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ABSTRACT

TESTING WITH STATE VARIABLE DATA-FLOW CRITERIA FOR

ASPECT-ORIENTED PROGRAMS

Data-flow testing approaches have been used for procedural and object-oriented

(OO) programs, and empirically shown to be effective in detecting faults. However,

few such approaches have been proposed for aspect-oriented (AO) programs. In an

AO program, data-flow interactions can occur between the base classes and aspects,

which can affect the behavior of both. Faults resulting from such interactions are

hard to detect unless the interactions are specifically targeted during testing.

In this research, we propose a data-flow testing approach for AO programs. In

an AO program, an aspect and a base class interact either through parameters

passed from advised methods in the base class to the advice, or by the direct

reading and writing of the base class state variables in the advice. We identify

a group of def-use associations (DUAs) that are based on the base class state

variables and propose a set of data-flow test criteria that require executing these

DUAs. We identify fault types that result from incorrect data-flow interactions

in AO programs and extend an existing AO fault model to include these faults.

We implemented our approach in a tool that identifies the targeted DUAs by the

proposed criteria, runs a test suite, and computes the coverage results.

We conducted an empirical study that compares the cost and effectiveness of

the proposed criteria with two control-flow criteria. The empirical study is per-
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formed using four subject programs. We seeded faults in the programs using three

mutation tools, AjMutator, Proteum/AJ, and µJava. We used a test generation

tool, called RANDOOP, to generate a pool of random test cases. To produce a

test suite that satisfies a criterion, we randomly selected test cases from the test

pool until required coverage for a criterion is reached.

We evaluated three dimensions of the cost of a test criterion. The first dimen-

sion is the size of a test suite that satisfies a test criterion, which we measured

by the number of test cases in the test suite. The second cost dimension is the

density of a test case which we measured by the number of test cases in the test

suite divided by the number of test requirements. The third cost dimension is

the time needed to randomly obtain a test suite that satisfies a criterion, which

we measured by (1) the number of iterations required by the test suites generator

for randomly selecting test cases from a pool of test cases until a test criterion is

satisfied, and (2) the number of the iterations per test requirement. Effectiveness

is measured by the mutation scores of the test suites that satisfy a criterion. We

evaluated effectiveness for all faults and for each fault type.

Our results show that the test suites that cover all the DUAs of state variables

are more effective in revealing faults than the control-flow criteria. However, they

cost more in terms of test suite size and effort. The results also show that the test

suites that cover state variable DUAs in advised classes are suitable for detecting

most of the fault types in the revised AO fault model.

Finally, we evaluated the cost-effectiveness of the test suites that cover all state

variables DUAs for three coverage levels: 100%, 90%, and 80%. The results show

that the test suites that cover 90% of the state variables DUAs are the most cost-

effective.
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Chapter 1

Introduction

A software system can contain two types of concerns: core concerns, which refer to

the main behaviors that are needed by the system, and crosscutting concerns, which

refer to the behaviors that are common to multiple system core modules (i.e., mod-

ules that implement core concerns). While object-oriented programming (OOP)

provides a methodology for modeling the system core concerns through the use of

objects, the implementations of the crosscutting concerns are scattered through-

out several core modules [37]. Aspect-oriented software development (AOSD) is

a programming paradigm that supports the modularization of crosscutting con-

cerns. Promised benefits of AOSD include increasing modularity and reducing

explicit coupling, thereby increasing understandability and easing software main-

tenance [48].

AspectJ [37] is an aspect-oriented (AO) extension to Java and is considered

as the de-facto standard for aspect-oriented programming (AOP). In AspectJ, a

crosscutting concern is modeled using a construct called an aspect. The weaving

mechanism of AspectJ integrates aspects with core concerns (i.e, the base class) to

produce an AO program. An aspect contains three main components: (1) a point-

cut, which specifies where an aspect can intercept the execution of the base class

methods at locations called join points, (2) an introduction, which adds attributes
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and methods to classes, and (3) an advice, which provides implementations of the

crosscutting concern [37].

New types of faults might result from the data-flow interactions in an AO

program. In particular, aspects can alter the values of the base class state variables.

Aspects can also introduce new methods and state variables to the base class, and

can change the class hierarchy. The aspects can be affected by the base class

methods either through the parameters passed by a method that has a matching

join point (called advised method) to the advices, by the base class state variables

used in the aspects, or by base class method calls made from the advices. Faults

resulting from incorrect data-flow interactions might be difficult to detect unless

such interactions are considered by the testing approach.

Several approaches have been proposed for testing AO programs. Based on

the artifact used to derive the test cases, these approaches can be classified as

model-based (e.g., [44, 74, 75]), structural (e.g., [27, 39, 40, 72, 80]), or mutation

(e.g., [6, 16, 22, 38]). Several other approaches for fault modeling of AO program

have been proposed (e.g., [3, 14, 67]). A major concern about model-based testing

for AO programs is the lack of AO constructs in existing specification languages or

modeling languages. Therefore, it is hard to automate the process of test genera-

tion and coverage measurement without having modeling tools for AO programs.

Moreover, a problem of using model-based testing is that most software systems

are not formally or even informally specified. Furthermore, even when a program

is specified, model-based testing may not detect errors caused by implementation

details not addressed in the specifications [28].

Structural testing has been widely used for procedural and object-oriented

(OO) programs. Existing work in structural testing of AO programs concentrates

on defining control and data-flow test criteria, and addressing challenges specific
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to testing AO programs (e.g., [40, 72]). However, there are several open problems

in AO structural testing, which are as follows:

1. Existing data-flow test criteria do not consider all types of data-flow inter-

actions in an AO program. For example, Lemos et al. [39] proposed a test

criterion called all-crosscutting-uses which requires covering data-flow inter-

actions based on parameter passing from the advised methods in the base

class to the advices. However, existing approaches do not consider data-flow

interactions that are based on state variables, whether interactions between

the aspects and the base classes, or between advices in the same or different

aspects.

