Mg ha-1 (Figure 3.5). The model predictions 

saturate at about 100 Mg ha-1, leading to an underprediction of dead biomass in the high dead 

biomass plots. However, the positive bias indicates that the model tends to slightly overpredict 

biomass on the whole. 

 

Figure 3.5. Regression of observed and predicted aboveground standing dead plot biomass for 
the random forest model.  y = 1.094 x – 5.09 
 
 This random forest model was applied across the landscape to map standing dead 

aboveground biomass, which was then subtracted from the total biomass map to estimate 

standing live aboveground biomass (Figure 3.6). The maps indicated 54.8 Tg of the 194.5 Tg of 

standing aboveground biomass was dead, and that the remaining 139.6 Tg was living. 
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Converting to carbon using a 0.5 carbon concentration, there was 27.4 Tg dead, 69.8 Tg live, and 

97.2 Tg of total standing aboveground carbon (AGC). 

 

Figure 3.6. Maps of dead, live, and total standing aboveground biomass. 

Lodgepole pine and spruce-fir forests covered the largest area. These two forest types 

also have the greatest mean and summed dead, live and total standing aboveground biomass 

(Figure 3.7). Additionally, the greatest proportion of total biomass is dead in these forest types. 

The other four dominant forest types in this area covered similar area. Aspen and aspen-mixed 

conifer forests were 20% or more dead, on average, and contained slightly more dead, live, and 

total biomass than Douglas-fir-ponderosa pine-lodgepole pine mixed forests and ponderosa pine 

forests.  
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Figure 3.7. (a) The area of each of the most common forest types in the study area as shown by 
LANDFIRE 2014 version 1.4.0. Panes b – d summarize biomass of pixels by these forest types: 
(b) the mean dead percentage of total biomass (with standard deviations), (c) aboveground 
biomass, and (d) mean biomass (with standard deviations). 
 
 Limiting biomass maps to areas potentially accessible for timber harvest reduced the 

forest area from 1.52 million ha to 644,476 ha. Nederland potentially has access to the most total 

standing aboveground biomass (11.7 Tg), while Laporte had five times less accessible biomass 

(2.3 Tg; Figure 3.8). Live biomass exceeds dead biomass at all sites. Walden had the highest 

proportion of dead to total biomass at 33.3%. The distributed-scale heat scenario had very low 

annual feedstock requirements and would require 0.4% - 1.8% of potentially accessible biomass 
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over 20 years of operations, depending on the facility location (Table 3.1). The power generation 

scenario required the most feedstock, accounting for 13.5% - 69.3% of the potentially accessible 

biomass (Table 3.1).  

 

Figure 3.8 Dead, live, and total standing aboveground biomass that is potentially accessible 
around hypothetical bioenergy facility sites. 
 
Table 3.1 Approximate annual and 20-year feedstock requirement and the percentage of the 
current potentially accessible biomass to supply each bioenergy production scenario for 20 years.  
 

 Percentage of Potentially Accessible Biomass Required for 20 Years 
Production 
Scenario 

Annual 
Feedstock 
(Mg) 

20 year 
Feedstock 
(Tg) 

Kremmling Laporte Longmont Nederland Walden 

Biofuel  65,700 1.31 14.0 57.8 25.3 11.3 19.7 
Pellet 67,014 1.34 14.3 58.9 25.9 11.5 20.1 
Heat 2,102 0.04 0.4 1.8 0.8 0.4 0.6 
Power 78,840 1.58 16.8 69.3 30.4 13.5 23.7 

 

Discussion 

 I evaluated allocation of forest carbon into dead, live and total standing aboveground 

biomass stocks across one of the most severely bark beetle impacted landscapes in the western 

U.S. Standing dead biomass was a major carbon stock—nearly a third of the trees and 35.2% of 

the biomass measured in the FIA plots were dead. At the plot scale, a mean of 32.1% of the total 
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plot biomass was dead. Estimates made using the dead biomass maps produced in this study 

indicate that 28.2% of biomass was dead across the entire 1.52 million ha study area. Berner et 

al. ( 2017) estimated 14.6 ± 7.0 Tg AGC yr-1 from bark beetles across the western U.S. from 

2003 – 2012, for a total of roughly 146 Tg AGC across this time period. My estimate of 27.4 Tg 

C in standing AGC across northern Colorado and southern Wyoming is 19% of this total beetle-

killed carbon across the western U.S. While bark beetles have caused widespread mortality 

across this study area, I do not attribute the cause or timing of mortality. Some of the standing 

dead biomass could be remnants from past bark beetle outbreaks (Pelz and Smith, 2012) and 

other causes of tree mortality.  

Plot data indicate that lodgepole pine had far more dead biomass than any other species. 

Lodgepole pine had more dead than live biomass in the FIA plots. This is a legacy of the 

historically-severe mountain pine beetle outbreaks that severely impacted this area in the 2000’s 

before beginning to decline around 2010. Spruce bark beetle outbreaks also occurred during the 

2000’s in this study area, but had less of an impact on biomass stocks than the mountain pine 

beetle. The plot data show much less standing dead Engelmann spruce than lodgepole pine, but 

the LANDFIRE summarization of the maps show biomass quantities in spruce-fir forests rivaling 

lodgepole pine forests. It is possible that the high dead biomass quantities in the spruce-fir forests 

are attributable to dead lodgepole pine mixed in these forests in addition to moderate mortality in 

both Engelmann spruce and subalpine fir. 

Bark beetles have dramatically impacted these subalpine forests by transferring carbon 

from standing live to dead trees. These dead trees can be expected to remain standing for years to 

decades. An analysis within the study area predicts half the snags may fall within 15 – 20 years 

of mortality, and perhaps sooner at lower elevations (Rhoades et al., 2020). These subalpine 
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forests also have the highest biomass density in the study area, and beetles preferentially infest 

large trees within these forests. However, these forests and their carbon stocks are resilient to 

bark beetle outbreaks, and forest carbon in these areas can be expected to recover to pre-outbreak 

levels within several years to several decades (Hansen, 2013; Raymond et al., 2015). It will take 

longer, however, for these forests to catch up to the undisturbed carbon trajectory. Carbon 

recovery rates can be expected to vary with outbreak severity, advanced regeneration, species 

composition, and pre-disturbance carbon levels (Hicke et al., 2012; Raymond et al., 2015). The 

development of these stands, and how these bark beetle caused changes interact with future 

disturbances, such as fire, drought, and climate change, need to be considered to quantify the full 

impact of these outbreaks on the forest carbon cycle.  

Results show the lower elevation forest types (e.g., ponderosa pine and mixed conifer) 

have much less total and dead biomass than the subalpine forests. I did not include areas burned 

between 2001 and 2015 and the associated dead biomass. So, the small quantities of dead 

biomass that I report in these lower elevation forest types should not be taken as an indication of 

more stable forest carbon in these forest types. Fires occur more frequently in these lower 

elevation forests, which has a greater impact on forest carbon than bark beetles (Hicke et al., 

2013).  

Quantification of dead biomass resulting from bark beetle outbreaks contributes to a 

better understanding of forest disturbance on the carbon cycle and can inform forest management 

planning. The impacts of bark beetles on hydrological and ecological processes correlate with the 

severity of bark beetle mortality (Diskin et al., 2011; Hansen et al., 2015; Pugh and Small, 2012; 

Rhoades et al., 2016). Dead biomass, as a metric of the severity of tree mortality, may better 

reflect hydrological and ecological impacts than metrics such as dead trees per acre. Methods to 
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calculate biomass loss in standing dead trees are actively being refined (e.g., Domke et al., 2011; 

Harmon et al., 2011; Russell et al., 2015; Woodall et al., 2012). While biomass quantities can be, 

and commonly are, converted to carbon by applying a 0.5 carbon concentration conversion, 

carbon concentrations of dead trees vary by general taxa (angiosperms vs. gymnosperms) and 

decay class. Carbon concentration of gymnosperms increases from 49.3% to 53.5% as 

decomposition progresses (Harmon et al., 2013). 

Accounting for structural loss and density reduction as trees decay helped to avoid over-

estimation of individual tree standing dead biomass. The structural loss adjustment factors and 

density reduction factors I used were designed for use with the FIA-CRM (Heath et al., 2009; 

Woodall et al., 2011) for calculating individual tree biomass, but I use them here with the 

Jenkins et al. (2003) allometric biomass equations. The FIA-CRM has similar component 

biomass definitions, and even utilizes Jenkins et al. (2003) in the method. Additionally, Jenkins 

et al. (2003) is more accurate than FIA-CRM in the study area (Vorster et al., 2020). One 

difference between these approaches is that FIA-CRM makes volume and then biomass 

deductions for rough, rotten, and missing cull but Jenkins et al. (2003) does not. Since 

deductions are already made with FIA-CRM, the structural loss adjustment factors do not 

account for structural loss of the bole (Domke et al., 2011). The FIA-CRM is sometimes 

unsuitable because it requires more tree measurements than are present in many forest 

inventories and can significantly under-estimate biomass (Vorster et al., 2020). Structural loss 

adjustment factors designed for use with the majority of allometric biomass equations that only 

require tree diameter and/or height are needed to further reduce uncertainty in standing dead tree 

biomass estimates. Using terrestrial lidar to quantify dead tree biomass and structural loss may 

aid in these efforts (Putman et al., 2018; Stovall et al., 2017).  



94 
 

The FIA plot network is invaluable for forest biomass and carbon quantification efforts 

because it is continuously collected, publicly available, spans forest types, and includes detailed 

tree-specific measurements. Measurements such as the decay class and rot are particularly 

valuable for estimating standing dead tree biomass. One challenge of mapping dead biomass is 

balancing obtaining enough plots to train a robust model with the need for temporal alignment 

between forest inventory data and mortality and biomass maps. I utilized four years of FIA data 

to obtain enough samples to train the standing dead biomass models. The more years of FIA data 

used, the greater the risk is of plot measurements not capturing mortality captured by the 

mortality maps. This is more problematic during periods of greater disturbance activity when 

forests are changing rapidly. It can be easier to align plot data with forest mortality maps for 

disturbances that end abruptly since you can map dead biomass immediately after the 

disturbance without missing subsequent impacts. Bark beetle activity, however, can slowly 

decline over many years after outbreaks peak. Efforts to quantify dead biomass resulting from 

these longer duration disturbances should aim to capture the impacts of the most intense years. 

