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ABSTRACT 
 
 
 

MEMBRANE BEHAVIOR AND DIFFUSION IN UNSATURATED 

SODIUM BENTONITE 
 
 
 

Sodium-bentonite (Na-bentonite) is a highly active clay commonly used as a barrier or a 

component of a barrier for chemical containment applications (e.g., landfills, waste 

impoundments, vertical cutoff walls) due to the ability of Na-bentonite to limit solute 

(contaminant) transport resulting from high swell and low hydraulic conductivity.  However, Na-

bentonite also may exhibit semipermeable membrane behavior or solute restriction, which can 

result in enhanced performance of the barrier by reducing liquid and contaminant flux.  

Experimental studies to date have focused on the correlation between membrane behavior and 

diffusion of solutes almost exclusively under fully saturated conditions (i.e., degree of water 

saturation, S, of 1.0).  However, clay barriers can exist at various degrees of water saturation (S < 

1.0), and, based on our current, conceptual understanding of the mechanisms causing membrane 

behavior in saturated clays, the influence of membrane behavior on solute transport is likely to be 

even more significant in clays under unsaturated conditions.   

Based on these considerations, an innovative testing apparatus was developed to allow for 

the simultaneous measurement of membrane behavior and diffusion in unsaturated Na-bentonite.  

The test specimens were prepared using a dialysis method that allowed for control of the cation 

species on the exchange complex of the bentonite, removal of excess soluble salts, and 

estimation of diffusion properties.  Membrane efficiencies (ω) and effective diffusion 

coefficients (D*) of bentonite specimens with S ranging from 0.79 to 1.0 were measured by 
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performing multistage tests using solutions of potassium chloride (KCl).  The source 

concentrations (Cot) of the KCl solutions were 20 mM, 30 mM, and 50 mM, which resulted in 

average concentrations in the specimen at steady-state diffusion (Cave) of approximately 10 mM, 

15 mM, and 25 mM.  For all values of S, a decrease in S correlated with an increase in ω and a 

decrease in D*.  For example, for Cot of 50 mM, ω increased from 0.31 to 0.41 and D* for 

chloride decreased from 4.1 x 10-10 m2/s to 3.1 x 10-10 m2/s as S decreased from 1.0 to 0.84.   The 

results of this study advance our fundamental understanding of solute transport mechanisms in 

Na-bentonite and contribute to the base of knowledge that must be established prior to 

incorporating membrane behavior effects in the design of barriers for chemical containment 

facilities.  
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CHAPTER 1.  INTRODUCTION 
 
 
 
1.1 Background 

Sodium bentonite (Na-bentonite) is a clay soil that exhibits high swell and low hydraulic 

conductivity in the presence of water and dilute solutions of salts (Eisenhour and Brown 2009; 

Gates et al. 2009).  As a result, Na-bentonite often is considered for use as a barrier or barrier 

component in chemical containment applications, e.g., landfill clay liners, vertical cutoff walls, 

waste lagoons, radioactive waste disposal sites (Shackelford and Sample-Lord 2014). Such 

barriers/barrier components include Na-bentonite sandwiched between two geotextiles in the 

form of manufactured geosynthetic clay liners (GCLs), mixtures of Na-bentonite and sand placed 

as compacted clay liners (CCLs), mixtures of Na-bentonite, trenched spoils, and Na-bentonite 

slurry placed as soil-bentonite backfills (SBBs) for vertical cutoff walls, and highly-compacted 

Na-bentonite used as buffers for disposal of high-level radioactive waste (HLRW).  

In addition to high swell and low hydraulic conductivity, Na-bentonite also may exhibit 

semipermeable membrane behavior, or the ability to selectively restrict the migration of 

dissolved chemical species (solutes) through the pores of the clay (e.g., Kemper and Maasland 

1964; Kemper and Rollins 1966; Malusis et al. 2001; Malusis and Shackelford 2002; Kang and 

Shackelford 2009, 2010, 2011; Dominijanni et al. 2013).  Membrane behavior (also referred to as 

anion repulsion) occurs in clays due to electrostatic repulsion of charged solutes by the electric 

fields surrounding the clay particles (Fritz 1986).  Membrane behavior typically is quantified in 

terms of a membrane efficiency coefficient, ω, where values of ω range from 0 for no membrane 

behavior to 1.0 representing 100 % solute restriction corresponding to a perfect membrane 

(Shackelford et al. 2003).  The existence of membrane behavior may enhance chemical 
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containment performance of Na-bentonite used in chemical containment applications by 

reducing diffusive transport of contaminants and promoting hyperfiltration and chemico-osmotic 

flow across the barrier (Shackelford 2013).  However, current design and evaluation of such 

barriers typically neglect membrane behavior, largely due to a lack of fundamental knowledge of 

the phenomenon.   

Previous measurement of membrane behavior of clays has been performed in the 

laboratory with both open and closed testing systems (Shackelford 2013).  In both types of test 

systems, a concentration difference, ∆C, is applied across the specimen.    If the clay behaves as 

a semipermeable membrane (ω > 0), there will be a tendency for chemico-osmotic flow (qπ) to 

occur from the boundary with lower solute concentration (high water activity) to the boundary 

with higher solute concentration (low water activity).  In an open system, qπ is allowed to occur 

and the measured value of qπ is used to calculate ω.  In a closed system, qπ is prevented, resulting 

in the development of a chemico-osmotic pressure difference (-∆P) across the specimen to 

counteract the tendency for qπ. The measured values of -∆P in the closed-system are used to 

determine ω.  The use of a closed system allows for several testing advantages relative to open 

systems (Malusis et al. 2012; Shackelford 2013), including more accurate measurement of 

membrane behavior, easier control of boundary conditions, and achievement of  linear 

concentration profiles across the specimen at steady-state diffusion allowing for simpler 

diffusion analyses (see Chapter 4).  Thus, the use of a closed-system testing apparatus was 

preferred in this study.  

Experimental studies to date have focused on membrane behavior and diffusion of solutes 

almost exclusively under saturated conditions (i.e., degree of water saturation, S, of the specimen 

of 1.0 or 100 %), even though clay barriers in field applications may exist under unsaturated 
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conditions.  Based on our current, conceptual understanding of the mechanisms causing 

membrane behavior in clays, solute restriction under unsaturated conditions should be more 

significant than that under saturated conditions, all other factors being equal (Sample-Lord and 

Shackelford 2014).  As a result of the aforementioned considerations, a study was undertaken to 

research the extent and magnitude of membrane behavior of Na-bentonite under unsaturated 

conditions and the effects of such membrane behavior on rates of diffusive transport.    

   

1.2 Objectives of research 

Given the limitations in our current understanding of the role of membrane behavior 

under unsaturated soil conditions, the goal of this study was to evaluate the existence and 

significance of membrane behavior in unsaturated Na-bentonite.  This goal was accomplished by 

evaluating the following hypothesis: 

 

The significance of semipermeable membrane behavior in Na-bentonite exhibiting 

membrane behavior, as reflected by the membrane efficiency, increases as the degree of 

water saturation decreases, all other factors being equivalent. 

 

This hypothesis was evaluated by completing the following objectives:  

 

(1)  develop and evaluate a new, closed-system testing apparatus for measuring membrane 

behavior and diffusive transport in unsaturated clays;  

(2) develop and implement a procedure to prepare Na-bentonite specimens with properties 

that would result in measureable membrane behavior and diffusion under unsaturated 
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conditions; 

(3)  measure solute diffusion as a function of the degree of water saturation and solute 

concentration in the pore water of the bentonite and compare the results with available 

literature; and 

(4) measure semipermeable membrane behavior as a function of the degree of water 

saturation and solute concentration in the pore water of the bentonite and compare the 

results with expectations based on our current, conceptual understanding of membrane 

behavior and data previously reported for saturated Na-bentonite. 

 

Increased membrane behavior in Na-bentonite due to a reduction in degree of saturation was 

verified experimentally, achieving the goal of the study by confirming the proposed hypothesis.  

The results presented herein represent the first time membrane behavior has been measured for 

an unsaturated clay using a closed-system testing apparatus.  In addition, the data represent the 

first experimental results for membrane behavior of Na-bentonite specimens maintained under 

unsaturated conditions.  The results of this study advance our present understanding of 

membrane behavior in clays and contribute to the base of knowledge that must be established 

prior to incorporating membrane behavior effects in the design of barriers for chemical 

containment facilities.   

 

1.3 Overview of dissertation 

This dissertation includes six chapters.  Chapters 1 and 6 provide the introduction and 

conclusions, respectively, for the overall study.  The substantive results of the study are included 

in Chapters 2 through 5. 
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Chapter 2 is entitled, "Apparatus to Measure Membrane and Diffusion Behavior of 

Unsaturated Clays," and presents the design, fabrication and calibration of the new, closed-

system testing apparatus to measure simultaneously both salt diffusion through and membrane 

behavior of unsaturated specimens of Na-bentonite.  Details of the design and testing procedure 

are provided and the advantages and disadvantages of the new testing apparatus are discussed.   

Chapter 3 is entitled, "A Dialysis Method for Homo-ionization of Bentonite," and 

describes a simple dialysis procedure that can be used to modify the exchange complex of 

bentonite specimens such that the bentonite becomes homo-ionized with respect to exchangeable 

sodium (Na+). To enhance membrane behavior, the bentonite was treated to increase the 

percentage of Na+ on the exchange complex of the clay, as well as remove excess soluble salts in 

the pore water.  The dialysis method has been used extensively in the soil sciences to homo-

ionize clays, but typically is not utilized in geotechnical and geoenvironmental research.  In 

addition to specimen preparation, the dialysis procedure also was evaluated as a potential method 

to measure the apparent diffusion coefficient, Da, of a clay slurry using available models that 

have been used to evaluate diffusion based leaching of contaminants from stabilized waste 

forms.   

Chapter 4 is entitled, "A Through-Diffusion Method for Evaluating Solute Diffusion 

through Unsaturated Sodium Bentonite," and describes the use of the new testing apparatus for 

measurement of effective diffusion coefficients (D*) of a salt (KCl) diffusing through unsaturated 

clays.  The advantages and disadvantages of the closed-system test apparatus for diffusion testing 

of unsaturated soils are discussed and the analysis method to evaluate the test data is described in 

detail.  The results of four multistage experiments for diffusion of KCl through unsaturated Na-

bentonite specimens with S ranging from 0.79 to 1.0 are described.  Measured values of D* for 
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K+ and Cl- were reported and compared with the available literature.  The results of the diffusion 

analyses were required for evaluation of the membrane behavior of the bentonite, as described in 

Chapter 5. 

Chapter 5 is entitled, "Membrane Behavior of Unsaturated Sodium Bentonite," and 

presents the results of the experimental program to evaluate the measured membrane behavior of 

Na-bentonite as a function of S and solute concentration.  The values of ω were determined via 

simultaneous measurement of the chemico-osmotic pressure difference induced by membrane 

behavior (-∆P) and D* (as described in Chapter 4).  The values of D* were correlated with the 

membrane behavior to determine the values of the apparent and restrictive tortuosity factors of 

the bentonite specimens.  The results are compared with membrane behavior literature for 

saturated Na-bentonite and conclusions are drawn regarding the significance of the effect of S on 

the solute restrictive behavior of Na-bentonite.   

Chapter 6 summarizes the overall conclusions for the study.  In addition, 

recommendations for future research are provided.   
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CHAPTER 2.  APPARATUS TO MEASURE MEMBRANE AND DIFFUSION BEHAVIOR 

OF UNSATURATED CLAYS  

 
 
2.1 Introduction 

High activity clays (e.g., bentonite) commonly used as barrier materials in chemical 

containment applications (e.g., landfills, radioactive waste disposal, animal waste lagoons, mine 

tailings containment) may behave as semipermeable membranes, whereby dissolved chemical 

species (solutes) in the pore water are selectively restricted from passage through the clay (e.g., 

Shackelford 2013).  Because the primary objective of such chemical containment barriers is to 

reduce the rate and extent of migration of the chemicals into the surrounding environment, the 

existence of such solute restriction, referred to as membrane behavior, enhances the containment 

function of the clay barrier (Shackelford et al. 2003).  Thus, a significant amount of effort has 

been extended towards the characterization of membrane behavior in a variety of clay barriers 

commonly used in chemical containment barrier systems (e.g., Malusis et al. 2001; Malusis and 

Shackelford 2002a,b; Manassero and Dominijanni 2003; Shackelford et al 2003; Lu et al. 2004; 

Dominijanni and Manassero 2005; Yeo et al. 2005; Henning et al. 2006; Evans et al. 2008; Kang 

and Shackelford 2010, 2011; Mazzieri et al. 2010; Dominijanni et al. 2013; Shackelford 2013; 

Bohnhoff et al. 2014; Meier et al. 2014; Tang et al. 2014, 2015). 

Membrane behavior occurs in clays due to electrostatic repulsion of charged solutes by 

the electric fields associated with the clay particles (Fritz 1986).  Under such conditions, 

chemico-osmotic flow (qπ) may occur, whereby water flows from higher water activity (lower 

solute concentration) to lower water activity (Shackelford et al. 2003).  The extent to which the 

clay restricts the passage of solutes is quantified in terms of a reflection coefficient, σ, or 
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chemico-osmotic efficiency coefficient, ω, where σ or ω typically ranges from 0 for no 

membrane behavior to 1.0 representing 100 % solute restriction corresponding to a perfect 

membrane.  The membrane efficiency for most natural clays that exhibit membrane behavior is 

in the range 0 < σ or ω < 100% because of the variation in pore sizes. As a result, such clays are 

referred to as imperfect (or semipermeable) membranes.  In the engineering literature, the 

symbol ω is preferred to represent the membrane efficiency, because the symbol σ commonly is 

used to represent applied or total stress (Shackelford 2013).  Therefore, ω was used to represent 

membrane efficiency throughout this study. 

Experimental research programs to measure membrane behavior of clays have utilized 

both open and closed hydraulic control systems (Shackelford 2013).  In both types of test 

systems, reservoirs at each boundary of the specimen contain chemical solutions with different 

concentrations of the same solute to induce a concentration difference (∆C) across the specimen.    

If the clay behaves as a semipermeable membrane (ω > 0), then qπ will occur from the boundary 

with lower solute concentration (high water activity) to the boundary with higher solute 

concentration.  In an open system, qπ is allowed to occur and may be measured to evaluate 

membrane behavior.  In a closed system, qπ is prevented, resulting in the development of a 

chemico-osmotic pressure difference (-∆P) across the specimen to counteract the tendency for qπ. 

Since qπ is zero in a closed system, measured values of -∆P are used to determine ω. 

The use of a closed system allows for several testing advantages relative to open systems 

(Malusis et al. 2012; Shackelford 2013), including: (1) easier and more accurate measurement of 

parameters necessary to quantify membrane behavior (e.g., -∆P typically can be measured more 

accurately that qπ); (2) easier control of boundary conditions than in open systems; and (3) linear 

concentration profiles across the specimen at steady-state diffusion, which allow for less 
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complex analyses than are required in open systems with nonlinear concentration profiles (see 

Chapter 4).  Thus, development of a closed-system apparatus was preferred in this study for the 

measurement of coupled membrane behavior and diffusion in unsaturated clays.  

Experimental research to date has focused on membrane behavior and diffusion in clays 

almost exclusively under water saturated conditions.  The lack of experimental data that exists 

for membrane behavior of unsaturated clays is due, in part, to the increased complexity of the 

testing systems required to accommodate and control unsaturated conditions.  However, there is 

a need for further experimental evaluation of unsaturated membrane behavior, as some clay 

containment barriers are likely to exist at various degrees of water saturation in some 

applications, such as disposal of high-level radioactive waste and in covers for landfills.  Also, 

based on our current conceptual understanding of the phenomenon, membrane behavior under 

unsaturated conditions is expected to be more significant than under saturated conditions 

(Sample-Lord and Shackelford 2014).   

The amount of experimental studies undertaken to evaluate membrane behavior in 

unsaturated soils has been limited (e.g., Letey et al. 1969; Bresler 1973; Bresler and Laufer 1974; 

James and Rubin 1986; Allred 2007).  In addition, all of these previous studies have employed 

the use of open systems to quantify the membrane efficiency of the unsaturated soils, none of 

which were bentonite.  Finally, conclusions regarding the relationship between observed 

membrane behavior and degree of saturation of the soils have been mixed.  To the author's 

knowledge, there is little to no data available for membrane behavior in unsaturated, high activity 

clays such as sodium bentonite (Na-bentonite).  Thus, the purpose of this study was to develop a 

closed-system testing apparatus that can measure coupled membrane behavior and diffusion in 
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unsaturated clays.  The design and calibration of the new testing apparatus are described herein, 

and the results of a broader testing program are presented in Chapters 4 and 5. 

 

2.2 Background 

Several testing apparatuses to measure semipermeable membrane behavior of clayey soils 

have been reported (e.g., Letey et al. 1969; Olsen 1969; Whitworth and Fritz 1994; Keijzer et. al 

1997,1999; Malusis et al. 2001; Shackelford and Lee 2003; Dominijanni et. al. 2013; 

Shackelford 2011, 2013).  The most common, open-system method is the filtration (or 

hyperfiltration) method, whereby an electrolyte solution is forced through the soil specimen and 

the amount of filtered solute due to membrane behavior is quantified based on the difference 

between the known influent concentration and the collected effluent concentration (e.g., 

McKelvey et al. 1957; McKelvey and Milne 1962; Kemper 1961; Kharaka and Berry 1973; 

Hanshaw and Coplen 1973; Kharaka and Smalley 1976; Fritz and Marine 1983; Whitworth and 

Fritz 1994; Ishiguro et al. 1995; Hart and Whitworth 2005).  An alternative, open-system method 

is to maintain a concentration gradient across the specimen (and no hydraulic gradient), and 

measure the amount of qπ that occurs (e.g., Kemper 1961; Kemper and Evans 1963; Kemper and 

Rollins 1966; Kemper and Quirk 1972; Keijzer et al. 1997, 1999).  However, this latter open-

system method is less common due, in part, to the difficulty of measuring the small flow 

quantities of chemico-osmotic flow and the difficulty in controlling the boundary concentrations 

(Shackelford and Lee 2003; Takeda et. al. 2014). 

As previously described, prevention of chemico-osmotic flow in closed systems results in 

the development of a chemico-osmotic pressure difference, -∆P, to counteract the tendency for 

chemico-osmosis (e.g., Elrick et al. 1976; Malusis et al. 2001; Malusis and Shackelford 2002a,b; 
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Shackelford and Lee 2003; Yeo et al. 2005; Kang and Shackelford 2009, 2010; Bohnhoff and et 

al. 2014).  In these systems, differential pressure transducers and/or gauge pressure transducers at 

each boundary of the specimen are used to monitor the development of -∆P, which is used to 

determine ω.  Such closed systems have been employed the use of both rigid-wall cells (e.g., 

Malusis et al. 2001; Bohnhoff et al. 2014) and flexible-wall cells (e.g., Kang and Shackelford 

2009; Bohnhoff 2012) for testing clay specimens under a saturated condition.  In the rigid-wall 

cell, the specimen is maintained at a constant volume throughout testing.  In contrast, some 

volume change can occur in a flexible-wall cell during the refilling stage between circulation 

cycles, although the system is closed during the actual membrane measurement stages of the test 

such that no volume change is possible (Kang and Shackelford 2009).  To limit the volume 

change of the unsaturated specimens during testing, a rigid-wall cell design was chosen for this 

research.    

   

2.3 Testing apparatus 

Several modifications to the aforementioned closed-system testing apparatuses 

commonly used for testing clay specimens under a saturated condition were required in this 

study to measure the membrane and diffusion behavior of unsaturated specimens.  Most notably, 

high air-entry (HAE) disks were required at each boundary of the specimen to maintain the 

specimen at constant water content, an air pressure port in the cell walls was required to apply air 

pressure to the specimen and maintain positive pore-water pressures, and a flexible membrane 

between the specimen and the rigid sidewall was used to eliminate short-circuiting along the 

perimeter of the specimen.   

In total, two independent apparatuses were developed to perform unsaturated membrane 
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and diffusion testing.  Each apparatus was comprised of the following, dedicated components: 

(1) rigid-wall cell that contains the specimen; (2) hydraulic control system, including flow 

pumps, syringes, and stainless steel plumbing; (3) reservoirs for solution storage; (4) 

instrumentation for measurement and monitoring of pressures; and (5) a computer and data 

acquisition system.  The testing system labeled Apparatus No. 1 is shown in Figure 2.1a, and was 

fabricated specifically for measuring membrane behavior and diffusion of unsaturated clays.  In 

addition to evaluating membrane behavior, Apparatus No. 1 was designed with the capability to 

control and adjust the water content of a specimen during testing to allow for measurement of the 

soil-water-characteristic curve (SWCC) and data for the hydraulic conductivity function (HCF) 

between each stage of membrane testing.  However, this feature of Apparatus No.1, which 

required the addition of a second flow pump and additional plumbing, was not utilized as part of 

this research due to time constraints.   

The testing system labeled Apparatus No. 2, shown in Figure 2.1b, represents a version of 

the apparatus used by Bohnhoff (2012) that was modified to accommodate unsaturated 

conditions.  For example, acrylic extensions were added to the top and base pedestals to 

accommodate the addition of the HAE disks.  Also, the acrylic, outer cylinder was split vertically 

to allow for easier setup and disassembly and the use of a rubber membrane between the 

specimen and the outer cylinder.  An air pressure port was added to the outer cylinder to allow 

for constant application of air pressure to unsaturated specimens.  Additional details of each 

component in both testing systems (No.1 and No. 2) are discussed subsequently. 
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2.3.1 Rigid-wall cell  

The rigid-wall cell developed in this study represented a modified version of the rigid-

wall cell described by Malusis et al. (2001) for testing the membrane behavior of saturated 

specimens.  In their cell (Figure 2.2a), the specimen was contained within a clear, hollow, acrylic 

(non-conductive) tube that serves as the rigid outer walls and between porous disks (GenPore 

porous sheet TO-6; General Polymer Corp., Reading, PA).  The tube fits over the top piston and 

base pedestals machined from solid, acrylic cylinders, and o-rings placed around the 

circumference of the base pedestal and top piston to provide a seal with the outer cylinder.  

Inflow and outflow ports in the base pedestal and top piston allow for circulation of liquids 

through the porous plastic disks along the top and bottom boundaries of the specimen.  

Additional ports were located in the center of the top piston and base pedestal for measurement 

of the boundary water pressures at the top and bottom of the specimen, respectively. 

For testing the unsaturated specimens in this study, the rigid-wall cell shown in Figure 

2.2a was modified to accommodate custom machined, HAE disks (Soilmoisture Equipment Co., 

Santa Barbara, CA) located immediately above and below the specimen to control and maintain 

the gravimetric water content, w, during testing (Figures 2.2b and 2.3).  For the rigid-wall cell in 

Apparatus No.1, the outer diameters of the top and base were increased to 83 mm, and a 65-mm-

diameter step was machined to seat the HAE disk.  For the rigid-wall cell used in Apparatus 

No.2, a hollow, acrylic tube with the same outer dimension as the top and base pedestals was 

sliced into 7.2-mm-thick pieces that were used to extend the top and base pedestal to 

accommodate the 7.14-mm-thick HAE disks (see Figure 2.4).   

The HAE disks are ceramic disks that have small pores of relatively uniform size and act 

as a membrane between the air and water phases (Fredlund and Rahardjo 1993; Lu and Likos 
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2004).  Once the disks are saturated, air does not pass through the pores unless the matric 

suction, ψm (air pressure adjacent to the disk minus the water pressure in the disk), exceeds the 

air-entry pressure of the disks.  The value of the air-entry pressure of an HAE disk is controlled 

primarily by the radius of curvature of the largest pore in the disk (Fredlund and Rahardjo 1993).  

Therefore, disks with smaller pore sizes have higher values of air-entry pressure, and can 

accommodate higher matric suctions.  Values for the air-entry pressure typically are provided by 

the manufacturer.   

As shown in Figure 2.2, the HAE disks act as an interface between the unsaturated soil 

specimen and the pore-water pressure lines, allowing for measurement of the pore-water pressure 

at the specimen boundaries without changing the degree of water saturation, S, of the specimen.  

If the suction exceeds the air-entry pressure of the disks, air bubbles can pass from the specimen, 

through the disks, and into the pressure lines, resulting in errors in pressure measurements.  

Thus, a minimum difference of 50 kPa between the initial suctions and the rated entry pressures 

of the disks was used to allow for potential variability in the specimen suction or imperfections 

in the disks.  For this study 3-bar (300-kPa) and 5-bar (500 kPa) HAE disks were used to 

accommodate specimens values of ψm up to 250 kPa and 450 kPa, respectively.     

During testing, solutes within the chemical solutions being circulated at the boundaries of 

the HAE disks must diffuse through the disks prior to reaching the boundaries of the clay 

specimen (see Figure 2.2b).  However, published information regarding effective diffusion 

coefficients of HAE disks for salts is limited (e.g., Barbour et al. 1996), and such information 

was unavailable for the disks required in this study (3-bar and 5-bar).  Therefore, calibration tests 

(without a soil specimen) were performed to measure the diffusion properties of the HAE disks.  

The calibration tests also confirmed that the HAE disks did not exhibit any measurable 
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membrane behavior (i.e., -∆P = 0) and, therefore, did not affect the -∆P measurements.  Further 

details of the calibration testing are described subsequently (see Section 2.5).     

Another design modification to the rigid-wall cell required for unsaturated testing was the 

ability to maintain positive pore-water pressures, u, and avoid potential cavitation during testing 

of specimens at low gravimetric water content, w (i.e., at high suctions).  Therefore, a constant 

air pressure greater than the matric suction of the specimen was applied during testing via the air 

pressure port (see Figure 2.2c) to maintain positive u.  The pressure line from the regulated air 

pressure source to the testing cell was routed through a vapor chamber partially filled with de-

ionized water (DIW) to limit evaporation from the specimen.  The air-pressure port was aligned 

with the midpoint of the specimen (vertically) during assembly.  Filter paper and a geotextile 

were secured between the air-pressure port and the edge of the specimen to ensure there was no 

loss of solid material through the port during setup.  A thin strip of filter paper was placed along 

the specimen perimeter and in contact with the air pressure port to distribute the applied air 

pressure (see Lu et al. 2006).   

A concern for membrane testing when chemical solutions with high concentrations are 

used is the development of "short-circuiting" between the perimeter of the specimen and the 

rigid, sidewall due to shrinkage of the specimen (e.g., Bohnhoff 2012; Bohnhoff et al. 2014).  

Such shrinkage can result in the loss of contact between the clay and the rigid wall, thereby 

resulting in a short circuit or bypass between the pressure at the top and bottom of the specimen, 

such that the -∆P induced by solute restriction can no longer be maintained in the test system 

(i.e., -∆P  0).  Therefore, the cell for unsaturated membrane testing was modified to 

accommodate the addition of a flexible membrane between the specimen and the rigid, side wall 

that would maintain a tight seal with the specimen to prevent such short circuiting.  In addition, 
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if the water content of the specimen was reduced (e.g., on purpose, via axis translation, as 

described subsequently) and shrinkage occurred under the higher suction, then the flexible 

membrane would continue to maintain good contact with the specimen perimeter to avoid short-

circuiting.  

Another important difference between the designs of the new and previous test cells was 

the acrylic, outer cylinder.  The modified outer cylinders were split vertically to allow for easier 

setup and disassembly and, correspondingly, less disturbance to the specimen.  The halves of the 

outer cylinder were secured via four metal bands around the perimeter, as shown in Figure 2.5.  

  

2.3.2 Hydraulic control system 

A hydraulic control system is required to establish and maintain a concentration gradient 

across the specimen in order to evaluate the membrane efficiency and diffusion properties of the 

clay specimen. Pictorial and schematic views of the hydraulic control system used in this study, 

which was based on that described by Malusis et al. (2001), are provided in Figures 2.1 and 2.6, 

respectively.    

In order to establish and maintain a difference in concentration,  ∆C, across the specimen 

during testing, chemical solutions and DIW were circulated continuously across the top and 

bottom boundaries of the specimen, respectively, using a dual-carriage flow-pump (Model 944, 

Harvard Apparatus, Holliston, MA) with two stainless-steel syringes on separate tracks.  On the 

"infuse" setting, the pistons inside each syringe displace the liquids (i.e., either chemical solution 

or DIW) from the front of the syringes at a constant rate through the porous plastic disks adjacent 

to the HAE disks.  The solutions are circulated through the porous plastic disks at each boundary 

of the specimen to establish a ∆C across the specimen to induce membrane behavior.  After 
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circulating across the boundaries, the solutions emanate from the outflow ports and then into the 

back end of the syringes (i.e., behind the plungers).  When the syringes are refilled with fresh 

solution (every two days in this study), the collected effluent is emptied into 50-mL vials for 

chemical analyses and measurement of electrical conductivity, EC, and pH.  All of the plumbing 

between the flow pump and the cell consists of stainless-steel valves and tubing, typically with 

3.2-mm (1/8-in) diameter, in an effort to minimize corrosion and potential volume change of the 

circulation system.  Each circulation system (top and bottom) represents a closed loop, such that 

the amount of liquid contained in each circulation system remains constant during each 

circulation period (e.g., see Malusis et al. 2001). In addition, liquid flow through the specimen 

during the membrane measurement stage is prevented from occurring. Therefore, there is no 

volume change in the system during circulation of the solutions (i.e., the system is closed).  

The testing is performed in stages. Generally, the first stage consists of circulating DIW 

across both top and bottom boundaries to establish the baseline value of -∆P.  Once steady 

baseline pressures are established, the DIW at the top boundary is switched to KCl solution, 

resulting in an increase in the value of -∆P, i.e., if membrane behavior exists in the specimen.  

After both steady-state values of -∆P and diffusion (discussed subsequently) have been 

established, the ∆C is increased via circulation of a higher concentration KCl solution to begin a 

new subsequent stage of the same test. The procedure is repeated using progressively higher salt 

concentrations across the top, such that progressively higher values of ∆C are established across 

the system. 

 Modifications were made to the unsaturated testing apparatus to allow for changing the w 

of the specimen during testing, if desired.  Using axis translation, the w of the specimen may be 

changed by increasing the air pressure, withdrawing a controlled volume of water from the 
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specimen, and allowing the specimen to re-equilibrate at the new w and suction (Lu et al. 2006).  

The pressures (suctions) at the top and bottom boundaries of the specimens are monitored with 

differential pressure transducers (see subsequent section).  A second syringe pump can be used 

for withdrawing a specified volume of water, as well as for performing a constant-flow hydraulic 

conductivity (k) test at each new w value as described by Olsen et al. (1991).  Thus, the modified 

apparatus is capable of measuring not only unsaturated membrane behavior, but also the soil-

water-characteristic curve and hydraulic conductivity function of the same specimen between 

stages of the multistage membrane test, although neither of these capabilities was utilized in the 

current study. 

 

2.3.3 Instrumentation, data acquisition and chemical analyses          

Differential and gauge pressure transducers were used in the membrane testing 

apparatuses to measure the water pressures at each boundary (u), water pressures relative to the 

applied air pressure (i.e., suctions, ψ), and pressure differences across the specimen induced by 

membrane behavior (-∆P).  In Apparatus No. 1, two differential pressure transducers (DPT2 and 

DPT3) were used to measure water pressure at the top and bottom specimen boundaries (utop and 

ubottom) relative to the applied air pressure (Pair), representing the total suction (ψt) at each 

boundary (i.e., Pair – utop = ψt,top, Pair – ubottom = ψt,bottom).  In addition, two separate differential 

pressure transducers were used to measure the -∆P across the specimen (DPT1 and DPT4).  The 

range of measurable pressure differences for DPT1, DPT2 and DPT3 were +/- 207 kPa (30 psi) 

(Omega Engineering Inc., Model PX26-030DV, Stamford, CT), whereas that for DPT4 was +/- 

34 kPa (5 psi) (Omega Engineering Inc., Model PX26-05DV, Stamford, CT).  The pressure lines 
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to DPT4 were opened only during low pressure conditions (e.g., < 34 kPa (5 psi)), when higher 

resolution of pressure data was desired.   

In Apparatus No. 2, two gauge pressure transducers (Omega Engineering Inc., Model 

PX209-015G10V, Stamford, CT) were used to measure the boundary pressures, and one 

differential transducer (Validyne Engineering Corp., Model DP15, Northridge, CA) was used to 

directly measure the -∆P across the specimen.  The air pressure was measured separately via a 

gauge pressure transducer attached to the plumbing to the air pressure port (model No. PX181-

100G5V, Omega Engineering Inc., Stamford, CT).  The maximum values of the gauge and 

differential pressures for the transducers connected to the boundaries of the specimen were 103 

kPa (15 psi) and 86 kPa (12.5 psi), respectively.  The range of the gauge transducer for the air 

pressure line was 689 kPa (100 psi).  

For each apparatus, all of the pressure data was recorded with data acquisition (DAQ) 

systems consisting of a circuit board (SCB-68, National Instruments, Austin, TX), a DAQ device 

(National Instruments, Austin, TX), and LabVIEW software (National Instruments, Austin, TX).  

A relative humidity and ambient temperature recorder (Extech Instruments, Model RH520A, 

Nashua, NH) was mounted near both apparatuses to monitor atmospheric changes that may 

affect pressure readings.    The pH and EC of the circulation outflows collected during the 

refilling of the syringes every two days were measured with a conductivity meter (150 A+ 

Conductivity Meter; Thermo Orion, Beverly, MA).  Anion concentrations (e.g., Cl-) were 

analyzed using ion chromatography, or IC (Dionex® 4000i IC Module, Dionex Co., Sunnyvale, 

CA), whereas cation concentrations (e.g., K+, Na+, Ca2+) were measured with inductively 

coupled plasma-atomic emission spectrometry, or ICP-AES (IRIS® Advantage/1000 ICAP 

Spectrometer, Thermo Jarrel Ash Co., Franklin, MA).   
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2.3.4 Solutions and reservoirs 

The liquids circulated at the specimen boundaries during membrane testing consisted of 

DIW and electrolyte solutions of KCl (certified A.C.S., Fisher Scientific, Fair Lawn, NJ) 

dissolved in DIW.  Membrane behavior research is still at a fundamental level of study and, 

therefore, chemical solutions used in laboratory testing typically have been comprised of simple 

salt solutions (e.g., KCl, NaCl, CaCl2) versus, for example, the more complex chemical solutions 

commonly encountered in practice (e.g., leachates).  The measured solution concentrations of 

KCl in the solutions used in this study ranged from 7.0 mM to 50 mM.  The KCl solutions were 

prepared and stored in 20-L carboys (Nalgene®, Thermo Fisher Scientific, Rochester, NY), 

which were used to fill the acrylic reservoirs attached to the hydraulic plumbing of each testing 

apparatus. To confirm the desired concentrations of the prepared solutions, the EC of the 

solutions were measured with the conductivity probe, and collected samples were analyzed via 

IC and ICP, as previously described.  

After the acrylic reservoirs were filled with fresh solution from the carboys, vacuum was 

applied to the reservoirs using a vacuum pump (Model LAV-3, Fischer Technical Co., Roselle, 

IL) to eliminate air bubbles in the solution.  The vacuum was maintained on the reservoirs until 

the syringes were refilled.  During refilling, the vacuum pressure was released, and solution was 

drawn from the reservoirs to the syringes.  After refilling, vacuum was reapplied and the 

reservoirs were closed. 

 

2.4 Testing procedure 

2.4.1 System preparation 

Prior to starting a new test to measure diffusion and membrane behavior of a bentonite 
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specimen, the following steps were required to prepare the testing system: 

 

• to ensure the HAE disks were saturated, the disks were submerged in de-aired water for 

several days (> one week) and then placed inside a reservoir, to which a vacuum was 

applied using the aforementioned vacuum pump; 

•  all of the reservoirs were emptied, cleaned, and refilled with fresh, de-aired DIW; 

• all plumbing, syringes and pressure lines were flushed with de-aired DIW to remove air 

bubbles and/or solution from previous tests; 

• all pressure transducers were recalibrated and new calibration factors were entered into 

the LabVIEW software;  

• the unsaturated specimen was assembled in the testing cell, a constant air pressure greater 

than the matric suction was applied immediately to maintain positive water pressures, and 

the system was allowed to equilibrate for at least 5 days; and 

• several (> 7), two-day circulation cycles were completed with DIW circulating at each 

boundary to flush any remaining bubbles from the system and establish baseline 

pressures. 

 

After completion of the system preparation procedure, and establishment of steady baseline 

pressures and EC during DIW circulation, the first stage for membrane behavior testing was 

initiated.  A general representation of the baseline pressure during the DIW stage, as well as 

typical -∆P data measured during a multi-stage test, is shown in Figure 2.7.  

Since the applied concentration gradient was zero during the DIW stage, the -∆P due to 

membrane behavior theoretically should be zero.  However, slightly non-zero values may result, 
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for example, due to imperfections in the machining of the syringes (i.e., the volume capacities of 

each syringe are not exactly the same), resulting in slight differences in the volume flow rates 

from each syringe, and/or from slightly different hydraulic conductivity values for the porous 

disks, resulting in different head (pressure) losses between the entrance points for the circulation 

liquids and the locations in the middle of the disks where the pressures on top and bottom are 

monitored (Malusis et al. 2001). 

 

2.4.2 Membrane behavior and diffusion testing stage 

Continuous circulation of DIW or electrolyte solution at each boundary resulted in a 

constant ∆C across the HAE disk-specimen-HAE disk system.  A constant ∆C across the 

specimen was achieved once steady-state diffusion was reached.  If the specimen acted as a 

semipermeable membrane, then a -∆P developed across the specimen in response to the ∆C.  

Each concentration stage (e.g., 20 mM, 30 mM) was continued until steady-state diffusion 

(quantified by the chemical flux from the measured outflow concentrations) and steady values of 

-∆P were observed.  After both steady-state diffusion and -∆P were established, the 

concentration of the KCl solution was increased to begin a new, subsequent stage of the test.    

The circulation rate of the liquid was dependent on the displacement rate and cross-

sectional area of the syringes.  During the circulation phase of the membrane tests, the rate was 

maintained at 2.3 x 10-10 m3/s (approximately 40 mL every two days).  This rate, which was 

chosen based on previous studies (e.g., Malusis et al. 2001; Shackelford and Lee 2003; Bohnhoff 

2012), allowed for maintaining approximately "perfectly flushing" boundary conditions and 

achieving a steady value of -∆P during each circulation period.   At this circulation rate, each 
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circulation cycle lasted approximately two days until the liquid capacity of the syringes was 

exhausted such that the syringes had to be refilled.   

 

2.4.3 Hydraulic conductivity testing 

 If desired, at the end of the circulation stage with DIW, and prior to circulation with 

electrolyte solutions, a constant-flow k test may be performed utilizing the flow pump.  The 

benefits of including this additional step are two-fold: (1) to flush remaining soluble salts from 

the specimen if desired for the purpose of enhancing the likelihood of significant membrane 

behavior (e.g., Malusis and Shackelford 2002a); and (2) to obtain data to construct a hydraulic 

conductivity function (HCF) curve for the clay.  However, due to time constraints, the k testing 

stage was conducted only for the test with the saturated specimen (S = 1).  The time that would 

be required for matric suction and water content conditions to return to equilibrium throughout 

the unsaturated specimens after a constant-flow k test was unknown, such that this optional step 

was not undertaken to minimize the durations of the tests with unsaturated specimens.   

