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ABSTRACT

DISSECTING DROUGHT TOLERANCE IN WINTER WHEAT USING PHENOTYPIC AND

GENETIC ANALYSES OF AGRONOMIC AND SPECTRAL TRAITS

Worldwide, wheat (Triticum aestivum L.) is cultivated on more land than any other
food crop. In 2013 wheat was grown on more than 220 million hectares worldwide, which
is a larger area than the entirety of Mexico. Part of the global success of wheat can be
attributed to its adaptability to diverse environmental conditions, including regions with
limited water availability.

The United States is the largest exporter of wheat, and in recent years has exported
20-30% or more of its total production. Much of the wheat grown in the United States is
cultivated under rainfed conditions, including regions across the Great Plains that are
primarily planted to hard winter wheat. However, grain yield can be severely affected by
water stress, and future climate projections predict drought will become more frequent
and more severe. Therefore, it is important to characterize drought response and better
understand genetic variation and genetic mechanisms of drought tolerance in winter wheat
present in the U.S. Great Plains hard winter wheat.

This study used a collection of 299 hard winter wheat entries, designated the
Triticeae Coordinated Agricultural Project Hard Winter Wheat Association Mapping Panel
(HWWAMP), representative historic lines, recent cultivars, and experimental breeding
lines present across the U.S. Great Plains. The entries were evaluated at a total of 11 Great

Plains environments during 2011-2012 and 2012-2013. These environments include four

ii



Colorado environments (paired water-stressed and non-stressed treatments in Greeley in
2011-2012 and Fort Collins in 2012-2013) with detailed phenotypic data for many
agronomic traits, and seven environments in other states with data limited to heading date
and grain yield.

The objectives of this study were to 1) determine allelic variation present in major
developmental genes known to affect the timing of the developmental sequence and
therefore adaptability, and estimate the effects of variants on heading date; 2) estimate the
extent of variation and phenotypic plasticity of heading date in a range of environments
representative of the U.S. Great Plains; 3) evaluate effects of water stress on grain yield and
other agronomic traits, and identify underlying genomic regions affecting these drought
responses, using side-by-side water-stressed and well-watered environments grown in two
years; and 4) evaluate the effectiveness of water-based spectral indices calculated from
hyper-spectral canopy reflectance measurements to characterize drought stress in the field.

In wheat and other small grain cereals, heading refers to the developmental stage
where the spike has fully emerged from the flag leaf sheath. Heading date reflects genotypic
‘earliness’ and is important for regional adaptability of wheat. At heading, the developing
spikelets and their sensitive reproductive structures become more exposed to changing
environmental conditions, such as periods of cold, heat, or drought stress. Stress at heading
and anthesis (which follows several days later) can have severe effects on grain yield.

The developmental sequence, including heading date, is affected by the
vernalization and photoperiod pathways. Semi-dwarf alleles at the reduced-height genes
also have an effect on the timing of plant development. We genotyped candidate genes at

vernalization (Vrn-A1, Vrn-B1, and Vrn-D1), photoperiod (Ppd-B1 and Ppd-D1), and
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reduced-height (Rht-B1 and Rht-D1) loci using polymerase chain reaction (PCR) and
Kompetitive Allele Specific PCR (KASP) assays. The main effects and two-way interactions
of alleles at these loci explained an average of 44% of variation in heading date across nine
environments. Most of the variation was explained by Ppd-B1, Ppd-D1, and their interaction.
The photoperiod sensitive and insensitive alleles were present in our germplasm in large
proportions for both Ppd-B1 and Ppd-D1, however, the sensitive alleles have been
decreasing over time and are more common in germplasm from the northern than central
or southern regions of the U.S. Great Plains.

There was significant (P < 0.001) genotype-by-environment interaction for heading
date and growing degree-days to heading among all 11 environments. Phenotypic plasticity
describes the range of possible phenotypes observed for one genotype, given different
environmental conditions. We estimated phenotypic plasticity of growing degree-days to
heading (GDDP) and yield for each entry, and found there was variation in our germplasm
for both. We found GDDP to be negatively associated with yield (r=-0.58, P<0.001), and
thus detrimental in the germplasm and environments evaluated. Greater yield plasticity
was associated with increased maximum (r=0.80, P <0.001) and minimum (r=0.33,
P<0.001) grain yield across environments, indicating it was a favorable trait. Over time
GDDP has decreased and yield plasticity has increased, which suggests these are possible
traits that could be targeted for selection.

In the Colorado environments, grain yield was reduced by similar amounts under
water stress in 2011-2012 (48%) and 2012-2013 (46%), even though water stress
occurred during different periods of the two growing seasons. In 2011-2012 stress

occurred before anthesis and primarily reduced grain yield by limiting biomass and
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tillering, and producing fewer total spikelets, fewer fertile spikelets, and fewer kernels per
spike. In 2012-2013 stress occurred during grain filling and affected yield primarily by
reducing kernel size. We conducted genome-wide association studies on agronomic traits
in individual environments, and combined across different combinations of environments,
and detected nearly 250 significant marker-trait associations for 15 agronomic traits. Most
significant marker-trait associations were only detected for a single trait in one
environment, had modest allelic effects, and explained a small proportion of total
phenotypic variation. However, associations for kernel number explained up to 29% of
variation in one environment, and associations for the proportion of fertile spikelets were
stable across multiple environments.

We measured canopy spectral reflectance using a hyper-spectral radiometer in
2012-2013 and calculated spectral indices previously shown to be associated with plant
water status. There was substantial spatial-temporal variation across each sampling date,
which contributed to a lack of significant differences in index values among genotypes.
However, values of normalized water indices 1 (NWI-1), 3 (NWI-3), and 4 (NWI-4) varied
gradually among developmental stages. Changes in index values were especially
pronounced under water stress, when the most extreme values coincided with the period
of most water stress.

In summary, there is substantial variation for agronomic and phenological traits
that affect drought tolerance or susceptibility. Variation in the timing of developmental
stages, such as heading date, can confer regional adaptability. Introducing additional allelic
diversity at photoperiod loci could enable finer adaptation under current or future climate

scenarios. Alternatively, selecting for reduced GDDP and/or increased grain yield plasticity



could result in greater yields under varying environmental conditions. We did not find
evidence supporting use of canopy spectral reflectance as a selection tool, but spectral
traits might be useful to monitor changes in plant water status, especially if sources of
spatial and temporal variation are reduced, such as by using a sensor with an active light

source or taking simultaneous estimates from an aerial vehicle.
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CHAPTER 1:

LITERATURE REVIEW

Drought tolerance in winter wheat

The focus of most wheat breeding programs is direct selection for yield, although
several other traits related to adaptability, such as plant height or flowering time, may also
be selected for directly (Richards, 2006). Recent advances in next-generation sequencing,
namely rapid genotyping of numerous markers at a lower cost, offer the potential to
integrate genotyping into breeding decisions, such as through genomic-selection (Heffner
et al.,, 2009). Innovations in high-throughput field-based phenotyping may also play an
important role in more precise characterization of and selection for complex, quantitative
traits (Cabrera-Bosquet et al., 2012; Araus and Cairns, 2014) like yield or drought tolerance.

Selection for many drought-related traits may be more effective under optimal
conditions than water-stressed environments (Richards et al,, 2010). In the U.S. much of
the total production of winter wheat occurs from dryland wheat grown in the Great Plains
region (Graybosch and Peterson, 2010), and there is substantial genotype-by-environment
interaction for grain yield under water-stress (Reynolds and Tuberosa, 2008; Blum, 2011).
Physiological traits associated with grain yield under water-limited conditions may have
more genetic variation, respond faster to selection, or be less expensive to evaluate than
yield per se (Richards, 2006). Incorporating selection of physiological traits into breeding
decisions could increase yield potential under water stress (Blum et al., 2005). Examples of

physiological traits that could be targeted include stomatal traits affecting canopy



temperature depression and carbon isotope discrimination, photosynthetic capacity, or
assimilation and translocation of carbohydrates (Araus, 2002).

There are unique challenges in targeted improvements of traits associated with
drought tolerance. Water-limited environments have many sources of variation and
agronomic traits are not affected equally under all types or timing of water stress (Blum,
2011). The same level of stress can have different effects on grain yield depending on
developmental stage at time of stress (Blum, 2011). The most severe effects of water stress
on grain yield occur during reproductive development (Saini and Westgate, 2000). The
severity and duration of water stress, presence of additional confounding stresses,
environmental characteristics such as soil type and water-holding capacity, and agronomic
practices can all influence the effects of water stress on grain yield (Passioura and Angus,
2010).

Production of grain yield under water stress can be dissected into several
components, including water use, water-use efficiency, and harvest index (Passioura, 1996).
Traits affecting one or more of these three elements of grain yield can be identified as
breeding targets depending on the type of water-stress and preferred drought resistance or
tolerance mechanism. It should be noted that Blum (2009) recommends against selecting
for most traits that improve water-use efficiency, as many are inversely associated with
biomass production and therefore limit grain production.

Plants exhibit three mechanisms for coping with water-limited environments:
dehydration avoidance, dehydration tolerance, and drought escape. Dehydration avoidance
describes mechanisms by which plants avoid water stress by maintaining high plant water

status, such as though osmotic adjustment or development of extensive root systems (Blum



et al., 2005). A second mechanism of drought resistance is dehydration tolerance, which
Blum et al. (2005) define as the ability of a plant to sustain function while dehydrated.
Alternatively, drought escape involves timing plant development around periods of water
availability. Passioura (2012) describes flowering time as “the most important
physiological trait [for grain crops] in water-limited environments”. In particular, winter
wheat grown in the U.S. Great Plains needs to delay flowering until the risks of cold and
frost damage are low, but flower before hot summer temperatures damage the developing
spike. Much of the focus of this dissertation will relate back to the timing of plant
development, and characterizing drought tolerance through the drought escape

mechanism.

Developmental sequence of winter wheat

Growth and development of winter wheat

The developmental sequence of winter wheat consists of physiological and
morphological changes to the plant. These changes begin with the initiation of organ
primordia, continuing through appearance and growth of organs, and concluding with the
abortion, senescence, or maturation of organs (McMaster, 2005). Development and growth
of organs occur sequentially with some overlap, beginning with leaves, then tillers,
spikelets, florets, and finally kernels.

The wheat canopy develops with the addition of phytomer units, each of which
consists of a leaf, axillary bud, node, and internode (Wilhelm and McMaster, 1995).

Phytomer units are repeated along the culm, and vegetative growth involves the addition of



new phytomer units. The axillary buds produce new shoots, and the internodes extend
during stem elongation. The concept of phytomer development can be extended to
reproductive (Moragues and McMaster, 2012) and below-ground (Forster et al., 2007)
growth.

In the U.S. Great Plains winter wheat is typically planted in the early fall. Seeds
germinate and the developing seedlings begin vegetative growth before going dormant for
most of the winter. Vegetative growth continues after the vernalization requirements have
been fulfilled, followed by a shift to reproductive growth in the early spring. The shift from
vegetative to reproductive development ensues between single ridge and double ridge,
which occurs before jointing (McMaster, 1997). At double ridge the spikelet primordia
form an upper ridge above the leaf primordia at the shoot apex, and subsequent leaf
primordia do not develop into leaves. The last leaf to appear is the flag leaf. Full expansion
of the flag leaf occurs at booting, which can also be identified by the presence of the flag leaf
collar.

Initiation of spikelet primordia begins at double ridge, and after the terminal
spikelet is initiated the internodes begin to elongate (McMaster, 1997). The peduncle is the
last internode to elongate, which occurs around anthesis and into grain filling. Following
initiation of spikelet primordia, floret primordia begin to initiate and differentiate.
However, many floret primordia are ultimately aborted. The final number of spikelets and
florets are determined by anthesis, which establishes yield potential. Kernel growth occurs
during grain filling, and is characterized first by cell division and then cell expansion.

Kernels reach their maximum dry weight at physiological maturity.



The rate of phytomer development can be monitored by the phyllochron, or rate of
leaf appearance on a culm. Phyllochrons are one method of predicting the timing of the
developmental sequence, including phenological stages such as jointing, booting, heading,
anthesis, and physiological maturity (McMaster and Wilhelm, 1995; Jamieson et al., 2007).
Another common method to predict developmental timing is through accumulation of
growing degree-days (Moragues and McMaster, 2011).

The timing of the developmental sequence varies among genotypes, environments,
and management practices, and can be influenced by genotype-by-environment or
genotype-by-management interactions (Longnecker et al., 1993; McMaster et al., 2005).
Genotypic variation in developmental timing can affect traits like leaf number, leaf size, or
growth rate. Altered developmental timing can affect the number of primordia initiated or
that develop, which can affect yield potential. Environmental variables, such as water,
temperature, or nitrogen availability, affect the timing and duration of developmental
events, but not sequence. Water stress affects genotypes and species differently, and also
varies with the pattern of stress (McMaster et al., 2005). In general, water stress
accelerates the developmental timing of wheat, and continued stress can intensify the

response.

Optimizing the timing of development to specific environments
The global success of wheat is in part attributed to its adaptability to a wide range of
environmental conditions and management practices (Worland and Snape, 2001).

Optimizing the timing of the developmental sequence to a specific target population of



environments can reduce the likelihood that sensitive reproductive organs are exposed to
cold, heat, or water stress.

In wheat, heading is a developmental stage characterized by the emergence of the
inflorescence from the flag leaf sheath. Heading can be scored quickly and easily in the field.
Genetic variation in heading date can indicate genotypic ‘earliness’ and is critical for
adaptation to specific environments, including to a particular type, timing, duration, or
severity of stress (Kamran et al., 2014a). Reproductive development begins long before
heading, with the initiation of spikelet and floret primordia at double ridge. However,
heading reflects the change from vegetative growth to reproductive development, such as
redirecting assimilates to the developing spike.

The flowering pathway integrates two major genetic systems: vernalization and
photoperiod. Winter wheat genotypes require a vernalization period of continuous cold
exposure, and photoperiod sensitive spring or winter genotypes require a critical day
length, before transitioning from vegetative to reproductive growth. There is quantitative
variation among winter wheat genotypes for the amount of cold temperature required to
fulfill the vernalization requirement, and in the absence of cold temperatures most
genotypes eventually flower.

Vernalization loci determine winter, spring, or facultative growth habit in wheat.
Ancestral wheats had a winter growth habit. There is substantial co-linearity among the A,
B, and D genomes of hexaploid wheat. Many genes associated with heading date have
functional homoeologues on each of the three genomes. Spring growth habit is determined
by one or more dominant alleles at several vernalization (Vrn) loci: Vrn-1 (Vrn-A1, Vrn-B1,

Vrn-D1) or Vrn-3 (Vrn-A3, Vrn-B3, Vrn-D3, Kamran et al., 2014b). Mutations at one or more



Vrn-1 gene are the predominant cause of spring growth habit (Chen and Dubcovsky, 2012).
Winter growth habit requires recessive alleles at all Vrn-1 and Vrn-3 loci, and a dominant
allele at Vrn-2.

The vernalization genes are closely related to the meristem identity genes in
Arabidopsis: Vrn-1 is similar to Apetelal (AP1, a MADS-box transcription factor), Vrn-2
shares similarities with Flowering locus C (FLC), and Vrn-3 is similar to Flowering locus T
(FT) (Trevaskis et al., 2007). Flowering is accelerated by vernalization in winter wheat, but
is not temperature-dependent in spring wheat.

There are many good reviews about the control of flowering time in cereals
including wheat (e.g., Trevaskis et al., 2007; Distelfeld et al., 2009). Briefly, the flowering
time and photoperiod pathways control expression of Vrn-1, the transition from vegetative
to reproductive development occurs after a sufficient amount of the protein VRN1 has
accumulated. After a threshold level of VRN1 has accumulated the spikelet primordia begin
to form at the shoot apex. This developmental stage is know as double ridge and
characterizes the beginning of reproductive development.

Most winter wheat is planted during the fall. Following seedling emergence, Vrn-2
represses Vrn-3 to inhibit early floral development, such as (for fall-planted winter wheat)
reproductive growth and development in the fall and early winter. Expression of Vrn-1 is
low during the fall, and Vrn-1 is also repressed by Vrn-2. As the vernalization requirement
is fulfilled, Vrn-1 is up-regulated, which results in accumulation of VRN1 directly, but also
represses transcription of Vrn-2, which releases Vrn-3 to further up-regulate Vrn-1. Vrn-3
integrates both temperature and photoperiod cues, and is also up-regulated in the spring

by perceiving the long days.



Genetic variation affecting developmental timing

Genetic variation in heading date can be caused both by variation in major effect
genes, such as those involved in the vernalization and photoperiod pathways, and also due
to small-effect earliness per se genes. Earliness per se loci are numerous, but each locus
contributes a small amount of phenotypic variation, and the effects of many loci are not
stable across populations or environments (Kamran et al., 2014a).

Variation in major effect genes is primarily due to single nucleotide polymorphisms
(SNPs), insertion-deletions (INDELs), and copy number variation (CNV). Epigenetic
modifications, such as DNA methylation, may also have an effect on phenotypic variation of
important agronomic traits (King et al.,, 2010). Genetic variation such as SNPs and INDELs
can result in many alleles at a single locus. Guo et al. (2010) identified seven haplotypes at
Ppd-D1 in a worldwide collection of mostly hexaploid wheat accessions.

Copy number variants are changes in the genome that result in the gain or loss of
large (>1 kb) DNA segments (Zmienko et al., 2014). Most variation occurs within intergenic
regions, but when variation occurs in the protein-coding region or regulatory element
sequences of protein-coding regions it can affect the phenotype. Copy number variation
(CNV) can contribute either to elevated or reduced levels of transcripts. For instance, a
gene will be up-regulated if the duplication occurs in tandem but reduced or eliminated in
cases of whole- or partial-gene deletion, or if an insertion interrupts gene function.

Some studies suggest CNV in plants is more common among certain types or
families of genes, such as those with leucine-rich repeats (LRR) or nucleotide binding (NB)
domains (Zmienko et al., 2014). Consequently, CNV is over-represented in genes associated

with disease resistance and biotic stress tolerance (McHale et al., 2012). However, variation



has also been shown to significantly affect important agronomic traits (Diaz et al., 2012).
Changes in copy number can be an effective method of adjusting to new or changing
environmental conditions or pressures. New variants are common, but fixation requires
both the resulting phenotype to be advantageous, and strong selection pressures for the
new phenotype to exist for many generations (Zmienko et al., 2014). This can result in
accumulation of many copies of a single gene under particular environmental conditions,
such as multiple copies of Ppd-B1 in regions where reduced photoperiod sensitivity, or a
day-neutral phenotype and earlier flowering, contributes to greater yield (Diaz et al., 2012).
Copy number variation associated with variation in freezing tolerance has also been

described for Vrn-A1 (Zhu et al., 2014).

Phenotypic plasticity of heading date

Phenotypic plasticity is described as the ability of a single genotype to produce
variable phenotypes under different environmental conditions (Nicotra and Davidson,
2010). The extent of plasticity, as well as whether it is beneficial or detrimental, varies
among traits and when evaluated on different germplasm or environments (Bradshaw,
1965). The extent of plasticity is specific to the trait evaluated, and the environments and
populations in which it is evaluated. In many cases, heritability and plasticity are inversely
related. Plasticity can be caused by genetic (Schlichting, 2008) and epigenetic variation
(Bloomfield et al., 2014).

Many plant breeders select cultivars based on favorable mean trait values (i.e., high
average grain yield) and trait stability (Eskridge, 1990). This minimizes genotype-by-

environment interaction (Gauch and Zobel, 1997) and contributes to a favorable phenotype



in most years or environments. However, an alternate approach is to select genotypes with
a dynamic (plastic) response under varying environmental conditions (Des Marais et al.,
2013), such as moderate grain yield under water-stressed environments and high yield
under optimal conditions (Juenger, 2013). There is evidence that the developmental
sequence of winter wheat has underlying plasticity traits (Sadras et al., 2009). A more
complete understanding of phenotypic plasticity of heading date could allow deeper

understanding of crop adaptation.

Canopy spectral reflectance

Field-based platforms for high-throughput phenotyping

In field-based agriculture, high-throughput phenotyping (HTP) refers to evaluating
one or more traits on multiple field plots within a small amount of time. Many traits are
evaluated indirectly and non-invasively (Fiorani and Schurr, 2013). The shift towards
platforms to rapidly phenotype germplasm is largely in response to recent breakthroughs
in genetics and genomics, such as next-generation genotyping platforms (Mardis, 2011).
Improvements in phenotyping—coupled with genetic data—are expected to increase
genetic gain by reducing cycle time (Furbank and Tester, 2011). For instance, phenotypic
and genotypic data can be combined for breeding of complex traits using genomic selection
(Cabrera-Bosquet et al., 2012).

Advances in HTP over the past several years are in part due to improvements in
technological platforms, including hardware, software, statistical methods, and community

resources for instrument configuration or post-processing pipelines (Fahlgren et al., 2015).
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Ground- or air-based platforms offer proximal sensing of plots, often with a sampling
resolution of 1 m or finer (White et al., 2012). High-throughput phenotyping differs from
remote sensing, which operates across a larger area but on a lower resolution. There are
many applications for HTP. It can have many applications: researchers who wish to
compare agronomic traits on different genotypes; growers who are interested in precision
agriculture or understanding spatial variability; or private industries with unique interests,
such as image-based mechanical weeding or health assessment for crop insurance or other
purposes.

Ground-based HTP platforms, such as carts or modified farm equipment, are
especially useful in a research context because they can support a heavy payload (White et
al,, 2012; Araus and Cairns, 2014). Most ground-based platforms are equipped with global
positioning system (GPS) sensors to geo-reference measurements so they can later be
assigned to individual field plots. Common sensors include sonar to estimate plant height;
RGB, multispectral, hyperspectral, or thermal imaging cameras to estimate plant growth
parameters or vegetation health; or an infrared thermometer to estimate canopy
temperature depression (White et al., 2012), which is an indicator of stomatal conductance
and water-use efficiency. Some ground-based systems extend sampling across several
adjacent rows to increase the area that can be sampled in a day or reduce temporal
variation (Andrade-Sanchez et al., 2014).

Air-based high-throughput phenotyping platforms, such as planes, blimps, or
unmanned aerial vehicles (UAVs) further reduce, or eliminate, temporal variation across a
field (White et al., 2012). A typical UAV used for remote sensing in agriculture has a low

payload (about 10 kg or less), short flight time (less than one hour), travels at a low
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elevation (below 300 m) and low speed (about 50 km h-! or less), and is equipped with one
or more cameras (Huang et al.,, 2013). Recently, UAVs have become more widely-used, in
part due to policy and regulation changes, including exemptions for some agricultural uses

(https://www.faa.gov/news/updates/’newsld=81164).

Spectral signatures of plants

Sunlight comprises a portion of the electromagnetic spectrum that includes infrared,
visible, and ultraviolet light. Most of the radiation emitted by the sun is between about 200-
4000 nm. However, the majority of radiation from the sun that reaches the Earth’s surface
is visible (400-700 nm) or near infrared (NIR, 700-1000 nm) light (Ollinger, 2011). Light
reaching a plant canopy can be absorbed, transmitted, or reflected. Scattering of light,
either through transmittance or reflectance, occurs any time light crosses a boundary with
two different refractive indices, for instance, between a cell wall and an interior airspace
(Gates et al,, 1965). This results in altered patterns of light scattering between tissues with
different structural properties, such as leaf angle, plant density, presence of biochemical
compounds, and tissue turgidity (Ollinger, 2011; Barton, 2011).

Light absorbed by plant tissues mainly involves absorption of visible light by
pigments, and absorption of wavelengths in the NIR by water (Pefiuelas and Filella, 1998).
Some common features in the reflectance spectra of plants include low levels of reflectance
in the visible light range due to absorption by pigments such as chlorophyll, high
reflectance in the NIR, and dips in the reflectance at the water absorption bands (970 nm,
1100 nm, 1400 nm, 1950 nm, Ollinger, 2011). The region between absorption in the red

portion of the spectra (about 670 nm) by chlorophyll a and b and high reflectance in the
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NIR is known as the “red edge” (Horler et al., 1983). A shift in the inflection point of the red
edge can signify changes in nitrogen and chlorophyll content and indicate stress (Pefiuelas

et al., 1994).

Water-based spectral indices

Spectral indices are related to different plant characteristics, such as chlorophyll
content, photosynthetic activity, pigment concentration, or canopy water content based on
the amount of light reflected at two or more wavelengths (Ollinger, 2011). Indices relate
the amount of light reflected at different wavelengths. Most indices are simple operations,
such as ratios or differences between the amount of light reflected at two different
wavelengths. Published water-based spectral indices relate the amount of light reflected at
the minor water absorption band at 970 nm to regions of high reflectance in the NIR (Table
1.1).

The water index (WI) is the ratio of light reflected at 970 nm and 900 nm, and has
been shown to be associated with relative water content, leaf water potential, and stomatal
conductance (Pefiuelas et al., 1993). The authors demonstrated WI was able to detect water
stress earlier than canopy temperature depression. Normalized water-based spectral
indices have also been developed (Babar et al., 2006b; Prasad et al,, 2007) and shown to be
associated with wheat grain yield in some environments, especially when indices were
averaged across multiple sampling dates (Babar et al.,, 2006a) or during reproductive

developmental stages (Prasad et al., 2009).
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Genome-wide association analyses for agronomic traits

Marker-trait associations using genome-wide association mapping

Both genome-wide association studies (GWAS—also known as genome-wide
association mapping or association analysis—and linkage analysis from bi-parental
mapping populations detect marker-trait associations and identify quantitative trait loci
(QTL). Identifying QTL can facilitate understanding the genetic architecture of complex,
quantitative traits like grain yield or drought tolerance, that are controlled by hundreds or
thousands of genes, many of which are population- or environment-specific, and only
contribute a small amount of total phenotypic variation. Introgression of QTL into elite
germplasm is possible using recurrent backcrossing and marker-assisted selection.
However, introgression of QTL identified through QTL mapping or GWAS into breeding
material is uncommon, in part due to small effect sizes, instability of QTL across
environments, and large populations required to select multiple QTL (Bernardo, 2008).

Genome-wide association mapping offers several advantages over linkage analysis.
Bi-parental mapping populations require a significant time investment to develop, while
association mapping panels are comprised of diverse germplasm, which can include
advanced breeding material that would facilitate incorporation of QTL by breeders
(Wiirschum, 2012). Since GWAS uses a more diverse germplasm base the QTL are more
likely to reflect common genotypic variants. Additionally, GWAS can be used to identify
significant marker-trait associations for any trait with phenotypic variation within the
population, unlike a bi-parental mapping population, which typically contrasts for only one
or several traits. Association mapping capitalizes on ancestral recombination events among

the germplasm, resulting in greater mapping resolution, more polymorphic alleles, and
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greater power to detect numerous small-effect QTL. However, current and widely-used
GWAS methods have limited ability to detect multiple allelic variants (Zhang et al., 2012) or
diverse marker types, such as those associated with copy number variation, epigenetic
variation, or transposons (Lipka et al,, 2015). Current approaches are also not effective at
detecting rare alleles, for instance, in most GWAS alleles present at levels below a chosen
minor allele frequency (for instance, 5%) are not evaluated (Myles et al., 2009; Zuk et al.,
2014). Genome-wide association mapping can be applied either as a hypothesis-driven
candidate-gene approach, or as an exploratory whole-genome scan to identify QTL that
contribute to the genomic architecture of the trait (Zhu et al., 2008). Some limitations of
GWAS include statistical challenges associated with large numbers of markers, missing data,
and corrections for multiple testing; instability of QTL across populations or environments;
and that powerful analyses typically require very large populations and intensive
phenotyping across multiple environments (Wiirschum, 2012).

Several technologies are responsible for the success of genetic analysis tools and
techniques. The development of polymorphic marker platforms, like the [llumina 90K
iSelect SNP chip and genotype-by-sequencing (GBS), expansion of tools to quickly and
inexpensively detect polymorphic markers, and advances in statistical and computational
methods to process very large genetic and genomic datasets have all contributed to the
greater use and utility of GWAS. In particular, the increased availability and reduced cost of
molecular markers, coupled with an ordered draft sequence of the wheat genome (Mayer
et al.,, 2014) and recently published consensus maps (Cavanagh et al,, 2013; Wang et al,,

2014), make GWAS a viable option for wheat despite its very large and complex genome.

15



Tens of thousands or more molecular markers may be used in GWAS. Statistical
associations occur between any markers in linkage disequilibrium (LD) with the
underlying locus. Linkage disequilibrium is the nonrandom association between alleles at
two loci, and is affected by genetic forces such as recombination, mutation, selection, or
drift (Flint-Garcia et al., 2003). When the extent of LD is high, many markers may be linked
with the locus, resulting in low mapping resolution (Myles et al.,, 2009; Wiirschum, 2012).
Genome size and rate of LD decay, along with the magnitude of QTL effect, are three of the
largest factors limiting our ability to detect a QTL (Lipka et al., 2015). The appropriate
marker density depends on the rate of LD decay, which varies among species, populations,
and even genomes. Linkage disequilibrium is broken down by many generations of
recombination, however, the extent of LD is greater in self-pollinated species including
wheat because there is less opportunity for recombination during meiosis (Nordborg,
2000). A greater marker density is required for the same mapping resolution when decay
of LD is low. In wheat the D-genome has much higher LD than the A- or B-genomes because
of its more limited genetic diversity (Chao et al.,, 2010; Marcussen et al., 2014; Naruoka et

al, 2015).

Statistical models for genome-wide association mapping

Association mapping panels are not comprised of random individuals. Individuals
are related by population structure and kinship, and the panel should be corrected for both
of these elements. Population structure can be estimated either using principal
components (P) or population substructure (Q) from marker data (Pritchard et al., 2000;

Price et al,, 2006). Population substructure is calculated first by estimating the number of
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population subgroups present in the population, and then calculating the coefficient of
subgroup membership for each individual (Evanno et al., 2005). Failing to account for
population structure contributes to spurious associations between markers and phenotype
that are based on historic relatedness (Zhu et al., 2008). Kinship (K) describes the pairwise
relatedness among individuals in the population, which can also contribute to false marker
associations. Kinship is estimated from the probability that two individuals share a random
allele due to identity by descent (Lange et al., 2002).

Many statistical models have been proposed for GWAS. General linear models are
statistical models that only account for kinship. Multiple linear models concurrently
account for population structure (either using P or Q matrix) and kinship. Lipka et al.
(2015) recommend that since correcting for population structure using either covariates
from population substructure or principal components (PCs) are common in plant studies,
PCs should be used because the methods are less computationally intensive. The authors
also recommend the optimal number of covariates be fit separately for each trait and
environment using model selection, such as options available in the R package Genome
Association and Prediction Integrated Tool (GAPIT) using the BIC fit statistic (Lipka et al.,
2012).

Multiple linear models are extended to a compressed multiple linear model that
reduces processing time by clustering individuals into groups and estimating kinship
separately for each group (Zhang et al., 2010). An enriched compressed multiple linear
model introduces an additional parameter to choose the best-fit combination of algorithms
for clustering individuals and estimating kinship (Li et al., 2014). Most research suggests

incorporating kinship improves model fit compared with models that only account for
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population structure (Yu et al., 2006). Other methods of applying a mixed linear model for
GWAS is through efficient mixed-model association (EMMA, Kang et al., 2008), expedited
EMMA (EMMAX, Kang et al., 2010), genome-wide EMMA (GEMMA, Zhou and Stephens,
2012), or population parameters previously determined (P3D, Zhang et al., 2010). These
methods rely on different algorithms to speed up genetic analyses of large populations.
Marker effects are estimated more accurately for GEMMA than EMMA, EMMAX, or P3D,
because the model re-fits the mixed model at every marker, but is more computationally

intensive (Zhou and Stephens, 2012).

Applications of genome-wide association mapping in wheat

There are many recent reports of successful use of GWAS in wheat. Genetic analyses
have been used to dissect grain yield, yield components, and other agronomic traits (Yao et
al,, 2009; Bentley et al.,, 2014; Sukumaran et al., 2014; Zanke et al., 2014), including under
multiple moisture regimes (Maccaferri et al., 2011; Dodig et al.,, 2012; Edae et al., 2014;
Lopes et al,, 2014; Li et al,, 2015; Mora et al,, 2015). Other studies have evaluated the
genetic basis of quality traits (Breseghello and Sorrells, 2006; Reif et al., 2011), pre-harvest
sprouting (Mohan et al., 2009; Kulwal et al., 2012), and nitrogen-use efficiency (Cormier et
al., 2014). Other applications of GWAS in wheat include stripe rust resistance (Maccaferri et
al,, 2015; Naruoka et al., 2015), Fusarium head blight resistance (Kollers et al., 2013; Jiang
et al.,, 2014), and insect pest resistance (Peng et al., 2009; Joukhadar et al.,, 2013).

The development of high-density genome-wide single nucleotide polymorphism
(SNP) markers in wheat, such as the [llumina iSelect 9K (Cavanagh et al., 2013) or 90K

(Wang et al,, 2014) marker arrays have facilitated fine mapping resolution, and enhanced
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detection of significant marker-trait associations. Prior to widespread availability of high-
density markers, GWAS was conducted using other marker platforms such as simple
sequence repeat (SSR) or diversity array technology (DArT) markers. SSR markers are
amplified with PCT then separated with gel electrophoresis or other methods. They are
simple and reliable, but time consuming (Collard et al., 2005). DArT markers are based on
microarray hybridizations that detect presence-absence variation at many hundreds of loci
in parallel (Jaccoud et al., 2001), and can generate a medium-density genetic map for
complex species (Wenzl et al., 2004). However, there are also challenges associated with
high-density marker platforms. Array-based platforms, such as SNP chips, contribute
substantial ascertainment bias, especially in diverse panels or those with a limited sample
size (Albrechtsen et al., 2010). Next-generation sequencing approaches, such as GBS better
reflect the genetic diversity in a panel of germplasm so have less ascertainment bias, but
multiplexing GBS samples can result in large amounts of missing data (Poland et al., 2012).

In one impressive study, Maccaferri et al. (2011) characterized seven agronomic and
yield traits under different moisture conditions in a collection of 189 elite durum wheat
accessions grown across a total of 15 Mediterranean Basin environments over two years.
The environments had variable amounts of stored soil moisture, precipitation, and
irrigation, ranging from 146 to 711 mm available soil moisture during the growing season.
Interestingly, the panel was grown in parallel with a recombinant inbred line population,
and GWAS was conducted using 179 SSR markers and three developmental genes to

compare QTL detection efficiency between association mapping and bi-parental QTL

mapping.
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Association mapping complemented QTL detected from the bi-parental mapping
population by confirming previously reported QTL and identifying new QTL. Maccaferri et
al. (2011) observed that among GWAS results from different environments, the number of
significant marker-trait associations was relatively stable for heading date, but variable for
grain yield and other agronomic traits, which highlights the complex, quantitative genetic
architecture of grain yield and significant effects of genotype-by-environment interactions
for yield and yield components. For instance, an average of 10.3 significant QTL were
detected in each high-yielding environment, while only 7.0 were detected in low-yielding
environments. The authors concluded that increased levels of moisture stress reduce the
power to detect significant QTL for grain yield, because different genotypes use a variety of
adaptive strategies and gene networks in an effort to maintain grain yield. Because it can be
difficult to detect QTL for grain yield, detecting QTL for other agronomic traits associated
with grain yield might be a more useful approach to identifying high-yielding varieties than
detecting QTL for yield per se.

Similar results were observed among a worldwide core collection of 96 winter
wheat accessions grown under multiple moisture regimes and environments in
southeastern Siberia (Dodig et al., 2012). Three moisture environments were evaluated
each year for three years. The moisture treatments included full irrigation, rainfed, and
drought (using rainout shelters), and in-season water availability (precipitation and
irrigation) ranged from 54 to 418 mm. The germplasm was genotyped with 36 SSR
markers, spaced 1-3 markers per chromosome. The markers characterized allelic diversity
at 46 loci which had an average of 8 alleles per locus. Dodig et al. (2012) identified several

QTL with pleiotropic effects among multiple agronomic traits and environments, and
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concluded that yield components were stable and had greater heritability than grain yield.
Consistent with conclusions from Maccaferri et al. (2011) that QTL for grain yield are more
readily detected in the absence of moisture stress, QTL for grain yield were only detected
under well-watered conditions.

The advent of DArT markers allowed for greater marker density and coverage
across the genome (Wenzl et al,, 2004 ), and have been used in several recent GWAS studies
in wheat (Joukhadar et al.,, 2013; Edae et al.,, 2014). In one study, the wheat association
mapping initiative (WAMI) population of 287 diverse spring wheat accessions was
genotyped with 1863 DArT markers and used to identify QTL associated with grain yield,
yield components, agronomic traits, and physiological traits under multiple moisture
regimes. The WAMI was evaluated at five environments in the U.S. and Ethiopia, and more
than 500 significant marker-trait associations were detected. These associations included
five significant QTL for grain yield, including one stable QTL that was detected in three of
the five environments and in the combined analysis. In a separate study, the WAMI was
evaluated for grain yield and yield-components under four irrigated environments in
Mexico, and genotyped with a high-density SNP array (Sukumaran et al., 2014). The
authors identified 31 significant marker-trait associations for 14 traits, including four QTL
for grain yield.

In summary, genome-wide association studies have provided insight on the genetic
architecture of many traits of interest for plant breeders and scientists. QTL detection
methods have improved due to advances in marker technologies, phenotyping platforms,
and computational processes. However, many QTL are unstable across environments and

have a small effect size, making incorporating novel QTL into breeding material challenging
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(van Eeuwijk et al,, 2010). One approach to increasing the power of GWAS is to combine
population-mapping approaches with family mapping techniques, such as through
developing nested association mapping panels (Zhu et al., 2008) or multi-parent advanced
generation inter-cross (MAGIC) populations (Cavanagh, 2008) where individuals have
structured levels of relatedness. Nested association mapping panels have been developed
for maize (Yu et al., 2008), sorghum (Jordan et al.,, 2011), and barley (Maurer et al., 2015)

and are being developed for wheat.
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Tables

Table 1.1. The formula and reference for published water-based spectral indices. These
indices have been associated with canopy water content and plant water status.

Spectral Index Formulat Reference

Water Index (WI) R900/Ro70 Pefiuelas et al., 1997
Normalized water index 1 (NWI-1) (R970— Rooo)/(Ro70+ Rooo)  Babar et al.,, 2006
Normalized water index 2 (NWI-2) (Ro70— Rss0)/(Ro70+ Rgs0)  Babar et al.,, 2006
Normalized water index 3 (NWI-3) (R970— Ro20)/(Ro70+ Roz0  Prasad et al,, 2007
Normalized water index 4 (NWI-4) (Ro70— Rggo)/(Ro70+ Rggo) Prasad et al., 2007

TR and the subscript indicate the reflectance of light at that specific wavelength (in nm)
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CHAPTER 2:

ALLELIC VARIATION IN DEVELOPMENTAL GENES AND EFFECTS

ON WINTER WHEAT HEADING DATE IN THE U.S. GREAT PLAINS?

Summary

Heading date in wheat (Triticum aestivum L.) and other small grain cereals is
affected by the vernalization and photoperiod pathways. The reduced-height loci also have
an effect on growth and development. Heading date was evaluated in a population of 299
hard winter wheat entries representative of the U.S. Great Plains region, grown in nine
environments during 2011-12 and 2012-13. The germplasm was evaluated for candidate
genes at vernalization (Vrn-A1, Vrn-B1, and Vrn-D1), photoperiod (Ppd-A1, Ppd-B1 and Ppd-
D1), and reduced-height (Rht-B1 and Rht-D1) loci using polymerase chain reaction (PCR)
and Kompetitive Allele Specific PCR (KASP) assays. Our objectives were to determine allelic
variants known to affect flowering time, assess the effect of allelic variants on heading date,
and investigate changes in the geographic and temporal distribution of alleles and
haplotypes. Our analyses enhanced understanding of the roles developmental genes have
on the timing of heading date in wheat under varying environmental conditions, which

could be used by breeding programs to improve breeding strategies under current and

1 A modified version of this chapter has been submitted as follows:

Grogan, S. M., G. Brown-Guedira, S. D. Haley, G. S. McMaster, S. D. Reid, J. Smith, P. F. Byrne.
2015. Allelic variation in developmental genes and effects on winter wheat heading date in
the U.S. Great Plains. PLOS One.
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future climate scenarios. The significant main effects and two-way interactions between
the candidate genes explained an average of 44% of variability in heading date at each
environment. Among the loci we evaluated, most of the variation in heading date was
explained by Ppd-D1, Ppd-B1, and their interaction. The prevalence of the photoperiod
sensitive alleles Ppd-A1b, Ppd-B1b, and Ppd-D1b has gradually decreased in U.S. Great
Plains germplasm over the past century. There is also geographic variation for photoperiod
sensitive and reduced-height alleles, with germplasm from breeding programs in the
northern Great Plains having greater incidences of the photoperiod sensitive alleles and
lower incidence of the semi-dwarf alleles than germplasm from breeding programs in the

central or southern plains.

Introduction

Hexaploid wheat is a widely cultivated, productive, and nutritionally important crop
grown across most major agricultural regions of the world. In 2013 wheat was planted on
more than 290 million hectares worldwide, which is more land than any other crop

(http://faostat3.fao.org). Average global yield was estimated at 3.27 t ha'l. In the U.S.

average yield was 3.17 t ha'! for all classes of wheat and 2.46 t ha-! for hard red winter
wheat (http://www.ers.usda.gov), the predominant market class in the Great Plains region.
The global success of wheat can be attributed to its adaptability to diverse management
practices and environmental conditions (Worland and Snape, 2001).

Variation in flowering time tailors wheat to a particular target environment. Floral
organs are susceptible to environmental stresses, and freezing temperatures, drought

stress, or heat stress can damage delicate floral structures and reduce yield. Local
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adaptation can arise from direct or indirect selection of developmental timing best suited
for local temperature and precipitation patterns, management practices, soil properties, or
other environmental characteristics (Kamran et al., 2014a). Fine-tuning plant development
may increase yield and yield stability by timing growth and development around the type,
onset, duration, and severity of stresses characteristic of the region. Wheat breeders
typically select (directly or indirectly) for later flowering in northern regions to protect the
developing spike from cold temperatures and earlier development at southern latitudes
where it is more important to flower before the onset of heat stress.

Three major genetic systems affect flowering time in wheat: vernalization,
photoperiod, and earliness per se (EPS). Vernalization requirements control winter, spring,
or facultative growth habit and are governed by at least three groups of loci (Vrn1, VrnZ,
and Vrn3). Ancestral wheats were sensitive to vernalization and required a period of
continuous cold temperature to transition from vegetative to reproductive growth. The
most common source of spring growth habit is a dominant mutation at one or more Vrnl
loci (Vrn-A1, Vrn-B1, Vrn-D1), located on the long arm of the group 5 chromosomes (Yan et
al., 2004a; Trevaskis, 2010). Dominant mutations at Vrn3 (Yan et al., 2006) or recessive
mutations at rn2 (Yan et al,, 2004b; Zhu et al., 2011) also reduce the vernalization
requirement and contribute to quantitative variation in flowering time.

The photoperiod sensitivity system also provides broad adaptability to specific
environmental conditions. Three homoeologous photoperiod loci (Ppd-A1, Ppd-B1, Ppd-D1)
are located on the group 2 chromosomes. Ancestral wheats were photoperiod sensitive and
required long days to flower. Mutations at the photoperiod loci cause the photoperiod

insensitive “day neutral” phenotype with earlier flowering. Variation in photoperiod
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sensitivity is primarily controlled by allelic variants at Ppd-D1 (Beales et al., 2007) and
copy number variants at Ppd-B1 (Diaz et al., 2012). A smaller amount of variation is
controlled by Ppd-A1 (Worland et al., 1998). The photoperiod and vernalization pathways
are integrated and epistatic interactions between photoperiod loci and Vrn1 are well
characterized (Eagles et al., 2010).