Waiting until bark beetles have returned to endemic levels may mean waiting until many years 

after the peak, when dead trees have fallen and forests are recovering, making it harder to detect 

forest mortality with remote sensing. Maps that capture cumulative tree mortality (e.g., Bode et 

al., 2018), rather than annual estimates of new mortality (e.g., ADS), may be better suited for 

mapping standing dead tree biomass since they reflect the full disturbance impact rather than just 

the most recent tree mortality. Furthermore, relying on Landsat-derived tree mortality maps over 

ADS better represents the extent and severity of tree mortality, thus better representing the 

location and quantities of dead biomass (Bode et al., 2018; Vorster et al., in prep). 
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Mapping dead biomass has been a challenging task for remote sensing, and 

advancements are needed (Russell et al., 2015). Pflugmacher et al. (2012) tested Landsat time 

series and lidar for mapping downed wood and standing dead biomass, and found Landsat time 

series to outperform lidar. They achieved RMSE = 31 Mg ha-1 and % RMSE = 89%, compared 

to RMSE = 28.8 Mg ha-1 and % RMSE = 69.5% in this study. Kim et al. (2009) used lidar to map 

live and dead standing tree biomass, achieving RMSE = 42 Mg ha-1 and % RMSE= 63% for 

standing dead tree biomass models. The approach demonstrated in this study provides 

complementary methodology and similarly promising results. I mapped standing dead tree 

biomass across a wide range of dead biomass densities and forest types at 30 m x 30 m 

resolution. Tree mortality and total biomass layers were the most important contributors, and 

these layers are already available (e.g., Blackard et al., 2008) or are becoming more available 

across large extents (e.g., Vorster et al., in prep). However, disagreement between national 

biomass maps is significant at the pixel scale, and can impact the accuracy of dead biomass maps 

(Berner et al., 2017). These biomass maps will continue to improve with missions like Global 

Ecosystem Dynamics Investigation (GEDI; Dubayah et al., 2020) and BIOMASS (Quegan et al., 

2019). The total biomass map used in this study was derived from multispectral imagery, and 

thus saturated, or underpredicted biomass in closed-canopy, high biomass forests (Vorster et al., 

2020). The saturation of this study’s high standing dead biomass values would likely be 

ameliorated with improved total biomass predictor variables.  

I approximated potentially accessible dead, live, and total aboveground biomass for five 

potential sites and four bioenergy and bioproduct scenarios. High-biomass areas such as 

Kremmling and Nederland could support all bioenergy production scenarios with less than 17% 

of potentially accessible biomass stocks over 20 years of production. Lower-elevation sites such 
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as Laporte and Longmont would utilize 69.3% and 30.4% of potentially accessible biomass, 

respectively, for the highest feedstock demand production scenario (power generation) over a 20 

year span. Thus, these high feedstock demand bioenergy production scenarios are unlikely to be 

feasible on low elevation sites in this region. The lower-elevation sites (e.g., Laporte and 

Longmont) had access to much less biomass than higher-elevation sites because they only have 

forest access to the west (Figure 3.1) and because lower elevation forests have lower biomass 

densities. This reduced access to biomass would have to be considered alongside tradeoffs that 

may accompany being located near the Front Range population centers, such as the labor and 

product markets. These sites may have access to additional biomass in burned areas, but I do not 

included burned areas in this analysis. Standing dead biomass contributed up to 33.3% of 

potential feedstock, serving as a significant biomass component for sites utilizing biomass from 

subalpine forests. The quantity of accessible standing dead biomass will decline over the coming 

years and decades as these dead trees fall.  

Efforts to quantify climate impacts of utilizing beetle-killed material for bioenergy and 

bioproducts are underway (Field et al., 2018). The dead, live, and total biomass maps produced 

in this study can assist in these efforts by informing biomass densities, transportation distances, 

and even spatially-explicit estimates of post-harvest forest carbon deficits. Future work should 

refine criteria for accessibility and feedstock transportation distances, evaluate a range of 

production scales, and consider taking an optimization approach to locating facility sites. 

Conclusion 

Bark beetles have had a significant impact on northern Colorado and southern Wyoming 

forest biomass stocks, transferring approximately 55 Tg of biomass from live to standing dead 

stocks. Since this study area was one of the most severely bark beetle-impacted areas in the 
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western U.S., this represents a severe case of bark beetle impacts on forest carbon. The novel 

method for mapping dead biomass presented in this study has the potential to be widely applied 

and frequently updated, as it utilizes continuously collected forest inventory data and biomass 

and tree mortality maps that are becoming more accurate and widespread. This approach is 

promising for improving our understanding of the impact of forest disturbances on carbon cycles 

in a rapid fashion. This method was developed in an area that experienced high severity tree 

mortality caused by bark beetles, which preferentially kill large host trees. As such, the 

suitability of this method should be tested in other areas experiencing lower severity disturbance, 

or experiencing disturbances that also kill understory trees, like western spruce budworm. 

Finally, I demonstrated the integration of the dead biomass mapping method with readily-

available geospatial information to evaluate accessible biomass for bioenergy production. While 

scenarios presented are site-specific, future assessments utilizing a similar framework can 

provide valuable information to forest managers and policymakers considering the viability of 

these options for forest resource utilization in new areas. 
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CHAPTER 4 — IMPACTS OF POST BARK BEETLE OUTBREAK SALVAGE LOGGING 
AND CLIMATE CHANGE ON FOREST CARBON, FUEL LOADS, AND SUSCEPTIBILITY 

TO FUTURE BARK BEETLE OUTBREAKS 
 
 
 
Introduction 

Disturbance frequency and severity is expected to increase with the changing climate in 

western U.S. forests (Bentz et al., 2010; Westerling et al., 2011), leading to increased and 

potentially novel interactions between disturbances. Interacting disturbances can cause nonlinear 

ecosystem responses, state changes, and can expose hidden ecosystem dynamics (Buma, 2015). 

It is unclear how these changes to disturbance regimes and disturbance interactions will impact 

forest carbon stocks (Williams et al., 2016). Research is needed to better understand how 

interacting disturbances may produce synergistic effects or intensify or temper ecosystem effects 

(Turner, 2010).  

Mountain pine beetles are bark beetles native to western North America that cycle 

between periods of endemic low density populations that have minor effects and large epidemic 

populations that cause widespread pine tree mortality (Raffa et al., 2008). The beetles use 

pheromone signals to coordinate mass attacks against pine tree hosts. At lower beetle 

populations, healthy host trees can defend themselves against attack. However, beetles can 

overwhelm even healthy host trees at high population densities, killing trees with the water-

transport blocking blue stain fungi that it introduces to the tree (Hubbard et al., 2013).  

Driven by warmer temperatures, drought, and an abundance of suitable hosts, mountain 

pine beetle outbreaks erupted throughout western North America in the late 1990s with 

populations peaking in northern Colorado between 2006 and 2009 (Walter and Platt, 2013). 

Mountain pine beetles can affect a variety of pine species, but lodgepole pine is the beetle’s 
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preferred host. Shore and Safranyik (1992) developed a risk rating system for lodgepole pine 

with two components: the susceptibility index and the beetle pressure index. The susceptibility 

index rates a stand based on four variables: the percentage of susceptible stand basal area, the 

age of the stand, stand density, and location factor. The index reflects the preference of bark 

beetles for stands with an abundance of large, old lodgepole pine. The beetle pressure index 

represents the beetle population density as a function of the size and proximity of the population. 

Carbon stocks in lodgepole pine stands are generally resilient to mountain pine beetle impacts, 

due in large part to the increased growth rates of surviving vegetation. These stands return to 

fixing more carbon than they are releasing through decomposition within several decades or less 

(Hansen, 2013; Raymond et al., 2015). The rate of carbon recovery depends on the severity of 

the mortality, the size distribution of surviving trees, advanced regeneration, species 

composition, and pre-disturbance carbon stocks (Hansen, 2013; Hansen et al., 2015; Hicke et al., 

2012; Pfeifer et al., 2011). 

Salvage logging of beetle-impacted stands is conducted to meet a range of objectives 

ranging from safety to fuels reduction and economic objectives. Beetle-killed biomass is being 

utilized for timber products, bioenergy, and additional bioenergy and bioproduct scenarios are 

being considered (Campbell et al., 2018). Beetle-killed snags can be recovered for many years 

after an outbreak. Snagfall rates are variable across the landscape, but it is estimated that half the 

snags in lodgepole pine forests may fall within 12 – 20 years (Rhoades et al., 2020). While the 

short-term impacts of harvesting beetle-killed wood are important (e.g., Fornwalt et al., 2018), 

disturbances also leave lasting legacies through impacts on species composition, forest structure, 

and biogeochemical cycling. Legacies from harvesting will influence resistance and resilience to 

future disturbances. Salvage logging reduced biomass stocks for at least 50 years in the Greater 
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Yellowstone Ecosystem (Donato et al., 2013). In some areas, subalpine fir is expected to become 

more abundant in untreated stands, while lodgepole pine is predicted to remain the dominant 

species in harvested stands (Collins et al., 2011). Fire behavior, and consequently the impacts of 

fire on carbon storage, will vary between treated and untreated stands because subalpine fir in 

untreated stands will serve as ladder fuels and surface fuel loads will increase over time as snags 

fall (Collins et al., 2012). Additionally, the differing species composition between harvested and 

untreated stands will alter resistance to future bark beetle outbreaks.  

Studies evaluating recovery in salvage logged and untreated stands often do not 

incorporate climate change impacts. This may be for good reason, as climate change will impact 

forests in complex and unexpected ways that are difficult to capture in modeling exercises. 

However, scenarios that consider climate change should be explored. Climate change is expected 

to result in increased temperatures and drought frequency in northern Colorado (Temperli et al., 

2015). This will impact forest carbon storage by changing growth rates as well as disturbance 

frequency and severity. Fires, for example, are expected to be more severe and frequent 

(Westerling et al., 2011). The effect of changing climatic conditions on mountain pine beetles in 

Colorado subalpine forests is uncertain, with some studies suggesting climatic conditions to 

become more suitable (Bentz et al., 2010), and others predicting a decline in climatically-suitable 

habitat (Evangelista et al., 2011).  

The Forest Vegetation Simulator (FVS) is a growth-and-yield model developed and 

maintained by the US Forest Service (Crookston and Dixon, 2005) that is commonly used to 

evaluate forest management actions (Caldwell et al., 2013; DeRose and Long, 2009; Donato et 

al., 2013; Raymond et al., 2015). Regional component models predict the growth and mortality 

of each tree in a stand. Model extensions can be used to simulate climate change (Crookston et 
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al., 2010) and disturbances such as fire (Rebain et al., 2010). Climate-FVS modifies FVS to 

simulate climate change effects by adjusting mortality, regeneration, site index, and growth rates. 

Climate-FVS uses viability scores that measure the likelihood of climate at a specific location 

and time overlapping with conditions from species’ current ranges (Crookston, 2014). Climate-

FVS models regeneration, introducing the most suitable species for predicted climatic 

conditions. It is assumed that all species are available to establish at each site (e.g., seed 

distribution is not modeled) and that species’ current ranges will reflect future climatic 

suitability.  

The objective of this study was to simulate the stand-level impacts of climate change and 

harvesting bark beetle-impacted stands on forest carbon, fuels, and susceptibility to future 

mountain pine beetle outbreaks. I compared clearcut and untreated bark beetle-impacted stands 

with and without climate change using FVS. The analysis was conducted on lodgepole pine-

dominated FIA plots in northern Colorado and southern Wyoming.  

Methods 

Study Area 

This study was conducted across the lodgepole pine forests of northern Colorado and 

southern Wyoming. I used FIA plots falling within a bounding box around Arapaho and 

Roosevelt National Forests and Medicine Bow-Routt National Forests. The study area includes 

lands with a variety of ownerships and management goals: National Forests, Rocky Mountain 

National Park, state land and private land. The lodgepole pine stands used in this study ranged 

from 2,490 m to 3,374 m above sea level. Mean annual temperature as measured in 1990 ranged 

from -1.1 °C to 4.7 °C (mean = 1.5 °C) and mean annual precipitation ranged from 372 mm to 

622 mm (mean = 485 mm). By 2090, Climate-FVS shows that under the Ensemble 6.0 climate 
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scenario, the range of mean annual temperature rises to 2.9 °C to 8.6 °C (mean = 5.4 °C) and 

precipitation increases to a range of 410 mm to 682 mm (mean = 534 mm). The most commonly 

co-occurring species with lodgepole pine in the study area are quaking aspen, subalpine fir, and 

Engelmann spruce.  