 During the k testing stage for the saturated specimen, one syringe on the flow pump was 

used to force freshly de-aired, DIW through the specimen and HAE disks.  A constant-flow rate, 

q, of DIW from the bottom, upward and through the specimen was maintained.  The pressure 

difference across the specimen, ∆u (= utop – ubottom), induced by q was measured with the same 

pressure transducers used to measure -∆P during the membrane test stages. Once a steady value 

of ∆u was achieved, k could be calculated based on Darcy’s law written as follows:  

 

w

qLk uA
gρ

= −
∆        (2.1) 
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where A and L are the specimen cross-sectional area and thickness, respectively, ρw is the density 

of water (1 kg/m3), and g is acceleration due to gravity (9.81m/s2).  The maximum q that could 

be applied was limited by the range of the pressure transducers, i.e., the ∆u that could be 

accommodated by the testing system.  The values of k and, thus, ∆u that will be induced by the 

applied q during the k testing stage may be unknown prior to testing, particularly for the 

unsaturated specimens.  Therefore, initial attempts in performing a constant-flow k test required 

carefully monitoring the pressure buildup to make sure this does not approach the limit of the 

pressure transducer.  If the pressure buildup does approach a limiting value, the applied flow 

should be stopped to allow the buildup in pressure to fully dissipate, and then the procedure can 

be restarted using a slower applied flow rate.  Thus, careful, real-time monitoring is required 

during the k testing stage.  

 

2.5 System calibration tests 

2.5.1 System baseline pressures  

If a constant-flow k testing stage is performed, then the pressure difference across the 

system, ∆u, induced by the applied q should be measured and used to calculate the k of the 

specimen in accordance with Darcy’s law. However, because of the existence of the porous HAE 

disks on both sides of the specimen, a constant-flow k test was performed only using the HAE 

disks (no specimen) in order to determine the magnitude of the pressure difference across the 

system that is attributable to the HAE disks.  This test, referred to as a "blank-sleeve" test (Lu et 

al. 2006), was performed as part of the calibration process for each testing apparatus.   

A schematic of the setup for the blank-sleeve test is provided in Figure 2.8.  Example 

results are shown in Figures 2.9 for the 3-bar and 5-bar HAE disks.  An estimate of the value of 
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the saturated k, ksat, of the HAE disks (+/- 10 %) was provided by the manufacturer (Soilmoisture 

Equipment Co., Santa Barbara, CA), such that the portion of ∆u that occurs across the disks 

during a k test also could be estimated.  However, completion of blank-sleeve tests was required 

to determine the actual value of ksat for each set of disks and to calculate an accurate value of k 

for the specimens.   

The measured values of ksat for the HAE disks, as well as the values provided by the 

manufacturer, are summarized in Table 2.1.  The measured value of ksat for the 3-bar disk was 1.6 

x 10-9 m/s, which was slightly lower than the range of ksat values reported by the manufacturer of 

2.2 x 10-9 m/s to 2.8 x 10-9 m/s.  The measured value of ksat for the 5-bar disk was 9.0 x 10-10 m/s, 

which also was slightly lower than the range of ksat values reported by the manufacturer of 1.1 x 

10-9 m/s to 1.3 x 10-9 m/s.  Multiple k tests were performed on each HAE disk and similar values 

of k were obtained in each test, which suggested the disks were fully saturated and that the 

measured results were accurate. For example, for the 3-bar disks, eight k tests were performed 

for constant flow rates ranging from 1 x 10-10 m3/s to 5 x 10-9 m3/s and the measured values of k 

all fell within the range of 1.3 x 10-9 m/s to 1.7 x 10-9 m/s.  The differences between the 

measured values of ksat and the average values reported by the manufacturer are likely due, in 

part, to slight differences in the pore structure of each disk (i.e., ceramic disks with the same air-

entry may not by completely identical) and differences in the methods used to determine ksat.   

 

2.5.2 Diffusion across high air-entry disks 

To accurately analyze the diffusion behavior of the clay specimens, the diffusion 

properties of the HAE disks also must be known.  However, limited information pertaining to the 

chemical diffusion properties of ceramic HAE disks is available in the literature or from 
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manufacturers.  Barbour et al. (1996) measured diffusion and adsorption of ions in unsaturated, 

sandy soils, utilizing the axis-translation technique and HAE disks (0.5 bar) to control ψm.  

Potassium (K+) and chloride (Cl-) ions were used as the primary tracers.  To calculate the 

diffusion and adsorption coefficients of the soils, Barbour et al. (1996) performed additional tests 

to quantify the properties of just the HAE disks.  The effective diffusion coefficient, D*, and 

distribution coefficient for adsorption, Kd, of the 0.5-bar HAE disks reported in Barbour et al. 

(1996) are shown in Table 2.1. 

Similar calibrations tests were performed for the HAE disks associated with the two 

testing apparatuses described herein.  For these calibration tests, KCl and DIW solutions were 

circulated across the top and bottom boundaries of the disks, respectively, mimicking the 

conditions to be applied during normal membrane testing (same setup, but without the clay 

specimen).  A schematic of the setup for the calibration tests is shown in Figure 2.10.  Since the 

HAE disks must remain fully saturated, there was no matric suction in the cell, such that the 

application of a constant air pressure (to maintain positive water pressures) was not necessary.  

The HAE disks did not exhibit membrane behavior, as expected, so the value of -∆P was 

approximately zero throughout the calibration test.   

Although the diffusion properties of the ceramic disks were expected to remain 

approximately constant, the calibration tests were performed as multi-stage tests to confirm that 

the diffusion properties did not change significantly upon exposure to increasing KCl 

concentrations (Cot) ranging from 7.0 mM to 50 mM KCl.  Salt diffusion occurred through both 

of the HAE disks, from the top boundary of the upper disk to the bottom boundary of the lower 

disk.  The through-diffusion method was used to determine the steady-state diffusion parameters 

of the disks based on measured effluent concentrations (Shackelford 1991, 1995; Malusis et al. 
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2001; Malusis and Shackelford 2002b).  A brief description of the procedure for analysis of 

diffusion test data using the through-diffusion method is provided subsequently.   

The circulation outflow from the bottom boundary of the HAE disks was accumulated in 

the back of the syringe during the circulation stage.  The time increment, ∆t, for effluent 

collection (i.e., the duration of one circulation period) was two days.  During the refilling stage, 

the effluent was collected in a 50-mL vial and the volume (∆V) and EC of the sample were 

measured (Figure 2.11a).  The cation and anion concentrations in the sample were determined 

via IC and ICP analysis (Figure 2.11b).  The solute concentrations, Cb, of the species of interest 

were used to calculate the incremental mass of solute (∆m) that had diffused across the disks 

over the time increment, ∆t (i.e., ∆m = ∆VCb).  The values of ∆m for each time increment were 

summed to determine the cumulative solute mass m (= Σ∆m) versus the cumulative elapsed time, 

t. The value of m was divided by the cross-sectional area of the HAE disks to determine the 

cumulative mass per unit area, Qt.  As shown in Figure 2.12, Qt was plotted versus t, and the 

steady-state portion of the curve (e.g., the linear portion) was used to calculate the steady-state 

D* based on Equation 2.2: 

 

 
* t

steady state

QLD
n C t −

D  = −  DD   
  (2.2) 

  

where L is the total length of the system (= 2 x LHAE for the calibration tests, where LHAE is the 

thickness of one HAE disk), n is the porosity of the HAE disks as reported by the manufacturer 

(0.34 for 3-bar disks, 0.31 for 5-bar disks), and ∆C is the total concentration difference across the 

disks.  Example data for the HAE-disk diffusion tests are shown in Figures 2.11 and 2.12, and 
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the results are summarized in Table 2.1.   

The measured values of D* (Table 2.1) from the calibration tests performed in this study 

were in general agreement with those reported by Barbour et al. (1996).  Similar to the saturated 

hydraulic conductivity, as the air-entry pressure of the disk increased (and the maximum pore 

size decreased), the value of D* decreased.  For example, as the air-entry pressure of the HAE 

disks increased from 3-bar to 5-bar (corresponding to a decrease in maximum pore size from 0.7 

µm to 0.5 µm), the D* decreased slightly from 1.64 x 10-10 m2/s to 1.39 x 10-10 m2/s.  As shown 

in Figure 2.13, the measured value of D* of the HAE disks increased with increasing values of 

ksat.   

Based on the results of the calibration tests, using HAE disks with a higher air-entry 

pressure likely would result in longer test durations to reach steady-state diffusion (due to lower 

D* of the disks) during the multi-stage membrane tests for the unsaturated bentonite specimens.  

As a result, only disks with lower air-entry pressures (e.g., 3-bar and 5-bar) were considered in 

the development of the two testing apparatuses, which limited the range of ψm (i.e., range of S) 

the test apparatuses were able to accommodate.   

 

2.6 Summary and conclusions 

Previous experimental research programs focused on the measurement of membrane 

behavior and diffusion in clays have utilized both open and closed test systems.  The use of a 

closed system allows for several testing advantages relative to open systems, including more 

accurate measurement of membrane behavior, easier control of boundary conditions, and the 

development of linear concentration profiles across the specimen at steady-state diffusion.  

Experimental research to date has focused on membrane behavior of clays almost exclusively 
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under water saturated conditions, even though membrane behavior under unsaturated conditions 

is expected to be more significant than under saturated conditions.  The limited number of 

experimental studies that have been performed to evaluate membrane behavior in unsaturated 

soils only  have employed the use of open systems to quantify membrane efficiency.  Thus, the 

purpose of this study was to develop a closed-system testing apparatus that could measure 

coupled membrane behavior and diffusion in unsaturated clays.  

 A new testing apparatus to measure membrane behavior and diffusion in unsaturated 

clays was designed, fabricated, calibrated, and used as part of a broader testing program (see 

Chapters 4 and 5).  The major components of the testing apparatus included the following:  (1) 

rigid-wall cell that contained the specimen; (2) closed hydraulic control system, which included 

flow pumps, syringes, and stainless steel plumbing; (3) reservoirs for solution storage; (4) 

instrumentation for measurement and monitoring of water pressures, air pressures, and total 

suctions; and (5) a computer and data acquisition system.  Unique aspects of the new apparatus 

relative to closed-system apparatuses that previously have been  used to evaluate membrane 

behavior of saturated clays included: (1) the addition of HAE disks  located immediately above 

and below the specimen to control and maintain water content and matric suction during testing; 

(2) application of constant air pressure to the unsaturated specimen to maintain positive water 

pressures and avoid cavitation in the pressure lines; (3) the addition of a flexible membrane 

between the specimen and the rigid, side wall to prevent short circuiting; and (4) the use of a 

split outer cylinder to allow for easier test setup and disassembly, minimizing disturbance to the 

prepared specimen.  

In order to evaluate the membrane behavior and diffusion of unsaturated clay specimens 

tested in the new apparatus, calibration tests must be performed to determine the diffusion 
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properties of the HAE disks.  The through-diffusion method was used to determine the steady-

state diffusion properties of the disks based on measured effluent concentrations over time.  The 

effective diffusion coefficients for KCl for the 3-bar and 5-bar HAE disks were 1.64 x 10-10 m2/s 

and 1.39 x 10-10 m2/s, respectively.  The results of the calibration tests were used to analyze the 

results obtained from membrane behavior and diffusion testing of unsaturated bentonite 

specimens, as described in Chapters 4 and 5.  The development of a closed-system testing 

apparatus capable of accommodating unsaturated soils advances the state-of-the-art for 

laboratory measurement of membrane behavior and diffusion in clays used as barrier materials 

for chemical containment applications.  
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Table 2.1. Properties of high air-entry disks. 
 

Air- 
Entry 

Value of 
Disk  

(bars) 

Saturated Hydraulic 
Conductivity, ksat (m/s)  

Porosity, 
n (a) 

Measured 
Effective Diffusion 
Coefficients using 
KCl Solutions, D*  

(m2/s) 

Measured 
Adsorption 

Coefficients using 
KCl Solutions, Kd 

(m3/kg) 
Reported by 

Manufacturer 
(a) 

Measured 

0.5 3.1 x 10-7  
± 10 % NR 0.51 7.5 x 10-10 (b) 7 x 10-5 (Cl-) 

1 x 10-4 (K+) (b) 

3 2.5 x 10-9 

± 10 % 1.6 x 10-9 0.34 1.64 x 10-10 (c) 3 x 10-4 (Cl-) 
1 x 10-3 (K+) (c) 

5 1.2 x 10-9 

± 10 % 9.0 x 10-10 0.31 1.39 x 10-10 (c)   2 x 10-4 (Cl-) 
6 x 10-4 (K+) (c) 

 
NR = Not reported. 
a. As reported by Soilmoisture Equipment Corp (Santa Barbara, CA). 
b. Barbour et al. (1996); dry density (ρd) of 0.5-bar disks reported as 1,550 kg/m3. 
c. Results from first concentration stage of calibration tests performed as part of this research; dry density (ρd) of 3-bar and 5-bar 

disks are 1,731 kg/m3 and 1,733 kg/m3, respectively. 
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Figure 2.1.  Pictorial views of (a) Apparatus No. 1 and (b) Apparatus No. 2.   

(a) Apparatus No. 1 

(b) Apparatus No. 2 
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Figure 2.2. Schematics of rigid-wall cell designs used in membrane behavior studies: (a) 
saturated specimens (Shackelford 2013); (b,c) unsaturated specimens.   
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Figure 2.3.  Detailed design of acrylic base for Apparatus No. 1.   
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Figure 2.4.  Detailed design of Apparatus No. 2: (a) original acrylic base (similar dimensions for 
top piston) for saturated specimens (Malusis et. al. 2001), and (b) split outer cylinder with port 
for air pressure for unsaturated testing.  
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Figure 2.5.  Pictures of rigid-wall cells in (a) Apparatus No. 1 and (b) Apparatus No. 2. 
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Figure 2.6.  Schematic of testing Apparatus No. 1 for measurement of membrane behavior, soil-water characteristic curve, and 
hydraulic conductivity function of unsaturated clays. 
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Figure 2.7.  Schematic illustration of typical trends in chemico-osmotic pressure difference, -∆P, 
measured during multistage membrane tests for bentonite specimens.       
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(a) (b) (c)
 

 

 
 
 
Figure 2.8.  Pictures of (a) high air-entry (HAE) disk with perimeter and pressure-line o-rings 
(Apparatus No. 2), (b) saturation process for HAE disks using a reservoir with de-aired water 
and vacuum pump, (c) test cell with HAE disks (5-bar) during blank-sleeve calibration testing, 
and (d) schematic of blank-sleeve test (shown for Apparatus No. 1).  
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Figure 2.9.  Example results of the blank-sleeve calibration tests to measure hydraulic 
conductivity, k, of the high air-entry disks: (a) pressure difference versus flow rate for 3-bar air-
entry disk; (b) pressure difference versus flow rate for 5-bar air-entry disk; (c) pressure 
difference versus time for 5-bar air-entry disk, showing four k tests. [Note: Test days in plot (c) 
are negative because day 0 corresponds to the start of KCl circulation.]  
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Figure 2.10.  Schematic illustrations for diffusion calibration tests for high air-entry disks: (a) 
example setup (Apparatus No. 1 shown); (b) typical plot used in through-diffusion analysis to 
analyze diffusion of solutes through the air-entry disks.   
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Figure 2.11.  Example results of diffusion calibration test for 5-bar high air-entry disk: (a) 
electrical conductivity of the bottom and top outflows; (b) measured cation and anion 
concentrations in the outflow from the bottom boundary.  
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Figure 2.12.  Example curves of cumulative mass per area (Qt) versus elapsed time for individual 
concentration stages to determine diffusion properties: (a) 3-bar high air-entry disk; (b) 5-bar 
high air-entry disk.  
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Figure 2.13.  Measured effective diffusion coefficients for KCl diffusing through high air-entry 
disks versus the values of saturated hydraulic conductivity (a) reported by manufacturer, and (b) 
measured during calibration testing.   
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CHAPTER 3.  A DIALYSIS METHOD FOR HOMO-IONIZATION OF BENTONITE 
 
 
 
3.1 Introduction 

Clays with significant percentages of smectite minerals (e.g., montmorillonite), such as  

sodium bentonite (Na-bentonite), are commonly used as barriers or barrier components for 

chemical containment applications (e.g., liners for waste containment systems, slurried vertical 

cutoff walls), due to the high swell and low hydraulic conductivity properties of such clays 

(Shackelford and Sample-Lord 2014).  Examples of such barriers include geosynthetic clay 

liners (GCLs), mixtures of sand and bentonite as compacted clay liners (CCLs), and soil-

bentonite backfills (SBBs) as vertical cutoff walls.  In addition to low hydraulic conductivity, 

Na-bentonite also may exhibit semipermeable membrane behavior, or the ability to restrict the 

migration of solutes through the clay, thereby further enhancing the containment function of the 

barrier (Shackelford 2013).   

In general, the behavior and properties of bentonites typically are enhanced when 

monovalent cations (e.g., Na+) dominate the exchange complex (e.g., Na-bentonite) relative to 

when multivalent cations (e.g., Ca2+) occupy the majority of the exchange sites (e.g., Ca-

bentonite) (e.g., Gleason et al. 1997).  For this reason, treatment of natural bentonites to increase 

the percentage of monovalent cations in the exchange complex, commonly referred to as homo-

ionization or clay purification, may be beneficial in terms of the use of these bentonites in 

barriers for chemical containment applications. In addition, such homo-ionization has been 

undertaken extensively in previous studies focused on understanding the fundamental 

mechanisms governing the behavior and properties of bentonites, such as the index properties 

(e.g., Sridharan et al. 1986), consolidation and compressibility (e.g., Olson and Mesri 1970), 
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hydraulic conductivity (e.g., Mesri and Olson 1971), soil suction (e.g., Likos and Lu 2002), and 

salt filtration (e.g., Kemper 1961; Hanshaw 1962; McKelvey and Milne 1962; Kemper and 

Rollins 1966; Mokady and Low 1966; Olsen 1969; Kemper and Quirk 1972; Whitworth and 

Fritz 1994; Ishiguro et al. 1995; Di Maio 1996). In these studies, the goal typically has been to 

homo-ionize the bentonites to the extent that a single, monovalent cation (e.g., Na+) occupies the 

majority (e.g., > 95 %) of the exchange sites. However, this extent of homo-ionization often has 

been assumed, without verification via measurement of the composition of the exchange 

complex after treatment (e.g., ASTM D 7503).          

Based on the aforementioned considerations, a dialysis procedure was developed to allow 

for preparation of bentonite specimens with a high percentage (≥ 70 %) of Na+ on the exchange 

complex. The effectiveness of the dialysis procedure was evaluated for the purpose of verifying 

that homo-ionization can be achieved using salt solution concentrations similar to those 

described in the literature for clay purification methods, and providing recommendations for 

dialysis methods associated with the fundamental study of bentonite behavior.  Finally, the 

proposed dialysis procedure also was evaluated as a basis for measuring the diffusion behavior of 

bentonite pastes. 

 

3.2 Background 

3.2.1  Bentonite mineralogy 

Most bentonites are a product of volcanic ash, with deposits existing on almost every 

continent (Grim 1968; Grim and Güven 1978; Odom 1984). The principle mineralogical 

constituents of bentonite are montmorillonite and beidellite, both of which are dioctahedral 

smectites (Deer et al. 1992).  Both of these clay minerals belong to a group of minerals known as 
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the layered alumino-silicates. In the layered alumino-silicate minerals, oxygen and hydroxyl 

anions combine with various cations to form sheets of silicon tetrahedrons and aluminum 

octahedrons.  These sheets combine via ionic and covalent bonding to form stacks of sheets.  The 

smectite structure consists of an octahedral sheet sandwiched between two silica sheets, referred 

to as a 2:1 layered alumino-silicate (see Figure 3.1a,b).  The space between adjacent stacks is 

referred to as the interlayer region, which may be occupied by water (H2O) and various cations 

(e.g., K+, Na+, Ca2+, Mg2+, etc.), depending on the type of clay mineral.  The stacks of sheets 

combine to form individual clay particles. A schematic representation of the process for 

formation of clay minerals is provided in Figure 3.1c. 

The theoretical composition of an electrically neutral smectite mineral is 

(OH)4Si8Al4O20•n(interlayer)H2O (Mitchell and Soga 2005).  However, smectite minerals 

typically undergo isomorphic substitution, whereby the aluminum cation (Al3+) in the octahedral 

sheet is replaced by a cation of lower valence (e.g., Mg2+, Fe2+, Zn2+, Ni2+, etc.) during formation 

of the clay mineral, resulting in a permanent  net negative charge.  Isomorphic substitution also 

may occur within the tetrahedral sheet, where silicon (Si4+) is replaced by aluminum (Al3+) or 

phosphorous (P3+)  (Mitchell and Soga 2005).  

The dioctahedral structure of montmorillonite is a result of isomorphic substitution of 

every sixth Al3+ with Mg2+, resulting in a new, unit cell formula of (OH)4Si8(Al3.34Mg0.66)O20.  

The charge deficiency of montmorillonite, which on average is 0.66 negative equivalents per unit 

cell (ranges from 0.5 to 1.2 negative equivalents per unit cell), is balanced by exchangeable 

cations on the particle surfaces and within the interlayer regions, the latter of which are referred 

to as interlayer cations (Mitchell and Soga 2005).  For example, in the case where sodium cations 

balance the charge deficiency, the cell formula may be written as: 
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(OH)4Si8(Al3.34Mg0.66)O20→Na0.66.  This charge imbalance of the montmorillonite leads to the 

relatively high cation exchange capacity, CEC.  The large surface area (typically 50 to 120 m2/g 

of primary surface area and up to 800 m2/g when including the crystalline interlayer area), high 

cation exchange capacity (typically 80 to 150 cmolc/kg), and net negative charge of the clay 

particles result in a soil that is highly sensitive to water content and pore-fluid chemistry 

(McBride 1994).   

The interlayer cations may form inner-sphere complexes (i.e., direct binding of the cation 

to the mineral surface) or outer-sphere complexes (i.e., hydrogen bonding between the mineral 

and the water molecules surrounding the cation).  Also, the interlayer spacing (designated as d001 

in Figure 3.1a) can vary based on hydration and the types of exchangeable cations that are 

present.  The d001 may vary from 9.6 Å (when fully collapsed) to more than 19 Å when hydrated 

(Deer et al. 1992), resulting in the high swell potential of montmorillonite-rich soils such as 

bentonites.     

The exchange sites of natural bentonites are occupied by a mixture of cations, most 

notably the alkali earth metals sodium (Na+) and potassium (K+) and the alkaline earth metals 

calcium (Ca2+) and magnesium (Mg2+).  Bentonites generally are labelled in terms of the cation 

that predominates the exchange sites of the individual clay particles.  For example, when Na+ is 

the predominant exchangeable cation, the bentonite is referred to as a sodium bentonite (Na-

bentonite), whereas when Ca2+ is the predominant cation, the bentonite is referred to as a calcium 

bentonite (Ca-bentonite).  The percentage of exchange sites that are occupied by Na+ can be 

related to the exchangeable sodium percentage, ESP (e.g., Sparks 2003): 

 

+Exchangeable Na 100%ESP
CEC

= ⋅      (3.1) 
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where exchangeable Na+ (cmolc/kg) and CEC (cmolc/kg) are determined via laboratory testing 

(e.g., ASTM D 7503). 

 Cation exchange typically is diffusion-controlled, reversible, and stoichiometric (Sparks 

2003; Brigatti et al. 2006).  Selectivity for one cation relative to another for the exchange sites of 

the montmorillonite surface generally is based on both hydrated radius and primary valence.  For 

cations with the same valence, the bonding energy (the energy with which an adsorbed cation is 

held to the clay particle) varies inversely with the effective radius of the hydrated ion (Baver 

1956).  The ion with the larger hydrated radius is displaced by the ion with the smaller hydrated 

radius (e.g., Li+ is displaced by Na+).  Thus, preference for cations (of the same valence) 

increases as hydrated radius decreases, such that the general order of selectivity is Cs+ > Rb+ > 

K+ > Na+ > Li+ > H+ for monovalent cations and Ba2+ > Pb2+ > Sr2+ > Ca2+ > Mg2+ for divalent 

cations (Sayre et al. 1963; van Olphen 1963; Sparks 2003).  Bonding energy also generally 

increases with increasing valence, leading to a general preference for multivalent cations over 

monovalent cations.  Therefore, the typical order of preference or selectivity for the common 

cations is Ba2+ > Pb2+ > Sr2+ > Ca2+ > Ni2+ > Cd2+ > Cu2+ > Co2+ > Zn2+ > Mg2+ > Ag+ > Cs+ > 

Rb+ > K+ > NH4
+ > Na+ > Li+ (Helfferich 1962).  

 

3.2.2  Clay purification methods 

Natural clays typically have a mixture of cations occupying the exchange complex and 

some non-zero concentration of soluble salts.  For laboratory studies, the ability to control the 

type and percentage of cations on the exchange complex, as well as remove excess soluble salts, 

provides greater control over testing conditions, amplification or suppression of clay behaviors 

(e.g., swell, osmotic suction, membrane behavior), and the ability to evaluate the role of 
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exchangeable cations on clay properties. Laboratory methods for salt removal and modification 

of ion form have been used extensively by soil scientists, and generally are referred to as clay 

purification (e.g., see references in Table 3.1).  The most common clay purification methods 

include washing and centrifuging, dialysis, and electrodialysis (van Olphen 1963).  An extensive 

list of studies where bentonite has been purified as part of the specimen preparation procedure 

for a variety of testing purposes is summarized in Table 3.1.  While clay purification methods 

have been used by soil scientists for several decades to prepare homo-ionic soil specimens with 

low soluble salt contents, the procedures for such purification methods are not commonly used in 

geotechnical and geoenvironmental testing research.   

For most of the studies listed in Table 3.1, the primary purpose of the purification 

procedure was to prepare homo-ionized bentonite.  Homo-ionized bentonites theoretically are 

bentonites that have a single cation species occupying all of the exchange sites.  However, 

preparation of clay with 100 % of the exchange positions occupied by a single cation species 

typically is difficult (van Olphen 1963).  Thus, for practical purposes, bentonites may be 

considered to be homo-ionized when the exchange sites are occupied by a significant majority of 

a single cation, such as > 95 %. For example, a bentonite may be considered to be homo-ionized 

with respect to sodium when > 95 % of the exchange sites are occupied by Na+ (i.e., ESP > 95 

%).   

 

3.2.2.1 Washing and centrifuging 

As described previously in Section 3.2.1, cations with higher valence and/or smaller 

hydrated radius are preferred for cation exchange, replacing cations with lower valence and/or 

larger hydrated radius. Thus, exchange preference or affinity (selectivity) for Ca2+ and K+ is 

57 



higher than that for Na+.  However, ion exchange reactions also depend upon ion concentration, 

such that the use of a high concentration (e.g., 1 M) NaCl solution can lead to  replacement of 

Ca2+ and K+ on the exchange complex with Na+ (Di Maio 1996).  This concentration effect is 

often referred to as a mass action effect. Thus, one method to modify the exchange complex of a 

clay is to wash the clay several times with a strong salt solution of the desired cation form (e.g., 1 

M NaCl for a Na-bentonite).    Upon mixing the clay with a strong salt solution to form a 

suspension, the clay may flocculate and settle out of suspension.  A centrifuge may be used to 

expedite separation of the solid clay particles from the supernatant.  The supernatant is removed, 

replaced with fresh solution, and the process is repeated.  Typically, the clay then is washed with 

de-ionized water (DIW) to remove excess soluble salts (i.e., salts that are not held 

electrostatically to the clay particle surfaces and, therefore, are soluble within the pore water).   

For example, Likos and Lu (2002) converted Wyoming bentonite to Na+-saturated 

bentonite to evaluate the water sorption behavior of smectitie-kaolinite mixtures.  The bentonite 

was soaked in 1.0 M NaCl for 24 h and then centrifuged.  This process was repeated with fresh 

NaCl solution a total of three times.  Afterward, the clay was rinsed with distilled water until 

excess chloride was no longer detected.      

To convert a Ca2+-saturated clay to a Na+-saturated clay, Carrado et al. (2006) 

recommended the following procedure: (1) disperse the clay in 1 M NaCl using 400 mL of NaCl 

per 30 g of clay; (2) shake the mixture in a rotary shaker overnight; and (3) centrifuge at 3000 

rpm for 2 h to separate the supernatant.  Carrado et al. (2006) reports that this procedure, if 

repeated six times, will achieve close to 99 % Na+ on the exchange complex (no data was 

provided).  Similar versions of the washing/centrifuging procedure described by Carrado et al. 

(2006) have been used in numerous other studies (see Table 3.1).   
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The removed supernatant contains cations that have been replaced and removed from the 

exchange complex.  To check if the exchange process is complete, samples of the supernatant 

can be analyzed to confirm that cations other than the species in the salt solution are no longer 

detectable (i.e., no longer being released from the exchange complex).  An alternate method of 

confirming that exchange is complete is to analyze the salt solution before and after exposure to 

the clay (van Olphen 1963).  If the desired cation is no longer being removed from solution, then 

the clay exchange complex is assumed to be saturated (i.e., homo-ionized). 

After treatment with the salt solution is complete, the clay must be rinsed of excess 

soluble salts.  The clay is mixed with DIW and, if necessary, centrifuged to separate the 

supernatant.  Then, the supernatant is decanted and replaced with fresh water, and the process is 

repeated several times.  To confirm that the rinsing process is complete, the electrical 

conductivity (EC) of the supernatant liquid after each centrifugation can be measured (van 

Olphen 1963).  Once the EC readings are approximately constant, the clay is considered rinsed 

or flushed of excess soluble salts.  For example, Kemper (1961) prepared sodium homo-ionized 

clays by washing Wyoming bentonite and Pierre shale four times with 1 M NaCl.  Then, the 

samples were shaken with DIW and centrifuged repeatedly, until the NaCl concentration in the 

supernatant was less than 0.02 M (based on EC readings). 

 

3.2.2.2 Dialysis 

Another common method of clay purification described in the soil science literature is 

dialysis, which is based on diffusion of dissolved solutes across a selectively permeable 

membrane due to a concentration gradient (e.g., Kemper and Rollins 1966; Kemper and van 

Schaik 1966; Elrick et al. 1976; Mercier and Detellier 1994; Whitworth and Fritz 1994; 
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Churchman and Weismann 1995; Ishiguro et al. 1995; Sherwood and Craster 2000; Oduor and 

Whitworth 2005).  Smaller solutes (e.g., dissolved Na+ and Cl-) can pass through the membrane, 

while larger particles (e.g., soil particles) are restricted to one side of the membrane (i.e., 

permeable to chemical species but not to soil particles).  A schematic of this process is shown in 

Figure 3.2.  The soil sample is placed inside a tube of dialysis membrane, sealed via clamps at 

each end of the tube, and immersed in the salt solution or DIW (i.e., the dialysis bath water).  In 

the 1960s, sausage casing was used as the membrane material (e.g., Kemper and Rollins 1966; 

Kemper and van Schaik 1966).  Current dialysis procedures use commercially available 

membrane material, such as regenerated cellulose (e.g., Oduor and Whitworth 2005; Segad et al. 

2010). 

The dialysis process is similar to the washing and centrifuging procedure, as the soil is 

immersed in strong salt solutions to modify the exchange complex, followed by rinsing with 

DIW to remove excess salts.  The solution or DIW is replaced at regular intervals until each 

stage is considered complete.  As described previously, chemical analysis and EC measurements 

of the bath water may be used to determine the extent of homo-ionization and rinsing of excess 

salts.  The dialysis process may take a couple days to a couple weeks, depending on the strength 

of the salt solution, the mass of solution relative to the mass of soil, and how frequently the 

solution is replenished.  An advantage of the dialysis procedure is that the process is simple and 

utilizes relatively inexpensive materials and equipment.   

Previous studies have combined the washing and dialysis techniques to purify clays (e.g., 

Kemper and Rollins 1966; Kemper and van Schaik 1966; Hawthorne and Solomon 1972; Elrick 

et al. 1976; Mercier and Detellier 1994; Whitworth and Fritz 1994; Ishiguro et al. 1995).  For 

rinsing excess salts, Carrado et al. (2006) recommended a combination of washing and dialysis.  
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The procedure involves mixing the clay with water and then shaking the mixture in a rotary 

shaker overnight.  The suspension then is centrifuged at 7000 rpm for 3 h.  The agitating and 

centrifuging process is repeated three to four times, until the stability of the colloidal dispersion 

has increased sufficiently such that separation of the supernatant becomes difficult.  To remove 

the remaining salts, dialysis in water is performed for seven days.   

 

3.2.2.3 Electrodialysis 

Electrodialysis is a modified version of dialysis, where soil is placed in a compartment 

with semipermeable membranes on each side.  Electrodes are located on the opposite sides of the 

membranes and are used to apply an electric field across the soil.  The dissolved electrolytes 

(charged solutes) move through the membranes similar to the dialysis method, but at an 

accelerated rate due to the electric field.  However, electrodialysis is not recommended for clay 

soils due to an increase in hydrolysis (van Olphen 1963).  The hydrogen cation (proton) resulting 

from hydrolysis can interfere with the cations on the exchange complex and reduce the 

effectiveness of the homo-ionization procedure.   

 

3.2.3 Confirmation of homo-ionization 

The achievement of homo-ionization upon treatment of a clay often is assumed, without 

actual verification via measurement of the makeup of the exchange complex after treatment (e.g., 

ASTM D 7503).  Although limited, some studies have performed x-ray diffraction or measured 

cations on the exchange complex after the homo-ionization procedure.  However, the results 

from these studies regarding the effectiveness of the procedures and achievement of homo-

ionization have been mixed.  For example, Leonard and Low (1963) washed and centrifuged 
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Belle Fourche, Utah, Aberdeen, and Cheto clays with NaCl solutions.  The concentration of the 

NaCl solution was not reported, but was described as "sufficient to far exceed the exchange 

capacity of the suspended clay."  The Cheto clay was washed three times with NaCl solution, 

while the other clays were only washed once with NaCl.   To remove excess salts, the clays were 

washed with water and centrifuged until the supernatant tested negative for chloride, based on 

the AgNO3 testing method (Page et al. 1982).  Then, Leonard and Low (1963) measured the 

exchangeable cations of the clays after treatment and found that the percentage of exchangeable 

sodium was highly variable.  For example, the ESP values were 86 %, 82 %, 51 %, and 40 % for 

the Cheto, Belle Fourche, Aberdeen, and Utah clays, respectively.  The higher percentage of 

sodium saturation for the Cheto clay was expected, as that material underwent three NaCl 

washes (versus only one for the other clays), but was still well below a value that would be 

considered homo-ionized (e.g., ESP > 95 %). 

Olson and Mesri (1970) treated Wyoming bentonite with multiple washes of NaCl or 

CaCl2 to achieve Na- or Ca-saturated clays.  The strength of the solutions and the number of 

washes were not reported.  However, based on measurement of the exchangeable cations, all of 

the material was reported to be homo-ionized with greater than 96 % of the desired cation on the 

exchange complex. 

Di Maio (1996) reported successful homo-ionization of Ponza bentonite, based on X-ray 

diffraction.  However, the initial soil was Na-bentonite, which was converted to K- or Ca-

bentonite.  In addition, the bentonite was allowed to soak in KCl or CaCl2 solutions for three 

weeks (i.e., versus the shorter durations of ≤ 24 h typically used for washing).     
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3.2.4  Clay purification and engineering properties 

Although diffuse double-layer (DDL) theory is strictly applicable only to colloidal 

suspensions, DDL theory historically has been used to provide at least a qualitative indication of 

clay behavior (e.g., Mitchell and Soga 2005). Based on DDL theory, the physico-chemical 

behavior of clays is affected by surface charge density, charge of the adsorbed cations, dielectric 

constant of the pore fluid, and electrolyte concentration in the free pore fluid (e.g., Olson and 

Mesri 1970).  In addition to these chemical variables, physical properties such as particle shape 

and size, geometric arrangement of particles, and surface area can play a role in physico-

chemical effects.  When particles have a smooth, plate-like shape and are in a parallel 

arrangement, there is increased interaction between diffuse double layers of adjacent particles.  

Also, the smaller the particle size, the greater the surface area per unit mass, and the greater the 

susceptibility of the soil to the influence of physico-chemical interactions.  Finally, the smaller 

the particle size, the more important the role of the adsorbed layer of cations in affecting the clay 

behavior (Santamarina et al. 2002). 

 Diffuse double layers are thicker and, therefore, may affect the behavior of the clay more 

when monovalent cations are on the exchange complex, versus divalent or multivalent cations 

(van Olpen 1963; Olson and Mesri 1970).  Homo-ionization of clays allows for control of the 

cations on the exchange complex and, thereby, some control over behavior related to hydraulic 

conductivity (k), consolidation, diffusion, membrane behavior, soil suction, plasticity, and shear 

strength.  For example, the values of k for bentonite used in GCLs for chemical containment 

typically range from 1 x 10-11 m/s to 3 x 10-11 m/s when permeated with DIW, but can increase to 

greater than 10-7 m/s when permeated with salt solutions due to cation exchange (Daniel et al. 

1997; Shackelford et al. 2000).  Lower ranges of k have been measured for homo-ionized 
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bentonites with monovalent cations on the exchange complex.  For example, Fritz and Marine 

(1983) performed hyperfiltration tests through thin (7.0-mm-thick) specimens of compacted Na-

bentonite, and measured average k values of 1.5 x 10-13 m/s and 7.3 x 10-14 m/s for specimens 

with void ratios, e, of 1.4 and 0.69 (porosities, n, of 0.59 and 0.41), respectively.  Olson and 

Mesri (1970) measured the k of sodium homo-ionized kaolinite, illite and smectite, and reported 

k values for the Na-smectite ranged from 8.1 x 10-11 m/s to 9 x 10-13 m/s for specimens with e 

ranging from 19 to 4.6, respectively.     

The cation species on the exchange complex also can affect the consolidation behavior of 

the clay.  For example, Salas and Serratose (1953) performed one-dimensional consolidation 

tests on homo-ionized bentonite in water, and concluded that the compression indices, swelling 

indices, and e values of the bentonite were inverse functions of the valence of the absorbed 

cation.  These results were in accordance with expectations based on DDL theory.  

Olson and Mesri (1970) published data for one-dimensional consolidation and swelling 

of homo-ionized smectite in various chemical solutions (i.e., water, ethyl alcohol, carbon 

tetrachloride).  Similar to Salas and Serratose (1953), Olson and Mesri (1970) found that the 

positions of the swelling and compression curves of smectite specimens were strongly influenced 

by the valence of the adsorbed cation.  The swell index (Cs), measured during unloading of the 

specimens, decreased as the valence of the adsorbed cation increased.  For example, the Cs 

ranged from 1.53 to 3.60 and 0.26 to 0.34 when the adsorbed cations were Na+ and Ca2+, 

respectively.  When the smectite specimens were allowed to swell in carbon tetrachloride, the 

observed swelling was negligible (Cs of 0.03) relative to swelling observed when the liquid was 

water.  During one-dimensional consolidation testing with water, under the same consolidation 

pressure, the Na-smectite maintained higher void ratios than the Ca-smectite.  For example, for a 
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consolidation pressure of 4.8 kPa (100 psf), the void ratios of the Na- and Ca-smectite specimens 

ranged from approximately 21 to 33 and 6.2 to 6.7, respectively.  Olson and Mesri (1970) 

concluded that physico-chemical, rather than mechanical, effects dominated the consolidation 

behavior of the smectite, and they attributed the ability of the sodium smectite to maintain high 

void ratios under loading to long-range double-layer forces. 