Additional variation in flowering time after vernalization and photoperiod
requirements have been fulfilled is due to EPS. These small effect loci are numerous and
heritable (Kamran et al., 2014a), but generally unstable across environments (Griffiths et
al,, 2009). Less is known about EPS than the other genetic systems affecting flowering time.
Further optimization of developmental timing is contributed by epistatic interactions
among genes or QTL (Griffiths et al., 2009) and may be affected by gibberellin insensitivity
through the reduced height loci (Wilhelm et al., 2013a).

The reduced-height loci are known to affect growth and development in winter
wheat (Bush and Evans, 1988). Reduced-height genes encode DELLA proteins, which are
growth repressors that are degraded by a process that involves gibberellin (Wilhelm et al,,
2013c). Rht-B1b and Rht-D1b each have a single SNP that causes a premature stop codon,
resulting in reduced sensitivity to gibberellic acid and semi-dwarf stature. Gibberellin
insensitivity has been associated with earlier heading date in wheat, and the reduced
height alleles Rht-B1b and Rht-D1b are the predominant semi-dwarf alleles in wheat
worldwide (Wilhelm et al.,, 2013a). Rht-B1b has been reported as the leading cause of semi-
dwarf stature among winter wheat in the U.S. Great Plains region (Guedira et al., 2010).

Guedira et al. (2010) found the reduced height alleles Rht-B1b and Rht-D1b to be
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widespread in U.S. germplasm, and Rht8c to be less common but linked with the
photoperiod insensitive allele Ppd-D1a.

The allelic diversity of candidate loci known to affect heading date has been
characterized in several worldwide (Wilhelm et al., 2013a; Kiss et al.,, 2014) and regional
(Cane et al,, 2013; Kamran et al., 2014b; Shcherban et al., 2014) collections of spring and
winter wheat. Analyses of core collections of germplasm have indicated substantial
variation in the geographic distribution of vernalization and photoperiod alleles. Variation
in the presence and distribution of alleles and haplotypes has been found to vary among
continents e.g.,(Kiss et al., 2014) and countries (Shcherban et al., 2014), with some
haplotypes under-represented or absent from particular geographic regions. A more
complete understanding of the genetic controls—including the allelic variants and effects
of single genes, and distribution of favorable multi-locus genotypes—is important for plant
breeders to prepare for future climate scenarios including those that are more variable or
extreme than today’s conditions (Beniston et al.,, 2007; Lobell et al., 2011).

We examined allelic variation, distribution, and effects of vernalization, photoperiod,
and reduced height loci in a collection of hard winter wheat germplasm representative of
the U.S. Great Plains. This is the first article to determine allelic diversity at the photoperiod
loci in winter wheat germplasm from the U.S. Great Plains. The objectives of the experiment
were

i) To characterize allelic variants at loci known to affect flowering time, including
vernalization, photoperiod, and reduced-height genes;
ii) To assess the effect of allelic variants on heading dates in nine U.S. Great Plains

environments; and
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iii) To investigate temporal and geographic distribution of alleles and haplotypes among

germplasm developed during different periods or from different regions of the U.S.

where hard winter wheat is grown.

Materials and methods

Germplasm

The germplasm was a collection of 299 winter wheat genotypes comprising the
Triticeae Coordinated Agricultural Project (http://www.triticeaecap.org) hard winter
wheat association mapping panel (Table S2.1). The entries included modern and historic
cultivars and experimental breeding lines. Public breeding programs contributed 270
entries, private breeding programs contributed 27, and two were historic cultivars
developed before 1900. The publically developed germplasm came from Nebraska (55
entries), Oklahoma (54 entries), Texas (51 entries), Colorado (34 entries), Kansas (30
entries), Montana (23 entries), South Dakota (21 entries), Michigan (1 entry), and North

Dakota (1 entry). The entries were derived between 1874 and 2010, but most represent

modern improvements and were derived after the Green Revolution. Only 19 were derived

before 1960.

Environments and experimental design

The entries were evaluated in nine field trials conducted across the U.S. Great Plains

region during 2011-2012 and 2012-2013, as described previously (Grogan et al., 2015)
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and in Table 2.1. Each environment was a combination of location, year, and moisture
treatment, with three possible moisture regimes: full irrigation, partial irrigation, and
rainfed (no supplemental irrigation). Environments grown in 2011-2012 include rainfed in
Bushland, TX (Bul2R), full irrigation in Greeley, CO (Gr12F), partial irrigation in Greeley,
CO (Gr12P), rainfed in Ithaca, NE (It12R), and Manhattan, KS (Ma12). The 2012-2013
environments include rainfed in Ardmore, OK (Ar13R), Fort Collins, CO (Fo13), rainfed in
Hays, KS (Ha13R), and rainfed in Ithaca, NE (It13R). Different environments at the same
location during the same year were side-by-side treatments with a moisture differential.
There were separate rainfed and irrigated treatments at Fo13 and Ma12, but irrigation was
not applied until after heading date so there were no significant treatment effects on
heading date and the moisture treatments were treated as replications.

Four environments (Bul2R, Gr12P, Gr12F, Hal3R) were unreplicated and arranged
in an augmented row-column design with two check varieties. The experimental entries
were unreplicated except for ‘Wichita’ (CI 11952), which was included in the panel twice.
The two check varieties were replicated 15 times each and systematically placed
throughout the field. Fo13 had a similar experimental design but included two replications.
The check varieties at Bu12R, Fo13, Gr12P, Gr12F, and Hal3R were ‘Hatcher’ (Haley et al,,
2005) and ‘Settler CL’ (Baenziger et al.,, 2011), and these varieties were also included as
experimental entries in the trial. Irrigation was applied at Gr12P and Gr12F using drip
irrigation. Gr12P was irrigated less frequently and at a reduced volume than Gr12F.
Irrigation totaled 101.6 mm at Gr12P and 335.3 mm at Gr12F. It12R and [t13R used a
similar experimental design but plots were arranged as 15 incomplete blocks, with one plot

within each block planted to each of the check varieties Settler CL and ‘Jagger’ (Sears et al.,

38



1997). Both [t12R and It13R included four replications, and these trials are described in
detail by Guttieri et al. (2015). Ma12 had four replications of a modified augmented design
arranged as incomplete blocks using a single, locally adapted check variety, ‘Everest’

(http://kswheatalliance.org/varieties/everest/). The Ar13R trial was arranged as a

randomized complete block design with two replications. Harvested plot area ranged from

2.2 to 4.6 m2.

Phenotypic evaluation

Crop development was determined for each field plot using Zadoks’ scale (Zadoks et
al,, 1974). Heading date (stage 59) was recorded when the spike had fully emerged from
the flag leaf sheath in approximately 50% of tillers. Days to heading were recorded as the
number of days from January 1 to heading date. Growing degree-days from 1 January to
heading were determined previously, and found to be strongly correlated with days from
January 1 to heading (Grogan et al., 2015). However, number of days to heading was used
in these analyses because estimates of allelic effects in days are more widely understood

than estimates in °C days.

Genetic evaluation

DNA preparation for genetic analyses
Genomic DNA was extracted at Colorado State University from leaf tissue from
single seedlings using the phenol-chloroform method modified slightly from Riede and

Anderson (Riede and Anderson, 1996) .
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KASP marker analysis

Polymorphisms were identified using LGC Genomics (http://www.lgcgroup.com)
KASP system fluorescent assays at the USDA-ARS Regional Small Grains Genotyping
Laboratory in Raleigh, NC. Polymerase chain reaction (PCR) was run according to
manufacturer’s instructions, using a reaction volume of 4.0 pl, which consisted of 2 pl 2x
KASPar reaction mix, 0.05 pl 72x assay mix, and 2 pl of template DNA (10 ng pl-1). Endpoint
genotyping was conducted from fluorescence using the software KlusterCaller (LGC
Genomics, Hoddeson, UK).

Kompetitive Allele Specific PCR (KASP) assays developed from published sequences
of causal genes were run to distinguish alleles at Vrn-A1, Vrn-B1, Vrn-D1, Ppd-A1, Ppd-B1,
Ppd-D1, Rht-B1, and Rht-D1 (Table S2.2). The exception was the KASP assay wMAS000033
used for detection of the Vrn-Ala spring allele developed from the contextual sequences of
iSelect SNP marker IWA0001 (Cavanagh et al., 2013) determined to be associated with Vrn-
Ala.

The spring allele Vrn-A1b was distinguished from Vrn-Ala and the vrn-A1 winter
allele using codominant marker wMAS000034 (Yan et al., 2004a). Two additional markers
were evaluated to determine copy number variation (CNV) of the winter allele vrn-A1: Vrn-
A1_Exon4_C/T and Vrn-A1_Exon7_G/A (Diaz et al,, 2012). The C allele at Vrn-A1_exon4 is
associated with two or fewer copies, and the G allele at Vrn-A1_exon7 is associated with a
single copy, so entries were classified as having three or more copies, two copies, or one
copy of virn-A1. A PCR assay for Vrn-A1 (Chen et al., 2009) was also run that detected the
same SNP polymorphism and distinguished two winter alleles—renamed vrn-AIw and vrn-

Alv by Eagles et al. (2011)—associated with winter dormancy release and freezing
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tolerance. Thus, the winter alleles detected at Vrn-A1 using PCR correspond with CNV
detected using KASP.

Three KASP markers used to distinguish spring alleles at Vrn-B1. TaVrn-B1_D-I,
wMAS000037, and Vrn-B1_C are codominant markers that detect the Vrn-Bla, Vrn-B1b
(Santra et al., 2009), and Vrn-B1c (Milec et al,, 2012) spring alleles, respectively. An
additional codominant marker, TaVrn-B1_1752, detected an A/G polymorphism in intron 1
of the vrn-B1 gene associated with differences in vernalization requirement duration
(Guedira et al., 2014). The spring and winter alleles at Vrn-D1 were distinguished using a
single dominant marker, wMAS000039 (Fu et al., 2005).

Photoperiod insensitive allele Ppd-A1a.1 was assayed with the marker TaPpd-
Alprodel, which detects a deletion characteristic of the insensitive allele (Nishida et al.,
2013). Alleles at Ppd-B1 were distinguished using two markers: wMAS000027, which
detects the ‘Chinese Spring’-type insensitive allele with a truncated copy and TaPpdBJ003,
which identifies the ‘Sonora 64’-type insensitive allele based on the presence of an
intercopy junction (Diaz et al., 2012). Photoperiod sensitive and insensitive alleles at Ppd-
D1 were distinguished using a single codominant marker, wMAS000024 that detects a
deletion upstream of the coding region responsible for the photoperiod insensitive
phenotype (Beales et al., 2007).

Single markers were also used to detect point mutations at the reduced-height loci
Rht-B1 and Rht-D1 (Ellis et al., 2002). Mutants at Rht-B1 were genotyped using
wMASO000001 that detected the causative SNP for semi-dwarf stature. Likewise, a single
marker, wMAS000002 was used to detect the polymorphism at Rht-D1 that is associated

with semi-dwarf stature. Additional information about KASP assays having wMAS
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designations is available at

www.cerealsdb.uk.net/cerealgenomics/CerealsDB/kasp_download.php?URL-=.

Diagnostic markers for candidate genes

PCR assays for Ppd-D1, Rht-B1, Rht-D1, and Vrn-A1 were performed at Colorado
State University and complemented results from the KASP assays by confirming allele calls,
filling in missing data, and detecting alternate alleles. PCR assays for Ppd-D1 were
conducted as described previously (Beales et al., 2007) to differentiate the photoperiod
insensitive Ppd-D1a and two sensitive alleles based on band size of the PCR product. The
major photoperiod sensitive allele is Ppd-D1b. Detection of the reduced height alleles Rht-

B1b and Rht-D1b followed the methods of Ellis et al. (2002).

Statistical analyses

Best linear unbiased predictors were calculated separately for each environment
based on field design and spatial trends using SAS 9.3 (SAS Institute, Inc., Cary, NC). Six
different spatial correlation models (row-column, spherical, exponential, power,
anisotropic power, and Matérn, (Littell et al.,, 2006) were tested for environments with a
modified augmented design (Bul2R, Fo13, Gr12P, Gr12F, Ha13). The best model was
selected based on the AIC fit statistic. Replications were treated as a random effect for
other environments with multiple replications (Ar13R, Fo13, [t12R, [t13R, Ma12).

Further statistical analyses were performed using the software R (version 3.1.3, R

Development Core Team). Combined analyses of the effects of alleles at single genes were
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evaluated on all entries with homozygous allele calls using the ‘car’ package (Fox and
Weisberg, 2011). The ANOVA model terms consisted of the environment, gene, and when
significant, interaction between the gene and environment. All terms were fit as fixed
effects. Entries with heterozygous calls were treated as missing. When a gene had more
than two alleles, pairwise comparisons were run using the ‘Ismeans’ package (Lenth, 2015)
to test differences between each pair of alleles. Individual environments were analyzed
using the linear model (Im) function in the ‘stats’ package (R Development Core Team,
2015) to evaluate the proportion of variability in heading date explained by one or more
gene, and to test for interactions between genes.

Models that tested effects of multiple genes included all entries with complete
genotypic data at those loci. For model comparison a subset of 280 entries with complete
genotypic data and all homozygous calls at the photoperiod and reduced-height loci were
analyzed (Table 2.2). First, a full model that included the main effects of all five genes and
all ten two-way interactions were fit to each data set. In the combined analysis, the main
effect of the environment, two-way interactions between the environment and each gene,
and ten three-way interactions between the environment and pairs of genes were also
included in the model. Then, through an iterative backwards stepwise process, the least
significant model term was removed one-at-a-time until the best-fit model was identified
based on the lowest AIC value. In some cases the best-fit model included non-significant

terms, but removing these terms detracted from model fit.
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Results

Allelic diversity of candidate genes

The 299 winter wheat entries were genotyped at 11 candidate genes, but sample
size varied among the loci due to different amounts of missing data at each gene. Genotypic
data were missing from up to 12 entries per locus. The genotypes at each candidate gene
for every entry are provided in Table S2.1.

Winter growth habit is determined by recessive alleles at all three Vrn1 genes.
Spring alleles at Vrn-A1, Vrn-B1, or Vrn-D1 were not detected for any entry, validating our
assumption that this germplasm consists exclusively of winter wheat entries. There was
variation among winter alleles at virn-A1 and vrn-B1 The SNP in vrn-A1 associated with
copy number (Diaz et al., 2012) varied, with 265 (89%) of entries predicted to have three
or more copies, four entries (1%) having two copies, and 29 entries (10%) having a single
copy. Copy number variation correspond with the winter alleles at Vrn-A1 described by
Eagles et al. (2011), such that the strong winter Wichita allele (Vrn-A1w) is associated with
three or more copies of the gene and the ‘Veery’ (Merker, 1982) allele (Vrn-A1v) with two
or fewer copies. Increased copy number at vrn-A1 has been associated with greater
vernalization requirements, resulting in later flowering when the vernalization
requirement is only partially fulfilled (Diaz et al., 2012).

Two winter alleles at Vrn-B1 were previously described to affect heading date
following a short vernalization duration, but with no effect when the vernalization
requirement is fully satisfied (Guedira et al., 2014). The winter allele characteristic of
‘AGS2000’ (Johnson et al.,, 2002) has an A at position 1752 and was associated with lower

vernalization requirements and earlier heading than the ‘NC-Neuse’ (Murphy et al., 2004)
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allele (C at position 1752). Low variation at this locus was observed in this germplasm.
Most of the germplasm (292 entries, 99%) carried vrn-B1-Neuse; only ‘TAM 401’ (Rudd et
al,, 2012) and TX05A001822 had vrn-B1-AGS2000.

Alleles at the photoperiod genes Ppd-A1, Ppd-B1, and Ppd-D1 were polymorphic
among the wheat entries evaluated. A total of 292 entries were genotyped successfully at
Ppd-A1, including 286 entries (98%) with the sensitive allele Ppd-A1b and six entries (2%)
with the insensitive allele Ppd-Ala. The six entries all originated from breeding programs
in the southern U.S. and included “TAM 302’ (Marshall et al., 1999), 0K05303, 0K05134,
TX04M10211, TX05V7269, and TX06A001132. For Ppd-B1, 286 entries were genotyped,
including 163 entries (56%) with the sensitive allele Ppd-B1b and 123 entries (43%) with
the insensitive allele Ppd-B1a. Genotypes were obtained at Ppd-D1 for 294 entries. Most
entries (208 entries, 71%) carried the photoperiod sensitive allele Ppd-D1b, while 86
entries (29%) carried Ppd-D1a.

The KASP assay identified the photoperiod insensitive allele at Ppd-D1. The PCR
assay for Ppd-D1 further characterized allelic variation. Photoperiod insensitivity at Ppd-D1
is caused by a 2089 bp deletion upstream of the coding region (Beales et al., 2007). In
presence of the deletion, a 288 bp band is produced that corresponds with Ppd-D1a. The
presence of the photoperiod sensitive Ppd-D1b allele is detected by amplifying a 414 bp
fragment within the deletion region with primer pairs Ppd-D1_F and Ppd-D1_R1. Ppd-D1a
was identified in 88 entries (29%), and the sensitive allele Ppd-D1b was found in 204
entries (68%). Guo et al. (2010) described two small (24 and 15 bp) insertions within the

intact 2089 bp region characteristic of an alternate photoperiod sensitive allele that results
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in a PCR fragment size of 453 bp. The alternate photoperiod insensitive allele was detected
in seven entries (2%).

Both Rht-B1 and Rht-D1 were polymorphic among the germplasm evaluated. All 299
entries were genotyped for Rht-D1, while 289 entries were successfully genotyped for Rht-
B1. For Rht-D1, 283 entries (95%) carried homozygous copies of the tall wild type allele
Rht-D1a, 14 entries (5%) carried homozygous copies of the semi-dwarf allele Rht-D1b, and
two entries (<1%) were heterozygous. For Rht-B1, 202 entries (70%) carried homozygous
copies of the semi-dwarf allele Rht-B1b, 83 entries (29%) carried homozygous copies of

Rht-Bla, and four entries (1%) were heterozygous.

Diversity of multi-locus genotypes

There were 286 entries (280 entries with all homozygous allele calls and six entries
with heterozygous allele calls at one or more loci) with complete genotypic data at all five
photoperiod and reduced height loci. These 286 entries were used to investigate diversity
of multi-locus genotypes. Fourteen of the 32 possible combinations of five-locus genotypes
with all homozygous calls were present in the germplasm (Table 2.2). Five additional
genotypes had heterozygous allele calls at Rht-B1 or Rht-D1. The most common genotypes
were Ppd-A1b/Ppd-Bla/Ppd-D1b/Rht-B1b/Rht-D1a (74 entries, 26%), Ppd-A1b/Ppd-
B1b/Ppd-D1b/Rht-B1b/Rht-D1a (54 entries, 19%), Ppd-A1b/Ppd-B1b/Ppd-D1b/Rht-
Bla/Rht-D1a (45 entries, 16%), and Ppd-A1b/Ppd-B1b/Ppd-D1a/Rht-B1b/Rht-D1a (43
entries, 16%). All other five-locus genotypes had six or fewer entries each.

The most common three-locus genotype at the photoperiod loci was Ppd-A1b/Ppd-

B1b/Ppd-D1b (104 entries, 36%, Table 2.2). There were 91 entries (32%) with Ppd-
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Alb/Ppd-Bla/Ppd-D1b and 57 entries (20%) with Ppd-A1b/Ppd-B1b/Ppd-D1a. There were
28 entries (10%) with Ppd-A1b/Ppd-Bla/Ppd-D1a. Only six entries (2.0%) carried Ppd-Ala
(with or without insensitive alleles at any other photoperiod gene). No entries had
insensitive alleles at all three photoperiod genes.

Among the 286 entries with complete allelic data at all five photoperiod and
reduced-height loci, the most common allelic combination at the two reduced-height genes
was Rht-B1b/Rht-D1a (198 entries, 69%), followed by Rht-B1a/Rht-D1a (69 entries, 24%),
and Rht-Bla/Rht-D1b (14 entries, 5%, Table 2.2). The remaining entries were heterozygous
at one or both reduced-height genes. No entries had mutations at both Rht-B1 and Rht-D1.
These results are in agreement with those presented by Guedira et al. (2010) in a similar

set of germplasm.

Changes in diversity of photoperiod alleles over time

The prevalence of the photoperiod sensitive alleles Ppd-A1b, Ppd-B1b, and Ppd-D1b
has decreased gradually among U.S. Great Plains hard winter wheat germplasm over the
past century (Table 2.3). The first appearance of Ppd-Ala in this germplasm collection
occurred with the derivation of ‘TAM 301’ (Marshall et al.,, 1998) in 1991 (Table S2.1). Ppd-
Alais rare in this germplasm but the prevalence of this allele has increased over time.
Among entries derived after 2000, 4% were found to carry Ppd-Ala (Table 2.3). The
photoperiod sensitive allele Ppd-B1b is found in 90% of entries derived prior to 1960, 67%
of entries derived between 1960 and 1979, and 58% of those derived between 1980 and
1999. Among germplasm derived after 2000, Ppd-B1a is the more common allele and is

found in 52% of entries. The prevalence of Ppd-D1b remains at a constant 85% for entries
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derived before 1960 and between 1960 and 1979. However, the percentage of entries
carrying Ppd-D1b drops to 71% among entries derived between 1980 and 1999, and is

further reduced to 65% among entries derived after 2000.

Effect of photoperiod alleles on heading date

Heading date had a grand mean of 130.8 days among all 299 entries and nine
environments. In the combined analysis Ppd-A1 had a significant effect (P < 0.01) on
heading date across environments. Entries with the photoperiod sensitive allele Ppd-A1b
reached heading an average of 2.0 days later than those with Ppd-Ala (Table S2.3). The
effect of Ppd-A1 was not significantly different among environments, indicating a lack of
significant genotype-by-environment (GxE) interaction at Ppd-A1. However, in analyses of
individual environments the effect was significant (P <0.05) at only two environments:
Ar13R (where the effect size was 5.0 days) and Fo13 (where the effect size was 0.4 days).
Only six entries had Ppd-Ala and the lack of significant effects in most environments is
likely influenced by low diversity at this locus.

The effect of Ppd-B1 on heading date was significant in the combined analysis (P <
0.001). Ppd-B1b was associated with 3.0 days later heading across environments, but there
was significant GxE. Ppd-B1 had a significant effect (P <0.05, Table S2.3) in all individual
environments except Mal2 and It12R. The effect of Ppd-B1b ranged from a minimum of 0.8
days later heading date in Fo13 (latitude of 40.65 °N, Table 2.1) to a maximum of 5.2 days
later in Ar13R (latitude of 34.18 °N).

There was a significant effect (P < 0.001) of Ppd-D1 on heading date in the combined

analysis. The average effect of Ppd-D1b was 3.2 days later heading, which was larger than
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the effects of Ppd-B1b or Ppd-A1b. However, the effect of Ppd-D1 varied among
environments, and the effect size of Ppd-D1b ranged from a minimum of 1.0 day in Fo13 to
a maximum of 5.2 days in Ar13R (Table S2.3). Ppd-D1 did not have a significant effect in
Bul2R, Mal2, or [t12R, which were in the southern, central, and northern regions of the
U.S. Great Plains.

Models including Ppd-D1, Ppd-B1, and the interaction between Ppd-D1 and Ppd-B1
explained up to 65% of the variability in heading date (Table S2.4). The interaction
between Ppd-B1 and Ppd-D1 was significant in most environments (excluding Bu12R and
[t12R), but when the interaction was included the main effects of the loci became non-
significant (Table S2.4). The interaction was such that entries with both photoperiod
sensitive alleles reached heading much later than those with a single photoperiod sensitive
allele or both photoperiod insensitive alleles. The largest significant effects were seen at
Ar13R (8.6 days) and Ma12 (6.4 days) The effect of the significant interaction between Ppd-
B1 and Ppd-D1 is illustrated for three Colorado environments (Gr12P, Gr12F, and Fo13) in
Fig 2.1A-C. The effect of interaction between Ppd-D1b and Ppd-B1b in the Colorado

environments ranged from 1.5 to 4.1 days (Table S2.4).

Effect of semi-dwarf alleles on heading date

In the combined analysis, the semi-dwarf allele Rht-B1b had a significant (P < 0.001)
effect on heading date and significant (P < 0.001) GxE. Rht-B1b was associated with an
average effect of 2.6 days earlier heading, but the effect ranged from 1.1 days in Hal3R to

4.4 days in Ar13R (Table S2.3). There was a low level of genetic diversity at Rht-D1 and the

49



locus did not have a significant effect on heading date when it was the only genetic term in
the model.

There were 285 entries with homozygous allele calls at Rht-B1 and Rht-D1. When
both loci were included in the model, the main effects of both Rht-B1 and Rht-D1 were
significant (P < 0.001, Table 2.4). There was significant GxE for Rht-B1 but not Rht-D1. The
effect of Rht-D1b was 2.6 days later heading, and the effect of Rht-B1b ranged from a
minimum of 1.1 days later heading in Gr12F to a maximum of 4.9 days later in Ar13R
(Table 2.5). Interaction between Rht-B1 and Rht-D1 could not be tested because not all four
allelic combinations were present in this germplasm. In most environments Rht-B1 and
Rht-D1 had similar effects on heading (Table 2.5). Rht-B1 had a larger effect than Rht-D1 in
six environments (Ar13R, Bul2R, Gr12P, Hal3R, Ma12, and It12R), while Rht-D1 had the

larger effect in Fo13, Gr12F, and It13R.

Effect of vernalization alleles on heading date

No entry had alleles for spring growth habit detected at Vrn-A1, Vrn-B1, or Vrn-D1.
The effect of different winter alleles at vrn-B1 was significant (P <0.01) in the combined
analysis, with the ‘Neuse’ allele heading 2.2 days later (Table S2.3). However, only two
entries carried the ‘AGS2000’ allele at vrn-B1. The GxE term was not significant for vrn-B1.

Variation observed for the winter allele vrn-A1 had a significant effect (P < 0.001)
on heading date that varied among environments (Table S2.3). The differential effect of
three or more vrn-A1 copies relative to a single copy ranged from a minimum of 0.5 days
later heading in Gr12P to a maximum of 4.7 days later heading in Ar13R. The effect of three

or more copies of vrn-A1 relative to two copies also had a significant (P < 0.01) effect in the
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combined analysis, such that entries with two copies reached heading 1.9 days earlier. This
effect had significant GxE, and in individual environments the effects of three or more
copies relative to two copies were only significant in Ar13R, where the effect size was 5.5
days (Table S2.3).

Copy number variation at vrn-A1 has been previously shown to have a positive
association with vernalization requirements and survival under freezing conditions (Eagles
et al.,, 2011). The strong effect of vin-A1 in Ar13R suggests winter temperatures at this
environment may not have fully satisfied the vernalization requirements of all entries.
Ar13R experienced a mild winter with daily highs always above 0°C. The effect of allelic
variation at vrn-A1 did not have a significant effect at [t12R, which experienced a cold

winter with 11 days that had highs below 0°C and 65 days with lows below 0°C.

Multivariate analyses of alleles on heading date

Combined analyses across environments

The significance of Ppd-A1, Ppd-B1, Ppd-D1, Rht-B1, Rht-D1, and their interactions
were tested in a multiple-gene model using a subset of 280 entries with complete genotypic
data and homozygous calls at all loci (Table 2.2). For the combined analysis the full model
included main effects of the environment, main effects of all five genes, all 10 two-way
interactions between genes, and the interaction of each genetic term with the environment.
A backwards-stepwise approach was used to identify the best-fit model based on lowest

AIC value.
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The best-fit model to explain heading date across environments included effects of
the environment; Ppd-D1, Ppd-B1, Rht-B1; the interaction between Ppd-D1 and Ppd-B1; the
interaction between Ppd-B1 and Rht-B1; two-way interactions between the environment
and Ppd-D1, Ppd-B1, and Rht-B1; and a three-way interaction between the environment,
Ppd-D1, and Ppd-B1 (Table 2.6). This model explained 96% of the phenotypic variation in
heading date, with most of the variation (77%) explained by the environment. Ppd-D1
explained 9.0% of the variation in heading date, Ppd-B1 explained 8.3% of the variation,
and their interaction explained another 3.9% of the variation. Rht-B1 had a small effect on
heading date, explaining 0.7% of the variation. The interaction between Rht-B1 and Ppd-B1

had a minor effect on heading date, and explained 0.3% of the variation.

Individual analyses for each environment

Multi-gene models were fit to each environment separately using the same
backwards-stepwise model selection method as for the combined analysis. The full model
included the main effects and all two-way interactions between genes. The best-fit models
varied among environments and are summarized in Table 2.7. When an interaction was
included the main effects were always retained. In some cases the best-fit model included
non-significant terms. The effects of Ppd-D1, Ppd-B1, and the interaction between Ppd-D1
and Ppd-B1 were included in the best-fit model for each environment. The interaction
between Ppd-D1 and Ppd-B1 had a maximum effect size of 8.2 days in It12R. Rht-B1 was
also included for every environment except Gr12F. None of the best-fit models included the
main effect of, or interactions with, Ppd-A1 or Rht-D1. Some best-fit models also included

interactions between Ppd-B1 and Rht-B1 or Ppd-D1 and Rht-B1. The combined allelic effects
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explained an average of 44% of the variability in heading date, but ranged from a minimum

of 14.2% in Fo13 to a maximum of 69.3% in Ma12 (Table 2.7).

Geographic distribution of alleles

We investigated the geographic distribution of alleles at the vernalization, photoperiod,
and reduced-height loci among 264 entries derived from public breeding programs in
Colorado, Kansas, Montana, Nebraska, North Dakota, Oklahoma, South Dakota, and Texas.
Average heading date of these 264 entries, across all nine environments, was 131.0 + 13.6
days after Jan.1, or about May 11. The distribution of alleles was expected to vary among
breeding programs in different states, because the regions for those programs have
variable environmental conditions known to affect heading date. For instance, Texas has
much milder winter temperatures than northern locations, and Montana and North Dakota
have greater changes in day length throughout the year than the central and southern
plains, due to their northern latitudes.

In a combined analysis across environments there were significant differences (P <

0.001) in heading date among entries from different states of origin. However, not all pairs
of states had significant different heading dates. The entries were divided into three broad
regions within the U.S. Great Plains: northern plains (Montana, North Dakota, and South
Dakota; 39 entries), southern plains (Texas and Oklahoma; 105 entries), and central plains
(Colorado, Kansas, and Nebraska; 120 entries, Fig 2.2A). There were significant differences
(P <0.01) in heading dates among entries originating from each pair of regions. Average
heading dates were earliest among entries derived in the southern plains (128.8 + 14.3

days after Jan.1). Heading occurred about 2.8 days later in the central (131.6 + 13.1 days)
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than southern plains. Latest heading dates were observed for germplasm from the
northern plains (134.9 + 12.2 days).

All three photoperiod sensitive alleles (Ppd-Ala, Ppd-Bla, Ppd-D1a) were present at
higher levels in germplasm from the southern plains than those from the central or
northern plains (Fig 2.2B). The photoperiod insensitive allele Ppd-A1a was uncommon in
this germplasm. Ppd-Ala was only present in six entries (2%), all of which originated in the
southern plains. Ppd-B1a was much more evenly distributed—present in 42% of entries
overall—but varied gradually among the three regions. Ppd-B1a was found at highest
proportions (58%) in germplasm from the southern plains, and at much lower levels in the
central (36%) or northern plains (14%). Similar patterns were observed for Ppd-D1a,
which was found in 44% of entries from the southern plains, 19% of entries from the
central plains, and only 10% of entries from the northern plains.

The semi-dwarf alleles at the reduced-height loci were more common in germplasm
derived in the southern plains than those originating from the northern or central plains.
Rht-B1b was found in 70% of entries overall, including 88% of entries from the southern
plains, 61% of entries from the central plains, and only 53% of entries from the northern
plains (Fig 2.2B). The semi-dwarf allele Rht-D1b was rare in the panel, and present in only
11 (4%) entries. However, the distribution of this allele was much higher in the southern
plains (7 entries, 9%) than the northern plains (1 entry, 3%) or central plains (3 entries,

3%).
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Discussion

Our first objective was to characterize allelic variants at loci known to affect
developmental timing of wheat through the vernalization, photoperiod sensitivity, and
reduced-height pathways. Marker analysis revealed the incidence of semi-dwarf alleles
Rht-B1b and Rht-D1b in this germplasm was comparable to that reported by Guedira et al.
(2010) in a similar set of germplasm. The photoperiod insensitive alleles Ppd-B1a and Ppd-
Dl1a were present at similar levels as detected by Kiss et al. (2014) in a worldwide
collection of winter wheat. We found Ppd-A1la to be rare in this germplasm, and present at
slightly lower levels than reported among European accessions (Shcherban et al,, 2014).
Further allelic variation could exist in our panel as additional allelic variants (Guo et al.,
2010; Nishida et al., 2013) or copy number variants (Cane et al,, 2013; Zhu et al., 2014) not
detected by our assays.

Guo et al. (2010) described four modern and two ancient Ppd-D1 haplotypes present
in a worldwide collection of wheat, and detected all four modern haplotypes in accessions
from the U.S. and Canada. Our analyses could only differentiate two modern and one
ancient haplotype, which suggests additional haplotypes could be present. Seven of our
entries had an alternate photoperiod sensitivity allele at Ppd-D1b, described by Guo et al.
(2010) as haplotype VI. The alternate allele did not have a significant effect on heading date
across environments, probably due to the small sample size. The entries with haplotype VI
are ‘OK Rising’ (PI 656382), ‘Thunder CL’ (Haley et al., 2009), TAM 303, KSO0F5-20-3,
‘Overley’ (PI1 634974), ‘Chisholm’ (Smith et al., 1985), and ‘Custer’ (0K88767-11).
Haplotype VI is thought to be an ancient deletion and is associated with Aegilops tauschii

accessions and synthetic wheats (Guo et al., 2010). All seven entries we characterized as
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haplotype VI have pedigree contributions from Aegilops tauschii or Eastern European
germplasm. The Eastern European parentage might also include Aegilops tauschii, as exotic
germplasm and interspecific crosses were introduced to this region during the 1970s and
1980s (Roussel et al., 2005) .

Additional alleles have also been described at Ppd-A1 (Nishida et al.,, 2013). The
photoperiod insensitive allele Ppd-A1 was expected to be associated with earlier heading,
but did not have a significant effect on heading date on this germplasm. We only
characterized six entries as carrying Ppd-A1a, all of which originated from the southern
plains. This region has less variation in day length than the other U.S. Great Plains regions,
so photoperiod sensitivity is expected to have less of an effect, and photoperiod
insensitivity to be more common, than at more northern latitudes. Guedira et al. (2014)
found the photoperiod insensitive allele Ppd-A1a.1—first identified in Japanese
germplasm—to be common among winter wheat varieties originating in the eastern U.S.
(Nishida et al,, 2013). It is likely the effect of Ppd-A1a on heading date would be significant
among germplasm with greater diversity at this locus, such as a panel that included more
entries from southern or eastern regions of the United States.

Our second objective was to estimate the allelic effects of known developmental
genes on heading date. We found the timing of heading date in winter wheat from the U.S.
Great Plains to be more strongly affected by photoperiod loci than the vernalization or
reduced height loci. Allelic effects of three developmental genes (Ppd-B1, Ppd-D1, and Rht-
B1) explained 23% of the variation in heading date (Table 2.6). However, terms included in
the best-fit model varied slightly among environments (Table 2.7). Differential effects

among environments suggest the model might be improved if the environmental effects
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were deconstructed into multiple environmental variables (such as effects of temperature,
moisture, day length, etc.). Furthermore, additional variation in number of days after 1
January to heading might be improved through genotyping and inclusion of other loci
known to affect developmental timing, such as Vrn-B3 (Yan et al., 2006; Griffiths et al.,
2009).

In our study, Rht-B1 was found to have a significant effect on heading date in most
environments (Table 2.7). While it is unclear how reduced sensitivity to GA affects heading
date, Rht-B1 has been previously shown to have a small effect on heading date (Wilhelm et
al,, 2013a). Wilhelm et al. (2013b) suggest one possibility is the role of other genes that are
tightly linked with Rht-B1, such as Teosinte branched 1 (TaTb1), which is associated with
tillering and fertility. Most of the genetic effects (21.2% of total phenotypic variation) were
due to the main effects and interaction of Ppd-B1 and Ppd-D1. While the genetic effects on
heading date are small relative to the environmental effects (Table 2.6), we observed the
presence of photoperiod sensitive alleles at both Ppd-B1 and Ppd-D1 delayed heading date
by an average of 4.7 days across all environments (Table 2.7). Even minor variation in the
timing of heading date—variation of several days—may allow for more precise targeting of
wheat varieties to different regions, especially if climatic patterns shift within established
growing regions (Lobell et al., 2011), or wheat cultivation expands to new regions (Schmitz
etal, 2014).

The allelic effects of Ppd-B1 and Ppd-D1 varied among environments, suggesting
differential expression under varying environmental conditions such as temperature, or
moisture. The greatest significant effects—more than five days at each locus—were

observed at Ar13R (Table S2.3). The effect of the interaction between these loci was 8.6

57



days at Ar13R (Table S2.4). Variation in the size and magnitude of allelic effect size does

not follow a discernable trend among environments, however, the GxE term is likely
affected by different sources of environmental variability, such as climatic conditions,
management practices including planting and harvest dates, or biotic and abiotic stresses.
For instance, heavy rainfall during May and June, and warm maximum daily temperatures
throughout the winter, spring, and summer could influence the large allelic effects at Ar13R.
Interaction between Ppd-D1 and Ppd-B1 has been previously characterized (Tanio and Kato,
2007), is known to vary with CNV at Ppd-B1 (Eagles et al., 2011), and is known to have
much larger effects in spring than winter wheat (Kiss et al., 2014).

Allelic variation associated with CNV at Vrn-A1 had a significant effect on heading
date in this germplasm (Table S2.3). Low copy number at Vrn-A1 is associated with earlier
flowering following a short vernalization period (Diaz et al., 2012). Copy number variation
at Vrn-A1 was inferred by SNPs on exons four and seven. The SNP on exon four is
associated with having two or fewer copies of the gene, and was used by Eagles et al.
(2011) to distinguish Vrn-A1lv associated with earlier heading from Vrn-A1w associated
with greater freezing tolerance. We found the effect of CNV at Vrn-A1 to vary among
environments with contrasting winter temperatures. The effect of CNV at vrn-A1 was
largest (4.7 days) at Ar13R (Table S2.3), and that environment experienced a mild winter
that had daily highs above 0°C and only three days with lows below 0°C. The second largest
significant effect was seen at Bul2R, which is also located in a mild, southern environment.
By contrast, variation at Vrn-A1 did not have a significant effect at [t12R, which experienced

a cold winter with 65 days—including 29 continuous days—that had lows below 0°C.
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Our third objective was to investigate temporal and geographic patterns of allelic
distribution in the U.S. Great Plains. Changes in allele frequencies at the photoperiod genes
indicate selection for photoperiod insensitivity during the last century of winter wheat
breeding (Table 2.3). This could be the direct result of selecting for improved adaptability
based on flowering time (Slafer, 2012). Most strikingly, the proportion of entries carrying
the Ppd-B1b sensitive allele has gradually declined over time, from 90% of entries derived
before 1960 to only 48% of germplasm derived after 2000. An increase in varieties
carrying the photoperiod insensitive allele suggests a contribution to greater adaptation to
specific environments.

Selection against photoperiod sensitivity is also apparent in the distribution of
alleles from breeding programs in different sub-regions of the U.S. Great Plains. We saw the
incidence of photoperiod sensitive alleles decrease from northern to southern latitudes
(Table 2.7). Various environmental variables, such as temperature and day length vary
with latitude. Extreme temperature events such as freezing temperatures and heat stress
can have very pronounced and detrimental effects on yield, especially during vulnerable
developmental stages. Therefore, targeting heading date could reduce the chance that

extreme temperatures or stress damage the developing reproductive structures.

Conclusions

In this study we used a panel of 299 hard winter wheat entries representative of
modern and historic U.S. Great Plains germplasm to evaluate allelic diversity and effects of
vernalization, photoperiod, and reduced-height loci on the timing of heading date. We

found most of the genetic effects of heading date to be explained by Ppd-B1, Ppd-D1, and
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the interaction between these loci. A smaller amount of variation was explained by Rht-B1.
Across nine environments, the interaction between Rht-B1 and Ppd-B1 also had a small but
significant effect on heading date. Both photoperiod sensitive and insensitive alleles were
common for Ppd-B1 and Ppd-D1, and an alternate photoperiod sensitivity allele associated
with ancestral wheats was detected at Ppd-D1. There was limited allelic diversity at Ppd-A1
and Rht-D1, and these loci did not have a significant effect on heading date. The presence of
photoperiod sensitive alleles Ppd-A1b, Ppd-B1b, and Ppd-D1b has been decreasing over the
past century of wheat breeding, and these alleles are less common in the southern sub-
region of the U.S. Great Plains than either the central or northern plains. Our analyses
enhance the understanding of roles developmental genes have on winter wheat under
varying environmental conditions, which can potentially be used to improve breeding

strategies for current and future climate scenarios.
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Figure 2.1. Box plot of number of days from 1 January to heading of 299 hard winter wheat
entries varying for photoperiod sensitive (Ppd-B1a, Ppd-D1a) and insensitive alleles (Ppd-
B1b, Ppd-D1b), evaluated in four Colorado environments. The box describes the minimum,
lower quartile (25th percentile), median (50th percentile), upper quartile (75th percentile)
values. The notch displays the 95% confidence interval around the median value, and if the
notches don’t overlap between two boxes on the same plot, there is strong evidence their
medians differ. The interquartile range is described as the upper quartile minus the lower
quartile. The whiskers extend to the most extreme data point that is up to 1.5 times the
interquartile range from the median value. Outlying points that fall outside of this range are
represented as dots. The environments are (A) partial irrigation at Greeley, CO in 2012
(Gr12P), (B) full irrigation at Greeley, CO in 2012 (Gr12F), and (C) Fort Collins, CO in 2013
(Fol3).
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Figure 2.2. Frequency of photoperiod and reduced-height alleles in wheat entries from
three regions of the U.S. Great Plains. (A) Geographic distribution of 264 winter wheat
entries that originated from the northern (Montana, North Dakota, South Dakota, n = 39
entries), central (Nebraska, Colorado, Kansas, n = 120), or southern (Oklahoma, Texas, n =
105) U.S. Great Plains. (B) Proportion of wheat entries from each U.S. Great Plains sub-
region, or combined across all three sub-regions, with the photoperiod insensitive alleles
Ppd-Ala, Ppd-Bla, and Ppd-D1a, and semi-dwarf alleles Rht-B1b, Rht-D1b.
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Tables.

Table 2.1. Description of environments. Environment abbreviation, location, moisture treatment, latitude and longitude, and
planting and harvest dates.