Plot Data 

I used 47 FIA plots sampled between 2012 and 2017 to initialize the FVS model 

simulations. These plots were all composed of ≥90% lodgepole pine basal area relative to total 

basal area and had basal area ≥ 20 m2 ha-1. I selected plots sampled between 2012 and 2017 so 

the measurements captured post-outbreak stand conditions, and were measured close enough to 

the bark beetle outbreaks for many of the snags to still be standing. Seven of the plots were 

sampled in 2012, nine in 2013, six in 2014, 15 in 2015, seven in 2016, and three in 2017. These 

FIA plots were used to capture variation in forest structure, mountain pine beetle outbreak 

severity, site productivity, and disturbance legacies. 

Forest Vegetation Simulator 

I used the FVS Central Rockies Variant (FVS-CRV) along with the Fire and Fuels 

Extension (FFE) and Climate-FVS to simulate growth in the 47 FIA plots for 100 years from 

2012 – 2112. Four scenarios were considered: (1) untreated, (2) harvested, (3) climate change 

and harvested, and (4) climate change without treatment. Neither climate change nor a treatment 

were simulated in the untreated scenario. A clearcut was scheduled at the beginning of the 

simulation for the two harvested scenarios. All live and dead standing trees above 12.7 cm (5 in) 

diameter were removed. It is common in this region for salvage logging to leave very few 

standing live or dead mature trees to avoid windthrow of residual live trees (Collins et al., 2012). 

I simulated lop-and-scatter slash management where non-merchantable biomass is left spread 
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across the site. Donato et al. (2013) found the impacts of salvage harvesting on biomass and fuels 

to be similar for lop-and-scatter and whole tree harvest, so I did not evaluate both slash 

management techniques.  

I implemented the default FVS model in the untreated and harvested scenarios without 

climate change, but specified regeneration based on FIA plot data. I specified conditional 

regeneration in both the harvested and untreated scenarios that introduced a pulse of seedlings to 

the stand when the stocking fell below the default of 65%. This seedling pulse consisted of 431 

lodgepole pine seedlings acre-1, 20 aspen suckers/root sprouts acre-1, 30 Engelmann spruce 

seedlings acre-1, and 30 subalpine fir seedlings acre-1. For the harvest simulation, I planted 1,054 

lodgepole pine seedlings acre-1, 49 aspen suckers/root sprouts acre-1, 70 Engelmann spruce 

seedlings acre-1, and 70 subalpine fir seedlings acre-1 after harvest. These seedling species and 

counts reflect observations from 559 lodgepole pine FIA plots in Colorado and Wyoming for 

mature (conditional regeneration) and regenerating stands (for post-harvest planting) (Bagdon et 

al., n.d.). Aspen sprouting was turned off for the harvested and untreated scenarios because when 

sprouting is on, I have observed that aspen growth can unrealistically dominate stand growth in 

FVS. 

The climate change scenario was run with default Climate-FVS parameters, including the 

autoestablishment model (Crookston, 2014; Crookston et al., 2010). Defaults for the 

autoestablishment model were used. The autoestablishment model plants the four species with 

the highest viability score, regardless of their previous presence or proximity to a site. Seedling 

numbers are calculated using stocking rates and viability scores. I used the Ensemble 6.0 climate 

scenario, which is an ensemble of 17 models from the Intergovernmental Panel on Climate 

Change’s Fifth Assessment Report for representative concentration pathway (RCP) 6.0 
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(Crookston, 2014; Fekety et al., 2020; IPCC, 2014). Emissions peak around 2080 in RCP 6.0, 

and would be expected to result in 2.2 °C of warming between 2081 and 2100.  

The FFE was used to track forest carbon and metrics that reflect the potential impact of 

fire. I used Jenkins et al. (2003) allometric biomass equations to calculate carbon, although the 

FFE approach is still used for dead trees, forest floor, down dead wood, and shrub/herb pools 

(Rebain et al., 2010). Jenkins et al.’s (2003) equations were used rather than Vorster et al. (2020) 

allometric equations because the Vorster et al. (2020) equations only apply to three species. I 

tracked total stand carbon, which includes aboveground live and dead trees, down dead wood, 

live and dead roots, litter and duff, and shrubs and herbaceous vegetation. 

I also tracked four metrics reflecting potential impacts of fire: canopy base height, crown 

bulk density, torching index, and crowning index. Torching index is the “20-ft wind speed 

required to cause torching of some trees under severe conditions” and the crowning index is the 

“20-ft wind speed required to cause an active crown fire under severe conditions” (Rebain et al., 

2010). Crowning and torching indices are functions of surface fuels, fuel and foliar moisture, 

canopy base height, canopy bulk density, slope, and canopy wind dynamics (Scott and 

Reinhardt, 2001). Lower torching and crowning indices indicate that severe fire effects resulting 

from torching and crowning crown fires are more likely to occur in the event of a fire. Canopy 

base height indicates the height of canopy fuels off the ground, and thus how fire might 

transition from surface to the canopy. Canopy bulk density is a canopy fuel characteristic that 

estimates the density of canopy fuels, and thus how likely it is for fire to move through the 

canopy.  

The mountain pine beetle susceptibility index is calculated as an estimate of susceptibility 

to mountain pine beetles should an outbreak occur (Shore and Safranyik, 1992). This index is 
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described in the Introduction. I was only able to include the percentage of susceptible pine basal 

area and the density factor when calculating the index because the formula for calculating the 

location factor was developed for British Columbia and does not apply to this study area. I was 

also unable to incorporate the age factor because I did not have age information for each tree. 

The location and age factors are simply multipliers between 0 and 1 that re-scale the 

susceptibility index. The susceptibility index can still be calculated as the product of the 

percentage of susceptible pine basal area and the density factor.  

In summary, I tracked the following metrics for each stand and simulation: species 

composition and other stand structure metrics, carbon stocks, fire indices, canopy fuel 

characteristics, and mountain pine beetle susceptibility. The 95% confidence intervals for the 

mean response from across the 47 plots are shown, and non-overlapping confidence intervals are 

interpreted as significant differences between simulations. 

Results 

Stand Structure and Composition 

Lodgepole pine maintained dominance over the 100-year projections in both scenarios 

that did not incorporate climate change (Figure 4.1). Engelmann spruce and subalpine fir were 

most abundant in the harvest scenario. Under climate change scenarios, lodgepole pine basal area 

and trees per acre declined quickly to none by the end of the 100-year projection, regardless of 

whether the stand was clearcut. In the climate change untreated scenario, lodgepole pine basal 

area increases similarly to the untreated FVS default until 2022 before rapidly declining. Of the 

four species shown in Figure 4.1 that are currently common in these forest types, only aspen 

abundance increased in both climate change scenarios, although only to modest densities. A 

diversity of other species had established by the end of the climate change projections: Juniperus 
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monosperma, Juniperus osteosperma, Juniperus scopulorum, Larix occidentalis, Pinus edulis, 

Pinus flexilis, Pinus ponderosa, Picea pungens, Populus deltoides, and Quercus gambelii.   

 

Figure 4.1. Average basal area (m2 ha-1) and trees ha-1 with 95% confidence intervals for the 47 
stands simulated in this study.  
 

Climate change scenarios had similar basal areas to each other by the end of the 100-year 

projections. This basal area was less than half of the basal area achieved by scenarios without 

climate change (Figure 4.2). While climate change scenarios had far fewer trees, their trees were 

of a similar average diameter to the harvested default scenario.  
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Figure 4.2. Mean (±95% confidence interval) basal area, tree density, and quadratic mean 
diameter (QMD) for the four simulations considered in this study.  

Harvests showed similar impacts on forest carbon with and without climate change 

(Figure 4.3). In both cases, the harvested stands trailed their untreated counterparts in total stand 

carbon for 80 years before eventually catching up. Standing dead carbon accumulated in climate 

change scenarios as the changing climate stressed and killed trees. After fifty years into the 

simulations, the climate change scenarios lagged significantly in total aboveground live carbon 

compared to stands without climate change impacts. Ultimately, climate change was more 

impactful on total stand carbon by the end of the projections than harvesting (Figure 4.3). 
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Figure 4.3. Mean (±95% confidence interval) forest carbon stocks.  

Disturbance Susceptibility 

 All scenarios showed a decline in mountain pine beetle susceptibility (Figure 4.4). The 

mountain pine beetle susceptibility index declined sharply after harvest because the harvest 

removed all host trees. The susceptibility index slowly remained low for the treated scenario 

relative to untreated for the 100-year projection due to high stand density, greater species 

diversity, and lower quadratic mean diameter in the treatment. Climate change reduced mountain 

pine beetle susceptibility compared to the untreated default scenario, but raised it slightly 
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compared to the harvest scenario. Other pine host species, such as ponderosa pine and limber 

pine, established in the climate change scenarios. 

 

Figure 4.4. The average (±95% confidence interval) mountain pine beetle (MPB) susceptibility 
index for each simulation (Shore and Safranyik, 1992). 
 
 Both the default and climate change harvest scenarios were initially more susceptible to 

torching but less susceptible to crowning relative to untreated default and climate change 

scenarios. The default harvested and untreated stands had the greatest susceptibility to crown 

fire, as indicated by a greater canopy bulk density after about 30 years (Figure 4.5). The two 

climate change scenarios converged in their canopy fuel characteristics by 30 years, having 

relatively low canopy bulk densities and canopy base heights. 
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Figure 4.5. (a) Canopy bulk density, (b) canopy base height, (c) torching index, and (d) crowning 
index for the Forest Vegetation Simulator projections. Means (±95% confidence interval) of the 
47 simulated stands are shown. 

Discussion 

The impacts of climate change on forest carbon, as projected by Climate-FVS, were 

dramatic and exceeded the effects of salvage harvesting alone after roughly 50 years. Climate 

change significantly reduced total stand carbon at the end of the 100-year projection. The 

climatic suitability for lodgepole pine decreased from the start of the simulation period, with 

noticeable impacts on the carbon cycle by 2042. As climatic suitability declines, the dead carbon 
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pool can be expected to increase at the expense of live carbon pools (Figure 4.3). Total 

aboveground live carbon stocks were similarly low in both treated and untreated climate change 

scenarios by 50 years, and had roughly a third of the total aboveground live carbon of scenarios 

that did not incorporate climate change by 100 years. Species currently associated with lower 

elevations (i.e., ponderosa pine and Gambel oak) are projected by Climate-FVS to be better 

adapted for the subalpine sites in this study than current species.  

While this is just one model built on many assumptions, these results are attention-

grabbing. Climate change has the potential to change forest structure and composition in this 

region, and to greatly reduce forest carbon stocks. The rate at which the current species become 

unsuitable highlights the need for climate-adaptive forest management (Janowiak et al., 2014) 

and for continued research to anticipate climate change effects on forests. Bark beetle outbreaks 

can select for trees more genetically resistant to future bark beetle outbreaks (Six et al., 2018). 