Di Maio (1996) performed experiments to evaluate the effects of exposure to salt 

solutions on the mechanical behavior of bentonites.  The results supported the hypothesis that 

diffusion of ions into or out of the clay caused changes in the thickness of the DDL.  As salt 

concentration in the bulk solution increases, the thickness of the DDL decreases.  In addition, the 

DDL increases with increasing hydrated radius of the ion as indicated by the Stern (1924) model, 

such that the DDL for Na-montmorillonite will be thicker than that for K-montmorillonite 

(Sridharan 1991).  The DDL thickness also will be greater for Na-montmorillonite than Ca-

montmorillonite, as DDL thickness and cation charge are inversely related (van Olphen 1963).  

As expected, when monovalent cations dominate the exchange sites, higher membrane 

efficiencies or salt-sieving ability is typically observed, relative to clays with significant 

multivalent cations, partly due to the increased DDL thickness (e.g., Kemper and Maasland 

1964).   

 

3.3 Materials and methods 

3.3.1  Original bentonites 

 The clay specimens were prepared from GCL-grade, granular bentonite (CETCO, 

Hoffman Estates, IL).  A photograph of the granular bentonite, prior to preparation for testing, is 

provided in Figure 3.3a, and some relevant properties of the granular bentonite are summarized 
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in Table 3.2.  The bentonite contained 90 % clay-size particles (in accordance with ASTM D 

422), and the specific gravity was measured (ASTM D 854) as 2.71. The bentonite classified as 

high plasticity clay (CH) according to the Unified Soil Classification System (ASTM D 2487).   

From the mineralogical analysis performed by Mineralogy, Inc. (Tulsa, OK), the relative 

abundance of montmorillonite was 91 %.  

 The properties in Table 3.2 for the bentonite used in this study can be compared with 

those for other bentonites reported in the literature as summarized in Table 3.3.  Based on 

information provided in Tables 3.2 and 3.3, the granular bentonite used in this study may be 

considered representative of conventional bentonites used in barrier applications, such as 

geosynthetic clay liners, compacted sand-bentonite, soil-bentonite backfills, and bentonite 

buffers for high-level radioactive waste.  For example, the plasticity index (PI) of the bentonite 

was 428 %.  Typical values of PI reported in the literature for bentonite, as summarized in Table 

3.3, range from 320 % to more than 700 %.   

 

3.3.2  Chemical solutions 

The liquids used in this study included DIW (pH = 7.35, EC at 25 oC = 0.06 mS/m) and 

chemical solutions of sodium chloride (NaCl) (certified A.C.S.; Fisher Scientific, Fair Lawn, NJ) 

dissolved in DIW with NaCl concentrations ranging from 0.1 M to 1 M.  Concentrations of Na+ 

were measured using inductively coupled plasma-atomic emission spectrometry or ICP-AES 

(IRIS® Advantage/1000 ICAP Spectrometer, Thermo Jarrel Ash Co., Franklin, MA).  

Concentrations of chloride (Cl-) were measured using ion chromatography or IC (Dionex® 4000i 

131 IC Module, Dionex Co., Sunnyvale, CA).  The measured EC of the NaCl solutions at 25 oC 

ranged from 1,080 mS/m to 8,770 mS/m.  
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3.3.3  Modification of the exchange complex 

 To control the cations on the exchange complex of the clay specimens, the granular 

bentonite was treated via dialysis using 0.1 M, 0.5 M, and 1.0 M NaCl solutions.  Specimens 

were prepared by placing 25 g (dry mass) of granular bentonite in a dialysis bag comprised of 

standard grade, regenerated cellulose (RC) membrane tubing with a flat width of 100 mm 

(Spectra/Por 1, MWCO:6,000–8,000 Daltons, Spectrum Laboratories, Inc., Rancho Dominguez, 

CA).  Standard RC material is appropriate for solutions with pH ranging from 2 to 12 and 

temperatures ranging from 4 ºC to 121 ºC (Spectrum Laboratories, Inc. 2011).  The molecular 

weight cut off (MWCO) of the standard RC material, which is a rating of retention performance 

for dialysis membranes defined as the molecular weight solute that is 90 % retained by the 

membrane during a 17-h period, is 6,000 to 8,000 Daltons, such that NaCl and H2O may pass 

through the membrane, whereas bentonite particles are restricted (Spectrum Laboratories, Inc. 

2011).  Dialysis also was performed using only 10 g of bentonite to evaluate the effect of the 

amount of bentonite on the effectiveness of the procedure.  However, the default bentonite 

content for all other dialysis treatments was 25 g.  

To prepare the dialysis bag, a section of standard RC membrane (which was received as a 

30-m-long roll) was cut to a length of 260 mm.  As recommended by the manufacturer, the 

section of membrane material was soaked in DIW for at least 30 min prior to use to remove 

impurities.  After soaking, one end of the membrane tubing was sealed with a 110-mm-wide 

nylon closure (universal closures, Product No. 142113, Spectrum Laboratories, Inc., Rancho 

Dominguez, CA). Granular bentonite then was poured through the open end into the dialysis 

membrane bag, followed by approximately 300 mL of NaCl solution, and the open end was 

sealed with another nylon closure.  The specimen contained in the dialysis membrane bag then 
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was placed in a 7.6-L glass jar containing 7 L of NaCl solution (the dialysate), which was stirred 

continuously with a magnetic stirrer (Isotemp Basic Magnetic Stirrer, Fischer Scientific, Atlanta, 

GA), as shown in Figure 3.2a.  The jar was covered with plastic wrap (Glad Products Company, 

Oakland, CA, USA) to minimize evaporation.  Conceptually, the high concentration of Na+ in 

the solution bath results in replacement of the cations on the exchange sites of the bentonite (e.g., 

Na+ for Ca+), and subsequent diffusion of the replaced cations from the clay into the surrounding 

dialysate.  To expedite this process, the NaCl solution was replaced daily.  Prior to replacing the 

solution, samples of the dialysate (the NaCl solution in the jar) were collected to confirm cation 

exchange via chemical analysis by ICP (see Section 3.4).  The EC of the dialysate was measured 

daily and recorded with an EC probe (150 A+ Conductivity Meter; Thermo Orion, Beverly, MA) 

to confirm consistency in preparation of NaCl solutions and the dialysis procedure. 

To evaluate the increase in Na+ on the exchange complex and whether homo-ionization 

of the bentonite actually was obtained, tests were performed to measure the CEC, soluble 

cations, and bound (exchangeable) cations of the dialyzed bentonite material.  To prepare 

material for testing, the bentonite was air-dried and gently ground with a pestle and mortar.  The 

dried material was transported to the Soil, Water and Plant Testing Laboratory (SWPTL) at 

Colorado State University to measure CEC, and soluble and exchangeable cations, in general 

accordance with ASTM D 7503-10.   

 

3.3.4  Removal of soluble salts via reverse dialysis 

After dialysis of the bentonite to induce sodium homo-ionization with the NaCl solution, 

the procedure was reversed to remove excess soluble salts in the bentonite via dialysis using 

DIW as the dialysate rather than the NaCl solution (Fig. 3.2c,d).  The objective in removing 
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soluble salts was to enhance the potential for semipermeable membrane behavior of the bentonite 

in the subsequent membrane tests.  For example, in previous membrane behavior studies 

involving bentonites, excess soluble salts in the specimens typically have been reduced by 

flushing or leaching via permeation of the specimens with DIW under an applied hydraulic 

gradient (e.g., Malusis et al. 2001; Malusis and Shackelford 2002a; Shackelford and Lee 2003; 

Yeo et al. 2005; Kang and Shackelford 2009; Di Emidio 2010; Bohnhoff et al. 2014).  The 

effluent was collected at regular intervals and the EC of the solution was measured as an 

indicator of the remaining salt concentration in the specimen.  However, despite the use of 

relatively high hydraulic gradients (e.g., > 100), the durations of permeation required to reduce 

soluble salts contents in the pore waters of the specimens to acceptably low levels (e.g., EC < 10 

mS/m) generally have been exceedingly long, on the order of 6 months to a year, due to the low 

k (e.g., k < 2 x 10-11 m/s) of the specimen (Shackelford 2013).   

In an effort to reduce the time required for soluble salt removal, Dominijanni et al. (2013) 

used an alternative "squeezing" method to prepare specimens for membrane behavior testing.  

The squeezing method consisted of a series of consecutive phases of bentonite hydration with 

DIW, followed by drained consolidation (maximum load of 500 kPa).  The EC of the drained 

solution was measured to evaluate the soluble salt concentration.  The EC of the collected 

solution decreased from an initial value of 175 mS/m (at the start of the first consolidation phase) 

to approximately 45 mS/m (at the end of the fifth consolidation phase).  Using this technique, 

Dominijanni et al. (2013) were able to prepare 500 g (dry mass) of flushed bentonite over a 

duration of 40 to 50 days.   

As described previously, dialysis with DIW has been used extensively in the soil sciences 

to remove excess soluble salts from clay soils within short timeframes, but less so in 
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geotechnical and geoenvironmental research.  Thus, this reverse dialysis procedure using DIW 

was evaluated as a procedure that may result in similar results (EC of pore fluid < 10 mS/m), but 

within a much shorter time frame (e.g., a couple of weeks versus months).  During dialysis with 

DIW as the dialysate, excess dissolved salts diffused out of the slurried specimen, with  a 

consistency more like a paste at this stage, through the dialysis bag, increasing the EC of the 

DIW bath over time from an initial value ranging from about 0.02 to 0.04 mS/m.  The DIW was 

replaced daily to maintain a high concentration gradient, and the incremental change in EC in the 

dialysate was recorded.  Several trial tests were performed at the beginning of the study to 

identify acceptable termination criteria for this stage. Based on this preliminary assessment, the 

reverse dialysis process to remove soluble salts was considered complete when changes in EC 

became negligible (i.e., ∆EC ≤ 0.01 to 0.03 mS/m over a 24-h period).  Although the time 

required to achieve this criteria ranged from 7 to 10 d, the stage was performed for 13 to 14 d to 

be conservative. Upon completion of the soluble salt removal stage, the dialyzed bentonite paste 

was removed from the dialysis bag and stored in a sealed container.  If the material was to be 

analyzed for CEC and exchangeable cations, a sample of the paste was removed and air-dried.  A 

photograph of the resulting fully dialyzed material, prior to storage, is shown in Fig. 3.3b. 

 

3.3.5 Atterberg limits 

Atterberg limits testing was performed in general accordance with ASTM D 4318-10. 

The liquid limit (LL) and plastic limit (PL) were measured for both the untreated bentonite and 

the bentonite after treatment with 0.1 M NaCl and dialysis with DIW.  After completion of 

dialysis, the treated bentonite paste was air dried and gently ground with a mortar and pestle to 

prepare the material for testing. 
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3.3.6 Mass leaching model to determine diffusion properties  

After the NaCl treatment stage, the fluid in the pore space of the bentonite paste 

contained inside the dialysis bag is theoretically at equilibrium with the concentration of the 

NaCl solution used for treatment (i.e., 0.1 M, 0.5 M, or 1.0 M NaCl).  To confirm this 

assumption, the pore water was extracted from some of the bentonite paste specimens after 

treatment with NaCl solution.  The paste was diluted with DIW to allow for separation of the 

pore water via vacuum extraction through filter paper into a Buchner funnel.  The measured 

NaCl concentrations of the pore waters (after corrections for dilution) were approximately the 

same as the concentrations of the NaCl treatment solutions (e.g., 0.097 M NaCl for the slurry 

treated with 0.1 M NaCl).  Thus, the assumption of equilibrium between the pore water and the 

treatment solution at the end of the NaCl treatment stage was considered reasonable. 

During the DIW dialysis stage after the NaCl treatment, the NaCl in the pore space 

diffuses out of the bentonite paste, through the dialysis membrane and into the bulk solution of 

the dialysis jar.  Thus, the 14-day period of the DIW dialysis stage represents a mass leaching 

problem, whereby the paste in the dialysis bag represents a mass with initial concentration, Co, 

and the DIW in the jar (which is replaced with fresh DIW every 24 h) represents an 

approximately flushing boundary condition.  The procedure whereby the dialysate is replaced on 

a daily basis is analogous to the dynamic leaching test that has been used extensively to evaluate 

the leaching of contaminants from stabilized waste forms (e.g., Godbee et al. 1980; Côté et al. 

1987; Sharma and Lewis 1994; ASTM 2008; Patra et al. 2011; EPA 2013; Shackelford 2014). 

This process is represented schematically in Figure 3.2c,d.  Bulk diffusion models (BDM) for a 

mass leaching condition were used in conjunction with the EC data to calculate diffusion 
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coefficients of the bentonite paste at the end of the DIW dialysis stage (e.g., Kim et al. 2002; 

Shackelford 2014).   

The initial time, to (t = 0), corresponds to the end of the NaCl treatment, prior to the start 

of DIW dialysis.  At t = to, the paste was assumed to be monolithic with a uniform initial 

concentration, Co, of NaCl in the pore space.  The paste was assumed to be a diffusion-controlled 

matrix, where the release of the solutes follows first-order diffusion, and is the result of a 

concentration gradient between the paste in the dialysis bag and the DIW in the jar.  For a porous 

material, Fick’s second law for diffusion is as follows (e.g., Shackelford 1991): 
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where C is concentration, t is time, Da is the apparent diffusion coefficient, and x is the spatial 

coordinate.  The apparent diffusion coefficient is related to the free-solution (aqueous) diffusion 

coefficient, Do, as follows (Shackelford 1991):   
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where τa is the dimensionless apparent tortuosity factor, Rd is the retardation factor, and D* is the 

effective diffusion coefficient.  If the exchange complex of the bentonite is assumed to be 

sufficiently saturated with Na+ such that retardation of diffusion of NaCl is negligible (i.e., Rd ≈ 

1), Equation 3.3 reduces to the following: 
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Mass leaching analyses to determine values of Da for the bentonite paste were performed 

assuming the slurry was either a semi-infinite or finite-cylindrical medium, as described in detail 

in the following sections. 

 

3.3.6.1 Leaching from a semi-infinite medium 

If the bentonite paste is assumed to be a semi-infinite medium, the initial condition and 

two boundary conditions are as follows (e.g., Kim et al. 2002): 
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The solution to Equation 3.2 using the relationship for Da in Equation 3.3 (i.e., without any 

assumptions regarding the value of Rd) and the conditions in Equation 3.5 is as follows (e.g., 

Nathwani and Phillips 1980): 

 ( , )
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  (3.6) 

 

where erf is the error function.  The cumulative mass of NaCl leached from the bentonite paste at 

time t, Mt, can be estimated using the EC measurements of the dialysis water (taken prior to 

replacing the DIW every 24 h) and the linear correlation between EC and NaCl concentration 

provided in Figure 3.4, as follows: 
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Example data for ∆EC and the corresponding ∆m and Mt values are shown in Figures 3.5a-c.  

The ratio of Mt to the total, initial mass of NaCl in the bentonite, M∞, is the cumulative fraction 

leached, CFL (Nathwani and Phillips 1978, 1980; Godbee et al. 1980; Kim et al. 2002), or: 
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where S is the surface area of the dialysis bag, and V is the volume of the dialysis bag.  The value 

of M∞ is calculated based on the volume of the paste in the dialysis bag and the assumption that, 

at the end of the NaCl treatment stage (immediately prior to the start of the DIW dialysis and the 

onset of mass leaching), the pore water in the bentonite paste is in equilibrium with the NaCl 

solution used for treatment (i.e., after 7 days of exposure to 0.1 M, 0.5 M, or 1.0 M NaCl).  

Example results for CFL are shown in Figure 3.5d.  By rearranging Equation 3.8, the Da value of 

the bentonite at the end of DIW dialysis (t = 13-14 d) can be calculated as follows:  
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The model used for leaching from a semi-infinite medium is summarized in Table 3.4, and the 

calculated Da values for the bentonite paste are presented in Section 3.4 and Table 3.5. 
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3.3.6.2 Leaching from a finite cylindrical medium 

 If the CFL values are high (e.g., CFL > 0.2), the simplifying assumption of a semi-

infinite medium may not be appropriate (Godbee et al. 1980; ASTM 2008).  Leaching models 

have been developed for finite waste mediums of cylindrical and spherical shape, which take into 

account the depletion of the solid due to leaching (e.g., Pescatore 1990; Kim et al. 2002; ASTM 

2008).  For example, the solution for a cylindrical solid of height H and radius R is as follows: 
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where βm represents the mth zero of the zeroth order cylindrical Bessel function.  Numerical 

convergence of the open series in Equation 3.10 is extremely slow, such that closed-form 

solutions have been developed where the open series is truncated.  Upper bound values for n and 

m (represented by N and M, respectively) may be chosen, and the error due to truncating the 

series can be evaluated as described in Pescatore (1990).  Applying upper bound limits, Equation 

3.10 becomes: 
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Based on suggested values in the literature (Pescatore 1990; ASTM 2008), both M and N were 

set to values of 20 for this study.  Several calculation iterations were performed, varying the 

values of M and N, to confirm that the error due to truncating the series in Equation 3.10 did not 
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affect the calculated values of the CFL.  Once the values of M and N exceeded 5, the calculated 

value of the CFL, which was evaluated to 15 decimal points, did not change with increasing 

values of M and N.  Thus, upper bound values of 20 for M and N were considered more than 

sufficient for the calculations performed in this study. 

 

3.4 Results 

Preparation of Na-bentonite consisted of two dialysis stages: (1) NaCl treatment to 

increase the percentage of Na+ on the exchange complex; and (2) removal of excess soluble salts 

via dialysis with DIW.  Example results for each stage are discussed in the following sections.   

The dialysis process is controlled by the rate of diffusion across the cellulose membrane 

and within the bentonite paste.  Factors that affect the rate of salt diffusion across the membrane 

include the pH, concentration and temperature of the dialysate, duration between dialysate 

replacement, sample and dialysate volumes, the previous number of dialysate changes, 

membrane surface area, membrane thickness, molecular charges and dialysate agitation (stirring) 

(Spectrum Laboratories, Inc. 2011).  To maximize the efficiency of the specimen preparation 

methods used in this study, the effects of dialysate volume, duration between dialysate changes, 

and dialysate agitation were initially evaluated with several trial tests.  As expected, stirring, 

daily replacement of dialysate, and the use of larger dialysate volumes (i.e., 7 L vs. 1 L) resulted 

in faster completion of each dialysis stage.  These conditions decrease completion time by 

maintaining greater concentration gradients between the dialysate and the bentonite in the 

dialysis bags.  Thus, only these conditions (7 L of dialysate, daily replacement, magnetic stirring) 

were used for the remaining testing program, and all the results presented were obtained under 

such conditions.  
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3.4.1 NaCl treatment stage  

As described previously, strong NaCl solutions (e.g., ≥ 0.1 M) were used to increase the 

ESP of the bentonite via dialysis.  Prior to replacing the NaCl with fresh solution after each 24-h 

period, samples of the NaCl solution (in the jar, outside of the dialysis bag) were collected to 

confirm cation exchange by measuring the concentrations of cations other than Na+ (i.e., K+, 

Ca2+, Mg2+).  The concentrations were measured via ICP-AES (same model as described 

previously).   

Example results for the cumulative masses of K+, Ca2+, and Mg2+ removed from the 

specimen during the first four days of NaCl treatment are shown in Figures 3.6a and 3.6b for 

bentonite exposed to 0.5 M and 1.0 M NaCl, respectively.  The initial (source) NaCl solution had 

non-measurable (below detection level) concentrations of cation species other than Na+.  After 

four days of treatment with the 0.5 M NaCl solution (i.e., after four, 24-h cycles where NaCl 

solution was replaced every 24 h), the cumulative masses of K+, Ca2+, and Mg2+ removed from 

the bentonite were 106 mg, 99 mg, and 26 mg, respectively.  As expected, more cation exchange 

occurred with the 1.0 M NaCl than the 0.5 M NaCl treatment, as indicated by the higher 

cumulative masses of removed K+, Ca2+, and Mg2+.  For the bentonite exposed to 1.0 M NaCl, 

the cumulative masses of K+, Ca2+, and Mg2+ removed from the specimen after four, 24-h cycles 

were 195 mg, 141 mg, and 64 mg.  Based on the example data shown in Figure 3.6, as the 

concentration of the NaCl solution used for dialysis increased, the rate of cation exchange of Na+ 

for other existing cations on the exchange complex increased.  The trend of increasing Na+ on 

the exchange complex with increasing NaCl concentration was confirmed via measurement of 

exchangeable cations of the treated bentonite, i.e., after the NaCl and DIW dialysis stages (see 

Section 3.4.1.3). 
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To evaluate whether homo-ionization of the bentonite was obtained using the dialysis 

procedure for 7 days (7 daily salt-bath cycles of 0.1 M, 0.5 M, or 1.0 M NaCl), the bound 

(exchangeable) cations of the original (untreated) and dialyzed material were measured as 

previously described.  As indicated by the results shown in Table 3.6 and Figure 3.7, the mole 

fraction of Na+ on the exchange complex of the bentonite increased as the concentration of the 

NaCl solution used to treat the bentonite increased, as expected.  For example, as the 

concentration of the NaCl solution used in the dialysis was increased from 0.1 M to 1.0 M, the 

mole fraction of Na+ on the bentonite increased from 0.69 to 0.89 (i.e., ESP increased from 69 % 

to 89 %).  Although the dialysis treatment resulted in a significant increase in the ESP relative to 

the ESP of the untreated bentonite of 47 %, the ESP was not increased sufficiently to consider 

the bentonite homo-ionized (e.g., ESP > 95 %).  

 

3.4.2 De-ionized water treatment stage 

After treatment with NaCl solution, the dialysis bag was placed in a bath of DIW, which 

was replaced every 24 h.  Diffusion of NaCl occurred out of the bentonite, through the dialysis 

membrane and into the DIW bath.  Over each 24-h period, the EC of the bath water increased 

with time, due to the increase in NaCl concentration.  The initial EC of the DIW bath water was 

always less than 0.1 mS/m.  As shown in Figure 3.8, the EC measured after each 24-h cycle 

decreased with each subsequent cycle, as NaCl was removed from the bentonite and the 

concentration gradient between the bentonite and the bath water decreased.   

As expected, the EC of the bath water after the first 24-h cycle increased as the 

concentration of the NaCl solution that was used to treat the bentonite increased (Figure 3.8a).  

The higher the concentration used to treat the bentonite prior to DIW dialysis, the higher the 
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initial concentration inside the dialysis bag and the resulting concentrating gradient.  For 

example, the values of EC for the bath water at the end of the first 24-h cycle in DIW were 229 

mS/m and 36.8 mS/m for bentonite specimens treated with 1.0 M and 0.1 M NaCl, respectively. 

As shown in Figure 3.8b, for bentonite specimens treated with the same NaCl 

concentration (1.0 M), the EC of the bath water after the first 24-h period increased as the mass 

of bentonite in the slurry specimen decreased.  The values of EC were 273 mS/m and 229 mS/m 

for the specimens comprised of 10 g and 25 g (dry mass) of bentonite, respectively.  The higher 

EC of the bath water surrounding the dialysis bag with 10 g of bentonite indicates that the 

diffusion coefficient initially was higher than that of the 25-g specimen.  This relative difference 

is expected, as the paste in the dialysis bag with less bentonite mass would have a higher porosity 

and, therefore, higher rate of diffusion.   

A comparison of the measured concentrations of soluble salts before and after the dialysis 

procedure is shown in Figure 3.7b.  Measurement of the soluble cations (ASTM D 7503) 

indicated that the dialysis procedure was a very effective method for reducing the concentration 

of soluble salts in the bentonite.  Prior to any dialysis treatment (i.e., the original bentonite), the 

concentrations of soluble Na+, K+, Mg2+, and Ca2+were 19, 1.0, 0.57 and 0.25 meq/100 g.   With 

the dialysis procedure, the concentrations of soluble Na+ and K+ were reduced to 2.2 and 0.3 

meq/100g, respectively, and the concentrations of Ca2+ and Mg2+ were below the ICP-AES 

detection limits. 

 

3.4.3 Diffusion coefficients  

As shown in Figure 3.9 and Table 3.5, the values of Da for the bentonite specimens 

calculated assuming bulk diffusion from semi-infinite and finite cylindrical mediums (Da,SI and 
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Da,FC, respectively) ranged from 5.5 x 10-11 m2/s to 1.5 x 10-10 m2/s and from 1.5 x 10-10 m2/s to 

3.8 x 10-10 m2/s, respectively.  These values fall within the typical ranges reported in the 

literature for Na-bentonites at high water contents and porosities.  For example, for saturated 

GCL specimens comprised of Na-bentonite with porosities (n) between 0.78 and 0.80, Malusis 

and Shackelford (2002b) reported effective diffusion coefficients (D*) for Cl- ranging from 7.1 x 

10-11 m2/s to 2.3 x 10-10 m2/s.  Kozaki et al. (2005) measured Da values for Na+ ranging from 7.4 

x 10-11 m2/s to 8.2 x 10-11 m2/s for Na-montmorillonite specimens prepared at a dry density of 0.7 

Mg/m3 (n = 0.74, if Gs is assumed to be  2.7).  Malusis et al. (2014) reported D* values for Cl- 

ranging from 4.3 x 10-11 m2/s to 2.8 x 10-10 m2/s for GCL specimens with n ranging from 0.66 to 

0.81, respectively.  

As expected, for the same treatment concentration and dialysis bag volume, Da increased 

as the dry mass of bentonite in the dialysis bag decreased.  For a NaCl concentration of 1.0 M 

and dialysis bag volume of 352 mL, Da,SI  and Da,FC increased from 5.5 x 10-11 m2/s to 6.0 x 10-11 

m2/s and from 1.5 x 10-10 m2/s to 1.6 x 10-10 m2/s, respectively, as the dry mass of bentonite 

decreased from 25 g to 10 g.  A decrease in dry mass of bentonite for a constant volume results 

in increased void volume and porosity and, thus, an increase in Da. 

 

3.5 Discussion 

3.5.1 Effectiveness of NaCl treatment 

The effectiveness of the dialysis procedure was compared with similar clay purification 

methods described in the soil science, geotechnical and geoenvironmental literature.  Several 

studies where NaCl solutions were used to increase the ESP of bentonite such that the clay could 

be considered sodium homo-ionized (e.g., ESP > 95 %) are summarized in Table 3.1.  Generally, 
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the concentration of the NaCl solutions used in washing, centrifuging, and/or dialysis procedures 

to prepare homo-ionized clays ranged from 0.001 M to 1.0 M, with 1.0 M being the most 

commonly used concentration (see Table 3.1).  While several studies confirmed reduction of 

excess salt concentrations by measuring the EC or Cl- concentration of the supernatant or pore 

water after the salt removal procedures (e.g., Kemper 1961; Leonard and Low 1963; Kemper and 

van Schaik 1966; Shainberg and Kemper 1972; Churchman and Weismann 1995; Likos and Lu 

2002; Tarchitzky and Chen 2002; Kozaki et al. 2008), very few studies performed measurements 

to confirm homo-ionizaton or the final ESP of the clay (e.g., Leonard and Low 1963; Mesri and 

Olson 1971).   

The maximum values of ESP reported by Leonard and Low (1963) were 85 % and 86 % 

for Wyoming bentonite passed through exchange resins and for Cheto bentonite mixed three 

times with NaCl solution (concentration not reported), respectively.  Olson and Mesri (1970) 

reported an ESP greater than or equal to 96 % for Wyoming bentonite that had been washed 

multiple times with NaCl (concentration and number of washes not reported).  For the remainder 

of the literature summarized in Table 3.1, the clay was assumed, rather than confirmed, to be 

homo-ionized after NaCl treatment. 

The concentration of NaCl solution used in this study was 0.1 M to 1.0 M, which was 

consistent with concentration ranges reported in the literature.  However, the duration of the 

NaCl stage of the dialysis treatment (7 d) was longer than that reported in most of the literature 

(e.g., < 2 to 4 d), in an effort to ensure that the bentonite became homo-ionized.  While the 

dialysis treatment did result in a significant increase in the ESP relative to the ESP of the 

untreated bentonite, the highest ESP value of 89 % was still not high enough to consider the 

bentonite homo-ionized.  The ESP value of 89 % was obtained after dialysis with 7.0 L of 1.0 M 
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NaCl solution (for 25 g (dry mass) of clay), which was replaced daily for seven days.  The ESP 

obtained under such conditions was expected to be closer to 95 %, based on comparison with the 

literature.  The lower measured values of ESP indicate that the bentonite and dialysis method 

used in this study required longer durations of dialysis or the use of higher concentrations of 

NaCl to homo-ionize the clay, or, that sodium homo-ionization (quantified as ESP > 95 %) of 

bentonite was not actually achieved in some of the literature.  Regardless, the results shown in 

Figure 3.10 indicate that simple modifications to the dialysis procedure, such as use of slightly 

stronger NaCl solution (e.g., 2.0 M), would likely result in bentonite with an ESP greater than 

95 %, such that the clay would be considered homo-ionized for all practical purposes.     

 

3.5.2 Effect of dialysis treatment on plasticity 

The liquid limit (LL) and plastic limit (PL) were measured for both the untreated 

bentonite and the bentonite after treatment with 0.1 M NaCl and dialysis with DIW.  Based on 

the results of the Atterberg limits tests (see Table 3.3), the dialysis treatment did not significantly 

affect the PL of the bentonite.  The values of PL for the original bentonite and the bentonite after 

dialysis treatment were 34 % and 35 %, respectively.  However, the LL of the treated bentonite 

was more than double that of the untreated bentonite, with the LL increasing from a value of 

428 % to 871 %.   Consequently, the plastic index (PI) also more than doubled, with the value 

increasing from 394 % to 836 % with the treatment.  All of the PL and LL results fell within the 

typical ranges reported in literature for smectitic clays.  For example, Olson and Mesri (1970) 

reported LL and PL ranges of 190 % to 1160 % and 31 % to 47 %, respectively, for Wyoming 

bentonite exposed to a variety of pore fluids.  Cornell (1951) reported LL and PL values of 
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710 % and 54 %, respectively, for sodium montmorillonite.  Additional examples for the 

Atterberg limits of bentonite from the literature are provided in Table 3.2.   

The significantly higher values of LL for the Na-treated bentonite (relative to the 

untreated bentonite) are consistent with observations reported in the literature for bentonites with 

increased percentages of Na+ occupying the exchange complex.    For example, Sridharan et al. 

(1986) measured the Atterberg limits of bentonites that were homo-ionized (via washing) using 

chloride salt solutions containing either monovalent (Na+, K+, Li+, NH4
+), divalent (Mg2+, Ca2+) 

or trivalent cations (Fe3+, Al3+).  An increase in the valency of the cation on the exchange 

complex resulted in a decrease in LL.  The highest LL values corresponded to the Li- and Na-

bentonites, with values of 675 % and 495 %, respectively.  The lowest LL values of 108 % and 

120 % resulted for the Al- and Fe-bentonites, respectively.  The PL ranged from 49 % to 64 % 

for all of the bentonites, with inconsistent trends between PL and cation valence.   

Mishra et al. (2009) measured the LL of various basalt soil-bentonite mixtures and 

observed that as the ESP of the bentonite increased, the LL increased.  The mixtures were 

prepared at a basalt soil-to-bentonite ratio of four to one (by dry mass).  The mixture containing 

the bentonite with the highest ESP value of 66 % exhibited the highest LL of 140 % for testing 

with DIW.  In contrast, the mixture containing the bentonite with the lowest ESP value of 35 % 

only had a LL of 78 %. 

As previously described (Section 3.4.2), in addition to increasing the ESP, the dialysis 

procedure significantly reduced the concentration of soluble salts.  The LL of high plasticity 

clays also has been shown to increase as the concentration of soluble salts decreases, whereas the 

PL remains relatively constant (e.g., Rao et al. 1993; Di Maio 1996; Gleason et al. 1997; Di 

Maio et al. 2004; Arason and Yetimoglu 2008; Yukselen-Aksoy et al. 2008).  For example, for 
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Na-bentonite comprised of 90 % montmorillonite (CEC = 127.9 meq/100 g), Yukselen-Aksoy et 

al. (2008) measured values of LL of 124 % and 396 % when the clay was mixed with natural 

seawater (Cl- concentration = 21,321 ppm) and distilled water, respectively.  The PL remained 

relatively constant with values of 50 % and 52 % measured for the seawater and distilled water, 

respectively.     

Based on the trends reported in literature, the significant increase in LL (by 443 

percentage points) and, consequently, PI in this study due to the dialysis treatment provides 

additional evidence that the procedure was successful in both increasing the percentage of Na+ 

on the exchange complex and removing excess soluble salts.  Thus, the dialysis procedure that 

has been used extensively by soil scientists provides a simple and quick (i.e., < 14 d) method to 

to control the exchange complex and soluble salt concentration of clays used in 

geoenvironmental research.  

 

3.5.3 Effect of Exchangeable Sodium Percentage (ESP) on diffusion coefficient 

As shown previously in Figure 3.9, the calculated values of Da for the bentonite 

specimens based on bulk diffusion from semi-infinite and finite-cylindrical mediums generally 

decreased as the ESP of the bentonite increased (i.e., as the concentration of NaCl used to treat 

the bentonite increased).  For example, the Da,SI values for bentonite with ESP values of 69 %, 

80 %, and 89 % were 1.3 x 10-10 m2/s (average of 10 tests), 6.9 x 10-11 m2/s and 5.5 x 10-11 m2/s, 

respectively.  Decreasing rates of diffusion with increasing ESP due to increasing swell in clays 

has been documented in the soil science literature (e.g., Dufey et al. 1976, 1983).  For example, 

Dufey et al. (1976) evaluated diffusion of Na+ through suspensions of montmorillonite clays (27 

g dry mass/L) with variable ratios of Na+ and Ca2+ on the exchange complex.  For tests 
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performed at 16 °C, Da values for Na+ decreased from 7.6 x 10-10 m2/s to 3.1 x 10-10 m2/s as the 

ESP increased from 15 % to 100 %.  Thus, the diffusion results obtained with the dialysis 

procedure are in general agreement with expected trends and published data for smectitic clays.   

 

 3.5.4 Effect of method used to analyze diffusion 

The mass-leaching model based on the assumption of a semi-infinite medium is the 

simplest analysis to perform, but typically is not appropriate for porous materials that result in 

high values of the CFL (e.g., > 0.2) (Godbee et al. 1980; ASTM 2008).  The semi-infinite model 

may be used to analyze a finite specimen as long as the concentration profile in the specimen is 

similar to the profile that would exist in a semi-infinite medium.  However, as mass continues to 

diffuse out of the specimen with time, the concentration profile in the finite specimen will 

diverge from the profile predicted based on a semi-infinite medium.  Thus, a solution accounting 

for the finite mass and depletion of the solute due to leaching is required to accurately determine 

Da at high CFL (Godbee et al. 1980).  The errors associated with the assumption of a semi-

infinite medium increase as specimen size decreases, leaching duration increases, and diffusion 

coefficient increases (i.e., CFL increases) (Pescatore 1990).  For CFL values > 0.2, models based 

on finite mediums are recommended as per ASTM (2008).     

For a given CFL value measured for a finite-cylindrical medium, the semi-infinite model 

will result in lower Da values than the finite-cylindrical model.  For example, Godbee et al. 

(1980) analyzed leaching of cesium from a cement product with a cylindrical geometry (radius = 

12.5 mm, height = 51.0 mm).  Example values of Da determined with the semi-infinite and finite-

cylindrical models for the same specimen were approximately 2.0 x 10-14 m2/s and 2.5 x 10-13 

m2/s, respectively.  Thus, the finite-cylindrical model predicted diffusion rates approximately one 
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order of magnitude higher than the semi-infinite model based on the measured CFL. 

For the dialyzed, bentonite paste, the Da,FC values were consistently higher than the Da,SI 

values, as expected (Figure 3.9).  The ratio of the Da values determined from the finite-

cylindrical and semi-infinite models (Da,FC / Da,SI) ranged from 2.36 to 2.80.  As shown in Figure 

3.11, the ratio increased (i.e., the agreement between the two models decreased) as the CFL at 

the end of the leaching period increased.  This observation is consistent with the expectation that 

the error due to assuming a semi-infinite medium becomes more significant as the CFL 

increases, and the concentration profile in the finite medium can no longer be approximated with 

the semi-infinite model.  Therefore, the finite-cylindrical model is recommended for 

determination of Da values of clay slurries and pastes when using the dialysis procedure.   

 

3.6 Conclusions and recommendations 

A dialysis procedure was developed to allow for preparation of bentonite specimens with 

a high percentage of Na+ on the exchange complex (e.g., ESP > 70 %) and low concentration of 

soluble salts.  Control of the cation species present on the exchange complex and reduction in 

initial soluble salt concentrations of bentonites may be desirable for understanding fundamental 

mechanisms governing soil behavior as well as for improving the containment properties of the 

bentonites (e.g., swell, hydraulic conductivity, diffusion, membrane efficiency).  While clay 

purification methods have been used by soil scientists for several decades to prepare homo-ionic 

soil specimens with low soluble salt contents, these procedures are not commonly used in 

geotechnical engineering testing research.  Based on measurement of the bound cations before 

and after treatment, the ESP of the bentonite increased from 47 % for the untreated bentonite to 

89 % for bentonite after dialysis with 1.0 M NaCl solution.  Measurement of soluble cations 
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indicated that the dialysis procedure also reduced the concentration of soluble salts (see Figure 

3.7).  The significant increase in LL (by 443 percentage points) and, consequently, PI, of the 

bentonite after dialysis treatment provided further support that the procedure was successful in 

both increasing the ESP and removing excess soluble salts.   

The dialysis procedure was compared with similar clay purification methods described in 

the literature.  The procedures used in this study resulted in a significant increase in the ESP of 

the bentonite, but the maximum ESP value of 89 % obtained via dialysis with 1.0 M NaCl 

solution was not high enough to consider the bentonite homo-ionized (e.g., ESP > 95 %), despite 

the use of NaCl concentrations similar to those reported in the literature.  However, simple 

modifications to the dialysis procedure, such as use of stronger NaCl solution (e.g., 2.0 M), are 

expected to result in homo-ionized Na-bentonite.     

Finally, the dialysis procedure was evaluated as a potential method to measure the 

apparent diffusion coefficient, Da, of a clay slurry using available mass leaching models.  The 

values of Da measured with the dialysis procedure fell within the typical ranges reported in the 

literature for Na-bentonites evaluated using traditional diffusion test methods.  Due to the errors 

associated with the assumption of a semi-infinite medium, the finite-cylindrical model is 

recommended for calculation of Da values of clay pastes and slurries when using the dialysis 

procedure described herein.   