Environment Location Moisture Treatment Lat (°N) Long (°W) Pl;g?:g Harvest Date

Ar13R Ardmore, OK Rainfed 34.18 -97.09 12 Oct 2012 25 June 2013
Bul2R Bushland, TX Rainfed 35.18 -102.10 3 Nov 2011 10 June 2012
Fol3 Fort Collins, CO Averaged across treatmentst 40.65 -105.00 2 0ct 2012 18-22 July 2013+
Gr12P Greeley, CO Partial irrigation 4042 -104.71 19 Oct 2011 3 July 2012
Gr12F Greeley, CO Full irrigation 4042 -104.71 19 Oct 2011 13 July 2012
Hal3R Hays, KS Rainfed 38.88 -99.33 10 Oct 2012 3 July 2013
It12R Ithaca, NE Rainfed 41.16 -96.43 4 0ct2011 28 June 2012
[t13R Ithaca, NE Rainfed 41.28 -96.41 25 Sept 2012 17 July 2013
Ma1l2 Manhattan, KS  Averaged across treatments 39.14 -96.64 18 Nov 2011 3 July 2012

t Averaged across treatments indicates that there were separate side-by-side rainfed and full-irrigation treatments that did not
differ significantly for average heading date, so the treatments were treated as two replications.
*Rainfed treatment was harvested on 18 July 2013 and fully irrigated treatment was harvested on 22 July 2013.
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Table 2.2. Description of multi-locus genotypes at photoperiod and reduced-height loci.
The photoperiod (Ppd) alleles are ‘a’ insensitive and ‘b’ sensitive. The reduced-height (Rht)
alleles are ‘a’ tall wild type and ‘b’ semi-dwarf. ‘Het’ is heterozygous at the locus. Of 299
total entries, 286 entries have complete genotypic data at all five loci, and 280 have
complete data with all homozygous allele calls.

n Ppd-A1 Ppd-B1 Ppd-D1 Rht-B1 Rht-D1

45 b b b a a
4 b b b a b
54 b b b b a
1 b b b het a
6 b b a a a
6 b b a a b
43 b b a b a
1 b b a het a

1 b b a het het
16 b a b a a
1 b a b a b
74 b a b b a
b a a a a
b a a a b
24 b a a b a

1 a b b a het
1 a b a a b
3 a a b b a
1 a a b het a
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Table 2.3. Number of entries (n) derived during four different time periods, and the

proportion of entries in each group with the photoperiod sensitive allele at Ppd-A1, Ppd-B1,
or Ppd-D1.

Pertvation n Ppd-Alb  Ppd-Blb  Ppd-D1b
Before 1960 19 1.00 0.90 0.85
1960-1979 34 1.00 0.67 0.85
1980-1999 114 0.99 0.58 0.71
2000 or later 132 0.96 0.48 0.65
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Table 2.4. ANOVA table for two-gene model estimating the effects of Rht-B1 and Rht-D1 on
heading date in a combined analysis across nine environments. A total of 285 entries with
homozygous calls at both loci were included in the model.

Source of variation df Mean Square
Environment 8 55097**
Rht-B1 1 4321™
Rht-D1 1 702"
Environment*Rht-B1 8 86.4"
Error 2546 13.6

“*indicates significance at the 0.001 probability level.
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Table 2.5. Allelic effects (number of days) of Rht-B1 in a model that estimated days after
Jan.1 to heading in 285 winter wheat entries grown in nine environments. The
environments are described in Table 2.1. The model terms were fit separately for each
environment. The model effects included environment, Rht-B1, Rht-D1, and Rht-B1-by-
environment interaction. The intercept (Int) describes the number of days from 1 January
to heading in each environment before the allelic effects are applied. The allelic effect
(number of days) at each locus is added to the Int value. The allelic effect of Rht-D1b was -
2.59 days and did not have significant interaction with environment.

Env Int

Rht-B1b

Ar13R 112.57
Bul2R 119.77
Fol3 150.93
Gri12F 138.40
Gr12P 136.47
Hal3R 142.08

Ma1l2 124.62
It12R 125.49
It13R 147.74

-4.89""
-4.32 nst
-2.02"
1.14™
3.83"
3.30™
2.66™
3.90 ns
2.42™

k% kkk
y

indicates significance at the 0.01 or 0.001 probability level.

t ns indicates non-significance at the 0.05 probability level.
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Table 2.6. ANOVA table for the best-fit model, considering effects of Ppd-A1, Ppd-B1, Ppd-
D1, Rht-B1, Rht-D1, and their interactions on winter wheat heading date in a combined
analysis across nine environments. A total of 280 entries with homozygous calls at each
allele were included in the model.

Source of variation df Mean Squares
Environment 8 54154
Ppd-D1 1 6333
Ppd-B1 1 5847
Rht-B1 1 519™
Ppd-D1*Ppd-B1 1 2754™
Ppd-B1*Rht-B1 1 220"
Environment*Ppd-D1 8 218™
Environment*Ppd-B1 8 208.1™
Environment*Rht-B1 8 16"
Environment*Ppd-D1*Ppd-B1 8 99.5™

Error 2474 7.1

* 0 kskk

, " indicates significance at the 0.05 or 0.001 probability level.

68



Table 2.7. Allelic effects (number of days) of gene-based terms included in the best-fit model for winter wheat heading date in
each of nine environments, and the proportion of variability (R?) in heading date explained by all terms in each model. The
environments are described in Table 2.1. The model terms were fit separately for each environment. The intercept (Int)
describes the number of days from 1 January to heading in each environment before the allelic effects are applied. The allelic

effect (number of days) at each locus is added to the Int value.

Ppd-D1b*

Ppd-D1b*

Ppd-B1b*

Env Int Ppd-D1b Ppd-Blb  Rht-B1b Ppd-Blb Rht-B1b  Rht-Bib R?
Ar13R  105.46™ 2.55 -0.23 nst  -0.10 ns 8.07™ -2.28 ns -+ 0.58
Bul2R  115.78™ 1.23 ns -194ns  -3.03™ 6.69™ -- 2.04" 0.59
Fol3 149.77""  -0.13ns -0.24ns  -0.81" 1.33" -- -- 0.14
Gr12F  134.68™ 0.80 ns -0.07 ns -- 4.18™ -- -- 0.41
Gr12P  133.56™ 0.88 ns 0.44ns  -1.38™ 2.35" -- -- 0.31
Hal3R  140.22™ 0.42 ns 0.18ns  -0.49" 1.57" -- -- 0.32
[t12R 121.71™ 0.80 ns -2.93" -3.42™ 8.21™ -- 3.14™ 0.64
[t13R 145.77"  -0.21ns -036ns  -1.35™ 3.27™ -- -- 0.31
Mal2 120.78™ 0.89 ns -1.83" -1.87™ 6.81™ -- 2.24" 0.69

B T =

-, " indicated significance at the 0.05, 0.01, and 0.001 probability levels, respectively.

t ns indicates non-significance at the 0.05 probability level.

¥-- indicates term was not included in best-fit model.
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CHAPTER 3:

PHENOTYPIC PLASTICITY OF WINTER WHEAT HEADING DATE

AND GRAIN YIELD ACROSS THE U.S. GREAT PLAINS?

Summary

Phenotypic plasticity describes the range of phenotypes produced by a single
genotype under varying environmental conditions. We evaluated the extent of phenotypic
variation and plasticity in thermal time to heading and grain yield in 299 hard winter
wheat (Triticum aestivum L.) genotypes representative of the U.S. Great Plains, including
both recent cultivars and breeding lines and older germplasm. The genotypes were
evaluated in 11 environments in 2011/2012 and 2012/2013. The average number of days
from 1 Jan.to heading across environments ranged from 109 to 150, and the cumulative
growing degree-days (GDD) from 1 Jan. to heading from 730 to 1,112 °C-d. Environmental
mean grain yield ranged from 1.3 to 5.3 Mg hal. There was a strong positive correlation
between plasticity of GDD (GDDP) and GDD (r=0.81, P<0.001), especially maximum GDD
(r=0.90, P<0.001) across environments, indicating genotypes with a greater degree of
plasticity developed later, especially within the earliest environments. Plasticity of GDD

was negatively associated with yield (r=-0.58, P<0.001), and therefore detrimental in the

2 A modified version of this chapter has been submitted as follows:

Grogan, S. M,, |. Anderson, P. S. Baenziger, K. Frels, M. ]. Guttieri, S. D. Haley, K.-S. Kim, S. Liu,
G. S. McMaster, M. Newell, P. V. V. Prasad, S. D. Reid, K. J. Shroyer, G. Zhang, E. Akhunov, and
P. F. Byrne. 2015. Phenotypic plasticity of winter wheat heading date and grain yield across
the U.S. Great Plains. Crop Sci.
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germplasm and environments evaluated. Yield plasticity was positively correlated with
both maximum (r=0.80, P <0.001) and minimum (r=0.33, P<0.001) grain yield across
environments, indicating greater plasticity was favorable under optimal conditions,
without a penalty under low-yielding conditions. More than a century of wheat breeding in
this region suggests GDDP has declined and yield plasticity has increased at similar rates.
This is encouraging because it indicates the favorable plasticity traits (high yield plasticity,

low GDDP) have been selected for indirectly, and would respond to further selection.

Introduction

Breeding crops for variable environmental conditions is inherently complex.
Comstock and Moll (1963) described genotype-by-environment interaction (GxE) as
occurring when “the phenotypic response to a change in environment is not the same for
all genotypes.” GxE results in a variable phenotype, which thereby decreases the
correlation between genotype and phenotype and reduces the effectiveness of empirical
selection (Comstock and Moll, 1963). GxE also makes it difficult to recommend cultivars
that will be best-adapted or highest-yielding in an untested environment (Eberhart and
Russell, 1966; Romagosa and Fox, 1993). Variation in genotype performance can be caused
by heterogeneous environmental variances, or by a lack of correlation among
environments, contributing to genotype rank changes (Lefkovitch, 1985), also known as
crossover interaction (Baker, 1988).

The extent of GXE can be estimated using many different stability parameters
(Eberhart and Russell, 1966; Lin et al., 1986; Cooper and DeLacy, 1994), and the choice of

method can greatly affect the ranking of genotypes (Eskridge, 1990). These methods
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include partitioning genotype-by-environment interaction using combined analyses of
variance (Muir et al,, 1992); indirect selection using genetic correlations (Itoh and Yamada,
1990), for instance, indirect selection for production in low-performing environments
using production in high-performing environments (Atlin and Frey, 1990); and pattern
analysis including classification and ordination methods to group similar environments
(Crossa et al., 1990; DeLacy and Cooper, 1990). A comparison of many different statistical
approaches to analyzing GxE has been described by Flores et al. (1998).

Plant breeders carefully characterize their target population of environments (TPE)
and choose distinct breeding goals with the biotic and abiotic pressures of their region in
mind (Chenu et al.,, 2011). Multi-environment trials within the TPE typically experience a
range of environmental conditions that vary among locations and years, which contributes
to GxE and can make genotypic selections difficult (Kang and Magari, 1996).

According to Becker and Leon (1988), T. Roemer in 1917 was the first to use the
term ‘stability’ in describing a genotype with a constant yield under any environmental
conditions. There are two types of stability that relate to minimizing GxE (Becker and Leon,
1988). The traditional biological concept of static stability refers to a genotype that has the
same level of phenotypic expression under all environmental conditions. The agronomic
concept of stability, also known as ecovalence, is more relevant to a breeding context, and
refers to a dynamic stability where the phenotypic responses vary in a predictable way
among environments but all genotypes are affected equally (Becker, 1981). While GxE is
often viewed as detrimental to breeding progress, and an element that should be
minimized or avoided, an alternative approach is to harness the variability hidden within

these interactions by understanding the range of possible phenotypic responses.
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Phenotypic plasticity describes the range of phenotypes produced by a single
genotype under varying environmental conditions (Bradshaw, 1965). Likewise, the concept
of plasticity also encompasses different genotypes that assume the same phenotype, which
allows a population to maintain genetic diversity while exhibiting a similar level of
phenotypic expression. Plasticity and stability are inversely related, such that a high level
of plasticity indicates low stability, and vice versa. High levels of phenotypic plasticity and
low levels of stability both indicate a strong effect of GxE.

The extent of plasticity could be driven by genetic factors, such as single nucleotide
polymorphisms within genic regions, or variation caused by duplication and polyploidy
(Schlichting, 2008). Genome duplication resulting in gene redundancy and copy number
variation could impact the level of transcripts produced and facilitate more continuous
phenotypic responses under variable conditions (Osborn et al., 2003; Zmienko et al., 2014).
Epigenetic variation, including DNA methylation and histone modification that affect gene
expression may also have an effect on phenotypic plasticity (Kalisz and Purugganan, 2004;
King et al., 2010; Bloomfield et al., 2014).

The extent of plasticity varies among genotypes, environments, and traits
(Bradshaw, 1965); and can have adaptive, maladaptive, or neutral effects on fitness (Des
Marais et al., 2013). In a recent meta-analysis of transplant studies, Palacio-Ldopez et al.
(2015) identified plastic phenotypic responses in fewer than half of the traits evaluated,
which suggests phenotypic plasticity may be less common than previously thought. Traits
and their plasticities are interrelated and adjusting the plasticity of one trait can influence
others. Plasticities of different traits can be ranked into a hierarchy describing the tradeoffs

that maximize genetic fitness (Bradshaw, 1965). Hierarchies can provide a useful

77



framework for understanding conditional relationships among traits (Sadras and Slafer,
2012; Alvarez Prado et al., 2014), such as the well-characterized relationship between
variability of grain number and stability of grain size in grain crops (Sadras, 2007).
Relationships among trait plasticities can provide insight into environmental responses of
related traits. For instance, Sadras and Rebetzke (2013) identified a significant positive
relationship between the plasticities of wheat grain yield and spike number in free- and
reduced-tillering sister lines, even though the grain yield and spike number per se were not
associated. This suggested yield stability was partially driven by the ability of tiller and
spike production to respond to environmental stimuli, and indicated that the genetic basis
of trait plasticity can be independent of the trait itself.

The relative advantage or disadvantage of phenotypic stability or plasticity varies
among traits, environments, and germplasm evaluated. To assess the benefit or cost of
plasticity, the relationship between trait plasticity and grain yield per se, as well as other
traits associated with grain yield, should be considered. Plasticity of crop developmental
traits, such as heading date in small grain cereals, is of special interest when breeding for
changing and increasingly unpredictable environmental conditions. Heading signifies the
development of delicate reproductive structures, which can be damaged by harsh
environmental conditions. Developing too early may increase risk from frost or cold
damage, but developing late can expose the plant to heat or drought stress during
flowering or grain filling that may limit reproductive viability and yield potential (Cockram

et al.,, 2007; Kamran et al., 2014).
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A more complete analysis of phenotypic plasticity will allow deeper understanding
of crop adaptation, including trade-offs between traits. Therefore, our specific research
objectives were to

i) Assess variation in thermal time to heading and grain yield within a collection of 299
hard winter wheat genotypes representative of the U.S. Great Plains grown in 11
environments;

ii) Estimate plasticity of time to heading and grain yield and determine whether a high
level of phenotypic plasticity is favorable or detrimental based on relationships to
grain yield;

iii) Determine whether greater plasticity is most strongly associated with high, low, or

mean values of accumulated thermal time at heading, or grain yield at harvest.

Materials and methods

Germplasm

Two hundred and ninety-nine winter wheat genotypes comprising the Triticeae
Coordinated Agricultural Project (http://www.triticeaecap.org) hard winter wheat
association mapping panel were used for this study (Supplemental Table S3.1). The
genotype ‘Wichita’ (CI 11952) was included in the panel twice for a total of 300
experimental entries. The germplasm included 280 mostly recent cultivars and
experimental breeding lines representative of the U.S. Great Plains and older cultivars
derived in 1960 or earlier. The genotypes were developed by breeders in 10 public and
four private breeding programs across the Great Plains. Composition of the panel reflects

prevalent germplasm of the region, and genotypes with a prevailing presence in the
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pedigrees of modern cultivars. Most of the genotypes have semi-dwarf stature, red grains,

and awned spikes.

Environments

The germplasm was grown in a total of 11 environments across the U.S. Great
Plains: six environments in 2011/2012 (hereafter referred to as 2012) and five in
2012/2013 (hereafter 2013) (Table 3.1). Only Ithaca, NE was repeated in both years. Each
environment was a unique combination of location, year, and moisture treatment. The
three moisture regimes were full irrigation, partial irrigation, and rainfed (no supplemental
irrigation). Partially irrigated environments were always paired with a fully irrigated
counterpart grown at the same location. Partial irrigation was applied to prevent total crop
loss, and was less frequent and at lower levels than full irrigation (Supplemental Table
S3.3). The environments were as follows: rainfed at Ardmore, OK in 2013 (Ar13R), rainfed
at Bushland, TX in 2012 (Bu12R), rainfed (Fo13R) and fully-irrigated (Fo13F) using linear
overhead sprinklers at Fort Collins, CO in 2013, partially (Gr12P) and fully irrigated
(Gr12F) using drip irrigation at Greeley, CO in 2012, rainfed at Hays, KS in 2013 (Hal3R),
rainfed at Manhattan, KS in 2012 (Ma12R), fully-irrigated using linear sprinkler irrigation
at Manhattan, KS in 2012 (Ma12F), and rainfed at Ithaca, NE in 2012 (It12R) and 2013
(It13R). The trials at Ithaca, NE are described in detail by Guttieri et al. (2015).

Eight environments (Bul2R, Fol3R, Fo13F, Gr12P, Gr12F, Hal3R, It12R, and [t13R)
were arranged in a row-column design with two check varieties. The experimental
genotypes were unreplicated at six environments (Bul2R, Fo13R, Fo13F, Gr12P, Gr12F,

Ha13R), while It12R and It13R had four replications. Ten percent of the field plots were
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allotted to systematically placed common and local checks. The common check for these
eight environments listed above was ‘Settler CL’ (Baenziger et al,, 2011). For [t12R and
[t13R the local check was ‘Jagger’ (Sears et al., 1997). Bul2R, Fo13R, Fo13F, Gr12F, Gr12P,
and Ha13R all used ‘Hatcher’ (Haley et al., 2005) as the local check. The Manhattan, KS
environments (Ma12R and Ma12F) had two replications arranged as incomplete blocks
with a single check variety: locally adapted ‘Everest’
(http://kswheatalliance.org/varieties/everest/). Ar13R was arranged as a randomized

complete block design with two replications.

Phenotypic evaluation

Heading date was determined for each plot using the Zadoks scale (Zadoks et al.,
1974) at stage 59, when the spike had fully emerged from the flag leaf sheath in at least
50% of all shoots in the plot. In [t12R and It13R, anthesis was recorded instead of heading,
so heading date was imputed for each genotype from the average differences between
heading and anthesis dates. Heading and anthesis dates were both recorded only at six
locations (Gr12P, Gr12F, Fo13R, Fo13F, Mal2R, and Ma12F). In three environments
(Ar13R, Bul2R, Ha13R) only heading dates were recorded. Anthesis dates at [t12R were
most similar (as evaluated by principal components analysis (PCA) and Pearson’s
correlation coefficients, data not shown) to the anthesis dates averaged across Gr12P,
Gr12F, Mal2R and Ma1l2F, so these environments were used to estimate heading dates at
[t12R. Heading and anthesis dates are very strongly related, and the phenotypic
correlations between these traits were r = 0.87 at Gr12P, r=0.78 at Gr12F, r = 0.78 at

Mal2R, and r=0.78 at Ma12F (all P < 0.001).

81



For each genotype, the average difference between anthesis and heading dates was
subtracted from the anthesis date at [t12R to estimate heading date. Anthesis dates at
[t13R were most similar to average anthesis dates at Gr12P and Gr12F. Consequently,
heading dates at [t13R were estimated for each genotype from the average difference
between anthesis and heading dates at Gr12P and Gr12F. Imputing heading dates at [t12R
and It13R using these methods introduces a small amount of bias to the analyses, however,
the difference between heading date and anthesis is minor, and including these
environments enhances our understanding of GxE. Days to heading were calculated as the
number of days between 1 Jan. and the heading date.

Thermal time to heading was calculated for each genotype in each environment
using climatic data from nearby or on-site weather stations. The cumulative growing
degree-days to heading (GDD) were calculated from daily minimum and maximum daily
temperature (Tmin; and Tmax; °C) of n days between 1 Jan.and the heading date for each
genotype, using a base temperature (Tbase) of 0 °C for winter wheat (McMaster and

Wilhelm, 1997), as follows in Eq. 3.1:

Tmax; + Tmin;

GDD(°C-d) = ¥, !

- Tbhase, GDD =0 (Eq.3.1)
Yield (kg ha'1) was calculated from four-row field plots at [t12R and It13R and six-
row plots for all other environments, harvested by combine after plants had fully matured.
The harvested plot area varied among environments: 2.2 m? for Bul2R, 2.6 m? for Mal2R
and Ma1l2F, 3.6 m? for Colorado environments (Fo13R, Fo13F, Gr12P, Gr12F), 4.5 m? for

[t12R and [t13R, and 4.6 m2for Hal2 and Ar13R.
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Data analysis

Best linear unbiased predictions (BLUPs) were calculated separately for each trait
and environment based on spatial patterns and field design. Six different spatial correlation
models (row-column, spherical, exponential, power, anisotropic power, and Matérn) with
different covariance structures were considered for environments with unreplicated row-
column designs (Bul2R, Fol13R, Fol3F, Gr12P, Gr12F, Ha13R) using the PROC MIXED
procedure of SAS (version 9.3, SAS Institute Inc., Cary, NC). The models are described in
Supplemental Text S3.1 (Littell et al., 2006; Table 58.14, SAS/STAT 9.3 User's Guide,
http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm
#statug_mixed_sect020.htm, accessed 14 Aug. 2015). In all models, the genotypes, rows,
and columns were treated as random effects. The best model was chosen based on the
Akaike information criterion (AIC) fit statistic. For environments with multiple replications
(Ar13R, Mal2R, Ma12F, [t12R, It13R), replications were treated as a random effect. In the
combined analyses location and year were treated as random effects.

To estimate the repeatability of trait values (heading date and grain yield) we
evaluated the Pearson’s correlation coefficient for environments with multiple replications
(Ar13R, Mal2F, Ma12R, It12R, and It13R). Correlations were estimated between raw plot-
level measurements of each genotype measured in different replications within the same
environment. The average correlation across replicated environments was greater for
heading date (r = 0.76) than for grain yield (r = 0.41, Supplemental Table S3.2), reflecting
the stronger genetic control of heading date, and sensitivity of yield to small-scale spatial

variation. Therefore, we expect a high level of repeatability among estimates of heading
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date, and moderate repeatability among estimates of grain yield used in estimates of
phenotypic plasticity.

Phenotypic plasticity was evaluated as described previously (Lacaze et al., 2009;
Sadras et al., 2009). Briefly, the Finlay and Wilkinson (1963) stability parameter was
estimated for each genotype as the regression coefficient of the linear regression of the
genotype mean in each environment on the grand mean of each environment, using all 11
environments. The first use of this parameter to estimate adaptability or plasticity separate
from stability was by Kraakman et al. (2004). Our analyses were conducted on BLUPs in
SAS using the PROC REG procedure. A regression coefficient of 1.0 indicates average
stability, following the dynamic stability concept (Becker, 1981), such that the trait value
might differ among environments, but remains the same relative to the environmental
mean. In this paper we will refer to the Finlay and Wilkinson (1963) stability parameter as
a ‘plasticity coefficient,” which follows terminology of Sadras et al. (2009).

Plasticity coefficients greater than 1.0 reflect above average phenotypic plasticity,
whereas coefficients less than 1.0 reflect below average plasticity. The original work of
Finlay and Wilkinson (1963) can be expanded to generalize that a genotype with average
yield plasticity will be well-adapted to average-performing environments, while above-
average plasticity can provide a dynamic response that is especially favorable in high-
yielding environments, and below-average plasticity might be advantageous in low-
yielding environments.

The plasticity coefficients were regressed on trait values (GDD or yield) in
individual environments, average trait values across environments, and the minimum or

maximum trait value for each genotype across all environments. The minimum and
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maximum trait values were the earliest and latest heading dates, and lowest and highest
yields, observed for each genotype across all environments. To assess whether linear
models were adequate for describing a genotype’s response to environment, the
significance of quadratic terms was also tested using SAS PROC REG.

All other univariate and multivariate statistical analyses were conducted on BLUPs
using the software JMP (version 11, SAS Institute Inc., Cary, NC). These include analyses of
variance, Student’s t-test, phenotypic correlations, linear regression, and PCA. Figures were
generated in JMP and R (version 3.1.3, R Development Core Team). Data were analyzed

both for individual environments and combined across environments.

Results and discussion

Overview of heading date data

For most unreplicated environments the best spatial adjustment models for heading
date were the power model (Fo13F, Fo13R, and Gr12P) or the anisotropic power model
(Gr12F and Ha13R). The row-column model was best for Bu12R. Heading date varied
significantly among environments (P < 0.001) and ranged from a minimum of 109 d after 1
Jan.in Ar13R to a maximum of 150 d in Fo13F (Fig. 3.1, Table 3.2). The interaction between
genotype and environment also had a significant (P < 0.001) effect on heading date. The
grand mean across all environments was 132 d, or about May 12. Germplasm developed
significantly earlier in 2012 than 2013 (P < 0.001), with average heading dates of May 5,
2012 and May 19, 2013. The hot temperatures in 2012 during the spring likely influenced

earlier heading. Some unusual trends were observed for Ar13R, which developed more
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quickly than other 2013 environments and was the earliest environment overall. Ar13R
was much warmer than the other 2013 environments and had temperatures comparable to
those of 2012 (Supplemental Figure S3.1). After excluding Ar13R the average difference
between years was 21 d. Despite the earliness, heading dates at Ar13R were similar to and
highly correlated (r = 0.88, P < 0.001) with Bul2R, the geographically closest site.

Growing degree-days from 1 Jan. to heading ranged from an average of 730 GDD in
[t13Rto 1,112 GDD in Ma12R (Table 3.2). The grand mean of GDD across all germplasm
and environments was 920 GDD. The 299 genotypes had means across environments that
ranged from 813 to 1,067 GDD. Rapid accumulation of GDD occurs when the daily
maximum and minimum temperatures are elevated, and hot temperatures are known to
accelerate the developmental sequence in wheat (McMaster and Wilhelm, 2003). The 2012
season had an early spring and many hot days, so these environments accumulated GDD
more rapidly than those in 2013. The effect of year on GDD was significant (P < 0.001), with
an average effect of 161 °C-d more accumulated by heading in 2012 environments
compared with 2013 environments. However, earlier heading dates in 2012 could also be
influenced by low water availability, caused both by low precipitation (Table 3.2) and high
evaporative demands from hot temperatures (Supplemental Figure S3.1). Water limitation
is also known to affect the developmental sequence in wheat by altering the timing and
interval between developmental stages, such that stages can occur sooner and their
duration can be shorter (Frank et al., 1987; Nielsen et al., 2003; McMaster and Wilhelm,
2003; McMaster et al., 2005, 2008).

There were strong positive correlations between days to heading and GDD at each

of the 11 environments (r = 0.99-1.00, P < 0.001), and pooled across all environments (r =

86



1.00, P < 0.001). The near-perfect correlation occurred because GDD were summarized at
each environment on a daily basis from minimum and maximum temperatures. Because of
the strong correlations between days to heading and GDD, most subsequent analyses were
conducted only using GDD data, which were very similar to, but less variable across
environments, than the number of days. The strong relationship indicates genotypes or
environments that develop more slowly have additional days to accumulate GDD and rapid
accumulation of thermal time triggers earlier heading. This result is consistent with our
understanding of phenological development as a function of accumulated thermal time
(Kirby, 1995; McMaster, 1997), such as through fulfillment of vernalization requirements

(Yan etal., 2003).

Correlations of GDD across environments

There was widespread variation in GDD among environments, but GDD were
strongly correlated between pairs of environments (average r = 0.67, P < 0.001,
Supplemental Table S3.4), especially for environments grown in 2012 (average r = 0.78).
This is likely due to the strong genetic effects influencing development and flowering time,
such as major genes involved in the vernalization and photoperiod response pathways
(Distelfeld et al., 2009). The strongest correlations for GDD were observed between [t12R
and Mal2R (r=0.90, P < 0.001) and between It12R and Bu12R (r=0.90, P < 0.001,
Supplemental Table S3.4).

The strong correlations of GDD between all pairs of environments make PCA a
useful tool for investigating relationships among environments. Most of the variation

(71%) in the PCA of GDD (Fig. 3.2) was explained by a single principal component. This
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may reflect large differences in temperature patterns or other environmental variables
among environments. The PCA score plot (Fig. 3.2a) displays genotypes as a tight cloud of
points, which demonstrates similar patterns among all germplasm. Points that are close to
each other represent genotypes that performed most similarly. Points that fell near y = 0
represent stable genotypes with similar GDD across environments, because the
environments primarily vary along the y-axis. Variation in genotypes along the x-axis
reflects a more variable phenotypic response.

The loading plot (Fig. 3.2b) represents environments as vectors. All vectors fall in
quadrants [ and IV, illustrating that GDD is positively correlated between all pairs of
environments. The minimal spread of vectors shows gradual variation among
environments, with slight distinctions between 2012 and 2013 environments. The 2012
environments are more tightly grouped than the 2013 environments, likely because there
was a wider range of environmental conditions in 2013. Between April and June 2012 the
Palmer Z Index classified much of the U.S. Great Plains as experiencing moderate-to-
extreme drought (http://www.ncdc.noaa.gov/sotc/drought/). During spring and early-
summer (April to June) of 2013 the Palmer Z Index classified the same regions with a
broader range of conditions, from very moist to extreme drought conditions. The greatest
distinctions overall were between Fort Collins, CO (Fo13F and Fo13R) and Manhattan, KS
(Ma12R and Ma1l2F), which also share low correlations (Supplemental Table S3.4). The
Manhattan environments were consistently hotter and wetter than Fort Collins
environments. The short vector representing Ha13R falls between Fo13R and Gr12F. This
suggests that although GDD at Ha13R are similar to and strongly correlated with some

environments, it has lower average correlations with environments overall. This indicates a
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stronger GxE associated with Ha13R. The variation among environments, especially the
large spread between locations and years, highlights challenges in breeding for diverse

environment types.

Plasticity analyses of GDD

The Finlay-Wilkinson stability parameter for GDD was obtained for each genotype
from the linear regression of the genotype’s phenotypic BLUP on the environmental mean
for each environment, and used as an indicator of phenotypic plasticity. Eight of the 299
genotypes deviated from a purely linear model. For these genotypes, the quadratic term of
the environmental mean GDD was also significant (P < 0.05). This low proportion (< 3%) of
genotypes deviating from linearity is similar to the rates observed by Sadras et al. (2009)
for other phenological traits in wheat. Because deviations from linearity were rare in our
germplasm, and the quadratic term was not significant across genotypes, the linear method
of estimating phenotypic plasticity was considered appropriate.

The average plasticity coefficient (slope estimate) of all genotypes, by definition, is
1.00. The plasticity coefficients in our study ranged from 0.68 to 1.41 for GDD
(Supplemental Table S3.1), indicating a broad range of responsiveness to environmental
conditions. Growing degree-day plasticity (GDDP) was affected by the year each genotype
was derived. Overall, older genotypes had higher levels of GDDP than more modern
varieties. When all 299 genotypes are included in the analysis, the plasticity coefficient
changed by a rate equal to a reduction of 0.028 every 10 years 1 (Fig. 3.3a). Two historic

cultivars (‘Kharkof” and ‘“Turkey Nebsel’) appear as possible outliers but only have a minor
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effect on the regression line. Excluding these two genotypes, the slope of the line increases
slightly, to a rate of change equal to a reduction of 0.029 every 10 years.

The 19 genotypes derived in 1960 or earlier had an average GDDP coefficient (+
standard error) of 1.11 * 0.04, compared with mean values of 0.99 + 0.01 for genotypes
derived after 1960. Many of the more recently developed genotypes with low GDDP were
developed in Oklahoma. This could be because a substantial amount of winter wheat in
Oklahoma is grown for forage or for dual forage and grain use, and these genotypes have
higher levels of heterogeneity than those developed strictly for grain. This could result in a
wider range of heading dates, which is characterized by greater stability of GDD (and low
GDDP) across environments.

Additionally, since heading was measured in each plot based on when 50% of the
spikes had fully emerged from the flag leaf sheath, GDDP could be affected by genotypic
differences in tillering, which was not evaluated. Environments that facilitate greater
tillering might have a later heading date because spikes on secondary and tertiary tillers
usually develop later than those on the main stem (McMaster, 2005).

Growing degree-day plasticity had strong positive correlations with average GDD in
2012 (r=0.86,P<0.001), 2013 (r=0.63, P < 0.001), and combined years (r=0.81, P <
0.001, Fig. 3.4). There were large differences in the magnitude of correlations between
GDDP and maximum (r = 0.90, P < 0.001, Supplemental Figure S3.2a) and minimum (r =
0.40, P < 0.001, Supplemental Figure S3.2b) GDD across environments. This suggests that
the environment with maximum GDD had the largest impact on GDDP of each genotype.
The environment with maximum GDD varied among genotypes, but was a combination of

several environments: Mal2R (n = 181 genotypes), Ar13R (n = 61), Mal2F (n = 48) and
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Bul2R (n =9). These four environments also had the earliest average heading dates (Table
3.2). Because of the robust association between GDD and days to heading, the strong
positive correlation between GDDP and maximum GDD also translates to a strong positive
correlation between GDDP and earliest heading date (r=0.81, P < 0.001). Growing degree-

day plasticity explained 66% of variability in average GDD (Fig. 3.4).

Overview of yield data

The best spatial adjustment models for grain yield in the unreplicated environments
were the anisotropic power model (Bul2R, Fo13R, Fo13R, and Gr12F) or the power model
(Gr12P and Ha1l3R). Yield varied significantly among environments (P < 0.001) and
between years (P < 0.001). The interaction between genotype and environment was also
significant (P < 0.001). Mean yield ranged from 1,332 kg ha'l in Bul2R to 5,239 kg ha'l in
[t13R (Table 3.2). There were also high average yields at Fo13F (4,958 kg ha'1) and Gr12F
(4,782 kg ha'1). Gr12F also experienced the greatest range of yields across genotypes.
Interestingly, the strongest correlation for yield among any pair of environments was
between Gr12F and Bul2R (r=0.67, P < 0.001, Supplemental Table S3.4), despite the low
average yield at Bul2R. The strong correlation reflects similar ranking of genotypes at
Gr12F and Bul2R, and indicates underlying similarities between the environments. The
precise control of irrigation at Gr12F using drip irrigation drove a diverse yield response
among genotypes that was at least partially paralleled in Bu12R.

The average correlation of yield among pairs of environments was low (r = 0.00-
0.67, average 0.27), but slightly greater among 2012 environments (r = 0.08-0.67, average

0.35) than 2013 environments (r = 0.06-0.44, average 0.22, Supplemental Table S3.4). The

91



lower correlations among sites grown in 2013 reflect a broader range of environmental
conditions, including greater diversity of the timing, severity, duration, and type of stresses.
Despite the wide range of grain yields observed across environments, variation among
environments is gradual and there are trends among similar environments (Supplemental
Figure S3.3). The score plot (Supplemental Figure S3.3a) shows that genotypes are spread
widely across the first two principal components, indicating variation in yield and yield
stability. Compared with GDD, much less variation in yield (37%) is explained by the first
principal component, and the vectors representing environments are shorter
(Supplemental Figure S3.3b), indicating greater GxE.

Interestingly, similarities among environments (identified by high phenotypic
correlations) are not explained by high- or low-yielding environments (Table 3), or by year
(Supplemental Table S3.4). The strongest correlation was observed between Gr12F and
Bul2R, which had strikingly different average yields: Gr12F had an average of 4,782 kg ha’l,
while Bul2R had an average of 1,332 kg ha-l. Greater variability of yield across
environments is consistent with the quantitative nature of—and lack of known stable
major-effect genes for—grain yield. Although correlations for grain yield between most
pairs of environments were positive, some correlations with grain yield at Ar13R or Fo13F
were not significant. Lack of correlation between grain yield at Ar13R or Fo13F suggests
these environments were much different from the others, possibly due to greater available
soil moisture. Ar13R received the most precipitation overall and Fo13F was heavily

supplemented with irrigation (Supplemental Table S3.3)
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Plasticity analyses of yield

Yield plasticity, as estimated by the Finlay and Wilkinson (1963) stability parameter,
had a strong positive correlation with maximum (r = 0.80, P < 0.001; Supplemental Figure
S3.4a) and average (r = 0.69; P < 0.001; Supplemental Figure S3.4b) grain yield, and a weak
positive correlation with minimum grain yield (r= 0.33, P < 0.001; Supplemental Figure
S3.4c). This suggests a high level of yield plasticity is primarily affected by maximum yield
across environments, and that genotypes with high yield plasticity have high yield potential
under favorable conditions. This is consistent with original observations by Finlay and
Wilkinson (1963). The relatively low, but still positive, correlation with minimum grain
yield indicates that plasticity is not associated with a yield penalty under sub-optimal
conditions. This is an important consideration since much of the winter wheat produced in
the U.S. Great Plains is grown under rainfed conditions. Ar13R is unique in being the only
environment with a negative association between yield plasticity and grain yield (Table
3.3). This is likely due to lack of similarities in yield at this environment and others
(Supplemental Table S3.4, Supplemental Figure S3.3), possibly influenced by the heavy
rainfall in Ardmore, OK during May 2013 (Supplemental Table S3.3).

Our results contrast with findings by Sadras et al. (2009), who identified high yield
plasticity in wheat as a negative trait because it was associated with low grain yield in low-
yielding conditions. However, there are substantial differences in the two studies. Our
environments include more locations over a broader geographic area and the 299 wheat
genotypes we evaluated are more genetically diverse than the recombinant inbred lines
described in the previous study. Sadras et al. (2009) reported extreme variation in grain

yield (0.6-7.8 t ha'l) among the six environments and 169 genotypes evaluated, indicating
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some extremely low-yielding trials that likely had a large impact on yield plasticity. The
positive relationship we identified between yield plasticity and grain yield is likely
influenced by continuous range of yields across environments, broader range of yield
responses and yield plasticities among germplasm (our yield plasticities ranged from 0.64
to 1.37, compared with 0.74 to 1.27 by Sadras et al.), and greater genetic diversity. Our
genotypes were adapted to the U.S. Great Plains, for which our environments were
representative, and the genetic diversity may have included multiple sources for plasticity.
There was a trend between yield plasticity and the year each genotype was derived.
Yield plasticity increased at a rate equivalent to an increase of 0.030 every 10 years (Fig.
3.3b). This was similar to, but in the opposite direction as, the rate of change observed for
GDDP, which was equivalent to a decrease of 0.028 every 10 years. Excluding Kharkof and
Turkey Nebsel from the analysis of yield plasticity altered the rate of change to the
equivalent of an increase of 0.034 every 10 years (Fig. 3.3b). The 19 genotypes derived
before 1961 had average yield plasticities (* standard error) of 0.83 + 0.03, compared with
1.01 + 0.01 for those derived in 1961 or later. Excluding all 19 genotypes did not have an
effect on the rate of change for yield plasticity, which maintained an increase equivalent to
0.030 every 10 years. However, excluding the genotypes derived before 1961 increased the
rate of change of GDDP, which was equivalent to a decrease of 0.040 every 10 years. Since
high yield plasticity is associated with greater maximum yield, this suggests plant breeders
have been selecting germplasm with increasingly greater yield responses under favorable

conditions.
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Relationships between GDD and yield

Growing degree-days to heading and grain yield were strongly and negatively
correlated in most environments (Table 3.4). Growing degree-days increase linearly with
temperature, so more GDD are accumulated each day under hot than cool conditions. Since
GDD accumulate rapidly under hot conditions, fewer GDD at heading suggest milder
temperatures during vegetative growth stages, which is characteristic of more favorable
and higher-yielding environments. Low temperatures result in a longer grain filling
duration than high temperatures, and although high temperatures increase grain filling
rates, higher yields are usually achieved under lower temperatures (McMaster, 1997). This
is one way in which high temperatures are damaging to wheat yield, and explains the
strong negative correlation between GDD and yield.

Lower GDD was associated with higher grain yield in eight environments, lower
yield at one environment (Ar13R), and did not have significant correlations with grain yield
at Fo13F or [t12R (Table 3.4). The lack of correlation at Fo13F might indicate that alleles
contributing a fitness advantage in many environments did not have an effect under
favorable, fully irrigated, conditions. While it is unclear why greater GDD was associated
with higher grain yield at Ar13R, unusual trends are also observed in the PCA of GDD (Fig.
3.2) and yield (Supplemental Figure S3.3b). The loading plot for PCA of GDD (Fig. 3.2b)
displays Ar13R as a short vector, indicating different patterns of GxE at this environment,
while the loading plot for PCA of yield (Supplemental Figure S3.3b) projects Ar13R near
Fol3F—indicating similarities among yield between these environments—but far from
vectors representing other environments. This could be partially influenced by the

substantial precipitation Ar13R received during early grain filling, totaling more than 200
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mm in May (Supplemental Table S3.3). Ar13R received an additional 235 mm precipitation
in June and July. All of the irrigation received at Fo13F, which totaled 220 mm, also
occurred during grain filling.

Growing degree-day plasticity was most strongly associated with minimum yield
across environments (r = -0.58, P < 0.001; Fig. 3.5a), and also had significant negative
correlations with average (r =-0.48, P < 0.001; Fig. 3.5b) and maximum (r =-0.44, P <
0.001; Fig. 3.5¢) grain yield. This indicates high GDDP is detrimental among the germplasm
and environments evaluated. The negative relationship between GDDP and yield is
probably related to the escape mechanism of drought tolerance (Blum, 2011), by which
early flowering plants escape severe stress during their reproductive phase. We observed
two competing mechanisms: plants headed around the same calendar day in all
environments (high GDDP), or after a similar amount of thermal energy (low GDDP). High
GDDP genotypes showed lower grain yield because these genotypes were unable to
respond to environmental cues and carry out their reproductive processes before the onset
of severe stresses. The negative effects were especially severe in the lowest-yielding
environment, likely because stresses were more extreme, leading to reduced reproductive
viability or grain filling duration. Spikelet fertility was reduced, grain filling duration was
diminished, and heading, anthesis, and physiological maturity dates were earlier in Gr12P
than Gr12F, and in Fo13R than Fo13F (data not shown).

Plasticity of GDD explained 34% of the variation in minimum grain yield, 23% of
average grain yield, and 19% of maximum grain yield across environments (Fig. 3.5). In
particular, the correlations between GDDP and grain yield were strongly negative at Bu12R

(r=-0.61,P<0.001) and Gr12F (r=-0.53, P < 0.001). The strong correlation between
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GDDP and yield at Bu12R highlights the influence of the lowest-yielding environment—
93% of the genotypes had their lowest yields at Bu12R, while the others had lowest yields
at Ar13R. The Bul2R, Gr12F, and [t13R environments were more similar for grain yield as
shown by both pairwise correlations (Supplemental Table S3.4) and PCA (Supplemental
Figure S3.2). Similarities among Bu12R, Gr12F, and It13R suggest shared environmental
conditions, and that some environmentally-responsive genes affecting yield could have
similar effects in all three environments, even if there is significant GxE.

Since there are significant relationships between GDDP and grain yield, it is
important to consider association with yield plasticity. There is a weak negative correlation
between GDDP and yield plasticity (r=-0.37, P < 0.001; Fig. 3.6). The negative association
is encouraging because it suggests the favorable plasticity traits (high yield plasticity, low
growing degree-day plasticity) could be targeted simultaneously, or one plasticity trait
could be targeted for improvement without hindering the other.

It should be noted that the estimates of phenotypic stability used to draw insight on
phenotypic plasticity do not comprise all possible sources of plasticity. While plasticity
necessarily refers to the genotype evaluated, stability can be affected by the composition of
the population, such as the degree of heterogeneity and heterozygosity, that can buffer

fluctuations in environmental effects (Allard and Bradshaw, 1964).

Conclusions
We observed substantial variation for both thermal time from 1 Jan. to heading and
grain yield in a population of 299 winter wheat genotypes, and across the 11 environments

in which they were grown. Additionally, there were significant effects of GxE affecting the
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ranking of genotypes for these traits.

Phenotypic plasticity was estimated for each genotype using the Finlay and
Wilkinson (1963) stability parameter, as implemented by Sadras et al. (2009). The
regression coefficients ranged from 0.68 to 1.41 for GDD and from 0.64 to 1.37 for yield
(Supplemental Table S3.1).