2. Existing fault models for AspectJ contain overlapping fault types and do not

include all types of faults that result from incorrect data-flow interactions in

the program.

3. Existing structural test criteria do not target any specific type of AO-specific

faults.

4. There are few empirical studies that evaluate the cost and effectiveness of

the test criteria.

This dissertation describes a testing approach that aims to provide solutions

to these problems. We propose a set of test criteria that require covering the

data-flow interactions that are based on state variables. We classify state variable

def-use associations (DUAs) into five types and propose data-flow test criteria

called aspect-oriented state variable (AOSV) test criteria, which require covering

these interactions.

We implemented a tool, called Data-flow Coverage Tool for AspectJ (DCT-AJ),

which measures coverage for the AOSV test criteria. DCT-AJ is built on top of an
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existing framework called AJANA [78], which creates the interprocedural control

flow graph (ICFG) of a given AO program. In order to obtain the DUAs between

public methods, we extended the ICFG with frame edges that connect base class

public methods. DCT-AJ works in three phases: (1) DUA identification, in which

it obtains the DUAs for the state variables, (2) instrumentation, in which the

program is instrumented using an AO approach with code that can monitor the

execution of the DUAs and measure their coverage, and (3) test execution, in which

we run the test suites that satisfy the AOSV test criteria, and generate coverage

reports.

We conducted cost-effectiveness studies. The studies compare the cost and

effectiveness of the AOSV criteria with two control-flow criteria. These are: (1)

AO blocks criterion, which requires exercising all the blocks in the methods of

the advised class, and (2) AO branches criterion, which requires exercising all the

branches in the methods of the advised class. The empirical studies aim to answer

the following questions:

1. What are the relative costs of using the criteria?

2. What is the relative effectiveness of each criterion in terms of its ability to

detect faults?

3. What types of faults can be detected by using test suites that satisfy the

AOSV test criteria?

4. What is the cost-effectiveness of achieving various coverage levels (80%, 90%,

and 100%) for the AOSV test criteria?

In order to answer the first research question, we generated a pool of random

test cases using a test generation tool called RANDOOP. To produce a test suite
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that satisfies a criterion, we randomly selected test cases from the test pool until

required coverage for a criterion is reached. For answering the second research

question, we seeded faults in the subject programs using mutation operators. We

used three mutation tools, AjMutator [17], Proteum/AJ [23], and µJava [41].

Adequate coverage of fault types is needed in order to answer the third research

question. We investigated the types of faults that can be generated by using

AspectJ mutation operators. First, we solved problems with existing fault models

of AspectJ including overlapping fault types and missed fault types. We revised

the fault models and classified the generated mutants according to the types of

faults in the revised fault model that they represented. The available operators

were able to generate faults in all the types except one that required performing

more than one change to the pointcut. Therefore, we propose that higher order

mutants (e.g., see Jia and Harman [34]) be used to obtain faults of the remaining

types.

We evaluated three dimensions of the cost of a test criterion. The first dimen-

sion is the size of a test suite that satisfies a test criterion, which we measured

by the number of test cases in the test suite. The second cost dimension is the

density of of a test case which we measured by the number of test cases in the test

suite divided by the number of test requirements. The density shows how many

test requirements can be covered by a test case. The third cost dimension is the

time needed to randomly obtain a test suite that satisfies a criterion, which we

measured by (1) the number of iterations required by the test suites generator to

randomly select test cases from a pool of test cases until a test criterion is satisfied,

and (2) the number of the iterations per test requirement. The use of the density

metric and the number of requirements per test criterion metric allows comparing

the cost of test criteria in different advised classes that have large variations in
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the number of DUAs (test requirements) they contain. Effectiveness is measured

by the mutation scores of the test suites that satisfy a criterion. We evaluated

effectiveness for all faults and for each fault type.

Our results show that the AOSV test criteria are more effective than the control-

flow criteria. Test suites that cover all types of DUAs for state variables in the

advised classes detected 38% and 31% more faults than the test suites that cover

the blocks or branches, respectively. Moreover, the test suites that cover a single

type of DUAs for state variables were also more effective than the test suites that

cover the blocks and branches in most of the classes. However, the results also

show that covering all types of DUAs for state variables requires more test cases

and more effort than covering the branches and blocks in the advised classes.

Our results show that the covering the DUAs for state variables can detect

most types of faults in AspectJ programs. The mutation scores of the test suites

range from 87.5% to 100% on the different fault types. For the faults that result

from incorrect data-flow interactions, the mutations scores for the test suites range

from 94.4% to 100%. The non-killed mutants in these types are subtle mutants

that cannot be killed.

In order to answer the fourth research question, we evaluated cost and effective-

ness of the test criterion that cover all DUAs for state variables for three coverage

levels: 100%, 90% and 80% coverage levels. Our results show that the test suites

that cover all the state variables DUAs are only 1% more effective than the test

suites that cover 90% of the state variables DUAs, and need 40% more effort and

13% more test cases. However, the test suites that cover 80% of the state variables

DUAs are 16% less effective than the suites at 100% coverage level. Therefore, it

is cost-effective to obtain test suites at the 90% coverage level.

Testing is a vital phase of software development. While AOSD is gaining more
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popularity, it is important to develop testing approaches for AO programs that

help in producing more reliable software. Our work shows that data-flow testing is

an effective approach for AO programs because the data-flow interactions can effect

both the behavior of the base classes and the aspects. Our approach for generating

mutants and test suites for AO programs can be further used to evaluate other

testing approaches for AO programs. With the help of DCT-AJ for measuring

data-flow coverage, other testing approaches can be compared with ours.
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Chapter 2

Background

The following sections describe the main concepts and terminology that are rele-

vant to the dissertation. Section 2.1 describes concepts in structural testing and

Section 2.2 summarizes basic concepts in AspectJ.