In summary, the dialysis procedure provides a simple and quick (e.g., < 14 d) method to 

control the exchange complex and soluble salt concentration of bentonite.  In addition, 

measurement of the EC of the dialysis water during the DIW stage allows for estimation of 

diffusion properties of bentonite slurries or pastes (or other highly-compressible materials), that 

otherwise may be difficult to evaluate using traditional laboratory equipment.  
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Table 3.1. Examples of clay purification methods reported in the literature. 

Reference Base Clay 
Type(s) 

Desired 
Form(s) Treatment to Homo-ionize Soluble Salt 

Removal1 
Additional Comments or 

Details Relevant to this Study 
A) Studies Related to Membrane, Chemical Osmosis and/or Salt Filtration Behavior of Clays 

Kemper (1961) 
Wyoming 
bentonite, 

Pierre shale 
Na+ Washed 4x with 

1M NaCl solution 

Shaken and 
centrifuged 
with DIW 

Repeated procedure until supernatant 
was < 0.02 M (based on EC). 

Hanshaw (1962) Montmorillonite 
(85% MMT) Na+ Soaked, stirred and washed 

with 1M NaCl solution 
Washed with 

DIW 

Clay was soaked in HCl solution and 
washed prior to NaCl treatment.  The 

NaCl solution was maintained at pH 8. 

McKelvey and Milne (1962) Shale Na+ Washed with NaCl solution None Focus was salt-filtering ability of semi-
dry, powdered bentonite and shale. 

Kemper et al. (1964), 
Kemper and van Schaik 

(1966) 

Wyoming 
bentonite Na+ or Ca2+ 

Repeatedly 
treated clay suspensions with 

NaCl or CaCl2 

Dialysis with 
sausage casing 

in distilled 
water 

Kemper and van Schaik (1966) 
continued dialysis until no chloride was 

detected. 

Abd-el-aziz and Taylor 
(1965) Kaolinite K+ No details provided --- Focus was flow of water and salt 

through unsaturated soils. 

Kemper and Rollins (1966) Wyoming 
bentonite Na+ Repeatedly washed with 

1 M NaCl solutions 

Dialysis with 
sausage casing 

in distilled 
water 

Evaluated osmotic efficiency 
coefficients for NaCl and Na2SO4 

solutions. 

van Schaik and Kemper 
(1966),  

van Schaik et al. (1966) 

Wyoming 
bentonite Na+ or Ca2+ 

Repeatedly 
treated clay suspensions with 

NaCl or CaCl2 

Dialysis with 
sausage casing 

in distilled 
water 

After dialysis, clays were repeatedly 
mixed with distilled water, centrifuged, 

and clear supernatant removed. 

Mokady and Low (1968) 

Aberdeen 
bentonite Na+ Mixed once with NaCl solution Centrifuged 

and decanted 
Aberdeen bentonite was prepared by 

Leonard and Low (1963). 
Wyoming 
bentonite Na+ Centrifuged with NaCl solution 

4x 
Centrifuged 4x 

with water 
Wyoming bentonite was prepared by 

Mokady and Low (1966). 
Olsen (1969), 
Olsen (1972) Kaolinite Na+ Equilibrated with 

0.001 M NaCl solution None --- 

Kemper and Quirk (1972) 

Wyoming 
bentonite, 
Kaolinite, 

Willalooka Illite, 
Fithian Illite 

Na+ Saturated with Na+ ions during 
<2 µm separation process --- 

Focus was measurement of osmotic 
flow and electric and streaming 

potentials. 
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Reference Base Clay 
Type(s) 

Desired 
Form(s) Treatment to Homo-ionize Soluble Salt 

Removal1 
Additional Comments or 

Details Relevant to this Study 
Shainberg and Kemper 

(1972) 
Wyoming 
bentonite Na+ Washed with 1 M NaCl 

solution 3x 
Centrifuged 
repeatedly 

Repeated centrifuge with distilled water 
until AgNO3 test for salt was negative. 

Coplen and Hanshaw (1973), 
Hanshaw and Coplen (1973) 

Texas 
montmorillonite --- None Stirred 3d in 

distilled water 
After stirring, the distilled water was 
used to make the test salt solutions. 

Kharaka and Berry (1973) 

Wyoming 
bentonite 

Na+ 
Washed 5x with NaCl solution 
(at 2x concentration of NaCl 
solution used in experiment) 

--- 
Performed filtration experiments with 

various solutions. Shale was from 
Kettleman North Dome Oil Field, CA. 

Illite (API No. 
36) 

Shale 

Elrick et. al (1976) Wyoming 
bentonite Na+ Shaken with sequence of 

1 M NaCl solutions Dialysis Measured differential pressure due to 
NaCl concentration differences 

Kharaka and Smalley (1976) 

Wyoming 
bentonite Na+ Same as Kharaka and Berry (1973) Focus was filtration behavior of clays. Kaolinite (API 
No. 17) 

Fritz and Marine (1983) Na-bentonite --- None None Performed hyperfiltration tests with 
NaCl solutions. 

Benzel and Graf (1984) Cheto clay 
(smectite) 

Na + 
 Ca 2+ 

Suspended in brine for ≥ 30 
days, at (by volume) 1 part 

brine to 3 parts clay 
None Prior to homo-ionization, washed with 

4 L DIW ten times.   

Demir (1988) Cheto clay 
(smectite) Na+ Soaked in 1 M NaCl Settled in DIW Evaluated osmostic and electro-osmotic 

effects. 

Whitworth and Fritz (1994) Wyoming 
bentonite Na+ Slurried with 1 M NaCl Dialysis 

Performed hydraulic conductivity tests 
with DIW before starting 

hyperfiltration tests with salt solutions. 

Ishiguro et al. (1995) Wyoming 
bentonite Na+ Soaked in NaCl solution Dialysis Same method as Mercier and Detellier 

(1994). 

Di Maio (1996) Ponza bentonite K+ 
Ca2+ 

Soaked in KCl or CaCl2 for 3 
weeks 

Washed 
repeatedly 
with DIW 

X-ray diffraction indicated had 
converted Na-montmorillonite to K- or 

Ca-montmorillonite. 

Sherwood and Craster (2000) Wyoming 
bentonite --- None Dialysis --- 

Malusis et al. (2001), 
Malusis and Shackelford 

(2002a) 

Na-bentonite 
(GCL) --- None 

Permeated 
under back-

pressure with 
PTW 

PTW = processed tap water.  Focus was 
measurement of membrane behavior. 
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Reference Base Clay 
Type(s) 

Desired 
Form(s) Treatment to Homo-ionize Soluble Salt 

Removal1 
Additional Comments or 

Details Relevant to this Study 

Shackelford and Lee (2003) Na-bentonite 
(GCL) --- None 

Permeated 
under back-

pressure with 
PTW 

Permeated until EC of effluent < 50 % 
of EC of weakest solution for 

membrane testing. 

Oduor and Whitworth (2005) Na-
montmorillonite --- --- Dialysis --- 

Kang and Shackelford (2009) Na-bentonite 
(GCL) --- None 

Permeated 
with DIW for 

6+ months 

Permeated in flex-wall permeameter 
until EC of effluent < 50 % of EC of 

weakest solution for membrane testing. 

Bohnhoff (2012) 
Na-bentonite 
(granular and 

powdered) 
--- None 

Permeated 
with DIW for 

6+ months 

Focus was measurement of membrane 
behavior. 

B) Other Studies      

Leonard and Low (1963) 

Wyoming 
bentonite Na+ Passed through series of 

exchange resins (OH, H, Na) None Achieved ESP of  85 %. Confirmed 
AgNO3 test for Cl- was negative. 

Belle Fourche 
bentonite 

Na+ Mixed once with NaCl solution Washed by 
centrifugation 

and 
decantation 

Achieved ESP of  82 %. Confirmed 
AgNO3 test for Cl- was negative. 

Utah bentonite Achieved ESP of  40 %. Confirmed 
AgNO3 test for Cl- was negative. 

Aberdeen 
bentonite 

Achieved ESP of  51 %. Confirmed 
AgNO3 test for Cl- was negative. 

Cheto bentonite Na+ Mixed 3x with NaCl solution Achieved ESP of  86 %. Confirmed 
AgNO3 test for Cl- was negative. 

Olson and Mesri (1970) Wyoming 
bentonite 

Na+ 
 Ca2+ 

Multiple washes with NaCl or 
CaCl2 

None Achieved ≥ 96 % of desired cation on 
exchange complex 

Harter and Stotzky (1971) Wyoming 
bentonite 

Na+, Ca2+, 
H+, Al3+, 

La3+, Th4+ 

Centrifuged 3x with 0.5N 
appropriate chloride salt 

Washed with 
DIW 

Focus was formation of clay-protein 
complexes. 

Hawthorne and Solomon 
(1972) Kaolin Na+ Stirred for 10 hr with 1M NaCl 

and centrifuged, 2x 

Washed or 
dialyzed with 

DIW 

Washed with 300 mL DIW 5 – 10 
times, for 15 min each wash.  

Otherwise, dialysis in DIW for 14 days 

Mercier and Detellier (1994) Smectite Na+ Soaked in NaCl solution Dialysis Focus was measurement of internal 
surface areas 
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Reference Base Clay 
Type(s) 

Desired 
Form(s) Treatment to Homo-ionize Soluble Salt 

Removal1 
Additional Comments or 

Details Relevant to this Study 
Churchman and Weismann 

(1995) Various clays Na+ NaCl solution with sample 
inside dialysis tubing Dialysis Stopped DIW dialysis when dialysate 

EC < 10 µS/cm 

Likos and Lu (2002) 
Kaolinite-
Smectite 
mixtures 

Na+ 
Saturated in 1.0 M NaCl 24 h, 

then centrifuged. Repeat 3 
times. 

Washed with 
distilled water 

Washed with distilled water until no 
excess chlorides detected.  Focus was 

water-sorption behavior. 

Tarchitzky and Chen (2002) Wyoming 
bentonite 

Na+ 
 Ca2+ 

Washed 3x with 
1 M NaCl or CaCl2 

Washed with 
DIW 

Washed with DIW until supernatant 
chloride concentration < 0.1mM. 

Li et al. (2003) Smectite clays K+ 
 Ca2+ 

Washed 4x with 
0.5 M KCl or CaCl2 

Washed with 
Milli-Q water 

Focus was sorption of pesticides by 
clays and humic-acid clay complexes. 

Aydin et al. (2004) 
Japan smectite 

Kazakhstan mica 
clay 

Na+ 
 Ca2+ 

Saturated with 
0.5 M NaCl or 0.25 M CaCl2 

Centrifuged 
with ethyl 

alcohol 
--- 

Lado et al. (2007) 

Wyoming 
bentonite 

Fithian Illite 
Supreme 
kaolinite 

Na+ 
 Ca2+ 

Leached with 
1M NaCl or CaCl2 

Washed with 
DIW, then 

ethanol-water 
--- 

Kozaki et al. (2008) Kunipia-F 
bentonite Na+ Immersed 3x in 1 M NaCl. Dialysis with 

distilled water 
Performed dialysis until Cl- not 

detected with AgNO3 test. 

Bhardwaj et al. (2009) 

Wyoming 
bentonite 

Fithian Illite 
Supreme 
kaolinite 

Na+ 
 Ca2+ 

Suspended in NaCl or CaCl2 
(0.5mol/kg) and centrifuged 3x 

Washed with 
DIW, then 

ethanol-water 

Followed similar preparation 
procedures as Harter and Stotzky 

(1971) and Lado et al. (2007) 

Notes: 
1. Water or de-ionized water was used, unless otherwise noted. 
"-" = not reported 
MMT = mineral montmorillonite 
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Table 3.2.  Physical properties of sodium bentonite used to prepare specimens for membrane 
behavior and diffusion tests. 
 

Property Before  
Dialysis Treatment 

After Dialysis Treatment  
(0.1 M NaCl, then DIW)  

Soil Classification 
(ASTM D2487) 

CH CH 

Specific Gravity a 
(ASTM D854) 

2.71 

Clay (%) a 
(ASTM D422) 

90 

Mineralogy (relative abundance %) b 
Quartz 

Plagioclase Feldspar 
Calcite 

Ferroan Dolomite 
Gypsum 

Illite / Mica 
Montmorillonite 

 
2 
3 
1 

Trace 
1 
2 

91 
Liquid Limit, LL (%) 

(ASTM D4318) 
428 871 

Plasticity Index, PI (%) 
(ASTM D4318) 

394 836 

Cation exchange capacity (cmol+/kg) c 
(ASTM D7503) 

78.3 

Exchangeable Cations (molar ratio)  
(ASTM D7503) 

Na+ 
K+ 

Ca2+ 
Mg2+ 

a 

 

0.44 
0.03 
0.41 
0.12 

d 

 

0.47 
0.02 
0.36 
0.15 

e 

 

0.69 
0.01 
0.20 
0.10 

a. Average of 10 tests on bulk powder (Bohnhoff 2012). 
b. Performed by Mineralogy, Inc. (Tulsa, OK). 
c. Average of 6 tests (Soil, Water, and Plant Testing Laboratory, Colorado State University). 
d. Average of 2 tests (Soil, Water, and Plant Testing Laboratory, Colorado State University). 
e. Average of 4 tests (Soil, Water, and Plant Testing Laboratory, Colorado State University). 
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Table 3.3. Example properties of bentonite reported in literature. 

Reference 

Specific 
Gravity 

of 
Solids,  

Gs 

Cation 
Exchange 
Capacity, 

CEC 
(meq/100g) 

Liquid 
Limit, 

LL 
(%) 

Plastic 
Limit, 

PL 
(%) 

Plasticity 
Index,  

PI 
(%) 

Activity, 
A 

% Clay 
(< 2 µm) 

Swell 
Index, 

SI 
(mL/2g) 

% 
Montmor-

illonite 

Specific 
Surface, 
(m2/g) 

Kemper (1961)a ----- 94 ----- ----- ----- ----- ----- ----- ----- ----- 
Leonard and Low (1963)a 

                      Wyoming 
                      Belle Fourche 
                      Aberdeen 
                      Utah 
                      Cheto 

----- 

 
87 
85 
84 

111 
112 

----- ----- ----- ----- 

(approx.) 
98 
97 
95 
68 
87 

----- ----- 

 
482 
464 
826 
851 
859 

Olson and Mesri (1970)b 2.65 – 
2.80 100 190 – 

1160 31 - 47 ----- ----- ----- 0.26 – 
1.53 ----- 500-700 

Kemper and Quirk (1972)b ----- 80 ----- ----- ----- ----- ----- ----- ----- 720 
Kharaka and Berry (1973), 

Kharaka and Smalley (1976)b 2.7 88, 98 ----- ----- ----- ----- 75 ----- 92 ----- 

Fritz and Marine (1983)c 2.4 98 ----- ----- ----- ----- ----- ----- ----- ----- 
Demir (1988)c ----- 128 ----- ----- ----- ----- ----- ----- ----- ----- 

Barbour and Fredlund (1989)c 2.56 80 - 150 ----- ----- ----- ----- 100 ----- ----- 700 - 840 
Kenney et al. (1992) 2.74 100 500 40 ----- ----- ----- 25 ----- ----- 

Mercier and Detellier (1994), 
Ishiguro et al. (1995)a 2.72 83 ----- ----- ----- ----- >90 ----- ----- 646 

Komine and Ogata (1996) ----- ----- 474 27 447 6.9 64.5 ----- ----- ----- 
Di Maio (1996)c ----- ----- 400 80 320 ----- 80 ----- ----- ----- 

Keijer et al. (1997)b 2.65 64 ----- ----- ----- ----- 98 ----- ----- ----- 
Keijzer et al. (1999), 

Keijzer and Loch (2001)b 2.64 68.3 ± 1.3 ----- ----- ----- ----- 98 ----- ----- 556±13 

Rowe et. al. (2000)d ----- 82 - 91 635 45 590 6.5 ----- ----- 91 726 
Likos and Lu (2002)b ----- ----- 485 32 453 ----- ----- ----- ----- ----- 

Malusis and Shackelford (2002a) 
Kang and Shackelford (2009)e ----- 47.7 478 39 439 ----- ----- ----- 71 ----- 

Lloret et al. (2003) ----- 111 ± 9 102 53 49 ----- ----- ----- > 90 725 
Shackelford and Lee (2003)e ----- 69.4 ----- ----- ----- ----- ----- ----- 78 ----- 

Jo et al. (2005) 2.74 
±0.04 53 – 75 479 

±90 ----- 441 ±86 ----- 90 ----- ----- ----- 

Kolstad et al. (2004) 2.65 ----- ----- ----- ----- ----- 90 35.5 ----- ----- 
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Reference 

Specific 
Gravity 

of 
Solids,  

Gs 

Cation 
Exchange 
Capacity, 

CEC 
(meq/100g) 

Liquid 
Limit, 

LL 
(%) 

Plastic 
Limit, 

PL 
(%) 

Plasticity 
Index,  

PI 
(%) 

Activity, 
A 

% Clay 
(< 2 µm) 

Swell 
Index, 

SI 
(mL/2g) 

% 
Montmor-

illonite 

Specific 
Surface, 
(m2/g) 

Lee and Shackelford (2005) 2.74 - 
2.78 63.9 - 93.4 430 - 

589 ----- 393 – 548 ----- ----- 27.5 – 
30 

77.2 – 
86.0 ----- 

Ito (2006)f 2.66 - 
2.72 62.7 - 79.7 399.3 - 

767.8 
23.3 - 
30.1 

376.1 - 
737.7 ----- ----- ----- 45 - 70 ----- 

Ito (2006)b 2.68 - 
2.78 62.1 - 82.8 511.3 - 

690.3 
33 - 
38.8 

473.3 - 
651.6 ----- ----- ----- 60 - 71 ----- 

Katsumi et al. (2007) ----- ----- 619.5 51 ----- ----- ----- 33 ----- ----- 
Meer and Benson (2007), 
Benson and Meer (2009) ----- ----- 504 ----- 465 ----- 87 34 - 36 ----- ----- 

Kozaki et al. (2008)c ----- 113 ----- ----- ----- ----- ----- ----- >98 ----- 

Guyonnet et al. (2009)g ----- 66.2 - 76.2 ----- ----- ----- ----- ----- ----- 68.8 - 
76.5 ----- 

Guyonnet et al. (2009)d ----- 33.7 - 72.5 ----- ----- ----- ----- ----- ----- 29.6 - 
76.8 ----- 

Sanchez et al. (2009)d 2.70 96 – 102 102 ± 
4 53 ± 3 49 ----- 67 ± 3 ----- >90 725 

Malusis et al. (2010)d ----- 83.4 488 45 443 ----- 93 ----- 69 ----- 

Mishra et al. (2011)h ----- 61.0 6-29- 
95.6 

119.4 - 
678.0 

43.9 -
64.1 

67.1 -
622.7 2.1 - 7.2 32.4 -

85.7 6 - 29 ----- 350.6 -
711.7 

 
a Bentonite after purification (see Table 3.1) 
b Wyoming bentonites 
c Na-bentonite 
d Ca-bentonite 
e  Na-bentonite as part of geosynthetic clay liner (GCL) 
f Japanese bentonites 
g Na-bentonite and Na-activated Ca-bentonite 
h Ranges include 15 different bentonites. 
Notes: 
"-" = not reported 
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Table 3.4. Bulk diffusion models for leaching of contaminants from stabilized waste forms used 
to calculate apparent diffusion coefficients of the bentonite paste. 
 
Geometry 

of Waste 
Model* 

Semi-

infinite 

(Nathwani 

& Phillips 

1980) 

1/2

2t aM D tSCFL
M V∞

  = =   π  
 

2

2a
CFL VD

t S
π  =  

 
 

Finite 

cylindrical 

(Pescatore 

1990) 

Full solution: 

2 2

2 2 21 1

exp ((2 1) / ) exp ( / )321
(2 1)

a m at
n m m

n H D t R D tMCFL
M n

∞ ∞

∞ = =

   − − p − β      = = − ∑ ∑
p − β

 

 

Truncated version used in this study (M = 20, N = 20): 

2 2

2 2 21 1

exp ((2 1) / ) exp ( / )321
(2 1)

N Ma m at
n m m

n H D t R D tMCFL
M n∞ = =

   − − p − β      = = − ∑ ∑
p − β

 

 

* CFL = cumulative fraction leached 

 Da = apparent diffusion coefficient [L2T-1] 

exp = exponential function (i.e., ex) 

H = height of cylinder [L] 

Mt = cumulative mass of contaminant leached at time t [M] 

M∞ = total, initial mass of the contaminant in the waste [M] 

R = radius of cylinder [L] 

S = surface area exposed to the leachant [L2] 

t = elapsed time [T] 

V = volume of the waste form [L3] 

βm = mth zero of the zero-order cylindrical Bessel function 

Note: M = mass units; L = length units; T = time units
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Table 3.5.  Results of mass leaching analysis for dialyzed, bentonite paste using bulk diffusion models. 

a. Co = concentration used for NaCl treatment. 
b. tf  = total duration of the de-ionized water dialysis stage. 
c. The volume used in the semi-infinite model is the actual volume of paste in the dialysis bag.  The volume used in the finite cylindrical model is an 

approximated, cylindrical volume based on the height (H) and radius (R = 31.83 mm).  Values of surface area (S) were the same for both models (S = flat 
width x 2 x height = 100 mm x 2 x H).   

Test 
# 

Initial 
NaCl 

Concen-
tration, 
Co (M) a 

Dry 
Mass of 

Ben-
tonite 

(g) 

Total 
Duration 

of 
Leaching, 

tf (d) b 

Cumulative 
Fraction 
Leached 
at time tf, 

CFL 

Height, 
H 

(m) 

Volume,  
V (mL) c 

Apparent Diffusion 
Coefficient, Da  
( x 10-10 m2/s) 

Finite 
Cylin-

drical Da 
/ Semi-
infinite 

Da 
Semi-

infinite 
Finite 

Cylindrical 
Semi-

infinite 
Finite 

Cylindrical 

1 

0.1 

25 

14 

0.852 

0.14 448 446 

1.21 2.98 2.46 

2 0.898 1.34 3.46 2.58 

3 0.872 1.26 3.17 2.52 

4 0.860 1.23 3.05 2.48 

5 0.873 
0.11 352 350 

1.27 3.00 2.36 

6 0.808 1.09 2.50 2.29 

7 

13 

0.911 

0.12 384 382 

1.49 3.80 2.55 

8 0.890 1.42 3.51 2.47 

9 0.869 1.35 3.27 2.42 

10 0.860 0.13 416 414 1.32 3.24 2.45 

11 0.5 

14 

0.643 

0.11 352 350 

0.688 1.74 2.47 

12 
1.0 

0.573 0.545 1.53 2.80 

13 10 0.600 0.599 1.60 2.68 
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Table 3.6.  Measured molar ratios of exchangeable cations for bentonite before and after dialysis 
treatment, which included dialysis with NaCl solution, followed by dialysis with de-ionized 
water to remove excess salts. 
 

Exchangeable Cation 

(molar ratio) 

Before 

Dialysis 

After Dialysis 

Dialysis NaCl Concentration (M) 

0.1 0.5 1.0 

 

Na+ 

K+ 

Ca2+ 

Mg2+ 

a 

0.44 

0.03 

0.41 

0.12 

b 

0.47 

0.02 

0.36 

0.15 

c 

0.69 

0.01 

0.20 

0.10 

d 

0.80 

<0.01 

0.15 

0.05 

d 

0.89 

<0.01 

0.08 

0.02 

a. Average of 10 tests on bulk powder (Bohnhoff 2012). 
b. Average of 2 tests (Soil, Water and Plant Testing Laboratory, Colorado State University). 
c. Average of 4 tests (Soil, Water and Plant Testing Laboratory, Colorado State University). 
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Figure 3.1. Schematic representation of the (a) structure of smectite minerals, (b) structure of 
montmorillonite, and (c) formation of clay minerals (all figures from Mitchell and Soga 2005).   
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Figure 3.2. Schematic of dialysis method: (a) at the beginning of the NaCl treatment stage, (b) at 
the end of the NaCl treatment stage, (c) during the deionized water (DIW) stage, and (d) at the 
end of the DIW stage.   
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Figure 3.3. Photographs of bentonite (a) before and (b) after dialysis treatment, and (c) setup for 
dialysis treatment to increase the percentage of Na+ on the exchange complex (using NaCl 
solution) and remove soluble salts (using de-ionized water).  
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Figure 3.4. Correlation between NaCl concentration and electrical conductivity of the solution, 
EC (Malusis et al. 2013).  
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Figure 3.5. Example calculations for mass leaching analysis: (a) change in electrical conductivity 
of the dialysate after each 24-hour dialysis period, ∆EC, during the soluble salt removal stage; 
(b) incremental mass of NaCl removed from specimen (from ∆EC); (c) cumulative mass of NaCl 
removed from specimen; and (d) cumulative fraction leached (CFL). Results shown are for 0.5 
M NaCl treatment and 25 g (dry mass) of bentonite.  
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Figure 3.6.  Cumulative masses of potassium (K+), calcium (Ca2+) and magnesium (Mg2+) 
removed from 25-g (dry mass) specimens during NaCl treatment stage using (a) 0.5 M NaCl, and 
(b) 1.0 M NaCl.  
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Figure 3.7. Bentonite properties before and after dialysis treatment: (a) mole fractions of cation 
species on the exchange complex; (b) concentrations of soluble cations.  
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Figure 3.8. Electrical conductivity of the dialysate after each 24-hour dialysis period (prior to 
replacement with fresh dialysate) during the soluble salt removal stage for: (a) different 
concentrations of NaCl used during the cation treatment stage prior to soluble salt removal; (b) 
different batch sizes of treated bentonite (10 g or 25 g, dry mass); (c)  bentonite that did and did 
not undergo cation treatment prior to soluble salt removal.  
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Figure 3.9. Relationship between apparent diffusion coefficients calculated from mass leaching 
models and (a) concentration of NaCl solution used to treat the bentonite prior to dialysis with 
de-ionized water, and (b) exchangeable sodium percentage.    
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Figure 3.10.  Measured exchangeable sodium percentage (ESP) of the bentonite as a function of 
the concentration of the NaCl solution used in the dialysis procedure.  
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Figure 3.11. Ratio of apparent diffusion coefficients calculated from the finite-cylinder (Da,FC) 
and semi-infinite (Da,SI) leaching models versus the cumulative fraction leached (CFL) at the end 
of dialysis (i.e., the value of CFL used in the Equations shown in Table 3.4).  
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CHAPTER 4.  A THROUGH-DIFFUSION METHOD FOR EVALUATING SOLUTE 

DIFFUSION THROUGH UNSATURATED SODIUM BENTONITE  

 
 

4.1 Introduction 

Fine-grained soils with high swell and low hydraulic conductivity (e.g., bentonites) are 

used for natural and engineered barriers in chemical containment applications to limit advective 

(hydraulic) transport of contaminants into the environment (e.g., liners for waste containment 

systems, slurried vertical cutoff walls).  Examples of these barriers include bentonite amended 

natural soils (e.g., compacted sand-bentonite mixtures and bentonite amended natural clays), 

geosynthetic clay liners (GCLs), soil-bentonite (SB) vertical cutoff walls, and highly-compacted 

bentonite buffers for high-level radioactive waste (HLRW) disposal (Shackelford 2013).  

Because the barriers used in these applications generally are regulated to achieve and maintain 

low hydraulic conductivity and/or low hydraulic gradient, advective transport of chemicals 

through the barriers typically is relatively minor such that diffusion becomes an important, if not 

dominant, chemical transport process (Goodall and Quigley 1977; Crooks and Quigley 1984; 

Quigley et al. 1987; Rowe 1987;  Rowe et al., 1997, 2000; Shackelford 1988, 1989, 1991; 

Johnson et al. 1989; Muurinen 1990; Shackelford and Daniel 1991a; Kim et al. 1993; Bourg et 

al. 2003; Montes et al. 2005; Neville and Andrews 2006; Sleep et al. 2006; Kozaki et al. 2008; 

Glaus et al. 2010; Yong et al. 2010; Shackelford and Moore 2013; Shackelford 2014).  Thus, a 

thorough understanding of the factors affecting diffusive transport for a proposed barrier material 

allows for improved design and performance of the containment system. 

The majority of previous studies on diffusion of chemicals through barriers have focused 

on the situation where the barriers are water saturated, i.e., with a degree of water saturation, S, 
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of 100 % (Shackelford 2014).  However, diffusion under unsaturated conditions (S < 100 %) also 

may be an important consideration for some containment applications.   

For example, highly compacted bentonite (e.g., dry densities, ρd, ≥ 1.6 Mg/m3 and 

porosities, n, < 0.5) has been considered extensively as a barrier in the subsurface disposal of 

HLRW to isolate or buffer canisters of HLRW from the surrounding environment (Yong et al. 

1985; Bucher and Mayor 1989; Komine and Ogata 1996; Madsen 1998; Herbert and Moog 2000; 

Gens et al. 2002; Lloret et al. 2003; OECD 2003; Montes et al. 2005; Komine 2008; Sánchez et 

al. 2010; Yong et al. 2010; Ye et al. 2014). In this case, the compacted bentonite initially is 

unsaturated, and special precautions, such as locating the disposal above the water table and/or 

within a low moisture environment (e.g., within salt deposits) in order to minimize the likelihood 

of significant radionuclide migration, may allow for unsaturated conditions to exist in the 

bentonite for long periods of time (e.g., hundreds or thousands of years) (Herbert and Moog 

2000; OECD 2003; Komine and Ogata 2004; Yong et al. 2010). Generation of heat by the 

decaying waste may cause an initial, thermally-induced redistribution of the pore water in the 

unsaturated bentonite buffer, resulting in desiccation in the hottest part (near the canister) and 

wetting in the colder, outer section of the buffer (Pusch and Yong 2006; do N. Guimarães et al. 

2006).  This heat also may tend to maintain or decrease the initial, overall degree of water 

saturation of the bentonite buffer (OECD 2003; Rutqvist et al. 2005; do N. Guimarães et al. 

2006; Sánchez et al. 2010; Yong et al. 2010; Rutqvist et al. 2014).  Over time, uptake of water 

from the host rock and backfill is expected to lead to full saturation of the bentonite buffer 

(referred to as maturation of the buffer), with the time required for the buffer to become saturated 

ranging from a decade for high water-bearing, crystalline host rock to thousands of years for 

argillaceous host rock (Yong et al. 2010).  During this period, diffusion through the bentonite 
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buffer under unsaturated conditions is a key transport process (Herbert and Moog 2000; Montes 

et al. 2005). 

Another example of a containment application where diffusion under unsaturated 

conditions may be a predominant consideration includes the use of bentonite based GCLs in 

cover systems. In this case, several studies have shown that the exchange of multivalent cations 

(e.g., Ca2+) for monovalent cations, primarily sodium (Na+) that initially is predominant on the 

exchange sites of the bentonite, can result in a reduced swelling capacity of the GCL upon 

rehydration, resulting in ultimate failure of the GCL in minimizing percolation of water through 

the cover (ATU 1992; James et al. 1997; Shackelford et al. 2000; Egloffstein 2001; Jo et al. 

2001, 2004; Benson 2002; Shackelford 2005; Benson et al. 2007; Meer and Benson 2007; Scalia 

and Benson 2010). In this case, diffusion of the multivalent cations under unsaturated conditions 

from the surrounding soils into the GCL has been postulated as one of the mechanisms by which 

multivalent-for-monovalent cation exchange has been facilitated.  To the author's knowledge, 

there is little to no published data for measured values of diffusion coefficients of unsaturated 

bentonite at porosities similar to those of a GCL (e.g., n > 0.7).  

Based on the aforementioned considerations, a method was developed for measuring the 

diffusion of salts through fine-grained barrier materials under unsaturated conditions. The 

method was based on the through-diffusion technique, whereby different concentrations of 

diffusing solutes are maintained essentially constant at the boundaries of the soil specimen over 

sufficiently long periods so as to allow for the establishment of steady-state diffusion of the 

diffusing chemical species. The method was evaluated by considering the diffusion of a simple 

salt, i.e., potassium chloride (KCl), through a compacted sodium bentonite (Na-bentonite) at 

constant values of S ranging from 0.79 to 1.0. The advantages and disadvantages of the proposed 
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method based on the results of four experiments at different values of S are elucidated.  

Measured values of diffusion coefficients for K+ and Cl- are reported and compared with 

previously published values. 

 

4.2 Background 

4.2.1  Diffusion in clays 

 Diffusion is a fundamental, irreversible process whereby chemical species are 

transported from a region of higher chemical potential to a region of lower chemical potential 

(Crank 1975).  The gradient in chemical potential driving diffusion may be represented by the 

concentration gradient of the chemical species.  Fick's first law for solute mass flux due to one-

dimensional diffusion in a porous medium may be written as follows (e.g., Porter et al. 1960; 

Shackelford and Daniel 1991a): 

 

 *
D a o

C CJ D D
x x

∂ ∂
= −θτ = −θ

∂ ∂
  (4.1) 

 

where JD is the diffusive solute mass flux, θ is the volumetric water content, τa is the apparent 

tortuosity factor, Do is the aqueous-phase or free-solution diffusion coefficient, C is the aqueous-

phase concentration of the chemical species, x is the direction of transport, and D* (= τaDo) is the 

effective diffusion coefficient.  In some cases, Equation 4.1 is written as follows (e.g., 

Shackelford and Moore 2013): 
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where De (= θD*) also has been referred to as the "effective diffusion coefficient."  

The volumetric water content is equal to the product of S and the porosity of the porous 

medium, n (i.e., θ = Sn), such that Equation 4.1 also may be written as follows (Shackelford and 

Daniel 1991a): 

 

 *
D a o

C CJ Sn D SnD
x x

∂ ∂
= − τ = −

∂ ∂
  (4.3) 

 

Thus, for a saturated soil (S = 1), Equation 4.3 may be written as follows (e.g., Shackelford and 

Moore 2013): 

 

 *
D a o

C CJ n D nD
x x

∂ ∂
= − τ = −

∂ ∂
  (4.4) 

 

The apparent tortuosity factor has been defined as the product of the matrix (or geometric) 

tortuosity factor, τm, representing the geometry of interconnected pores in the porous medium, 

and a restrictive tortuosity factor, τr, that takes into account other factors that may reduce solute 

flux and contribute to τr including anion exclusion (membrane behavior) and solute drag near the 

surfaces of clay particles (Malusis and Shackelford 2002; Shackelford and Moore 2013), or:  

 

 1 2( )a m r m Nτ τ τ τ τ τ τ= = 

  (4.5) 

 

where N is the number of factors other than the matrix tortuosity that contribute to reducing the 

diffusive solute mass flux.  
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The governing equation for transient diffusion is Fick's second law, which may be written 

for diffusion of non-decaying chemical species as follows (Shackelford and Daniel 1991a; 

Shackelford and Moore 2013; Shackelford 2014): 

 

 
2

2a
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t x

∂ ∂
=
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  (4.6) 

 

where Da is defined as an apparent diffusion coefficient, or   
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and Rd is the retardation factor that accounts for reduced diffusion due to linear, reversible, and 

instantaneous sorption of a chemical species onto the solid phase of the porous medium. Thus, in 

the case where a diffusing chemical species is subject to sorption, Rd > 1 such that Da < D*, 

resulting is slower diffusion relative to a non-sorbing chemical species with Rd = 1. 

 

4.2.2 Measurement of diffusion in unsaturated soils 

Several studies have measured diffusion coefficients for unsaturated soils (e.g., Klute and 

Letey 1958; Porter et al. 1960; Graham-Bryce 1963; Romkens and Bruce 1964; Rowell et al. 

1967; Warncke and Barber 1972; Conca and Wright 1990; Barbour et al. 1996; Lim et al. 1998). 

However, diffusion testing of unsaturated soil generally is more challenging, costly and time 

consuming than testing of saturated soils (Lim et al. 1998).  When testing unsaturated soils, 

control of the soil suction is desirable so as to avoid bulk liquid flow due to uncontrolled 
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gradients in matric suction (Barbour et al. 1996).  Also, if the test is to be performed at constant 

or controlled θ, high air-entry (HAE) disks typically are required at the boundaries of the 

specimen to prevent flow of gas into or out of the specimen. 

Saturated HAE disks will prevent passage of free air as long as the pressure does not 

exceed the air-entry pressure of the HAE disk.  However, the potential for dissolved air to diffuse 

through the water in the disk and then to emerge from solution on the opposite boundary of the 

disk has been a common concern for unsaturated soils testing (Fredlund 1975; Lu and Likos 

2004).  For example, Fredlund and Rahardjo (1993) reported that air diffusion through HAE 

disks may occur in unsaturated soil testing with test durations as short as 1 d.  Also, Padilla et al. 

(2006) measured air diffusion through HAE disks with air-entry pressures of 100 kPa (1 bar), 

300 kPa (3 bar), 500 kPa (5 bar), and 1500 kPa (15 bar).  The disks were tested against pressures 

that were 50 % and 95 % of the air-entry pressures.  Padilla et al. (2006) concluded that the 

amount of air that diffused through the disks was negligible (i.e., not measurable) for the 1-bar 

and 3-bar disks, small (≤ 1.16 x 10-12 m3/s) for the 5-bar disks, and large (≤ 2.43 x 10-12 m3/s) for 

the 15-bar disks.  Therefore, potential errors due to air diffusion through the HAE disks used in 

this research were assumed to be negligible because: 1) only 3-bar and 5-bar disks were used; 2) 

the applied air pressures did not exceed 70 % of the air-entry pressures of the disks; and 3) 

circulation of solutions with the closed-system apparatus described subsequently provided 

constantly flushing boundaries along the HAE disks.     

Previous studies have reported decreasing values of D* in clays with decreasing values of 

θ (e.g., Porter et al. 1960; Warncke and Barber 1972; Shackelford 1991).  Thus, the diffusive 

solute mass flux of contaminants across a clay barrier typically is lower under unsaturated 

conditions than saturated conditions.  This observation supports the use of simpler, saturated 
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testing conditions for conservative (i.e., high) estimates of diffusive transport.  Therefore, 

experimental research focused on diffusion in saturated soils has been far more prevalent, 

relative to research performed on unsaturated soils, due to the greater challenges and limitations 

of laboratory methods for measurement of unsaturated diffusion and the conservative (high) 

estimates of diffusion coefficients under saturated conditions.     

The most common methods used by soil scientists to measure diffusion in unsaturated 

soils have been transient methods, specifically the half-cell method (Klute and Letey 1958; 

Porter et al. 1960; Graham-Bryce 1963; Romkens and Bruce 1964; Rowell et al. 1967).  In the 

half-cell method, two identical specimens of the same soil are equilibrated in two separate half 

cells with either two different salt solutions or the same salt solution with one cell spiked with an 

isotope tracer (Shackelford 1991; Barbour et al. 1996; Hu and Wang 2003).  The cells then are 

placed against each other to allow diffusion of solutes from one half-cell to the other.  The 

diffusion coefficient of the soil is calculated based on the change in the solute mass or tracer in 

each half cell at the end of the test.  One challenge of the half-cell method is ensuring full contact 

between the faces of the two half-cells and interconnectivity of the liquid phase (Shackelford 

1991).  Another disadvantage of the half-cell method for testing unsaturated soils is the lack of 

control of the stress state of the soil, as the water content, soil structure and suction in each 

specimen typically are not controlled.  Further, by not controlling the soil suction, solute mass 

flux may occur across the interface between the two half cells due to suction gradients versus 

only concentration gradients (Barbour et al. 1996).    