Heading date and GDD of genotypes had varying responses under different
environmental conditions. Genotypes that were most responsive to environmental
conditions were able to reach heading across a wider range of calendar days. These
genotypes are characterized as having high heading date plasticity and low GDDP, because
the calendar day on which heading occurred was flexible, but the level of thermal time at
heading was approximately constant. Plasticity of GDD was more strongly induced by
maximum GDD across environments than minimum (Supplemental Figure S3.2) or mean
GDD (Fig. 3.4). There was a strong negative correlation between GDDP and grain yield,
indicating GDDP was detrimental among the germplasm and environments evaluated (Fig.
3.5). On the other hand, yield plasticity had a strong positive correlation with yield—
especially maximum yield across environments—indicating it contributed to elevated grain
yield under optimal conditions and is a favorable trait in these environments and
germplasm (Supplemental Figure S3.4). Equally important, high yield plasticity was not
associated with low yields in the low-yielding environments.

Variation among environments contributes to differences in the ranking of
germplasm, and can make it difficult for plant breeders to make selections. However, an
important goal of plant breeding should be to minimize unfavorable GxE and allow

dynamic trait responses when they are advantageous. We have presented evidence that the
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extent of plasticity has changed over time for two traits (GDD and grain yield, Fig. 3.3),
which suggests the extent of phenotypic plasticity will respond to direct and indirect
selection. Phenotypic plasticity of crops is a promising area of research to better
understand effects of GxE because breeders could select for or against phenotypic plasticity,
thereby tailoring the response to environmental conditions to enhance crop resilience for

severe or unpredictable climate scenarios.
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Figure 3.1. Range of days from 1 Jan.to heading among 299 hard winter wheat genotypes
grown in 11 environments (defined in Table 3.1). The horizontal lines are median values
for each environment. The box shows the inter-quartile range (IQR), where 50% of the
genotypes fall. The horizontal lines in the boxes are median values for each environment.
The whiskers extend 1.5 times the IQR in each direction. Outlying genotypes are
represented as disconnected points. For Mal2R and Ma1l2F the median values were the
same as the first quartile, which was 120 days for Mal2R and 119 days for Ma12F.
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Figure 3.2. Principal components analysis of growing degree-days from 1 Jan. to heading
among 299 hard winter wheat genotypes grown in 11 environments, showing the (a) score

b 10
05
] ®
- .'.‘: . e g
.0 3 28 ;.o.‘g e .o ;
Ty X . .‘:',:".\.?:4? ;' """""" g 00
2 o ¥ -, .
DA !.i.: “ g
- g E
8
-0.5
: -1.0
-10 -5 10 -1.0

0
Component 1 (70.7 %)

I
0.0 0.5
Component 1 (70.7 %)

plot and (b) loadings plot. Environments are described in Table 3.1.
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Figure 3.3. Linear regression and 95% confidence interval of plasticity coefficients by year
of derivation for each of 299 hard winter wheat genotypes (solid line) or 297 hard winter
wheat genotypes (dashed lines) that exclude Turkey Nebsel and Kharkof (open circles). (a)
Plasticity of growing degree-days (GDD) from 1 Jan.to heading, where the narrower, lower
confidence interval corresponds with the solid line. (b) Plasticity of grain yield, where the
upper confidence interval corresponds with the solid line.
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Figure 3.4. Linear regression of average growing degree-days (GDD) from 1 Jan.to heading

of 299 hard winter wheat varieties grown in 11 environments on plasticity of GDD to
heading.

103



2000 y = 2460 - 1089x
s r? = 0.34

1600

1200

800

Min yield across environments

400 .

b 7000 y = 6503 - 1069x

. r2 =0.19
6500 LR SH

6000
5500

5000

Max yield across environments

4500

4000

c 4000 y = 3955 - 677x
r2 =0.23

3600

3200

2800

Mean yield across environments

2400

0.7 08 09 1 1.1 1.2 1.3 1.4
Plasticity of GDD

Figure 3.5. Linear regression of (a) minimum, (b) maximum, and (c) mean yield (kg ha1) of
299 hard winter wheat varieties grown in 11 environments on plasticity of growing
degree-days (GDD) from 1 Jan. to heading.
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Figure 3.6. Linear regression of plasticity of growing degree-days (GDD) from 1 Jan. to

heading of 299 hard winter wheat varieties grown in 11 environments on plasticity of grain
yield.
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Tables

Table 3.1. Environment abbreviations, location, moisture treatment, latitude, longitude, and planting and harvest dates of
environments used in the study. Each environment is a unique combination of location, year, and moisture treatment. The
moisture treatment is denoted at the end of the environment name (R = rainfed, F = full irrigation, and P = partial irrigation).

. . Moisture Plantin Harvest
Environment Location Treatment Lat (°N) Long (°W) Date g Date
Ar13R Ardmore, OK Rainfed 34.18 -97.09 12 0ct 2012 25 ]June 2013
Bul2R Bushland, TX Rainfed 35.18 -102.10 3 Nov 2011 10 June 2012
Fol3R Fort Collins, CO Rainfed 40.65 -105.00 20ct2012 18]July 2013
Fol3F Fort Collins, CO  Full irrigation 40.65 -105.00 20ct2012 22]July 2013
Gr12P Greeley, CO Partial irrigation 4042 -104.71 19 Oct 2011 3 July 2012
Gr12F Greeley, CO Full irrigation 4042 -104.71 19 Oct 2011 13 ]July 2012
Hal3R Hays, KS Rainfed 38.88 -99.33 10 Oct 2012 3 July 2013
It12R Ithaca, NE Rainfed 41.16 -96.43 40ct2011 28]June 2012
It13R Ithaca, NE Rainfed 41.28 -96.41 25Sept 2012 17 July 2013
Mal12R Manhattan, KS  Rainfed 39.14 -96.64 18 Nov 2011 3 July 2012
Ma12F Manhattan, KS  Full irrigation 39.14 -96.64 18 Nov 2011 3 July 2012
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Table 3.2. Mean, standard deviation (s.d.), and range of growing degree-days (GDD) between from 1 Jan. to heading, days from
1 Jan. to heading, and yield (kg ha'1) in each of 11 environments where a panel of 299 hard winter wheat genotypes were

grown in 2011/2012 and 2012/2013. The environments are described in Table 3.1. Genotype min and max are the minimum
and maximum values of each genotype across all environments.

GDDt Days to heading? Grain yield

Environment Mean # s.d. Range Mean # s.d. Range Mean = s.d. Range

--------------------------------- days ----------- ----=------ kg ha-1-----------
[t13R 730 £59 571-903 145.7 3.0 137-155 5,239 £ 443 4,050-6,204
Fol3R 739 £ 31 684-890 149.4 + 2.0 146-159 2,503 +£132 2,140-2,989
Fol3F 744 + 32 684-837 149.9 £ 2.2 146-156 4,958 + 398 3,980-5,999
Gr12P 870 + 44 783-986 134.4 £ 3.2 127-142 2,532 £217 1,961-3,093
Hal3R 892 + 32 816-999 1409+ 1.8 137-146 3,444 + 339 1,592-4,474
Gr12F 903 £ 52 753-1,089 136.8+3.4 125-148 4,782 £ 969 1,711-6,604
It12R 925+ 96 706-1,192 1223 +5.2 108-137 3,597 £374 2,378-4,522
Bul2R 1,042 £ 96 873-1,306 116.6 +4.8 107-131 1,332 £321 338-1,904
Ar13R 1,057 £ 94 922-1,339 109.0+5.8 101-127 2,119 £ 419 701-3,024
Mal2F 1,105 £ 80 949-1,276 122.2+39 114-131 2,872 +£337 2,113-3,861
Mal2R 1,112+ 79 1,010-1,309 122.5+4.0 117-133 2,663 + 333 1,846-3,728
Genotype Mean 920 £ 55 813-1,067 131.8+3.0 119-140 3,276 + 242 2,489-3,777
Genotype Min 712 £ 42 571-824 109.0 £ 5.7 101-125 1,318 + 321 338-1,904
Genotype Max 1,129 + 81 1,010-1,339 1503 2.1 146-159 5431+ 415 4,238-6,604

t Beginning from 1 Jan.
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Table 3.3. Pearson’s correlation coefficient (r) between grain yield and yield plasticity
among 299 hard winter wheat genotypes grown in 11 environments during 2011/2012 and
2012/2013. The environments are described in Table 3.1.

Environment r

Ar13R -0.16**
Bul2R 0.36%**
Fol3R 0.25%**
Fol3F 0.4 7%**
Gr12Pp 0.20**
Gr12F 0.78%**
Hal3R 0.4 3%**
[t12R 0.4.0%**
[t13R 0.76%**
Mal2R 0.16**
Mal2F 0.27%**

Minimum yield 0.33%*x*
Maximum yield 0.80%***
Mean yield 0.69***

*, *x F%x Significant at the 0.05, 0.01, and 0.001 probability levels, respectively.
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Table 3.4. Pearson’s correlation coefficient (r) between growing degree-days (GDD) from 1
Jan. to heading date and grain yield among 299 hard winter wheat genotypes grown in 11
environments during 2011/2012 and 2012/2013.

Environment r
Ar13R 0.13*
Bul2R -0.7 1%
Fol3R -0.31%**
Fol3F 0.03 nst
Gr12Pp# -0.39%**
Gr12F -0.56%**
Hal3R -0.42%**
[t12R 0.11ns
[t13R -0.43%**
Mal2R -0.40%**
Mal2F -0.39%**
PooledT -0.55%**

*, *x F%x Significant at the 0.05, 0.01, and 0.001 probability levels, respectively.
tns, nonsignificant at the 0.05 probability level.

+ Gr12P only had 298 entries with both GDD and grain yield data.

9 The sample size is 3,288 when entries from all environments are pooled.
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CHAPTER 4:

PHENOTYPIC ANALYSES AND GENOME-WIDE ASSOCIATION MAPPING FOR AGRONOMIC

TRAITS IN WINTER WHEAT GROWN UNDER CONTRASTING MOISTURE TREATMENTS

Summary

Genome-wide association mapping is an effective method of dissecting the genetics
of complex, quantitative traits like grain yield and drought tolerance. The objectives of this
study were to conduct genome-wide association studies (GWAS) on 15 traits, including
yield, yield components, and agronomic and phenological traits, in 299 winter wheat
entries representative of breeding material across the U.S. Great Plains region. The study
was conducted under well-watered and water-stressed environments in Greeley, CO in
2011-2012 and in Fort Collins, CO in 2012-2013. Grain yield was reduced by 48% under
water stress in 2012, and 46% under water stress in 2013. During 2012 the timing of water
stress occurred before anthesis and reduced grain yield by limiting biomass production
including tillering, producing fewer spikelets and kernels per spike, and reducing the
proportion of fertile spikelets. In 2013 stress occurred post-anthesis and primarily
impacted grain fill duration and kernel size.

Genotypic data included 16,052 single nucleotide polymorphism (SNP) markers
genotyped with the [llumina 90K iSelect chip. Markers for photoperiod sensitivity and
reduced-height genes, including Ppd-D1, Ppd-B1, and Rht-B1 were used as covariates in the
GWAS. We identified 173 significant marker-trait associations in individual environments, ,

35 significant marker-trait associations were detected in a combined analysis of year, and
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33 were detected in a combined analysis of moisture treatment. Genome-wide association
mapping is a powerful tool to detect genomic regions affecting a trait, but we found
relatively few QTL with large effects or that were stable across environments, years, or
moisture treatments. The number of significant marker-trait associations detected
depends on the statistical criteria used. We used the Benjamini-Hochberg procedure with a
false discovery rate of 50% to identify significant associations, but a different approach or
significance threshold would yield different results. A best method for establishing
significant marker-trait associations is yet to be established for agricultural research. Using
a larger population, incorporating denser marker data, or improving the genetic map could

improve GWAS results.

Abbreviations: ANOVA, analysis of variance; BH, Benjamini-Hochberg procedure for
multiple comparisons; BLUPs, best linear unbiased predictors; BM, above-ground biomass;
DTB, days to booting; DTF, days to flowering; DTH, days to heading; DTJ, days to jointing;
DTM, days to maturity; GBM, grain biomass; GF, grain fill duration; GxE, genotype-by-
environment interaction; GWAS, genome-wide association study; GY, grain yield; HI,
harvest index; HWWAMP, Hard Winter Wheat Association Mapping Panel; KPS, kernels per
spike; KN, kernel number; LD, linkage disequilibrium; MAF, minor allele frequency; PFS,
proportion fertile spikelets; PH, plant height; QTL, quantitative trait loci; SNP, single

nucleotide polymorphism; SPS, spikelets per spike; KW, kernel weight; SN, Spike number.
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Introduction

Bread wheat (Triticum aestivum L.) is an important component of human diets
worldwide, including in the United States. However, acreage planted to wheat in the United
States has declined by about 30% since the early 1980’s, in part due to increased demand
for ethanol and corresponding increases in the acreage planted to maize, and the United
States Department of Agriculture projects it will continue to decline over the next decade
or more (USDA, 2015). At the same time, wheat consumption in the U.S. is expected to
increase at the same rate as population growth, and demands on wheat production for
export are expected to rise (Westcott and Hansen, 2015). Grain yield can be increased
either using improved crop management techniques or increases in genetic gain (Tester
and Langridge, 2010). However, the rates of improvements in yield potential may not be
high enough, especially among water-limited environments, to meet the projected
demands of wheat and other cereals in 2050 (Hall and Richards, 2013). Some research
suggests the rate of genetic gain may be slowing in wheat (Graybosch and Peterson, 2010),
at least for some types of wheat in particular regions of the U.S. (Graybosch et al,, 2014).
Therefore, new methods of yield improvement need to be addressed in order to meet
demands for wheat production.

Yield is a complex trait controlled by many genes, most of which contribute only a
small amount of phenotypic variation and are specific to a population or environment (van
Eeuwijk et al., 2010). Association analysis, such as genome-wide association studies
(GWAS), is one approach to identify the genetic architecture of complex traits (Zhu et al,,
2008). Genome-wide association mapping can identify quantitative trait loci (QTL) through

marker-trait associations (Zhu et al,, 2008). Quantitative trait loci can be introduced to
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elite germplasm through recurrent backcrossing using marker-assisted selection, but to
date, introgression of QTL into breeding materials using these methods is rare, in part due
to instability of QTL across environments (Bernardo, 2008).

The development of polymorphic marker platforms (Shendure and Ji, 2008; Metzker,
2010), expansion of tools to rapidly and inexpensively detect polymorphic markers
(Varshney and Dubey, 2009; Poland and Rife, 2012), and advances in statistical and
computational methods (Lipka et al.,, 2015) to process very large genetic and genomic
datasets have all contributed to recent increases in the use and utility of GWAS. In
particular, the increased availability and reduced cost of molecular markers, coupled with
an ordered draft sequence of the wheat genome (Mayer et al., 2014) and recently published
consensus maps (Cavanagh et al., 2013; Wang et al., 2014) make GWAS a viable option to
identify sources of genetic variation for grain yield or agronomic traits in wheat.

There are many recent reports of successful use of GWAS in wheat. Genetic analyses
have been used to dissect grain yield, yield components, and other agronomic traits (Yao et
al,, 2009; Bentley et al.,, 2014; Sukumaran et al., 2014; Zanke et al., 2014), including under
multiple moisture regimes (Maccaferri et al., 2011; Dodig et al.,, 2012; Edae et al., 2014;
Lopes et al,, 2014; Li et al,, 2015; Mora et al,, 2015). Other studies have evaluated the
genetic basis of quality traits (Breseghello and Sorrells, 2006; Reif et al., 2011), pre-harvest
sprouting (Mohan et al., 2009; Kulwal et al., 2012), and nitrogen-use efficiency (Cormier et
al., 2014). Other applications of GWAS in wheat include stripe rust resistance (Maccaferri et
al,, 2015; Naruoka et al., 2015), Fusarium head blight resistance (Kollers et al., 2013; Jiang
et al,, 2014), and insect or virus resistance (Peng et al., 2009; Joukhadar et al.,, 2013). Some

benefits of additional GWAS in wheat include evaluation of novel traits, utilization of
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different or more dense genetic markers to detect QTL, identification of new QTL or
validation of previously identified QTL in a different set of germplasm, and identification of
beneficial alleles in locally-adapted breeding lines.

The primary objective of this study was to identify QTL using marker-trait
associations between markers from the Illumina 90K iSelect assay platform and phenotypic
traits in winter wheat accessions evaluated under contrasting moisture regimes. Secondary
objectives were to estimate the extent of linkage disequilibrium across the A-, B-, and D-
genomes; evaluate phenotypic variation among accessions and environments; estimate
phenotypic and genetic correlations between traits; and estimate broad-sense heritability

of traits.

Materials and methods

Germplasm and experimental design

The germplasm used in this study was a collection of 299 winter wheat accessions
representative of the U.S. Great Plains region, and includes recent cultivars, experimental
breeding lines, and historic varieties. The germplasm has been designated the Triticeae
Coordinated Agricultural Project (TCAP, http://www.triticeaecap.org) Hard Winter Wheat
Association Mapping Panel (HWWAMP), which has been described previously (Grogan et
al,, 2015a; Guttieri et al., 2015b).

The HWWAMP was evaluated in four field trials in Colorado during 2011-2012
(referred to as the 2012 season) and 2012-2013 (2013 season). In 2011-2012 the panel

was grown at the USDA-Agricultural Research Service Limited Irrigation Research Farm in
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Greeley, CO (40° 27°N, -104° 38’'W; elevation 1,427 m) under full (Gr12F) and partial
(Gr12P) irrigation. During the 2012 season, trials were planted on 19 Oct 2011 and
harvested on 3 July 2012 (Gr12P) and 13 July 2012 (Gr12F). Supplemental moisture was
applied using drip irrigation. Irrigation was applied 10 times between spring green-up and
physiological maturity at Gr12F, and five times at Gr12P. The moisture differential was
applied beginning during vegetative growth such as tillering or stem expansion, in early
April 2012 (Table 4.1). The moisture treatment had a significant effect on phenological
development by booting, which was the first developmental stage evaluated. Supplemental
irrigation totaled 101.6 mm at Gr12P and 335.3 mm at Gr12F. Both Gr12P and Gr12F
received 82.1 mm precipitation between 1 Jan and harvest.

During 2012-2013 the panel was grown at the Colorado State University
Agricultural Research Development and Education Center in Fort Collins, CO (40° 39'N, -
105° 00°'W; elevation 1,534 m). The trials included full irrigation (Fo13F) and rainfed
(Fo13R) treatments that were planted on 2 Oct 2012 and harvested on 18 July 2013
(Fo13R) and 22 July 2013 (Fo13F). Irrigation at Fo13F began at anthesis, and was applied
seven times, totaling 222.3 mm using overhead linear sprinklers. Thus, there was no
treatment effect between Fo13F and Fo13R until anthesis. Both Fo13F and Fo13R received
124.4 mm precipitation between 1 Jan and harvest.

All four trials had an experimental design similar to a type Il modified augmented
design (Lin and Poushinsky, 1985). The experimental entries were unreplicated, except for
‘Wichita’ (CI 11952), which was included in the panel twice. Two check varieties, ‘Hatcher’,
(Haley et al.,, 2005) and ‘Settler CL’ (Baenziger et al., 2011) were replicated 15 times each

per trial, and were also included as experimental entries.
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Phenotypic trait evaluation

Fifteen phenotypic traits (Table 4.2) were evaluated in this study and were
estimated as follows. Mature plant height (PH) was measured in cm from the soil surface to
the tip of the spike excluding awns. Above-ground biomass (BM) was obtained by cutting a
1 m strip of all plants at the soil surface after physiological maturity, and recording the dry
weight of the samples after drying for at least 72 hours in a 40°C oven. Each BM sample was
threshed and the grain was weighed to obtain grain biomass weight (GBM). Harvest index
(HI) was calculated as the ratio of dry grain weight to dry biomass weight.

Spikelets per spike (SPS) were determined from the average of 10 spikes collected
at physiological maturity. The proportion of fertile spikelets (PFS) was estimated by first
counting the total number of spikelets on each spike, then counting the number of sterile
spikelets (those not filled with grain) on the top and base of each spike, and finally taking
the ratio of spikelets filled with grain to total number of spikelets. Kernel number per spike
(KPS) was determined by threshing each group of 10 spikes, counting the number of
resulting kernels, and dividing the number of kernels by the number of spikes. Each group
of kernels was weighed and divided by the kernel number and then multiplied by 1000 to
estimate kernel weight (KW). Grain yield (GY) was the total weight of all grain from each
plot, divided by the plot area (adjusted for length and large gaps), and was expressed as kg
ha-1. Spike number (SN) was estimated by dividing GY by kernel weight per spike
(estimated from KPS and KW) and is reported as spikes m-2. Kernel number (KN) was
estimated as the product of SN and KPS and is reported as kernels m-2

Crop developmental stages were determined for each plot using the Zadoks scale

(Zadoks et al.,, 1974). Calendar days to each developmental stage was calculated as the
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number of days after 1 Jan, and included days to jointing (DT], stage 31), booting (DTB,
stage 45), heading (DTH, stage 59), flowering (DTF, stage 65), and physiological maturity
(DTM, stage 90). Grain filling duration (GF) was calculated as the difference between DTM
and DTF. Developmental stages were defined when approximately 50% of tillers in interior
rows of the plot exhibited characteristic traits. Jointing date was only evaluated at Fo13F.

There was no treatment effect observed at 2013 environments until anthesis.

Phenotypic analyses

Best linear unbiased predictions (BLUPs) were calculated separately for each trait
and environment using SAS 9.3 (SAS Institute, Inc., Cary, NC). Genotypes were treated as
random. Six models: row-column and five different spatial models (row-column, spherical,
exponential, power, anisotropic power, and Matérn) were tested, and the best model was
selected based on the Akaike information criterion test statistic. Combined analyses were
conducted on BLUPs using mixed models where genotypes were treated as random, and
environment or year was treated as a fixed effect. Combined analyses include estimates
across all four environments, estimates across years, and estimates across well-watered or
water-stressed treatments. Further analyses were performed using the software R (version

3.1.3, R Development Core Team), as specified below.

Variance components, genetic correlations, and heritability
Phenotypic correlations (r) were estimated from BLUPs using the Pearson product-

moment correlation coefficient, estimated using the ‘stats’ package (R Development Core
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Team, 2015). Estimates of r measure the magnitude and direction of the linear association
between two traits.

Variance components were estimated from BLUPs for each trait based on mean
squares from an analysis of variance (ANOVA) table. Analyses of variance were conducted
in the ‘car’ package (Fox and Weisberg, 2011). For each agronomic trait the main effects of
genotype and environment, and the interaction between genotype and environment (GxE),
were included as fixed effects. Genotype-by-environment interaction was only retained in
the model when the effect was significant at a probability level of 0.05. Broad-sense
heritability (H?), the proportion of total phenotypic variance due to genetic effects, was
estimated as follows in Eq. 4.1:

2
Og

H? = (Eq. 4.1, Hallauer et al., 1988)

2 0'2
2, Oe, 8¢
O'g+ r-e+ e

2

ge> and 02, are the genetic, GxE, and error variance components, e is the total

Where 63, 0

number of environments, and r is the number of replications at each environment.

The genetic correlation estimates the degree to which two traits are affected by the
same genetic factors, such as pleiotropic genes or linkage disequilibrium (LD) and was
estimated between each pair of agronomic traits, as described in Williams et al. (2002).
Estimating the genetic correlation required creating a new combined variable for each pair
of traits. For two traits: x and y, a third combined variable, z, was calculated as x + y. Genetic
variance of z was calculated from mean squares as described above.

The genetic variances of traits are related and can be computed using Eq. 4.2 and Eq.

4.3, where 0%, 0, and o7 are the genetic variance components for traits x, y, and z:

o= (o, + O'y)z = 03 + 05 + 20,y (Eq. 4.2)
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Rearranging Eq. 4.2 enabled computing the genetic variance of xy directly:

0%-0%-0%

Opy = — (Eq. 4.3)
The genetic variances of traits x, y, and xy were used to estimate the genetic

correlation (rg) between x and y, as follows in Eq. 4.4:

r = %
Gxy) — T,
0x'0y

(Eq. 4.4)

Genotype data

Single nucleotide polymorphism markers for all 299 accessions were assayed using
a 90K Illumina iSelect genotyping platform (Wang et al., 2014) at the USDA-ARS Small
Grains Genotyping Laboratory in Fargo, ND. Genotyping was repeated for 12 accessions
(‘Akron’, ‘Camelot’, CO04W320, ‘Lindon’, ‘Millenium’, ‘NuFrontier’, ‘OK Rising’, 0K10119,
0K1068002, ‘Overland’, ‘Pete’, and ‘PostRock’) due to concerns with initial genotyping
based on comparing kinship estimates of known pedigree-based relatedness. TAM 105 was
genotyped twice and only one genotype for TAM 105 was retained, which was chosen
based on kinship with TAM 107, a TAM 105 backcross. TAM 105 was expected to share
about 75% of allele calls with TAM 107. The retained genotype of TAM 105 was 77%
identical to TAM 107, and the eliminated genotype had greater levels of missing data and
was only 62% identical to TAM 107

Allele calls were made using the [llumina GenomeStudio Polyploid Clustering
Module v1.0 software (www.illumina.com). The DBSCAN algorithm was used to identify
genotype clusters assuming cluster distance 0.07, five data points per cluster, and

confidence score limit of 0.8. Cluster separation was filtered to have no less than two
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standard deviations of Theta value of each cluster. Semi-automatically curating the

markers eliminated monomorphic SNPs, multi-allelic SNPs, SNPs with low call rate, SNPs
that produced diffuse clusters, and SNPs with smaller cluster distances to produce a set of
26,553 SNPs. Manually curating the markers resulted in 21,555 SNP calls on 299 genotypes,
of which 21,546 SNPs were missing < 10% of calls. A total of 5,497 SNPs had a minor allele
frequency (MAF) < 5%. Markers with MAF <5% or more than 10% missing calls were
removed to produce a set of 16,052 filtered SNPs. Map positions were obtained from
http://wheatgenomics.plantpath.ksu.edu/ (download date: 22 May 2015). Of the 16,052
filtered SNPs, 14,829 mapped to a unique chromosome position and 1,223 were
unanchored. Distribution of the markers varied among genomes and chromosomes, and

included 5,971 on the A-genome, 7,244 on the B-genome, and 1,614 on the D-genome.

Linkage disequilibrium

The extent of LD among markers was generated using the software TASSEL (Trait
Analysis by aSSociation, Evolution, and Linkage) v. 5 (Bradbury et al., 2007) with a sliding
window size of 200 cM. The extent of LD was estimated on a set of 10,778 markers that
included 4,114 markers on the A-genome, 5,291 markers on the B-genome, and 1,373
markers on the D-genome. Decay of r? was estimated using the Hill and Weir method (Hill

and Weir, 1988), as implemented by Marroni et al. (2011).
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Association analyses

Association analyses were conducted in the GAPIT (Genomic Association and
Prediction Integrated Tool) package (Lipka et al,, 2012) for R using 16,052 filtered SNPs.
The analyses were conducted separately for each environment and combined across
environments using a multiple linear model with principal components (Price et al., 2006)
and kinship (P+K). The model selection option was used to account for population
structure, and allowed between zero and four principal components for each trait and
environment. Three functional genes associated with plant development through the
photoperiod and gibberellin sensitivity pathways (Ppd-D1, Ppd-B1, and Rht-B1) were also
included as covariates using model selection to reduce confounding. Genotyping at these
loci has been described previously (Grogan et al., 2015b). Covariate files require complete
genotypic data; so missing data at Ppd-D1, Ppd-B1, and Rht-B1 were imputed as the major
allele. The major alleles were photoperiod sensitive alleles Ppd-D1b and Ppd-B1b, and the
semi-dwarf allele Rht-B1b. In preliminary analyses missing data were imputed both as the
major allele and as heterozygotes, and there were not significant differences in model fit
between the two imputation methods for any of the agronomic traits evaluated.

Best model fit was assessed based on the largest Bayesian information criterion
value (Schwarz, 1978). Kinship was estimated using the realized additive relationship
matrix (Endelman and Jannink, 2012) from the R package ‘rrBLUP’ (Endelman, 2011) with
missing data imputed using the EM algorithm with tolerance = 0.2, as described previously
(Guttieri et al., 2015a).

Significant marker-trait associations were identified using the Benjamini-Hochberg

(BH) procedure to correct for multiple comparisons (Benjamini and Hochberg, 1995). The
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false-discovery rate threshold was set to 50%. A high false-discovery rate was used
because the BH procedure is known to be conservative when correcting for large numbers
of multiple comparisons (Bradbury et al., 2011). The BH threshold critical P-value is
determined from the total number of markers (m), rank of markers (i) from lowest to
highest un-adjusted P-value, and false-discovery rate (Q), and can be described as follows

in Eq. 4.5:

Paic < (=) - Q (Eq. 4.5)
Thus, the critical value for the BH procedure is not a static number, but varies for each
marker based on the rank of the un-adjusted P-value for each marker relative to all
markers. The highest significant P-value that meets the BH criteria is identified as the
largest unadjusted P-value that is less than P.i;. Markers with an unadjusted P-value less-
than or equal-to the highest significant P-value are considered to have significant marker-

trait associations.

Results
Phenotypic analyses of agronomic traits

Variability of agronomic traits across environments

A summary of phenotypic trait values is provided for Gr12F and Gr12P in Table 4.3,
and for Fo13F and Fo13R in Table 4.4. Similar reductions in grain yield were achieved
under water stress in 2012 and 2013. Grain yield was reduced by 48% under water stress

in 2012, from 4802 * 979 kg ha'lat Gr12F to 2510 * 251 kg ha'lat Gr12P.In 2013, grain
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yield was reduced by 46%, from 5008 + 402 kg ha-lat Fo13F to 2684 + 133 kg ha'lat
Fol3R.

In 2012 the reduction of grain yield under water stress was primarily caused by a
large reduction in plant size, including reduced BM (52% reduction), SN (30% reduction),
and PH (36% reduction). Other traits not related to plant size were also reduced under
water stress, such as KN (36% reduction). Smaller plants had fewer assimilates available to
partition to the developing grain. Reduced BM resulted in a greater HI under water stress
(0.38 £ 0.04 in Gr12P and 0.34 + 0.05 in Gr12F), but lower GBM overall (45% reduction
under water stress). Additionally, spikes produced many fewer spikelets (9% reduction)
and kernels (15% reduction) under water-stressed than non-stressed conditions. At Gr12F
high GBM was associated with increased KW (r=0.49, P < 0.001) and SN (r=0.43, P
<0.001), while at Gr12P high GBM was more strongly associated with KN (r=0.26, P <
0.001) and KPS (r= 0.25, P <0.001, Table 4.5). This suggests that high yield at Gr12F was
due to more spikes and larger kernel size, while high yield at Gr12P was more strongly
impacted by kernel number. Many other traits also had strong positive genetic correlations
(Table 4.5).

Different effects on grain yield and yield components due to water stress were
observed in 2013: grain yield decreased due to reductions in kernel size (KW was reduced
by 27%) and KPS (reduced by 21%). Biomass was reduced by 25% under water stress in
2013, which was less than the 52% reduction observed in 2012. However, this difference is
primarily due to greater BM production under full irrigation in 2012 (477.9 + 36.7 g at
Gr12F) thanin 2013 (305.0 + 10.6 g at Fo13F), rather than a large difference in biomass at

stressed environments (231.2 + 19.6 g at Gr12P and 228.2 £ 16.6 g at Fo13R). Number of
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spikes was also greater at Gr12F (454.7 £ 17.7 spikes m-2) than Fo13F (373.8 + 32.9 spikes
m-2). At Fo13F high GBM was associated with more KPS (r=0.26, P <0.001) and greater KW
(r=0.22, P<0.001, Table 4.5), but at Fo13R GBM was most strongly associated with SN (r =
0.24, P <0.001, Table 4.5). This suggests that overall, high grain yield at Fo13F relative to
Fo13R was mostly influenced by kernel size. Entries with the highest grain yield at Fo13F
produced relatively more kernels and had larger kernels than other entries grown in that
environment, while entries with the highest grain yield at Fo13R produced relatively more

total spikes than other entries grown in that environment.

Combined analyses across environments

Results from the combined analyses of variance across environments are
summarized in Table 4.6. The main effect of environment was significant for all traits. The
main effect of genotypes was significant for all traits except BM. Genotype-by-environment
interaction was significant for GY, GBM, HI, DTB, and DTF.

Estimates of broad-sense heritability were lower for GY (H? = 0.43) than other yield
components, including KN (H? = 0.56), SN (H? = 0.69), KPS (H = 0.78), SPS (H?=0.84), and
PFS (H?=0.65, Table 4.6). Total BM had the lowest heritability (H?= 0.08) and GBM also
had low heritability (H? = 0.20). Among the developmental traits, DTH was more heritable
(H?=0.89) than DTB (H?= 0.87), DTM (H?= 0.82), or DTF (H?= 0.69).

Strong positive genetic correlations with GY were observed for GBM (r¢ > 1), HI (r¢ >
1), and KPS (r = 0.69, Table 4.7). Strong negative genetic correlations were observed

between GY and PH (rg =-0.77), and between GY and phenological stages (r¢ =-0.76 to -
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0.79). Plant height had positive genetic correlations with DTB (r¢ = 0.62), DTH (r¢ = 0.58),
DTF (r¢=0.55),and DTM (r¢ = 0.39).

There were negative genetic correlations between SN and some yield components
(r¢=-0.14 to < -1.0 for HI, KPS, KW, SPS, GBM, PFS), and positive correlations between SN
and vegetative growth traits BM (rg= 0.36) and PH (rg= 0.16, Table 4.7). This highlights the
genetic control affecting partitioning of assimilates to either vegetative structures or the
developing spike, such that the same genes either directed assimilates towards tiller and
biomass production, or towards yield components in the spike, but that these processes

were in competition with each other.

Additional sources of environmental variance

When the environment was deconstructed into two environmental variables: year
(2012 or 2013) and moisture treatment (water-stressed or full irrigation), the effect of
treatment was larger than year for most traits (Table 4.8). This is not surprising because
the moisture treatments each year were intended to be very different, whereas the
locations were in the same geographic region and expected to experience a similar set of
environmental conditions both years. Despite differences in the timing of water stress,
yield reduction under stress was similar both years (Table 4.3 and Table 4.4). Year had a
larger effect than treatment for phenological traits (DTB, DTH, DTF, DTM) and PFS.
Treatment had a significant effect on all traits and year had a significant effect on every
trait except KPS. In individual environments, genotype had a significant effect on every trait
except for BM. Two-way interactions between either genotype and treatment or genotype

and year were significant for most traits, but not for SN, KW, BM, or GBM. The interaction
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between treatment and year was significant for every trait except for GY. The three-way
interaction between genotype, treatment, and year was a significant source of variation for
GBM, HI, TW, DTB, and DTF. These results indicate there was substantial phenotypic
variation in the HWWAMP for most agronomic and phenological traits and genotype-by-

environment interaction affected the traits in complex ways.

Genetic analyses of agronomic traits

Linkage disequilibrium

The extent of LD varied among genomic regions, chromosomes, and whole genomes
(Flint-Garcia et al,, 2003). We found the extent of LD to vary substantially on the A-, B-, and
D-genomes. Genome-level LD decayed below r?=0.20 at 6 cM in the A-genome, 4 cM in the
B-genome, and 28 cM in the D-genome. Across all three genomes, LD decayed below r? =
0.20 at 9 cM. These results differ from those reported by Edae et al. (2014) in a spring
wheat panel from CIMMYT (“Centro Internacional de Mejoramiento de Maiz y Trigo”),
where LD was found to decay below r?=0.20 at 1.7 cM for the A-genome, 2 cM for the B-
genome, and 6.8 cM for the D-genome. However, Chao et al. (2010) reported that among
worldwide spring and winter wheats, CIMMYT spring wheat lines had the lowest extent of
LD. In a separate spring wheat panel, Mora et al. (2015) found LD decayed to below 50%
initial values at 22 cM for the D-genome, and 2 cM for the A- and B-genomes. Results by
Chao et al. (2010) differed from our study, Edae et al. (2014), and Mora et al. (2015) in that
they found extent of LD in winter wheat to be greater for the B-genome (7 cM) than the D-

(6 cM) or A-genome (5 cM).
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Marker-trait associations in individual environments

A total of 173 significant marker-trait associations were detected for agronomic
traits in individual environments (Table 4.9), including associations with 124 mapped and
49 unmapped markers. Associations were detected on every chromosome. The marker-
trait associations involved 108 unique, mapped markers. Most markers (96 markers) were
only detected for a single trait and environment, while 8 markers were significant in two
associations, and four markers were significant in three associations. The 108 unique
mapped markers mapped to 64 unique QTL, defined as unique genomic regions separated
by at least 10 cM. Most of the QTL (51 of 64 total QTL) were separated by at least 20 cM.

There were more QTL detected in 2012 than 2013, and this is influenced in part by
the large number of QTL (20 significant marker-trait associations) detected for SPS in
Gr12P, and for DTH (17 significant marker-trait associations) in Gr12F (Table 4.9). The
most QTL (57 significant marker-trait associations) were detected at Gr12P, while the
fewest (32 significant marker-trait associations) were detected at Fo13F. Up to 28 QTL
were detected per trait.

Most markers with significant effects were only associated with a single trait in one
environment. The GWAS results are summarized separately for mapped markers at Fo13F
(Table 4.10), Fo13R (Table 4.11), Gr12F (Table 4.12), and Gr12P (Table 4.13). In both years,
more significant marker-trait associations were detected in the water stressed than non-
stressed treatment (Table 4.9). In Fo13R and Gr12P, the greatest number of marker-trait
associations were detected for traits most affected by water stress, including 15
associations each for DTF and GF in Fo13R, and 20 associations for SPS in Gr12P (Table

4.9). The GWAS results for unmapped markers are summarized in Table 4.14. Some
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markers were associated with multiple traits in one or more environment, or the same trait
across several environments. Furthermore, in some cases different markers at the same
chromosomal position, or within the same genomic region, had significant marker-trait
associations across environments.

Several markers were associated with a phenological trait and vegetative growth
traits like HI or PH. Tdurum_contig42153_1190 (chromosome 2B) was associated with PFS
and HI at Gr12P and with PFS at Fo13F. A second marker located at the same position,
Tdurum_contig42153_891, was associated with PFS at Fo13R and DTB at Gr12F. Three
unmapped markers: BS00012081_51, RAC875_c15844_348, and RAC875_c31358 214v were
associated with DTH and PH at Gr12F, PFS at Fo13R and/or Fo13F. The allelic effects of
these markers were similar on all traits. In addition, BS00012081_51 was associated with
SPS at Gr12P, and both RAC875_c15844 348 and RAC875_c31358_214v were associated
with HI at Gr12P.

Five significant marker-trait associations were detected between either DTB or
DTH and HI. Ex_c9615_1202 (chromosome 7A) and GENE.4008_418 (unmapped) were
associated with DTB at Fo13F and HI at Gr12P. BobWhite_rep_c63363_160,
Kukri_c25245_998, and Kukri_c29807_713 (all unmapped) were associated with DTH at
Gr12F and HI at Gr12P. A sixth marker, Excalibur_c35316_154 (chromosome 1A) was
associated with DTB, SPS, and KN at Gr12F.

Many markers were associated with one or more phenological stage, in one or more
environment. GENE.1125_32 (unmapped) had an effect of 1.0 d on DTF at Fo13R, and an
effect of 1.7 d on DTB at Gr12F. Other markers with large effects on DTB include

BobWhite_c19554_544 (chromosome 2B, with an effect of 1.7 d at Gr12F), BS00067096_51
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(chromosome 5A, effect of 1.5 d at Gr12P), CAP12_c590_307 (chromosome 1B, effect of 1.4
d at Gr12P), and BobWhite_c37935_124 (chromosome 1A, effect of 1.4 d at Gr12F).
BobWhite_c37935_124 also had an effect of 0.6 d on DTF at Fo13R. No QTL had an allelic
effect greater than 0.8 d on DTF. Tdurum_contig15734 221 (chromosome 7B) had an effect
of 1.0 d on DTB at Gr12F, and an effect of 0.9 d on DTH. Wsnp_Ex_c9779_ 16145653
(chromosome 6A) had an effect of 1.1 d on DTB at Gr12P and an effect of 0.5 d on DTF at
Fol3R. BS00034554_51 (chromosome 6B) also affected the timing of vegetative growth,
with similar effect sizes of 0.7 d for both DTB at Gr12P and DTH at Gr12F. Other markers
with large effects on DTH include: wsnp_Ku_c5693_10079278 (chromosome 7A, effect of 1.3
d at Gr12F), wsnp_Ku_c3956_7237707 (chromosome 4A, effect of 1.0 d at Gr12F), and
wsnp_Ex_rep_c70756_69644826 (chromosome 9B, effect of 1.0 d at Gr12F).

Many QTL were detected for spike traits, especially SPS (28 associations) and PFS
(18 associations, Table 4.9). Wsnp_Ku_rep_c104159_90704469 (chromosome 7A) was
associated with SPS at Fo13F, Fo13R, and Gr12P and affected the number of spikelets by
0.3-0.4. Wsnp_JD_c20555_18262317 is positioned near wsnp_Ku_rep_c104159_90704469,
and was associated with KN at Gr12F, with an effect size of 213 kernels m-2.
Wsnp_Ex_c53843_56941644 (unmapped) was associated with SPS in Gr12P and Fo13R, and
also had an effect size of 0.3-0.4 spikelets. It also had an effect on KN at Gr12F.
Excalibur_c29255_404 (chromosome 5A) was associated with PFS at Fo13F, Fo13R, and
Gr12P and changed fertility by 1.3-2.2%. Wsnp_JD_c2128 2930150 (chromosome 5A) had
an effect on PFS at both Fo13F and Fo13R, and the effect size was similar (0.7-0.8%) in

both environments.
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Marker-trait associations across environments

Many traits did not vary significantly among genotypes in the combined analysis
across all four environments. Only four traits: HI, KPS, PFS, and SPS had significant
variability and could be evaluated in a GWAS. Among these traits, QTL were detected for
PFS and SPS (Table 4.16).

Three QTL were detected for PFS, including two on chromosome 5A (at 15.9 and
139.8 cM), and one on chromosome 2D. The largest allelic effect, a 1.3% change in spike
fertility, was observed for Excalibur_c29255_404 (chromosome 5A), and significant
associations at this position were also detected for PFS at Fo13F, Fo13R, and Gr12P. Two
significant marker-trait associations were detected for SPS, including with
wsnp_Ku_rep_c104159_90704469 (chromosome 7A). QTL at this position were also

detected for SPS at Fo13F, Fo13R, and Gr12P.

Marker-trait associations across treatments and years

Seven traits had significant variation in combined analyses of water-stressed or
non-stressed treatments: GY, HI, KPS, PFS, PH, SPS, and KW. Genome-wide association
studies detected 33 QTL, including 11 for PFS, 10 for HI, seven for KW, three for PH, and
two for SPS (Table 4.17). Four markers had significant associations with multiple traits:
BS00012081_51, RAC875_c15844 348, and RAC875_c31358_214 (all unmapped) were
associated with PFS and PH, while Tdurum_contig29087_757 (chromosome 1B) was
associated with HI and KW.

Eight traits varied significantly in combined analyses of 2011 or 2012

environments: DTB, DTF, DTH, HI, KPS, PFS, and SPS. A total of 35 QTL were detected,
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including 11 for DTF and HI, 10 for PFS, two for SPS, and one for KPS (Table 4.18). Three
markers had significant associations with multiple traits: Kukri_ c22513 1780 (chromosome
2B) and GENE.1273_395 (unmapped) associated with HI and DTF, and

Tdurum_contig42153_1190 (chromosome 7B) was associated with HI and PFS.