These impacts are not captured in model simulations. Where conditions are suitable and 

windthrow risk is deemed acceptable, retention of live trees during salvage harvest should be 

considered. These live trees may be better adapted for future conditions than the trees that were 

killed by bark beetles (Six et al., 2018). Additionally, retaining healthy live trees can increase 

carbon stocks relative to clearcuts (Mathys et al., 2013).    

Salvage logging reduces short term fire risk (Collins et al., 2012), and here I show that 

mountain pine beetle susceptibility also declines with harvest. This result is not surprising, given 

the preference of bark beetles for large host trees and aligns with observations of reduced 

mortality severity in historical forest treatments completed ~20-50 years before bark beetle 

outbreaks (Vorster et al., 2017). It was surprising that susceptibility to mountain pine beetles in 

untreated stands only increased modestly before declining over the course of the 100-year 
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projection. I expect that the susceptibility would begin increasing in default (no climate change) 

scenarios if these simulations were extended beyond 100 years as the lodgepole pine host trees 

grow. One of the main factors leading to reduced mountain pine beetle susceptibility in climate 

change scenarios is the greater species diversity and abundance of non-pine trees. The harvested 

default scenario gained more Engelmann spruce and subalpine fir than the untreated default, 

contradicting findings from other studies that have found greater abundance of subalpine fir in 

untreated stands (Collins et al., 2012). This, combined with the high density of trees in the 

untreated default kept susceptibility to mountain pine beetles low. The regeneration pulse that I 

plant after harvest is based on summarized FIA data, while Collins et al., (2012) measured 

regeneration in salvage harvested plots to initialize their FVS simulations. The FVS is sensitive 

to regeneration (Bagdon et al., n.d.). Thus, this reduced susceptibility of salvage harvested stands 

needs further exploration. Future analyses should model a variety of species compositions and 

seedling counts to better capture the range of stand development trajectories. Case studies in the 

literature and FIA plots could provide this range of regeneration observations to project in FVS. 

These differences in susceptibility to future disturbances have implications for forest 

carbon sequestration and for the climate impacts of forest products. For example, the different 

susceptibilities to mountain pine beetle suggests that while the carbon stocks in the harvested 

stands are less than the untreated alternative for the first 80 years, the carbon is perhaps less 

likely to be lost in future bark beetle outbreaks. Accounting for the impacts of multiple 

disturbances is complicated, though, because other disturbances, such as fire in this study, have 

opposing and temporally-dependent trends in susceptibility between the different scenarios. 

Nonetheless, Climate-FVS is a great tool to help consider the stability of carbon stocks when 

comparing carbon outcomes of management alternatives.  
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Climate change exacerbated the most recent mountain pine beetle outbreaks. However, 

my results suggest that climate change may have an indirect dampening effect on mountain pine 

beetle outbreaks in this area in the long run by decreasing suitability for their preferred host 

trees. This phenomena has also been projected for Engelmann spruce and spruce beetles 

(Temperli et al., 2015). While the projections show substantially decreased susceptibility to 

severe fire in the climate change scenario, this is not likely to be the case. As new vegetation 

communities develop on this site, their fuel characteristics will shape fire susceptibility.  

Conclusion 

 This study uses the FVS to compare salvage logged and untreated stands, finding 

salvage-logged sites to recover to untreated total stand carbon stocks after 80 years. Salvage-

logged sites had lower susceptibility to mountain pine beetles. Impacts of salvage logging on fuel 

canopy characteristics were mixed depending on the timeframe being considered. Canopy fuel 

characteristics changed more rapidly than mountain pine beetle susceptibility. Less than 20% of 

the landscape is expected to be salvage-harvested, so these changes to disturbance susceptibility 

may be minor at the landscape scale (Collins et al., 2012). Future work should evaluate if 

heterogeneity resulting from a patchwork of salvaged and untreated areas reduces susceptibility 

to bark beetle outbreaks at the landscape scale. Climate change impacts on stand structure, forest 

carbon, and disturbance susceptibility were dramatic, suggesting that climate change may outsize 

post-outbreak forest management effects. While great uncertainty surrounds climate change 

projections on forest regeneration, mortality, and growth, these models are useful for exploring 

forest processes that occur over long time frames and larges spatial extents that are otherwise 

difficult to evaluate with other ecological methods. The approach employed in this study cannot 

account for spatial dynamics, and does not adequately represent the variability in forest 
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development. Future work should evaluate a range of developmental trajectories and should 

consider spatial disturbance interactions. 
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CONCLUSION 
 
 
 
 In this dissertation, I estimated forest biomass from individual tree to landscape scales, 

quantified the impacts of bark beetles on this biomass, and projected how forest management 

may shape both biomass stocks and susceptibility to future forest disturbances. I leveraged 

remote sensing, advances in cloud computing, and existing data source to advance the accuracy, 

rigor, and spatial scale of forest biomass and disturbance assessments. This information was used 

to improve understanding of the ecological processes underlying and resulting from forest 

disturbance.  

 I demonstrated the foundational role of allometric biomass equations in the accuracy of 

biomass estimates, and that these equations should be carefully evaluated before application. 

Tree growth form varies with species, genetics, and growing conditions. Equations developed to 

make predictions across large regions or countries may not capture local growth forms. Thus, 

allometric equations must be evaluated with trees from the area where they are being applied to 

truly understand their errors. This step can reduce errors in final biomass estimates drastically—

informed allometric equation selection reduced landscape biomass errors by 70%. This 

evaluation revealed that allometric equations used for national carbon inventories 

(Environmental Protection Agency, 2018) have substantial negative bias in the study area. 

Failure to consider the contributions of these allometric errors to landscape biomass estimates 

results in drastic under-reporting of uncertainty. However, obtaining independent data to 

represent local tree form is challenging. These data are expensive to obtain and rare. Efforts to 

gather and share existing destructive sampling data (Radtke et al., 2015) can alleviate this 

problem. I also worked on a collaborative project to advance methods for non-destructively 
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sampling individual tree biomass (Stovall et al., 2017). This technology has the potential to make 

individual tree data more available, leading to improved allometric biomass equations and more 

widespread local evaluation of allometric equations. 

The fact that allometric uncertainty is rarely accounted for means that error of forest 

biomass estimates is frequently and substantially under-estimated. As a result, the general 

perception is that we can confidently estimate forest carbon stocks. This confidence guides 

investment in forest carbon markets to mitigate climate change. Yet, once allometric uncertainty 

was accounted for, I found uncertainty to be as high as 164.5% of the mean and only as low as 

94.4%. These high levels of uncertainty in forest biomass estimates is surprising, and 

underscores the importance of refining methods for quantifying forest biomass. 

 In Chapter 2, I found that efficient remote sensing methods can better quantify the extent 

and severity of tree mortality than the existing standard datasets. These remote sensing methods 

can quantify forest mortality at a finer spatial resolution, with greater coverage, and with 

consistency across large extents (i.e., multiple states in this case). Aerial detection surveys, the 

existing method widely used to quantify insect impacts, complement remote sensing methods by 

identifying the year of impact and the causal insect or disease. The fusion of these products led to 

insights about bark beetle population dynamics. Mapping mortality severity at finer scales can 

help to quantify the ecosystem impacts of bark beetle outbreaks—as the effects of bark beetles 

on hydrologic and ecosystem processes scale with mortality severity. I have been working with 

others to apply these mortality severity maps to understand the effects of bark beetles on 

streamflow in headwaters.  

This approach to mapping tree mortality also advances our ability to map dead biomass, 

which is a task that has challenged the remote sensing field. Chapter 3 demonstrated how pairing 
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mortality severity maps with biomass maps and field data can be used to quantify dead, live, and 

total forest biomass. Nearly 30% of total biomass was transferred to standing dead biomass in the 

study area following severe bark beetle outbreaks. The standing dead carbon pool is clearly 

significant, thus methods designed to specifically quantify dead carbon are critical for carbon 

inventories. I also used these maps around potential bioenergy facilities to assess the quantity 

and condition of potentially accessible biomass relative to 20-year demand of four bioenergy 

production scenarios.  

In the last chapter, I modeled the impacts of forest management and climate change on 

bark beetle-impacted lodgepole pine forests. Salvage logging had lasting impacts on forest 

carbon, and also influenced susceptibility to future fire and bark beetle outbreaks. However, 

climate change had a greater effect on forest carbon and disturbance susceptibility. Climate 

change impacts on forest processes will continue to be pervasive, and thus cannot be excluded 

from forest projections. However, these impacts are unpredictable and poorly understood. 

Simulating climate change effects on forests, and how climate change should be considered in 

forest management is a particularly important topic for continued research. 

 Forests face many threats from land use change, invasive species, climate change, and 

associated severe, frequent, and novel disturbance patterns. Simultaneously, forests are 

increasingly essential for their contributions to hydrological function, biodiversity, carbon 

storage, food production, and fiber. The field of forest ecology has important contributions to 

make in this predicament by informing forest management, guiding policy, and engaging the 

public. This dissertation shows how remote sensing technologies, field data, and simulation 

models can advance understanding about interactions between biotic disturbances, climate 

change, and forest management. This research addresses pressing questions such as the carbon 
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footprint and feasibility of forest bioenergy in forests with substantial tree mortality, the 

connections between forest disturbance and hydrology, and how to accurately and efficiently 

monitor the role of forests and disturbances in forest carbon sequestration. 
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APPENDIX 
 
 
 
Chapter 1 Appendices 

Appendix 1.1: Additional information for the methods 

Tables and text detailing additional information about methods, such as destructive sampling, 

component calculation, branch wood and foliage component estimation, predictor variables used 

for biomass mapping, and a comparison of trees from the various data sources in this study. 

Additional details about the methods 

Destructive Sampling 

I collected size and mass measurements in the field for the bole, bark, crown (defined as 

the portion of the tree between the first live branch and the 10.2 cm top), and top of the tree 

(everything above the 10.2 cm top) using digital scales (OHAUS Valor 1000 model V11P6 

precision scale, maximum 6 kg, least count 0.001 kg; Tree LVS 700 large scale, maximum 320 

kg, least count 0.1 kg). Bole, bark, branch wood, and branch foliage subsamples were collected 

and oven dried at 105°C (Poudel and Temesgen, 2016) to determine moisture content and 

component biomass. Disks cut from the top of 1.2 m bole segments served as the bole and bark 

subsamples. I measured the weight and dimensions of the disk, with and without bark. A 10 cm 

strip of bark was measured, weighed, and kept for oven-drying. Six live branches—two 

randomly selected from the lower, middle, and upper third of the crown—were collected from 

each tree as wood and foliage subsamples. For small trees with fewer than six branches below 

the 10.2 cm top, I randomly selected four subsample branches from the 15 lowest branches. Only 

a portion of branch wood was kept for branches >5 kg to expedite oven drying, but all foliage 
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was retained. Dead branches were also subsampled for moisture content (n = 10 lodgepole pine, 

n = 12 ponderosa pine, n = 14 Douglas-fir). 

Component Biomass Calculation 

Bole and bark component biomass were calculated using the disks and 1.2 m bole 

segments. I calculated the bark mass per unit bole surface area from the disks, and then averaged 

across all disks for an individual tree. This average for each tree was multiplied by the surface 

area of each segment and summed to obtain bark wet mass. Bole wood wet mass was calculated 

by subtracting the bark wet mass from the field-measured four-foot segments. The percentage 

moisture content from the bark subsamples and disks were applied to obtain bark dry mass and 

bole wood dry mass, respectively. The disk moisture content was also used to calculate the dry 

mass of the top main stem.  