To overcome some of the shortcomings of the half-cell method for diffusion testing of 

unsaturated soils, Barbour et al. (1996) developed a single-reservoir method that allowed for 

control of the stress state and matric suction, ψm, of the soil. The method used the axis-
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translation technique and an HAE disk between the specimen and the source reservoir to control 

ψm throughout testing.  In the axis-translation technique, air pressure in the soil is increased 

while the pore-water pressure is maintained at a reference value, typically atmospheric.  This 

technique is useful for investigating a wide range of matric suctions, while remaining above 

negative water pressures at which cavitation would occur (Fredlund and Rahardjo 1993; Lu and 

Likos 2004).   The source reservoir was maintained at a constant volume so that advection did 

not occur across the specimen during testing.  The specimens used to evaluate the testing 

apparatus were Beaver Creek Sand, a uniform, fine to medium sand with 1.1 % fines content and 

a cation exchange capacity (CEC) of 1.3 meq/100g. The specimen thicknesses generally were ≤ 

20 mm and saturations ranged from 0.1 to 1.0.  The diffusion experiments were performed with 

KCl solutions with concentrations ranging from 20 mM to 23 mM. Changes in the source 

reservoir concentration with time were monitored via sampling of small volumes (< 1 mL) at 

regular time intervals.  The results of the test program were subsequently discussed in Lim et al. 

(1998).  

The single-reservoir diffusion experiments were assumed to have reached chemical 

equilibrium once the changes in the reservoir concentration became insignificant.  At chemical 

equilibrium, the pore-water concentrations in the HAE disk and throughout the specimen were 

assumed to be constant and equal to the final concentration in the source reservoir.  For the 

experiments where chemical equilibrium was achieved, D* was determined by matching the 

predicted reservoir concentrations with the actual reservoir concentrations measured at regular 

intervals in elapsed time.  The theoretical concentration-versus-time profile for the reservoir was 

generated with the finite element program CTRAN/W (Geo-Slope International Ltd, Calgary, 

Alberta).  The value of D* was adjusted until the theoretical curve best fit the measured values.  
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At the end of the test, the specimen was removed and the mass of adsorbed K+ was determined 

by saturating the specimen with barium chloride solution (0.1 N) and extracting the fluid (i.e., 

using ion exchange to remove the adsorbed K+).  Freundlich adsorption coefficients were 

determined from 24-h batch experiments in accordance with ASTM D 4646-87.    

Chemical equilibrium was not achieved in some of the experiments, even after long 

durations (> 50 d), particularly for K+.  In these experiments, both the diffusion and adsorption 

coefficients were unknown.   To determine these properties, two separate regressions were 

performed simultaneously with the same input values using CTRAN/W, viz. (1) regressing the 

theoretical and measured profiles of the reservoir concentration versus time, as previously 

described, and (2) regressing the theoretical and measured concentration profiles versus depth in 

the soil specimen.  Values of effective diffusion and adsorption coefficients were varied until the 

theoretical concentration profiles versus both time (reservoir) and depth (specimen) matched the 

respective experimental concentration profiles. 

 

4.3 Materials and methods 

4.3.1  Materials 

 The bentonite specimens were prepared from GCL-grade, granular bentonite (Colloid 

Environmental Technologies Co. (CETCO), Hoffman Estates, IL).  Physical and mineralogical 

properties of the bentonite are provided in Chapter 3 (see Table 3.2).  The bentonite contained 90 

% clay-size particles (ASTM D 422) and classified as high plasticity clay (CH) according to the 

Unified Soil Classification System (ASTM D 2487).  Mineralogical analyses conducted by 

Mineralogy, Inc. (Tulsa, OK) using x-ray diffraction indicated the relative abundance of 

montmorillonite was 91 %.  
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The liquids used in this study included de-ionized water (DIW) (pH = 7.35, electrical 

conductivity, EC, at 25 oC = 0.06 mS/m) and solutions of DIW with KCl (certified A.C.S.; 

Fisher Scientific, Fair Lawn, NJ) with target concentrations of 20 mM to 50 mM KCl.  The 

actual measured concentrations of the KCl solutions ranged from 19 mM to 51 mM KCl.  

Concentrations of K+ were measured using inductively coupled plasma-atomic emission 

spectrometry or ICP-AES (IRIS® Advantage/1000 ICAP Spectrometer, Thermo Jarrel Ash Co., 

Franklin, MA).  Concentrations of chloride (Cl-) were measured using ion chromatography or IC 

(Dionex® 4000i 131 IC Module, Dionex Co., Sunnyvale, CA).  The measured pH of the KCl 

solutions ranged from 4.8 to 6.5 and the measured EC at 25 oC ranged from 280 mS/m to 683 

mS/m.  

During the long-term diffusion testing, if bio-activity in the unsaturated specimen was 

suspected (as indicated by erratic EC readings – see Section 4.3.6), biocide (DOWICIL QK-20 

Antimicrobial, Dow Chemical Co., USA) was added to the KCl source solutions at a 

concentration of 500 ppm (Nelson 2000; Jo et al. 2005).  Nelson (2000) performed hydraulic 

conductivity tests on paper sludges and determined that concentrations of DOWICIL QK-20 

between 500 ppm and 2,000 ppm were effective in eliminating biological activity, but did not 

cause significant physicochemical changes that would alter the hydraulic conductivity.  Based on 

the results of Nelson (2000), Jo et al. (2005) added 500 ppm of DOWICIL QK-20 to the 

permeant solution (5 mM CaCl2) used in a long-term hydraulic conductivity test conducted on a 

GCL. The active ingredient in the biocide is 2,2-dibromo-3-nitrilopropionamide (commonly 

referred to as DBNPA), which provides broad-spectrum control of bacteria, fungi, and yeast 

(Dow Chemical Company 2000).  The end products of the biocide after decomposition are 

carbon dioxide (CO2), ammonia (NH3) bromide (Br-), and hydrogen (H+).  In this study, the 
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maximum change in pH and EC of the KCl solutions upon addition of 500 ppm of biocide was 

10 % and 1 %, respectively.       

 

4.3.2  Specimen preparation 

The purpose of the research was to evaluate diffusion, as well as membrane behavior 

(anion exclusion), in unsaturated Na-bentonite.  Therefore, control of the exchangeable cations 

on the bentonite was desired to allow for distinction between solutes that have diffused from 

solutions applied at the boundaries and through the specimen versus solutes initially within the 

pore water of the specimen (e.g., if Na+ dominates the exchange complex, then K+ and Cl- can be 

distinguished relative to Na+).  In addition, amplification of membrane behavior by increasing 

the exchangeable sodium percentage of the bentonite was preferred to draw clearer, more 

confident conclusions regarding the relationship between membrane efficiency and degree of 

saturation (see Chapter 5). Therefore, the original GCL-grade bentonite was treated with a 

dialysis procedure to modify the exchange complex such that Na+ occupied most (69 %) of the 

exchange sites and also to flush the bentonite of excess soluble salts.  A detailed description of 

the dialysis procedure and relevant data are provided in Chapter 3.  At the end of the dialysis 

procedure, the bentonite was in a paste form and the exchange complex of the bentonite 

consisted of 69 % Na+, 1 % K+, 20 % Ca2+, and 10 % Mg2+ (by molar ratio), as determined by 

ASTM D 7503-10.   

Consolidation of clay pastes and slurries using standard consolidation equipment (e.g. 

oedometer or triaxial cells) and procedures (e.g., ASTM D 2435, ASTM D 4767, ASTM D 7181) 

can be challenging due to issues such as material loss during incremental loading (for the 

oedometer cell) and difficulty assembling the test cell around the high-water content material.  
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Since the sole purpose of the consolidation stage was to prepare specimens to the desired value 

of n (or void ratio, e) for diffusion and membrane behavior testing (i.e., versus evaluating the 

consolidation behavior of the material), a simple column setup was designed to consolidate the 

bentonite paste with incremental loading.  A detailed schematic and photographs of the column 

setup used for consolidation of the paste are provided in Appendix C.   

The dialysized bentonite paste (~37 g dry mass of bentonite) was placed in an acrylic 

column with an inner diameter and thickness of 82.5 mm and 6.35 mm, respectively.  The dry 

mass of 37 g provided sufficient bentonite to prepare one set of identical test specimens (same n 

and thickness) in the consolidation column, i.e., a consolidated specimen thick enough to be split 

into two thinner (< 10 mm) specimens for testing.  Use of larger volumes of paste corresponding 

to a dry mass greater than 37 g was not desirable, as this would result in increased initial 

thicknesses of the paste specimens prior to consolidation and, therefore, longer durations for 

completion of primary consolidation due to increased drainage distances.  Filter paper and 

geotextile along the top and bottom boundaries of the paste provided double-drained conditions 

during consolidation.  The top of the column was covered with plastic wrap (Glad Products 

Company, Oakland, CA, USA) and the paste was allowed to sit for at least 24 hours before 

loading to allow self-weight consolidation to occur.  Changes in specimen thickness with time 

were recorded manually and the period of self-weight consolidation was considered complete 

when the measured total deflection (or strain) of the specimen became constant (duration ≤ 7 d). 

Upon completion of the self-weight consolidation stage, the specimen was consolidated 

further via incremental loading to achieve the desired n for diffusion and membrane testing.  

Prior to applying the first load, a porous disk was placed on top of the specimen.  Loads were 

applied incrementally using tins of lead shot and steel plates (see Appendix C). A typical load 
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increment ratio (LIR) of one was used (i.e., doubling the load each increment), and the specimen 

deflections with time were manually recorded using a dial gauge (MHC Dial Indicator, Model 

No. 6605-4070, MHC Industrial Supply, China).  For each load increment, the time required to 

achieve the end of primary consolidation, as indicated by the curve of deflection versus time for 

each load increment, typically was less than or equal to 7 d.   

The curves of e versus vertical effective stress measured during consolidation of the four 

specimens used in the diffusion tests are provided in Figure 4.1a.  The bentonite paste was 

consolidated to a final value of n ranging from 0.87 to 0.89, corresponding to values of e ranging 

from 6.7 to 8.1, respectively.  This range of values of n allowed for comparison of the test results 

with data in the literature for diffusion and membrane behavior in saturated bentonite and GCL 

specimens (e.g., Malusis and Shackelford 2002; Malusis et al. 2014; Bohnhoff and Shackelford 

2015).  Although a thorough evaluation of the consolidation behavior of the dialysized, Na-

bentonite was beyond the scope of this study, the compression results were compared with 

values reported by Olson and Mesri (1971), as shown in Figure 4.1b.  The purpose of this 

comparison was mainly to confirm that the specimens prepared in the alternative consolidation 

equipment exhibited similar consolidation behavior to that of bentonite at high water contents 

consolidated using standard equipment and procedures.  As expected, the compression curves 

measured for the dialysized bentonite with 69 % Na+ on the exchange complex fell between the 

compression curves measured by Olson and Mesri (1970) for homo-ionized Na- and Ca-

bentonites.  This comparison confirmed that the basic compression measurements (e.g., 

deflection and strain) obtained with the alternative column setup were reasonable.   

Following completion of consolidation, the loads were removed incrementally (using an 

LIR ≤ 2) to confirm that final value of n of the specimen remained within the desired range. The 
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specimen was removed from the column and the final thickness, diameter and weight of the 

specimen were recorded.  The thickness of the consolidated specimens was 20 mm to 25 mm, 

which was sufficient to provide for a portion of the specimens to be used to measure water 

content and the remainder of the specimen to be split into two separate sub-specimens (each 7- to 

10-mm thick) for testing.   

After consolidation, the specimens essentially were fully saturated (S > 97 %).  To 

prepare specimens at lower values of S for diffusion and membrane testing, the 7- to 10-mm 

thick specimens were placed in a pressure plate cell (15-bar Pressure Plate Extractor, 

Soilmoisture Equipment Corp., Santa Barabara, CA).  The S and θ of the specimens were 

decreased by incrementally increasing ψm using axis translation, generally following the same 

procedure used to develop soil-water characteristic curves (SWCC) (ASTM D 6836).  Every 

time that specimens were removed from the pressure plate and weighed to determine θ for the 

applied ψm the dimensions of the specimen were measured to account for changes in volume. 

Pictures of the pressure plate cell and associated equipment are provided in Appendix C.   

The curves of ψm versus θ measured during preparation of the three unsaturated 

specimens used in the diffusion tests are provided in Figure 4.2.  Comparison of the partial 

SWCCs measured for the specimens with commonly used mathematical models (e.g., Brooks 

and Corey 1964; van genuchten 1980; Fredlund and Xing 1994) was beyond the scope of this 

study, as the primary purpose was to prepare unsaturated specimens for diffusion and membrane 

testing.  However, further evaluation of the soil-suction behavior of the Na-bentonite may 

provide additional insight regarding interpretation of the test results for unsaturated diffusion and 

membrane behavior, and should be addressed in future research. 
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To minimize changes to θ and S of the specimen after removal from the pressure plate, 

the specimen was immediately wrapped twice in plastic wrap, sealed in a plastic bag, and then 

placed inside another sealed container.  Immediately prior to use in the diffusion and membrane 

testing, the dimensions and weights of all specimens were re-measured to ensure the values of S 

and n did not changed significantly during storage.  However, the expectation of maintaining  

perfectly constant values of n, S and θ after removal of the specimen from the pressure plate, 

during temporary (< 1 d) storage (sealed as previously described), and during final assembly of 

the test cell at which time the specimen had to be uncovered briefly (< 20 min) without an 

applied air pressure, was not practical.  As shown in Figure 4.2, some wetting of the specimen 

occurred, such that the final value of θ (and, therefore, S) at the start of the diffusion test was 

higher than the value of θ at the end of the saturation adjustment (pressure plate) stage.  The 

tendency for θ of the specimen to increase during this time period was identified during initial 

testing trials and, therefore, measures were taken during the specimen preparation and assembly 

procedures to accommodate expected changes in the value of θ after removal from the pressure 

plate.  For example, the specimens were prepared to lower θ (higher ψm) during the saturation 

adjustment stage than was needed for the diffusion and membrane testing, in anticipation of θ 

increasing slightly by the time the test began.    

During the DIW circulation stage, after the test began but prior to circulation of KCl, 

measured values of suction at the specimen boundaries were used to confirm the final values of 

ψm of the specimen (see Chapter 5). Note that the values of all specimen properties listed for 

each diffusion test (e.g., S, n, θ) in Tables 4.1 to 4.3 refer to the actual properties of the specimen 

throughout the diffusion test, and not the values measured at the end of the saturation adjustment 

stage. 
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4.3.3  Experimental apparatus and boundary conditions 

Diffusion properties of the bentonite specimens were measured with the through-

diffusion method, also known as the time-lag or steady-state method (Shackelford 1991).  The 

experimental apparatus and procedures used in this study are described in detail in Chapter 2.  

Briefly, the bentonite specimen is confined in a rigid-wall cell with a flexible membrane between 

the specimen perimeter and the sidewall of the rigid cell.  The purpose of the flexible membrane 

is to prevent short circuiting of pressures during semipermeable membrane testing and solute 

mass flux during diffusion testing between the top and bottom boundaries of the specimen.  To 

prevent uncontrolled changes in water content during diffusion testing (due to movement of gas 

into or out of the unsaturated bentonite specimen), HAE disks (Soilmoisture Equipment 

Corporation, Santa Barbara, CA), were placed above and below the specimen, as shown in 

Figure 4.3.  The HAE disks are made of ceramic (formed from sintered kaolin), and the 

properties of the disks, including diffusion properties measured during calibration testing, were 

described in detail in Chapter 2.  The cell was connected to a hydraulic control system consisting 

of a flow pump with two stainless-steel syringes.  Chemical (electrolyte) solutions and DIW 

were circulated across the top and bottom boundaries of the test cell, respectively, via piston 

displacement from the syringes through stainless steel tubing.  The syringe pumps allowed for 

circulation of the solutions and DIW at the same, constant flow rate.  After each circulation cycle 

(typically every two days) whereby the liquid-holding capacity of the syringes (approximately 44 

mL) had been exhausted, circulation was paused and the syringes were replenished with fresh 

solution or DIW from storage reservoirs.  

Prior to diffusion testing, DIW was circulated through porous disks along both the top 

and bottom boundaries of the upper and lower HAE disks, respectively, to establish baseline 
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concentrations and remove remaining soluble salts from the specimen.  For all experiments, the 

DIW stage was performed for 24 to 29 days and the final EC of the bottom effluent was less than 

8 mS/m.   

During diffusion testing, a concentration gradient was applied across the specimen by 

circulating a solution with an initial concentration of KCl (Cot > 0) through the top porous disk 

and DIW (Cob ≅ 0) through the bottom porous disk.  The experimental system was closed during 

testing, such that no liquid flow occurred through the specimen in order to maintain a constant 

volume.  Since liquid flux was prevented, advective flux (JA) and chemico-osmotic solute mass 

flux (Jπ) could not occur (i.e., JA = Jπ = 0), such that the total solute mass flux through the 

layered porous media, J (= JA + Jπ + JD) was equal to the diffusive flux, JD.   

Solutes diffused from higher concentration to lower concentration, i.e., from the top 

circulation boundary, through the upper HAE disk, the underlying specimen, and the lower HAE 

disk, and into the bottom circulation boundary.  A schematic illustration of the development of 

the time-dependent concentration profiles within the porous media is shown in Figure 4.4a.  The 

concentration profiles shown in this figure were generated by simulating a 20 mM KCl 

circulation stage using HYDRUS-1D (PC-Progress, Prague, Czech Republic).  Since the 

experiments were performed in a closed system with essentially constant concentrations at the 

boundaries, the concentration profiles across each of the disks and the specimen become linear at 

steady-state diffusion (Malusis et al. 2012). 

Development of linear concentration profiles at steady-state diffusion conditions is an 

important advantage of the closed-system testing method (Shackelford 2013).  When the profile 

is linear, the change in concentration across the total length of the specimen (∆C/L) may be used 

in the calculation of D* (see Section 4.3.5).  In contrast, in open systems where chemico-osmotic 
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liquid flow (qπ) is allowed to occur, the resulting concentration profile at steady state is 

nonlinear, such that the assumption of a constant concentration difference (∆C) across the porous 

medium is not valid (e.g., Dutt and Low 1962; Quigley et al. 1987; Muurinen 1990). Thus, the 

use of a closed system to prevent qπ from occurring in the specimen greatly simplifies the 

interpretation of the data.  

 

4.3.4  Sampling and boundary concentrations 

During refilling of the syringe pumps with fresh DIW and KCl solutions, the spent 

circulation fluid (effluent) was simultaneously collected in 50-mL vials.  The pH and EC of the 

samples were measured immediately after collection, and portions of the samples were used for 

measurement of concentrations of all inorganic metals (e.g., K+, Na+) via ICP-AES, and anionic 

chemical species, principally chloride (Cl-), via IC (same equipment as listed in Section 4.3.1).        

Diffusion from the top boundary to the bottom boundary of the test system resulted in 

increased concentrations of Cl- and K+ in the circulation outflow collected from the bottom 

boundary, Cb (e.g., Cb > Cob ≅ 0).  The concentrations of Cl- and K+ in the circulation outflow 

from the top boundary, Ct, were lower than those in the circulation inflow at the top boundary (Ct 

< Cot) due to diffusion.  The total concentration difference (∆Ctotal) across the porous media 

(HAE disk-bentonite-HAE disk) was represented as the difference between the average 

concentrations at the boundaries (see Fig. 4.4b), or 

 

 , ,∆ = −total b ave t aveC C C   (4.8) 
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where the average concentrations are determined from the measured concentrations of the 

inflows and outflows (effluent) at each boundary as follows:  

 

 , ,;
2 2

ob b ot t
b ave t ave

C C C CC C+ +   = =   
   

  (4.9) 

 

The concentrations of Cl- and K+ in Cb were monitored as a function of time to determine JD 

required to calculate the effective diffusion coefficients, as discussed subsequently.   

 

4.3.5 Diffusion analysis 

The traditional through-diffusion method of analysis has been used to determine D* 

values of saturated clays and clay mixtures in multiple studies using closed-system experiments 

to evaluate coupled diffusion and semipermeable membrane behavior (e.g., Malusis and 

Shackelford 2002; Di Emidio 2010; Dominijanni et al. 2013; Malusis et al. 2014; Bohnhoff and 

Shackelford 2015), as follows:    
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  (4.10) 

 

where L is the length of the specimen and JD,ss is JD at steady state.  If the specimen is 

unsaturated, such as in this study, the porosity in Equation 4.10 is replaced by the volumetric 

water content, θ, as follows:  
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For all of the diffusion experiments, JD,ss for each testing stage was determined based on the 

traditional through-diffusion analysis method using the cumulative solute mass, as follows 

(Shackelford 1991; Shackelford and Lee 2003; Shackelford and Moore 2013):  

 

  ,
t

D ss
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QJ
t −

D
=

D
  (4.12) 

 

where Qt is the cumulative solute mass (S∆m) normalized with respect to the cross-sectional area 

of the specimen (A) (i.e., Qt = S∆m/A, where ∆m is the incremental mass of the chemical species 

in the sample withdrawn from the collection reservoir), and t is the elapsed time.  The value of 

∆m is determined by multiplying the volume of the incrementally collected sample (∆V) by the 

measured concentration of the species of interest in the sample (i.e., Cb).  The plot of Qt versus t 

generally is nonlinear at the beginning or transient stage of the test, followed by a linear portion 

corresponding to the establishment of steady-state diffusion for the individual chemical species 

through the specimen, as shown in Figure 4.5 (e.g., Shackelford 1991).  The slope of the linear 

portion of the Qt-versus-t data is assumed equal to JD,ss  as shown in Equation 4.12.  Thus, 

Equation 4.11 can be rewritten as follows: 
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In this study, sequential linear regression was conducted to establish the number of 

measured data representing the steady-state diffusive mass flux, as described in Shackelford and 

Lee (2003).  A linear regression was conducted on an increasing number of the Qt-versus-t data.  

The value of t at which the coefficient of determination, r2, of the linear regression deviated 

significantly from unity was considered to be the distinction between the transient and steady-

state portions of the data.  All of the plots used to determine the number of cumulative mass data 

required to estimate JD,ss for the experiments are provided in Appendix D.  The values of JD,ss 

determined from this approach were used to calculate D* values of the clay specimens using the 

traditional through-diffusion method applied to layered porous media under unsaturated 

conditions, as described subsequently.  

The specimen sandwiched between two HAE disks in the test cell is similar to a layered 

soil system, consisting of three distinct layers (HAE disk-bentonite specimen-HAE disk).  

Therefore, Equation 4.11 may be modified as follows: 

 

 *
,

−

   ∆ = − = −       θ ∆ ∆ θ ∆    

clay clayt
clay ∆ ss

clay clay clay claysteady state

L LQ
∆ J

C t C
  (4.14) 

  

where D*
clay is the effective diffusion coefficient for the clay specimen, Lclay and θclay are the 

thickness and volumetric water content of the clay specimen, respectively, and ∆Cclay is the 

concentration difference only across the clay specimen.  To calculate D*
clay using Equation 4.14, 

the value of ∆Cclay must be known. The value for ∆Cclay can be determined knowing the 

requirement that the concentration difference across the entire porous system is equal to the sums 

of the concentration differences across the two HAE disks and the clay (i.e., ∆Ctotal = ∆Cclay + 
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2∆CHAE), and the requirement for continuity of solute mass flux across the porous system at 

steady state (i.e., JD,ss = JHAE,ss = Jclay,ss). Application of both of these requirements results in the 

following expression for D*
clay (see Appendix D for details):   
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  (4.15) 

 

where D*
HAE is the effective diffusion coefficient of the HAE disk, and LHAE and θHAE are the 

thickness and volumetric water content of each HAE disk, respectively.  The values for all the 

independent variables in Equation 4.15 are either known or can be determined from the testing 

data using steady-state analysis methods as previously described (e.g., see Table 4.1). As 

described in Chapter 2, the D* values of the HAE disks were 1.4 x 10-10 m2/s to 1.6 x 10-10 m2/s, 

which are similar to values reported for fine-grained soils (Shackelford 1991, 2014).   

   

4.3.6 Experimental program 

The experimental program consisted of four multistage diffusion experiments.  These 

experiments were performed by sequentially circulating KCl solutions with increasingly higher 

source concentrations, Cot, of KCl across the top circulation boundary. Each of the four 

experiments corresponded to a bentonite specimen with a different value of S that was 

maintained constant throughout the multistage test.   

The values of S and θ for the four specimens ranged from 0.79 to 1.0 and 0.70 to 0.87, 

respectively.  The range of S that could be evaluated was limited by time and equipment 

constraints.  The time to reach steady-state diffusion (and thus, the required experimental 
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duration) increases as the diffusion coefficient of the clay decreases.  The value of the effective 

diffusion coefficient of the clay, De,clay, is directly related to the volumetric water content (De,clay 

= θD*
clay), such that De,clay decreases as S and θ decrease. As a result, the time required to achieve 

steady-state diffusion increases as S decreases. In addition, specimens at lower S also will exhibit 

higher suction and, therefore, require the use of HAE disks with higher air-entry values (e.g., 15 

bar rather than 3 or 5 bar).  As the air-entry value of the HAE disk increases, the D*
HAE likely 

will decrease as well (see Chapter 2), which in turn will further increase required test durations. 

As a result of these considerations and available soil-suction data obtained during specimen 

preparation (see Section 4.3.3), the minimum S evaluated in this study was set to 0.79 to allow 

use of HAE disks with a maximum air-entry value of 5 bar. Even with these considerations, the 

testing durations required for completion of each multistage test were lengthy, ranging from 280 

to 330 d (see Table 4.1). 

Also, based on budget, space, and available lab equipment, only two experiments could 

be performed concurrently, reducing the total number of experiments that could be completed 

within the project timeline.  Four multistage experiments, each performed at a different constant 

value of S, were considered adequate to establish trends between diffusion coefficients and S or 

concentration. 

 

4.4 Results 

4.4.1 Electrical conductivity  

 The results of the EC measurements from circulation outflows collected at the top and 

bottom boundaries of the testing cell are shown for all of the diffusion experiments in Figure 4.7.  

Note that day 0 corresponds to the first day of circulation of KCl solution at the top boundary to 
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induce a concentration gradient across the specimen.  Times prior to day 0 correspond to the 

initial DIW stage during which DIW was circulated at both the top and bottom boundaries to 

remove remaining soluble salts, and the diffusion test had not yet begun.   

For all of the experiments, after the start of KCl circulation at the top boundary (t > 0), 

the EC of the outflow at the bottom boundary began to increase.  This increase in EC was caused 

by increased salt concentration at the bottom boundary due to diffusion of solutes from the top 

boundary downward through the specimen.  Subsequent changes in the EC of the bottom effluent 

were representative of changes in JD through the bottom boundary.  As expected, the EC of the 

bottom effluent increased with increasing source KCl concentration across the top boundary due 

to the greater concentration gradient and a correspondingly greater solute mass flux.  For 

example, for the saturated bentonite specimen (S = 1.0, Figure 4.7a), as the source KCl 

concentration was increased from 20 mM to 30 mM and from 30 mM to 50 mM, the bottom EC 

increased from 23.6 mS/m to 38.4 mS/m and from 38.4 mS/m to 57.8 mS/m, respectively.  

Although these boundary EC values are useful (and simple) indicators of the boundary 

conditions for the experiments, these values cannot be used to determine solute diffusion 

coefficients because all ions in solution contribute to EC (e.g., Shackelford et al. 1999).  

 

4.4.2 Ion concentrations, mass flux, and charge balances 

Chemical analyses (ICP-AES and IC) were performed on samples of the bottom outflow 

to measure the concentrations of individual cations and anions.  Although the samples were 

analyzed for 36 different cation species and 7 anion species, only three cation (K+, Na+, Ca2+) 

and one anion species (Cl-) were consistently measured above detection limits for all of the 

experiments.  The measured concentrations of these four species throughout the diffusion 
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experiments are provided in Figure 4.7.  As expected, the steady-state concentrations of K+ and 

Cl- increased as Cot increased with each stage of the test (e.g, from 20 mM KCl to 30 mM KCl, 

from 30 mM to 50 mM).  For example, for the specimen with S of 0.84 as the Cot was increased 

from 30 mM to 50 mM KCl the steady-state K+ and Cl- concentrations in the bottom effluent 

both increased from 1.7 mM to 2.6 mM (see Figure 4.7c).   

For all of the experiments, the initial Na+ concentration in the bottom effluent was greater 

than the concentration of K+.  Therefore, the initial increase in EC at the start of diffusion testing 

(see Figure 4.6) can be attributed to diffusion of Na+ and Cl- from the specimen versus diffusion 

of K+ from the top boundary through the specimen.  Diffusion of Na+ from the specimen at early 

times affects the rate of K+ diffusion across the test system (see Section 4.5.3).  In all of the 

experiments, the Na+ concentration decreased to less than half of the K+ concentration by the end 

of the first concentration stage (20 mM) and continued to decrease to values that ultimately were 

below the detection limit.  Concentrations of Ca2+ in the bottom effluent remained relatively low 

(≤ 0.2 mM) and constant during each test stage.  

The diffusive fluxes (JD) of Cl-, K+, Na+, and Ca2+ are shown as a function of elapsed 

time in Figure 4.8.  As expected, as the source concentration of KCl increased such that ∆C for 

K+ and Cl- across the test system increased, JD of K+ and Cl- increased.  For example, for the 

specimen at S of 0.84, as Cot increased from 20 mM to 30 mM KCl, JD,ss of Cl- and K+ increased 

from 146 mg/m2-d to 261 mg/m2-d and from 156 mg/m2-d to 282 mg/m2-d, respectively (Figure 

4.8c, Table 4.2).  Note that the increase in JD,ss with increasing source concentration is not just a 

function of increasing ∆C, because an increase in D* with increasing average concentration in the 

specimen also contributes to higher JD,ss (see Section 4.5.1).  
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To evaluate the charge balance of the effluent samples, the total charge equivalents of the 

anions and cations are plotted together as a function of time in Figure 4.9.  Confirmation that the 

anion and cation charge equivalents are approximately equal (the charges in the sample are 

balanced) provides confidence that the chemical analyses were comprehensive and significant 

concentrations of ion species other than those measured were not present. For all of the diffusion 

experiments, the total charge equivalents of the cations generally were equal to or slightly greater 

than those of the anions.  The cation charge equivalent may have been slightly greater than that 

of the anions due to excess Na+ in the specimen or omission of a low concentration of any 

anionic species that were not measured as part of the IC analysis.  Regardless, the values shown 

in Figure 4.9 generally indicate good agreement between the cationic and anionic charges (i.e., 

1.0 ≤ cation equivalents/anion equivalents ≤ 1.2) for the effluent samples at steady-state 

diffusion conditions.     

 

4.4.3 Diffusion results 

Steady-state diffusion for each concentration stage of the multistage experiments was 

evaluated following the procedure described in Section 4.3.5.   The diffusion coefficients 

calculated for the clay specimens, viz. D*
clay and De,clay (= θD*

clay), as well as the values of 

important parameters used in the analyses (e.g., JD,ss), are summarized in Table 4.2.  Plots of Qt 

versus t for each multistage experiment are provided in Figure 4.10.  For the through-diffusion 

analysis of the multistage experiments, the net values of Qt and t, or Qt' and t′, respectively, 

pertaining to each concentration stage were used to determine the values for JD,ss and D*
clay for 

each stage of the test, as follows (e.g., Bohnhoff and Shackelford 2015): 
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, 1 ,'t t x t xQ Q Q+= −   (4.15) 

 1' x xt t t+= −   (4.16) 

 

where Qt,x and tx are the final values of Qt and t, respectively, from the previous stage of the 

experiment, and Qt,x+1 and tx+1 are the corresponding values for the current stage of the 

experiment.  Essentially, the use of Qt' and t′ resets the values for Qt and t to zero at the start of 

each concentration stage (Bohnhoff and Shackelford 2015).   

The plots of  Qt' versus t ′ for each experiment are shown in Figures 4.11 to 4.14, and the 

results of the analyses of these data are summarized in Table 4.2.  The values of JD,ss for each 

stage of a given experiment (i.e., the slopes ΔQt′/Δt′ resulting from linear regressions of the 

steady-state portions of the individual plots) ranged from 11 mg/m2-d to 525 mg/m2-d for Cl- and 

from 11 mg/m2-d to 552 mg/m2-d for K+.  As expected, JD,ss increased with increasing source 

concentration (Cot) due to the increasing concentration gradient.  For example, for the specimen 

with S of 0.89, JD,ss for Cl- was 203 mg/m2-d, 342 mg/m2-d and 525 mg/m2-d for source 

concentrations of 20 mM, 30 mM, and 50 mM KCl, respectively.  For the same multistage 

experiment, the JD,ss for K+ was 179 mg/m2-d, 232 mg/m2-d and 544 mg/m2-d for source 

concentrations of 20 mM, 30 mM, and 50 mM KCl, respectively.     

For all of the bentonite specimens and source KCl concentrations, the steady-state values 

of D*
clay ranged from 2.1 x 10-12 m2/s to 4.1 x 10-10 m2/s, whereas those for De,clay ranged from 

1.5 x 10-12 m2/s to 3.6 x 10-10 m2/s.  These values of D*
clay and De,clay for Na-bentonite specimens 

are consistent with expectations based on available data in the literature, although literature 

values for diffusion coefficients of unsaturated bentonite specimens with high porosities (e.g., n 

> 0.7) is limited, at best. 
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For example, Rowe et al. (2000) performed double-reservoir diffusion experiments on 

saturated specimens of Na-bentonite (granular and powdered), as well as non-woven GCLs 

containing the same granular Na-bentonite.  The source and collection reservoirs were filled with 

NaCl solution and DIW, respectively.  The concentration of the NaCl solution was 56 mM for all 

of the diffusion experiments.  In the diffusion experiments where the specimen volume was 

controlled throughout testing, the thickness of the bentonite ranged from 5.6 mm to 7.1 mm.  The 

reported values of D* for Cl- ranged from 3.6 x 10-11 m2/s to 2.1 x 10-10 m2/s for porosities of 0.57 

to 0.76, respectively.  The values of D* for Na+ were slightly higher, ranging from 6.0 x 10-11 

m2/s to 3.5 x 10-10 m2/s.  The difference between the D* values for Cl- and Na+ was attributed to 

initial concentrations of Na+ in the pore water.  

Also, Malusis and Shackelford (2002) reported diffusion coefficients for K+ and Cl- 

through a needle-punched, GCL containing granular, saturated Na-bentonite.  A closed-system 

test apparatus was used to measure coupled diffusion and membrane behavior of the GCL.  

Solutions of KCl were circulated across the top boundary of the specimen, while processed tap 

water (EC = 0.32 mS/m) was circulated across the bottom boundary.  The specimen was flushed 

to remove excess soluble salts prior to testing.  The measured concentrations of KCl in the 

source solutions used in the multistage experiments were 3.9 mM, 8.7 mM, 20 mM, and 47 mM.  

For all specimens, S > 0.96 and 0.78 ≤ n ≤ 0.80.  The measured values of D* for Cl- and K+ 

ranged from 7.1 x 10-11 m2/s to 2.3 x 10-10 m2/s, and from 4.4 x 10-11 m2/s to 2.0 x 10-10 m2/s, 

respectively. 

Similar closed-system experiments to measure coupled diffusion and membrane behavior 

of GCLs were performed by Malusis et al. (2013).  A needle-punched GCL was flushed of 

excess soluble salts prior to diffusion testing.  The KCl measured concentrations used in the 
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multistage experiments were 3.9 mM, 6.0 mM, 8.7 mM, 20 mM, and 47 mM.  A flexible-wall 

cell was used to control the effective stress (σ'), with σ' ranging from 34.5 kPa to 241 kPa.  The 

thickness and porosity of the specimens ranged from 5.6 mm to 9.5 mm and from 0.66 to 0.81, 

respectively.  The D* values of the salt were estimated based on EC measurements of the effluent 

collected from the bottom boundary.  The values of D* for KCl ranged from 4.3 x 10-11 m2/s to 

2.8 x 10-10 m2/s, with D* decreasing with increasing effective stress.   

Relative to published data for diffusion through high-porosity bentonite and GCLs, there 

is substantially more published data available for diffusion through highly compacted bentonite 

(dry density, ρd, ≥ 1.6 Mg/m3) considered for use in radioactive waste disposal applications (see 

Shackelford and Moore 2013).  As expected, the diffusion coefficients for the highly compacted 

Na-bentonite reported in the literature typically are lower than the values reported for GCLs, due 

to substantially lower porosity (e.g., n of 0.3 to 0.5) and greater tortuosity of the compacted 

specimens.  For example, Kim et al. (1993) measured diffusion through compacted, saturated 

Na-bentonite with the back-to-back diffusion method (Torstenfelt et al. 1983).  In the back-to-

back method, a plane source impregnated with radionuclide is introduced at the mid-plane of a 

saturated soil specimen inside a diffusion cell.  For anion diffusion, the authors assumed 

retardation was negligible (Rd = 1.0) and, therefore, Da = De.  The reported values of Da (= De) 

for 36Cl-  ranged from 5.0 x 10-12 m2/s to 2.1 x 10-10 m2/s for dry densities of 1.90 Mg/m3 to 1.16 

Mg/m3, respectively.  The volumetric water content of the specimens ranged from approximately 

0.3 to 0.61. 

Rosanne et al. (2003) measured diffusion of NaCl and potassium iodide (KI) through 

compacted Na-montmorillonite specimens (n = 0.41 to 0.59).  Clay specimens were placed 

between two reservoirs of salt solution and brought to equilibrium with the desired solution for a 
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minimum of 200 h.  Then the solution in one reservoir was replaced with a more or less 

concentrated solution, inducing diffusion across the specimen.  The salt concentrations in the 

reservoirs with time were determined from EC measurements with conductivity probes.  At an 

average NaCl concentration (Cave) of 50 mM, the D* values for NaCl ranged from 2.5 x 10-10 

m2/s to 1.5 x 10-9 m2/s, whereas those for De ranged from 1.1 x 10-10 m2/s to 9.0 x 10-10 m2/s.  For 

the potassium iodide, at Cave of 55 mM KI, the D* values for KI ranged from 1.2 x 10-10 m2/s to 

2.9 x 10-10 m2/s, whereas those for De ranged from 1.2 x 10-10 m2/s to 2.5 x 10-10 m2/s.        

Glaus et al. (2010) performed through-diffusion experiments with radioactive tracers 

(HTO, 22Na+, 36Cl-) in highly compacted (ρd = 1.90 ± 0.05 Mg/m3), saturated specimens of 

kaolinite, Na-illite and Na-montmorillonite.  The experiments were performed using 0.1 M, 0.5 

M, 1.0 M, or 2.0 M NaCl04 solution.  Prior to starting each diffusion test, the clay was saturated 

with the appropriate electrolyte solution for a minimum of four weeks.  The experiments were 

performed in stages, with a new tracer started after the out-diffusion of the previous tracer was 

complete.  For the Na-montmorillonite specimens, reported values of De for 22Na+ and 36Cl- 

ranged from 3.6 x 10-11 m2/s to 3.8 x 10-10 m2/s and from 7.2 x 10-14 m2/s to 7.2 x 10-13 m2/s, 

respectively.  The lower diffusion rate of the negatively charged tracer was attributed to anion 

exclusion effects.    