Discussion

Phenotypic analyses of agronomic traits

Variability of agronomic traits across environments

Grain yield was reduced by a similar amount under water stress in 2011-12 and
2012-13 even though the timing of water stress varied (Table 4.1). Stress occurred pre-
anthesis in the summer of 2012, and post-anthesis in 2013. The timing of water stress
resulted in grain yield being reduced by different yield components in each year. In 2012,
grain yield was reduced mostly due to lower SN (30% reduction) and fewer SPS (9%
reduction, Table 4.3) because the developmental processes occurring before anthesis
include initiation of vegetative and reproductive structures including tillers and spikelets.
In 2013, grain yield was reduced at Fo13R relative to Fo13F primarily due to smaller seed
size (27% reduction in KW, Table 4.4), which is consistent with our understanding that
final kernel number is determined at anthesis, and further improvements of grain yield are
due to increases in kernel size. Additionally, environmental conditions between the two
years contributed to an average of 15 days earlier heading in the water stressed treatment,

and 12 days earlier heading in the non-stressed treatment, in 2012 than 2013 (Tables 4.2,
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4.3). Earlier heading in 2012 was likely facilitated by hot and dry conditions beginning in

the early spring and extending through the summer (Grogan et al., 2015b).

Combined analyses across environments

In the combined analysis across all four environments, GxE only had a significant
effect on a few traits (GY, GBM, HI, TW, DTB, and DTF; Table 4.6), which suggests most
traits had similar rankings of germplasm across environments. However, when
environment was partitioned into effects of moisture treatment and year, the interaction
between genotype and treatment and/or year was significant for most traits (Table 4.8).
This illustrates the complexity of GxE and that variation among years or moisture
treatments affected the ranking of germplasm. The interaction between treatment and year
was also significant for most traits, which is partially explained by variation in the timing of
water stress. In 2013 the moisture differential was not applied until May (Table 4.1) and
stress occurred post-anthesis, so yield components such as SN, KN, KPS, and SPS are not
expected to differ significantly between Fo13F and Fo13R, although since stress occurred
pre-anthesis in 2012, these traits are expected to vary significantly for Gr12F and Gr12P.
This type of variation among years contributes to significant treatment-by-year interaction.

Environmental effects due to year were greater than those due to treatment for
most of the phenological traits (DTB, DTH, DTF, DTM, Table 4.8). This is likely because
plant development is largely dependent on temperature accumulation (Moragues and
McMaster, 2011), and there were many very hot days in 2012, including many in the early
spring. Similarly, PFS had a larger effect due to year than treatment, likely because high

temperatures in 2012 elevated the rate of floret abortion, reducing spike fertility (Cossani
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and Reynolds, 2012). The number of spikelets per spike and other spike measurements
were the most highly heritable traits (H? = 0.85 for SPS, H? = 0.84 for PFS, and H? = 0.78 for
KPS, Table 4.6). Each of these traits was measured from a collection of 10 spikes per plot.
High heritability for these traits is likely due to strong genetic control and a high degree of
replication.

The main causes underlying a genetic correlation between two or more traits are
linkage and pleiotropy. Like all correlations, genetic correlations fall within a theoretical
limit of 1 and -1. However, some of our genetic correlations exceeded the theoretical limits
(Table 4.8). The genetic correlations were > 1 or < -1 when the genetic variance of one trait
was much smaller than the other. A small genetic variance sometimes resulted in rg > |1|
because taking the product of both genetic variances, and then the square root of that value,
results in a very small value in the denominator of Eq. 4.4. In some cases the denominator
was smaller than the numerator.

There were positive genetic correlations between PH and the phenological traits
(DTB, DTH, DTF, and DTM). The correlation was strongest at booting (r¢ = 0.62) and
decreased steadily at each successive developmental stage (Table 4.7). This highlights the
possible role of the Reduced-height (Rht) loci on wheat development, which has been

identified previously (Berry et al., 2014) but not fully explained.

Genetic analyses of agronomic traits
Associations between traits can be confounding and result in false associations or
distort the magnitude of an association (Thomas, 2010). The effects of phenology are

known to confound some agronomic traits, especially under drought stress (Reynolds et al,,
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2009). We attempted to minimize confounding by correcting for population structure and
kinship, and including three major developmental genes: Ppd-B1 (chromosome 2B), Ppd-D1
(chromosome 2D), and Rht-B1 (chromosome 4B) as covariates in the analysis. Previously,
we found these loci to have significant effects on heading date in the HWWAMP (Grogan et
al., 2015b). We detected the largest number of significant marker-trait associations on
chromosome 2B (Table 4.15, some of which could be caused by Ppd-B1, also located on
chromosome 2B, such as through genetic linkage. Our genotyping methods only detected
allelic variants caused by a SNP. However, a single SNP variant could be associated with
multiple alleles. Spurious associations could result from the presence of allelic variants
(Cane et al,, 2013), copy number variants (Diaz et al., 2012), epigenetic variation (King et al.,
2010), or marker imputation (He et al., 2015). Copy number variants and epigenetic
variation are not detected in SNP markers. Other developmental genes that could have
confounding effects include Rht-D1 (chromosome 4D), and Ppd-A1 (chromosome 2A), and
Vrn-B3 (chromosome 7B). The vernalization loci Vrn-A1, Vrn-B1, and Vrn-D1 located on the
group 5 chromosomes are unlikely to have a large effect within the HWWAMP, since the
accessions are believed to be exclusively winter wheats and thus do not vary at these loci
(Grogan et al,, 2015b).

The power to detect associations depends on the marker density, extent of LD,
sample size, and QTL effect size (Long and Langley, 1999; Zhu et al,, 2008). Linkage
disequilibrium is the non-random association between alleles at different loci (Flint-Garcia
et al.,, 2003). The extent of LD is greater in self-pollinated crops like wheat than in cross-
pollinating species, because there is less opportunity for recombination during meiosis.

High levels of selfing, coupled with a large genome size, means wheat requires a very large
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number of molecular markers for high mapping resolution. The extent of LD has been
shown to extend much further on the D- than A- or B-genomes (Chao et al., 2010; Edae et al.,
2014; Lopes et al,, 2014). The extent of LD and level of genetic diversity in a population can
be affected by a number of different processes, such as inbreeding, natural selection,
domestication, outcrossing with wild relatives, and admixture (Chao et al., 2010). In
hexaploid wheat, a higher extent of LD on the D-genome can be explained by polyploid
speciation resulting in a genetic bottleneck, and reduced diversity on the D-genome
(Dubcovsky and Dvorak, 2007). We found LD to extend more than four times further on the
D- than A- or B-genome. Therefore, it is not surprising that many fewer significant marker-
trait associations were detected on the D-genome (15 associations) than were detected
across the A-genome (63 associations) and B-genome (61 associations, Table 4.15).

Comparable numbers of QTL were detected in 2012 compared to 2013 (Table 4.9).
In the water-stressed treatments (Gr12P and Fo13R), the traits with the greatest numbers
of QTL reflect the traits most affected by drought stress each year. At Gr12P reductions in
yield were due to limitations imposed by small biomass production and a reduction in
number of spikelets and kernels produced per spike. A large number of QTL were detected
for SPS, HI, and BM at Gr12P. At Fo13R yield was reduced due to smaller kernel size, which
was affected by the timing of phenological development, including grain fill duration. At
Fo13R many QTL were detected for DTF and GF.

As expected, the traits for which significant marker-trait associations co-localized
tended to have strong genetic correlations. For instance, several markers were shared
between Hl and DTH (r¢ = < -1.0), HI and PFS (r¢ = 0.51), and PFS and DTH (r¢ = 0.58) or

DTB (r¢ = 0.62).
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Many significant QTL were detected for DTB, DTH, and DTF in one or more
environment (Table 4.9), and QTL were detected on 18 different chromosomes (Table
4.15). The greatest number of phenological QTL was detected on chromosomes 2B (8 QTL),
3A (5QTL), and 7B (4 QTL, Table 4.15). The effect of these QTL could not be evaluated in a
combined analysis across environments, because DTB, DTH, and DTF did not have
significant variation in the combined analysis. However, these traits were evaluated in a
GWAS estimating the effects on year. Interestingly, QTL were detected for DTF but not DTB
or DTH. In the combined analysis of year, QTL for DTF were detected on chromosomes 1A,
3A,7A, 2B, 4B, 7B, and 1D (Table 4.18). Some of these genomic regions could indicate
genetic variation at earliness per se loci, which are known to have inconsistent effects
across environments (Laurie et al., 2004). Griffiths et al. (2009) have reported a number of
QTL associated with wheat development and heading date, including QTL that may be
consistent with the QTL we detected on chromosomes 34, 7A, 4B, 7B, and 1D. A QTL with a
large effect on thermal time to heading was also detected on chromosome 4B by Langer et
al. (2014).

Many traits did not vary significantly in combined analyses across environments,
moisture treatments, or years and GWAS could only be performed on traits with significant
variation. Five QTL were detected in the combined analysis across all four environments
(Table 4.16).

No significant marker-trait associations were detected for GY, GBM, KW, or DTM.
This could be due to the complex and quantitative nature of these traits, low trait
heritability, or lack of detection power due to sample size or marker density. Additionally,

there may be more sources of error intrinsic in measuring these traits than some others.
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Some of these sources of error include variation in plot size or missed harvestable plot area
in estimating GY; error in KN caused by either incomplete separation of grain from
spikes—which could be caused by thresher instrument settings, spike size, or spike
dryness—or error in counting number of seeds due to variation in seed cleanness or seed
counter speed and size detection settings; or error estimating GBM due to variation in
biomass cutting and losses during threshing or seed cleaning. By contrast, many of the
most highly-significant associations were detected for traits related to spike fertility,
including SPS, DTB, DTF, and PFS (Table 4.9). Numerous QTL were also detected for DTB
and DTF. The high number of QTL detected for these traits could be due to both the
presence of large-effect QTL and rigorous phenotyping with fewer opportunities to

introduce error.

Conclusions

Our results indicate substantial phenotypic and genetic variation of agronomic traits
among winter wheat germplasm from the U.S. Great Plains when evaluated under
contrasting moisture regimes. There were considerably different patterns of water stress
in the two years the germplasm was evaluated. Water-stress occurred pre-anthesis in 2012
and post-anthesis in 2013. Despite this, the percent reduction in grain yields under stress,
and total number of QTL detected for all traits in both moisture treatments, was similar in
2012 and 2013. We found that the extent of LD varied substantially among genomes, with a
much greater extent along the D- than the A- or B- genomes. The higher extent of LD along

the D-genome can be attributed to relatively low diversity along this genome, which
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explains why there are fewer SNP markers and why a lower number of significant marker-
trait associations were detected.

Genome-wide association mapping is a powerful tool to detect genomic regions
affecting a trait, and we detected nearly 250 significant marker-trait associations in
individual environments and combined across moisture treatments, years, or
environments. However, most QTL were only detected for a single trait in one environment,
and only explained a small proportion of total phenotypic variability. The number of
significant marker-trait associations detected depends on the statistical criteria used. We
used the Benjamini-Hochberg procedure with a false discovery rate of 50% to identify
significant associations, but a different approach or significance threshold would yield
different results. A best method for establishing significant marker-trait associations is yet
to be established. Considerable challenges still exist in conducting and analyzing a GWAS,
and results could be improved by using a larger population, incorporating denser marker
data with greater coverage across the D-genome and across all chromosome regions.
Applications of GWAS for wheat will be enhanced as the genetic and physical maps are
improved and better annotated. Further validation of these QTL, such as understanding
the underlying polymorphism and verifying the effects in an independent population is
needed before incorporating these QTL into breeding material using marker-assisted

selection.
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Tables.

Table 4.1. Total monthly precipitation (P, mm) and irrigation (I, mm) each environment received. The environments are
Greeley, CO full irrigation (Gr12F) and partial irrigation (Gr12P) in 2012, and Fort Collins, CO full irrigation (Fo13F) and
rainfed (Fo13R) in 2013. No irrigation was applied to any environment in January or February. The last month only includes
precipitation that occurred before harvest, and all 2012 environments were harvested in June.

Jan Feb Mar Apr May June July Total
Env P P P 1 P 1 P I P I P I P I P+I
Gr12F 03 107 0.5 254 231 508 282 1448 193 1143 . : 82.1 3353 4174
Gr12P 03 107 0.5 254 231 127 282 508 193 127 . : 82.1 101.6 1837
Fol3F 0.3 2 53 - 30.2 -- 358 63.5 119 146.1 389 12.7 1244 2223 346.7
Fol3R 03 20 53 -- 30.2 -- 358 -- 119 -- 389 -- 124.4 -- 124.4

143



Table 4.2. List of agronomic traits evaluated, abbreviations for traits, and units of
measurement. All agronomic traits except for developmental traits were measured at

physiological maturity.

Trait Abbreviation Unit

Grain yield GY kg ha'l

Spike number SN nm-

Kernel number KN n m-2

Kernels per spike KPS n spike1
Spikelets per spike SPS n spike1
Proportion fertile spikelets =~ PFS ratio as a decimal
Kernel weight KW mg kernel!
Above ground biomasst BM g

Grain biomasst GBM g

Harvest index*f HI ratio as a decimal
Plant height PH cm

Days to booting after 1 Jan DTB d

Days to heading after 1 Jan DTH d

Days to flowering after 1 Jan DTF d

Days to maturity after 1 Jan DTM d

Grain fill duration GF d

tFrom a 1 m sample cut from of one row of each field plot.
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Table 4.3. Summary of phenotypic trait means, standard deviations (s.d.), and ranges for 299 hard winter wheat accessions
grown at two environments grown in 2011-2012. The two environments are Greeley, CO full irrigation (Gr12F) and partial
irrigation (Gr12P). Traits and units are described in Table 4.2. The percent reduction is the amount the average trait value was
reduced by at Gr12P relative to Gr12F.

Gr12F Gr12P
Trait Mean = s.d. Range Mean = s.d. Range % Reduction
GY 4801.89 £978.54 1631.06-6704.98 2510.21 +251.38 1787.45-3112.53 47.72
SN 454.74 + 17.65 396.69-513.44 318.05 £ 37.55 237.47-606.74 30.06
KN 7286.30 £ 522.71 6000-8638 4651.48 £+ 530.20 3128-9022 36.17
KPS 37.17 £ 3.87 26.11-48.3 31.72£4.76 17.05-49.58 14.66
SPS 16.04 + 1.25 13.02-20.49 14.67 + 1.09 11.72-18.32 8.54
PFS 0.89 £ 0.03 0.79-0.97 0.90 + 0.04 0.74-0.99 -1.12
KW 33.07 £ 0.03 32.99-33.13 29.57 +£2.28 20.42-36.4 10.58
BM 477.92 + 36.66 277.34-588.53 231.22 £19.56 174.15-300.34 51.62
GBM 161.87 + 30.05 65.85-260.78 88.32+£9.11 63.14-128.09 45.44
HI 0.34 £ 0.05 0.15-0.43 0.38 £ 0.04 0.26-0.52 -11.76
PH 89.91 +£9.30 67.77-117.74 57.97 £ 3.89 47.36-72.69 35.52
DTB 128.49 + 3.59 122.07-139.78 124.89 + 2.95 117.55-136.20 2.80
DTH 136.69 + 3.38 124.7-148.05 134.34 +3.21 126.87-141.47 1.72
DTF 143.42 +2.53 136.83-152.27 137.71 £ 2.05 133.94-143.17 3.98
DTM 174.15 + 2.28 168.66-180.50 166.44 + 1.89 161.44-171.84 4.43
GF 32.79 £ 2.28 25.67-38.75 28.75 £ 0.63 26.87-30.46 12.32
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Table 4.4. Summary of phenotypic trait means, standard deviations (s.d.), and ranges for 299 hard winter wheat accessions
grown at two environments grown in 2012-2013. The two environments are Fort Collins, CO full irrigation (Fo13F) and
rainfed (Fo13R). Traits and units are described in Table 4.2. The percent reduction is the amount the average trait value was
reduced by at Fo13R relative to Fo13F.

Fo13F Fo13R
Trait Mean = s.d. Range Mean = s.d. Range % Reduction

GY 5008.33 +401.80 3984.50-6042.30 2684.49 +132.85 2318.60-3171.40 46.40
SN 373.82 +32.88 276.35-459.94 355.05+17.53 320.69-449.27 5.02
KN 5966.17 + 665.79 4061-8133 5569.00 + 395.18 4548-6976 0.07
KPS 38.21 £ 2.46 32.49-46.42 30.28 + 3.61 17.84-40.00 20.75
SPS 15.97 + 1.27 11.96-19.28 15.69 + 0.88 13.31-18.70 1.75
PFS 0.92 £ 0.03 0.84-0.98 0.91+0.03 0.77-0.98 1.09
KW 35.62 + 2.87 27.58-45.45 25.85 +1.86 19.84-31.17 27.43
BM 304.96 + 10.56 279.33-338.15 228.21 £ 16.55 190.28-270.99 25.17
GBM 122.24 + 8.38 101.70-147.52 74.88 £ 5.40 62.91-90.38 38.74
HI 0.40 £ 0.02 0.30-0.49 0.33+0.03 0.24-0.40 17.50
PH 79.2 £ 6.83 65.56-99.82 61.86 +4.42 48.43-74.11 21.89
DT] NA NA 131.85+£0.12 131.38-132.29 NA

DTB 145.56 = 1.69 140.92-148.88 145.63 £ 1.81 142.55-151.43 -0.05
DTH 149.84 + 2.16 146.19-156.08 149.45+2.13 145.56-159.51 0.26
DTF 155.35+1.60 152.19-159.05 154.36 £ 1.63 151.94-159.37 0.64
DTM 18591 + 1.68 180.19-189.96 178.95+1.90 172.76-183.41 3.74
GF 30.57 £ 1.87 25.07-36.72 24.60 + 1.85 19.58-29.93 19.53
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Table 4.5. Pearson’s correlation coefficient (r) between agronomic traits. Traits and units are described in Table 4.2. Shaded
rows represent water-stressed environments (Fo13R or Gr12P), while non-shaded rows represent fully-irrigated
environments (Fo13F or Gr12F). The environments grown in 2013 are in the upper diagonal (Fo13R, upper shaded; Fo13F,
upper non-shaded) and environments grown in 2012 are in the lower diagonal (Gr12P, lower shaded; Gr12F, lower non-
shaded).

GY SN KN KPS SPS PFS KwW BM GBM HI PH DTH GF
GY 0.44***  0.40*** 0.18** 0.09ns 0.08ns  0.23**  (0.37*<* (0.49** (0.30*** 0.09ns 0.04ns 0.15**
0.17** 0.14* 0.37**  0.03ns 0.12* 0.35%*¢  0.42*%*  0.58***  0.51** (0.32** -0.32*%* 0.00 ns
SN 0.18** 0.70***  -0.59*** -0.12*** -0.35*** -0.25** 0.31** 0.24*** -0.01ns 0.25** 0.07ns -0.08ns
0.50%** 0.62*** -0.56*** -0.09ns -0.2*%*  -0.34*** 0.17** 0.11ns -0.11ns 0.17** 0.01ns -0.06ns
KN 0.37%*%  (0.79%** -0.15** 0.62***  -0.49*** -0.35** (0.28** 0.19*** -0.06ns 0.39** 0.36** -0.09ns
0.00ns  0.13* -0.09ns  0.72*%%  -0.31** -0.44** 0.20** 0.12* -0.16** 0.26***  0.24***  0.09 ns
KPS 0.50*** -0.52** -0.11ns 0.45**  0.37*** -0.09ns -0.03ns 0.09ns 0.17** -0.21** 0.10ns 0.15*
0.32%*%  -0.37%*F  0.20%** 0.38***  0.31*** 0.03ns 0.13* 0.26***  0.35*** -0.01ns -0.08ns 0.06ns
SPS 0.27**%  -0.37*%  (0.27** (0.65%** -0.30** -0.21** 0.07ns 0.0lns -0.07ns 0.26** 0.42** -0.02ns
-0.26%**  -0.39*%*  (0.86%** (.45%** -0.21**  -0.26** 0.11ns 0.06ns -0.11ns 0.19** 0.29***  0.17**
PFS 0.37** -0.29*** -0.01ns 0.57***  0.45%** 0.06ns -0.13* 0.01ns 0.16**  -0.44*** -0.18** 0.12*
0.21**  -0.09ns  0.25%** 0.44***  (0.27*** 0.07ns -0.10ns -0.01ns 0.16** -0.18*  -0.17** 0.03 ns
Kw 0.13* -0.41*** -0.45** 0.02ns -0.03ns 0.07ns 0.05ns  0.12* 0.16** 0.10ns -0.20***  0.14*
0.57*** 0.10ns -0.38*** 0.03ns -0.41** 0.07 ns 0.08ns  0.22*%**  (0.33**  (0.25** -0.28** (0.06 ns
BM 0.11ns  0.22*%* 0.22*** -0.03ns -0.01ns -0.12* -0.1 ns 0.87*** -0.02ns 0.35*** 0.07ns 0.07 ns
0.13* 0.09***  0.09ns 0.12* 0.04ns 0.02ns -0.02ns 0.86***  0.13* 0.25%*  -0.19**  -0.12*
GBM 0.52%**  0.15** 0.26%**  0.25%*  0.14* 0.13* 0.08 ns  0.71%** 0.43***  0.17** 0.03ns 0.11ns
0.75**  0.43*** 0.01ns 0.27** -0.21** 0.14* 0.49%**  (.53%** 0.54***  0.27** -0.25%%* -0.13*
HI 0.61*** -0.04ns 0.11ns 0.46***  0.22** 040** 0.24** -0.08ns 0.56*** -0.19*** -0.05ns 0.08 ns
0.81***  0.43*** -0.06ns 0.24** -0.27** 0.17** 0.59** -0.02ns 0.80*** 0.08ns -0.27*** -0.05ns
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Table 4.5. Continued.

GY SN KN KPS SPS PFS KwW BM GBM HI PH DTH GF
PH -0.27***  0.03ns 0.0lns -0.13* -0.03ns -0.18* -0.08ns 0.26** -0.03ns -0.34*** 0.28***  -0.09 ns
-0.71**  -0.39** 0.10ns -0.18** 0.29** -0.23** -0.47*** 0.08ns -0.50*** -0.67*** 0.00ns -0.01ns
DTH -0.54*** -0.29** 0.31*** 0.02ns 0.44** -0.10ns -0.60*** 0.02ns -0.45*** -0.55*** (0.67*** 0.05 ns
-0.39***  0.16** 0.06ns -0.34*** -0.15**  -0.34** -0.30*** 0.33** -0.16** -0.60*** 0.35*** 0.35%**
GF 0.26*** -0.11ns -0.06ns 0.17** 0.07ns  0.15** 0.25%*  -0.13* 0.11ns  0.29* -0.13* -0.44***
0.56***  0.21*** -0.01ns 0.28** -0.13* 0.17** 0.32***  0.03ns  0.43** 0.52**  -0.55** -0.43***

*, *x %% Significant at the 0.05, 0.01, and 0.001 probability levels.
tns, nonsignificant at the 0.05 probability level.
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Table 4.6. Summary of ANOVA results testing the effects of genotype, environment, and
genotype-by-environment interaction (GxE) in agronomic traits evaluated on 299 hard
winter wheat accessions in four environments. The table includes mean square values and
significance level of each term. Broad-sense heritability (HZ2) is the proportion of
phenotypic variance that is due to genetic effects, and is estimated using actual mean
squares. The mean square values for GxE are only presented for traits where the
interaction term was significant. Traits are described in Table 4.2.

Trait G E GxE H?2
GY 440026.8* 534505169.7*** 256200.7* 0.43
SN 1346.1%** 998046.0*** - ¥ 0.69
KN 43315.4%** 26739237.0%** -- 0.56
KPS 34.081*** 4633.0%** -- 0.78
SPS 3.474%** 120.7*** -- 0.84
PFS 0.003*** 0.05%** -- 0.85
KW 9.171%** 5414 5%** -- 0.71
BM 564.6 nst 4095665.7*** -- 0.08
GBM 319.9** 450585.3*** 256.5* 0.20
HI 0.002** 0.314%** 0.001* 0.63
PH 100.3*** 67138.3*** -- 0.77
DTB 20.134%** 36365.3*** 2.583** 0.87
DTH 23.232%** 20231.0%** -- 0.89
DTF 9.735%** 22055.7%** 2.059** 0.79
DTM 9.983*** 20131.3*** -- 0.82
GF 4.685*** 3611.2%** -- 0.44

*, *x %% Significant at the 0.05, 0.01, and 0.001 probability levels.

t ns, nonsignificant at the 0.05 probability level.

* Double-dash (--) indicates GxE did not have a significant effect so only main effects were
included in the model.
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Table 4.7. Genetic correlations (r¢) between traits, estimated from genetic variance components of each trait. The genetic

variance components are estimated using all four environments. Traits and units are described in Table 4.2.

GY SN KN KPS SPS PFS Kw BM GBM HI PH DTB DTH DTF DTM GF
GY -0.27 <-1.0t 0.69 -0.14 0.69 045 0.14 >1.0t >1.0 -0.77 -0.79 -0.77 -0.76 -0.56 0.36
SN <-1.0 -0.69 -035 -0.14 -042 036 -034 <-1.0 0.16 0.15 020 0.13 -0.07 -0.40
KN -091 <-10 -093 <10 -093 <-1.0 -089 -092 <-1.0 -091 <-1.0 -092 <-1.0
KPS 0.50 047 -0.11 0.05 0.71 0.08 -044 -0.21 -0.21 -0.13 0.07 041
SPS -0.04 -0.35 0.27 -0.22 -042 017 041 040 050 050 0.02
PFS 0.01 -0.11 0.74 051 -048 -0.38 -0.34 -0.33 -0.14 0.37
KW 0.15 0.71 045 -0.05 -043 -045 -0.46 -0.38 0.17
BM -049 <-1.0 081 047 053 049 050 0.00
GBM >1.0 -0.76 <-1.0 <-1.0 <-1.0 -0.87 0.22
HI <-1.0 <-1.0 <-1.0 <-1.0 -0.72 0.27
PH 0.62 058 055 039 -0.30
DTB 097 094 083 -0.22
DTH >1.0 0.01 >1.0
DTF -0.55 -0.32
DTM 0.28

trc exceeded the theoretical range [1, -1] for some pairs of traits. This occurred when the genetic variance component for one

trait was very small.
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Table 4.8. Summary of ANOVA results testing the main effects of genotype (G), moisture treatment (T, full or partial
irrigation), year (Y, 2012 or 2013); two-way interactions between genotype and treatment (GxT), genotype and year (GxY),
and treatment and year (TxY); and the three-way interaction between genotype, treatment, and year (GxTxY). ANOVA models
were run separately for each trait, and only include terms that had a significant effect: with the exceptions that if an interaction
term had a significant effect the main effects of those terms were always included. The table includes mean square values and
the significance level of each term. The traits are described in Table 4.2.

Trait G T Y GxT GxY TxY GxTxY
GY 440003.6** 1590701682.0%** 10770542.0%** - 303959.3%* -- --

SN 1346.1%** 1804320.0%** 145449.0%** -- -- 1042078.0%** --

KN 43315.4%** 53065419.0%** 106672.0** -- 17436.3%** 27045619.0%** --

KPS 12.4 nst 13423.0%* 34.1%** -- 9.789%** 463.3%** --

SPS 3.474%%* 205.8%** 67.72%%* 0.584*** 0.717*%* 88.6%** --

PFS 0.003*** 0.008*** 0.122%% . 0.001** 0.021*** --

KW 9, %** 13195.4%** 100.8*** -- -- 2947 3%%* --

BM -- 7820057.0%** 2318572.0%* -- -- 2162446.0%** --

GBM 279.3% 3927.8%** 210656.0%** 236.8* 283.5% 51138.0%** 247.3*
HI 0.002** 0.001* 0.006*** 0.001* 0.001** 0.89*** 0.001*
PH 100.3*** 181808.0*** 3527.0%** 32.1171%** 21.332%** 15945.0%** --

DTB 10.815%** 4.629%** 107148.0%** 1.497** 4.705%** 1012.0%** 1.550%*
DTH 23.232%** 569.0%** 59847.0%** -- 4.668%** 289.0%** --

DTF 5.662%%* 12.862%** 61108.0%** 1.567* 3.034** 1675.0%** 1.569*
DTM 9.983%** 16138.0%** 44214.0%** 1.896* 1.896* 43,0%** --

GF 4.685%** 7484, 9%** 3037.1%** 2.760* 2.908** 282.2%%% --

*, *x #%x Significant at the 0.05, 0.01, and 0.001 probability levels.
tns, nonsignificant at the 0.05 probability level.
* Double-dash (--) indicates term did not have a significant effect so was not included in model.
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Table 4.9. Summary of significant marker-trait associations for agronomic traits evaluated
in four individual environments: full irrigation in Fort Collins, CO during 2013 (Fo13F),
rainfed in Fort Collins, CO during 2013 (Fo13R), full irrigation in Greeley, CO during 2012
(Gr12F), and partial irrigation in Greeley, CO during 2012 (Gr12P). No significant marker-
trait associations were detected for GY, KW, GBM, or DTM. Traits are described in Table 4.2.
Significant marker-trait associations include quantitative trait loci (QTL) with mapped
markers, and also significant associations with unmapped markers. Significant QTL are
separated from each other by a minimum of 10 cM, and corrected for multiple comparisons
using the Benjamini-Hochberg procedure at a false discovery rate of 50%.

Trait Fol13F Fo13R Gri12F Gri12P Total

GY 0 0 0 0 0
SN 1 0 0 2 3
KN 5 0 6 0 11
KPS 1 0 0 1 2
SPS 1 5 2 20 28
PFS 3 10 0 5 18
KW 0 0 0 0 0
BM 1 0 0 10 11
GBM 0 0 0 0 0
HI 3 1 2 14 20
PH 0 0 4 0 4
DTB 11 0 7 5 23
DTH 0 0 17 0 17
DTF 6 15 0 0 21
DTM 0 0 0 0 0
GF 0 15 0 0 15
Total 32 46 38 57 173
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Table 4.10. Summary of GWAS results involving mapped markers at Fo13F. Traits and units are described in Table 4.2.

. Pos. Raw Marker Allelic
Trait Marker Chr. (cM) P-valuet MAF R2 Effectt
BM Tdurum_contig66604_927 5B 183.0 4.41E-05 047 0.06 2.648
DTB  wsnp_Ex_rep_c102067_87314043 1A 107.7 1.29E-03 0.38 0.03 0.371

wsnp_Ex_c15269_23491104 3A 89.2 5.61E-04 0.26 0.04 0.522
tplb0049a09_1302 5A 139.8 2.22E-04 0.07 0.04 0.706
Ex_c9615_.1202 7A 82.7 1.13E-04 0.32 0.05 0.460
BS00066271_51 1B 21.0 1.20E-03 0.50 0.03 0.337
BS00057153_51 4B 75.6  2.46E-04 0.11 0.04 0.674
Tdurum_contig81113_395 4B 112.2 1.07E-04 0.28 0.05 0.458
[AAV8378 5B 76.9 1.90E-04 0.06 0.04 0.751
BobWhite_c11495_120 5B 1124 6.58E-05 0.09 0.05 0.684
Excalibur_c6871_217 7B 98.6 2.57E-04 0.21 0.04 0.451
Ex_c8238_637 7D  137.6 4.73E-04 0.11 0.04 0.569
DTF  Excalibur_rep_c101767_219 3A 76.4 5.02E-04 0.25 0.04 0.441
BobWhite_c2988_2161 2B 56.3 5.73E-04 0.16 0.04 0.481
BS00023023_51 7B 120.8 2.54E-04 0.26 0.04 0.412
Ra_c11906_1618 1D 107.1 2.73E-04 0.35 0.04 0.412
Excalibur_c17039_436 2D 36.5 1.03E-04 0.28 0.05 0.437
RAC875_c¢51595_177 3D 1423 2.36E-04 0.46 0.04 0.401
HI [AAV880 2A  149.6 2.18E-04 0.17 0.05 0.006
BobWhite_c22728_78 2B 109.2 3.50E-04 0.18 0.04 0.006
BS00095515_51 3B 106.7 3.38E-04 0.34 0.04 0.005

tUnadjusted P-values are provided for reference but significance of marker-trait associations was determined using the
Benjamini-Hochberg procedure with a false discovery rate of 50%.
* Allelic effects are magnitude of effect size only, and don’t signify effect of major or minor allele.
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Table 4.10. Continued.

. Pos. Raw Marker Allelic
Trait Marker Chr. (cM)  P-valuet MAF R2 Effectt
KN  Excalibur_c57840_227 6B 100.1 2.27E-05 0.06 0.06 349.6

BS00093252_51 3A 181.5 1.44E-04 0.08 0.05 278.4
wsnp_]D_c43684_30430706 5D 69.1 1.95E-04 0.29 0.04 177.4
CAP11_c3666_426 7A 211.7 4.36E-04 0.05 0.04 294.6
Kukri_c40035_258 2A 99.3 4.38E-04 0.18 0.04 202.8
KPS ITACX6337 2A 113.3 7.59E-05 0.25 0.04 0.781
PFS  wsnp_]D_c2128_2930150 5A 159 1.79E-04 0.29 0.04 0.007
Excalibur_c29255_404 5A 139.8 1.10E-04 0.06 0.04 0.013
Tdurum_contig42153_1190 2B 66.2 1.22E-04 0.43 0.04 0.008
SPS  wsnp_Ku_rep_c104159_90704469 7A 152.8 3.99E-05 0.26 0.05 0.405
SN wsnp_Ex_c28942_38018762 2A 113.3 5.55E-05 0.27 0.05 10.192

tUnadjusted P-values are provided for reference but significance of marker-trait associations was determined using the
Benjamini-Hochberg procedure with a false discovery rate of 50%.
* Allelic effects are magnitude of effect size only, and don’t signify effect of major or minor allele.
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Table 4.11. Summary of GWAS results involving mapped markers at Fo13R. Traits and units are described in Table 4.2.

. Pos. Raw Marker Allelic
Trait Marker Chr. (cM) P-valuet MAF R2 Effect:
DTF  BobWhite_c37935_124 1A 748 6.52E-04 0.09 0.04 0.618

BobWhite_c9249_564 3A 426 2.56E-04 0.48 0.04 0.371
wsnp_Ku_c5378_9559013 3A  90.6 2.52E-04 047 0.05 0.405
wsnp_Ex_c9779_16145653 6A 211 7.26E-04 0.12 0.04 0.519
Kukri_c65887_282 6A 85.1 5.49E-04 0.05 0.04 0.778
BS00088489_51 2B 108.0 1.87E-05 0.05 0.06 0.959
BS00062304_51 4B 110.8 2.36E-04 0.17 0.05 0.496
GF wsnp_Ex_c2181_4089788 1A 68.8 1.39E-03 0.19 0.03 0.513
Ex c101416_378 4A 70.6 1.41E-03 0.07 0.03 0.705
BobWhite_c534_837 6A 585 2.74E-04 0.15 0.04 0.634
CAP8_c702_377 7A 124.3 5.70E-04 0.09 0.04 0.639
[IAAV5863 1B 114.6 1.30E-03 0.44 0.03 0.398
RAC875_c¢52774_135 4B 75.6 9.24E-04 0.10 0.04 0.691
[IACX7649 5B 79.6 8.62E-04 0.09 0.04 0.676
Kukri_c12901_706 7B 98.7 3.08E-04 0.22 0.04 0.492
Kukri_c8913_655 3D 1194 7.77E-04 0.13 0.04 0.573
Kukri_c64744_698 4D 17.7 1.52E-03 0.25 0.03 0.420
RAC875_c98242_422 6D 229 996E-04 0.22 0.04 0.451
HI wsnp_Ex_¢3963_7179957 1A 70.1 3.71E-06 0.21 0.07 0.012
PFS wsnp_BE442666A_Ta_2_1 4A 51.7 1.08E-04 0.08 0.04 0.012
wsnp_]D_c2128_2930150 5A 159 441E-05 0.29 0.05 0.008
Excalibur_c29255_404 5A 139.8 3.73E-05 0.06 0.05 0.014
BS00040600_51 7A 1229 7.02E-04 0.13 0.03 0.010
Tdurum_contig42153_891 2B  66.2 3.44E-04 043 0.04 0.008
wsnp_Ex_rep_c67471_66073729 5B 39.4 6.01E-04 0.06 0.03 0.012
Jagger_c3235_381 6B 88.7 2.67E-05 0.05 0.05 0.017
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Table 4.11. Continued.

. Pos. Raw Marker Allelic
Trait Marker Chr. (cM) P-valuet MAF R2 Effect:
SPS tplb0032i02_1435 2A  25.0 5.55E-05 0.47 0.05 0.233

wsnp_Ku_rep_c104159_90704469 7A 152.8 8.19E-05 0.26 0.05 0.269
JD_c5200_835 7B 72.7 1.81E-04 0.06 0.04 0.416

tUnadjusted P-values are provided for reference but significance of marker-trait associations was determined using the
Benjamini-Hochberg procedure with a false discovery rate of 50%.
* Allelic effects are magnitude of effect size only, and don’t signify effect of major or minor allele.
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Table 4.12. Summary of GWAS results involving mapped markers at Gr12F. Traits and units are described in Table 4.2.

. Pos. Raw Marker Allelic
Trait Marker Chr. (cM) P-value’ MAF R2 Effectt
DTB Excalibur_c35316_154 1A 16.7 2.08E-05 0.40 0.05 0.97

BobWhite_c37935_124 1A 74.8 3.34E-04 0.09 0.03 1.39
BobWhite_c25163_178 4A 153.0 3.18E-04 0.26 0.03 0.87
Tdurum_contig42153_891 2B 66.2 3.95E-04 0.43 0.03 0.92
BobWhite_c19554 544 2B 107.5 3.17E-04 0.05 0.03 1.70
Tdurum_contig15734_221 7B 120.9 5.22E-05 0.24 0.04 1.01
DTH  wsnp_Ex_c905_1748920 2A 151.3 8.33E-04 0.26 0.03 0.76
wsnp_Ku_c3956_7237707 3A 86.7 2.76E-04 0.25 0.04 1.00
wsnp_Ku_c5693_10079278 7A 208.7 8.14E-04 0.06 0.03 1.29
Kukri_c22513_1780 2B 26.5 6.13E-04 0.19 0.03 0.84
wsnp_Ex_rep_c70756_69644826 2B 65.0 1.36E-04 0.40 0.04 0.95
BobWhite_c29596_649 2B 115.0 9.83E-04 0.31 0.03 0.78
BS00034554 51 6B 93.5 8.26E-04 0.35 0.03 0.71
Tdurum_contig15734_221 7B 120.9 1.44E-04 0.24 0.04 0.88
Kukri_rep_c73094_348 5D 72.3 5.98E-04 0.35 0.03 0.74
Excalibur_c55782_55 7D 127.7 8.27E-04 0.49 0.03 0.63
HI Tdurum_contig29087_757 1B 136.0 1.41E-05 0.06 0.05 0.03
wsnp_Ra_c4321_7860456 2B 41.4 1.02E-04 0.27 0.04 0.01
KN Excalibur_c35316_154 1A 16.7 2.62E-04 0.40 0.04 130.5
BobWhite_c26374_339 2A 73.9 2.16E-04 0.29 0.04 137.7
BS00046261_51 6A 133.7 2.40E-04 0.05 0.04 263.8
wsnp_]D_c20555_18262317 7A 152.8 2.75E-07 0.26 0.26 213.5
[ACX938 4B 76.2 1.74E-04 0.06 0.06 263.0
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Table 4.12. Continued.

. Pos. Raw Marker Allelic
Trait Marker Chr. (cM) P-valuet MAF R2 Effectt
PH  wsnp_Ra_c407_862316 2B 72.0 1.22E-04 0.49 0.03 2.37
SPS  Excalibur_c35316_154 1A 16.7 2.07E-04 0.40 0.04 0.31

BS00021657_51 7A 152.2 7.56E-06 0.23 0.06 0.45

tUnadjusted P-values are provided for reference but significance of marker-trait associations was determined using the
Benjamini-Hochberg procedure with a false discovery rate of 50%.
* Allelic effects are magnitude of effect size only, and don’t signify effect of major or minor allele.
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Table 4.13. Summary of GWAS results involving mapped markers at Gr12P. Traits and units are described in Table 4.2.

. Pos. Raw Marker Allelic
Trait Marker Chr. (cM) P-valuet MAF R? Effect:
BM Ra_c42858 91 3A 1099 6.53E-04 0.10 0.04 7.494

wsnp_Ex_¢18941_27840714 5A 748 9.44E-04 0.10 0.04 6.573
BobWhite_c534_837 6A 585 7.57E-04 0.15 0.04 6.372
Kukri_c15151_249 7A 175.7 1.08E-03 0.47 0.04 4,233
Kukri_c21270_1870 4B 599 2.06E-04 0.14 0.05 7.015
tplb0026015_1634 4B  74.3 4095E-04 0.27 0.04 5.379
BobWhite_c26082_239 5B 170.5 7.40E-04 0.28 0.04 4.824
BS00101364_51 7B 120.1 4.64E-04 0.46 0.04 4.484
DTB BS00067096_51 5A 39.0 9.18E-05 0.05 0.04 1.461
wsnp_Ex_¢9779_16145653 6A 211 291E-05 0.12 0.05 1.107
CAP12_¢590_307 1B 136.0 3.17E-04 0.06 0.03 1.387
Kukri_c16479_765 2B 76.7 1.52E-05 0.22 0.05 0.935
BS00034554_51 6B 93,5 1.38E-04 0.35 0.04 0.726
HI Excalibur_c24511_1196 4A 745 8.62E-04 0.21 0.03 0.009
Ex_c9615_.1202 7A  82.7 8.08E-04 0.31 0.03 0.008
Excalibur_c20062_195 7A 1214 5.61E-04 0.06 0.03 0.015
Tdurum_contig42153_1190 2B 66.2 3.03E-05 0.43 0.05 0.011
D_GBUVHFX02]JKG4A_54 2D 225 2.44E-04 0.35 0.04 0.009
KPS wsnp_Ex_¢23383_32628864 6D 82.1 2.57E-05 0.23 0.05 1.382
PFS Excalibur_c29255_404 5A 139.8 3.72E-05 0.06 0.05 0.022
BS00103846_51 7A 1399 1.19E-04 0.32 0.04 0.012
RAC875_c5243_206 1B 439 1.49E-04 0.05 0.04 0.024
Tdurum_contig42153_1190 2B 66.2 2.40E-04 0.43 0.04 0.012
RAC875_rep_c114200_428 5B 116.8 2.48E-05 0.10 0.05 0.019
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Table 4.13. Continued.

. Pos. Raw Marker Allelic
Trait Marker Chr. (cM) P-valuet MAF R? Effect:
SPS  wsnp_Ex_c5412_9564046 2A  78.0 7.89E-04 0.15 0.03 0.325
BobWhite_c32226_104 2A 102.0 4.87E-04 0.08 0.04 0.490
BS00065734_51 3A 148.0 2.01E-04 0.49 0.04 0.251
RAC875_c42756_168 4A  49.0 7.92E-04 0.24 0.03 0.298
Excalibur_c43822_370 4A 164.1 1.49E-03 0.40 0.03 0.234
Kukri_c108256_381 5A 106.1 1.51E-03 0.09 0.03 0.377

wsnp_Ku_rep_c110993_94857161 7A 133.5 5.39E-04 0.18 0.04 0.347
wsnp_Ku_rep_c104159_90704469 7A 152.8 1.67E-07 0.26 0.08 0.444

BS00012071_51 2B 106.6 1.16E-03 0.22 0.03 0.286
Excalibur_c62990_114 5B 206.1 1.10E-03 0.16 0.03 0.307
RAC875_c17182_600 7B 3.3 1.08E-03 041 0.03 0.222
wsnp_Ex ¢13629_21411429 3D 146.5 1.02E-03 0.38 0.03 0.265
SN wsnp_Ex_c6664_11531767 7D 137.3 3.17E-05 0.08 0.05 17.087

tUnadjusted P-values are provided for reference but significance of marker-trait associations was determined using the
Benjamini-Hochberg procedure with a false discovery rate of 50%.
* Allelic effects are magnitude of effect size only, and don’t signify effect of major or minor allele.
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Table 4.14. Summary of significant marker-trait associations detected in individual
environments with unmapped markers. Traits and units are described in Table 4.2.