2.1 Structural Testing Concepts

In structural testing, also called white-box testing, test cases are derived from the

program source or executable code [10]. Structural test criteria are defined in terms

of elements in the program covered by test cases. A control flow graph (CFG) is

a model that describes the structure of a program or a procedure and is used to

define structural test criteria. A CFG of a program or a procedure is a directed

graph, G = (N,E), where a node n ∈ N is a block of instructions that are always

executed together. An edge, e(i, j) ∈ E, represents a possible transfer of control

after executing the last statement of the block represented by node i to the first

statement in the block represented by node j. A path is a finite sequence of nodes

(nl, n2, ..., nk), k > 1, such that there is an edge from ni to ni+1 for i = l, 2, ..., k−1.

Control-flow based criteria aim to verify the flow of control between the CFG

nodes. The most common criteria are: (1) block (node) test criterion, which re-

quires executing each node in the CFG at least once, (2) branch (edge) test crite-
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rion, which requires executing each edge in the CFG at least once, and (3) all-paths

test criterion, which requires executing all paths in the CFG at least once [10].

Data flow testing verifies that the definition of variables and their subsequent

uses are exercised. A definition, def, of a variable v occurs in a node where v is

given a value; a use of v occurs in a node where v is accessed. For a variable

v, a definition-use association (DUA) is a triple <v,d,u> where node d contains

a def of v ; node u contains a use of v ; and there is a def-clear path from node

d to node u. A def-clear path from node d to node u for variable v is a path

(d, nl, n2, ..., nk, u), k ≥ 0, containing no defs of v in nodes (nl, n2, ..., nk). Uses of

a variable can be computation uses (c-uses) or predicate uses (p-uses). A c-use

occurs when the variable is used in a computation or output statement; a p-use

occurs when a variable is used in a predicate statement [59].

Data-flow based test criteria are used to select particular DUAs as the test

requirements for a program. The all-defs criterion requires exercising at least one

use for every definition of a variable. All p-uses and all c-uses criteria require

exercising all p-uses or all c-uses of each definition of a variable, respectively. The

all-uses criterion requires satisfying both all p-uses and all c-uses criteria [59].

2.2 AspectJ Concepts

AspectJ [66] is a general purpose AO extension to Java. In AspectJ, a crosscutting

concern is modeled using a construct called aspect. Aspects can crosscut the system

base classes (i.e., classes that implement core concerns) to define the behavior of

concerns that they implement. An AO program refers to a base class and all

aspects that affect it. The process of integrating aspects with the base classes is

called weaving. AspectJ performs weaving by inserting well-defined points in the

execution of a program called join points. During program execution, when a join
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point is reached, a piece of code from the aspect gets executed. Join points can

be method or constructor calls and executions, the handling of exceptions, or field

assignments and accesses. In AspectJ, crosscutting is called dynamic if join points

refer to events during the flow of execution of the program; otherwise, crosscutting

is static [66].

An aspect encapsulates three main components: pointcuts, advices, and intro-

ductions. Pointcuts are program elements that select join points using pointcut

expressions. A pointcut expression is a predicate that matches join points. As-

pectJ provides a set of primitive pointcut expressions, called designators, that can

be used to target the desired join points. A pointcut expression consists of one or

more pointcut expressions combined using logical operators. Pointcuts are used by

advices that contain code to be executed when execution of the base class reaches

a join point. An advice can be executed before, after, or in place of a join point

(called before, after, or around advice, respectively). Advices are method-like com-

ponents that can have parameters and local variables. Parameters allow developers

to pass (also called publish) data from base classes to advices. AspectJ has three

designators that can be used to publish join point context data for the advice’s

arguments, this, target and args. This returns the currently executing object (i.e.,

the object referenced by this in Java), target returns the target object of a join

point, and args passes the arguments of an advised method to advices. Finally,

introductions, also called inter-type declarations, are declarations that allow chang-

ing a program’s static structure. Using these declarations, an aspect can: (1) add

methods, constructors, or state variables to classes, (2) add concrete implemen-

tation to an interface, (3) declare that a class extends a new class or implements

a new interface, (4) declare aspect precedence, and (5) declare new compilation

error and warning messages.
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k1. public class Kettle {

k2. public int waterAmount;

k3. public int size;

k4. States status;

k5. public Kettle(int size){

k6. this.size = size;

k7. waterAmount = 0;

k8. status = States.ON;

k9. }

k10. public Kettle(int size, int amount){

k11. this.size = size;

k12. waterAmount = 0;

k13. status = States.ON;

k14. addWater(amount);

k15. }

k16. public void addWater(int amount) {

k17. this.waterAmount += amount;

k18. }

k19. public void pourWater(int amount){

k20. this.waterAmount -= amount;

k21. }

k22. }

Figure 2.1: Kettle class.

Figure 2.1 shows the Java class Kettle, which simulates the functionality of an

electric kettle for heating water. The class contains methods for adding water and

pouring water from the kettle. Kettle objects can be in one of four states indicated

by the state variable, status : (1) OFF, where the device is off power and cannot

heat water, (2) ON, where the device is turned on and ready to work, (3) HEATING,

where the device is heating the water it contains, and (4) HOT, where the device

heated the water it contains to the boiling temperature. Class Kettle is the base

class. The aspects shown in Figures 2.2 and 2.3 affect it. A class is affected by an

aspect if: (1) an aspect advises one or more methods in the class, (2) an aspect

introduces one or more methods or state variables to the class, or (3) the aspect

changes the class inheritance hierarchy.