In this study, the steady-state values of D*
clay for K+ (D*

clay,K
+) generally were lower than 

those for Cl- (D*
clay,Cl

-).  For example, for the saturated specimen (S = 1.0), D*
clay,K

+
 ranged from 

2.1 x 10-12 m2/s to 3.1 x 10-10 m2/s, while D*
clay,Cl

-
  ranged from 2.3 x 10-12 m2/s to 4.1 x 10-10 

m2/s.  The possible reason(s) for these differences between the values of D*
clay,K

+ and D*
clay,Cl

- 

measured in the diffusion experiments are discussed in further detail in Section 4.5.3. 
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4.5 Discussion 

4.5.1 Effect of average pore-water concentration 

The values of D*
clay and De,clay for both Cl- and K+ tended to increase with increasing 

average concentration in the specimen at steady-state diffusion (Cave), as shown in Figures 4.15 

and 4.16.  This trend can be explained on the basis of classical diffuse double-layer (DDL) 

theory (e.g., Mitchell and Soga 2005). As Cot increased, the average KCl concentration in the 

pore space of the specimen increased.  As the salt concentration in the pore space of the 

bentonite increased, the thickness of the diffuse double layers surrounding the clay particles 

decreased, such that transport of charged ions was less restrictive and the diffusive flux of Cl- 

and K+ increased.  For example, for the specimen at S of 0.84, as Cave  increased from 9.9 mM to 

25.0 mM KCl, the values of D*
clay,Cl

- and D*
clay,K

+ increased from 1.7 x 10-10 m2/s to 3.1 x 10-10 

m2/s and from 1.3 x 10-10 m2/s to 3.1 x 10-10 m2/s, respectively.   

As shown in Figure 4.17, the trend of increasing D*
clay and De,clay with increasing Cave and 

Cot also is consistent with results reported in the literature for bentonite at high porosities (n > 

0.7) (Lake and Rowe 2000; Malusis and Shackelford 2002; Dominijanni et al. 2013; Malusis et 

al. 2014).  For example, Dominijanni et al. (2013) measured diffusion of NaCl in specimens of 

powdered Na-bentonite prepared at an n of 0.81.  As Cave in the specimen increased from 10.3 

mM to 109 mM NaCl, values of D* for Cl- increased from 2.5 x 10-10 m2/s to 4.6 x 10-10 m2/s,.  

Increasing values of D*
clay and De,clay with increasing Cave also have been observed for 

highly-compacted bentonites.  For example, Rosanne et al. (2003) measured diffusion of NaCl 

through compacted Na-montmorillonite specimens at different average concentrations of NaCl.  

For specimens compacted to a n of 0.40 (ρd = 1.89 Mg/m3), the De values increased from 2.0 x 

10-11 m2/s to 2.7 x 10-11 m2/s as Cave increased from 10 mM to 15.7 mM NaCl.   
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4.5.2 Effect of saturation and volumetric water content 

The effects of S and θ on the measured values of D*
clay and De,clay were less obvious than 

the effects associated with pore-water concentration.  As shown in Figures 4.18 and 4.19, the 

values of D*
clay and De,clay only decreased slightly, if at all, as S decreased from 1.0 to 0.84 and θ 

decreased from 0.87 to 0.74.  For example, during circulation of 30 mM KCl, as θ decreased 

from 0.87 to 0.74, the values of D*
clay,Cl

- and De,clay,Cl
-  decreased from 3.1 x 10-11 m2/s to 3.0 x 10-

11 m2/s and from 2.8 x 10-11 m2/s to 2.2 x 10-11 m2/s, respectively.   

Previous studies have reported decreasing values of effective diffusion coefficients with 

decreasing θ for a variety of soils (e.g., Porter et al. 1960; Romkens and Bruce 1964; Rowell et 

al. 1967; Warncke and Barber 1972; Lim et al. 1998).  To the author's knowledge, there is no 

data available in the literature for changes in diffusion coefficients with water content at such 

high values of θ (> 0.7) for bentonite.  However, the general trends for the specimens with θ ≥ 

0.74 appear consistent with those reported by Porter et al. (1960) for Pierre clay (θ ≤ 0.40) and 

Conca et al. (1993) for Kunigel bentonite (θ ≤ 0.66) (Figure 4.20).  For example, as the θ of the 

Kunigel bentonite was decreased from 0.66 to 0.20, the value of De,clay,Cl
- decreased from 

approximately 2 x 10-9 m2/s to 4 x 10-10 m2/s for source concentrations of 100 mM KCl or NaCl.   

The values of D*
clay and De,clay measured for the specimen with the lowest water content 

(θ = 0.74) were significantly lower (> 1 order of magnitude) than the values from the other 

experiments (Figures 4.19 and 4.20).  This significant decrease in D*
clay and De,clay as θ decreased 

from 0.74 to 0.70 was unexpected, based on the trends from the literature shown in Figure 4.20b.  

However, there were no indications of error in the data or that the test conditions had been 

compromised.  Regrettably, due to limitations of the test equipment, D*
clay and De,clay values for θ 

< 0.70 could not be measured to confirm the low values obtained for the test with θ of 0.74.  
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Multiple theoretical and empirical models have been developed to predict diffusion 

coefficients of unsaturated soils (e.g., Millington and Quirk 1961; Papendick and Campbell 

1980; Sadeghi et al. 1989; Mehta et al. 1995; Olesen et al. 1996; Revil and Jougnot 2008).  The 

relationships developed by Millington and Quirk (1961) and Sadeghi et al. (1989) are simple 

expressions based only on the soil n and/or θ.  Other models (e.g., Papendick and Campbell 

1980; Mehta et al. 1995; Olesen et al. 1996; Revil and Jougnot 2008) require fitting parameters 

and/or additional physical and chemical properties (e.g., air-entry suction, Archie's exponents, 

reflection coefficients).  While the latter set of models may allow for more accurate estimates of 

diffusion coefficients, a detailed evaluation of such models and determination of appropriate 

fitting parameters was beyond the scope of this study.  The Millington and Quirk (1961) model is 

one of the most widely used methods (Hu and Wang 2003) and, therefore, was chosen as the 

method to compare predicted and measured values of D*
clay for the bentonite specimens.  

The Millington and Quirk (1961) model originally was developed for gas diffusion, and 

later was modified for aqueous-phase diffusion, as follows: 
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Note that the diffusion coefficient is independent of soil type (aside from porosity) and the pore-

water chemistry.  The values of D* and De calculated for the bentonite specimens using the 

Millington and Quirk (1961) model (D*
MQ and De,MQ respectively) are summarized in Table 4.3.   

For all of the specimens, the Millington and Quirk (1961) method over-predicted the 

diffusion coefficients, with the ratio of the predicted to measured values, D*
MQ/D*

clay (= 

De,MQ/De,clay), ranging from 3.9 to 189.  Over prediction of diffusion coefficients with the 

Millington and Quirk (1961) model may be due, in part, to the lack of consideration for double-

layer effects (e.g., membrane behavior).  The existence of membrane behavior in bentonites 

results in decreased values of D*, with D* approaching zero as membrane efficiency (ω) 

approaches 100 % or complete solute restriction (Shackelford 2014).  Membrane behavior 

generally decreases as the average pore-water concentration (Cave) in the bentonite increases, due 

to suppression of the diffuse double layers (Shackelford 2014; Meier et al. 2014).  As shown in 

Figure 4.21, as the Cave increased, the agreement between D*
MQ and D*

clay improved (i.e., the 

ratio decreased).  For example, for the specimen with S of 0.84, the value of D*
MQ / D*

clay 

decreased from 7.3 to 3.9 as Cave increased from 9.7 mM to 25.0 mM.  The improved agreement 

between the predicted and measured diffusion coefficients as Cave increased lends further support 

to the explanation that the difference between the values is attributed, in part, to membrane 

behavior effects.  The membrane behavior of the bentonite specimens and the effects on 

measured values of D* are discussed in further detail in Chapter 5.   

 

4.5.3 Electroneutrality effects 

For all of the experiments, the values of D*
clay for K+ were lower than or equal to those 

for Cl- (see Table 4.2).  The differences between the values of D*
clay,Cl

- and D*
clay,K

+ generally 
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decreased with increasing source concentration (Cot) and average concentration in the specimen 

(Cave).  For example, for the specimen with S of 0.84, D*
clay,Cl

- was 1.8 x 10-10 m2/s and D*
clay,K

+ 

was 1.4 x 10-10 m2/s during circulation of 20 mM KCl , whereas D*
clay,Cl

- and D*
clay,K

+ were both 

3.1 x 10-10 m2/s during circulation with 50 mM KCl.   

At steady-state diffusion, electroneutrality requires charge balance between the anions 

and the cations diffusing through the system.  The major chemical species present in the test 

system were Cl- and K+ from the source KCl solution, as well as Na+ initially present in the 

bentonite specimen.  The charge of the anions and cations must be balanced, as follows 

(Shackelford and Lee 2003; Bohnhoff and Shackelford 2015): 

  

 
, , ,

( ) ( ) ( )
D Cl Cl D K K D Na Na

J z J z J z− − + + + +− = +   (4.19) 

 

where JD is the molar flux of the ionic species and z represents the charges of Cl-, K+, and Na+ (-

1, +1, and +1, respectively).   

 At early test stages (e.g., 20 mM KCl), Na+ diffuses out of the specimen toward the top 

and bottom boundaries, while Cl- and K+ diffuse from the top boundary to the bottom boundary 

(see Figure 4.22).  Over time, the Na+ concentration in the test system decreases to negligible 

values (e.g., < 0.1 mM by the 50 mM stage).  Confirmation of Na+ initially in the test system and 

the subsequent decrease in Na+ to negligible concentration values were presented in Section 4.4.  

The initial Na+ concentration in the bentonite specimen, prior to being placed in the test cell, is 

assumed to be uniform, as shown in Figure 4.22.  During early test stages flux of Na+ toward the 

bottom boundary will result in the flux of K+ being less than that of Cl- (JD,K
+ < JD,Cl

-), per 

Equation 4.19, and thus, D*
clay,K

+ < D*
clay,Cl

-. 
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 The ratios of chloride-to-potassium D*
clay (= D*

clay,Cl
- / D*

clay,K
+) values are provided in 

Table 4.2.  The maximum values of D*
clay,Cl

- / D*
clay,K

+ occurred at early test stages (low Cave), 

and the values decreased towards unity as Cave increased.  As shown in Figure 4.23, similar 

trends were observed by Malusis and Shackelford (2002).  For example, for diffusion 

experiments on flushed GCLs Malusis and Shackelford (2002) reported values of D*
clay,Cl

- / 

D*
clay,K

+ decreased from 1.61 to 1.18 as Cave increased from 2.0 mM to 23.5 mM KCl.   

 

4.6 Conclusions 

A method was developed for measuring the diffusion of salts through unsaturated clays. 

The method was based on the through-diffusion technique, whereby different concentrations of 

diffusing solutes are maintained essentially constant at the boundaries of the specimen over 

sufficiently long periods so as to allow for the establishment of steady-state diffusion. Use of the 

described closed-system apparatus may provide several advantages for experimental evaluation 

of diffusion in unsaturated clays, such as:  

 

• establishment of linear concentration profiles at steady-state diffusion, allowing for 

simpler diffusion analyses relative to open systems;  

• ability to control and maintain constant values of matric suction,  S and θ in the 

specimen throughout testing;  

• constant circulation of solution that would remove air that, potentially, could collect 

at the boundaries after diffusing through the high air-entry disks (although diffusion 

of air through the HAE disks over the suction ranges evaluated in this research was 

considered negligible);  
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• capability to perform multistage (i.e., multiple concentration) diffusion tests to 

evaluate the effects of Cave on values of D*;  and 

• ability to concurrently measure membrane behavior (anion exclusion). 

 

The apparatus and test method were evaluated by measuring the diffusion of KCl through Na-

bentonite specimens at values of S ranging from 0.79 to 1.0. For all of the bentonite specimens 

and source KCl concentrations, the steady-state values of D*
clay fell within the range of 2.1 x 10-

12 m2/s to 4.1 x 10-10 m2/s, which was consistent with expectations based on available data in the 

literature.  However, to the author's knowledge, there is little to no previously published data for 

measured values of diffusion coefficients of unsaturated bentonite at high porosities similar to 

those of a GCL (e.g., n > 0.7).   

 The values of D*
clay for both Cl- and K+ tended to increase with increasing average 

concentration in the specimen, which was consistent with trends reported in the literature and 

could be explained on the basis of classical DDL theory.  The effects of S and θ on the measured 

values of D*
clay were less obvious, which may have been due to the limited range of S that could 

be evaluated in the research.  Compared to the measured values of D*
clay, the Millington and 

Quirk (1961) method over-predicted the diffusion coefficients, with the ratio of the predicted to 

measured values ranging from 3.9 to 189.  Over-prediction of D*
clay with the Millington and 

Quirk (1961) model may have been due, in part, to the lack of consideration for double-layer 

effects (e.g., membrane behavior).  Finally, for all of the experiments, the values of D*
clay for K+ 

were lower than or equal to those for Cl-, due to Na+ initially present in the specimen. 

 

  

156 



Table 4.1. Test program for measurement of diffusion in sodium bentonite. 
 

Properties of Bentonite Specimen Test Duration (d) 

Degree of 
Saturation, 

S 

Volumetric 
Water 

Content, 
θ 

Porosity, 
n 

Thickness, 
L (mm) 

Stage 

Total 

DIW 

20 
mM 
KCl 

30 
mM 
KCl 

50 
mM 
KCl 

1.0 0.87 0.87 6.6 29 122 108 76 335 

0.89 0.79 0.89 5.7 24 74 74, 
44a 64a 280 

0.84 0.74 0.88 7.7 24 104, 
34a 90a 72a 324 

0.79 0.70 0.88 8.3 24 158, 
50a 88a NA 320 

 
aSolution includes 500 ppm DOWICIL biocide. 
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Table 4.2. Results of through-diffusion analyses for sodium-bentonite specimens between high 
air-entry disks. 
 

Properties 
of  

Clay 
Specimen 

KCl Cot 
Cave,Cl

-
 

(mM) Ion 

Steady-State Diffusion Results 

Target 
(mM) 

Actual 
(mM) 

JD,ss =  
∆Qt/∆t 

(mg/d-m2) 

D*
clay 

(m2/s) 

De,clay  
= θD*

clay 
(m2/s) 

D*
clay,Cl

-/ 
D*

clay,K
+ 

S = 1 
t = 6.6 mm 

n = 0.87 
θ = 0.87 

20 19 9.0 K+ 180 9.3 x 10-11 8.1 x 10-11 1.90 Cl- 172 1.8 x 10-10 1.5 x 10-10 

30 30 15.0 K+ 325 1.9 x 10-10 1.6 x 10-10 1.68 Cl- 310 3.1 x 10-10 2.8 x 10-10 

50 49 25.0 K+ 552 2.9 x 10-10 2.5 x 10-10 1.43 Cl- 502 4.1 x 10-10 3.6 x 10-10 

S = 0.89 
t = 5.7 mm 

n = 0.89 
θ = 0.79 

20 21 10.5 K+ 179 6.0 x 10-11 4.8 x 10-11 3.04 Cl- 203 1.8 x 10-10 1.5 x 10-10 

30 33 15.0 K+ 161 2.0 x 10-11 1.6 x 10-11 2.40 Cl- 216 4.8 x 10-11 3.8 x 10-11 

30* 33* 16.5 K+ 232 3.4 x 10-11 2.7 x 10-11 9.95 Cl- 342 3.4 x 10-10 2.7 x 10-10 

50* 51* 25.6 K+ 544 1.7 x 10-10 1.3 x 10-10 2.04 Cl- 525 3.4 x 10-10 2.7 x 10-10 

S = 0.84 
t = 7.7 mm 

n = 0.88 
θ = 0.74 

20 20 9.7 K+ 155 1.3 x 10-10 9.7 x 10-11 1.29 Cl- 145 1.7 x 10-10 1.3 x 10-10 

20* 20* 9.7 K+ 156 1.4 x 10-10 1.0 x 10-10 1.30 Cl- 146 1.8 x 10-10 1.3 x 10-10 

30* 33* 16.5 K+ 282 2.4 x 10-10 1.8 x 10-10 1.28 Cl- 261 3.0 x 10-10 2.2 x 10-10 

50* 50* 25.0 K+ 442 3.1 x 10-10 2.3 x 10-10 1.00 Cl- 398 3.1 x 10-10 2.3 x 10-10 

S = 0.79 
t = 8.3 mm 

n = 0.88 
θ = 0.70 

20 20 9.9 K+ 11 2.1 x 10-12 1.5 x 10-12 1.11 Cl- 11 2.3 x 10-12 1.6 x 10-12 

20* 20* 9.9 K+ 21 4.2 x 10-12 2.9 x 10-12 1.37 Cl- 25 5.7 x 10-12 4.0 x 10-12 

30* 31* 15.2 K+ 44 6.0 x 10-12 4.2 x 10-12 1.06 Cl- 42 6.4 x 10-12 4.4 x 10-12 
Notes: 
* Includes biocide.  
Shaded = Results are questionable due to suspected bio-activity. 
S = degree of water saturation; n = porosity; t = thickness; θ = volumetric water content. 
Cot = influent solute concentration at the top boundary of the top HAE disk. 
Cave,Cl

- = average Cl- concentration in the specimen at steady-state diffusion. 
∆Qt/∆t = JD,ss = steady-state flux of solute determined from linear regression of steady-state data. 
D*

clay = effective diffusion coefficient of the clay specimen. 
De,clay = effective diffusion coefficient of the clay specimen = θD*

clay.
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Table 4.3. Comparison of diffusion coefficients for sodium-bentonite specimens calculated with 
through-diffusion analyses and Millington and Quirk (1961) model. 
 

Properties 
of Clay 

Specimen 

Cave 
(mM) 

Do,KCl 
(m2/s)a 

Through-diffusion Millington & Quirk 
(1961) D*

MQ/ 
D*

clay,Cl
- D*

clay,Cl
- 

(m2/s) 
De,clay,Cl

- 
(m2/s) 

D*
MQ 

(m2/s) 
De,MQ 
(m2/s) 

S = 1 
n = 0.87 
θ = 0.87 

9.0 1.93 x 10-9 1.8 x 10-10 1.5 x 10-10 1.9 x 10-9 1.6 x 10-9 10.5 

15 1.92 x 10-9 3.2 x 10-10 2.8 x 10-10 1.8 x 10-9 1.6 x 10-9 5.8 

25.0 1.90 x 10-9 4.1 x 10-10 3.6 x 10-10 1.8 x 10-9 1.6 x 10-9 4.4 

S = 0.89 
n = 0.89 
θ = 0.79 

10.5 1.93 x 10-9 1.8 x 10-10 1.5 x 10-10 1.4 x 10-9 1.1 x 10-9 7.6 

16.5 1.92 x 10-9 3.4 x 10-10 2.7 x 10-10 1.4 x 10-9 1.1 x 10-9 4.1 

25.6 1.90 x 10-9 3.4 x 10-10 2.7 x 10-10 1.4 x 10-9 1.1 x 10-9 4.1 

S = 0.84 
n = 0.88 
θ = 0.74 

9.7 1.93 x 10-9 1.7 x 10-10 1.3 x 10-10 1.2 x 10-9 9.1 x 10-10 7.3 

9.7 1.93 x 10-9 1.8 x 10-10 1.3 x 10-10 1.2 x 10-9 9.1 x 10-10 6.9 

16.5 1.92 x 10-9 3.0 x 10-10 2.2 x 10-10 1.2 x 10-9 9.1 x 10-10 4.0 

25.0 1.90 x 10-9 3.1 x 10-10 2.3 x 10-10 1.2 x 10-9 9.0 x 10-10 3.9 

S = 0.79 
n = 0.88 
θ = 0.70 

9.9 1.93 x 10-9 5.7 x 10-12 4.0 x 10-12 1.1 x 10-9 7.6 x 10-10 189 

15.2 1.92 x 10-9 6.4 x 10-12 4.4 x 10-12 1.1 x 10-9 7.5 x 10-10 169 

Notes: 
a See Appendix D.  
Shaded data in Table 4.2 has been omitted. 
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Figure 4.1. Measured void ratio as a function of effective stress during consolidation of bentonite 
paste: (a) bentonite specimens for diffusion and membrane behavior testing; (b) comparison with 
Olson and Mesri (1970) for homo-ionized clay specimens.   
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Figure 4.2. Matric suctions measured during preparation of unsaturated, sodium-bentonite 
specimens for diffusion and membrane behavior tests performed at constant degrees of 
saturation, S: (a) S = 0.89 (b) S = 0.84; (c) S = 0.79; (d) combined data from (a), (b), and (c).  
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Figure 4.3. Schematic of diffusion through the rigid-wall cell used to measure coupled diffusion 
and membrane behavior of unsaturated, bentonite specimens (JD = diffusive flux across the layer, 
∆Cclay = concentration difference across the clay specimen, Lclay = length of clay specimen).  
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Notes:
n = porosity of the layer
D* = effective diffusion coefficient of layer for solute
JD,ss = steady-state flux of solute across the layer (equal for all layers)
DCHAE = solute concentration difference across the HAE disk
DCclay = solute concentration difference across the specimen
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Figure 4.4. Schematic representations of (a) development of concentration profile across the test 
system with time, and (b) linear concentration profile and constant flux at steady-state diffusion 
conditions.    
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Figure 4.5. Schematic illustration of cumulative mass method for analysis of through-diffusion 
test data (adapted from Shackelford 2013).    
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Figure 4.6. Measured electrical conductivity of the top and bottom outflows during diffusion testing of sodium bentonite: (a) S  = 1.0; 
(b) S = 0.89; (c) S = 0.84; (d) S = 0.79. 
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Figure 4.7. Bottom outflow concentrations as a function of time: (a) S  = 1.0; (b) S = 0.89; (c) S = 0.84; (d) S = 0.79. 

166 



1

10

100

1000

0 28 56 84 112 140 168 196 224 252 280 308

Cl- K+ Na+ Ca2+

0 4 8 12 16 20 24 28 32 36 40 44

Fl
ux

, J
D
 (m

g/
(d

*m
2 ))

Time, t (days)

Time, t (weeks)

(a)

20 mM KCl 30 mM KCl 50 mM KCl 

 

1

10

100

1000

0 28 56 84 112 140 168 196 224 252

Cl- K+ Na+ Ca2+

0 4 8 12 16 20 24 28 32 36

Fl
ux

, J
D
 (m

g/
(d

*m
2 ))

Time, t (days)

Time, t (weeks)

(b)20 mM KCl 30 mM KCl

erratic

30 mM
KCl +

biocide

50 mM
KCl +

biocide

Na+ < 1

 

1

10

100

1000

0 28 56 84 112 140 168 196 224 252 280 308

Cl- K+ Na+ Ca2+

0 4 8 12 16 20 24 28 32 36 40 44

Fl
ux

, J
D
 (m

g/
(d

*m
2 ))

Time, t (days)

Time, t (weeks)

(c)

20 mM KCl

30 mM KCl
+ biocide

50 mM
KCl +

biocide

20 mM
+

biocide

 

1

10

100

1000

0 28 56 84 112 140 168 196 224 252 280 308

Cl- K+ Na+ Ca2+

0 4 8 12 16 20 24 28 32 36 40 44

Fl
ux

, J
D
 (m

g/
(d

*m
2 ))

Time, t (days)

Time, t (weeks)

20 mM KCl
30 mM
KCl +

biocide

20 mM
KCl +

biocide

Na+ < 1

(d)

erratic

 
 

Figure 4.8. Solute flux through the bottom boundary of Na-bentonite specimens: (a) S  = 1.0; (b) S = 0.89; (c) S = 0.84; (d) S = 0.79. 

167 



10-5

10-4

10-3

10-2

0 28 56 84 112 140 168 196 224 252 280 308

anions (Cl-, NO
3

-, NO
2
-, SO

4
-2, PO

4
3-)

cations (K+, Na+, Ca2+, Mg2+)

0 4 8 12 16 20 24 28 32 36 40 44

B
ot

to
m

 O
ut

flo
w

 C
ha

rg
e 

B
al

an
ce

: 
S(

m
ol

es
 x

 c
ha

rg
e 

eq
ui

va
le

nt
s/

m
ol

e)

Time, t (days)

Time, t (weeks)

(a)

20 mM KCl 30 mM KCl 50 mM KCl 

10-5

10-4

10-3

10-2

0 28 56 84 112 140 168 196 224 252

anions (Cl-, NO
3
-, NO

2
-, SO

4
-2, PO

4
3-)

cations (K+, Na+, Ca2+, Mg2+)

0 4 8 12 16 20 24 28 32 36

B
ot

to
m

 O
ut

flo
w

 C
ha

rg
e 

B
al

an
ce

: 
S(

m
ol

es
 x

 c
ha

rg
e 

eq
ui

va
le

nt
s/

m
ol

e)

Time, t (days)

Time, t (weeks)

(b)

20 mM KCl 30 mM KCl

erratic
30 mM
KCl +

biocide

50 mM
KCl +

biocide

10-5

10-4

10-3

10-2

0 28 56 84 112 140 168 196 224 252 280 308

anions (Cl-, NO
3
-, NO

2
-, SO

4
-2, PO

4
3-)

cations (K+, Na+, Ca2+, Mg2+)

0 4 8 12 16 20 24 28 32 36 40 44

B
ot

to
m

 O
ut

flo
w

 C
ha

rg
e 

B
al

an
ce

: 
S(

m
ol

es
 x

 c
ha

rg
e 

eq
ui

va
le

nt
s/

m
ol

e)

Time, t (days)

Time, t (weeks)

(c)

20 mM KCl

30 mM KCl
+ biocide

50 mM
KCl +

biocide

20 mM
+

biocide

10-5

10-4

10-3

10-2

0 28 56 84 112 140 168 196 224 252 280 308

anions (Cl-, NO
3
-, NO

2
-, SO

4
-2, PO

4
3-)

cations (K+, Na+, Ca2+, Mg2+)

0 4 8 12 16 20 24 28 32 36 40 44

B
ot

to
m

 O
ut

flo
w

 C
ha

rg
e 

B
al

an
ce

: 
S(

m
ol

es
 x

 c
ha

rg
e 

eq
ui

va
le

nt
s/

m
ol

e)

Time, t (days)

Time, t (weeks)

20 mM KCl
30 mM
KCl +

biocide

20 mM
KCl +

biocideerratic

(d)

 
Figure 4.9. Charge balance for bottom outflow for Na-bentonite specimens: (a) S  = 1.0; (b) S = 0.89; (c) S = 0.84; (d) S = 0.79.
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Figure 4.10. Diffusion results for multistage diffusion experiments on sodium-bentonite 
specimens.    
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Figure 4.11. Diffusion results for each concentration stage for sodium bentonite with S = 1.0.  
Trendlines shown are linear-regressions of data at steady-state diffusion.  
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Figure 4.12. Diffusion results for each concentration stage for sodium bentonite with S = 0.89.  
Trendlines shown are linear-regressions of data at steady-state diffusion.  
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Figure 4.13. Diffusion results for each concentration stage for sodium bentonite with S = 0.84.  
Trendlines shown are linear-regressions of data at steady-state diffusion.  
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Figure 4.14. Diffusion results for each concentration stage for sodium bentonite with S = 0.79.  
Trendlines shown are linear-regressions of data at steady-state diffusion.  
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Figure 4.15. Effective diffusion coefficients of sodium bentonite (D*

clay) versus average 
concentration in the specimen for: (a) S = 1.0; (b) S = 0.89; (c) S = 0.84; (d) S = 0.79.    
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Figure 4.16. Effective diffusion coefficients of sodium bentonite (De,clay) versus average 
concentration in the specimen: (a) S = 1.0; (b) S = 0.89; (c) S = 0.84; (d) S = 0.79.    
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Figure 4.17. Chloride effective diffusion coefficients (D*) for potassium chloride or sodium 
chloride source concentrations for saturated bentonite specimens.  All values of D* from the 
literature were determined using steady-state linear regressions.  
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Figure 4.18. Effective diffusion coefficients of sodium bentonite versus degree of saturation: (a) 
D*

clay for Cl-; (b) D*
clay for K+; (c) De,clay for Cl-; (d) De,clay for K+.   
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Figure 4.19. Effective diffusion coefficients of sodium bentonite versus volumetric water 
content: (a) D*

clay for Cl-; (b) D*
clay for K+; (c) De,clay for Cl-; (d) De,clay for K+.   
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Figure 4.20. Comparison with literature for effective diffusion coefficients for Cl- measured in 
clays versus degree of saturation.  Legend indicates type and concentration of salt solution used 
as the source solution for diffusion testing.  
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Figure 4.21.  Ratio of effective diffusion coefficients calculated with the model from Millington 
and Quirk (1961) (D*

MQ) to the values measured in the through-diffusion experiments (D*
clay). 

[Note: values of D*
clay are based on Cl- results]  
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Figure 4.22. Conceptual illustration of diffusion of dominant ionic species in Na-bentonite 
specimens (a) during circulation of de-ionized water (DIW) at both boundaries, and (b) during 
multistage, through-diffusion experiments with KCl circulated at the top boundary.  Times t1, t2, 
and t3 correspond to the end of the 20-mM, 30-mM, and 50-mM concentration stages, 
respectively.   
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Figure 4.23.  Ratio of chloride-to-potassium effective diffusion coefficients versus average KCl 
concentration for Na-bentonite: (a) results from this study; (b) comparison with other studies that 
used rigid-wall, through-diffusion experiments to measure diffusion in GCL-grade Na-bentonite.   
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 CHAPTER 5.  MEMBRANE BEHAVIOR OF UNSATURATED SODIUM BENTONITE 
 
 
 
5.1 Introduction  

Membrane behavior refers to the ability of a soil to selectively restrict the passage of 

dissolved chemical species (solutes) in pore water.  The electric fields associated with clay 

particles result in electrostatic repulsion of charged solutes, such that a phenomenon commonly 

referred to as anion exclusion occurs when particles are sufficiently close so as to cause these 

electric fields to overlap (Figure 5.1).  Exclusion of anions from passage through the pore space 

leads to similar restriction of the cations in the solution due to the electroneutrality requirement.  

Under such conditions, chemico-osmosis also may occur, whereby water flows from higher 

water activity (lower solute concentration) to lower water activity (Shackelford et al. 2003). 

Although the effects of membrane behavior and related processes have been documented 

historically by soil scientists and geologists (e.g., Kemper 1961; McKelvey and Milne 1962; 

Kemper and Massland 1964; Young and Low 1965; Kemper and Rollins 1966; Groenevelt and 

Bolt 1969; Olsen 1969, 1972; Letey et al. 1969; Bresler 1973; Kharaka and Berry 1973; Marine 

and Fritz 1981), significant advancement in the evaluation and quantification of the phenomenon 

has occurred within the past 15 years (Shackelford 2013).  In particular, the results of several 

studies have shown that membrane behavior can affect contaminant transport across bentonite-

based barriers commonly used for waste containment, such as geosynthetic clay liners (GCLs), 

soil-bentonite (SB) cutoff walls, and bentonite-amended compacted clay (e.g., Malusis et al. 

2001; Manassero and Dominijanni 2003; Evans et al. 2008; Kang and Shackelford 2010, 2011; 

Shackelford 2013; Tang et al. 2014, 2015).  Also, the occurrence of solute restriction and 

chemico-osmosis due to membrane behavior enhances the containment function of a clay barrier 
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(Shackelford 2013).  However, current design and evaluation of such barriers neglect membrane 

behavior, largely due to a lack of fundamental knowledge of the phenomenon.   

For significant membrane behavior or solute restriction to exist, the pore sizes in the clay 

must be sufficiently small to allow for interaction of the electric fields of adjacent clay particles.  

Generally, this requirement is achieved only in clays such as sodium bentonite (Na-bentonite) 

that contain highly active clay minerals, such as the smectites (e.g., montmorillonite).  

Membrane behavior also has been shown to increase with increasing dry density (decreasing 

void ratio), increasing effective stress, and increasing bentonite content of the clay (Shackelford 

et al. 2003; Shackelford 2013). 

Experimental research to date has focused on membrane behavior and diffusion almost 

exclusively under saturated conditions (i.e., degree of water saturation, S, of the specimen of 

100 %), partly due to the increased complexity of testing systems required for unsaturated 

conditions.  However, clay barriers may exist at various percentages of saturation in field 

applications, such as in landfill covers and engineered and natural barriers for high-level 

radioactive waste (HLRW) disposal (see Chapter 4). Based on our current, conceptual 

understanding of the phenomenon, membrane behavior under unsaturated conditions should be 

more significant than under saturated conditions (Sample-Lord and Shackelford 2014).  

As a result of the aforementioned considerations, a research program was undertaken to 

determine the extent and magnitude of membrane behavior of Na-bentonite under unsaturated 

conditions.  The purpose of the research was to: (1) advance our understanding of membrane 

behavior in clays; and (2) contribute to the knowledge base that must be established prior to 

incorporating membrane behavior effects in the design of barriers for waste containment 

facilities.  The results of this research program are presented, and the measured membrane 
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efficiencies are correlated with degree of saturation, as well as with the diffusion properties of 

the Na-bentonite previously described in Chapter 4.   

 

5.2 Background  

5.2.1  Anion exclusion and membrane behavior in saturated clays 

 Bentonite is highly plastic clay composed primarily of the clay minerals montmorillonite 

and beidellite, both of which are dioctahedral smectites (Grim 1968; Grim and Güven 1978; 

Deer et al. 1992).  The smectite structure consists of an octahedral sheet sandwiched between 

two silica sheets, referred to as a 2:1 layered alumino-silicate (Grim 1968; Grim and Güven 

1978).  Isomorphic substitution within the crystalline structure of montmorillonite during 

formation of the clay results in a net negative charge.  This charge deficiency is balanced by 

exchangeable cations within the interlayer regions of the crystalline structure, referred to as 

interlayer cations (Mitchell and Soga 2005), as well as on the external surfaces of individual clay 

particles.  The interlayer bonding within the 2:1 smectite mineral is weak, permitting interlayer 

separation.  The interlayer spacing (d001) can vary from 0.96 nm to more than 2 nm, based on 

hydration and the types of exchangeable cations that are present (Norrish 1954; van Olphen 

1963; Deer et al. 1992).   

Interlayer swelling within clay particles occurs due to both crystalline swelling and 

osmotic (double-layer) swelling (McBride 1994; Yong et al. 2010).  Crystalline swelling is 

attributed to initial hydration of dry clay due to penetration of water molecules (H2O) into the 

interlayer regions as a result of a gradient in matric suction (van Olphen 1963; Rao et al. 2013).  

For montmorillonite, crystalline swelling may increase the interlayer spacing from 

approximately 1 nm (for dry clay) to 2 nm (i.e., double the volume) (Norrish 1954).  Interlayer 
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swelling beyond 2 nm typically is associated with osmotic or double-layer swelling.  Osmotic 

swelling occurs due to repulsion between the electrical double layers of adjacent clay particles. 

When the liquid in the interlayer space consists of monovalent cations (e.g., K+, Na+) at a low 

ionic strength, significant osmotic swelling may occur, resulting in increased interlayer spacing 

(e.g., > 12 nm, Norrish 1954) and  thicker diffuse-double layers (DDLs), and decreased free (i.e., 

bulk) pore space between particles (Norrish 1954; Norrish and Quirk 1954; McBride 1994; 

Kolstad et al. 2004).  In contrast, when the interlayer liquid contains multivalent cations (e.g., 

Ca2+, Mg2+, Al3+) or is of high ionic strength, the osmotic swell is limited (e.g., interlayer spacing 

≤ 2 nm), resulting in increased bulk pore space between particles (Kolstad et al. 2004).   

The phenomenon of anion exclusion (membrane behavior) may be explained based on 

solute restriction occurring along two different pathways of transport: 1) through the interlayer 

space between individual clay particles, and 2) through the pore space between clods or 

assemblages of clay particles (Figures 5.1 and 5.2, respectively).  Anion exclusion in the 

interlayer space between adjacent clay particles is attributed to overlapping fields of negative 

electrical potential (Ψ) of the DDLs surrounding each clay particle, as shown in Figure 5.1.  The 

electrostatic double-layer thickness is represented by Zone 1 in Figure 5.1, while the bulk 

solution in the pore space is represented by Zone 2.  Anion repulsion occurs within Zone 1 due to 

negative Ψ, and the thickness of this region is controlled by osmotic swelling.  Thus, factors that 

would reduce osmotic swelling, such as an increase in ionic strength or the presence of 

multivalent cations, would decrease the degree of solute restriction in the pore space and the 

associated membrane behavior of the clay.   

Under conditions of high osmotic swell, the pathway for solute transport between clods 

(granules or assemblages) of clay particles becomes more tortuous such that a higher degree of 
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anion exclusion is expected.  As osmotic swell decreases, the pore space between the clods of 

clay particles increases such that solute transport through the clay is less restricted, resulting in a 

decrease in the membrane behavior of the clay (as shown in Figure 5.2a).  

Membrane behavior typically is quantified in terms of a membrane efficiency coefficient, 

ω, where values of  ω range from 0 for no membrane behavior to 1.0 representing 100 % solute 

restriction corresponding to a perfect membrane (Shackelford et al. 2003; Shackelford 2013).  

Most natural clays that exhibit membrane behavior are nonideal or imperfect, such that values of 

ω are between 0 and 1 because of the variation in pore sizes. The terms chemico-osmotic 

efficiency coefficient or reflection coefficient, represented by the symbol σ, also have been used 

to describe membrane efficiency in the literature.  However, the symbol ω was preferred in this 

study to represent membrane efficiency, since σ commonly is used to represent stress in the 

engineering literature (Shackelford 2013).   

Membrane behavior research is still at a fundamental level of study and, therefore, 

chemical solutions used in laboratory testing typically have been comprised of simple salt 

solutions (e.g., KCl, NaCl, CaCl2) versus, for example, the more complex chemical solutions 

commonly encountered in natural groundwaters (e.g., Tremosa et al. 2012) or in practical 

applications involving the use of clays for containment of contaminants (e.g., Fang and Evans 

1988; Ruhl and Daniel 1997; Kolstad et al. 2004; Bradshaw and Benson 2014; Chen et al. 2014).  

In bentonite-based materials, increased concentration of monovalent salt solutions (e.g., KCl, 

NaCl) generally correlates with decreased membrane behavior (e.g., Kemper and Rollins 1966; 

Kemper and Quirk 1972; Fritz and Marine 1983; Malusis et al. 2001; Shackelford et al. 2003; 

Kang and Shackelford 2009).  Multivalent salt solutions (e.g., CaCl2) have been shown to result 

in partial degradation or complete destruction of membrane behavior (e.g., Kemper and Rollins 
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1966; Shackelford and Lee 2003; Allred 2008), which is consistent with the osmotic swell 

mechanisms described previously. 