I developed regression equations for each species to estimate branch foliage and wood 

mass for each crown branch (Chung et al., 2017; Kershaw and Maguire, 1995; Poudel and 

Temesgen, 2016; Temesgen et al., 2011). The first step was to predict the length for the two 

thirds of the crown branches where length was not measured so that length could be considered 

as a predictor variable when estimating branch foliage and wood mass. I generated a multiple 

regression equation for each species to predict branch length considering the following predictor 

variables in linear and log-linear equations: branch diameter, DBH, stem height at base of 

branch, tree height, relative branch depth (Poudel et al., 2015), crown width at widest axis, and 

height to first branch. Equations expected to perform well were developed a priori (Table 

A1.1.1) and were then modified based on model evaluation statistics and reduction of predictor 

variables correlated by 0.70 or more (Dormann et al., 2013). Equations were selected that 

performed best based on adjusted R2 and root mean square error (RMSE) and that met 
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assumptions of residual normality and homoscedasticity. The same method used to select the 

branch length equations was used to determine the best equation for branch foliage and branch 

wood wet mass. I considered the same predictor variables with the addition of branch length. The 

top models (Table A1.1.2) were used to estimate branch foliage and branch wood wet mass for 

each branch of each destructively sampled tree. To account for potential downward bias when 

back-transforming the log transformed model predictions, a correction factor can be applied 

(Baskerville, 1972). However, this correction factor can also introduce bias, particularly with low 

sample size equations. So, as suggested by other studies (Jenkins et al., 2003), I reported but did 

not apply the correction factor (Table A1.1.3). 

These estimates of branch wood and foliage mass for each crown branch served as the 

basis for calculating the branch and foliage component of the whole tree. I generated a ratio of 

wood to crown wet mass and foliage to crown wet mass for each tree using the sum of branch 

foliage and wood from the branch-by-branch estimation. These ratios were applied to crown and 

top branch mass, then the water weights were subtracted using a tree-specific water content for 

each component. For trees too small to have crown branches, I calculated branch and foliage 

ratios from the subsampled branches. This approach of using the wood and foliage ratios ensured 

that the sum of wood and foliage biomass equaled the total crown and top mass measured in the 

field. Dry top main stem mass and dry dead branch mass were then added to the branch wood 

component. 

Allometric Equation Calculation 

 While including height as a predictor variable with DBH can increase the accuracy of 

allometric equations, I used DBH as the only predictor variable in these allometric equations for 

several reasons. Diameter at breast height is more commonly and accurately measured than tree 
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height, so using DBH only makes the equations more widely applicable and less prone to 

measurement error (Phalla et al., 2018). Additionally, the small sample size of destructively 

sampled trees did not capture the variation in tree height for trees with similar diameters. 

Details about FIA-CRM Component Biomass Calculation 

Bark volume is estimated as a percentage of bole volume and is converted to bark 

biomass using specific gravity. Biomass of the entire tree, merchantable bole, and belowground 

biomass is calculated using equations from Jenkins et al. (2003). Then, equations from Raile 

(Raile, 1982) are used to calculate stump volume. Top biomass is calculated as the difference 

between total aboveground biomass and all other components. Lastly, an adjustment factor 

calculated as the ratio of bole biomass between the regional volume based-estimate and the 

Jenkins et al. (2003) estimate is applied to adjust the biomass of all tree components. The FIA-

CRM equations do not estimate foliage biomass. Sapling (trees < 12.7 cm [5.0 inches] DBH) 

biomass is calculated as the product of total aboveground biomass, excluding foliage, from 

Jenkins et al. (2003) and a sapling adjustment factor found in Heath et al. (2009). This same 

method is used for estimating aboveground biomass of woodland species (i.e., trees where 

diameter is measured at root collar) that are less than 12.7 cm (5.0 inches). For woodland trees 

greater than or equal to 12.7 cm (5 inches), biomass is calculated from volume just as it is for 

tree boles, and component biomass is not calculated. 

Predictor Variables for Biomass Mapping 

 Texture statistics were generated from grey-level co-occurrence matrices using the glcm 

package in R (Zvoleff, 2016). I made the following texture metrics for ETM+ bands 1, 2, 3, 4, 5, 

and 7 on a 3x3, 5x5, 7x7, 9x9, and 11x11 window and a (1,1) shift: mean, variance, 

homogeneity, contrast, dissimilarity, entropy, second moment, and correlation. Some of these 
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texture measures have shown promise in other studies relating Landsat imagery to forest biomass 

(Kelsey and Neff, 2014; Lu, 2005; Lu and Batistella, 2005; Zhao et al., 2016). I generated each 

combination of band, window size, and texture measures because the relationship between 

texture and forest biomass varies with many factors including vegetation type, imagery, and 

window size.  

I generated additional topographic, geomorphometric, and climatic predictor variables 

that correlate with tree species and biomass distributions (Evans and Cushman, 2009; Swetnam 

et al., 2017). Elevation, slope, northness, and eastness were derived from the National Elevation 

Dataset (Gesch et al., 2002; Gesch, 2007; Kumar et al., 2006). Using the Spatial Analyst 

(Environmental Systems Research Institute, 2017) and Geomorphometry and Gradient Metrics 

Toolboxes (Evans et al., 2014), I also generated the compound topographic index, heat load 

index, curvature, and slope position and roughness on a 3x3, 6x6, 9x9, 12x12, 15x15, 21x21, and 

27x27 window size. Climate normals (1961 – 1990) were downscaled to a 30 m x 30 m spatial 

resolution to match the scale of other rasters (Wang et al., 2016). 

Variable Selection Using Random Forest (VSURF) 

Variable Selection Using Random Forest (VSURF) was used to select variables for 

modeling biomass across the landscape (Genuer et al., 2015). VSURF first ranks all variables by 

the variability in their variable importance score across 50 random forest runs. More important 

variables have higher variability than less important variables. Variables falling below an 

importance threshold are removed. An “interpretation” set of variables is next determined from 

this reduced set of variables by running 25 random forest runs with the top variable and then 

adding the next-most-important variable one-by-one and rerunning the models. The 

interpretation variables are those from the simplest model of the models with an out-of-bag error 
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within one standard deviation of the minimum error. A “prediction” set of variables is selected 

by adding interpretation variables step-wise, and only keeping variables that reduce the out-of-

bag error significantly more than adding a noisy variable. The VSURF procedure resulted in an 

interpretation set of variables each with a relationship to aboveground biomass and a prediction 

set with reduced redundancy suitable for prediction. 

Modeling Plot-Scale Biomass Differences 

 At the plot scale, I identified the stand characteristics most correlated with biomass 

estimate differences between different sets of allometric equations. This was done using a 

random forest model to predict the plot biomass difference between allometric equations using 

stand structure and composition predictor variables. The following predictors were considered: 

number of trees per hectare, basal area, average DBH, and basal area by species of the most 

common species in the plot data (lodgepole pine, Engelmann spruce, subalpine fir, aspen, 

Douglas-fir, and ponderosa pine). I also considered the proportion of total basal area for these 

same species, but removed them from the model due to high correlation with the species absolute 

basal area values and the sensitivity of variable importance metrics to correlated predictor 

variables. I calculated variable importance and generated partial dependence plots (Friedman, 

2001) to characterize relationships between stand structure and allometric biomass equation 

differences. 

Calculating Dry Mass of Sánchez Meador (2007) Trees 

Only green mass was reported for 212 of the 285 Legacy trees used in the study (Sánchez 

Meador, 2007). For these trees, I converted above-stump green mass to dry mass using moisture 

contents and component proportions from the destructive sampling. A species-specific, whole-

tree water percentage was calculated as the mean of each component’s moisture content (Table 
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A1.2.1) weighted by the percentage of tree biomass in each component (Figure A1.2.1). Foliage 

mass was included but was not reported as a separate component for these trees sampled by 

Sánchez Meador (2007), so I calculated foliage using the local equations and subtracted it from 

the above-stump dry weight to obtain a value comparable to the dry wood and bark mass used 

for trees from Reid et al. (1974) and Tossey ( 1982). 

Table A1.1.1. A priori equations tested for predicting branch length, foliage, and branch wood 
for individual branches of each species. Several additional species-specific equations were also 
tested (not shown).  
 

Branch Length Equations (m) Branch Wood and Foliage Equations (g) 
β0 + β1Bij + β2Ci β0 + β1Bij + β2Lij 
β0 + β1Bij + β2Ci + β3Rij β0 + β1Bij + β2Lij + β3Di 
β0 + β1Bij + β2Rij + β3Gi + β4Di β0 + β1Bij + β2Lij + β3Rij 
β0 + β1Bij + β2Hi + β3Sij β0 + β1Bij + β2Ci + β3Sij  
β0 + β1Bij + β2Di + β3Ci + β4Sij β0 + β1Bij + β2Di + β3Rij + β4Gi 
β0 + β1Bij + β2Di + β3Ci β0 + β1Bij + β2Lij + β3Hi 
β0 + β1 ln(Bij) + β2 ln(Ci) β0 + β1Bij + β2Sij + β3Ci + β4Di 
β0 + β1 ln(Bij) + β2 ln(Ci) + β3 ln(Rij) β0 + β1 ln(Bij) + β2 ln(Lij) 
β0 + β1 ln(Bij) + β2 ln(Rij) + β3 ln(Gi) + β4 ln(Di) β0 + β1 ln(Bij) + β2 ln(Lij) + β3 ln(Di) 
β0 + β1 ln(Bij) + β2 ln(Hi) + β3 ln(Sij) β0 + β1 ln(Bij) + β2 ln(Lij) + β3 ln(Rij) 
β0 + β1 ln(Bij) + β2 ln(Di) + β3 ln(Ci) + β4 ln(Sij) β0 + β1 ln(Bij) + β2 ln(Ci) + β3 ln(Sij) 
β0 + β1 ln(Bij) + β2 ln(Di) + β3 ln(Ci) β0 + β1 ln(Bij) + β2 ln(Di) + β3 ln(Rij) + β4 ln(Gi) 
 β0 + β1 ln(Bij) + β2 ln(Lij) + β3 ln(Hi) 
 β0 + β1 ln(Bij) + β2 ln(Di) + β3 ln(Sij) + β4 ln(Ci) 

jth branch on the ith tree 
L= branch length (m); D = tree diameter at breast height (cm); B = branch diameter (cm); C= 
width of crown at widest axis (m); S = height where branch meets main stem (m); R = relative 
branch depth; H= tree height (m); G = height to first branch (m) 
 
Table A1.1.2. Model form selected for regression models used to predict branch length, foliage, 
and branch wood for individual branches. 
 