Figure 2.2 shows the HeatControl aspect, which optimizes the power consump-

tion of the kettle. The aspect introduces to the Kettle class a state variable called
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H1. public aspect HeatControl {

H2. public int Kettle.temperature;

H3. pointcut pcConstructors(Kettle t): execution(Kettle.new(..)) && target(t);

H4. pointcut pcPour(Kettle t): execution(* Kettle.pourWater(..)) && target(t);

H5. pointcut pcAdd(Kettle t): execution(* Kettle.addWater(..)) && target(t);

H6. after(Kettle t): pcConstructors(t) || pcPour(t)|| pcAdd(t) {

H7. //afterHeat

H8. if (t.status != States.OFF) {

H9. if (t.temperature >= 100)

H10. t.status = States.HOT;

H11. else

H12 t.status = States.HEATING;

H13. }

H14. }

H15. void around(Kettle t, int amt): pcPour(t) && args(amt) {

H16. //aroundPour

H17. if ( amt > t.waterAmount )

H18. t.waterAmount = 0;

H19. else

H20. proceed(t, amt);

H21. }

H22. void around(Kettle t, int amt): pcAdd(t) && args(amt) {

H23. //aroundAdd

H24. if (t.waterAmount + amt > t.size)

H25. t.waterAmount = t.size;

H26. else

H27. proceed(t, amt);

H28. }

H29. public void Kettle.readTemperature( ){

H30. return temperature;

H31. }

H32. public void Kettle.setTemperature(int value){

H33. temperature = value;

H34. }

H35. }

Figure 2.2: HeatControl aspect.

temperature, which holds the value of the water temperature in the kettle. The

aspect also introduces methods for reading and setting the temperature value. The

aspect defines an after advice that sets the kettle status to HOT when the temper-

ature of the water reaches 100 degrees Celsius. The advice is executed after each

method or constructor of class Kettle. The HeatControl aspect also defines around

advices for the Kettle class methods, pourWater and addWater, to ensure that the
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amount of water in the kettle does not go below zero or exceed the kettle size.

S1. public aspect SafetyControl {

S2. declare precedence: SafetyControl, HeatControl;

S3. after(Kettle t): HeatControl.pcConstructors(t) || HeatControl.pcPour(t)||

S4. || HeatControl.pcAdd(t) {

S5. //afterSafety

S6. if (t.waterAmount == 0 && t.status != States.OFF)

S7. t.status= States.OFF;

S8. }

S9. }

Figure 2.3: SafetyControl aspect.

The SafetyControl aspect shown in Figure 2.3 defines an advice that executes

after each Kettle method or constructor, and turns the kettle off when it becomes

empty. The declare precedence statement in the SafetyControl aspect specifies that

if a join point is advised by the two aspects, then the precedence of the advice

will be the order stated in the list. The after advices from the HeatControl and

SafetyControl aspects match the same join points (i.e., after each class constructor

or method). Using the declare precedence statement ensures that the kettle status

is set to OFF rather than HEATING when it becomes empty.

Aspects can also contain methods, data fields, and default constructors (i.e.,

constructors without parameters). Aspect components can be named. Naming

components like pointcuts allows developers to use the component in more than one

place. Pointcuts pcConst, pcAdd, and pcPour declared in the aspect HeatControl

are also used in the SafetyControl aspect to match the same set of join points.

In AspectJ, Java rules for inheritance and polymorphism apply to aspects. For

example, in an abstract aspect, a named pointcut or an aspect method can be

defined as abstract to allow sub-aspects to provide their own implementations.
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Chapter 3

Related Work

This chapter is organized as follows. Approaches for testing AO programs are

described in Section 3.1. Section 3.2 summarizes existing data-flow testing ap-

proaches for procedural programs, object-oriented programs, and AO programs.

3.1 Testing AO Programs

Research on testing AO programs can be classified in many ways based on: (1) the

artifact used to derive the test cases (model-based, structural, or mutation testing),

(2) the targeted software component (either unit or integration testing), or (3) the

testing problem it targets (test generation, test measurement, defining coverage

criteria, fault modeling, or testing evaluation). In this section, approaches are

organized in four groups: fault modeling, model-based testing, structural testing,

and mutation testing. This is because all existing model-based testing approaches

are used for integration testing, while all structural approaches are used for unit

testing of aspects (except for the data-flow approaches which are discussed in Sec-

tion 3.2.3). Fault models for AO programs are summarized in Section 3.1.1, while

model-based and structural testing approaches are discussed in Section 3.1.2 and

Section 3.1.3, respectively. Existing mutation testing approaches are summarized

in Section 3.1.4 for both unit and integration testing.
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3.1.1 Fault Models for AO Programs

Binder [10] describes a fault model as “an assumption about where faults are likely

to be found”. A fault model describes where most of the faults are for a specific

programming paradigm or language. A testing approach can be used to design a

test suite that exercises the program sufficiently to find most faults.

Alexander et al. [3] proposed a candidate fault model for AO programs with

six classes of faults. These fault classes are as follows:

• Incorrect strength in pointcut patterns. This fault occurs when the pointcut

expression is incorrectly written. If the pointcut expression is too strong,

some intended join points will be missed. If the pattern is too weak, some

unintended join points will be selected. Either case is likely to cause incorrect

behavior of the AO program. Missing intended join points results in an

incorrect behavior of the crosscutting concern. Selecting unintended join

points might incorrectly change the behavior of the core concerns.

• Incorrect aspect precedence. This fault can occur when two or more advices

are woven into the same join point and a successor advice depends on an

object state that is set by a predecessor advice. If the order of weaving is not

properly specified, the successor advice might produce an incorrect behavior.

• Failure to establish expected post-conditions. Clients expect method post-

conditions to be satisfied if the pre-conditions hold prior to calling the method.

A faulty aspect might change the post-conditions of the advised method re-

sulting in incorrect method behavior.

• Failure to preserve state invariants. Aspects have access to the state variables

of the base classes. When an aspect changes the state variables in a way that

violates the state invariants, then the integrity of the base class gets violated.
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• Incorrect focus on control flow. Aspects can be woven depending on the

dynamic context of the base class methods. For example, designators like

cflowbelow or cflow specify in what context an advice can be woven. An in-

correct use of dynamic context can result in weaving advices in an unintended

context. The fault effect is similar to the first class of faults.