 

5.2.2  Membrane behavior under unsaturated conditions 

Based on our current conceptual understanding of the phenomenon, membrane behavior 

under unsaturated conditions should be more significant (Sample-Lord and Shackelford 2014).   

For example, for a specimen that is initially water saturated (S = 1), as shown in Figures 5.1a-b, a 

decrease in S would result in an initial reduction in the thickness of Zone 2 (Figures 5.1c-d).  For 

a bulk solution of given chemistry and ionic strength, the thickness of Zone 1 would remain 

constant as S decreases, provided that saturation remains sufficiently high to allow for full 

development of the double layer (James and Rubin 1986).  Thus, as a specimen becomes 

increasingly more unsaturated, the percentage of the liquid-filled pore space within which anion 

repulsion occurs (Zone 1/[Zone 1 + Zone 2]) increases (James and Rubin 1986; Allred 2007; 

Sample-Lord and Shackelford 2014), such that the effects of solute exclusion should be 

enhanced.  Consequently, the potential advantages of clays exhibiting membrane behavior (e.g., 

enhanced containment due to reduced diffusion and chemico-osmotic flow) are likely to be more 

significant when such clays exist under unsaturated conditions, i.e., since pores that are 

accessible for saturated solute migration (Figure 5.1a) would become less accessible (Figure 

5.1c).   

As S decreases, membrane behavior also is expected to increase with increasing matric 

suction, ψm (= Pair – uw, where Pair = pore-air pressure and uw = pore-water pressure).  As air 

enters the larger pores between the clay clods, the volumetric water content (θ) decreases and ψm 

increases, resulting in an increase in effective stress (Lu et al. 2010).  If volume change is 
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allowed to occur, the increase in effective stress (σ´) will lead to a decrease in the porosity (n) 

and, therefore, a decrease in the accessible pore width.  In previous experimental studies, 

membrane behavior of saturated bentonite has been shown to increase with decreasing n or 

increasing dry density, ρd, and increasing σ´ (Shackelford et al. 2003; Kang and Shackelford 

2011; Shackelford 2013). 

Although limited, some previous studies have focused on membrane behavior in 

unsaturated soils (e.g., Letey et al. 1969; Bresler 1973; Bresler and Laufer 1974; James and 

Rubin 1986; Allred 2007).  However, conclusions regarding the relationship between observed 

membrane behavior and degree of saturation have been mixed.  To the author's knowledge, there 

is no data available for membrane behavior of bentonite specimens maintained under unsaturated 

conditions.   

For example, Letey et al. (1969) performed transient and steady-state experiments on fine 

sandy loam and clay loam specimens.  The experiments were conducted as open-system tests, 

such that chemico-osmotic flow was allowed to occur through the specimen. In the transient 

experiments, the soil was placed in 49-mm-diameter and 5-mm-thick metal cylinders on top of 

ceramic plates (large high-air entry disks).  The soil then was soaked in NaCl solution (ranging 

in concentration from 10 mM to 110 mM) for several hours.  After soaking, the specimens were 

placed in a pressure plate and an air pressure ranging from 10 kPa to 1500 kPa was applied to 

bring the specimen to the desired θ and ψm.  The specimens then were removed from the 

cylinders, placed in contact with other specimens of different NaCl concentrations, and sealed 

together in a cell.  Water movement across the soil sections due to the osmotic pressure gradients 

caused by the concentration differences was determined by weighing the sections at the end of 

the test.   
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For the steady-state experiments, 10-mm-thick soil specimens (1.03 ≤ ρd ≤ 1.26 Mg/m3) 

were placed in a cylinder between two ceramic plates.  Calibration tests were performed to 

confirm that the ceramic plates did not exhibit membrane behavior and to measure the diffusion 

coefficients of the plates (although the values of the diffusion coefficients of the plates were not 

reported).  Air pressure was applied to the specimen through small holes in the cylinder wall.  

NaCl solutions were placed in the two compartments (reservoirs) adjacent to the outer 

boundaries of each ceramic plate.  The NaCl concentrations used in the study were 10, 30, 80, 

and 100 mM.  Water flow across the specimen due to the concentration gradient between the 

reservoirs (chemico-osmotic flow) was measured by reading capillary tubes attached to each 

reservoir.  After measuring the chemico-osmotic flow, a hydraulic pressure gradient was applied 

and the flow was measured again. The air pressure then was increased to decrease the saturation 

of the specimen and the procedure was repeated.  Although the concentration difference across 

the whole system (the soil specimen and two ceramic plates) was known, the concentration 

difference across only the soil specimen (∆C) initially was not known.   The diffusion results 

from the tests and the known diffusion coefficients of the plates were used to calculate ∆C, and 

the resulting theoretical osmotic pressure difference (∆π) across the soil.  However, Letey et al. 

(1969) concluded that the impedance to salt flow in the ceramic plates was negligible relative to 

the soil specimen and, therefore, ∆π  across the system was approximately equal to ∆π across the 

specimen.     

 The results of the steady-state and transient tests reported by Letey et al. (1969) for 

specimens of Ascalon sandy loam, Fort Collins loam, and Pine River clay loam indicated that ω 

generally increased as ψm increased (i.e., as S decreased).  However, the highest value of ψm for 

which ω could be measured was 66 kPa due to issues caused by air diffusion through the ceramic 
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plates.  The diffusion of air through the plates suggests that the air-entry pressure of the plates 

was quite low (e.g., ≤ 60 kPa), which may explain why the diffusion coefficient of the plate was 

high enough that ∆π across the plate could be assumed negligible.  The reported values of ω 

were low, ranging from 0.006 to 0.157, with the maximum ω occurring at the highest ψm (66 

kPa) for the Fort Collins loam. 

Unsaturated column experiments also have been performed to evaluate anion exclusion 

effects by measuring the effective percentage of pore water unavailable for transport of anions 

(e.g., Bresler 1973; James and Rubin 1986; Allred 2007).  For example, Bresler (1973) evaluated 

anion exclusion in a loam soil (48 % sand, 20 % clay) using column tests conducted under 

conditions of infiltration and evaporation.  The air-dried soil was packed in a 0.45-m-long 

column at a ρd of 1.4 Mg/m3.  The columns were infiltrated with a solution of 10 mN CaCl2 and 

then divided into sections ranging in thickness from 10 mm to 20 mm to measure salt 

concentration, water content, and bulk (dry) density.  Some of the columns were sealed after the 

infiltration stage, maintained sealed and undisturbed for four days, and then uncovered and 

exposed to a fan for 10 days to induce evaporation.  For all of the tests, Bresler (1973) 

determined that, for the loam soil and the test conditions that were evaluated, the effects of anion 

exclusion on the transport of Cl- were not significant.  Although the loam was reported to consist 

of 20 % clay, most of which was montmorillonite, the reported CEC of the soil was only 14 

meq/100 g, and 93 % of the exchange complex was occupied by Ca2+.  Based on the CEC and 

the presence of primarily divalent cations on the exchange complex, the interlayer swell was 

likely low (relative to a Na-bentonite), resulting in insignificant membrane behavior (see Section 

5.2.1).    
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James and Rubin (1986) performed vertical, constant-flow column tests on saturated and 

unsaturated samples of Dehli sand (90 % sand, 7 % silt and 3 % clay) to evaluate anion exclusion 

effects on Cl- transport.  The unsaturated samples were packed into 0.485-m-long columns at a 

ρd of 1.6 Mg/m3.  A syringe pump was used to deliver CaCl2 solutions to the column inlet at a 

constant flow rate.  Suction was applied to the outlet end of the column to maintain a lower water 

content at the bottom of the column.  At the end of the test, the column was sliced into sections 

ranging in thickness from 11.4 mm to 22.8 mm to determine the θ and Cl- concentration profiles 

with depth.   The value of θ in the soil columns was relatively constant with depth in the upper 

0.4 m of the column, and ranged from 0.17 to 0.22 (S = 0.41 to 0.55, respectively) for the four 

unsaturated tests.  The volumetric water content within which Cl- was excluded (θex) was 

compared with the total θ of the column.  The relationship between anion exclusion as 

represented by the ratio of θex/θ (or as shown in Figure 5.1, Zone 1/(Zone 1 + Zone 2)) and the θ 

(or S) of the soil was inconsistent.  At saturated conditions, the value of θex/θ was 0.05.  As S of 

the columns decreased to values of 0.55 and 0.46, the value of θex/θ increased to 0.09 and 0.12, 

respectively, as expected.  However, for the column with the lowest value of S of 0.41, the value 

of θex/θ was 0.09, which was inconsistent with the rest of the data where θex/θ increased as S 

decreased.  These inconsistencies in the results may be due to the relatively narrow range of S 

evaluated for the unsaturated columns (0.41 to 0.55) and the measurement error associated with 

the θex values (± 0.004 to 0.008, or 2 % to 4 % of the reported θex values). 

Allred (2007) performed transient column experiments on unsaturated soils to evaluate 

the effect of clay mineralogy on anion exclusion of nitrate (NO3
-).  The soils included quartz 

sand, two natural loam soils, and mixtures of sand and kaolinite, illite, and montmorillonite.  The 

soils were prepared in the columns at values of ρd ranging from 1.6 to 1.9 Mg/m3 and total 
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lengths of 0.12 m to 0.26 m.  Anion exclusion effects were evaluated in terms of the ratio of the 

volumetric water content at the column inlet where NO3
- was excluded (θex) to the total θ at the 

column inlet, or θex/θ.  Since the soil at the column inlet was saturated, the ratio θex/θ was 

equivalent to nex/n, where nex is the porosity of the excluded volume of liquid in the pores. The 

values of θex/θ were determined by comparing the measured concentration of NO3
- near the 

column inlet with the concentration of the solution initially injected in the column.  As the 

wetting front advanced through the column, saturated conditions were maintained at the inlet 

boundary, but the water content of the rest of the column was not controlled.  Based on the ratio 

of θex/θ calculated for the inlet boundary, anion exclusion of NO3
- was most prevalent (θex/θ = 

0.20) in the soil mixture with the highest percentage of montmorrillonite (25 % by dry mass).  

Although anion exclusion occurred under unsaturated conditions in the column as the wetting 

front advanced during testing, the value of θex/θ was only quantified at the saturated inlet 

boundary.   

   

5.3 Materials and methods 

5.3.1  Materials and specimen preparation 

 The materials used in the study, including the bentonite, and the specimen preparation 

procedures are described in detail in Chapter 4 (Section 4.3).  Physical and mineralogical 

properties of the bentonite, before and after dialysis treatment, are provided in Chapter 3 (Table 

3.2).  The liquids used in this study included de-ionized water (DIW) (pH = 7.35, electrical 

conductivity, EC = 0.06 mS/m) and solutions of DIW with potassium chloride (KCl) (certified 

A.C.S.; Fisher Scientific, Fair Lawn, NJ) with target concentrations of 20 mM to 50 mM KCl.  
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The actual measured concentrations of the KCl solutions ranged from 19 mM to 51 mM KCl 

(i.e., the same solutions used in the diffusion tests as described in Chapter 4).   

 

5.3.2  Test procedure  

Membrane behavior of the bentonite specimens was measured with the testing apparatus 

described in detail in Chapter 2.  The bentonite specimens were confined between two high air-

entry (HAE) disks in a rigid-wall cell with a flexible membrane between the specimen perimeter 

and the sidewall of the rigid cell.  Both 3-bar and 5-bar HAE disks were used to accommodate 

specimens with suctions up to 300 kPa and 500 kPa, respectively.  Chemical (electrolyte) 

solutions and DIW were circulated across the top and bottom boundaries of the test cell, 

respectively, at a constant rate with syringe pumps.  Each circulation system (top and bottom) 

represents a closed loop, such that the amount of liquid contained in each circulation system 

remained constant (e.g., see Malusis et al. 2001). As a result, there was no volume change during 

circulation of the solutions (i.e., the system was closed), such that liquid flow through the 

specimen during this stage could not occur despite the difference in concentrations at each 

boundary. Therefore, the testing apparatus used in this study was unlike the previously noted 

studies involving evaluation of unsaturated membrane behavior using open systems (see Chapter 

2 for details).  If the specimen behaved as a semipermeable membrane, then a chemico-osmotic 

pressure difference (∆P) developed across the length of the specimen (L) due to the applied 

concentration difference (∆C).  The ∆P across the specimen was measured via differential 

pressure transducers (Omega Engineering Inc., Models PX26 and PX209, Stamford, CT), as 

described in Chapter 2.   Calibration tests performed on the HAE disks confirmed that the disks 
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did not exhibit any measurable membrane behavior (i.e., ∆P = 0) and, therefore, did not affect 

the ∆P measurements (see Chapter 2).  

 In order to maintain positive pore-water pressures, u, under unsaturated conditions and 

avoid potential cavitation during testing of specimens at low S (high suction), a constant air 

pressure (Pair) greater than the matric suction of the specimen was applied during testing via an 

opening in the rigid cell (see Chapter 2 for details).  The suctions at the top and bottom 

boundaries of the specimen (ψT,top and ψT,bottom, respectively) were monitored with differential 

pressure transducers (same models as previously noted) as the difference between Pair  and the 

water pressures at the top and bottom boundaries (utop and ubottom, respectively).      

The testing was performed in stages, where the first stage consisted of circulating DIW 

across both top and bottom boundaries to establish the baseline value of ∆P.  Once steady 

baseline pressures were established, the DIW at the top boundary was switched to an electrolyte 

solution (KCl), inducing a buildup of ∆P.  After both steady-state ∆P and steady-state diffusion 

conditions (see Chapter 4) were established, the ∆C was increased via circulation of solution 

with a higher source concentration (Co) at the top boundary, beginning a new stage of the same 

test.   For the tests in this study, KCl was used as the solution for the top boundary to allow for 

comparison with previously published data.  The target concentrations of KCl corresponding to 

the different stages of the multistage experiments were 20 mM, 30 mM and 50 mM KCl, as 

summarized in Table 5.1.   

At the end of the circulation stage with DIW, and prior to circulation with electrolyte 

solutions, a constant-flow hydraulic conductivity (k) test could be performed utilizing the flow 

pump, if desired (see Chapter 2 for details).  During the k testing stage, one syringe on the flow 

pump forced freshly de-aired, DIW through the specimen and HAE disks at a constant-flow rate, 
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q. The specimen was permeated from the bottom upward and the pressure difference across the 

specimen, ∆u (=utop - ubottom), was measured with the same pressure transducers used to measure 

∆P during the membrane test. The ∆u due to the difference in elevation head between the top and 

bottom boundaries of the specimen was considered negligible (≤ 0.08 kPa). Once a steady value 

of ∆u was achieved, k was calculated based on Darcy’s law, as described in Chapter 2. Due to 

time constraints, the k test was performed only for the saturated specimen (S = 1).  The time that 

would be required for ψm and θ to return to equilibrium conditions throughout the unsaturated 

specimens after the k test were unknown, such that this optional step was not undertaken to 

minimize the total  test durations for the unsaturated specimens.   

  

5.3.3  Measurement of membrane efficiency 

 Under closed-system conditions, ω is calculated using the following (Groenevelt and 

Elrick 1976; Malusis et al. 2001): 

 

 P∆
ω =

∆π
  (4.1) 

 

where ∆π is the theoretical, maximum chemico-osmotic pressure difference across an ideal 

semipermeable membrane (i.e., ω = 1.0) associated with an applied concentration difference 

across the specimen (∆C), which can be calculated based on the van't Hoff expression, as follows 

(Barbour and Fredlund 1989):  

 

   RT Cπ ν∆ = ∆   (4.2) 
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where ν is the number of ions from one molecule of salt (e.g., ν = 2 for KCl), R is the universal 

gas constant (8.314 J mol-1K-1), and T is the absolute temperature in Kelvin.  Values of π for a 

range of concentrations for different salt solutions (e.g., KCl, NaCl) are tabulated in Appendix E. 

 To evaluate the membrane efficiency of the clay specimen, the value of ∆C across just 

the clay (∆Cclay) must be used in Equation 4.2.  However, ∆Cclay cannot be directly controlled or 

measured, due to the presence of  HAE disks along the top and bottom boundaries of the 

specimen to maintain a constant value of θ of the clay during circulation of the solutions.  

Therefore, the steady-state values of ∆Cclay were determined via diffusion modeling as described 

in detail in Chapter 4, and the results are summarized in Table 5.2.   

One challenge encountered in this study was that, even with the use of high source 

concentrations at the top boundary (e.g., 50 mM KCl), application of a large ∆Cclay (e.g., > 20 

mM) was difficult in the unsaturated test apparatus, due to the presence of the HAE disks.  The 

HAE disks have low diffusion coefficients (e.g., 1.6 x 10-10 m2/s) and, therefore, a significant 

portion of the applied concentration difference across the test system occurred within the two 

HAE disks (i.e., 2 x ∆CHAE > ∆Cclay).  This issue was exacerbated as the source concentration 

was increased, since the diffusion coefficients of the clay increased with increasing average pore-

water concentration (Cave) due to DDL suppression (see Chapter 4), whereas the diffusion 

coefficients of the HAE disks remained constant with increasing Cave.  However, the membrane 

efficiency of the clay could still be evaluated over a wide range of Cave, which directly affects 

membrane behavior as described previously. 
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5.3.4 Experimental program 

The experimental program to evaluate membrane behavior of unsaturated Na-bentonite 

specimens consisted of four multistage experiments (see Tables 5.1 and 5.2).  The only 

difference between the experimental program for the membrane testing and the diffusion testing 

described in Chapter 4 was that, for the specimen with S of 0.79, the concentration stage with a 

source solution of 30 mM KCl was not completed successfully for the membrane testing.  At the 

start of the 30-mM stage in the multistage test for S of 0.79, the flexible membrane lost contact 

with the sidewall of the specimen after an adjustment in the air-pressure line.  A portion of the 

thin space between the flexible membrane (which was confined by the outer rigid wall) and the 

perimeter of the specimen was filled with pressurized air, which made accurate measurement of 

∆P across the specimen impossible.  The diffusion results were still measurable, as diffusion 

only occurred through the pore water within the specimen.  Thus, membrane behavior was 

quantified only for one concentration stage (20 mM KCl) for the specimen at S of 0.79.    

 

5.4 Results 

5.4.1 Boundary water pressures and total suction  

The boundary water pressures measured at the top, utop, and bottom, ubottom, of the 

specimen during each multistage test are presented in Figure 5.3. The magnitudes of utop and 

ubottom were approximately equal (i.e., utop ≈ ubottom) for all of the tests at the end of the initial test 

stage, when DIW was circulated across both the top and bottom specimen boundaries to establish 

the baseline pressure difference across the specimen (i.e., initial ΔP, or ΔPo).  Therefore, ΔPo 

was negligible for all of the tests.  To avoid potential cavitation in the water pressure lines of the 

unsaturated tests due to negative values of utop and ubottom, a value of Pair equal to the ψm of the 
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specimen determined during specimen preparation (see Chapter 4) was applied to the specimen 

throughout the duration of the multistage tests via a port in the sidewall (see Chapter 2). 

For the saturated specimen only, two constant-flow k tests were performed at the end of 

the DIW stage.  The first test was performed at a q of 1.13 x 10-10 m3/s, which resulted in values 

of ubottom that exceeded the limits of the pressure transducers.  The k test was terminated (i.e., the 

flow pump was shut off), and the boundary pressures were allowed to dissipate before beginning 

a second k test at a lower value of q.  The second k test was performed at a q of 4.80 x 10-11 m3/s 

and steady values of utop and ubottom were achieved without exceeding the limits of the pressure 

transducers.  All of the pressure data for both k tests are provided in Appendix E.  Based on the 

results of the calibration testing (see Chapter 2), the measured value of ∆u (=utop - ubottom) was 

corrected for the portion of ∆u that was expected to occur across the HAE disks at the q used in 

the test.  The value of k was calculated based on Darcy's law and the ∆u that occurred across the 

clay specimen only, as described in Chapter 2. The k of the saturated, Na-bentonite specimen 

after the DIW circulation stage was 4.1 x 10-12 m/s.  Due to time constraints, the constant-flow k 

test was performed only for the saturated specimen, and not for the unsaturated specimens, for 

reasons described previously.     

At the start of circulation of the 20 mM KCl solution across the top boundary, the 

magnitude of utop increased in all of the tests and became greater than ubottom, such that the 

chemico-osmotic pressure difference across the specimen increased.  The change in ubottom at the 

start of circulation of KCl solution was inconsistent among the tests (although ubottom was always 

< utop).   For example, for the test with the saturated specimen (S = 1.0), the magnitude of ubottom 

did not increase relative to the values measured during circulation of DIW, and remained at a 

value of approximately zero throughout the test.  In contrast, for the tests with S of 0.89 and S of 
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0.79, the values of ubottom increased relative to those measured during the DIW stage, whereas for 

the test with the S of 0.84, the value of ubottom decreased to negative values (ubottom < 0).  This 

inconsistency in the trends of measured values of ubottom during closed-system, multistage 

membrane testing has been reported previously in the literature (e.g., Kang 2008; Bohnhoff 

2012).   

For example, Kang (2008) performed flexible-wall membrane tests on GCL specimens.  

For the tests performed at σ' of 34 kPa (5 psi) and 241 kPa (35 psi), the value of ubottom generally 

increased above the applied back pressure of 172 kPa (25 psi), whereas for the tests performed at 

σ' of 103 kPa (15 psi) and 172 kPa (25 psi), the values of ubottom generally decreased below the 

back pressure. 

The total suctions at the top and bottom boundaries, or ψT,top and ψT,bottom, respectively, 

which are defined as the difference between the supplied air pressure and the boundary water 

pressures (i.e., ψT = Pair – u), are shown in Figure 5.4.  Since the value of Pair was constant 

throughout the test, changes in the value of ψT,top and ψT,bottom were due to changes in utop and 

ubottom, respectively.  At the start of circulation of KCl solution across the top boundary, the 

values of ψT,top decreased below the value of ψT,bottom for all of the tests, due to the increase in utop 

caused by the membrane behavior of the specimen.   

The measured values of ψT,top and ψT,bottom included both matric and osmotic suction 

components. The HAE disks maintained the specimens at a constant value of θ and, therefore, 

ψm was assumed to remain constant throughout the test.  Thus, changes in the values of ψT,top and 

ψT,bottom throughout the tests were attributed to changes in the osmotic suction due to membrane 

behavior (ψπ), which were equal to the changes in utop and ubottom described previously.      
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5.4.2 Chemico-osmotic pressures 

As previously described, when a specimen behaves as a semipermeable membrane in a 

closed-system testing apparatus, a chemico-osmotic pressure will develop at the top boundary 

causing an increase in utop.  In the membrane behavior literature, the positive x-direction 

typically is assumed downward from the top of the specimen (e.g., Kang and Shackelford 2009), 

such that calculation of the chemico-osmotic pressure difference across the clay, ∆P (= ubottom – 

utop) results in a negative value (i.e., ∆P < 0, because ubottom < utop).  Thus, values of -∆P (= utop – 

ubottom) typically are provided in the literature to allow for easier discussion.  The values of -∆P 

measured for each of the multistage tests are shown in Figure 5.5. 

The steady-state values of -∆P, or -∆Pss, for each test stage were determined based on the 

steady values measured at the end of consecutive, two-day circulation cycles, as demonstrated in 

the example in Figure 5.6.  The resulting values of -∆Pss measured for each test stage are 

summarized in Table 5.2.  The values of -∆Pss for the test with S of 1.0 decreased from 7.2 kPa 

to 4.6 kPa as the source KCl concentration at the top boundary (Cot) was increased from 20 mM 

to 50 mM KCl (see Figure 5.5a).  A similar trend was observed in the test with S of 0.89, where -

∆Pss decreased from 8.3 kPa to 6.9 kPa as Cot increased from 20 mM to 50 mM.  The decrease in 

the measured value of -∆Pss with increasing Cot was due to decreasing ω resulting from 

compression of the diffuse double layers with increasing Cave due to diffusion of KCl from the 

upper boundary (Fritz 1986; Shackelford et al. 2003).  The decreasing values of -∆Pss with 

increasing salt concentration are consistent with trends previously reported by others for closed-

system membrane tests (e.g., Malusis and Shackelford 2002a; Bohnhoff 2012). The values of -

∆Pss measured in the unsaturated tests were higher than those measured in the saturated test.  The 
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values of -∆Pss were 8.3 kPa to 6.9 kPa, 13.7 kPa to 21.1 kPa, and 62.1 kPa, for the tests with S 

of 0.89, 0.84 and 0.79, respectively.    

 

5.4.3 Membrane efficiency coefficients 

The values of ω for all of the membrane tests are summarized in Table 5.2 and shown as 

a function of Cave in Figure 5.7.  The values of ω ranged from 0.31 to 0.61, 0.34 to 0.66, 0.41 to 

0.71, and 0.68 to 0.75 for the tests with S values of 1.0, 0.89, 0.84 and 0.79, respectively.   These 

values of ω are comparable to those reported in the literature for Na-bentonites.  For example, 

Malusis and Shackelford (2002a) used a closed-system, membrane testing apparatus to measure 

the membrane behavior of a GCL comprised of Na-bentonite exposed to KCl solutions.  For the 

GCL specimen with n of 0.86, which was similar to the specimens in this study with n = 0.87 to 

0.89, the values of ω ranged from 0.08 to 0.42 for Cave of 23.5 mM to 4.4 mM KCl, respectively. 

Other comparisons with values of ω reported in the literature are discussed further throughout 

Section 5.5.  

  

5.5 Discussion 

5.5.1 Effect of average pore-water concentration 

 The effects of pore-water chemistry on the swelling behavior of clays dominated by 

montmorillonite are well documented in the soil science literature (e.g., Norrish 1954; Norrish 

and Quirk 1954; van Olphen 1963; Malik et al. 1992; Prost et al. 1998). As the ionic strength of 

the pore water increases, the interlayer swell of montmorillonite decreases, resulting in an 

increase in the zone of bulk (free) pore water within the interlayer space (i.e., Zone 2 in Figure 

5.1) as well as between the clods of clay (Figure 5.2).  For example, Norrish and Quirk (1954) 
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performed x-ray diffraction measurements on Na-montmorillonite immersed in solutions of 

NaCl.  The value of d001 decreased from 4.0 nm to 1.5 nm as the concentration of the NaCl 

solution increased from 0.3 M to 4.0 M.  Thus, as the zone of bulk pore water increases with 

increasing salt concentration due to suppression of the diffuse double layers and reduced swell of 

the clay, the restriction of solutes is expected to decrease, leading to decreased values of ω.     

For all of the tests conducted in this study, the values of ω decreased with increasing Cave, 

as expected (see Figure 5.6).  This trend is consistent with other trends reported in the published 

literature on membrane behavior of clays exposed to salt solutions of KCl, NaCl, and CaCl2 

(Kemper and Rollins 1966; Malusis and Shackelford 2002a; Kang and Shackelford 2009; Di 

Emidio 2010; Dominijanni et al. 2013; Bohnhoff et al. 2014; Malusis et al. 2014; Meier et al. 

2014).  Previous studies have shown an approximately semi-log linear relationship between ω 

and Cave (Shackelford et al. 2003).  The actual trend between ω versus logarithm of Cave likely 

becomes non semi-log linear as Cave approaches the limiting concentrations (i.e., the 

concentrations at which ω  0 and ω  1, see Figure 5.8) (Sherwood and Craster 2000; 

Shackelford et al. 2003; Revil et al. 2011; Dominijanni et al. 2013; Manassero et al. 2014; Meier 

et al. 2014).  However, the relationship between ω and log Cave may be considered approximately 

semi-log linear for the concentration range evaluated in this research (Cave = 9 mM to 25 mM 

KCl), as indicated by the high values of r2 for the regressions shown in Figure 5.9 (r2 = 0.97 to 

1.0). 

The aforementioned semi-log linear relationship is shown schematically in Figure 5.8, 

where the rate of decrease in ω with increasing Cave (i.e., the slope of the semi-log linear trend 

line) is referred to as the membrane index, Iω (Shackelford et al. 2003).  The semi-log linear 

trend line also may be used to identify two limiting values of Cave (Shackelford et al. 2003): (1) 
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the threshold concentration, Cave,ω, which is the concentration below which membrane behavior 

occurs (i.e., ω > 0 for Cave < Cave,ω); and (2) the perfect membrane concentration, Cave,pm, which 

is the concentration below which the material behaves as a perfect membrane (i.e., ω = 1 for Cave 

< Cave,pm).  Finally, a reference membrane efficiency, ωref, also can be determined with the semi-

log linear regression as the value of ω when log Cave = 0 (see Figure 5.8).    The resulting values 

of Iω, Cave,ω, Cave,pm, and ωref obtained from the semi-log linear regressions are summarized in 

Table 5.3.   

The semi-log linear regressions of the data for the saturated and unsaturated Na-bentonite 

specimens, excluding the test with S of 0.79 due to aforementioned inadequate data to perform a 

regression, are shown in Figure 5.9a.  The values of Cave,pm were relatively similar among the 

tests, ranging only from 2.5 mM to 3.7 mM KCl.  The values of Iω also were relatively 

insensitive to S, ranging only from 0.70 to 0.72, with no identifiable trend between the values of 

S and Iω.  However, the values of Cave,ω increased as S of the specimen decreased, indicating a 

higher threshold concentration for destruction of membrane behavior for the unsaturated 

specimens.  As S decreased from 1.0 to 0.84, Cave,ω increased from 63 mM to 91 mM KCl.  Thus, 

a 16 % decrease in S resulted in a 43 % increase in Cave,ω.  This trend suggests that, relative to 

saturated conditions, membrane behavior of bentonite may remain relevant over a wider range of 

salt concentrations under unsaturated conditions.    

As discussed previously, the actual trend between ω versus logarithm of Cave likely 

becomes nonlinear as Cave approaches the limiting concentrations (i.e., Cave,ω and Cave,pm).  For 

comparison with the semi-log linear regression, the data for the specimen with S of 1.0 is shown 

against the nonlinear theoretical model proposed by Revil et al. (2011) for saturated clays 

(Figure 5.9b).  The Revil et al. (2011) model is based on n, cation exchange capacity (CEC), and 
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the density of the soil particles (ρs) in the specimen.  As shown in Figure 5.9b, the values of Cave 

evaluated in this research were not near the limiting concentration values, and fell within the 

approximately semi-log linear portion of the nonlinear model (resulting in the aforementioned 

high r2 values for the semi-log linear fit).  However, a comparison between the semi-log linear 

and nonlinear trend lines for the saturated specimen suggests that the semi-log linear fit results in 

conservative estimates of Cave,ω (i.e., lower than the actual value of Cave that results in complete 

destruction of membrane behavior) and unconservative estimates of Cave,pm (i.e., higher than the 

actual Cave at which the clay would continue to behave as a perfect membrane).  Further 

evaluation of the appropriateness of the semi-log linear versus nonlinear trendline fit is beyond 

the scope of this study.  

The results from this study are compared in Figure 5.10 with those from previous 

experimental studies involving Na-bentonites.  All of the data shown in Figure 5.10 are for 

saturated Na-bentonite specimens that were part of a GCL or were prepared at a high porosity 

similar to that of a GCL (e.g., n = 0.7 to 0.9).   As shown in Figure 5.10, the rates of decrease in 

ω with increasing Cave (i.e., Iω) appear relatively similar up to a Cave of approximately 25 mM 

KCl or NaCl among all of the data sets.   The likely reasons for the differences in the magnitude 

of the ω values measured in this research relative to the other studies are discussed further in the 

following section. 

 

5.5.2 Effect of exchangeable sodium 

When monovalent cations occupy the exchange sites of a bentonite, the interlayer 

swelling is greater relative to when multivalent cations occupy the exchange complex (Norrish 

1954; van Olphen 1966; Lambe and Whitman 1969; Kolstad et al. 2004).  For example, in 
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calcium montmorillonite, the interlayer spacing, d001, does not exceed 2 nm (Norrish and Quirk 

1954).  The d001 of Na-montmorillonite, however, may exceed 12 nm (Norrish 1954).  Increased 

interlayer spacing results in a larger fraction of the total water bound to the clay and less bulk 

(free) pore space available for flow, and consequently, increased solute restriction (i.e., increased 

ω).   

Typically, the bentonites used in GCLs have approximately equal fractions of Ca2+ and 

Na+ on the exchange complex after manufacture of the GCL (Shackelford et al. 2000).  

Therefore, the bentonite in a typical GCL is expected to exhibit less swell and lower ω than a 

Na-bentonite that has a higher percentage (e.g., > 60 %) of the exchange complex occupied by 

Na+.  As shown in Figure 5.10, relative to other studies that evaluated membrane behavior of 

GCLs and GCL-grade bentonite (Malusis and Shackelford 2002a; Dominijanni et al. 2013; 

Malusis et al. 2014; Meier et al. 2014), the highest values of ω were reported by Kemper and 

Rollins (1966) and in this study.  For example, for Cave between 9 mM and 10 mM, Dominijanni 

et al. (2013) reported an ω value of 0.33 for an Na-bentonite specimen with n of 0.81, whereas a 

higher ω value of 0.61 was measured for the saturated specimen in this study (despite the higher 

n of 0.87).    

For all of the studies referenced in Figure 5.10, methods to reduce excess soluble salts in 

the bentonite (flushing via permeation, "squeezing" via consolidation, or dialysis with water) 

prior to testing were employed for the purpose of enhancing any observed membrane behavior.  

However, bentonite specimens in the study by Kemper and Rollins (1966) and in this study also 

were treated via dialysis to increase the percentage of Na+ on the exchange complex. Thus, the 

higher values of ω reported herein and by Kemper and Rolllins (1966) can be attributed, in part, 

to a likely greater percentage of Na+ on the exchange complex relative to the bentonites in the 
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other studies.  Increases in the exchangeable sodium percentage (ESP) of a clay have been shown 

to result in decreased volume of pore space accessible to anions, i.e., increased ω (Dufey and 

Laudelout 1976). 

For example, the bentonite in the GCL tested by Malusis and Shackelford (2002a), which 

was the same GCL used by Malusis et al. (2014) and Meier et al. (2014), had an ESP of 53 %.   

The ESP of the bentonite used in this study, after dialysis treatment with 0.1 M NaCl, was 70 % 

(see Chapter 3).  Although the bentonite ESP was not reported in Kemper and Rollins (1966), the 

bentonite had been washed repeatedly with a strong (1 M) NaCl solution, such that the exchange 

complex was assumed to be saturated with Na+ (i.e., ESP ≈ 100 %).  Thus, as expected, the value 

of ω increases as the prevalence of Na+ on the exchange complex of the bentonite increases, i.e., 

all other factors (e.g., S, n) being the same. 

 

5.5.3 Effect of saturation and volumetric water content 

The values of ω are plotted as a function of S and θ in Figures 5.11a and b, respectively.  

For all values of Cot, ω increased as S and θ decreased, as expected based on the concepts 

illustrated in Figures 5.1 and 5.2.  The effect of S on the value of ω may be discussed in terms of 

the ratio of the ω measured in the unsaturated specimen relative to the value of ω measured in 

the saturated specimen (ωsat) for the same Cot.  This ratio, Ω (= ω/ωsat), ranged from 1.08 to 1.34 

for the unsaturated tests (see Table 5.2).  Values of Ω also are shown in Figure 5.12 as a function 

of Cot.  As Cot increased and S decreased, the value of Ω increased.  For example, as Cot increased 

from 20 mM to 50 mM, the value of Ω for the specimen with S of 0.84 increased from 1.11 to 

1.34. 
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The statistical significance of the effects of S and Cot on values of ω were analyzed in 

Microsoft Excel (2010, Microsoft Office, Redmond, WA) using a two-way analysis of variance 

(ANOVA) without replication.  A two-way ANOVA analysis can be used to evaluate the 

relationship between a dependent variable (e.g., ω) and two independent variables (in this case, S 

and Cot).  To perform the two-way ANOVA, the data sets must be of equal size, and, therefore, 

the partial data set from the test with S of 0.79, which consisted of only one concentration stage, 

was not included.  The results of the analysis indicated that, at a 95 %-confidence level (i.e., p-

value < 0.05), there was a significant difference in membrane behavior due to changes in S (p-

value = 7.5 x 10-6, F = 230 > Fcritical = 7.0).  Also, as expected, there was a significant effect of 

the concentration stage on the value of ω (p-value = 1.03 x 10-6, F = 1966 > Fcritical = 7.0).  Thus, 

the results of the study indicate there is a statistically significant increase in membrane efficiency 

with decreases in S, even at the high values of S evaluated in this study (≥ 0.84).    

The contour plot in Figure 5.13 depicts the combined effects of changes in S and Cot on 

the value of ω.  Conceptual diagrams of the expected influence of both S and Cot on membrane 

behavior are shown in Figure 5.14.  As expected, the highest value of ω was measured under the 

condition with the lowest values of both S and Cot (ω = 0.75 for S = 0.79 and Cot = 9.9 mM), 

whereas the lowest value of ω (= 0.31) was measured for the specimen with the highest S (= 1.0) 

at the highest value of Cot (= 50 mM) during the test.  Therefore, the results obtained in this study 

support the conceptual explanations shown in Figures 5.1, 5.2 and 5.14. 

 

5.5.4 Effect of membrane behavior on solute diffusion 

The concentration gradient imposed across the specimen during the membrane behavior 

testing resulted in solute diffusion across the specimen from the higher concentration boundary 
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to the lower concentration boundary.  Diffusion analyses were performed for each concentration 

stage of the tests to determine the effective diffusion coefficients, D*, for Cl- and K+ (D*
Cl

- and 

D*
K

+, respectively) for the bentonite.  The analysis method, which was based on the traditional 

through-diffusion method (Shackelford 1991), and all of the diffusion results are discussed in 

detail in Chapter 4.   

The values of D*
Cl

- measured for each stage of the multistage tests are provided in Table 

5.4 and plotted against values of ω and the complement of ω (1 - ω) in Figures 5.15a and b, 

respectively.  As membrane behavior trends toward that of a perfect membrane (i.e., ω → 1), 

transport of Cl- becomes increasingly more restricted due to the increased anion exclusion.  Thus, 

the values of D*
Cl

- are expected to decrease with increasing ω, with D*
Cl

- approaching zero (no 

solute transport) as ω approaches unity (Malusis and Shackelford 2002b; Shackelford and Lee 

2003).  As shown in Figure 5.15, the values of D*
Cl

- decreased with increasing ω for all of the 

values of S that were evaluated, as expected.  For example, for the specimen with S of 0.89, as ω 

increased from 0.39 to 0.66 the value of D*
Cl

- decreased from 3.4 x 10-10 m2/s to 1.8 x 10-10 m2/s.  

The trends of decreasing D*
Cl

- with increasing ω are consistent with data in the literature for 

saturated Na-bentonite and GCL specimens with similar porosities (n = 0.66 – 0.89), as shown in 

Figure 5.16. 

As discussed previously (Chapter 4), D* is defined as follows (Shackelford and Daniel 

1991): 

 

 *
o aD D τ=   (4.3) 
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where Do is the aqueous-phase or free-solution diffusion coefficient of the solute, and τa is the 

apparent tortuosity factor (0 ≤ τa ≤ 1).  The apparent tortuosity factor is defined as (Shackelford 

and Moore 2013):  

 

 1 2( )a m r m Nτ τ τ τ τ τ τ= = 

  (4.4) 

 

where τm is the matrix (or geometric) tortuosity factor representing the geometry of 

interconnected pores in the porous medium, τr is the restrictive tortuosity factor that takes into 

account other factors that may reduce solute flux (e.g., membrane behavior, solute drag near the 

surfaces of clay particles), and N is the number of factors other than τm that contribute to 

reducing the diffusive solute mass flux (Malusis et al. 2012; Shackelford and Moore 2013).   