Species Component Formula 
Lodgepole 
Pine 

Branch Length  Lij= β0 + β1Bij + β2Di + β3Ci                  
Foliage ln(Fij)= β0 + β1 ln(Bij) + β2 ln(Sij) + β3 ln(Rij) 
Wood ln(Wij)= β0 + β1 ln(Bij) + β2 ln(Lij) + β3 ln(Hi) 

Ponderosa 
Pine 

Branch Length Lij= β0 + β1Bij + β2Ci + β3Sij + β4Gi 
Foliage ln(Fij)= β0 + β1 ln(Bij) + β2 ln(Di) + β3 ln(Rij) + β4ln(Gi) 
Wood ln(Wij)= β0 + β1 ln(Bij) + β2 ln(Sij) + β3 ln(Ci) 

Douglas-Fir Branch length Lij= β0 + β1Bij + β2Di + β3Gi 
Foliage ln(Fij)= β0 + β1 ln(Lij) + β2 ln(Di) + β3 ln(Rij) 
Wood ln(Wij)= β0 + β1 ln(Lij) + β2 ln(Di) 

jth branch on the ith tree 
L= branch length (m), F= foliage mass (g), W= wood mass (g) 
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D = tree diameter at breast height (cm); B = branch diameter (cm); C= width of crown at widest 
axis (m); S = height where branch meets main stem (m); R = relative branch depth; H= tree 
height (m); G = height to first branch (m) 
 
Table A1.1.3. Parameter values and evaluation statistics for the regression models used to predict 
branch length, foliage and branch wood for individual branches. Numbers in parentheses are 
standard errors of the parameter values. Corr. Factor = correction factor; PICO = lodgepole pine 
(Pinus contorta); PIPO = ponderosa pine (P. ponderosa); PSME = Douglas fir (Pseudotsuga 

menziesii) 

 
Species Component n β0 β1 β2 β3 β4 Corr. 

Factor 
Adj, 
R2 

RMSE * 

PICO Branch 
Length (m) 

289 0.53 
(0.085) 

0.41 
(0.019) 

-0.025 
(0.004) 

0.12 
(0.022) 

 NA 0.63 0.3 

Foliage (g) 102 3.73 
(0.111) 

1.80 
(0.129) 

0.30 
(0.064) 

0.67 
(0.244) 

 1.17 0.74 151.3 

Wood (g) 102 3.21 
(0.174) 

1.78 
(0.091) 

0.87 
(0.121) 

0.40 
(0.072) 

 1.05 0.93 155.9 

PIPO Branch 
Length (m) 

182 0.30 
(0.129) 

0.26 
(0.013) 

0.099 
(0.024) 

-0.082 
(0.015) 

0.24 
(0.083) 

NA 0.87 0.5 

Foliage (g) 51 2.80 
(0.575) 

1.99 
(0.128) 

0.16 
(0.210) 

-0.75 
(0.211) 

-0.21 
(0.181) 

1.12 0.91 1262.2 

Wood (g) 51 3.41 
(0.172) 

2.65 
(0.077) 

0.086 
(0.084) 

0.16 
(0.148) 

 1.04 0.98 4810.5 

PSME Branch 
Length (m) 

275 0.51 
(0.085) 

0.40 
(0.015) 

-0.011 
(0.003) 

0.12 
(0.037) 

 NA 0.75 0.5 

Foliage (g) 53 3.34 
(0.415) 

1.73 
(0.126) 

0.69 
(0.142) 

0.40 
(0.201) 

 1.12 0.85 305.8 

Wood (g) 53 3.53 
(0.359) 

2.45 
(0.114) 

0.53 
(0.115) 

  1.10 0.93 468.08 

* RMSE values are in original units (either m for length or g for foliage and wood; not log 
transformed) 
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Table A1.1.4. List of predictor variable rasters considered for mapping biomass and references 
for each variable.  
 

Predictor Variable References 
Topography and geomorphology (Evans et al., 2014) 
Elevation and slope (Gesch et al., 2002); (Gesch, 2007) 
Eastness and northness (Kumar et al., 2006) 
Compound topographic index (Gessler et al., 1995) 
Heat load index (McCune and Keon, 2002) 
Standard, profile, and planform curvature (Moore et al., 1991); (Zevenbergen and 

Thorne, 1987) 
Roughness (3x3, 6x6, 9x9,12x12, 15x15, 21x21, 27x27) (Riley et al., 1999); (Blaszczynski, 

1997) 
Slope position (3x3, 6x6, 9x9,12x12, 15x15, 21x21, 27x27) (Reu et al., 2013); (Guisan et al., 1999) 
Spectral  
ETM+ bands 1-7  
Soil-adjusted vegetation index (SAVI) (Huete, 1988) 
Normalized difference vegetation index (NDVI) (Rouse et al., 1974) 
Corrected NDVI (Nemani et al., 1993) 
Enhanced vegetation index (EVI) (Liu and Huete, 1995) 
Moisture stress index (MSI)  (Rock et al., 1985) 
Second modified soil-adjusted vegetation index (MSAVI2) (Qi et al., 1994) 
Normalized difference infrared index (NDII) (Hardisky et al., 1983) 
Green normalized difference vegetation index (GNDVI) (Gitelson et al., 1996) 
Normalized difference water index (NDWI) (McFeeters, 1996) 
NDWI and NDII with ETM+ band 7 substituted for ETM+ band 5 (Ji et al., 2012) 
Tasseled Cap brightness, greenness, and wetness (Huang et al., 2002) 
Tasseled Cap distance (Duane et al., 2010) 
Tasseled Cap angle (Powell et al., 2010) 
Texture  
Mean, variance, homogeneity, contrast, dissimilarity, entropy, 
second moment, and correlation for ETM+ bands 1, 2, 3, 4, 5, and 7 
on a 3x3, 5x5, 7x7, 9x9, and 11x11 window and a (1,1) shift 

(Zvoleff, 2016) 

Climate (1961-1990 normals)  
Chilling degree-days (degree-days below 0°C) (Wang et al., 2016) 
Growing degree-days (degree-days above 5°C) (Wang et al., 2016) 
Heating degree-days (degree-days below 18°C) (Wang et al., 2016) 
Cooling degree-days (degree-days above 18°C) (Wang et al., 2016) 
Frost-free period (Wang et al., 2016) 
Mean annual precipitation (Wang et al., 2016) 
Mean annual solar radiation (Wang et al., 2016) 
Mean annual temperature (Wang et al., 2016) 
Mean coldest month temperature (Wang et al., 2016) 
May to September precipitation (Wang et al., 2016) 
Number of frost-free days (Wang et al., 2016) 
Mean warmest month temperature (Wang et al., 2016) 
Precipitation as snow between August in previous year and July in 
current year 

(Wang et al., 2016) 

Temperature difference between mean warmest month temperature 
and mean coldest month temperature 

(Wang et al., 2016) 

Summer heat-moisture index (Wang et al., 2016) 
Annual heat-moisture index (Wang et al., 2016) 
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Table A1.1.5. Predictor variables used in the final random forest model for biomass maps made 
from each set of allometric equations: local (equations presented in this study), Jenkins et al. 
(2003), and FIA-CRM. Variables are listed by order of importance, with the first variable being 
the most important. See Table A1.1.4 for acronym definitions. 
 

Allometric Equations Predictor Variables  
Local ETM+ band 1, NDII, elevation, ETM+ band 5 3x3 second moment, ETM+ 

band 6, precipitation as snow, northness, EVI, NDVI, mean annual solar 
radiation, slope position (6x6) 

Jenkins et al. (2003) NDII, elevation, ETM+ band 1, Tasseled Cap angle, May to September 
precipitation, ETM+ band 1 5x5 entropy, mean annual solar radiation, 
ETM+ band 4 11x11 homogeneity, EVI, northness 

FIA-CRM NDII, ETM + band 2 5x5 mean, precipitation as snow, elevation, ETM+ 
band 5 3x3 second moment, EVI, ETM+ band 4 9x9 contrast, northness, 
slope position (6x6) 

 
Table A1.1.6. Comparison of DBH and height between destructively sampled trees presented in 
this study (Local trees), trees used from the Legacy Tree database (Legacy trees), and trees 
measured in the FIA plots. PSME = Douglas fir (Pseudotsuga menziesii); PICO = lodgepole pine 
(Pinus contorta); PIPO = ponderosa pine (P. ponderosa)   
 

 

* Height was not reported for 19 lodgepole pine trees in the Legacy Tree database. 
 
Appendix 1.2: Destructive sampling and oven drying 

Tables and figures presenting mass and moisture content of each component from destructive 

sampling of Douglas-fir, lodgepole pine, and ponderosa pine. 

 Species Legacy trees Local trees FIA Plot 
Trees 

Number of trees 
sampled 

PSME 63 10 811 
PICO 114 20 9601 
PIPO 108 10 593 

Mean DBH (cm) PSME 14.1 24.9 21.5 
PICO 11.4 16.3 19.9 
PIPO 12.7 34.0 23.2 

Max DBH (cm) PSME 39.6 46.6 78.7 
PICO 32.0 29.9 62.0 
PIPO 36.6 61.8 64.3 

Min DBH (cm) PSME 1.5 2.4 2.5 
PICO 1.0 2.5 2.5 
PIPO 0.8 4.9 2.5 

Mean height (m)* PSME 8.0 12.7 11.7 
PICO 7.0 12.2 13.9 
PIPO 6.8 11.3 10.3 

Max height (m) PSME 19.5 19.7 34.1 
PICO 16.2 21.1 31.1 
PIPO 19.2 16.8 29.9 

Min height (m) PSME 1.8 3.2 1.8 
PICO 1.5 3.2  2.1 
PIPO 1.4 3.0  2.1 
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Table A1.2.1. Moisture content for the species and components in this study. Moisture content is 
presented as a percentage of the wet weight. The “n” for each component is the number of 
samples oven dried to obtain the moisture content. 
 

Species Component n Mean (%) SD (%) Min (%) Max (%) 
Douglas-Fir Bole 75 44.3 5.2 34.2 54.4 

Bark 75 36.3 8.9 18.4 56.4 
Branch 58 42.2 7.7 21.2 83.8 
Dead Branch 14 8.7 7.3 2.1 33.1 
Foliage 59 53.0 4.3 27.4 60.3 

Lodgepole 
Pine 

Bole 132 52.4 7.5 27.9 66.1 
Bark 131 52.0 8.7 28.5 66.6 
Branch 97 44.2 6.6 12.6 67.9 
Dead Branch 10 7.9 0.9 6.9 9.1 
Foliage 97 48.3 6.9 11.2 69.7 

Ponderosa 
Pine 

Bole 72 57.6 3.2 47.5 63.4 
Bark 72 33.7 7.3 13.1 57.8 
Branch 60 41.6 9.5 4.9 64.3 
Dead Branch 13 6.7 2.6 3.9 12.8 
Foliage 58 49.6 5.4 25.0 69.0 

* A species-specific, whole-tree water percentage was calculated as the mean of each 
component’s moisture content weighted by the percentage of tree biomass in each component 
(Figure A1.2.1). These values were used to convert trees from the Legacy Database that only 
reported wet mass to dry mass. The whole-tree water percentages were 44.20% for Douglas-fir, 
48.45% for lodgepole pine, and 47.53% for ponderosa pine. 
** The subsampled branches from the three smallest lodgepole pine trees were too small to 
obtain reliable water weights, so were not used in the moisture content calculations. This was 
also the case for one subsampled Douglas-fir branch and one ponderosa pine branch. 
 

 

Figure A1.2.1. The mean percentage of aboveground biomass held in each component for the 
destructively sampled trees.  



163 
 

 
Appendix 1.3: Biomass variability between allometric equations 

Tables and figures characterizing tree and plot-level biomass differences between the three 

allometric equations evaluated in this study. 