• Incorrect changes in control dependencies. An advice can alter the control

and data dependencies of the advised method. An incorrect advice might

force the advised method to flow in incorrect control paths.

Ceccato et al. [14] extended the above fault model with three more fault types:

• Incorrect changes in exceptional control flow. An advice that throws an ex-

ception might cause a modification of the control flow because the exception

triggers the execution of a catch statement, either in the aspect itself or in

the base program. Aspects can also modify the system exception handling

mechanism using constructs like declare soft. A faulty aspect can incorrectly

change the exceptional control flow of the base program.

• Failures due to inter-type declarations. An aspect can introduce new methods

and state variables to a class. If the control flow of a method depends on the

structure of the class, then an incorrect or unexpected change to the class

structure causes the method to behave incorrectly.

• Incorrect changes in polymorphic calls. This type of fault occurs when meth-

ods introduced to a base class override a method inherited from a super class.

Before weaving the aspect, any invocation to such a method was redirected

to the method in the super class, while after weaving, the same invocation,

is dispatched to the introduced method. Such a modification in the system

behavior may cause faults.
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van Deursen et al. [67] proposed an AO fault model that is based on the location

of the faults. Accordingly, they classified faults for AOP as follows:

• Faults due to inter-type declarations. This category includes any fault that

occurs as a result of an introduced method or a state variable. Examples

include the two types of faults suggested by Ceccato et al. [14]

• Faults in pointcuts. Faults in the pointcut pattern include incorrect strength

in pointcut pattern and incorrect focus on control flow as suggested by

Alexander et al. [3].

• Faults in advice. Faults in advice implementation can result in an incorrect

behavior of the advised method. The effect might cause both the core and

crosscutting concerns to behave incorrectly.

Baekken and Alexander [9] presented a fault model for pointcuts in AspectJ

programs. Each fault is described by a name, a fault category, a syntactic form,

and a semantic impact. They described four fault categories:

• Incorrect patterns. A pattern describes the syntax of the pointcut expression

that matches a particular set of join points. For example, an AspectJ pattern

for matching methods consists of a modifier, a return type, a method name,

a list of parameters in parenthesis, and a throws exception statement. All

these elements can be replaced by a wildcard that can be used to match any

value, name, number and type of parameters, and exception type. Developers

might incorrectly write a method pattern that does not match the intended

one.

• Incorrect choice of pointcut designator. Developers might incorrectly use a

designator that has an impact different from the intended one. The resulting

faults depend on the designator used.
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• Incorrect matching of dynamic circumstances. Dynamic join points depend

on data collected from the context (i.g., from the matching method). For

example, using the args designator, parameters of the advised method can

be passed to the advice. Developers might incorrectly specify the type or

order of the parameters which might result in missing the intended method

or matching an unintended method.

• Incorrect pointcut composition. Pointcut descriptors contain one or more

expressions combined using logical operators. Developers might use the in-

correct operator, for example, the logical and operator (&&) instead of the

logical or operator (||), which leads to missed join points.

3.1.2 Model-based Testing

In functional testing, also called specification-based or black-box testing, test cases

are derived from the program specifications. Model-based testing is a type of func-

tional testing where the program specifications are given in the form of a modeling

language (e.g., in UML). Advantages of model-based testing are as follows: (1)

testing can start at an early stage of the software development process, (2) faults

in the specifications may be detected before these specifications are implemented,

(3) it is implementation-independent, and (4) it potentially supports the automa-

tion of test generation [12].

Xu and Xu [74] presented a state-based approach to incremental testing of

AO programs, which considers aspects as incremental modifications to the base

classes. The approach contains an AO extension to state models, which facilitates

the specification of the impact of aspects on the states and transitions of base class

objects and generation of abstract test cases. Xu and Xu [74] also investigated

reusing base class tests for testing AO programs. Their results show that some
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of the base class tests can be fully or partially reused, thereby reducing the cost

of testing aspects. However, the state model is defined only for individual classes

and aspects. In general, states are hard to model for multiple classes even if no

aspects are included. Xu and Xu [74] did not describe any implementation of their

approach, nor did they provide any empirical results.

Xu et al. [75] presented an AO model that consists of class/aspect diagrams

and sequence diagrams that describe the static structure and dynamic behavior,

respectively, of an AO program. To derive test cases, Xu et al. [75] presented

a procedure to weave the sequence diagrams for the methods of classes and the

advice of aspects and then generate an Aspect-Object Flow (AOF) tree from the

woven sequence diagram. In an AOF tree, each path from the root to a leaf repre-

sents a sequence of messages between objects and aspects. A backtrack reasoning

procedure is applied to derive test cases for each path that satisfy the collective

constraints along the path. The message sequence is used as the oracle for each

concrete test case. Using the AOF graph, Xu et al. [75] defined three test criteria:

1. Branch coverage criterion: Satisfied if and only if ∀e ∈ E, where E is the set

of edges in the graph, there exists at least one path p that contains the edge

e.

2. Polymorphic coverage criterion: Satisfied when for each abstract advised

method m of class Abs that is called in the sequence model, each implemen-

tation of m in the subclasses of Abs is exercised.

3. Loop coverage criterion: Satisfied if each loop in the sequence model is exe-

cuted for zero (bypassing the loop), one, or the maximum number of itera-

tions.

The work of Xu et al. [75] contributes in two directions, modeling AO programs
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for testing purposes and using sequence models for test generation. However, the

sequence models developed by Xu et al. [75] contain only messages to objects that

directly interact with the method under test. Their justification was that there is

no need to include indirect interactions since these will be tested using the sequence

models of the other methods. This decision limits the ability to test advices that

are woven depending on the calling context. However, the approach reduces the

number and length of paths, which in turn makes the test generation process easier.