The value of τa, varies from zero when there are no interconnected pores corresponding 

to a perfect semipermeable membrane to unity when there is no porous medium (Shackelford 

and Daniel 1991).  Based on Equation 4.3, values of τa were calculated by dividing D*
Cl

- by the 

Do for KCl (Do,KCl) corresponding to the average concentration in the specimen (Cave) at steady-

state diffusion.  Values of Do,KCl for various KCl concentrations were tabulated in Appendix D.  

Values of Do,KCl were used to calculate τa,, rather than the Do value for Cl- alone, because Cl- and 

K+ were assumed to be diffusing in the same direction during the tests, corresponding to the case 

of salt (mutual) diffusion (Shackelford and Daniel 1991). As shown in Table 5.4 and Figure 

5.17a, values of τa ranged from 0.10 to 0.22 and generally decreased as ω increased, as expected.  

For example, for the specimen with S of 1.0 as ω increased from 0.31 to 0.61 τa decreased from 

0.22 to 0.10. 
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The value of τm generally is considered constant for a given arrangement of soil particles, 

whereas τr is a function of ω (Malusis et al. 2012).  Under the limiting condition that ω 

approaches 0, the value of τr approaches unity, assuming other restrictive effects are 

insignificant.  Thus, when ω is zero τm can be assumed to be equal to τa based on Equation 4.4 

(Malusis et al. 2012; Dominijanni et al. 2013).  Under the condition of zero membrane behavior, 

the value of D*
Cl

- is equal to the matrix or pore diffusion coefficient, Dp, defined as (Shackelford 

and Moore 2013):  

 

 p o mD D τ=   (4.5) 

 

Values of Dp were determined by extrapolating the linear regressions shown previously in Figure 

5.15b to the limit where ω is zero (i.e., D*
Cl

- = Dp when 1 – ω = 1).  Thus, the slopes of the 

regressions shown in Figure 5.15b represent the values of Dp.  Values of τm, calculated by 

dividing Dp by Do,KCl, are shown in Figure 5.17b and Table 5.4.  As expected, the values of τm for 

the bentonite specimens were essentially constant, varying only from 0.30 to 0.32, confirming 

good reproducibility for preparation of the bentonite specimens. 

 Values of τr were calculated by dividing D*
Cl

- by Dp based on Equations 4.3 and 4.4.  As 

shown in Table 5.4 and Figure 5.17c, values of τr ranged from 0.30 to 0.74 and generally 

decreased as ω increased.  The trend of decreasing τr with increasing ω (associated with 

decreasing Cave as discussed previously) is due to a more restrictive (more tortuous) migration 

pathway caused by thicker diffuse double layers (Malusis and Shackelford 2002b).  For the case 

where membrane behavior controls τr and other restrictive effects are insignificant, Manassero 
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and Dominijanni (2003) proposed the following relationship (based on concepts presented by 

Ferry (1935)): 

 

 1rτ ω= −   (4.6) 

 

As shown in Figure 5.17c, the values of τr measured for the bentonite specimens in this research 

show good agreement with the linear trend in Equation 4.6.  In summary, for all specimens 

evaluated in this research, an increase in the measured membrane behavior resulted in a decrease 

in the value of τr and reduced rates of Cl- diffusion across the specimen. 

 

5.6 Conclusions 

Experimental research to date has focused on membrane behavior and diffusion in clays 

almost exclusively under saturated conditions.  However, membrane behavior under unsaturated 

conditions also may be an important consideration for some containment applications, such as in 

covers for landfills and engineered and natural barriers for HLRW disposal.  The potential 

advantages of clays exhibiting membrane behavior (e.g., reduced contaminant flux through the 

barrier into the environment) are likely to be more significant when such clays exist under 

unsaturated conditions.  Therefore, a research program was undertaken to evaluate the extent and 

magnitude of membrane behavior of unsaturated Na-bentonite.  

The effect of saturation on membrane behavior of Na-bentonite was evaluated for values 

of S ranging from 0.79 to 1.0. The experimental program consisted of four multistage 

experiments with concentration stages of 20 mM, 30 mM, and 50 mM KCl.  The values of ω 

ranged from 0.31 to 0.61, 0.34 to 0.66, 0.41 to 0.71, and 0.68 to 0.75 for the tests with S values 
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of 1.0, 0.89, 0.84 and 0.79, respectively.   The measured values of ω were comparable to the 

ranges reported in the literature for saturated Na-bentonite specimens.  Consistent with the 

current conceptual understanding of membrane behavior, values of ω increased with decreasing 

values of S, Cave, and D*
Cl

-. 

The research presented herein represents the first time membrane behavior has been 

measured for an unsaturated soil using a closed-system testing apparatus.  In addition, to the 

author's knowledge, the data represent the first experimental results for membrane behavior of 

bentonite specimens maintained under unsaturated conditions.  Increased membrane behavior in 

Na-bentonite due to a reduction in degree of saturation was verified experimentally, contributing 

to the knowledge base for contaminant transport mechanisms in clays that are commonly used in 

chemical containment applications.    
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Table 5.1. Test program for evaluation of membrane behavior in saturated and unsaturated 
sodium bentonite. 
 

Properties of Bentonite Specimen Test Duration (d) 

Degree of 
Saturation, 

S 

Volumetric 
Water 

Content, 
θ 

Porosity, 
n 

Thickness, 
L (mm) 

Stage 

Total 

DIW 

20 
mM 
KCl 

30 
mM 
KCl 

50 
mM 
KCl 

1.0 0.87 0.87 6.6 29 122 108 76 335 

0.89 0.79 0.89 5.7 24 74 74, 
44a 64a 280 

0.84 0.74 0.88 7.7 24 104, 
34a 90a 72a 324 

0.79 0.70 0.88 8.3 24 158, 
50a NA 232 

 
     a Solution includes 500 ppm DOWICIL biocide (see Chapter 4). 
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Table 5.2. Results of membrane testing on Na-bentonite specimens under saturated and unsaturated conditions.  All values based on 
chloride data. 
 

Properties  
of  

Bentonite 
Specimen (a) 

Source KCl 
Concentration, 

Cot (mM) 
Average 

Concentration 
in Clay, 
Cave 

(b)
 

(mM) 

Concentration 
Difference 

Across Clay,  
-∆Cclay 
(mM) 

Maximum 
Chemico-Osmotic 

Pressure 
Difference, 

-∆π  
(kPa) 

Steady-state 
Chemico-Osmotic 

Pressure 
Difference, 

-∆Pss  
(kPa) 

Membrane 
Efficiency 

Coefficient, 
ω 

Membrane 
Efficiency  

Ratio, 
Ω (c) 

Target 
 

Actual 
 

S = 1 
L = 6.6 mm 

n = 0.87 
θ = 0.87 

20 19 9.0 2.4 11.8 7.2 0.61 

NA 30 30 15.0 2.4 11.9 5.0 0.42 

50 49 25.0 3.0 14.8 4.6 0.31 

S = 0.89 
L = 5.7 mm 

n = 0.89 
θ = 0.79 

20 21 10.5 2.6 12.5 8.3 0.66 1.08 
30 33 15.0 10.5 51.4 17.2 0.34 0.80 
30* 33* 16.5 2.4 11.6 5.6 0.48 1.16 
50* 51* 25.6 3.6 17.8 6.9 0.39 1.26 

S = 0.84 
L = 7.7 mm 

n = 0.88 
θ = 0.74 

20 20 9.7 2.9 14.3 9.7 0.68 1.11 
20* 20* 9.7 2.8 13.7 9.7 0.71 1.15 
30* 33* 16.5 2.9 14.3 7.6 0.53 1.27 
50* 50* 25.0 4.3 21.1 8.7 0.41 1.34 

S = 0.79 
L = 8.3 mm 

n = 0.88 
θ = 0.70 

20 20 9.9 18.5 90.7 62.1 0.68 1.12 

20* 20* 9.9 17.0 83.2 62.1 0.75 1.22 
(a) S = degree of water saturation; n = porosity; L = thickness; θ = volumetric water content. 
(b) Cave = average concentration in the bentonite specimen at steady-state diffusion. 
(c) Ω = ω / ωsat , where ωsat  is the ω value measured for the same Cot for the specimen with S = 1. 
Shaded portions: results are questionable due to suspected bio-activity. 
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Table 5.3. Results of regression analyses of the membrane efficiency (ω) values for the sodium-
bentonite specimens (see Fig. 5.8). 
 

Degree of 
Saturation of 

Bentonite 
Specimen, S 

Regression Results: 
ω = ωref – Iω·log Cave (a) 

Limiting Average Concentrations 
(mM) 

ωref Iω r2 @ ω = 0, Cave,ω @ ω = 1, Cave,pm 

1.0 1.29 0.717 0.984 63 2.5 

0.89 1.37 0.704 0.973 88 3.4 

0.84 1.41 0.720 0.997 91 3.7 
 

(a) ωref = reference membrane efficiency coefficient corresponding to log Cave = 0; Cave = average 
concentration in the specimen (mM); Iω = the membrane index as defined by Shackelford et al. 
(2003) and illustrated schematically in Fig. 5.8. 
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Table 5.4. Results of membrane testing and diffusion analysis for sodium-bentonite specimens.   

Degree of 
Saturation 

of 
Bentonite 
Specimen, 

S 

Source KCl 
Concentration, 

Cot (mM) 
Membrane 
Efficiency 

Coefficient, 
ω 

Ion 

Effective 
Diffusion 

Coefficient, 
D* (m2/s) 

Matrix 
Diffusion 

Coefficient 
for Cl-,  

Dp (m2/s) 

Tortuosity factors 

Target 
 

Actual 
 τm 

(a) τa 
(b) τr (c) τr (d) 

1.0 

20 19 0.61 Cl- 1.8 x 10-10 

5.6 x 10-10 0.30 

0.10 0.32 0.31 
K+ 9.3 x 10-11 - - - 

30 30 0.42 Cl- 3.1 x 10-10 0.17 0.57 0.56 
K+ 1.9 x 10-10 - - - 

50 49 0.31 Cl- 4.1 x 10-10 0.22 0.74 0.73 
K+ 2.9 x 10-10 - - - 

0.89 

20 21 0.66 Cl- 1.8 x 10-10 

5.9 x 10-10 0.32 

0.10 0.32 0.31 
K+ 6.0 x 10-11 - - - 

30 33 0.34 Cl- 4.8 x 10-11 0.03 0.08 0.08 
K+ 2.0 x 10-11  - - 

30* 33* 0.48 Cl- 3.4 x 10-10 0.18 0.58 0.56 
K+ 3.4 x 10-11 - - - 

50* 51* 0.39 Cl- 3.4 x 10-10 0.18 0.58 0.56 
K+ 1.7 x 10-10 - - - 

0.84 

20 20 0.68 Cl- 1.7 x 10-10 

5.8 x 10-10 0.31 

0.09 0.29 0.28 
K+ 1.3 x 10-10 - - - 

20* 20* 0.71 Cl- 1.8 x 10-10 0.10 0.31 0.30 
K+ 1.4 x 10-10 - - - 

30* 33* 0.53 Cl- 3.0 x 10-10 0.16 0.52 0.51 
K+ 2.4 x 10-10 - - - 

50* 50* 0.41 Cl- 3.1 x 10-10 0.17 0.54 0.53 
K+ 3.1 x 10-10 - - - 

0.79 
20 20 0.68 Cl- 2.3 x 10-12 

NA K+ 2.1 x 10-12 

20* 20* 0.75 Cl- 5.7 x 10-12 
K+ 4.2 x 10-12 

* Includes biocide.  
Shaded = Results are questionable due to suspected bio-activity. 
(a) τm = matric tortuosity = Dp /Do,KCl, where the value of Do,KCl corresponds to the concentration where ω = 0  
    (i.e., Cave,ω). 
(b) τa = apparent tortuosity = D*/Do,KCl, where values of Do,KCl were calculated as a function of average concentration. 
(c) τr = restrictive tortuosity = D*/Dp, where values of Do,KCl were assumed constant, and therefore Dp (= τm Do,KCl)   
    was constant.. 
(d) τr = D*/τmDo,KCl, where values of Do,KCl were calculated as a function of average concentration (see Appendix D). 
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Figure 5.1. Conceptual schematics of influence of saturation conditions on solute restriction 
between clay particles: (a) water-saturated pores (S = 1) with no solute restriction; (b) S = 1 with 
complete solute restriction; (c) unsaturated pores (S < 1) with complete restriction from 
continuous air phase; (d) S < 1 with complete restriction from discontinuous (occluded) air.    
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Figure 5.2. Conceptual schematics of influence of saturation conditions on solute restriction 
between clay clods: (a) water-saturated pores (S = 1) with crystalline swell only and no solute 
restriction; (b) S = 1 with crystalline and osmotic swell leading to complete solute restriction; 
and (c) unsaturated pores (S < 1) with crystalline swell only and complete restriction.  
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Figure 5.3. Boundary water pressures for Na-bentonite specimens during membrane testing: (a) S 
= 1.0; (b) S = 0.89; (c) S = 0.84; (d) S = 0.79.   
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Figure 5.4.  Measured total suctions at boundaries of Na-bentonite specimens during membrane 
testing:  (a) S = 0.89; (b) S = 0.84; (c) S = 0.79.    
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Figure 5.5. Measured chemico-osmotic pressure differences, -∆P, across Na-bentonite 
specimens: (a) S = 1.0; (b) S = 0.89; (c) S = 0.84; (d) S = 0.79. [Values of -∆Pss are shown]  
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Figure 5.6.  Typical example of chemico-osmotic pressure difference (-∆P) during two-day 
circulation cycle and determination of steady-state -∆P (-∆Pss) at the end of a concentration stage 
during membrane testing.  Example data is for the 30 mM KCl stage of the Na-bentonite 
specimen with S of 1.0.   
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Figure 5.7. Steady-state membrane efficiency coefficients of Na-bentonite specimens during 
membrane testing as a function of average salt concentration in the specimen at steady-state 
diffusion. [S = degree of saturation]  
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Figure 5.8. Schematic illustration of membrane efficiency, ω, versus average boundary salt 
concentration (after Shackelford et al. 2003) [ωref = reference membrane efficiency coefficient at 
log Cave = 0; Cave,ω = threshold concentration corresponding to ω = 0; Cave,pm = perfect membrane 
concentration corresponding to ω = 1; Iω = membrane index].   
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Figure 5.9. Membrane efficiency coefficients for Na-bentonite specimens as a function of 
average salt concentration in the specimen at steady-state diffusion: (a) semi-log linear 
regressions for all data; (b) comparison of data for saturated specimen with nonlinear theoretical 
model from Revil et al. (2011) for saturated clays. [CEC = measured cation exchange capacity of 
the bentonite]  
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Figure 5.10. Comparison of membrane efficiency coefficients for Na-bentonite with published 
values for membrane tests on geosynthetic clay liners (GCLs) and Na-bentonite specimens 
subjected to KCl or NaCl solutions.  
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Figure 5.11. Membrane efficiency coefficients of Na-bentonite specimens as a function of (a) 
degree of saturation and (b) volumetric water content.  
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Figure 5.12.  Membrane efficiency ratio, Ω, of Na-bentonite specimens as a function of source 
concentration of the circulation solution at the top boundary, Cot.  
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Figure 5.13. Contour plot of measured value of membrane efficiency (ω) as a function of average 
concentration in the specimen at steady-state diffusion (Cave) and degree of saturation (S).  
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Figure 5.14. Conceptual examples of the coupled effects of degree of saturation, S, and average 
concentration in the pore space of the clay specimen, Cave, on measured membrane efficiency of 
the clay: (a) high S, low Cave; (b) low S, low Cave; (c) high S, high Cave; (d) low S, high Cave.   
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Figure 5.15.  Effective diffusion coefficients as a function of membrane efficiency of Na-
bentonite specimens: (a) all data; (b) linear regressions to determine the matrix diffusion 
coefficient (Dp) at ω = 0 (excludes S = 0.79 data point).   
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Figure 5.16. Comparison of effective diffusion coefficients for chloride for Na-bentonite 
specimens versus those for geosynthetic clay liners (GCLs) as a function of membrane 
efficiency.   
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Figure 5.17.  Factors for (a) apparent, (b) matrix, and (c) restrictive tortuosity for Na-bentonite 
specimens based on the membrane behavior and diffusion tests results for chloride.  
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CHAPTER 6.  SUMMARY AND CONCLUSIONS 
 
 
 
6.1 Summary 

The results of a study to evaluate the extent and magnitude of membrane behavior of Na-

bentonite under unsaturated conditions and the effects of such membrane behavior on rates of 

diffusive transport were presented.  A new testing apparatus to measure simultaneously both salt 

diffusion through and membrane behavior of unsaturated bentonite specimens was described.  

Four multistage experiments were performed on Na-bentonite specimens with degrees of 

saturation, S, ranging from 0.79 to 1.0 to measure membrane behavior and diffusive properties 

when exposed to solutions of potassium chloride (KCl) ranging in concentration from 20 mM to 

50 mM.  The results of the experiments were compared with membrane behavior literature for 

saturated Na-bentonite and conclusions were drawn regarding the significance of the effect of S 

on the solute restrictive behavior of Na-bentonite.    

   

6.2 Conclusions 

Based on the objectives and results presented in this document, the following conclusions 

can be drawn: 

 

 (1) The new, closed-system testing apparatus allows for simultaneous measurement of 

membrane behavior and diffusive transport in unsaturated bentonite.  The membrane 

efficiencies (ω) and effective diffusion coefficients (D*) of bentonite specimens with S 

values ranging from 0.79 to 1.0 were measured by performing four multistage tests using 

the apparatus.  The results represent the first time membrane behavior of any soil under 

249 



unsaturated conditions has been measured using a closed-system testing apparatus.  Use 

of the new apparatus for diffusion testing also may provide several advantages relative to 

current experimental methods to measure diffusion in unsaturated clays (see Chapter 4).   

(2) The dialysis procedure is a simple and effective method for preparing Na-bentonite for 

membrane behavior and diffusion testing. The dialysis method was used to (1) increase 

the percentage of Na+ on the exchange complex of bentonite, (2) remove excess soluble 

salts in the pore water of bentonite, and (3) estimate apparent diffusion coefficients (Da) 

of the bentonite paste.  The percentage of Na+ on the exchange complex of the bentonite 

increased from 47 % to 69 % and 89 % after dialysis for 7 d in solutions of 0.1 M and 1.0 

M NaCl, respectively.  Subsequent dialysis in DIW for 14 d resulted in a significant 

reduction in soluble salts (e.g., Na+ decreased from 19 meq/100g to 2.2 meq/100g), 

indicating dialysis provides a much faster method to flush specimens of soluble salts than 

those previously used in membrane behavior research (e.g., 14 d versus 6 months).  The 

values of Da measured for the bentonite paste ranged from 1.5 x 10-10 m3/s to 3.8 x 10-10 

m3/s, which were comparable to values reported in the literature for Na-bentonites tested 

with traditional diffusion test methods. 

(3)  The steady-state values of D* for the saturated and unsaturated bentonite specimens 

measured during the multistage tests ranged from 2.1 x 10-12 m2/s to 4.1 x 10-10 m2/s, 

which were consistent with expectations based on the limited data available in the 

literature for bentonite at high porosities (e.g., n > 0.7).  The values of D*for both Cl- and 

K+ tended to increase with increasing average salt concentration in the specimen (Cave), 

which was consistent with trends reported in the literature and could be explained on the 

basis of classical diffuse-double-layer (DDL) theory.  The effects of S and θ on the 
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measured values of D* were less obvious, which may have been due to the limited range 

of S that could be evaluated in the study.  For all of the experiments, the values of D* for 

K+ were lower than or equal to those for Cl-, likely due to Na+ initially present in the 

specimen.  In agreement with previously reported results for Na-bentonite, the diffusive 

properties of the unsaturated specimens correlated well with the measured membrane 

behavior, with D* decreasing with increasing ω. 

(4)  Membrane behavior in Na-bentonite increased as S decreased, providing experimental 

verification of the proposed hypothesis and achieving the goal of the study.  The values 

of ω ranged from 0.31 to 0.61, 0.34 to 0.66, 0.41 to 0.71, and 0.68 to 0.75 for the tests 

with S values of 1.0, 0.89, 0.84 and 0.79, respectively.  As expected, the values of ω 

decreased as Cave increased.  For example, for the specimen with S of 0.84 as Cave 

increased from 9.7 mM to 25.0 mM KCl the value of ω decreased from 0.68 to 0.41. The 

results were in agreement with the current, conceptual understanding of membrane 

behavior as well as the proposed, conceptual explanations of the effects of saturation on 

solute restriction. The data represent the first experimental results for membrane behavior 

of Na-bentonite specimens maintained under unsaturated conditions.    

 

6.3 Recommendations for future research 

Recommendations for future research are as follows: 

 

(1) Additional experimental work should be performed to measure membrane behavior of 

Na-bentonite specimens with values of S less than 0.79 in order to thoroughly evaluate 

the effect of S on ω.  Experimental data over a wider range of S would allow for better 
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comparison of the results with available theoretical models and development of new 

models that include unsaturated membrane behavior.  The range of saturations that could 

be evaluated in the study was limited due to the test durations required to reach steady-

state diffusion, and, therefore, recommendations to reduce test durations are provided 

subsequently.   

(2) To reduce the test durations required to achieve steady-state diffusion conditions in the 

test cell during unsaturated membrane testing, the following modifications to the testing 

apparatus and procedure should be considered: 

 

• The use of thinner (e.g., ≤ 5 mm), high air-entry (HAE) disks in the test cell 

would reduce the time to reach steady-state diffusion across the test system.  

Thinner HAE disks also may allow for using HAE disks with higher air-entry 

values while maintaining reasonable test durations, making evaluation of 

specimens with greater matric suction (i.e., lower values of S) feasible. 

• The use of thinner bentonite specimens (e.g., ≤ 5 mm) also would reduce required 

test durations to achieve steady-state diffusion. 

• Performing transient diffusion modeling to analyze the data could eliminate the 

need to achieve steady-state diffusion in future testing. 

 

(3)  The scenario of combined diffusion of Na+ initially in the pores of the bentonite and 

diffusion of K+ due to the imposed gradient of KCl across the specimen should be 

modeled to confirm the observed diffusion behavior (i.e., values of D*
clay for K+ that were 

lower than or equal to those for Cl-). 

252 



(4) Since unsaturated membrane behavior in Na-bentonite is relevant for the design of 

engineered barriers for high-level radioactive waste (HLRW) disposal, additional testing 

should be performed under conditions that are representative of such barriers.  For 

example, testing should be performed on specimens of compacted bentonite or bentonite 

mixtures (dry density > 1.7 Mg/m3) and under conditions of elevated temperature (e.g., 

100° C). 

(5) Additional dialysis testing should be performed to evaluate the dialysis procedure as a 

method to measure Da for bentonite-based slurries and mixtures commonly used in soil-

bentonite backfill applications, that otherwise may be difficult to evaluate using 

traditional laboratory equipment. 
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APPENDIX A.  ADDITIONAL DETAILS OF APPARATUS DESIGN 
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Figure A.1.  Detailed design of stainless-steel, cell frame for Apparatus No. 1.  
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Figure A.2.  Detailed design of ceramic, high air-entry disks for Apparatus No. 1.  
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Figure A.3.  Detailed design of plastic, porous disks for Apparatus No. 1.  
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Figure A.4.  Detailed design of top and bottom acrylic spacers for Apparatus No. 1. 
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APPENDIX B.  DATA FOR MASS LEACHING ANALYSES 
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Figure B.1. Data for mass leaching analysis for Test No. 1: (a) change in electrical conductivity 
of the dialysate after each 24-hour dialysis period, DEC, during the soluble salt removal stage; 
(b) incremental mass of NaCl removed from specimen (from DEC); (c) cumulative mass of NaCl 
removed from specimen; and (d) cumulative fraction leached (CFL).  
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Figure B.2. Data for mass leaching analysis for Test No. 2: (a) change in electrical conductivity 
of the dialysate after each 24-hour dialysis period, DEC, during the soluble salt removal stage; 
(b) incremental mass of NaCl removed from specimen (from DEC); (c) cumulative mass of NaCl 
removed from specimen; and (d) cumulative fraction leached (CFL).  
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Figure B.3. Data for mass leaching analysis for Test No. 3: (a) change in electrical conductivity 
of the dialysate after each 24-hour dialysis period, DEC, during the soluble salt removal stage; 
(b) incremental mass of NaCl removed from specimen (from DEC); (c) cumulative mass of NaCl 
removed from specimen; and (d) cumulative fraction leached (CFL).  
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Figure B.4. Data for mass leaching analysis for Test No. 4: (a) change in electrical conductivity 
of the dialysate after each 24-hour dialysis period, DEC, during the soluble salt removal stage; 
(b) incremental mass of NaCl removed from specimen (from DEC); (c) cumulative mass of NaCl 
removed from specimen; and (d) cumulative fraction leached (CFL).  
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Figure B.5. Data for mass leaching analysis for Test No. 5: (a) change in electrical conductivity 
of the dialysate after each 24-hour dialysis period, DEC, during the soluble salt removal stage; 
(b) incremental mass of NaCl removed from specimen (from DEC); (c) cumulative mass of NaCl 
removed from specimen; and (d) cumulative fraction leached (CFL).  
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Figure B.6. Data for mass leaching analysis for Test No. 6: (a) change in electrical conductivity 
of the dialysate after each 24-hour dialysis period, DEC, during the soluble salt removal stage; 
(b) incremental mass of NaCl removed from specimen (from DEC); (c) cumulative mass of NaCl 
removed from specimen; and (d) cumulative fraction leached (CFL).  
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Figure B.7. Data for mass leaching analysis for Test No. 7: (a) change in electrical conductivity 
of the dialysate after each 24-hour dialysis period, DEC, during the soluble salt removal stage; 
(b) incremental mass of NaCl removed from specimen (from DEC); (c) cumulative mass of NaCl 
removed from specimen; and (d) cumulative fraction leached (CFL).  
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Figure B.8. Data for mass leaching analysis for Test No. 8: (a) change in electrical conductivity 
of the dialysate after each 24-hour dialysis period, DEC, during the soluble salt removal stage; 
(b) incremental mass of NaCl removed from specimen (from DEC); (c) cumulative mass of NaCl 
removed from specimen; and (d) cumulative fraction leached (CFL).  
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Figure B.9. Data for mass leaching analysis for Test No. 9: (a) change in electrical conductivity 
of the dialysate after each 24-hour dialysis period, DEC, during the soluble salt removal stage; 
(b) incremental mass of NaCl removed from specimen (from DEC); (c) cumulative mass of NaCl 
removed from specimen; and (d) cumulative fraction leached (CFL).  
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Figure B.10. Data for mass leaching analysis for Test No. 10: (a) change in electrical 
conductivity of the dialysate after each 24-hour dialysis period, DEC, during the soluble salt 
removal stage; (b) incremental mass of NaCl removed from specimen (from DEC); (c) 
cumulative mass of NaCl removed from specimen; and (d) cumulative fraction leached (CFL).  
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Figure B.11. Data for mass leaching analysis for Test No. 11: (a) change in electrical 
conductivity of the dialysate after each 24-hour dialysis period, DEC, during the soluble salt 
removal stage; (b) incremental mass of NaCl removed from specimen (from DEC); (c) 
cumulative mass of NaCl removed from specimen; and (d) cumulative fraction leached (CFL).  
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Figure B.12. Data for mass leaching analysis for Test No. 12: (a) change in electrical 
conductivity of the dialysate after each 24-hour dialysis period, DEC, during the soluble salt 
removal stage; (b) incremental mass of NaCl removed from specimen (from DEC); (c) 
cumulative mass of NaCl removed from specimen; and (d) cumulative fraction leached (CFL).  
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Figure B.13. Data for mass leaching analysis for Test No. 13: (a) change in electrical 
conductivity of the dialysate after each 24-hour dialysis period, DEC, during the soluble salt 
removal stage; (b) incremental mass of NaCl removed from specimen (from DEC); (c) 
cumulative mass of NaCl removed from specimen; and (d) cumulative fraction leached (CFL). 
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APPENDIX C.  EQUIPMENT USED IN SPECIMEN PREPARATION 
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Figure C.1. Setup for slurry consolidation: (a) detailed schematic; (b) three consolidation 
columns being used concurrently to prepare specimens; (c) materials required to set up the 
column; (d) top view of the column after placing the bentonite slurry.  

274 
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compressor

cell
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Figure C.2. Equipment used to adjust degree of saturation of bentonite specimens: (a) pressure-
plate apparatus; (b) 15-bar, high air-entry disk used in pressure plate apparatus; (c) pressure 
gauge to adjust and monitor air pressure in the cell. 
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APPENDIX D.  DIFFUSION MODELS AND SUPPLEMENTAL DATA 
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 Appendix D-1 

Supplemental Information for 

Through-Diffusion Analysis Method 
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Derivation of Equations Used for Through-Diffusion Analysis: 

List of parameters: 

DCave = average concentration difference across the layer or system of interest; 

DCclay = concentration difference across the clay specimen; 

DCtotal = concentration difference across the whole layered system; 

DQt = incremental change in cumulative mass of solute, per unit area, at steady-state diffusion; 

Dt = time increment over which DQt considered; 

θ = volumetric water content; 

θclay = volumetric water content of the clay specimen; 

θHAE = volumetric water content of the high-air entry disk; 

Cb = outflow concentration at the bottom boundary; 

Cb,ave = average concentration at the bottom boundary; 

Cob = inflow concentration at the bottom boundary; 

Cot = inflow concentration at the top boundary; 

Ct = outflow concentration at the top boundary; 

Ct,ave = average concentration at the top boundary; 

D* = effective diffusion coefficient = molecular diffusion coefficient x apparent tortuosity;  

D*
clay = effective diffusion coefficient of the clay specimen;  

D*
HAE = effective diffusion coefficient of the high-air entry disk;  

De = effective diffusion coefficient = D*θ; 

De,eq = equivalent, effective diffusion coefficient for layered system; 

JD,ss = steady-state, diffusive mass flux; 

L  = total length (thickness) of the specimen or layered system across which diffusion is 

occurring; 

Lclay = length (thickness) of the clay specimen only;  

LHAE = length (thickness) of the high-air entry disk only; and 

n = porosity of the layer. 
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Derivation for Through-Diffusion Analysis for Unsaturated, Layered Soil System: 

Fick's first law for solute mass flux due to one-dimensional diffusion in a porous medium may be 

written as follows (e.g., Porter et al. 1960; Shackelford and Daniel 1991a): 

 

 *
,D ss e

C CJ D D
x x

∂ ∂
= −θ = −

∂ ∂
  (D.1) 

  

Based on Fick's first law, the effective diffusion coefficient has been determined for saturated 

specimens (n = θ)  using the through-diffusion method and a closed-system testing apparatus, as 

follows (e.g., Malusis et al. 2013): 
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Replacing n with θ to accommodate unsaturated specimens, Equation D.2 becomes: 
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In terms of De, Equation D.4 can be written: 

 

 t
e

ave

QLD
C t

  D = −  D D  
  (D.5) 

 

For the test system used in this study, comprised of one clay specimen sandwiched between two 

high-air entry (HAE) disks, the assumption of continuity of solute mass flux across each layer at 

steady-state diffusion can be written as follows: 

 

 , , ,D ss HAE ss clay ssJ J J= =   (D.6) 

 

Expanding Equation D.5 for each of the layers and also for an equivalent layered system, based 

on Fick's first law, results in the following: 

 

 , , , ,
clay aveHAE

D ss e HAE e clay e eq
HAE clay

C CCJ D D D
L L L

D DD
= − = − = −   (D.7) 

 
or in terms of D* and θ for the clay and HAE disks: 
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clayHAE
D ss HAE HAE clay clay
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The concentration difference across the entire layered system (DCave) is equal to the sum of the 

concentration differences across each layer, as follows: 
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 2ave i HAE clay HAE clay HAE
i

C C C C C C C∆ = ∆ =∆ + ∆ + ∆ = ∆ + ∆∑   (D.9) 

 

Inserting the relationships shown in Equation D.9 into Equations D.7 and D.8, and rearranging to 

solve for the equivalent De for the entire layered system, the relationship becomes (Foose et al. 

1999): 
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Finally, the effective diffusion coefficient of just the clay can be determined by setting Equation 

D.5 equal to Equation D.10, and solving for D*
clay, as shown: 
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Figure D.1. Evaluation of number of data points to include in the steady-state linear regression of 
cumulative mass per area (Qt) versus time (t) for the specimen with S = 1.0.  
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Figure D.2. Evaluation of number of data points to include in the steady-state linear regression of 
cumulative mass per area (Qt) versus time (t) for the specimen with S = 0.89.   
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Figure D.3. Evaluation of number of data points to include in the steady-state linear regression of 
cumulative mass per area (Qt) versus time (t) for the specimen with S = 0.84.  
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Figure D.4. Evaluation of number of data points to include in the steady-state linear regression of 
cumulative mass per area (Qt) versus time (t) for the specimen with S = 0.79.   
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APPENDIX D-2 

Supplemental Information for Empirical Relationships to Estimate Diffusion Coefficients 

of Unsaturated Porous Media 
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Table D-2.1. Aqueous diffusion coefficient (Do) of KCl solution at 25 ° C (Robinson and Stokes 
1959). 
 

Concentration 

(M) 

Do,KCl 

(m2/s) 
0 1.99 x 10-9 

0.001 1.96 x 10-9 
0.002 1.95 x 10-9 
0.003 1.95 x 10-9 
0.005 1.93 x 10-9 
0.007 1.93 x 10-9 
0.01 1.92 x 10-9 
0.05 1.86 x 10-9 
0.1 1.84 x 10-9 
0.2 1.84 x 10-9 
0.3 1.84 x 10-9 
0.5 1.85 x 10-9 
0.7 1.87 x 10-9 
1 1.89 x 10-9 

1.5 1.94 x 10-9 
2 2.00 x 10-9 

2.5 2.06 x 10-9 
3 2.11 x 10-9 

3.5 2.16 x 10-9 
3.9 2.20 x 10-9 

 

Note: Data in bold was used for correlation shown in Figure D-2.1. 
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Figure D-2.1. Relationship between aqueous diffusion coefficient (Do) of KCl solution at 25 °C 
and KCl concentration: (a) over a wide range of KCl concentrations; (b) over the concentration 
range relevant to this study (average concentration (Cave) ranging from 9.0 mM to 25.6 mM)  
(data from Robinson and Stokes 1959). 
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APPENDIX E.  SUPPLEMENTAL INFORMATION FOR MEMBRANE BEHAVIOR TESTS 
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Table E.1. Osmotic suctions for various salt solutions (Bulut et al. 2001). 

 
Osmotic Suctions (kPa) at 25oC 

Concentration 

(M) 
KCl NaCl NaCl NH4Cl Na2SO4 CaCl2 Na2S2O3 MgCl2 

0.001 5 5 5 5 7 7 7 7 

0.002 10 10 10 10 14 14 14 14 

0.005 24 24 24 24 34 34 34 35 

0.010 48 48 48 48 67 67 67 68 

0.020 95 95 95 95 129 132 130 133 

0.050 233 234 234 233 306 320 310 324 

0.100 460 463 463 460 585 633 597 643 

0.200 905 916 916 905 1115 1274 1148 1303 

0.300 1348 1370 1370 1348 1620 1946 1682 2000 

0.400 1789 1824 1824 1789 2108 2652 2206 2739 

0.500 2231 2283 2283 2231 2582 3396 2722 3523 

0.600 2674 2746 2746 2671 3045 4181 3234 4357 

0.700 3116 3214 3214 3113 3498 5008 3744 5244 

0.800 3562 3685 3685 3558 3944 5880 4254 6186 

0.900 4007 4159 4159 4002 4384 6799 4767 7187 

1.000 4452 4641 4641 4447 4820 7767 5285 8249 

1.200 5354 5616 5616 5343 … … … … 

1.400 6261 6615 6615 6247 … … … … 

1.500 … … … … 6998 13391 7994 14554 

1.600 7179 7631 7631 7155 … … … … 

1.800 8104 8683 8683 8076 … … … … 

2.000 9043 9757 9757 9003 9306 20457 11021 22682 

2.500 11440 12556 12556 11366 11901 29115 14489 32776 

Notes: 
Shaded = applicable range for this study. 
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Table E.2. Osmotic suctions for KCl solutions as a function of temperature (Campbell and 
Gardner 1971). 
 

Osmotic Suctions (kPa) for KCl Solutions 

Concentration 

(M) 
0°C 10°C 15°C 20°C 25°C 30°C 35°C 

0.00 0 0 0 0 0 0 0 

0.10 421 436 444 452 459 467 474 

0.20 827 859 874 890 905 920 935 

0.30 1229 1277 1300 1324 1347 1370 1392 

0.40 1628 1693 1724 1757 1788 1819 1849 

0.50 2025 2108 2148 2190 2230 2268 2306 

0.60 2420 2523 2572 2623 2672 2719 2765 

0.70 2814 2938 2996 3057 3116 3171 3226 

0.80 3208 3353 3421 3492 3561 3625 3688 

0.90 3601 3769 3846 3928 4007 4080 4153 

1.00 3993 4185 4272 4366 4455 4538 4620 
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Figure E.1.  Measured pressures during constant-flow hydraulic conductivity testing of saturated 
bentonite specimen: (a) pressures at the top and bottom boundaries during both tests; (b) pressure 
difference during test No. 1; (c) pressure difference during test No. 2.  
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Equations from Revil et al. (2011) Theoretical Model for Membrane Behavior 

Model Description: Predicts membrane efficiency coefficient (ω) as a function of average 
concentration in the specimen (Cave), for water-saturated specimens. 

Required Input Parameters: Cation exchange capacity (CEC), porosity (n) 

References:  

Revil, A., Woodruff, W., and Lu, N. (2011). "Constitutive equations for coupled flows in clay 
materials." Water Resources Research, 47(5), W05548.  

 
Model: 
Equation for membrane behavior in unsaturated clay: 

 
21 1ω

1
+Θ −

=
+Θ

 

 

where: 

• ω = osmotic coefficient or membrane efficiency coefficient 
• Θ = dimensionless parameter at saturation, given by: 

 
 

310 (1 ) 1 CEC
2

S

ave

f n
C n

ρ− − − Θ =  
 

. 

 

where: 
• ƒ = fraction of counterions in Stern layer = 0.90 (default value) 
• ρs = density of solid phase = 2710 kg/m3 for Na-bentonite specimens 
• Cave = average salinity in the specimen [Mol L-1]  
• CEC = soil CEC [meq g-1] = 0.783 meq/gfor Na-bentonite specimens 
• n = porosity [-] = 0.88 = average for Na-bentonite specimens 

 
 

 

 

 

Figure E.2.  Summary of theoretical model for membrane behavior in saturated clays (Revil et al. 
2011).  
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