. Raw Marker Allelic
Trait Env. Marker P-valuet MAF R2 Effect!
BM Gr12P GENE.2847_1060 1.71E-04 0.13 0.05 7.311

TA004394.0527 3.34E-04 0.12 0.04 7.257

DTB Fol3F GENE.4008_418 7.68E-04 0.11 0.03 0.563
GENE.4045_141 2.05E-04 0.33 0.04 0.463
wsnp_Ex_¢18915_27811736  5.89E-04 0.43 0.04 0.374

Gr12F GENE.1125_32 3.93E-04 0.05 0.03 1.679

DTF  Fol3R BS00041922_51 9.79E-05 0.08 0.05 0.718
GENE.0609_166 5.79E-04 0.07 0.04 0.665
GENE.0675_104 3.33E-04 0.12 0.04 0.563
GENE.0675_161 8.37E-04 0.12 0.04 0.522
GENE.1125_32 1.87E-05 0.05 0.06 0.959
Kukri_c20939_226 3.58E-04 0.05 0.04 0.801
RAC875_c817_2282 5.10E-04 0.34 0.04 0.377
TA002269.1202 8.24E-04 0.12 0.04 0.523

DTH Gr12F BobWhite_rep_c63363_160 2.06E-04 0.40 0.04 0.912
BS00012081_51 2.51E-04 0.34 0.04 0.859
GENE.1273_395 7.40E-04 0.19 0.03 0.820
Kukri_c25245_998 3.84E-04 0.41 0.03 0.880
Kukri_c29807_713 2.06E-04 0.40 0.04 0.912
RAC875_c15844_348 7.13E-04 0.35 0.03 0.780
RAC875_¢31358_214 3.05E-04 0.35 0.03 0.839

GF Fol3R GENE.2538_158 1.04E-03 0.36 0.04 0.410
GENE.4796_109 1.11E-03 0.16 0.04 0.497
GENE.4796_65 1.36E-03 0.17 0.03 0.483
GENE.4996_592 1.55E-03 0.12 0.03 0.541

HI Fol13F BS00065253_51 3.52E-04 0.09 0.04 0.008

Tdurum_contig55699_246 3.50E-04 0.18 0.04 0.006
KN Gr12F wsnp_Ex c53843.56941644 4.18E-06 0.25 0.25 193.3

tUnadjusted P-values are provided for reference but significance of marker-trait
associations was determined using the Benjamini-Hochberg procedure with a false
discovery rate of 50%.

* Allelic effects are magnitude of effect size only, and don’t signify effect of major or minor
allele.
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Table 4.15. Number of significant marker-trait associations detected between anchored markers and agronomic traits in
individual environments. No significant marker-trait associations were detected for GY, KW, GBM, or DTM. There are 124
significant marker-trait associations total. Traits are defined in Table 4.2.
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Table 4.16. Summary of GWAS results with mapped and unmapped markers in a combined analysis across four environments.
Traits and units are described in Table 4.2.

. Pos. Raw Marker Allelic
Trait Marker Chr. (cM)  P-valuet MAF R2 Effectt
PFS wsnp_Ex_¢3620_6612231 5A 159 6.43E-05 0.30 0.04 0.006
Excalibur_c29255_404 5A 139.8 1.19E-06 0.06 0.06 0.013
wsnp_Ku_c14251_22503965 2D 471 593E-05 0.09 0.04 0.009

SPS wsnp_Ku_rep_c104159_90704469 7A 152.8 5.88E-08 0.26 0.09 0.281
wsnp_Ex_c53843_56941644 NAS NAS 1.08E-06 0.25 0.07 0.257

tUnadjusted P-values are provided for reference but significance of marker-trait associations was determined using the
Benjamini-Hochberg procedure with a false discovery rate of 50%.

* Allelic effects are magnitude of effect size only, and don’t signify effect of major or minor allele.

§$NA indicates unmapped chromosome.
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Table 4.17. Summary of GWAS results with mapped and unmapped markers in a combined analysis of moisture treatment
across two years. Markers had a significant effect that varied between water-stressed or non-stressed environments. Traits
and units are described in Table 4.2.

. Pos. Raw Marker Allelic
Trait Marker Chr. (cM) P-valuet MAF R2 Effectt
HI RAC875_¢19718_551 4A 64.1 1.04E-03 0.13 0.03 0.001

Ex_c9615_1202 7A 82.7 1.32E-04 0.32 0.04 0.001
Tdurum_contig29087_757 1B 136.0 6.29E-05 0.06 0.04 0.003
Kukri_c22513_1780 2B 26,5 6.23E-04 0.19 0.03 0.001
Ex_c12051_875 2B 69.8 3.91E-04 0.49 0.03 0.001
Excalibur_c18966_804 2B 130.3 1.17E-03 0.33 0.03 0.001
Tdurum_contig50954_1264 3B 51.1 1.07E-03 0.40 0.03 0.001
Tdurum_contig50954_1095 3B 1348 7.47E-04 0.40 0.03 0.001
D_GBUVHFX02]JKG4A_54 2D 225 6.27E-04 0.35 0.03 0.001
GENE.1273_395 NAS NAS 2.16E-04 0.19 0.04 0.001
PFS wsnp_Ex_¢3620_6612231 5A 159 8.68E-05 0.30 0.04 0.006
RAC875_rep_c106118_339 5A 39.0 5.23E-04 0.13 0.03 0.007
Excalibur_c29255_404 5A 139.8 1.26E-05 0.06 0.05 0.012
wsnp_Ex_c965_1845447 6A 99.4 5.05E-04 0.11 0.03 0.007
Tdurum_contig42153_1190 2B 66.2 3.42E-05 0.44 0.05 0.007
Tdurum_contig18858_324 2B 109.5 4.18E-04 0.27 0.03 0.006
Tdurum_contig17697_771 7B 131.1 4.45E-04 0.22 0.03 0.006
wsnp_Ku_c14251_22503965 2D 471 9.33E-05 0.09 0.04 0.009
BS00012081_51 NA NA  1.32E-04 0.35 0.04 0.006
RAC875_c15844_348 NA NA  2.44E-04 0.36 0.04 0.006
RAC875_¢31358_214 NA NA 1.13E-04 0.36 0.04 0.006
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Table 4.17. Continued.

. Pos. Raw Marker Allelic
Trait Marker Chr. (cM) P-valuet MAF R2 Effectt
PH BS00012081_51 NA NA 8.86E-05 0.35 0.04 0.766
RAC875_c15844_348 NA NA 4.83E-05 0.36 0.04 0.781
RAC875_¢31358_214 NA NA 3.01E-05 0.36 0.04 0.810

SPS  wsnp_Ku_rep_c104159_90704469 7A 1528 1.60E-07 0.25 0.09 0.305
wsnp_Ex_c53843_56941644 NA 1193.0 1.30E-06 0.24 0.07 0.285
KW RAC875_c21411_162 1A 105.7 1.86E-04 0.09 0.05 0.205
Tdurum_contigd6797_585 2A 81.5 2.37E-04 042 0.05 0.124
Tdurum_contig29087_757 1B 136.0 1.29E-04 0.06 0.05 0.262
wsnp_Ex_rep_c67926_66647362 6B 68.4 2.72E-04 0.09 0.04 0.215
Ra_c2557_2531 6B 104.6 3.57E-04 0.13 0.04 0.164
wsnp_Ex_rep_c67164_65655648 5D 67.5 2.25E-05 0.21 0.06 0.176
TA002565.0478 NA NA 2.25E-05 0.21 0.06 0.176

tUnadjusted P-values are provided for reference but significance of marker-trait associations was determined using the
Benjamini-Hochberg procedure with a false discovery rate of 50%.

* Allelic effects are magnitude of effect size only, and don’t signify effect of major or minor allele.

§$NA indicates unmapped chromosome.
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Table 4.18. Summary of GWAS results with mapped and unmapped markers in a combined analysis of year (2012 or 2013)
across two moisture treatments. Markers had a significant effect that varied between years. Traits and units are described in
Table 4.2.

. Pos. Raw Marker Allelic
Trait Marker Chr. (cM) P-valuet MAF R2 Effectt
DTF  BobWhite_c37935_124 1A 74.8 1.09E-03 0.09 0.03 0.123

wsnp_Ku_c8334_14181247 3A 87.4 1.42E-03 0.20 0.03 0.099
CAP11_c3666_426 7A 211.7 9.73E-05 0.05 0.04 0.159
Kukri_c22513_1780 2B 26.5 4.95E-04 0.19 0.03 0.088
BobWhite_c2988_2161 2B 56.3 2.71E-04 0.15 0.04 0.104
Tdurum_contig54925_202 2B 107.4 2.07E-04 0.06 0.04 0.168
BS00048794_51 4B 74.6 6.44E-04 0.21 0.03 0.092
wsnp_Ku_rep_c103690_90365429 7B 120.8 6.48E-04 0.27 0.03 0.076
Ra_c11906_1441 1D 107.1 1.16E-03 0.36 0.03 0.078
GENE.1125_32 NAS NAS 2.08E-04 0.06 0.04 0.168
GENE.1273_395 NA NA 4.35E-04 0.19 0.04 0.089
HI Excalibur_c24511_1196 4A 74.5 2.30E-04 0.22 0.04 0.001
Ex_c9615_.1202 7A 82.7 1.30E-04 0.32 0.04 0.001
wsnp_Ex_c6354_11053460 7A 178.4 5.64E-04 0.32 0.03 0.001
Tdurum_contig29087_757 1B 136.0 6.30E-05 0.06 0.04 0.002
Kukri_c22513_1780 2B 26.5 6.31E-04 0.19 0.03 0.001
Tdurum_contig42153_1190 2B 66.2 5.77E-04 0.44 0.03 0.001
Excalibur_c18966_804 2B 130.3 1.18E-03 0.33 0.03 0.001
Tdurum_contig50954_1264 3B 51.1 1.05E-03 0.40 0.03 0.001
Tdurum_contig50954_1095 3B 134.8 7.34E-04 0.40 0.03 0.001
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Table 4.18. Continued.

. Pos. Raw Marker Allelic
Trait Marker Chr. (cM) P-valuet MAF R2 Effectt
HI D_GBUVHFX02]JKG4A_54 2D 22,5 6.24E-04 0.35 0.03 0.001
GENE.1273_395 NA NA 2.20E-04 0.19 0.04 0.001
KPS BS00079440_51 2D 437 3.14E-05 0.19 0.05 0.308
PFS  wsnp_Ex ¢c3620_6612231 5A 159 8.66E-05 0.30 0.04 0.006
Excalibur_c29255_404 5A 139.8 1.25E-05 0.06 0.05 0.012
wsnp_Ex_c965_1845447 6A 994 5.03E-04 0.11 0.03 0.008
Tdurum_contig42153_1190 2B 66.2 3.43E-05 0.44 0.05 0.007
Tdurum_contig18858_324 2B 109.5 4.18E-04 0.27 0.03 0.006
Tdurum_contig17697_771 7B 131.1 4.46E-04 0.22 0.03 0.007
wsnp_Ku_c14251_22503965 2D 471 9.33E-05 0.09 0.04 0.009
BS00012081_51 NA NA 1.32E-04 0.35 0.04 0.007
RAC875_c15844_348 NA NA 2.45E-04 0.36 0.04 0.006
RAC875_¢31358_214 NA NA 1.13E-04 0.36 0.04 0.007

SPS  wsnp_Ku_rep_c104159_90704469 7A 152.8 1.61E-07 0.25 0.09 0.287
wsnp_Ex_c53843_56941644 NA NA 1.30E-06 0.24 0.07 0.269

tUnadjusted P-values are provided for reference but significance of marker-trait associations was determined using the
Benjamini-Hochberg procedure with a false discovery rate of 50%.

* Allelic effects are magnitude of effect size only, and don’t signify effect of major or minor allele.

§$NA indicates unmapped chromosome.
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CHAPTER 5:

APPLICATIONS OF CANOPY SPECTRAL REFLECTANCE

TO EVALUATE DROUGHT TOLERANCE

Summary

Improvements in phenotyping are needed to match advances in genotyping to
conduct powerful analyses that may help researchers or plant breeders increase grain yield
or the rate of genetic gain under drought stress. Recent advances in genotyping include
tools and technologies such as high-throughput marker platforms and genomic selection.
Spectral tools, such as canopy spectral reflectance, could be used to facilitate high-
throughput phenotyping, especially for complex traits like grain yield or drought tolerance
that are difficult to accurately evaluate in the field. Spectral tools could have a role
evaluating drought tolerance by indirectly estimating water status or other physiological
traits. Published water-based spectral indices estimate plant water status based on the
relative amount of light reflected at the minor water absorption band at 970 nm and other
regions in the near infrared between 850 and 920 nm. Reflectance at 970 nm is a useful
indicator of plant water status because radiation at this wavelength is absorbed by water in
the plant canopy. We evaluated five published water-based spectral indices (WI, NWI-1,
NWI-2, NWI-3, and NWI-4) on multiple dates and during different developmental stages of
both rainfed and irrigated environments in Fort Collins, CO during 2013. Under water
stress estimates of NWI-1, NWI-3, and NWI-4 followed a distinctive growth curve with their

most extreme values coinciding with the period of highest water stress in the field. Thus,
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these tools and indices could be useful on a regional or farm level to make management
decisions about resource allocation for dryland crops. NWI-3 detected more differences
among developmental stages than the other water-based indices evaluated, and is
recommended over the other water-based spectral indices for winter wheat. However, the
spectral tools were not able to detect significant differences among entries, so the current

technology showed little promise in our study as a selection tool.

Introduction

Wheat breeders have benefited from recent advances in marker technologies
(Elshire et al., 2011; Poland and Rife, 2012) and genomics (Cavanagh et al., 2013; Wang et
al,, 2014) to select for beneficial traits (Liu et al., 2014), estimate breeding value (Heffner et
al,, 2009; Poland et al., 2012), and speed up the selection cycle (Heffner et al., 2010).
However, implementing technologies like genomic selection and genome-wide association
mapping requires phenotypic data. Obtaining accurate, inexpensive, and high-throughput
phenotypic data in the field has remained a major constraint to plant breeders (Araus and
Cairns, 2014). Drought tolerance is a complex trait that is especially difficult and time-
consuming to accurately evaluate in the field (Richards et al., 2010). Estimating agronomic
traits such as yield or drought tolerance indirectly, using spectral traits measured
proximally with hand-held, aerial, or vehicle-mounted sensors, offers a possible solution to
relieve the phenotyping bottleneck. Measuring spectral traits can speed up the selection
cycle by reducing time spent evaluating germplasm, selecting genotypes earlier in the
season, or evaluating more genotypes during each round of selection (Andrade-Sanchez et

al, 2014).
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Spectral indices are constructed based on known spectral properties of plant tissues
and canopy structure (Ollinger, 2011). One such relationship is lower levels of reflectance
at the minor water absorption band located at 970 nm relative to nearby regions in the
near infrared. Less light is reflected at 970 nm because some of that energy is absorbed by
water within the plant tissues. Several water-based spectral indices have been developed
to estimate plant water status in agricultural fields during the growing season using the
970 nm band. These indices include the water index (WI, Penuelas et al., 1997), normalized
water index 1 (NWI-1, Babar et al., 2006b), normalized water index 2 (NWI-2, Babar et al.,
2006b)), normalized water index 3 (NWI-3, Prasad et al,, 2007b), and normalized water
index 4 (NWI-4, Prasad et al., 2007b).

The water index and normalized water indices relate the amount of light reflected at
the minor water absorption band at 970 nm to regions in the NIR that have higher
reflectance. The water index is the ratio of light reflected at 970 nm and 900 nm, and has
been shown to be associated with relative water content, leaf water potential, and stomatal
conductance (Penuelas et al,, 1993, 1997). Normalized water-based spectral indices have
been developed using the amount of light reflected at the 970 nm minor water absorption
band, and different reflectance bands in the NIR (between 880-920 nm), and have
previously been used to explain up to 88% of variation in wheat grain yield when evaluated
during the milk stage of grain filling (Bandyopadhyay et al., 2014). The water-based
spectral indices have also been previously used to select up to 83% of the 25% highest-
yielding winter wheat genotypes across two years and populations, which was a greater
selection efficiency than widely-used vegetative indices such as the red- or green

normalized difference vegetation indices (Prasad et al., 2007b).
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A better understanding of the relationships between five water-based spectral
indices and agronomic traits is needed to evaluate the use of canopy spectral reflectance to
characterize drought response in wheat. Therefore, our specific objectives were to
evaluate how water-based spectral indices vary among genotypes and to evaluate changes
in indices when measured on different sampling dates or during different developmental

stages.

Materials and methods

Germplasm and experimental design

The germplasm includes 299 winter wheat entries belonging to the Triticeae
Coordinated Agricultural Project (TCAP) hard winter wheat association mapping panel.
The entries were a diverse collection of cultivars, experimental lines, and historic varieties
identified by wheat breeders from across the U.S. Great Plains as having made a significant
contribution to the current germplasm pools of that region. The entries were contributed
by both public and private breeding programs, and reflect a long history of wheat breeding.

The panel was evaluated at the Colorado State University Agricultural Research
Development and Education Center in Fort Collins, CO (40° 39’N, 105° 00°'W; elevation
1,534 m) during 2012-2013. The trials were unreplicated and arranged in an augmented
row-column design with two check varieties. Each field plot was a 3.1 m-long, six-row plot.
The experimental entries were unreplicated, except for ‘Wichita’ (CI 11952), which was
included in the panel twice. Two check varieties were replicated fifteen times each and
systematically placed throughout the field. The check varieties were ‘Hatcher’ (Haley et al.,

2005) and ‘Settler CL’ (Baenziger et al.,, 2011), and these varieties were also included as
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experimental entries in the trial. The trials were planted on 2 Oct 2012 and harvested on
July 18 (Fo13R) and 22 (Fo13F) 2013. The germplasm and experiment have been
described in detail previously (Grogan et al., 2015). There were separate rainfed (Fo13R)
and full irrigation (Fo13F) environments. These environments are discussed in detail in
Chapter 4 of this dissertation and monthly precipitation and irrigation are detailed in Table
4.1. Irrigation at Fo13F began around heading; thus, there was no treatment effect between
Fo1l3F and Fo13R until anthesis. Irrigation at Fo13F was applied seven times using
overhead linear sprinklers, totaling 222.3 mm. The first irrigation event was on DOY 140.
Fo13R did not receive any supplemental irrigation. Both Fo13F and Fo13R received 124.4

mm precipitation between 1 Jan and harvest.

Spectral measurements

Canopy spectral reflectance was measured with a Jaz (Ocean Optics, Dunedin, FL)
hyper-spectral radiometer. The radiometer was equipped with a passive sensor optimized
to measure reflectance in the near infrared (NIR) from 600 to 1050 nm. The sampling
interval ranges from 0.25 - 0.36 nm, with an average interval of 0.32 nm, thus each
measurement recorded reflectance at 2047 different wavebands. Prior to sampling, the
sensors were normalized against a BaSO4-coated white board. The radiometer was
mounted to a pole that held the fiber optic sensor (field of view = 25.4°) perpendicular over
the plot. The sensor was centered 20 cm over an interior row for a sampling spot size 9 cm
in diameter. Measurements were collected at walking speed and averaged about 80 scans

per plot. Sampling time took about 30 seconds per plot. We collected spectral
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measurements at Fo13F on six dates (day of year, DOY 151, 160, 162, 170, 178, and 182),
and at Fo13R on five dates (DOY 151, 157, 160, 170, and 177).

Substantial effort was taken to minimize environmental variation among sampling
dates. For example, sampling was restricted to within about two hours of solar noon to
reduce temporal variation associated with changes in zenith angle. Spectral measurements
were limited to relatively clear, still days to minimize the effects of clouds affecting light
scattering and wind affecting leaf angle and canopy architecture. Despite our efforts to
minimize variation within the field, spatial-temporal trends were present in the data.
Spectral patterns in reflectance values did not necessarily result in spatial patterns of
spectral index values, since changes in irradiance can affect reflectance at all wavebands.
Data were excluded from analysis when outlying estimates were extreme and persisted for
multiple indices. Typically excluded measurements included several sequentially measured
plots.

Five water-based spectral indices were calculated using raw plot-level data and a
1.0 nm window width. These indices are WI, NWI-1, NWI-2, NWI-3, and NWI-4, and are
described in Table 5.1. Additional window widths ranging from 0.5 to 3.0 nm were
evaluated, but for most indices the strongest correlations with agronomic traits were

obtained using a 1.0 nm window (data not shown).

Phenological development
Crop development was determined for each plot using the Zadoks scale (Zadoks et
al., 1974). Developmental stages were defined when approximately 50% of tillers in

interior rows of the plot exhibited characteristic traits. Each plot was evaluated at least
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three times a week. Booting date was determined at stage 45, when the flag leaf collar was
visible and the boot was very swollen. In some instances the flag leaf sheath was beginning
to split or awns were just barely visible. This variability in booting date adds to some error
to whether measurements were accurately classified as booting versus early vegetative
growth (prior to booting). Heading date was evaluated at stage 59, when the spike had fully
emerged from the flag leaf sheath. Irrigation at Fo13F began on DOY 140, which was during
heading at Fo13F and Fo13R. There was no significant differences in heading dates at
Fol3F and Fo13R. Anthesis date was characterized at stage 65 when florets in the middle
of the spike were receptive, indicated by a “fluffy” stigma, or when anthers were extruded
and shedding a moderate amount of pollen. In some instances anthesis was back-estimated
after desiccated anthers were visible. Average anthesis dates were DOY 155 at Fo13R and
DOY 156 at Fo13F. Physiological maturity (stage 90) was determined when the peduncle
lost all green coloration and the spikes retained little or no greenness. Calendar days to
each developmental stage was calculated as the number of days after January 1, and
included days to booting, heading, flowering, and physiological maturity. Grain filling
duration was calculated as the number of days between anthesis and physiological
maturity.

Phenological dates were also used to group measurements from each plot and
sampling date into one of seven developmental categories to analyze spectral indices by
developmental stage. On most sampling dates multiple developmental stages were present
across the field, reflecting early- and late-maturing entries. Because of the genotypic
diversity within the panel, not all entries were measured at each developmental stage, and

some entries have multiple measurements during the same developmental stage. The
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categories included: early vegetative growth including tillering and stem expansion (before
booting), booting, heading, anthesis (including anthesis date and two days prior), grain
filling (three-or more days after anthesis date until one week before physiological
maturity), late grain filling (measurements after anthesis date that were within one week of
physiological maturity), and physiological maturity. Grain filling and late grain filling were
distinguished to sub-divide the large number of measurements between anthesis and
physiological maturity (and provide more-equal number of measurements for each

developmental stage bin).

Statistical analysis

Statistical analyses were conducted in the software R (version 3.1.3, R Core Team,
2015) on raw plot-level data using the ‘stats’ (R Core Team, 2015) and ‘car’ (Fox and
Weisberg, 2011) packages. Tests for pairwise significant differences were conducted using
Tukey HSD in JMP (version 11.0, SAS Institute Inc., Cary, NC). Heat maps were created in

JMP and all other figures were generated in R.

Results and discussion

Effects of environment and genotypes

There were significant differences between spectral estimates at Fo13F and Fo13R
for NWI-1, NWI-3, and NWI-4 (P < 0.001 each), but not for WI or NWI-2. No significant
differences among entries were observed for any of the indices evaluated. Because
genotypic variance was not significant, broad-sense heritability, phenotypic and genetic

correlations with agronomic traits, and selection efficiency were not evaluated.
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The lack of significant genotypic variation was influenced by substantial spatial-
temporal variation (Figure 5.1a-c). Localized spatial trends observed in nearby plots could
be due to underlying spatial variation due to environmental conditions like soil type, water
availability, and presence of weeds, insect, mite, or rodent pests, or disease. Variation
among sequentially-measured plots was most likely due to changes in solar conditions or
deteriorating calibration efficiency (Figure 5.1c). These spatial patterns were not corrected
for because making spatial adjustments eliminated variation among entries, such that all
measurements of each index were estimated to be the same for some indices and dates.
This is problematic because it does not allow for summary statistics, such as standard
deviation or variance, for measurements collected on the same day.

The amount of light reflected at every waveband should range between 0-100%,
and as such, estimates of the normalized water indices should range from -1 to 1. Because
some light is absorbed by water at 970 nm, reflectance is expected to be greater at other
estimates (850 nm, 880 nm, 900 nm, 920 nm) in the near infrared than at 970 nm (Table
5.1). Therefore, most estimates of the normalized water indices are expected to fall from 0
to 1, with estimates of 0 indicating the same amount of light reflected at each waveband,
and negative estimates indicating more light was reflected at 970 nm than the second
waveband. However, not all spectral index values fell between -1 and 1. This indicates that
reflectance at one or more waveband was greater than 100% or less than 0%, which could
be caused by changes in incoming irradiance (relative to levels used for calibration) or by
instrumentation error.

Minor fluctuations in solar conditions, such as changes in total incoming irradiance

or cloud coverage, had minor or negligible effects on spectral indices. This can be explained
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by changes in irradiance increasing or decreasing the amount of light reflected by equal or
near-equal amounts across the entire spectra. This would result in a very minor change to
indices because the relationship between wavebands would not be substantially changed.

There was also major spatial-temporal variation resulting in gradual changes of
index values between the first and last plots measured (or between first plot and re-
calibration). This variation is likely due to changes in zenith angle, or the sensor calibration
efficiency deteriorating over time, or both (Figure 5.1c). The effects of calibration efficiency
and changes in irradiance could be reduced or eliminated by using an active sensor that
emits its own light source.

Estimates of canopy spectral reflectance were very sensitive to instrumentation
error. Instrumentation error was identified as spatial trends among sequentially sampled
plots and varied from underlying effects of spatial variation by the very extreme and
outlying measurements. Instrumentation error ranged from several plots to an entire pass,

and was most likely caused by deviating the angle at which the sensor was held.

Effects of sampling date

The amount of light reflected across the entire spectra varied among sampling dates
(Figure 5.2). Variation in the total amount of irradiance and reflectance can be most easily
observed by comparing the NIR from approximately 800-900 nm in Figure 5.2. Particular
features within the spectra also varied among dates. For instance, the amount of light
reflected from the visible light portion of the spectrum (<700 nm) is diminished as the
plant begins to senesce. This is especially visible for Fo13R on DOY 170 and 177 (Figure

5.2a). The change to the red edge (700-750 nm) is less pronounced at Fo13F because all
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measurements were taken before physiological maturity (Figure 5.2b). Reflectance at the
970 nm minor water absorption band also varies among sampling dates. Lower reflectance
at 970 nm is due to absorption of light by water in the tissue, so higher levels of reflectance
suggest less water in the plant tissue. Reflectance at 970 nm is lower for Fo13F than Fo13R,
due to higher plant water status in the irrigated environment.

Both WI and NWI-2 had significant differences among sampling dates in the pooled
data across environments, although Tukey’s honest significance test did not detect pairwise
differences for WI (Table 5.2). Much of the variation in NWI-2 was influenced by the large
spread of measurements at DOY 151 relative to other sampling dates (Figure 5.3a,b). Many
estimates of NWI-2 were greater than |1]| on DOY 151, and several estimates were greater
than |1| on DOY 182. Plots with aberrant estimates of NWI-2 were distributed across the
field, did not follow spatial patterns, and did not have outlying values for other water-based
indices. This indicates reflectance at 850 nm used to estimate NWI-2 was very different
from reflectance at the wavebands used to estimate NWI-1, NWI-3, and NWI-4, and
suggests NWI-2 may not be an appropriate index for early- or late-season measurements
on winter wheat.

There were significant differences among sampling dates for NWI-1, NWI-3, and
NWI-4 at both Fo13F (Table 5.3) and Fo13R (Table 5.4). Variation among sampling dates is
likely due to differences in environmental conditions (total irradiance, zenith angle, wind
speed, etc.) and physiological characteristics (plant water status, canopy architecture,
senescence, etc.). The sampling dates with the most similar average values of spectral
indices are not necessarily the dates that are closest to each other, which suggests changing

environmental conditions introduce large sources of variation. Average spectral index
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values from a single date were significantly different from measurements on most other
dates, even when the dates were only separated by several days. This is concerning
because it suggests single measurements may not be reliable indicators of spectral index

values.

Effects of developmental stage

There were significant differences in estimates of NWI-2 (P < 0.001, Table 5.5)
among seven developmental stages when measurements were pooled across Fo13F and
Fo1l3R (Figure 5.3c, 5.3d). There were no significant differences among developmental
stages for WI in the pooled data. There were significant differences in estimates of NWI-2
when evaluated at booting and heading, and all estimates evaluated before anthesis were
significantly different from those measured during grain filling (Table 5.5). The highly
variable estimates of NWI-2 before anthesis (such as on DOY 151) could indicate
reflectance at 850 nm is more strongly influenced by canopy structure than wavebands
used by the other normalized water indices. For instance, NWI-2 could be influenced by
light refracted from the soil before the canopy closes, or NWI-2 could be affected by
changes in spike architecture.

There were also significant differences among developmental stages for NWI-1,
NWI-3, and NWI-4 when analyzed separately for Fo13F (Table 5.6) and Fo13R (Table 5.7).
Most changes occurred gradually among sequential developmental stages (Figure 5.4a-f).
The interaction between sampling date and developmental stage was significant (P <
0.001) for NWI-1, NWI-3, and NWI-4. For most indices, the effect from sampling date was

greater than that from developmental stage (Table 5.8). Since indices changed gradually
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across sequential developmental stages, but not sequential sampling dates, this suggests it
is more important to group measurements by common sampling date and highlights the
importance of controlling for phenology in spectral estimates. It also suggests the most
appropriate way to collect meaningful spectral data might be to focus on one or few
developmental stages, and average multiple estimates collected on different days but
within the same developmental stage.

The three-way interaction between environment, sampling date, and developmental
stage was tested for NWI-1, NWI-3, and NWI-4. The three-way interaction was not
evaluated for NWI-2 or WI because the main effect of environment was not significant for
these indices. The effect of the three-way interaction and two-way interaction between
environment and development stage were significant for each of NWI-1, NWI-3, and NWI-4,
(Table 5.9). The two- and three-way interactions are significant because variation among
developmental stages is much more pronounced at Fo13R than Fo13F (Figure 5.4), which

was expected because plant water status should vary among moisture treatments.

Differences among water-based spectral indices

The water index did not vary significantly among entries, environments, sampling
dates, or developmental stages and is therefore not a useful indicator of plant water status
or drought stress. Normalized water index 2 had many noisy estimates during early- and
late-season growth that suggest this index is unreliable for winter wheat (Figure 5.3).
However, NWI-1, NWI-3, and NWI-4 had significant and gradual differences among
developmental stages, and followed similar growth curves with developmental stage at

Fo1l3R (Figure 5.4). The indices were expected to provide similar results, because index
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values were derived using similar formulas and wavebands. Among the normalized water-
based indices, NWI-3 detected slightly more differences among developmental stages than
the other indices, which suggests NWI-3 is most sensitive to detecting changes in winter
wheat. For this reason, NWI-3 is recommended over the other water-based spectral indices
for winter wheat.

Many more differences were detected for Fo13R than Fo13F. Some of the gradual
changes observed among developmental stages at Fo13R were mimicked to a lesser degree
at Fo13F (Table 5.6). Variation in responses at Fo13R and Fo13F was expected because we
evaluated indices that are associated with plant water status, in trials that vary for water
availability. A treatment effect was not imposed on Fo13R until anthesis, and consequently
there are greater changes in NWI-1, NWI-3, and NWI-4 after this point than in the early
season (Figure 5.4). Less of a response over developmental stages was seen at Fo13F
because the plants were receiving regular irrigation.

While it is insightful to evaluate and compare water-based spectral indices using
particular wavebands, this is not the only approach for analyzing hyperspectral data. An
alternative approach to using spectral indices is to characterize drought through partial-
least squares regression (Weber et al., 2012; Dreccer et al,, 2014). Partial-least squares
regression uses reflectance data from all available wavebands and might be a more

effective method of capturing genotypic variation.

Conclusions
Values of water-based spectral indices changed gradually with plant development,

following a distinctive growth curve, when evaluated under water stress at Fo13R. The
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lowest values of NWI-1, NWI-3, and NWI-4 were observed during grain filling, which
coincided with the period of most severe water stress. Therefore, it is likely these water-
based spectral indices are detecting changes in plant water status and this type of
technology could be useful on a regional- or farm-level to improve management decisions
about resource allocation, especially for dryland crops or in drought years. However, we
were unable to detect significant differences in index values among wheat entries. This
indicates our instrument is not appropriate as a selection tool. The lack of significant
differences among entries was likely influenced by substantial spatial-temporal variation,
and this could be addressed by sampling using an aerial or vehicle-mounted sensor to

reduce or eliminate temporal variation among measurements.
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Figure 5.1. Visualizing spatial trends among winter wheat entries grown in Fort Collins, CO
under rainfed conditions during 2013 (Fo13R) using heat maps of spectral index values.
There are 330 3.1 m long, six-row field plots at Fo13R. a. Heat map showing the mean value
of normalized water index 1 (NWI-1) for each field plot, evaluated at Fo13R on day of year
(DOY) 151. There is little or no temporal variation. Small spatial patterns can indicate
underlying environmental variation, changes in solar conditions, or instrumentation error.
Variation in the heat map reflects differences in plots during early season growth. b. Heat
map showing the average value of NWI-1 across five sampling dates (DOY 151, 157, 160,
170, 177) at Fo13R provides a good estimate of underlying field variation in Fo13R. The
west (left) most pass and north (top) end of the field had low biomass and total grain yield
at physiological maturity. c. Heat map plotting all estimates of NWI-1 in Fo13R on DOY 157.
Sampling was north-south (up-down), and the sensor was re-calibrated halfway through
the field.
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Figure 5.2. Variation in mean reflectance spectra for the check variety ‘Hatcher’ across
sampling dates when evaluated in Fort Collins, CO under rainfed (Fo13F; Fig. A) or full
irrigation (Fo13R; Fig. B) conditions in 2013. The first irrigation event occurred on DOY
140. Average anthesis dates were DOY 156 in Fo13F and DOY 155 in Fo13R. There was no
significant difference in phenological development of Fo13F and Fo13R until anthesis. Each
spectrum is the average of measurements from 15 six-row, 3.1 m long field plots. a.
Average reflectance across five sampling dates (days of year, DOY) at Fo13R. b. Average

reflectance across eight sampling dates at Fo13F.
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Figure 5.3. Variation of normalized water index 2 (NWI-2) values for winter wheat entries
pooled across two environments. The horizontal lines are median values for each
environment. The box shows the inter-quartile range (IQR), where 50% of the genotypes
fall. The horizontal lines in the boxes are median values for each environment. The
whiskers extend 1.5 times the IQR in each direction. The environments are full irrigation in
Fort Collins, CO during 2013 (Fo13F) and rainfed in Fort Collins, CO during 2013 (Fo13R).
The first irrigation event occurred on DOY 140. There was no significant difference in
phenological development of Fo13F and Fo13R until anthesis. Average anthesis dates were
DOY 156 in Fo13F and DOY 155 in Fo13R.NWI-2 is defined in Table 5.1. a. Variation in
NWI-2 across sampling dates, showing all measurements. b. Finer resolution of variation in
NWI-2 across sampling dates, trimming some measurements on DOY 151 and DOY 182. c.
Variation in NWI-2 across developmental stages, showing all measurements. The
developmental stages are early vegetative growth (V), booting (B), heading (H), anthesis
(A), grain filling (GF), late grain filling (GF-L, within one week of physiological maturity),
and physiological maturity (M). d. Finer resolution of variation in NWI-2 across
developmental stages, trimming some measurements at heading and late grain filling.
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Figure 5.4. Variation of water-based spectral index values for wheat entries grown in Fort
Collins, CO under full irrigation (Fo13F) or rainfed (Fo13R) conditions in 2013. The
horizontal lines are median values for each environment. The box shows the inter-quartile
range (IQR), where 50% of the genotypes fall. The horizontal lines in the boxes are median
values for each environment. The whiskers extend 1.5 times the IQR in each direction.
Measurements were taken at different developmental stages, including early vegetative
growth (V), booting (B), heading (H), anthesis (A), grain filling (GF), late grain filling (GF-L,
within one week of physiological maturity), and physiological maturity (M). The first
irrigation event occurred on DOY 140. There was no significant difference in phenological
development of Fo13F and Fo13R until anthesis. Average anthesis dates were DOY 156 in
Fol3F and DOY 155 in Fo13R.The water-based spectral indices are described in Table 1. a.
Estimates of normalized water index 1 (NWI-1) at Fo13F. b. Estimates of NWI-1 at Fo13R. c.
Estimates of normalized water index 3 (NWI-3) at Fo13F. d. Estimates of NWI-3 at Fo13R. e.
Estimates of normalized water index 4 (NWI-4) at Fo13F. f. Estimates of NWI-4 at Fo13R.
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Tables

Table 5.1. The formula and reference for published water-based spectral indices
associated with canopy water content and plant water status.

Spectral Index Formulat Reference

Water Index (WI) R900/Ro70 Pefiuelas et al., 1997
Normalized water index 1 (NWI-1) (R970— Rooo)/(Ro70+ Rooo)  Babar et al.,, 2006
Normalized water index 2 (NWI-2) (Ro70— Rss0)/(Ro70+ Rgs0)  Babar et al.,, 2006
Normalized water index 3 (NWI-3) (R970— Ro20)/(Ro70+ Roz0)  Prasad et al,, 2007
Normalized water index 4 (NWI-4) (Ro70— Rggo)/(Ro70+ Rggo) Prasad et al., 2007

TR and the subscript indicate the reflectance of light at that specific wavelength (in nm)
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Table 5.2. Mean and standard deviation of the water index (WI) and normalized water
index 2 (NWI-2) values evaluated on winter wheat entries on eight different days (day of
year, DOY) in 2013. The water-based spectral indices are described in Table 5.1. Data are
pooled across two environments: full irrigation (Fo13F) and rainfed (Fo13R) conditions in
Fort Collins, CO. The first irrigation event occurred on DOY 140. There was no significant
difference in phenological development of Fo13F and Fo13R until anthesis. Average
anthesis dates were DOY 156 in Fo13F and DOY 155 in Fo13R. Means not connected by the
same letter are significantly different at P < 0.05.

DOY N WI NWI-2

151 659 1.072+0.047 a -0.908+0.018 d
157 330 1.152+0.067 a -0.062+0.025 abc
160 659 1.145+0.047 a -0.059%0.018 ab
162 330 1.068+0.067 a -0.018+0.025 ab
170 653 1.271+0.048 a -0.107+0.018 bc
177 328 1.058+0.067 a -0.002+0.025 a
178 330 1.121+0.067 a -0.043+0.025 ab
182 330 1.287+0.067 a -0.164+0.025 c
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Table 5.3. Mean and standard deviation of normalized water indices 1 (NWI-1), 3 (NWI-3),
and 4 (NWI-4) values evaluated on winter wheat entries on six different days (day of year,
DOY) in Fort Collins, CO under full irrigation (Fo13F). The water-based spectral indices are

described in Table 5.1. Means not connected by the same letter are significantly different at
P <0.05.

DOY N NWI-1 NWI-3 NWI-4

151 329 -0.039 +0.008 -0.020 £ 0.009 a -0.058 £ 0.006
160 329 -0.077 +£0.008 -0.077 £0.009 bc -0.075=0.006
162 330 -0.033+0.008 -0.035+0.009 a -0.026 £ 0.006
170 330 -0.109 +0.008 -0.113 £ 0.009 c -0.114 £ 0.006
178 330 -0.056+0.008 ab  -0.057+0.009 ab -0.054 £ 0.006
182 330 -0.192+0.008 d -0.187 £ 0.009 d -0.170 £ 0.006

a
C
a
C

o oo o oo
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Table 5.4. Mean and standard deviation of normalized water indices 1 (NWI-1), 3 (NWI-3),
and 4 (NWI-4) values evaluated on winter wheat entries on five different days (day of year,
DOY) in Fort Collins, CO under rainfed (Fo13R) conditions. The water-based spectral
indices are described in Table 5.1. Means not connected by the same letter are significantly
different at P < 0.05.

DOY N NWI-1 NWI-3 NWI-4
151 330 -0.030+0.001 -0.013 £0.001 a -0.046 £ 0.001 b
157 330 -0.070+0.001 -0.067 £ 0.001 d -0.066 £ 0.001 c
160 330 -0.058+0.001 -0.061 £ 0.001 c -0.050 £ 0.001 b
e
b

170 323 -0.128 +£0.001 -0.132 £ 0.001 -0.107 £ 0.001 d
177 328 -0.028 +£0.001 -0.035 £ 0.001 -0.015+0.001 a

v oo o0
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Table 5.5. Mean and standard deviation of normalized water index 2 (NWI-2) values
evaluated on winter wheat entries at seven developmental stages. NWI-2 is described in
Table 5.1. Measurements were pooled across two environments: full irrigation (Fo13F) and
rainfed (Fo13R) conditions in Fort Collins, CO in 2013. The first irrigation event occurred
on DOY 140. There was no significant difference in phenological development of Fo13F and
Fo13R until anthesis. Average anthesis dates were DOY 156 in Fo13F and DOY 155 in
Fol3R. The developmental stages are early vegetative growth (V), booting (B), heading (H),
anthesis (A), grain filling (GF), late grain filling (GF-L, within one week of physiological
maturity), and physiological maturity (M). Means not connected by the same letter are
significantly different at P < 0.05.

Level N NWI-2

\Y 8 -0.931+0.165 bc
B 218 -0.987+0.032 ¢
H 412 -0.860+0.023 b
A 50 -0.261x0.066 a
GF 2185 -0.072+0.010 a
GF-L 699 -0.079+0.018 a
M 47 0.006£0.068 a
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Table 5.6. Mean and standard deviation of normalized water indices 1 (NWI-1), 3 (NWI-3),
and 4 (NWI-4) evaluated on winter wheat entries during five developmental stages in Fort
Collins, CO under full irrigation (Fo13F). The water-based spectral indices are described in
Table 5.1. The developmental stages are booting (B), heading (H), anthesis (A), grain filling
(GF), and late grain filling (GF-L, within one week of physiological maturity). Means not
connected by the same letter are significantly different at P < 0.05.

Level N NWI-1 NWI-3 NWI-4

B 114 -0.038+0.014 ab -0.019+0.017 a -0.057+0.011 a
H 193 -0.040+0.010 a -0.021+0.013 a -0.059+0.008 a
A 46 -0.060+£0.021 ab -0.051+0.026 ab  -0.068x0.017 a
GF 1249 -0.074+0.004 b -0.076x0.005 ¢ -0.072+0.003 a
GF-L 376 -0.158+0.008 c -0.154+0.009 b -0.140+£0.006 b
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Table 5.7. Mean and standard deviation of normalized water indices 1 (NWI-1), 3 (NWI-3),
and 4 (NWI-4) evaluated on winter wheat entries during seven developmental stages in
Fort Collins, CO under rainfed (Fo13R) conditions. The water-based spectral indices are
described in Table 5.1. The developmental stages are early vegetative growth (V), booting
(B), heading (H), anthesis (A), grain filling (GF), late grain filling (GF-L, within one week of
physiological maturity), and physiological maturity (M). Means not connected by the same
letter are significantly different at P < 0.05.