Table A1.3.1. Summary of individual tree biomass differences between different allometric 
equations. Differences are shown for all sizes (All) and by diameter at breast height bins. The 
denominators for calculating relative differences are the local biomass estimates for “Local-
Jenkins” and “Local – FIA-CRM” and is Jenkins biomass for “Jenkins – FIA-CRM.” 
 

 Local - Jenkins Local – FIA-CRM Jenkins – FIA-CRM 
Species Component Diameter 

Range 
(cm) 

Mean 
Diff (kg) 

Mean 
Relative 
Diff (%) 

Mean 
Diff (kg) 

Mean 
Relative 
Diff (%) 

Mean 
Diff (kg) 

Mean 
Relative 
Diff (%) 

Douglas-
Fir (202) 

Total All -88.9 -34.3 18.8 29.3 107.7 47.8 
2.5 - 20 -17.2 -23.5 24.7 46.3 41.9 56.1 
20 – 40 -97.4 -43.4 19.2 12.8 116.6 39.0 
40 - 60 -487.6 -61.6 -8.3 -1.0 479.3 37.2 
60 - 80 -1605.5 -75.2 -237.7 -9.8 1367.8 37.3 

Bole and 
Bark 

All -91.7 -47.2 -5.5 17.8 95.2 47.6 
2.5 - 20 -16.4 -28.6 18.8 41.2 38.5 57.7 
20 – 40 -101.2 -63.2 -7.1 -0.2 94.1 38.8 
40 - 60 -508.5 -92.2 -114.7 -21.4 393.9 36.8 
60 - 80 -1658.3 -112.2 -510.3 -33.1 1148.0 37.3 

Branch  All 3.1 0.4 25.7 57.0 22.6 54.8 
2.5 - 20 -0.8 -6.5 10.1 64.4 10.9 65.3 
20 – 40 3.8 6.0 26.3 50.4 22.5 45.6 
40 - 60 20.9 10.2 106.4 51.3 85.5 44.4 
60 - 80 52.9 8.9 272.6 47.0 219.8 41.5 

Foliage All 1.8 17.7 NA NA NA NA 
2.5 - 20 1.8 22.6 NA NA NA NA 
20 – 40 3.1 15.1 NA NA NA NA 
40 - 60 -3.0 -3.3 NA NA NA NA 
60 - 80 -40.7 -22.7 NA NA NA NA 

Lodgepole 
Pine (108) 

Total All 31.7 18.7 41.7 28.3 10.0 11.6 
2.5 - 20 11.9 18.8 21.3 33.9 9.3 18.2 
20 – 40 51.3 18.2 57.2 20.0 6.0 2.0 
40 - 60 268.9 25.7 417.1 39.6 148.2 18.7 
60 - 80 845.3 32.8 1439.7 55.9 594.4 34.4 

Bole and 
Bark 

All 13.0 -1.2 21.7 12.7 7.6 10.9 
2.5 - 20 -2.5 -9.8 5.2 13.2 7.8 18.5 
20 – 40 26.4 9.9 30.0 11.0 3.6 1.3 
40 - 60 250.8 27.8 368.5 40.6 117.7 17.9 
60 - 80 878.3 37.8 1308.6 56.3 430.3 29.8 

Branch  All 19.7 52.7 22.7 60.5 3.0 15.6 
2.5 - 20 15.6 59.1 18.3 69.7 2.6 24.2 
20 – 40 24.8 46.1 27.3 49.8 2.4 4.6 
40 - 60 18.0 15.1 48.5 38.2 30.5 25.6 
60 - 80 -33.1 -15.4 131.0 61.0 164.1 66.2 

Foliage All 4.2 39.8 NA NA NA NA 
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2.5 - 20 3.9 49.4 NA NA NA NA 
20 – 40 4.8 27.9 NA NA NA NA 
40 - 60 -3.8 -8.1 NA NA NA NA 
60 - 80 -30.4 -42.4 NA NA NA NA 

Ponderosa 
Pine (122) 

Total All 26.3 8.9 101.7 48.8 75.5 43.6 
2.5 - 20 4.2 8.0 31.8 56.4 27.6 52.5 
20 – 40 26.3 8.8 118.9 43.6 92.5 38.1 
40 - 60 152.0 14.3 405.7 39.8 253.6 29.7 
60 - 80 477.3 20.2 405.2 17.1 -72.1 -3.8 

Bole and 
Bark 

All -46.2 -21.0 15.2 26.8 65.7 42.3 
2.5 - 20 -4.2 -4.3 20.1 46.1 25.5 51.5 
20 – 40 -51.8 -30.9 23.0 18.5 74.8 37.8 
40 - 60 -253.5 -52.6 -43.3 -7.5 210.2 29.6 
60 - 80 -631.5 -66.6 -882.7 -93.1 -251.2 -15.9 

Branch  All 79.0 56.5 95.0 79.3 16.0 49.2 
2.5 - 20 10.4 43.0 17.4 77.0 7.1 58.3 
20 – 40 78.1 63.3 95.9 80.1 17.8 44.8 
40 - 60 405.6 75.4 449.0 84.0 43.4 34.3 
60 - 80 1108.8 81.9 1287.9 95.1 179.1 72.9 

Foliage All 2.9 -2.7 NA NA NA NA 
2.5 - 20 -0.2 -26.3 NA NA NA NA 
20 – 40 3.1 13.4 NA NA NA NA 
40 - 60 20.1 26.8 NA NA NA NA 
60 - 80 54.7 33.0 NA NA NA NA 
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Figure A1.3.1. Variable importance plots for random forests used to model differences in plot 
biomass estimates between different allometric equations estimates as a function of stand 
attributes. Both the absolute difference between plot biomass estimates was modeled (left 
column) as well as the relative difference (right column). 
Allometric biomass equations compared: local = allometric equations presented in this study; 
Jenkins = allometric biomass equations from Jenkins et al. (2003); FIA-CRM = Forest Inventory 
and Analysis Component Ratio Method allometric biomass equations 
Predictor variables considered: BA_m2_ha = total basal area (m2 ha-1); ntrees_ha = number of 
trees ha-1; avg_diam = average tree diameter (cm); LP_BA_m2_ha = lodgepole pine basal area 
(m2 ha-1); PP_BA_m2_ha = ponderosa pine basal area (m2 ha-1); DF_BA_m2_ha = Douglas-fir 
basal area (m2 ha-1); ES_BA_m2_ha = Engelmann spruce basal area (m2 ha-1); SAF_BA_m2_ha = 
subalpine fire basal area (m2 ha-1); ASP_BA_m2_ha = aspen basal area (m2 ha-1) 
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Figure A1.3.2. Partial dependence plot from the random forests model of FIA plot biomass 
difference between local and FIA-CRM allometric equations as a function of stand attributes. 
Abbreviations of predictor variables considered are described in caption for Figure A1.3.1. 
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Figure A1.3.3. Partial dependence plot from the random forests model of FIA plot biomass 
difference between local and Jenkins et al. (2003) allometric equations as a function of stand 
attributes. Abbreviations of predictor variables considered are described in caption for Figure 
A1.3.1. 
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Figure A1.3.4. Partial dependence plot from the random forests model of FIA plot biomass 
difference between Jenkins et al. (2003) and FIA-CRM allometric equations as a function of 
stand attributes. Abbreviations of predictor variables considered are described in caption for 
Figure A1.3.1. 
 
Table A1.3.2. Out-of-bag RMSE, percent RMSE of the mean, and pseudo R2 for random forests 
models run with plot biomass difference as the response variable and stand characteristics as 
predictor variables. Both relative and absolute model differences were modeled for the following 
allometric equations: local (presented in this study), Forest Inventory and Analysis Component 
Ratio Method (FIA-CRM), and Jenkins et al. (2003).  

Allometric Equations 
Compared 

Relative or 
Absolute 

RMSE  % RMSE 
(of mean) 

Pseudo R2 

Local – Jenkins  Absolute 12.2 Mg ha -1 -178.6 .8613 
Local – Jenkins Relative 34.8 % -267.6 .3903 
Local – FIA-CRM Absolute 17.7 Mg ha -1 47.5 .5668 
Local – FIA-CRM Relative 11.7 % 40.6 .4336 
Jenkins - FIA-CRM Absolute 21.4 Mg ha -1 48.5 .6633 
Jenkins - FIA-CRM Relative 12.2 % 37.1 .5529 
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Appendix 1.4: Destructive sampling data 

Table A1.4. Data from each tree destructively sampled for this study showing component 
biomass (kg), diameter at breast height (cm), and height (m) as well as basal area (m2 ha-1) and 
tree density (number of trees ha-1) of 7.32 m radius plots measured around each tree. 
 

Species DBH_
cm 

Height
_m 

Bole_
kg 

Bark_
kg 

Foliage
_kg 

Branch
_kg 

Aboveground_To
tal_kg 

Trees_per
_ha 

Basal_Area_m2_
per_ha 

PICO 2.5 3.2 0 0 0.8 0.9 1.7 2139 9 

PICO 4.3 4 0 0 1 2.1 3.1 1604 8.2 

PICO 6.5 5.2 0 0 2.2 6 8.2 1307 3.7 

PICO 8.5 6.4 1 0.1 3.7 10.7 15.6 1010 4.6 

PICO 10.2 5.9 4.1 0.5 3.4 11 19 594 13.2 

PICO 11 5.9 4.9 0.8 7.5 18.6 31.8 1010 6.2 

PICO 12 10 12.1 1 8.1 22.3 43.5 951 7.3 

PICO 12.8 7.5 14.3 2.2 8 20.8 45.3 416 2.5 

PICO 13.5 8.1 16.7 2.1 10.2 21.7 50.7 1248 5.8 

PICO 14.8 14.5 44.2 3.8 6.7 18.4 73.1 1010 31.2 

PICO 15 14.6 43.3 3 5.1 17.2 68.6 891 32.5 

PICO 17.8 6.9 20 2.7 12.4 35.3 70.4 238 0.5 

PICO 19 19.5 105.6 7 5.6 26.1 144.3 1129 39.7 

PICO 21.9 13.9 64.2 4.3 15.5 82 166 772 31.5 

PICO 22.5 16.2 116.1 11.4 11.2 27.7 166.4 356 17.3 

PICO 23.5 19.4 158.8 13.4 16.5 46.1 234.7 772 36.2 

PICO 25.8 21.1 174.2 10.3 21.1 46 251.6 951 44.9 

PICO 25.9 20.5 206.6 13.3 24.1 72.9 316.9 535 30.7 

PICO 27.8 20.5 208.3 14.4 17.1 43.6 283.5 772 14.4 

PICO 29.9 21 247.2 15.8 23.3 72.1 358.4 713 31.7 

PIPO 4.9 3 0 0 1.5 4.2 5.7 238 23.4 

PIPO 12.7 6.3 7.7 3 4.6 17.3 32.6 416 29.7 

PIPO 19 9.4 35.3 8.3 6.3 46.5 96.4 416 17.3 

PIPO 24 10.3 84.1 16.8 17.9 48.1 166.9 178 13 

PIPO 32.5 10.6 126.6 18.4 31.7 135.6 312.3 59 5.5 

PIPO 39.3 13.1 286.1 38.2 50.2 377.9 752.4 59 4.7 

PIPO 44.9 13.9 308 39.3 41.6 254.9 643.9 59 19.7 

PIPO 49 14.5 499.1 60.2 104.3 846.7 1510.2 0 0 

PIPO 51.6 16.8 618.5 81.5 79.5 615.9 1395.4 297 20.5 

PIPO 61.8 15.4 738.5 89.7 153.9 1206 2188.1 0 0 

PSME 2.4 3.2 0 0 1.2 2 3.2 416 14.7 

PSME 7.8 6.7 1.9 0.5 4.2 13.7 20.3 535 30.3 

PSME 10 8.4 5.3 1.2 5.9 16.8 29.3 535 14.5 

PSME 17.8 11.7 30.1 7.3 17.7 35.2 90.4 535 18.8 

PSME 24.3 13.5 82 22.7 23.8 51.9 180.3 535 15.5 

PSME 27 13.5 100.3 38.7 24.6 50.6 214.2 535 7.9 
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PSME 30.4 14.8 171.4 44.5 18 58.2 292.2 297 19 

PSME 38.2 19.7 355.1 67.6 49.3 126.6 598.5 119 12.4 

PSME 44.1 17.5 345.4 66.9 65.1 148 625.4 178 7.2 

PSME 46.6 18.4 434.2 81.8 72.1 220.9 809.1 178 15.9 

 

Chapter 2 Appendices 

 

 

Figure A2.1. The severity of mortality at 99 Forest Inventory and Analysis (FIA) plots in 
Colorado and 17 FIA plots in Idaho as measured by (A) modeled mortality severity, (B) Aerial 
Detection Surveys (ADS), and (C) FIA field measurements.  
 