Massicotte et al. [44] proposed an approach that generates test cases for AO

programs using three inputs: the collaboration models for system operations, the

aspects, and the base classes models. The approach consists of two phases. In

phase one, base classes are tested before weaving. The authors proposed to de-

rive test cases that satisfy two of the test criteria defined by Abdurazik and Of-

futt [1, 50], (1) transition coverage, which requires exercising each transition in

the collaboration model, and (2) complete sequence coverage, satisfied by testing

each message sequence in the model where a message sequence corresponds to a

scenario in the collaboration model. Massicotte et al. [44] developed a graph called

message control flow (MCF) graph which shows method calls in the collaboration

model. In phase two, aspects are added one by one by integrating the MCF graphs

of the advices in the message sequences that use advised methods. Based on the

resulting MCF graph, Massicotte et al. [44] defined three test criteria: (1) modi-

fied sequences criterion, which requires exercising each path that include messages

to intertype methods, (2) simple integration criterion, which requires exercising

paths that contain messages to advised methods, and (3) multi-aspects integration

criterion, which requires exercising each path that contain messages to methods

advised by more than one advice. Massicotte et al. [44] show examples on how

satisfying the above criteria can help in detecting faults in AO programs.
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Xu et al. [76] presented an approach to automate test code generation from

finite state machines for classes. The authors implemented their approach in a

tool called Model-based Aspect/Class Testing (MACT). The tool first generates

a transition tree from the class state model for a coverage criterion. The tester

then provides the tool with arguments for method invocation. The tool uses these

arguments and the transition tree to generate concrete test cases. The tool sup-

ports generating test cases for state coverage, transition coverage, and round-trip

coverage. Xu and Ding [73] used MACT to develop an approach for prioritizing

test cases generated by the tool. In their approach, test cases are prioritized by

identifying the extent to which an aspect modifies the base classes. Modifications

are measured by the number of new and changed components in a transition (i.e.,

start state, event, precondition, postcondition, and end state). Test cases that

execute higher number of modified or new state transitions have higher priority.

The authors evaluated their approach using mutation analysis. They manually

produced a number of mutants in each fault type of Alexander et al.’s [3] fault

model. Their results show that their prioritization of test cases can perform better

than arbitrary running the test cases and without decreasing effectiveness. The

authors measured performance by the index of the first test case that found the

fault.

Although there exists research on modeling AO programs (e.g., [33, 65, 75]), a

major concern about model-based testing for AO programs is the need of defining

constructs that are not part of any existing specification languages or modeling

languages. Thus, it is hard to automate the process of test generation and cover-

age measurement without having modeling tools for AO programs. Moreover, the

problem of using model-based testing remains that most software systems are not

formally or even informally specified. Furthermore, even when a program is speci-
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fied, model-based testing may not detect errors caused by implementation details

not addressed in the specifications [28].

3.1.3 Structural Testing

Lopes and Ngo [40] presented a framework that supports unit testing of the aspec-

tual behavior of aspects implemented in AspectJ. Aspectual behavior refers to the

behavior encapsulated in the advices and introduction parts of the aspect. The

framework consists of two components, Java aspect markup language (JAML) and

JamlUnit. JAML is an extensible language framework for programming aspects.

In JAML, aspectual behavior is encapsulated in regular Java classes. This allows

aspects to exist independent of any base classes, which might not be available when

aspects are developed. JamlUnit is a framework that facilitates building JUnit test

cases and provides a testing context for the aspects. JamlUnit uses mock objects

to provide a context in which aspects (written in JAML) can be tested. Lopes and

Ngo [40] provided examples on how their proposed approach can be used. However,

they did not define any testing requirements or test generation approaches.

Xie and Zhao [72] developed a framework called Aspectra, which automates the

generation of test inputs for unit testing of aspects. The use of Aspectra consists

of three steps: (1) produce bytecode that is suitable for the test generation tools,

(2) apply test generation tools on the bytecode and produce test cases, and (3)

define suitable test criteria and provide the means for measuring test coverage.

In the first step, Aspectra requires the tester to implement a base class in which

the aspect under testing (AUT) can be woven. However, in order to be able to test

the aspect, Aspectra has to ensure that all advices and advice methods have join

points in the base class. To do so, Aspectra synthesizes a wrapper class for the base

class. The wrapper class produces a wrapper method for each base class public

method (including intertype methods) and each public non-advice method of the
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aspect. The wrapper method invokes the corresponding class or aspect method.

In the second step, Xie and Zhao used two tools in order to generate state-

based test cases. The first tool, called Parasoft Jtest [58], is a unit testing tool

that generates JUnit test cases for obtaining structural coverage. The authors

used Parasoft Jtest to generate arguments for the wrapper class public methods.

The second tool, called Rostra [71], uses the test cases provided by Parasoft Jtest

to generate test cases that exercise each possible combination of non-equivalent

object states.

In the third step, Xie and Zhao defined two test criteria for testing aspectual

behavior: aspectual branch criterion, which requires exercising all branches in the

aspect bytecode at least once, and (2) interaction criterion, which requires exercis-

ing three types of interactions (i.e, calls) at least once: (a) from advised methods

to aspect methods, (b) from aspect methods to aspect methods, and (c) from as-

pect methods to advised methods. Xie and Zhao performed an empirical study on

12 AspectJ benchmarks to assess how the wrapper synthesis mechanism helps in

test generation. No results were given for the cost or effectiveness of the suggested

coverage criteria.