Level N NWI-1 NWI-3 NWI-4

\Y 8 -0.026+0.013 ab -0.012+0.013 ab -0.041+0.012 abcd
B 104 -0.029+0.004 a -0.013+0.004 a -0.044+0.003 c

H 219 -0.032+0.002 a -0.016+0.002 a -0.047+0.002 ¢

A 4 -0.045+0.018 abc  -0.022+0.018 ab -0.066+0.017 bcd
GF 936 -0.082+0.001 C -0.084+0.001 ¢ -0.073£0.001 d
GF-L 323 -0.043+0.002 b -0.049+0.002 b -0.028+0.002 b

M 47 -0.023+0.005 a -0.029+0.005 a -0.009+0.005 a
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Table 5.8. Mean squares and significance level of the main effects and interaction of
sampling date (day of year, DOY) and developmental stage (DEV) of water-based spectral
indices. Measurements were pooled across two environments: full irrigation (Fo13F) and
rainfed (Fo13R) conditions in Fort Collins, CO in 2013. The first irrigation event occurred
on DOY 140. There was no significant difference in phenological development of Fo13F and
Fo13R until anthesis. Average anthesis dates were DOY 156 in Fo13F and DOY 155 in
Fol3R. The indices include the water index (WI), and normalized water indices 1 (NWI-1),
2 (NWI-2), 3 (NWI-3), and 4 (NWI-4), which are described in Table 5.1.

Model term WI NWI-1 NWI-2 NWI-3 NWI-4
DOY 5.00 ns 1.15%** 0.04 ns 1.271%** 0.98***
DEV 0.82 ns 0.07*** 36.51%*  (0.09%** 0.09***

DOY*DEV 0.05 ns 0.29%** 3.60*** 0.23%** 0.27***
*, ** ***indicate significance at the 0.05, 0.01, and 0.001 probability levels, respectively.
ns indicates not significant at the 0.05 probability level
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Table 5.9. Mean squares and significance level of main effects and interactions of
environment (ENV,), sampling date (day of year, DOY) and developmental stage (DEV) on
water-based spectral indices. The two environments are full irrigation (Fo13F) or rainfed
(Fo13R) in Fort Collins, CO during 2013. Measurements were collected on eight sampling
dates representing seven developmental stages. The spectral indices include normalized
water indices 1 (NWI-1), 3 (NWI-3), and 4 (NWI-4), which are described in Table 5.1.

Model term NwWI-1 NWI-3 NwWI-4
ENV 0.02 ns 0.02 ns 0.01ns
DOY 0.88*** 0.97%** 0.62%**
DEV 0.03* 0.07%** 0.02**

ENV *DOY 0.02 ns 0.05 ns 0.00 ns
ENV * DEV 0.27%** 0.20%** 0.16%**
DOY * DEV 0.00 ns 0.01 ns 0.00 ns

ENV *DOY* DEV 1.88*** 1.78%** 1.40%**

*, *#* *** indicate significance at the 0.05, 0.01, and 0.001 probability levels, respectively.
ns indicates not significant at the 0.05 probability level

202



REFERENCES

Andrade-Sanchez, P., M.A. Gore, ].T. Heun, K.R. Thorp, A.E. Carmo-Silva, A.N. French, M.E.
Salvucci, and J.W. White. 2014. Development and evaluation of a field-based high-
throughput phenotyping platform. Funct. Plant Biol. 41: 68-79.

Araus, J.L., and J.E. Cairns. 2014. Field high-throughput phenotyping: The new crop
breeding frontier. Trends Plant Sci. 19: 52-61.

Babar, M.A,, M. van Ginkel, A.R. Klatt, B. Prasad, and M.P. Reynolds. 2006a. The potential of
using spectral reflectance indices to estimate yield in wheat grown under reduced
irrigation. Euphytica 150: 155-172.

Babar, M. A,, M.P. Reynolds, M. van Ginkel, a. R. Klatt, W.R. Raun, and M.L. Stone. 2006b.
Spectral reflectance to estimate genetic variation for in-season biomass, leaf
chlorophyll, and canopy temperature in wheat. Crop Sci. 46: 1046-1057.

Baenziger, P.S., R. A. Graybosch, L. a. Nelson, T. Regassa, R.N. Klein, D.D. Baltensperger, D.K.
Santra, a. M.H. Ibrahim, W. Berzonsky, ].M. Krall, L. Xu, S.N. Wegulo, M.L. Bernards, Y.
Jin, ]. Kolmer, J.H. Hatchett, M.-S. Chen, and G. Bai. 2011. Registration of “NH03614 CL”
wheat. . Plant Regist. 5: 75-80.

Bandyopadhyay, K.K,, S. Pradhan, R.N. Sahoo, R. Singh, V.K. Gupta, D.K. Joshi, and A. K.
Sutradhar. 2014. Characterization of water stress and prediction of yield of wheat
using spectral indices under varied water and nitrogen management practices. Agric.
Water Manag. 146: 115-123.

Cavanagh, C.R,, S. Chao, S. Wang, B.E. Huang, S. Stephen, S. Kiani, K. Forrest, C. Saintenac, G.
Brown-Guedira, A. Akhunova, D.R. See, G. Bai, M.O. Pumphrey, L. Tomar, D. Wong, S.
Kong, M.P. Reynolds, M.L. da Silva, H. Bockelman, L. Talbert, ]. a Anderson, S.
Dreisigacker, P.S. Baenziger, A. Carter, V. Korzun, P.L. Morrell, ]. Dubcovsky, M.K.
Morell, M.E. Sorrells, M.]. Hayden, and E. Akhunov. 2013. Genome-wide comparative
diversity uncovers multiple targets of selection for improvement in hexaploid wheat
landraces and cultivars. Proc. Natl. Acad. Sci. U.S.A. 110: 8057-8062.

Dreccer, M.F., L.R. Barnes, and R. Meder. 2014. Quantitative dynamics of stem water soluble
carbohydrates in wheat can be monitored in the field using hyperspectral reflectance.
F. Crop. Res. 159: 70-80.

Elshire, R.]., ].C. Glaubitz, Q. Sun, ]. Poland, K. Kawamoto, E.S. Buckler, and S.E. Mitchell.
2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity
species. PLoS One 6: 1-10. doi: 10.1371/journal.pone.0019379.

Grogan, S.M,, ]. Anderson, P.S. Baenziger, K. Frels, M.]. Guttieri, S.D. Haley, K.-S. Kim, S. Liu, G.
S. McMaster, M. Newell, P.V.V. Prasad, S.D. Reid, K.J. Shroyer, G. Zhang, E.D. Akhunov,
and P.F. Byrne. 2015. Phenotypic plasticity of winter wheat heading date and grain
yield across the U.S. Great Plains. Manuscript submitted to Crop Sci.

Fox, ]., and S. Weisberg. 2011. An {R} Companion to Applied Regression. 2nd ed. Sage,
Thousand Oaks, CA.

Haley, S.D., ].S. Quick, ].J. Johnson, F.B. Peairs, J.A. Stromberger, S.R. Clayshulte, B.L. Clifford,
J.B. Rudolph, B.W. Seabourn, O.K. Chung, Y. Jin, and ]. Kolmer. 2005. Registration of
“Hatcher” wheat. Crop Sci. 45: 2654-2656.

Heffner, E.L., A.J. Lorenz, J.-L. Jannink, and M.E. Sorrells. 2010. Plant breeding with genomic
selection: gain per unit time and cost. Crop Sci. 50: 1681-1690.

203



Heffner, E.L., M.E. Sorrells, and J.-L. Jannink. 2009. Genomic Selection for Crop
Improvement. Crop Sci. 49: 1-12.

Liy, S, J.C. Rudd, G. Bai, S.D. Haley, A.M.H. Ibrahim, Q. Xue, D.B. Hays, R. A. Graybosch, R.N.
Devkota, and P. St. Amand. 2014. Molecular markers linked to important genes in hard
winter wheat. Crop Sci. 54: 1304-1321.

Ollinger, S. V. 2011. Sources of variability in canopy reflectance and the convergent
properties of plants. New Phytol. 189: 375-394.

Penuelas, |, I. Filella, and C. Biel. 1993. The reflectance at the 950-970 nm region as an
indicator of plant water status. Int. ]. Remote Sens. 14: 1887-1905.

Penuelas, ., and J. Pinol. 1997. Estimation of plant water concentration by the reflectance
Water Index WI (R900/R970). Int. ]. Remote Sens. 18: 2869-2875.

Poland, ., J. Endelman, J. Dawson, J. Rutkoski, S. Wu, Y. Manes, S. Dreisigacker, J. Crossa, H.
Sanchez-Villeda, M.E. Sorrells, and J.-L. Jannink. 2012. Genomic selection in wheat
breeding using genotyping-by-sequencing. Plant Genome 5: 103-113.

Prasad, B., B.F. Carver, M.L. Stone, M. A. Babar, W.R. Raun, and A. R. Klatt. 2007. Genetic
analysis of indirect selection for winter wheat grain yield using spectral reflectance
indices. Crop Sci. 47: 1416-1425.

Prasad, B., B.F. Carver, M.L. Stone, M. a. Babar, W.R. Raun, and a. R. Klatt. 2007b. Potential
Use of Spectral Reflectance Indices as a Selection Tool for Grain Yield in Winter Wheat
under Great Plains Conditions. Crop Sci. 47(4): 1416-1425.

Richards, R.A., G.J. Rebetzke, M. Watt, A.G. Condon, W. Spielmeyer, and R. Dolferus. 2010.
Breeding for improved water productivity in temperate cereals: phenotyping,
quantitative trait loci, markers and the selection environment. Funct. Plant Biol. 37:
85-97.

Wang, S., D. Wong, K. Forrest, A. Allen, S. Chao, B.E. Huang, M. Maccaferri, S. Salvi, S.G.
Milner, L. Cattivelli, A.M. Mastrangelo, A. Whan, S. Stephen, G. Barker, R. Wieseke, ]J.
Plieske, M. Lillemo, D.E. Mather, R. Appels, R. Dolferus, G. Brown-Guedira, A. Korol, A.
Akhunova, C. Feuillet, ]. Salse, M. Morgante, C. Pozniak, M.-C. Luo, J. Dvorak, M.K.
Morell, ]. Dubcovsky, M. Ganal, R. Tuberosa, C. Lawley, I. Mikoulitch, C.R. Cavanagh, K.J.
Edwards, M.]. Hayden, and E. Akhunov. 2014. Characterization of polyploid wheat
genomic diversity using a high-density 90 000 single nucleotide polymorphism array.
Plant Biotechnol. ]. 12: 787-796.

Weber, V.S,, ].L. Araus, J.E. Cairns, C. Sanchez, a. E. Melchinger, and E. Orsini. 2012.
Prediction of grain yield using reflectance spectra of canopy and leaves in maize plants
grown under different water regimes. F. Crop. Res. 128: 82-90.

Zadoks, ].C,, T.T. Chang, and C.F. Konzak. 1974. A decimal code for the growth stages of
cereals. Weed Res. 14: 415-421.

204



APPENDICES

Supplemental Text.
Supplemental Text S3.1

The six spatial correlation models were analyzed with the PROC MIXED procedure
of SAS (version 9.3, SAS Institute, Inc., Cary, NC) and are described by Littell et al. (2006)
and in the SAS/STAT 9.3 User's Guide, Table 58.14
(http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm
#statug_mixed_sect020.htm). In all spatial correlation models the correlation between
measurements decreases as a function of increasing distance (Hu and Spilke, 2009).

The row-column model accounts for positive spatial variation in two perpendicular
directions, as in Eq. S3.1, where Yj; is the ijh observation, p is the mean, x; explains north-
south variation, y; explains east-west variation, and e;; describes the corresponding error:
Yij= u+x+ y;+ g (Eq.S3.1)
The power, spherical, exponential, and Matérn models are isotropic, thus the variation
properties are the same along the x- and y-axes (Hu and Spilke, 2009). For isotropic models,
the distance between locations s;and s;is described as djj and the parameter p is related to
the range of the process, where the strength of the correlation between measurements
decreases with distance, such that at some distance measurements are no longer correlated.

In the power model the correlation between measurements decreases with distance.

The covariance structure of the power model is described in Eq. S3.2:
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f(dy;) = o?p%i (Eq. S3.2)
The exponential model is an extension of the power model where the correlation decreases

exponentially. The covariance structure of the exponential model is described in Eq. S3.3:

— 52 —dy
f(dy) = 0% exp (T) (Eq. S3.3)
In the spherical model the correlation between measurements is symmetrical in all
directions, such that variation extends in the shape of a sphere from the point where the

measurement was collected. The covariance structure of the spherical model is described

in Eq. S3.4:

f(d;) = o [1 - (&) + (j—;:)] 1(d; < p) (Eq. $3.4)

2p
Covariance structure of the Matérn model is described in Eq. S3.5, where the parameter v
describes smoothness and K, is a modified Bessell function frequently associated with
cylindrical or spherical coordinates, and ') is the gamma function. When v = 0.5, the

Matérn model is equal to the exponential model.

f(dy) = 725 (j—g)v 2K, (%) (Eq. S3.5)

Covariance structure of the anisotropic power model (using covariance structure
type=sp(powa)) is described in Eq. S3.6, where there are ¢ coordinates and d(i, j, k)
describes the absolute distance between the k' coordinate, k = I, ..., ¢, of the i" and jth
observations in the data set. Anisotropic models allow the variation properties to be

different along the x- and y-axes.

f(d;;) = o? pf(i’j’l)pg(i’j’z) .. plio (Eq. S3.6)

C
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Supplemental Figures.
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Supplemental Figure S3.1. Daily maximum and minimum temperatures (°C), and fitted
loess curves for eight environments where the hard winter wheat panel was grown during
2011-12 or 2012-13. Greeley, CO, Manhattan, KS, and Fort Collins, CO each include two
environments, which reflect different moisture treatments. The 11 total environments are
described in Table 3.1. Average heading dates are identified by a vertical line, and are
described in Table 3.3.
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Supplemental Figure S3.2. Linear regression of (a) maximum, and (b) minimum growing

degree-days (GDD) from 1 Jan. to heading across environments, for each of 299 hard winter
wheat varieties grown at 11 environments, on plasticity of GDD.

208



a @8 b 10 —

6 Ar13R _

IR Fo13F

4 05 .Me12R
z & , / V(
: = __» Fo13R
o ~ g0 ___—»Hai13R|
c [ : —
£ g \ op_*Me13R
2 8 . =] Gr12F
3 5 “Mant2F/ Bu12R

05 \ Man12R  /
6
8 J 1.0 S
84 6 4 2 0 2 4 6 8 1.0 0.5 0.0 0.5 1.0
Component 1 (36.3 %) Component 1 (36.3 %)
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winter wheat genotypes grown in 11 environments, showing the (a) score plot and (b)
loadings plot. Environments are defined in Table 3.1.
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Supplemental Tables.

Supplemental Table S2.1. Description of U.S. winter wheat entries evaluated. Description of winter wheat entries evaluated,
including entry name, year derived, state breeding program derived in, region of the U.S. Great Plains derived in, and allele
calls. The genotyped loci include photoperiod (Ppd) genes where alleles are ‘a’ insensitive and ‘b’ sensitive, reduced-height
(Rht) genes where alleles are ‘a’ tall and ‘b’ semi-dwarf, and vernalization (Vrn) genes. Vrn-A1, Vrn-B1, and Vrn-D1 allele calls
are ‘W for winter growth habit. Variation in winter alleles at vernalization loci include copy number variation (CNV) at vrn-A1,
Wichita-type (‘W’) or Veery-type (‘'v’) alleles at vrn-A1, and Neuse-type (‘N’) or AGS2000-type (‘A’) alleles at vrn-B1. Missing
genotypic data are indicated with a dash (-).

CNV
Year Ppd- Ppd- Ppd- Rht- Rht- Vrn- Vrn- Vrn- vrn- vrn- vrn-
Entry Name Derived Statet Regiont A17 B1 D1 B1 D1 Al B1 D1 Al Al B1
AGATE 1969 NE Central b b b a a \% w w > 2 w N
AKRON 1988 co Central b b b b a \% w w > 2 w N
ALLIANCE 1988 NE Central b b b b a \% w w > 2 w N
ANTON 1998 NE Central b b b b a \% w w > 2 w N
ARAPAHOE 1982 NE Central b b b b a \% w w > 2 w N
BENNETT 1973 NE Central b b b a a \% w w > 2 w N
BISON 1946 KS Central b b b a a \% w w > 2 w N
BUCKSKIN 1968 NE Central b b b a a \% w w > 2 w N
CAMELOT 2001 NE Central b b b b a \% w w > 2 w N
CARSON 1981 co Central b b b a a \% w w > 2 w N
CHENEY 1973 KS Central b b b a a \% w w > 2 w N
CHEYENNE 1922 NE Central b b b a a \% w w > 2 w N
CO03WO054 2003 co Central b b b b a w w w 1 % N
€004025 2004 co Central b b b b a w w w >2 w N
C004393 2004 co Central b b b b a w w w >2 w N
C004W320 2004 co Central b b b b a w w w 1 % N
CO07W245 2007 co Central b b b a a \% w w > 2 w N
C0940610 1994 co Central b b b b a w w w >2 w N
COLT 1978 NE Central b b b b a w w w > 2 w N
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CNV

Year Ppd- Ppd- Ppd- Rht- Rht- Vrn- Vrn- Vrn- vrn- vrn- vrn-
Entry Name Derived Statet Regiont A17 B1 D1 B1 D1 Al B1 D1 Al Al B1
COMANCHE 1934 KS Central b b b a a \% w w > 2 w N
COUGAR 1993 NE Central b b b a a \% w w > 2 w N
DODGE 1982 KS Central b b b b a \% \% \% 1 \% N
EAGLE 1967 KS Central b b b a a \% w w > 2 w N
GAGE 1952 NE Central b b b a a \% w w > 2 w N
GOODSTREAK 1997 NE Central b b b a a \% w w > 2 w N
HAIL 1977 co Central b b b a b \% w w > 2 w N
HALLAM 1998 NE Central b b b b a \% w w > 2 w N
HOMESTEAD 1968 NE Central b b b a a \% w w > 2 w N
INFINITY_CL 2001 NE Central b b b b a w w w >2 w N
JULES 1986 co Central b b b a b \% \% w >2 w N
KAW61 1947 KS Central b b b a a \% w w > 2 w N
KIOWA 1943 KS Central b b b a a \% w w > 2 w N
LANCER 1957 NE Central b b b a a \% w w > 2 w N
LARNED 1970 KS Central b b b a a \% w w > 2 w N
MCGILL 2001 NE Central b b b b a \% w w > 2 w N
MILLENNIUM 1994 NE Central b b b a a w w w 1 % N
NE02558 2002 NE Central b b b b a \% \% \% 1 \% N
NE04490 2004 NE Central b b b a a \% w w > 2 w N
NE05496 2005 NE Central b b b b a \% w w > 2 w N
NE05548 2005 NE Central b b b a a \% w w > 2 w N
NE06545 2006 NE Central b b b b a \% w w > 2 w N
NE06607 2006 NE Central b b b b a \% w w > 2 w N
NE99495 1999 NE Central b b b b a \% w w > 2 w N
NEKOTA 1988 NE Central b b b b a \% w w > 2 w N
NEWTON 1973 KS Central b b b b a w w w 1 A\ N
NIOBRARA 1989 NE Central b b b a a \% w w > 2 w N
NUPLAINS 1994 NE Central b b b b a w w w >2 w N
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NW03666 2003 NE Central b b b b a \% w w > 2 w N
OVERLAND 2001 NE Central b b b b a w w w >2 w N
REDLAND 1985 NE Central b b b b a w w w >2 w N
RIPPER 2000 co Central b b b b a \% w w > 2 w N
SAGE 1970 KS Central b b b a a \% w w > 2 w N
SCOUT66 1956 NE Central b b b a a \% w w > 2 w N
VISTA 1987 NE Central b b b b a \% w w > 2 w N
WAHOO 1994 NE Central b b b a a \% w w > 2 w N
WARRIOR 1948 NE Central b b b a a \% w w > 2 w N
WESLEY 1995 NE Central b b b b a \% w w > 2 w N
WICHITA 1927 KS Central b b b a a \% w w > 2 w N
2145 1997 KS Central b b a b a \% w w > 2 w N
ABOVE 1998 co Central b b a b a \% \% \% 2 \% N
ARLIN 1992 KS Central b b a b a \% w w > 2 w N
CULVER 1993 NE Central b b a a a \% w w > 2 w N
DENALI 2005 co Central b b a a b \% w w > 2 w N
KARL_92 1983 KS Central b b a b a w W W >2 w N
LAKIN 1996 KS Central b b a b a \% w w > 2 w N
NI06736 2006 NE Central b b a b a \% w w > 2 w N
NI06737 2006 NE Central b b a b a \% w w > 2 w N
ROBIDOUX 2004 NE Central b b a b a \% w w > 2 w N
SIOUXLAND 1986 NE Central b b a a a \% w w > 2 w N
YUMAR 1994 co Central b b a b a \% \% \% 2 \Y N
BOND_CL 2000 Cco Central b a b b a w W W >2 w N
BYRD 2006 co Central b a b a a \% w w > 2 w N
CENTURA 1977 NE Central b a b a a \% w w > 2 w N
CENTURK78 1969 NE Central b a b a a \% w w > 2 w N
C003064 2003 co Central b a b b a w w w >2 w N
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C0050337-2 2005 co Central b a b b a w w w >2 w N
DANBY 2002 KS Central b a b b a \% w w >2 N
DUKE 1974 co Central b a b a a \% w w > 2 w N
FULLER 2000 KS Central b a b b a \% w w > 2 w N
HEYNE 1985 KS Central b a b b a \% \% \% 1 \% N
JAGGER 1984 KS Central b a b b a \% \% \% 1 \% N
KIRWIN 1966 KS Central b a b a a \% w w > 2 w N
KSO00F5-20-3 2000 KS Central b a b b a w w w 1 % N
LAMAR 1982 co Central b a b a a \% w w > 2 w N
MACE 2002 NE Central b a b b a \% w w > 2 w N
NI07703 2007 NE Central b a b b a \% w w > 2 w N
OVERLEY 1994 KS Central b a b b a \% \% \% 1 \Y N
PARKER 1953 KS Central b a b b a \% \% \% 1 \% N
PARKER76 1974 KS Central b a b a a \% w w > 2 w N
PLATTE 1989 co Central b a b b a \% w w > 2 w N
PRAIRIE_RED 1994 Cco Central b a b b a w W W >2 w N
PRONGHORN 1988 NE Central b a b a a \% w w > 2 w N
PROWERS 1994 co Central b a b a a \% w w > 2 w N
RONL 2003 KS Central b a b b a \% w w > 2 w N
SETTLER_CL 2003 NE Central b a b b a w W W >2 w N
SHAWNEE 1960 KS Central b a b a a \% w w > 2 w N
STANTON 1995 KS Central b a b b a \% w w > 2 w N
TAM107-R7 1994 NE Central b a b b a \% w w > 2 w N
TRISON 1965 KS Central b a b a a \% w w > 2 w N
WINDSTAR 1990 NE Central b a b b a \% \% \% 1 \Y N
BILL_BROWN 2001 Cco Central b a a b a w W w 2 v N
HALT 1991 co Central b a a b a \% w w > 2 w N
LINDON 1972 co Central b a a b a w w w > 2 w N

214



CNV

Year Ppd- Ppd- Ppd- Rht- Rht- Vrn- Vrn- Vrn- vrn- vrn- vrn-
Entry Name Derived Statet Regiont A17 B1 D1 B1 D1 Al B1 D1 Al Al B1
NE05430 2005 NE Central b a a b a \% w w > 2 w N
NI08707 2008 NE Central b a a b a \% w w > 2 w N
NI08708 2008 NE Central b a a b a \% w w > 2 w N
RAWHIDE 1983 NE Central b a a b a \% w w > 2 w N
TREGO 1995 KS Central b a a b a \% w w > 2 w N
VONA 1972 co Central b a a b a \% w w > 2 w N
YUMA 1985 co Central b a a b a \% \% \% 2 \% N
ANTELOPE 1997 NE Central b - b b a w w w >2 w N
SANDY 1961 co Central b - b - a \% w w > 2 w N
THUNDER_CL 2003 co Central b - b b a w w w >2 w N
HARRY 1997 NE Central - - b - a \% w w > 2 w N
AVALANCHE 1994 co Central - - - - - w w w >2 w -
CO03W043 2003 co Central - - - - - w w w - - -
C004499 2004 co Central - - - - - w w w >2 w -
HATCHER 1998 co Central - - - - - w w w - - -
NORKAN 1982 KS Central - - - - - w w w >2 w -
BIG_SKY 1994 MT North b b b b a w w w >2 w N
BRONZE 1967 SD North b b b a a w w w >2 w N
CREST 1966 MT North b b b a a \% w w > 2 w N
DARRELL 1998 SD North b b b b a w w w >2 w N
DECADE 2005 MT North b b b b a w w w >2 w N
GENOU 2000 MT North b b b a a \% w w > 2 w N
GENT 1971 SD North b b b a a \% w w > 2 w N
HARDING 1992 SD North b b b a a \% w w > 2 w N
HUME 1956 SD North b b b a a \% w w > 2 w N
JERRY 1992 ND North b b b b a w w w >2 w N
JUDEE 2007 MT North b b b b a w w w >2 w N
JUDITH 1980 MT North b b b b a w w w >2 w N
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MT0495 2004 MT North b b b b a w w w >2 w N
MT06103 2006 MT North b b b b a w w w >2 w N
MT85200 1985 MT North b b b a a \% w w > 2 w N
MT9513 1995 MT North b b b a a \% w w > 2 w N
MT9904 1999 MT North b b b a a \% w w > 2 w N
MT9982 1999 MT North b b b b a w w w >2 w N
MTS0531 2005 MT North b b b a a \% w w > 2 w N
NELL 1973 SD North b b b a a \% w w > 2 w N
NUSKY 1994 MT North b b b b a w w w >2 w N
RITA 1973 SD North b b b b a w w w >2 w N
ROSE 1972 SD North b b b a a \% w w > 2 w N
ROSEBUD 1974 MT North b b b a a w w w >2 w N
SD00111-9 2000 SD North b b b b a w w w >2 w N
SD05118 2005 SD North b b b b a w w w >2 w N
SD05210 2005 SD North b b b b a w w w >2 w N
TANDEM 1989 SD North b b b a a \% w w > 2 w N
YELLOWSTONE 2000 MT North b b b b a w w w >2 w N
ALICE 1997 SD North b b a b a \% w w > 2 w N
SD01058 2001 SD North b b a b a \% w w > 2 w N
WENDY 1997 SD North b b a b a w w w >2 w N
EXPEDITION 1997 SD North b a b b a w w w >2 w N
NORRIS 2003 MT North b a b a a \% w w > 2 w N
SD01237 2001 SD North b a b b a \% w w > 2 w N
WINOKA 1966 SD North b a b a b \% w w > 2 w N
DAWN 1970 SD North b a a a a \% \% \% >2 w N
CRIMSON 1989 SD North b - b a a \% w w > 2 w N
SDO5W018 2005 SD North - - b - a w w w >2 w N
BAKERS_WHITE 1998 - Other b b b b a w w w 1 % N
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HONDO 1995 - Other b b b b a \% w w > 2 w N
KHARKOF 1900 - Other b b b a a \% w w > 2 w N
NUHORIZON 1995 - Other b b b b a \% w w > 2 w N
SMOKYHILL 1999 - Other b b b b a \% w w > 2 w N
TURKEY_NEBSEL 1874 - Other b b b a a w w w >2 w N
BURCHETT 1996 - Other b b a b a \% w w > 2 w N
COSSACK 1987 - Other b b a a a \% w w > 2 w N
E2041 2000 - Other b b a a b \% w w > 2 w N
ENHANCER 1998 - Other b b a b a \% w w > 2 w N
HVO9WO03-1551WP 2003 - Other b b a b a \% w w > 2 w N
HV9W03-1596R 2003 - Other b b a b a \% w w > 2 w N
HV9W05-1280R 2005 - Other b b a a a \% w w > 2 w N
KEOTA 1998 - Other b b a b a \% w w > 2 w N
ONAGA 1991 - Other b b a b a \% w w > 2 w N
Wo04-417 2004 - Other b b a a b \% w w > 2 w N
WB411W 1998 - Other b b a b a \% \% \% 1 \Y N
CUTTER 1997 - Other b a b b a \% w w > 2 w N
G1878 1996 - Other b a b b a \% w w > 2 w N
HV9W06-504 2006 - Other b a b b a \% \% \% 1 \Y N
JAGALENE 1998 - Other b a b b a \% \% w >2 w N
LONGHORN 1988 - Other b a b a a \% w w > 2 w N
NEOSHO 1996 - Other b a b a a \% \% \% >2 w N
NUFRONTIER 1994 - Other b a b a a \% w w > 2 w N
OGALLALA 1989 - Other b a b b a \% w w > 2 w N
POSTROCK 1995 - Other b a b b a \% w w > 2 w N
SANTA_FE 2003 - Other b a b b a w W w 1 v N
SHOCKER 1999 - Other b a b b a \% \% \% 1 \% N
SPARTAN 1994 - Other b a b b a w w w > 2 w N
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TARKIO 1999 - Other b a b b a \% w w > 2 w N
THUNDERBOLT 1995 - Other b a b b a w w w >2 w N
VENANGO 2000 - Other b a b b a \% w w > 2 w N
DUMAS 1995 - Other b a a a b \% \% \% >2 w N
HV906-865 2006 - Other b a a b a \% w w > 2 w N
HV9W03-1379R 2003 - Other b a a b a \% \% \% 1 \% N
HG-9 <2000 - Other - - - - - w w w >2 w -
LOCKETT 1991 TX South b b b b a \% w w > 2 w N
0K07S117 2007 OK South b b b b a \% w w > 2 w N
0K10119 2010 OK South b b b b a w w w >2 w N
0K1067071 2010 OK South b b b het a \% w w > 2 w N
TAM105 1969 TX South b b b b a \% w w > 2 w N
TAM109 1987 TX South b b b a b \% w w > 2 w N
TAMW-101 1965 TX South b b b a b \% w w > 2 w N
TASCOSA 1951 TX South b b b a a \% w w > 2 w N
TX04V075080 2004 TX South b b b b a w w w >2 w N
TX06V7266 2006 TX South b b b b a \% w w > 2 w N
TAM302 1991 TX South a b b a het \% w w > 2 w N
2180 1987 TX South b b a a b \% w w > 2 w N
BILLINGS 2003 OK South b b a b a \% w w > 2 w N
CAPROCK 1956 TX South b b a b a \% w w > 2 w N
CHISHOLM 1975 OK South b b a b a \% w w > 2 w N
CUSTER 1988 OK South b b a b a \% w w > 2 w N
DELIVER 1998 OK South b b a b a \% w w > 2 w N
DUSTER 1993 OK South b b a b a \% w w > 2 w N
ENDURANCE 1994 OK South b b a a b \% w w > 2 w N
GALLAGHER 2007 OK South b b a b a \% w w > 2 w N
INTRADA 1998 OK South b b a het a w w w > 2 w N
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MIT 1971 TX South b b a b a \% \% \% 1 \% N
0K02405 2002 OK South b b a b a \% w w > 2 w N
0K05312 2005 OK South b b a b a \% w w > 2 w N
0K05526 2005 OK South b b a het het \% w w > 2 w N
0K06114 2006 OK South b b a b a \% w w > 2 w N
0K06336 2006 OK South b b a b a \% w w > 2 w N
0K07231 2007 OK South b b a b a \% w w > 2 w N
0K08328 2008 OK South b b a b a \% w w > 2 w N
0K101 1995 OK South b b a a b \% w w > 2 w N
0K1067274 2010 OK South b b a a a \% w w > 2 w N
0K1068026 2010 OK South b b a b a w w w >2 w N
0K1070267 2010 OK South b b a a a \% \% \% 1 \Y N
STURDY 1956 TX South b b a b a \% w w > 2 w N
STURDY_2K 1956 TX South b b a b a w W w 1 v N
TAM304 2001 TX South b b a b a \% w w > 2 w N
TX00V1131 2000 TX South b b a b a \% w w > 2 w N
TX03A0148 2003 TX South b b a b a \% w w > 2 w N
TX04A001246 2004 TX South b b a b a w w w >2 w N
TX06A001281 2006 TX South b b a b a w w w >2 w N
TX06A001386 2006 TX South b b a b a w w w >2 w N
TX96D1073 1996 TX South b b a b a \% w w > 2 w N
0K05303 2005 OK South a b a a b \% w w > 2 w N
CENTURY 1981 OK South b a b b a \% w w > 2 w N
GUYMON 2000 OK South b a b b a \% w w > 2 w N
OK_BULLET 2000 OK South b a b b a w W W >2 w N
OK_RISING 2006 OK South b a b b a w W W >2 w N
0K04505 2004 OK South b a b b a \% \% \% 1 \% N
0K04507 2004 OK South b a b b a w w w > 2 w N
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0K05108 2005 OK South b a b b a \% w w > 2 w N
0K05122 2005 OK South b a b b a \% w w > 2 w N
0K05204 2005 OK South b a b b a \% w w > 2 w N
OKO05711W 2005 OK South b a b b a \% w w > 2 w N
0K05723W 2005 OK South b a b b a \% w w > 2 w N
0K05830 2005 OK South b a b b a \% w w > 2 w N
0K06210 2006 OK South b a b b a w w w 1 A\ N
0K09634 2009 OK South b a b b a w w w 1 % N
0K1068002 2010 OK South b a b b a w w w >2 w N
0K1070275 2010 OK South b a b b a \% w w > 2 w N
TAM110 1988 TX South b a b b a \% w w > 2 w N
TAM111 1995 TX South b a b b a \% w w > 2 w N
TAM112 1998 TX South b a b b a \% w w > 2 w N
TAM200 1981 TX South b a b b a \% w w > 2 w N
TAM202 1986 TX South b a b b a \% w w > 2 w N
TAM203 2001 TX South b a b b a \% \% \% 1 \Y N
TAM303 1998 TX South b a b b a \% w w > 2 w N
TAM400 1993 TX South b a b b a \% w w > 2 w N
TAM401 2003 TX South b a b b a \% w w > 2 w A
TRIUMPH64 1938 OK South b a b a a \% w w > 2 w N
TX01A5936 2001 TX South b a b b a \% w w > 2 w N
TX01V5134RC-3 2001 TX South b a b b a \% w w > 2 w N
TX02A0252 2002 TX South b a b b a \% w w > 2 w N
TX03A0563 2003 TX South b a b b a \% w w > 2 w N
TX04M410164 2004 TX South b a b b a w w w >2 w N
TX05A001188 2005 TX South b a b b a \% w w > 2 w N
TX05A001822 2005 TX South b a b b a w w w >2 % A
TX05V7259 2005 TX South b a b b a w w w > 2 w N
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TX06A001263 2006 TX South b a b b a w w w >2 w N
TX07A001279 2007 TX South b a b b a \% w w > 2 w N
TX07A001318 2007 TX South b a b b a \% w w > 2 w N
TX07A001420 2007 TX South b a b b a \% w w > 2 w N
TX86A5606 1986 TX South b a b b a \% w w > 2 w N
TX86A6880 1986 TX South b a b b a \% w w > 2 w N
TX86A8072 1986 TX South b a b b a \% w w > 2 w N
TX99A0153-1 1999 TX South b a b b a \% w w > 2 w N
0K05134 2005 OK South a a b het a \% w w > 2 w N
TX04M410211 2004 TX South a a b b a \% \% \% 1 \Y N
TX05V7269 2005 TX South a a b b a \% w w > 2 w N
TX06A001132 2006 TX South a a b b a \% w w > 2 w N
2174-05 1997 OK South b a a b a \% w w > 2 w N
CENTERFIELD 2003 OK South b a a b a \% w w > 2 w N
GARRISON 2005 OK South b a a b a \% w w > 2 w N
0K04111 2004 OK South b a a b a \% w w > 2 w N
0K04415 2004 OK South b a a b a \% w w > 2 w N
0K04525 2004 OK South b a a a b \% w w > 2 w N
0KO05511 2005 OK South b a a b a \% w w > 2 w N
0K06318 2006 OK South b a a b a \% w w > 2 w N
0K06319 2006 OK South b a a b a \% w w > 2 w N
0K102 1997 OK South b a a b a \% w w > 2 w N
0K1068009 2010 OK South b a a a a \% w w > 2 w N
PETE 2003 OK South b a a b a \% \% \% >2 w N
TX01M5009-28 2001 TX South b a a b a \% \% \% 1 \Y N
TX99U8618 1999 TX South b a a b a \% \% \% 1 \% N
0K1068112 2010 OK South b - b b a w w w 1 % N
TAM107 1980 TX South b - b b a \% w \"% > 2 w N
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Supplemental Table S2.2. Description of KASP markers used to genotype 299 U.S. Great Plains hard winter wheat entries.

KASP detected allelic variants at Vrn-A1, Vrn-B1, Vrn-D1, Ppd-A1, Ppd-B1, Ppd-D1, Rht-B1, and Rht-D1.

Locus Allele(s) assayed Marker ID Primer name Primer Sequence
Vrn-Al Vrn-Ala wMAS000033 Vrn-A1_9K0001_AL2 GAGTTTTCCAAAAAGATAGATCAATGTAAAC
Vrn-A1_9K0001_AL1 AGAGTTTTCCAAAAAGATAGATCAATGTAAAT
Vrn-A1_9K0001 _C1 GTTAGTAGTGATGGTCCAATAATGCCAAA
Vrn-Alb wMAS000035 Vrn-Alb-Marq_AL2 GTTTTGGCCTGGCCATCCTCA
Vrn-Alb-Marq_AL1 GTTTTGGCCTGGCCATCCTCC
Vrn-Alb-Marq_C1 TATCAGGTGGTTGGGTGAGGACGT
vrn-Al exon 4_C/T vrn-Alexon4 Vrn-Al_Exon4_F1 AGGCATCTCATGGGAGAGGATC
Vrn-A1l_Exon4_F2 CAGGCATCTCATGGGAGAGGATT
Vrn-Al_Exon4 R CCAGTTGCTGCAACTCCTTGAGATT
vrn-Al exon 7_G/A vrn-Alexon7 Vrn-Al_Exon7_F1 TGAGTTTGATCTTGCTGCGCCG
Vrn-A1l_Exon7_F2 CTGAGTTTGATCTTGCTGCGCCA
Vrn-Al_Exon4_R CTTCCCCACAGCTCGTGGAGAA
Vrn-B1 Vrn-Bla Vrn-B1_I_D Vrn-B1_D_A2 GGCAGCTAATGTGGGGTAGTCT
Vrn-B1_D_C1s ATTCGTATTGCTAGCTCCGGCCAT
Vrn-B1_I_ALG CAACCTCCACGGTTTCAAAAAGTAG
Vrn-B1_ 1 _C1 ATATTTACTAAGCAGCGGTCATTCCGAT
Vrn-B1b wMAS000037 Vrn-B1_B_ALC GCGCAAGCGGGAGCTACATC
Vrn-B1_B_ALG TGCGCAAGCGGGAGCTACATG
Vrn-B1 B_C1 GCCATGAACAACAAAGGGGGTGGT
Vrn-Blc Vrn-B1_C Vrn-B1_C _ALT CCTAAACAGGGGCAGAACACTA
Vrn-B1_C _ALG CCTAAACAGGGGCAGAACACTG
Vrn-B1 C_C GACCCCAGGGCCTATGAATGTAATT

vrn-B1_intron1_A/C

TaVrn-B1_1752

TaVrnB1_1752_AF2
TaVrnB1_1752_CF1
TaVrnB1_1752_R

GGAATGACCGCTGCTTAGTAAATATA
GGAATGACCGCTGCTTAGTAAATATC
GATTTAGCACCTCAACATACAGGTCT
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Vrn-D1 Vrn-Dla wMAS000039 Vrn-D1-Dla_A_ALC ATCATTCGAATTGCTAGCTCCGC
Vrn-D1-Dla_A_ALG ATCATTCGAATTGCTAGCTCCGG
Vrn-D1-Dla_A_C GCCTGAACGCCTAGCCTGTGTA
Ppd-A1l Ppd-Ala.l Ppd-Alprodel Ppd-Alprodel_AL2 GCGGCGAGCCGGTTAATCG
Ppd-Alprodel_AL1 TTTCGGTGTTTGACTTCAGGCG
Ppd-Alprodel C1 GTGGCGTACTCCCTCCGTTTCTT
Ppd-B1la Chinese
Spring truncated
Ppd-B1 copy wMAS000027 TaPpdBJ001tR GACGTTATGAACGCTTGGCA
TaPpdBJ001iR CCGTTTTCGCGGCCTT
TaPpdBJOO1tF GGGTTCGTCGGGAGCTGT
Ppd-Bla Sonora64
type intercopy TaPpdBJ003 TaPpdBJOO3F CGTGAAGAGCTAGCGATGAACA
TaPpdBJO03R TGGGCACGTTAACACACCTTT
Ppd-D1a Ciano67
Ppd-D1 promoter deletion wMAS000024 TaPpdDDOO1RI CAAGGAAGTATGAGCAGCGGTT
TaPpdDD0O01RD AAGAGGAAACATGTTGGGGTCC
TaPpdDDO01FL GCCTCCCACTACACTGGGC
Rht-B1 Rht-B1b wMAS000001 RhtB1_SNP-AL1 CCCATGGCCATCTCSAGCTG
RhtB1_SNP-AL2 CCCATGGCCATCTCSAGCTA
RhtB1_SNP-C TCGGGTACAAGGTGCGGGCG
Rht-D1 Rht-D1b wMAS000002 RhtD1_AL1 CATGGCCATCTCGAGCTRCTC
RhtD1_AL2 CATGGCCATCTCGAGCTRCTA
RhtD1_C1 CGGGTACAAGGTGCGCGCC
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Supplemental Table S2.3. Allelic effects (number of days) of photoperiod, reduced-height,
and vernalization loci on heading date in each of nine environments. The environments are
described in Table 2.1. The model terms were fit separately for each locus. The intercept
(Int) describes the number of days from1 January to heading in each environment before the
allelic effect is applied. The allelic effect at each locus is added to the Int value. Allelic effects
were fit separately for each environment when there was significant genotype-by-
environment interaction (GxE) at that locus in the combined analysis across all
environments. Allelic effects from the combined analyses are reported for Ppd-A1 and vrn-B1
because significant GXE was not observed at these loci. The grand mean heading date across
all germplasm and environments was 131.8 + 0.3 days.

CNVvrn-A1 vrn-B1
Environment Int CNV=1 CNV=2 Int ‘Neuss’ allele
Ar13R 109.51 -4.67" -5.53* 106.81 2.22"
Bul2R 116.86 -2.30" -1.48 nst 114.43 2.22"
Fol3 149.76 -1.13™ -0.45 ns 147.43 2.22"
Gr12F 136.93 -1.65™ -1.29 ns 134.56 2.22"
Gr12Pp 134.41 -0.46™ -0.68 ns 132.17 2.22"
Hal3R 140.97 -1.10™ -0.74 ns 138.66 2.22"
Mal2 122.53 -1.47* -3.54 ns 120.14 2.22"
[t12R 122.66 -291 ns -3.19 ns 120.14 2.22"
[t13R 145.80 -1.27* -0.27 ns 143.48 2.22"

Supplemental Table S2.3. Continued.