Table A2.1. Assessment of the accuracy of the LANDFIRE lodgepole pine extent mask using 
Forest Inventory and Analysis (FIA) data. Of the 1,180 FIA plots across all forest types, 821 fell 
outside the lodgepole pine mask used to define the study area extent and 359 fell within the 
lodgepole pine mask. Areas that burned between 1984 and 2013 were excluded from the 
lodgepole pine mask, so some plots falling outside the lodgepole pine mask may fall within a 
burned area. BA = basal area 

 

 Number of 
FIA plots 

Number of plots 
without 
lodgepole pine 

% of plots 
without 
lodgepole pine 

Mean lodgepole 
pine BA 
proportion of total 
BA 

Standard deviation 
of lodgepole pine 
BA proportion of 
total BA 

Outside lodgepole 
pine mask 

821 522 64 0.13 0.25 

Within lodgepole 
pine mask 

359 36 10 0.60 0.36 
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Table A2.2. All predictor variables considered in developing cumulative lodgepole mortality 
models. This included elevation, latitude, derived indices of Normalized Difference Vegetation 
Index (NDVI), Normalized Difference Moisture Index, Tasseled cap greenness, wetness, 
brightness, and angel, the near infrared (NIR), shortwave infrared 1 (SWIR1), shortwave infrared 
2 (SWIR2) and thermal bands from 2013 in addition to the differences of the indices from 2001 
and 2013.  
 

Predictor Variable Name Sensor Source 

Near infrared band (NIR) Landsat 8 Operational Land 
Imager (OLI) 

USGS surface reflectance-derived 
spectral indices (Vermote et al., 
2016) 

Shortwave infrared 1 band (SWIR1) Landsat 8 OLI USGS surface reflectance-derived 
spectral indices (Vermote et al., 
2016) 

Shortwave infrared 2 band Landsat 8 OLI USGS surface reflectance-derived 
spectral indices (Vermote et al., 
2016) 

Thermal band Landsat 8 Thermal Infrared 
Sensor (TIRS) 

USGS surface reflectance-derived 
spectral indices (Vermote et al., 
2016) 

Normalized Difference Vegetation Index 
(NDVI) 

Landsat 8 OLI USGS surface reflectance-derived 
spectral indices (Vermote et al., 
2016) 

NDVI difference (2013-2001) Landsat 8 OLI (2013) and 
Landsat 5 Thematic Mapper 
(TM) (2001) 

USGS surface reflectance-derived 
spectral indices (Masek et al., 2006; 
Vermote et al., 2016) 

Normalized Difference Moisture Index 
(NDMI) 

Landsat 8 OLI  USGS surface reflectance-derived 
spectral indices (Vermote et al., 
2016) 

NDMI difference (2013 and 2001) Landsat 8 OLI (2013) and 
Landsat 5 TM (2001) 

USGS surface reflectance-derived 
spectral indices (Masek et al., 2006; 
Vermote et al., 2016) 

Tasseled cap greenness Landsat 8 OLI USGS top-of-atmosphere 
reflectance product (Chander et al., 
2009) 

Tasseled cap wetness Landsat 8 OLI USGS top-of-atmosphere 
reflectance product (Chander et al., 
2009) 

Tasseled cap brightness Landsat 8 OLI USGS top-of-atmosphere 
reflectance product (Chander et al., 
2009) 
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Tasseled cap greenness difference (2013-
2001) 

Landsat 8 OLI and Landsat 
5 TM 

USGS top-of-atmosphere 
reflectance product (Chander et al., 
2009) 

Tasseled cap wetness difference (2013-
2001) 

Landsat 8 OLI and Landsat 
5 TM 

USGS top-of-atmosphere 
reflectance product (Chander et al., 
2009) 

Tasseled cap brightness difference (2013-
2001) 

Landsat 8 OLI and Landsat 
5 TM 

USGS top-of-atmosphere 
reflectance product (Chander et al., 
2009) 

Normalized burn ratio (NBR) Landsat 8 OLI USGS surface reflectance-derived 
spectral indices (Vermote et al., 
2016) 

Normalized burn ratio difference (2013-
2001) 

Landsat 8 OLI and Landsat 
5 TM 

USGS surface reflectance-derived 
spectral indices (Masek et al., 2006; 
Vermote et al., 2016) 

C-band Synthetic Aperture Radar Ground 
Range Detected. Vertical transmit and 
vertical receive (VV) polarization 

European Space Agency 
(ESA) Sentinel 1A 

Sentinel-1 SAR GRD: C-band 
Synthetic Aperture Radar Ground 
Range Detected 

Elevation Shuttle Radar Topography 
Mission (SRTM) 

National Elevation Dataset (Gesch 
et al., 2002; Gesch, 2007) 

Latitude na na 

LandTrendr* Landsat 5 TM, Landsat 7 
ETM+, and Landsat OLI 

(Kennedy et al., 2018) 

LandTrendr-fitted* Landsat 5 TM, Landsat 7 
ETM+, and Landsat OLI 

(Kennedy et al., 2018) 

* I tested models using LandTrendr and LandTrendr-fitted predictor variables. LandTrendr and 
LandTrendr-fitted variables were generated for tasseled cap brightness, greenness, and wetness, 
blue band, green band, red band, NIR, SWIR1, SWIR2, NBR, NDMI, and NDVI.  For these 
bands and indices, the following metrics were calculated: accumulated minimum, duration of 
accumulated minimum, duration of the minimum segment, end value of the minimum segment, 
change of the minimum change segment, slope of minimum slope segment, percent change of 
minimum segment, slope of minimum change segment, and the start value of the minimum 
segment. 
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Figure A2.2. Variable importance for the random forest model used to map dead canopy 
percentage. Differenced variables are the differenced index between 2013 and 2001. (NDMI = 
Normalized Difference Moisture Index; NDVI = Normalized Difference Vegetation Index) 
 

 

Figure A2.3. Comparison of modeled mortality severity to Aerial Detection Survey (ADS) 
cumulative dead trees per acre at the 2,000 random points generated in each state. 
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Figure A2.4. Scatter plot showing the relationship between predicted and observed mortality 
severity values and the 95% confidence interval. The y-intercept was 7.50 (std error=0.35), the 
slope was 0.4406 (std error= 0.0156).  
 

 

Figure A2.5. Dead basal area measured at Forest Inventory and Analysis (FIA) plots for plots 
that fall within areas mapped as having mortality by both Aerial Detection Surveys (ADS) and 
the thresholded mortality severity model (“ADS and Modeled”; N = 88), plots where ADS shows 
mortality but the thresholded mortality severity model does not (“ADS only”; N = 18), and plots 
where the thresholded mortality severity model shows mortality but ADS does not (“Modeled 
Only”; N = 7). Three of the FIA plots fell in areas shown not to have mortality by both ADS and 
the threshold model—these are not included in this figure due to the small sample size. 
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Figure A2.6. Relationship between duration and modeled mortality severity and area impacted at 
each of the four states. 

Chapter 3 Appendices 

Table A3.1. The predictor variable rasters used in this study to map dead biomass.  

Predictor Variable References 

Forest Structure Products  

Standing aboveground live and dead biomass (Vorster et al., 2020) 

Tree mortality (Bode et al., 2018) 

Topography and geomorphology (Evans et al., 2014) 

Elevation and slope (Gesch et al., 2002; Gesch, 2007)  

Eastness and northness (Kumar et al., 2006) 

Compound topographic index (Gessler et al., 1995) 

Heat load index (McCune and Keon, 2002) 

Standard, profile, and planform curvature (Moore et al., 1991; Zevenbergen and 

Thorne, 1987) 

Roughness (3x3, 6x6, 9x9,12x12, 15x15, 21x21, 27x27) (Blaszczynski, 1997; Riley et al., 1999) 

Slope position (3x3, 6x6, 9x9,12x12, 15x15, 21x21, 27x27) (Guisan et al., 1999; Reu et al., 2013)  
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Climate (1961-1990 normals)  

Chilling degree-days (degree-days below 0°C) (Wang et al., 2016) 

Growing degree-days (degree-days above 5°C) (Wang et al., 2016) 

Heating degree-days (degree-days below 18°C) (Wang et al., 2016) 

Cooling degree-days (degree-days above 18°C) (Wang et al., 2016) 

Frost-free period (Wang et al., 2016) 

Mean annual precipitation (Wang et al., 2016) 

Mean annual solar radiation (Wang et al., 2016) 

Mean annual temperature (Wang et al., 2016) 

Mean coldest month temperature (Wang et al., 2016) 

May to September precipitation (Wang et al., 2016) 

Number of frost-free days (Wang et al., 2016) 

Mean warmest month temperature (Wang et al., 2016) 

Precipitation as snow between August in previous year and July 

in current year 

(Wang et al., 2016) 

Temperature difference between mean warmest month 

temperature and mean coldest month temperature 

(Wang et al., 2016) 

Summer heat-moisture index (Wang et al., 2016) 

Annual heat-moisture index (Wang et al., 2016) 

 
Table A3.2. Model performance for other standing dead aboveground biomass models tested. 
svm = support vector machine 
 

Model RMSE  R2 
regression trees 38.9 0.23 
random forest 33.4 0.43 
svm with linear kernels 35.9 0.41 
svm with radial kernels 37.8 0.30 
svm with polynomial kernels 35.7 0.44 
generalized linear model with step AIC feature selection 34.5 0.43 
cubist 38.1 0.26 
multivariate adaptive regression splines 42.6 0.16 
ridge regression 34.0 0.46 
k-nearest neighbors 36.7 0.31 
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Figure A3.1. Predictor variable importance for the random forest standing dead aboveground 
biomass model, as measured by the average decrease in mean squared error and the mean 
decrease in node purity. 
 

 

 

 