Harman et al. [27] presented an automated test generation approach for unit

testing of aspects. The approach relies on Aspectra [72] to provide a wrapper class

where the AUT is woven and aims to generate test cases that cover the aspectual

branch criterion using an evolutionary algorithm (i.e., a genetic algorithm). The

evolutionary algorithm repeatedly generates sets of test cases, called generations,

that have better fitness value (i.e., have better chance to achieve 100% aspectual

branch coverage) until either a set that covers the criterion is produced or an upper

limit of iterations is reached. Harman et al. [27] provided an implementation of the

test generation and aspectual branch coverage measurement, which they used to
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conduct an empirical study on a suite of 14 AspectJ programs. The study shows

that test cases produced by the evolutionary algorithm can achieve higher aspectual

branch coverage with less cost than random test case generation (in terms of the

number of iterations of test set generation required to achieve 100% coverage).

The results also show that covering aspectual branches requires less test cases than

covering the all-branches criterion in the AO program. The authors did not explain

the impact of the last result, nor did they evaluate the effectiveness of covering

aspectual branch in revealing faults.

3.1.4 Mutation Testing

Lemos and Lopes [38] presented an approach for testing pointcut expressions. The

authors identified four types of pointcut strength faults: (1) selection of a superset

of intended join points, (2) selection of a subset of intended join points, (3) selection

of a set that has has some intended and some unintended join points, and (4)

selection of a set that includes only unintended join points. They suggested using

structural testing for revealing unintended join points and performing mutation

testing for detecting neglected join points. The authors, however, did not define

any mutation operators or test criteria that can help in detecting such faults.

Ferrari et al. [22] introduced a mutation testing approach for AO programs.

The authors summarized AspectJ fault types based on previous works on AspectJ

fault modeling into four categories: (1) pointcut related faults, (2) intertype dec-

larations related faults, (3) advice related faults, and (4) base program related

faults. They defined a set of mutation operators for each fault type in the first

three categories and discussed the ability to generalize the AspectJ fault types to

other Java-based AO implementations. They conducted a cost analysis in which

they measured the cost of mutation testing using the number of generated mutants.

Generally, mutation testing is considered to be an expensive technique where the
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cost consists of three factors, the number of generated mutants, the cost of an-

alyzing the equivalent mutants, and the size of the test suite needed to kill the

mutants [45]. Ferrari et al. [22] also did not evaluate their mutants in terms of the

ability to develop effective test cases.

Anbalagan and Xie [6] proposed a framework that generates mutants for testing

the strength of a pointcut expression. Their approach generates mutants from two

sources, the pointcut under test, and a set of candidate join points in the base class

bytecode (i.e. statements or blocks of statements that can possibly be matched by

any pointcut). The mutants are generated by (1) inserting a wildcard in various

locations of the candidate join point or the pointcut naming part and parameters,

and (2) splitting the naming part of the join point into words that begin with

uppercase letters. A mutant is classified as weak if it matches more join points

than the original pointcut, neutral or equivalent if it matches the same join points

as the original pointcut, or strong otherwise. In order to reduce the number of

mutants, they defined a distance measure that is used to rank the mutants so

testers can use the mutants that are more relevant. However, the authors did not

perform a cost and efficiency analysis for the selected mutants.

Delamare et al. [16] presented a test-driven approach for developing pointcut

expressions in AspectJ, where the test cases can be used to validate that the join

points matched by the pointcut expressions are the intended ones. To do so, the

authors implemented a tool called AdviceTracer which can be used with JUnit

to determine at runtime which advice is executed and at which place in the base

program. This information is then used to build oracles that specifically target

the presence or absence of an advice. Delamare et al. [16, 17] also developed

a mutation tool, called AjMutator, which inserts seven different types of faults

based on seven mutation operators, defined by Ferrari et al. [22]. Delamare et
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al. [16] evaluated the ability of their approach for specifying expected join points

and for detecting pointcut expressions faults on two AspectJ systems. JUnit test

cases were produced using AdviceTracer and mutations were produced using the

AjMutator tool. The results show that the test cases were able to kill all the

mutants.

In a recent study, Ferrari et al. [23] developed a tool that implements a subset

of the mutation operators they suggested in their previous work [22]. The tool,

called Proteum/AJ, implements 3 more pointcut mutation operators than AjMuta-

tor, and also implements 2 advice declaration operators, 4 advice implementation

operators, and 5 intertype declaration operators. Proteum/AJ allows choosing

what operators to apply. The tool also runs JUnit test cases and computes muta-

tion score for a given test suite. The authors showed an example of how their tool

can be used to generate mutants, identify some of the equivalent mutants, run test

cases, and report mutation scores.

3.2 Data-flow Testing

Data-flow testing approaches for procedural, OO, and AO programs are summa-

rized in Sections 3.2.1, 3.2.2, and 3.2.3, respectively. Section 3.2.4 discusses existing

empirical studies on evaluating data-flow test criteria.

3.2.1 Data-flow Testing of Procedural Programs

Rapps and Weyuker [59] define a family of data-flow criteria and examine the rela-

tionships among them. They created a CFG annotated with def/use information

for each program unit (i.e., main program, procedure, or function) and defined

seven data-flow criteria: all-nodes, all-edges, all-defs, all-p-uses, all-c-uses/some-

p-uses, all-p-uses/some-c-uses, and all-uses. Rapps and Weyuker [60] added two
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criteria: all-du-paths which requires exercising every def-clear path with respect to

each variable, and all-paths which requires exercising every path in the program.

The all-du-paths criterion differs from the all-uses in requiring all def-clear paths

to be exercised for each DUA. Therefore, all-du-paths subsumes the all-uses cri-

terion. Since exercising all paths in the CFG includes traversing all nodes, edges,

and def-clear paths in the CFG, all-paths subsumes all control and data-flow test

criteria.

Rapps and Weyuker [59, 60] did not make a distinction between atomic data

such as integers, and structured or aggregate data such as arrays and records. Defs

or uses of an element of a structured datum are regarded as defs or uses to the

whole datum. Hamlet et al. [26] argued that treating arrays as aggregate values

leads to mistakes of commission when DUAs are identified that are not present

for any array element, and mistakes of omission when a path is missed because

of a false intermediate assignment (e.g., when swapping array elements). Treat-

ing elements of structured data as independent variables can correct the mistakes.