Ppd-A1 Ppd-B1 Ppd-D1

Environment Int ‘b’ allele Int ‘b’ allele Int ‘b’ allele
Ar13R 107.02 1.97* 105.95 5.23™ 105.31 5.23™
Bul2R 114.66 1.97* 114.23 4.04" 113.15 493 nst
Fol3 147.70 1.97* 149.17 0.77 148.94 0.98™
Gr12F 134.81 1.97* 135.29 2.50™ 134.65 2.99™
Gr12P 132.41 1.97* 133.11 2.07™ 132.77 2.277
Hal3R 138.93 1.97* 140.14 1.23™ 139.96 1.27*
Mal2 120.37 1.97* 119.93 410 ns 119.24 4.39 ns
[t12R 120.36 1.97* 119.50 4.81 ns 118.64 5.24 ns
[t13R 143.73 1.97* 144.47 2.04™ 144.40 1.82"

¥ kk o kskk x

, 7, " indicates significance at the 0.05, 0.01, and 0.001 probability levels, respectively.
tns indicates non-significance at the 0.05 probability level.
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Supplemental Table S2.4. Allelic effects (number of days) of photoperiod sensitive alleles
Ppd-D1b and Ppd-B1b. Allelic effects and interaction of Ppd-D1b and Ppd-B1b on winter
wheat heading date in each of nine environments, and proportion of variability (R?) in
heading date explained by all terms in each model. The environments are described in Table
2.1. The model terms were fit separately for each environment. The intercept (Int) describes
the number of days from 1 January to heading in each environment before the allelic effects
are applied. The allelic effect (number of days) at each locus is added to the Int value.

Env Int Ppd-D1b  Ppd-B1b PpdD1b*PpdB1b R?
Ar13R 105.45 -0.20 nst 0.65 ns 8.59™ 0.54
Bul2R 113.18 -0.05ns 1.35ns 6.65 ns 0.55
Fol3 149.07 -0.19 ns 0.13 ns 1.53" 0.12
Gri12F 134.68 -0.05 ns 0.79 ns 413" 0.40
Gr12P 132.38 0.57 ns 0.94 ns 2.52™ 0.26
Hal3R 139.79 0.25ns 0.45 ns 1.61™ 0.30
Mal2 119.18 0.09 ns 0.97 ns 6.43" 0.61
[t12R 118.77 -0.20 ns 0.94 ns 7.99 ns 0.27
[t13R 144.60 -0.31ns -0.18 ns 3.62™ 0.65

¥ kk o skokok

, 7, " indicates significance at the 0.05, 0.01, and 0.001 probability levels, respectively.
t ns indicates non-significance at the 0.05 probability level.
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Supplemental Table S3.1. Description of 299 winter wheat genotypes evaluated across environments, including genotype
name, Germplasm Resources Information Network (GRIN) identifier, year of derivation, year of release, breeding program that
contributed the genotype, pedigree, and plasticity coefficients for yield and growing degree-days (GDD) from 1 Jan. to heading.
Genotypes are sorted by year of derivation, which describes when the genotype was first selected from a cross. Not all
genotypes have been released as cultivars. Breeding programs contributing germplasm include: Agripro Biosciences (AB),
Colorado State University (CSU), Goertzen Seed Research (GSR), Hardeman Grain & Seed (HGS), Kansas State University (KSU),
Michigan State University (MSU), Montana State University (MTSU), North Dakota State University (NDSU), Oklahoma State
University (OSU), South Dakota State University (SDSU), Texas A&M University (TAM), University of Nebraska-Lincoln (UNL),
WestBred (WB), and unknown or historic variety (UNK).

Genotype GRIN Year Year Breeding Pedigree Plasticity Plasticity
Name Identifier Derived Released Program of Yield of GDD
Turkey Nebsel 1874 1874 UNK Turkey 0.913 1.275
Kharkof PI 5641 1900 1900 UNK Kharkof 0.737 1.253
Cheyenne Cltr 8885 1922 1933 UNL Selection from Crimean 0.866 1.103
Wichita Cltr 11952 1927 1944 KSU Early Blackhull/Tenmarq 0.702 1.002
Comanche Cltr 11673 1934 1942 KSU Oro/Tenmarq 0.746 1.142
Triumph 64 Cltr 13679 1938 1964 OSuU Danne-Beardless- 0.822 0.970
Blackhull/3/Kanred/Blackhull//
Florence/4/Kanred/Blackhull//T
riumph
Kiowa Cltr 12133 1943 1950 KSU Chiefkan//Oro/Tenmarq 0.887 1.150
Bison Cltr 12518 1946 1956 KSU Chiefkan//Oro/Tenmarq 0.886 1.294
Kaw 61 Cltr 12871 1947 1960 KSU purification and re-release of 0.660 0.908
Kaw
Oro//Mediterranean/Hope/3/Ea
rly-Blackhull/Tenmarq
Warrior Cltr 13190 1948 1960 UNL Pawnee/Cheyenne 0.806 1.180
Tascosa Cltr 13023 1951 1959 TAM Kanred/HardFederation//Tenma 0.831 1.171
rq/3/Mediterranean/Hope/4/Ci
marron
Gage Cltr 13532 1952 1963 UNL Ponca/3/Mediterranean/Hope// 0.739 1.214
Pawnee
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Parker

Hume

Caprock
Sturdy

Sturdy 2K
Scout 66

Lancer

Shawnee

Sandy

Trison
TAMW-101

Kirwin
Crest
Winoka
Eagle
Bronze

Cltr 13285

Cltr 13526

Cltr 14516

Cltr 13684

PI1 636307
Cltr 13996

Cltr 13547

Cltr 14157

Cltr 17857

Cltr 17278
Cltr 15324

Cltr 17275
Cltr 13880
Cltr 14000
Cltr 15068
Cltr 14013

1953

1956

1956

1956

1956
1956

1957

1960

1961

1965
1965

1966
1966
1966
1967
1967

1966

1965

1969

1966

2005
1967

1963

1967

1981

1973
1971

1973
1967
1969
1970
1974

KSU

SDSU

TAM

TAM

TAM
UNL

UNL

KSU

CSU

KSU
TAM

KSU
MTSU
SDSU

KSU
SDSU
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Quivira/3/Kanred/HardFederati
on//Prelude/Kanred/4/Kawvale
/Marquillo//Kawvale/Tenmarq
Crosses involving: Minter,
Kharkof, Wichita, Nebred,
Cheyenne, and others
Sinvalocho/Wichita//Hope/Chey
enne/3/Wichita/4/Seu Seun27
Sinvalocho/Wichita//Hope/Chey
enne/3/2*Wichita/4/Seu Seun27
Selection from Sturdy

Composite of 85 selections from
Scout

Turkey
Red/Cheyenne//Hope/2*Cheyen
ne
Mediterranean/Hope//Pawnee/
3/0ro/IllinoisNo.1//Comanche
Sonora64A/TezanosPintosPrecoz
/Yaqui54//(Frontana/Kenya58/
Newthatch)/Norin10/Brevor/Ga
bo55B/Trapper//Centurk
Triumph/Bison
Norin10/3/Nebraska60//Medite
rranean/Hope/4/Bison
Parker*3/Bison

Westmont*2 /P1178383

Selection from Winalta

Selection from Scout
Hume/Gage/4/Hume/3/Mida/K
enyall7A//2*Hope/2*Turkey
Red

0.939

0.739

0.989

0.969

0.964
0.722

0.783

0.737

0.791

0.741
0.961

0.808
0.922
0.972
0.885
0.644

0.979

1.202

0.973

0.868

0.876
1.299

1.159

1.168

1.150

0.803
1.105

1.016
1.356
0.952
1.172
0.999



Buckskin

Homestead

TAM 105
Agate

Centurk 78
Dawn

Larned
Sage
Gent
Mit

Lindon

Cltr 17263

Cltr 17264

Cltr 17826
Cltr 17463

Cltr 17724
Cltr 17801

Cltr 17650
Cltr 17277
Cltr 17293
Cltr 17896

Cltr 17440

1968

1968

1969
1969

1969
1970

1970
1970
1971
1971

1972

1973

1973

1979
1979

1978
1982

1976
1973
1974
1980

1975

UNL

UNL

TAM
UNL

UNL
CSU

KSU
KSU
SDSU
TAM

CSU

228

Scout/3/Quivera/Tenmarq//Mar
quillo/Oro
Scout/4/Kenya/Newthatch//Che
yenne/Tenmarq/Mediterranean/
Hope/3/Pawnee/Cheyenne
Sturdy composite bulk selection
Ponca/3*Cheyenne//Kenya58/N
ewthatch//2*(Cheyenne/Tenmar
q/Mediterranean/Hope)/3/Scout
Selection from Centurk

1121031 /Trapper/4/Warrior//K
enya58/Newthatch/2*(Cheyenne
/Tenmarq/Mediterranean)/Hope
/3/Parker

Ottawa/5*Scout

Agent/4*Scout

Agent/4*Scout
Sinvalocho/Wichita//Hope/Chey
enne/3/Wichita/4/Seu
Seun27/6/T.dicoccoides/Aeg.
speltoides,
amphiploid//2*Austin/3/Supre
mo/4/Bison/5/Caddo/7 /Fronta
na/Westar
Andes64A/Sonora64//Tacuari/4
/Warrior2 /Kenya58/Newthatch/
/Cheyenne/Tenmark/Mediterran
ean/Hope/3/Parker/5/Lancer/3
/Norin16/CI12500//Kaw

0.800

0.870

1.090
0.761

0.993
0.879

0.923
0.976
0.895
1.027

0.904

1.085

1.214

1.197
1.182

0.989
0.852

1.143
1.250
1.146
0.737

0.928



Vona

Rose

Cheney
Newton

Nell
Rita

Bennett

Duke

Parker 76
Rosebud

Chisholm
Hail

Cltr 17441

Cltr 17795

Cltr 17765
Cltr 17715

Cltr 17803
Cltr 17799

Cltr 17723

Cltr 17856

Cltr 17685
P1 473570

Pl 486219
PI1 470927

1972

1972

1973
1973

1973
1973

1973

1974

1974
1974

1975
1977

1976

1979

1978
1978

1981
1980

1978

1981

1976
1981

1983
1982

CSU

SDSU

KSU
KSU

SDSU
SDSU

UNL

CSU

KSU
MTSU

OSuU
CSU

229

[121183/C0652363//Lancer/KS
62136; 1121183=Andes
64A/Sonora 64/ /Tacuari;
C0652363=Warrior//Kenya58/
Newthatch/2*(Cheyenne/Tenma
rq/Mediterranean)/Hope/3/Par
ker

Seu
Seun/Denton8//Westmont/4/Hu
me/3/NE63265

Scout/Tascosa

Pitic62 /Chris
sib//2*Sonora64 /3 /KleinRendid
or/4/Scout

Scout selection/Capitan
SeuSeun/Denton8//Westmont/3
/Ponca//3*Cheyenne/Kenya58/
Newthatch//2*(Cheyenne/Tenm
arq//Mediterranean/Hope)
Scout/3/Quivira/Tenmarq//Mar
quillo/Oro/4/Homestead

Sonora
64*3/Warrior//Selkirk/2*Cheye
nne/5/Scout/4/Quivera/3/Tenm
ark//Marquis1/Oro
Parker*5/Agent

Rego/Cheyenne, Sel. 39-18-
7)//Winalta

Sturdy sib/Nicoma
Mexican/USA//Scout/3/Mara/4/
Scout/5/Ciano/6/Trapper/7 /Par
ker

1.150

0.864

0.819
1.057

0.834
0.842

0.970

0.801

0.841
0.815

1.010
0.995

0.888

1.290

1.188
1.226

1.273
1.233

1.293

0.820

0.930
1.269

0.877
1.336



Centura
Colt
Judith

TAM 107
Carson

Century
TAM 200

Lamar
Dodge

Norkan

Arapahoe

Karl 92
Rawhide

Jagger
Yuma
Heyne

MT85200

Redland
Jules

P1 476974

P1 476975

Pl 584526

PI1 495594
PI 501534
P1502912
PI 578255

PI 559719

P1 506344

PI1 506345

PI 518591

Pl 564245
PI 543893

PI1 593688
PI 559720
P1 612577

P1 502907
PI1 564851

1977

1978

1980

1980
1981
1981
1981

1982

1982

1982

1982
1983
1983

1984
1985
1985

1985

1985
1986

1983

1983

1989

1984
1986
1986
1986

1988

1986

1986

1988

1992
1990

1994
1992
2001

1986
1993

UNL

UNL

MTSU

TAM
CSU
OSU
TAM

CSU

KSU

KSU

UNL
KSU
UNL

KSU
CSU
KSU

MTSU

UNL
CSU

230

Warrior*5/Agent/NE68457/3/C
enturk78

Agate sib (NE69441)//391-56-
D8/Kaw
Lancota/Froid//NE69559 /Wino
ka

TAM105*4 /Amigo
Anza/Scout//Centurk
Payne//TAMW-101/Amigo
Sturdy-sib/Tascosa//Centurk
*3/3/Amigo

74F878 (Mexican
dwarf)/Wings//Vona

KS73H530 (Newton
sib)/KS76HN1978-1 (Arkan sib)
Plainsman
V/3/2*(KS76H3705)Larned/Eagl
e//Sage

Brule/3/Parker*4 /Agent//Beloc
erkovskaja 198/Lancer
Atlass50//Park85/Agent
Warrior*5/Agent//Kavkaz/4/Pa
rker*4/Agent//Belocerkovskajal
98/Lancer/3/Vona
KS82W418/Stephens
NS14/NS25//2*Vona
KS82W422/SWM754308/KS831
182 /KS82W422
Froid/Winoka/3/TX55-391-56-
D8/Westmont//Trader
Selection from Brule
Warrior*5/Agent//Agate
sib(NE76667)/3/Hawk

0.895

1.112

0.850

1.099
1.142
1.011
0.991

0.877

0.905

0.985

0.840
0.954
1.125

1.146
1.205
0.983

1.013

0.957
0.941

1.077

1.208

1.219

0.902
1.046
0.812
0.789

1.204

1.068

1.291

1.196
0.881
0.856

0.900
0.824
0.839

0.862

1.201
1.111



TAM 202
TX86A5606
TX86A6880
TX86A8072
Siouxland

Cossack
2180

TAM 109
Vista

Longhorn
AKkron
Custer
TAM 110
Alliance
Nekota
Pronghorn
Ogallala
Platte
Crimson
Tandem
Niobrara
Windstar

P1 561933
PI1 587028

PI1 587029
Pl 483469

PI1 606780
PI1 532912

PI 554606
P1 562653

PI1552813
Pl 584504

PI 595757
PI 573096
PI 584997
PI1 593047
PI 573037
PI1 596297
P1 601818
P1 601817
PI 584996
PI 597379

1986
1986
1986
1986
1986

1987
1987

1987
1987

1988
1988
1988
1988
1988
1988
1988
1989
1989
1989
1989
1989
1990

1992

1984

1998
1989

1991
1992

1991
1994
1994
1996
1993
1994
1996
1993
1997
1997
1997
1994
1996

TAM
TAM
TAM
TAM
UNL

GSR
OSU

TAM
UNL

AB
CSU
OSuU
TAM
UNL
UNL
UNL

AB

AB

SDSU
SDSU
UNL
UNL
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Siouxland outcross

TAM105*4 /Amigo*4//Largo
TAM105*4 /Amigo*4//Largo
TAM105*4 /Amigo*4//Largo
Warrior*5/Agent//Kavkaz/3/Wa
rrior*5/Agent

BCD1828/83
TAMW-101/Pioneer
W603//Pioneer W558
TAMW-101*5/CI9321
Warrior//Atlas66/Comanche/3/
Comanche/Ottawa/5/Ponca/2*C
heyenne/3/Illinois No.
1//2*Chinese Spring/T.
timopheevii/4/Cheyenne/Tenma
rq//Mediterranean/Hope/3/San
do60/6/Centurk/Brule
NS2630-1/Thunderbird

TAM107 /Hail
F-29-76/TAM105//Chisholm
TAM107*5/Largo
Arkan/Colt//Chisholm sib.
Bennett/TAM107
Centura/Dawn//Colt sib
TX81V6187/Abilene
Tesia79/Chat'S'//Abilene
TAM105/Winoka

Brule/Agate
TAM105*5/Amigo/Brule
TAM103/Newton-sib
(TX79A2729)//Caldwell/Brule
field sel 6/3/Siouxland

1.372
1.057
1.034
1.044
0.957

0.928
1.138

1.006
1.083

1.000
0.869
1.107
1.145
0.993
0.907
0.912
1.169
1.155
0.872
0.846
0.961
1.198

0.902
0.774
0.871
0.888
0.888

0.859
0.782

1.110
1.307

1.003
1.233
0.931
0.794
1.259
1.158
0.941
1.033
0.969
1.299
1.107
1.179
0.892



Halt

Lockett
TAM 302

Onaga
Arlin

Jerry
Harding
Duster
TAM 400

Cougar

Culver

Nufrontier
Avalanche
C0940610

Prairie Red

Prowers

PI 584505

PI1 604245
P1 605910

PI 564246

Pl 632433
PI 608049
Pl 644016
Pl 614876

P1 613098

PI1 606726
PI1 619089
P1 620766

GSTR
10702
P1 605390

P1 605389

1991

1991
1991

1991
1992

1992

1992

1993

1993

1993

1993

1994

1994

1994

1994

1994

1994

2001
1998

1998
1992

2001

1999

2006

2001

2000

1999
2002
2001

2000

1997

CSU

TAM
TAM

WB
KSU

NDSU

SDSU

OSU

TAM

UNL

UNL

AB

CSU

CSU

CSU

CSU
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Sumner/C0820026//P1372129/
3/TAM107
TX86V1540/TX78V2430-4
Probrand812/Caldwell//TX86D1
310 (TAM300 sib)

HT43-231-19 (Pioneer bulk)
Selection from population of
intercrossed hard red winter
wheat and hard red spring wheat
genotypes
Roughrider//Winoka/NB66425/
3/Arapahoe
Brule//Bennett/Chisholm/3/Ara
pahoe
W0405D/NE78488//W7469C/T
X81V6187
TAM200//(TX82D5668)
Era/TAMW-101
Warrior*5/Agent//Kavkaz/4/NE
63218/Kenya58/3/Newthatch/2
*(Cheyenne/Tenmarq/Mediterra
nean/Hope)//Ponca/2*Cheyenne
/5/Thunderbird
NE8B2419/Arapahoe
2180/HBZ356A//Mesa
RL6005/RL6008//Larned/3/Che
ney/Larned/4/Bennett
sib/5/TAM107/6/Rio Blanco

KS87H22/MW09

C0850034,/P1372129//5*TAM
107
C0850060,/PI372129//5*Lamar

1.266

0.910
1.072

1.138
1.157

0.961

0.976

1.064

1.041

1.046

0.987
1.005
1.040
1.041

0.991

0.855

0.903

1.178
0.874

0.932
0.919

1.300

1.124

0.765

0.890

1.144

1.248
1.110
0.881
1.160

0.914

1.142



TAM107-R7
Yumar
Overley

Big Sky
Nusky
Endurance
Millennium
Nuplains

Wahoo
Spartan
Dumas
Hondo
Nuhorizon
Postrock

Thunderbolt

Stanton

Trego

MT9513
OK101
TAM111

GSTR1160
1
P1 605388

Pl 634974

P1 619166
P1 619167
Pl 639233
PI1 613099
P1 605741

PI1 619098

P1 619199
P1 603958
P1 619198
PI 643093
PI 608000
PI1 617033

PI 612576

Pl 631493
P1 631352

1994

1994

1994

1994
1994
1994
1994
1994

1994
1994
1995
1995
1995
1995
1995
1995

1995

1995
1995
1995

2000
2004

2001
2001
2004
2000
1998

2000
2007
2001
1999
2001
2006
2000
2002

1999

2001
#N/A

CSU

CSU

KSU

MTSU
MTSU
OSU
UNL
UNL

UNL
WB
AB
AB
AB
AB
AB
KSU

KSU

MTSU
OSuU
TAM

233

C0850034/P1372129//5*TAM10
7
Yuma/P1372129,F1//C0850034/
3/4*Yuma
TAM107*3/TA2460//Heyne
'S'/3/]agger

NuWest/Tiber

NuWest/Tiber
HBY756A/Siouxland//2180
Arapahoe/Abilene//NE86488
Abilene/KS831872 =
Abilene/3/Plainsman
V//Newton/Arthur 71
Arapahoe*2 /Abilene
RL8400193/PL2180
WI90-425/WI189-483
WI88-028/WI189-339
WI89-282/Arlin
Ogallala/KSU94U261//Jagger
Abilene/KS90WGRC10
P1220350/KS87H57//TAM200/
KS87H66/3/KS87H325
RL6005/RL6008//Larned/3/Che
ney/Larned/4/Bennett-
sib/5/TAM107(KS87H325)/6/Ri
oBlanco

NuWest/MT8030
OK87W663/Mesa//2180
TAM107/4/Sturdy
sib/Kaw//Centurk/3/Centurk78
/5/Sturdy
sib/Kaw//Centurk/3/Jupetaco/B
luejay

0.975

1.161

1.015

0.844
0.790
1.128
0.931
1.270

0.710
1.105
1.157
1.118
1.265
1.115
1.057
1.032

1.151

0.790
1.231
1.025

0.833

0.809

0.816

1.153
1.409
0.796
1.284
1.267

1.256
0.917
0.978
1.197
1.099
1.032
1.036
0.922

0.854

1.241
0.977
0.862



Wesley
Burchett
G1878
Lakin
Neosho
TX96D1073

Cutter
2145
2174-05

0K102
Alice
Expedition
Wendy
Antelope
Goodstreak

Harry

Jagalene
Above
Hatcher

Enhancer

Bakers White

Deliver

P1 605742
Pl 633863
P1 591622
PI1 617032
PI1 639739

PI1 631389
Pl 631087
P1 602595

P1 632635
Pl 644223
PI1 629060
PI1 638521
PI1 633910
Pl 632434

Pl 632435

P1 631376
Pl 631449
PI1 638512

PI1 606779

Pl 633865
Pl 639232

1995
1996
1996
1996
1996
1996

1997
1997
1997

1997
1997
1997
1997
1997
1997

1997

1998
1998
1998

1998

1998
1998

1998
2004
1995
2002
2006

2002
2002
1998

2002
2006
2002
2004
2005
2002

2002

2002
2001
2004

1998

2004
2004

UNL
AB
GSR
KSU
MTSU
TAM

AB
KSU
OSU

OSuU
SDSU
SDSU
SDSU

UNL

UNL

UNL

AB
CSU
CSU

GSR

MTSU
OSuU
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KS831936-3//Colt/Cody
W91-126/WI88-052-05
Hawk//Sturdy/Plainsman V
KS89H130/Arlin
W91-376-20/W95-084
TX86D1310/Kavkaz//TX86D130
8

Jagger/WI89-189-14
HBA142A/HBZ621A//Abilene
IL71-5662/PL145 (Newton
sib)//2165

2174/Cimarron

Abilene/Karl
Tomahawk/Bennett
SD89333/Abilene
Pronghorn/Arlin
Len//Butte/ND526/6/Agent/3/
ND441//Waldron/Bluebird/4/B
utte/5/Len/7/KS88H164/8/NE8
9646

Brule/4 /Parker*4 /Agent//Belote
rkovskaial198/Lancer/3/Newton
/Brule/5/Newton//Warrior*5/A
gent/3/Agate sib

Jagger/Abilene

TAM110*4/FS2
Yuma/P1372129//TAM200/3/4*
Yuma/4/KS91H184 /Vista
HT43H-331-9 (Nebraska
winterhardy selection)
Ponderosa/Jagger
Yantar/Chisholm*2//Karl

1.011
0.975
0.951
1.103
1.119
0.975

1.035
1.154
1.073

1.038
1.036
1.062
1.118
0.820
0.897

0.964

1.086
1.129
1.085

1.220

1.017
1.008

1.094
0.906
0.903
0.853
0.918
0.952

0.977
0.796
0.931

0.944
0.842
0.945
0.900
1.141
1.018

1.261

0.935
0.874
0.799

0.880

1.107
0.788



Intrada
Darrell
TAM 112

TAM 303
Anton

Hallam

Keota
WB411W
MT9904
MT9982
TX99A0153-1
TX99U8618
NE99495
Shocker
Smoky Hill

Tarkio
HG-9
Bond CL
Ripper

Fuller

KSO00F5-20-3

Pl 631402
Pl 644224
Pl 643143

P1 651044

PI 638790
PI 648007

Pl 646185
Pl 646184

P1 614118
Pl 639924
Pl 644222

P1 653521

1998
1998
1998

1998

1998

1998
1998
1998
1999
1999
1999
1999
1999
1999
1999

1999
<2000
2000
2000

2000

2000

2000
2006
2007

2006
2007

2006
2007

2006
2006

2006
2000
2004
2006

2007

OSU
SDSU
TAM

TAM

UNL

UNL
WB
WB
MTSU
MTSU
TAM
TAM
UNL
WB
WB

WB
HGS
CSU
CSU
KSU

KSU
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RioBlanco/TAM200
2076-W12-11/Karl92
TAM200/TA2460//
TAM107*5/Largo
TX89D1253*2/TTCC404
(=WX93D208-9-1-2)
Brevor/CI15923//Nugaines/4 /P
[1559717/3 /Platte
Brule/Bennett//Niobrara
Custer/Jagger

G3006/Arlin

MT85200/Tiber
Promontory/Judith
Ogallala/TAM202
TX84V1237/TX71C8130R
Alliance/Karl 92
Freedom/Tomahawk/]Jagger

97 8/64 MASA (Population
developed by combining several
crosses with a common female
"G2500")
0K90604/KS6397//Snowwhite
TAMZ200 outcross selection
Yumar//TXGH12588-120*4/FS2
P1220127/P5//TAM200/C09406
06/3/TAM107R-
2/P1372129//5*TAM107
Selected from a population with
an unknown pedigree.

Unknown

1.035
1.146
1.117

1.009

1.177

1.042
1.006
0.949
0.975
1.116
1.078
1.102
1.048
1.123
0.904

0.998
0.828
1.218
1.064

1.030

1.021

0.986
1.277
0.964

0.850

1.194

1.238
0.847
0.934
1.230
1.360
0.933
0.859
1.163
0.899
1.231

0.905
0.830
0.964
1.175

0.900

0.907



E2041

Genou

Yellowstone

Guymon
OK Bullet
Lyman
TX00V1131
Venango
Bill Brown
SD01058
SD01237
TAM 203
TAM 304
TX01A5936

TX01M5009-
28

TX01V5134RC-

3
Camelot

Infinity CL

Pl 640424

Pl 643428

Pl 643133
Pl 642415
PI1 658067

P1 653260

PI 655960
P1 655234

PI1 653832

Pl 639922

2000

2000

2000

2000
2000
2000
2000
2000
2001
2001
2001
2001
2001
2001

2001

2001

2001

2001

2004

2005

2005
2005
2009
2000
2007

2009
2009

2008

2006

MSU

MTSU

MTSU

OSuU
OSU
SDSU
TAM
WB
CSU
SDSU
SDSU
TAM
TAM
TAM

TAM

TAM

UNL

UNL
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Pioneer Brand 2552 /Pioneer
Brand 2737W,; sib line to Red
Ruby
Lew/Tiber//Redwin/3/Vanguar
d/Norstar

Selected from a composite of F2
seed from two closely related
populations: Promontory/Judith
and Judith-phenotypic dwarf
selection/Promontory
Intrada/Platte
KS96WGRC39/]Jagger
KS93U134/Arapahoe
TX87V1613/KS91WGRC11
HBE1066-105/HBF0551-131
Yumar/Arlin
XH1877/NE967430

Unknown

TX89V4132/704 L1-2221
TX92U3060/TX91D6564
Jagger/3/PSN'S'/Bow
'S'//TAM200

Mason/Jagger//Pecos

TAM200/]Jagger

KS91H184/Arlin
sib//KS91HW29/3/NE91631/4/
VBF0168

Windstar//Millennium
sib/Above sib

1.090

0.786

1.033

0.893
0.975
1.054
1.093
0.968
1.158
0.831
1.066
0.919
1.091
1.144

0.974

0.924

1.067

1.001

0.885

1.188

1.276

1.065
0.927
1.217
0.861
1.007
0.855
0.881
0.814
0.878
0.886
0.816

0.837

0.869

1.202

1.216



McGill

Overland
Danby
0K02405
TAM 113
Mace

NE02558
C003064
CO03W043
CO03W054
Thunder CL
RonL
Norris
Billings
Centerfield
Pete

TAM 401
TX03A0148
TX03A0563
NWO03666
Settler CL

HVIOWO03-
1379R
HVIOWO03-
1551WP

PI1 659689

PI1 647959
Pl 648010

P1 666125
P1 651043

Pl 658597
PI 655528
PI 648020
PI 643430
PI1 656843
Pl 644017
Pl 656844
PI1 658500

PI1 653833

2001

2001
2002
2002
2002
2002

2002
2003
2003
2003
2003
2003
2003
2003
2003
2003
2003
2003
2003
2003
2003

2003

2003

2010

2007
2007

2013
2007

2008
2007
2005
2009
2006
2009
2010

2009

UNL

UNL
KSU
OSuU
TAM
UNL

UNL
CSU
CSU
CSU
CSU
KSU
MTSU
OSuU
OSuU
OSuU
TAM
TAM
TAM
UNL
UNL

WB

WB
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Vona//Chisholm/PlainsmanV
(OK83201)/3/Redland
(NE92458)/4/1ke

Millennium sib//Seward/Archer
Trego/KS84063-9-39-3-8W
Tonkawa/GK50

Unknown

Yuma//T-
57/3/C0850034/4/4*Yuma/5/(
KS91H184/Arlin
S/KS91HW29//NE89526)
Jagger/Alliance

C0970547 /Prowers99
KS96HW94/C0980352
KS96HW94//Trego/C0960293
KS01-5539/C099W165
Trego/C0960293
BigSky//TXGH12588-26*4/FS2
N566/0K94P597
TXGH12588-105*4/FS4//2*2174
N40/0K94P455

Mason/Jagger
TX89A7137/Tipacna
X96V107/0gallala
N94S097KS/NE93459

Wesley sib//Millennium
sib/Above sib
B1127/3/B1551W//Rowdy/RW
A 671 MONT

B1043/PL2180

0.999

0.943
1.074
0.862
1.123
1.077

0.903
1.091
0.816
0.828
1.033
0.956
1.033
1.147
1.087
0.881
0.933
0.959
1.062
1.011
1.001

1.035

1.111

1.048

1.225
0.841
0.813
0.962
0.886

1.306
1.001
1.268
1.287
1.131
0.845
0.756
0.792
0.931
0.896
0.709
0.691
1.043
1.088
0.907

0.765

0.840



HVIOWO03-
1596R

Santa Fe P1 641772

W04-417
C004025

C004393
C004499
CO004W320
MT0495
OK04111
0OK04415
0OK04505
0K04507
0OK04525
TX04A001246
TX04M410164
TX04M410211
TX04V075080
NE04490

Robidoux PI 659690

C0050337-2

Denali PI1 664256

2003

2003

2004
2004

2004
2004
2004
2004
2004
2004
2004
2004
2004
2004
2004
2004
2004
2004

2004

2005
2006

2006

2010

2011

WB

WB

AB
CSU

CSU
CSU
CSU
MTSU
OSuU
OSuU
OSuU
OSU
OSuU
TAM
TAM
TAM
TAM
UNL

UNL

CSU
CSU
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B1397-1/WGRC33

Hawk//Sturdy/Plainsman
V/3/Jagger

Bulk population
C0940610/C0960293//C099W1
89

Stanton/C0950043
Above/Stanton
C0950635/C099W1126
MT9640/NB1133

2174*2 /]agger
N563/0K98G508W

0K91724 /2*Jagger
OK95593/Jagger//2174
FFR525W /Hickok//Coronado
TX95V4339/TX94VT938-6
Mit/TX93V5722//W95-301
Mason/Jagger//Ogallala
Jagger/TX93V5722//TX95D8905
NE95589/NE94632(=Abilene/No
rkan//Rawhide)//NE95510(=Ab
ilene/Arapahoe)
OdesskayaP/Cody//Pavon76/3*S
cout66/3/Wahoo-sib
C0980829/TAM111
C0980829/TAM111

1.178

1.152

1.135
1.000

1.081
1.178
0.848
0.887
1.067
1.058
0.975
1.097
0.990
1.047
0.995
0.944
0.958
1.002

0.966

1.146
1.061

0.867

0.946

0.915
1.204

1.137
0.851
1.290
1.257
0.918
0.975
0.885
0.879
0.798
0.878
0.866
0.845
1.142
0.936

0.903

0.745
1.017



Decade P1 660291

MTS0531

Garrison Pl 661992
0K05108
0K05122
0K05134
0K05204
0K05303

OK05312

0OKO05511
Ruby Lee
OK05711W
0OK05723W
0K05830
Ideal

SD05210
SDO5W018
TX05A001188

PI 661991
PI 661991

TX05A001822

2005

2005

2005
2005
2005
2005
2005
2005
2005

2005
2005
2005
2005
2005
2005
2005
2005
2005

2005

2010

2011

2011

MTSU

MTSU

OSuU
OSU
OSuU
OSU
OSuU
OSU
OSuU

OSuU
OSuU
OSuU
OSuU
OSuU
SDSU
SDSU
SDSU
TAM

TAM
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Composite of three single crosses
made in 1996: N95L159/CDC
Clair, N95L159/MT9602
(NuWest/Tiber), and
N95L159/MT9609
(Froid/SD1287//Redwin/3/Nu
West). N95L159 is a sib of
Wesley.
L'Govskayal67/Rampart//MT94
09

0K95616-1/Hickok//Betty
Lut13686/2174//]agger
KS94U337/NE93427
0K97411/TX91D6825
SWM866442/0K95548
0K95548/TXHBG0358
TX93V5919/WGRC40//0K94P54
9/WGRC34

TAM110/2174
KS94U275/0K94P549
G1878/0K98G508W
SWM866442 /Betty
OK93617/Jagger
Wesley/NE93613

SD98444 /SD97060
SD98W302/SD98W175
TAM107//TX98V3620/CENTUR
K78/3/TX87V1233/4/N87V106/
/TX86V1540/TAM200
2145/X940786-6-7

1.001

0.915

1.045
0.935
1.075
0.942
1.039
1.168
1.044

1.109
1.060
1.068
1.101
0.923
1.192
1.066
0.948
1.073

1.180

1.252

1.223

0.934
0.936
0.908
0.956
0.814
0.861
0.903

0.806
0.940
0.933
0.806
0.832
1.251
1.238
1.304
0.818

0.912



TX05V7259

TX05V7269

NE05430

NE05496

Panhandle

HV9WO05-

1280R

Byrd PI1 664257
MT06103
OK Rising
0K06114

PI1 656382

0K06210

0OK06318
0OK06319
0K06336
TAM 204
TAM 305
TX06A001132

TX06A001281
TX06A001386

Freeman PI1 667038

2005

2005

2005
2005
2005
2005

2006
2006
2006
2006

2006

2006
2006
2006
2006
2006
2006

2006
2006
2006

2014

2011

2009

2014
2014

2013

TAM

TAM

UNL
UNL
UNL
WB

CSU
MTSU
OSuU
OSuU

OSuU

OSuU
OSuU
OSuU
TAM
TAM
TAM

TAM
TAM
UNL
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TAM107//TX78V3620/CENTUR
K78/3/TX87V1233/4/ARAPAHO
E//TX86V1540/TAM200
HBG0358/4/TAM107//TX78V36
20/Centurk78/3/TX87V1233
IN92823A1-1-4-5/NE92458
Trego/Hallam

NE97426

Spartanka/G980761

TAM112/C0970547-7
MT9409/W94-137
KS96WGRC39/]Jagger
KS97P0630-4-
5/CM95560//X920879-C15-
1/3/X84W063-9-18/U1324-25-
1-4

KS90175-1-
2/CMSW89Y271//Karl92/3/ABI
86*3414/X86035*-BB-
34//HBC302E
HBGO0358/2174//2145
Enhancer/2174
Magvars/2174//Enhancer
TX99U8617/TX97U2001
Unknown
HBG0358/4/TAM107//TX78V36
20/Centurk78/3/TX87V1233
TX98VR8422/U3704A-7-7
TX99A6030/Custer

BI86*3414 /]Jagger/Karl92//Allia
nce

0.977

1.108

1.058
0.978
0.919
1.095

1.104
1.075
1.016
1.169

0.964

0.909
0.941
1.051
0.873
1.060
1.124

0.959
1.068
1.047

0.879

0.807

0.872
1.158
1.231
0.784

0.936
1.312
0.905
0.811

0.796

0.815
0.891
0.818
0.848
0.912
0.785

0.798
0.918
1.095



NE06607

NI106736

NI106737

HV906-865
HVOW06-504

Antero
Judee

Gallagher
0K07231

OK07S117

TX07A001279
TX07A001318
TX07A001420

NI07703

0K08328

PI 667743
P1 665227

2006

2006

2006

2006
2006

2007
2007

2007
2007

2007

2007
2007
2007

2007

2008

2013
2011

2013

UNL

UNL

UNL

WB
WB

CSU
MTSU

OSuU
OSuU

OSuU

TAM
TAM
TAM

UNL

OSuU
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NE98466=(KS89H50-
4/NE90518(=BRL//SXL/BENN))
/WESLEY

NW97S312=(KM602-
90/NE89657//Arlin) X
KS96HW10-3=(KS91HW29// Rio
Blanco/KS91H184)
NW97S312=(KM602-
90/NE89657//Arlin) X
KS96HW10-3=(KS91HW29// Rio
Blanco/KS91H184)
G980039/0naga
G982231/G982159//KS920709
w

KS01HW152-1/TAM111
Vanguard/Norstar//Judith/3/Nu
Horizon

OK-99711/Duster
OK92P577-(RMH
3099)/0K93P656-(RMH 3299)
Altar84/AE.SQ//Opata/3/0K98G
508W

X930332-4-1/TX97V2838
TX98VR8431/TX95A3091
U1254-1-5-2-
1/TX81V6582//Desconocido
R-148 (G97343)
=(919021/B725//K92)/NI00436
=(WI89-273-13/NE93427 (=Bez
1/CTK78//Arthur/CTK78/3/Ben
net/4/Norkan)
GKKeve/0k101//0K93P656-
RMH3299

0.989

1.084

1.063

1.116
1.186

1.039
0.918

1.074
1.040

1.034

1.139
0.911
1.027

1.100

1.037

1.165

0.897

0.950

0.890
0.697

0.975
1.382

0.908
0.786

1.219

0.804
1.017
0.913

0.880

0.932



NI08707 2008 UNL C0980829=(Yuma/T- 1.025 0.862
57//€0850034/3/4*Yuma/4/NE
WS12)/Wesley
NI08708 2008 UNL C0980829=(Yuma/T- 1.204 0.862
57//€0850034/3/4*Yuma/4/NE
WS12)/Wesley
0K09634 2009 OSU 0K95616-98-6756/0verley 1.026 0.978
0K10119 2010 0SU JEI110/Overley 0.884 1.104
0K1067071 2010 OSU TX98V9437/0K00316//Farmec 0.964 0.679
0K1067274 2010 (0] GA961912-8-4- 0.998 0.876
5/0K02129//Kristi-K.K
0K1068002 2010 OSuU Efect/Jagalene//Deliver 0.925 0.948
0K1068009 2010 OSU Lada/Jagalene//G980122 1.004 0.768
0K1068026 2010 (0] ERYTHROSPERMUM270/TAM11 1.027 0.782
1//0K99212
0K1068112 2010 OSuU Farmec/Jagalene 1.080 0.808
0K1070267 2010 OSU V1.9/Guymon//G980411W 0.825 0.838
0K1070275 2010 (0] KNJAZHNA/KSOOHW175- 0.762 0.932
4//0K00611W
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Supplemental Table S3.2. Pearson’s correlation coefficients of days to heading (DTH) or
grain yield (GY) between replications within the same environment. Three environments had
two replications each and thus a single pairwise correlation. Two environments had four
replications each, and the correlation is the average of all six pairwise comparisons. The
overall mean reflects the average correlation across all environments when equally weighted.
Environmental abbreviations are provided in Table 1.

n n pairwise Average r
Env reps comparisons DTH GY
Ar13R 2 1 0.96 0.70
Mal2F 2 1 0.72 0.35
Mal2R 2 1 0.74 0.20
Mel2R 4 6 0.88 0.44
Mel3R 4 6 0.76 0.36
Env. Average 0.82 0.41
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Supplemental Table S3.3. Total monthly precipitation (P, mm) and irrigation (I, mm) received by each environment. Total
precipitation and irrigation is summarized separately for 1 Jan. to average heading date (H), and total accumulation between 1
Jan and harvest. Environments are described in Table 1. No irrigation was applied to any environment in January or February.
The last month only includes precipitation that occurred before harvest, and all 2012 environments were harvested in June.

Env Jan Feb Mar Apr May June July ToH Total

P P P I P I P I P I P I P+1 P I P+l

__________________________________________________________________________ )~
Bul2R 23 26 34 -- 16.2 -- 29 -- 331 -- 541 1172 - 117.2
Gr12P 03 107 0.5 254 231 127 282 508 19.3 12.7 106.7 821 101.6 183.7
Gr12F 0.3 107 0.5 254 23.1 508 282 1448 19.3 114.3 1994 821 3353 4174
[t12R 0 269 193 -- 711 -- 87.4 -- 100.8 -- 1184 3055 -- 305.5
Mal2R 0.8 47.5 551 -- 63.8 -- 34 254 978 -- 167.1 299.0 254 3244
Mal2F 0.8 47.5 551 -- 63.8 -- 34 114.3 978 -- ) 167.1 2990 1143 4133
Ar13R 411 622 36.6 -- 498 -- 212.6 -- 141 -- 93.7 -- 188.2  637.0 -- 637.0
Fo13R 03 20 53 -- 30.2 -- 358 -- 119 -- 389 -- 737 1244 -- 124.4
Fol3F 0.3 2 53 - 30.2 -- 35.8 63.5 119 146.1 389 12.7 1372 1244 2223 346.7
Hal3R 19.3 30.2 198 -- 269 -- 549 -- 69.3 -- 179.8 -- 133.1  400.2 -- 400.2
[t13R 94 1.8 234 -- 87.6 -- 152.7 -- 116.3 -- 203 -- 1943 4115 -- 411.5

244



Supplemental Table S3.4. Pearson’s correlation coefficient (r) between pairs of environments of growing degree-days from 1
Jan. to heading (above the diagonal) and grain yield (below the diagonal) of 299 hard winter wheat genotypes grown at 11
environments. Environments are described in Table 1.

Ar13R  Bul2R Fol13R Fol1l3F Gri2P Gri2F Hal3R Mal2R Ma12F It12R It13R
Ar13R 0.75%* 0.48***  0.44*** (0.70*** 0.68** 0.59** 0.70***  0.66™** 0.77*F*  0.72%**
Bu12R 0.14* 0.63**  0.60***  0.69*** 0.86*** (0.78*** (0.83**  (0.81*** 0.90**  (0.75***
Fol3R 0.16** 0.36™** 0.63***  0.50***  0.62***  0.64*** (0.47***  (0.44*** 0.58**  (0.64***
Fo13F 0.11nst 0.16**  0.27*** 0.41**  0.63***  0.60*** 0.48**  0.40*** 0.53**  (.57***
Gri2p 0.09ns  0.41*%* 0.17** 0.11 ns 0.62**  (0.52%*  0.63***  0.64*** 0.73**  (0.79***
Gri12F 0.10ns  0.67*** 0.34*** 0.16**  (0.48*** 0.78**  0.78***  (.75%** 0.84**  (.79***
Ha13R 0.20**  0.40** 0.31*** 0.09ns 0.39** (0.55*** 0.67***  0.64*** 0.75**  0.67***
Mal2R 0.09ns 047** 0.25*** 0.11ns 0.26™* 0.46™** 0.27*** 0.86™** 0.90**  (0.64***
Mal12F 0.06ns  0.40*** 0.17** 0.00ns 0.18** 0.39*F*  (0.25%*  (0.48%** 0.89**  (0.64***
It12R 0.33*k*  0.24*** (0.15** 0.28**  0.12* 0.35**  0.28**  0.26™**  0.19*** 0.79%**
It13R 0.06ns  0.56*** 0.31*** 0.20** 0.08ns 0.67*** 0.44** 0.43***  (0.33*** 0.41**

*, *x <% Significant at the 0.05, 0.01, and 0.001 probability levels, respectively.
t ns, nonsignificant at the 0.05 probability level.
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