Such an extension seems to add no complexity when the references to the elements

of structured data are static (i.e., fields of records or objects). However, treating

arrays element-by-element may potentially introduce an infinite number of DUAs

to be tested. Moreover, as Rapps and Weyuker [59, 60] pointed out, whether two

references to array elements are references to the same element is an undecidable

problem. Hamlet et al. [26] proposed a partial solution to this problem by us-

ing symbolic execution and a symbolic equation solver to determine whether two

occurrences of array elements can be occurrences of the same element.

Hutchins et al. [32] addressed the problem of data-flow analysis of dynamic data,

which was not taken into account by the early work of Rapps and Weyuker [59, 60].

One of the difficulties of dynamic data such as those referred to by pointers is that
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a pointer variable may actually refer to a number of data storage locations. On the

other hand, a data storage location may have a number of references to it (i.e., the

existence of aliasing). They defined the all-DUs criterion which requires exercising

all DUAs in the CFG (similar to the all-uses criterion). However, Hutchins et

al. [32] defined a use as every access to a memory location regardless of being a

p-use or a c-use, a def is every write to a memory location. Both defs and uses

are defined for named or dynamically allocated memory locations. Since Hutchins

et al. [32] do not distinguish between c-uses and p-uses, satisfaction of all-DUs

criterion does not not subsume the all-edges criterion (unlike all-uses) and is not

comparable (in terms of subsumption relations) to the data-flow criteria of Rapps

and Weyuker [60, 59].

Ostrand and Weyuker [54] addressed the problem of dynamic data by introduc-

ing the concepts of possible or definite def or use of a variable. For a given variable

v, def (or use) of v is definite if static analysis determines that the object being

defined (or used) is unambiguously variable v. Otherwise, the def or use is con-

sidered possible. Similarly, a path may be definitely def-clear or possibly def-clear

with respect to a variable. Ostrand and Weyuker [54] extended the DUA relation

on the occurrences of variables to a hierarchy of relations. A DUA is strong if there

is a definite def of a variable and a definite use of the variable and every def-clear

path from the def to the use is definitely def-clear with respect to the variable.

The association is firm if both the def and the use are definite and there is at least

one path from the def to the use that it is definitely def-clear. The association is

weak if both the def and the use are definite, but there is no path from the def

to the use which is definitely def-clear. An association is very weak if the def or

the use or both of them are possible instead of definite. Ostrand and Weyuker [54]

then defined four versions of the all-uses criterion: strong all-uses, firm all-uses,
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weak all-uses, or very weak all-uses depending on the type of associations they

measure. Since the four types of DUAs are disjoint, the four types of criteria can

be satisfied independently.

Harrold and Soffa [29, 30, 31] introduced an approach for testing the data-flow

interaction between procedures. They identified two types of data dependency

across procedure interfaces. Direct dependencies exist when either a def of an

actual parameter in one procedure reaches a use of the corresponding formal pa-

rameter in a called procedure, or a def of a formal parameter in a called procedure

reaches a use of the corresponding actual parameter in the calling procedure. In-

direct dependencies are similar to direct dependencies except that multiple levels

of procedure calls and returns are considered. Indirect data dependencies can be

determined by considering the possible uses of a def along the calling sequences.

When a formal parameter is passed as an actual parameter at a call site, an in-

direct data dependence may exist. Harrold and Soffa [29, 30, 31] proposed an

algorithm for computing interprocedural data dependencies. The algorithm has

four steps: (1) construction of subgraphs to abstract control-flow information for

each procedure in a program, (2) construction of an Interprocedural Flow Graph

(IFG) to represent the interprocedural control-flow in the program, (3) propagation

throughout the IFG to obtain interprocedural information, and (4) computation

of the interprocedural DUAs.

Given the interprocedural DUAs, the data-flow testing criteria can be ex-

tended to support interprocedural data-flow testing. Pande et al. [56] proposed

a polynomial-time algorithm, called PLR, for determining interprocedural DUAs

including dynamic data of single-level pointers for C programs.
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3.2.2 Data-flow Testing of OO Programs

Harrold and Rothermel [28] introduced a model for performing data flow testing on

classes where they defined three levels of testing DUAs for state and local variables

of primitive data types: (1) intra-method testing, which tests DUAs defined within

individual class methods, (2) inter-method testing, which tests DUAs that result

from a call to a public method of the class along with the methods in its class

that the method calls directly or indirectly, and (3) intra-class testing, which tests

DUAs that result from sequences of calls to public methods of the class. The

authors provided a program representation that allows data-flow analysis using a

class call graph, a class control-flow graph (CCFG), and a framed CCFG.

A class call graph represents the call relationships among class methods where

vertices represent methods and arcs represent method calls. The class call graph

is enclosed in a frame that represents a driver for the class. The frame provides

calls to the public methods of the class. The CCFG, also called interprocedural

control flow graph (ICFG) [46, 78], is constructed by replacing the call vertices by

a method entry vertex and a method return vertex in the class call graph. Finally,

a framed CCFG is constructed by connecting each method entry vertex to the

corresponding method CFG and each return vertex to the corresponding method

exit vertex. The authors suggested using the PLR algorithm [56] to find the DUAs

for the three testing levels.

Buy et al. [13] developed a technique for the automation of class testing. The

approach is based on producing sequences of method calls using data-flow analysis,

symbolic execution, and automated deduction. Data-flow analysis is applied to the

CCFG to identify pairs of methods that define and use the same instance variable.

Only primitive variables of a class are considered. Symbolic execution is used to

find the set of conditions related to the execution of a path. Finally, automated
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deduction is applied to identify sequences of method calls that exercise the DUAs

found by data-flow analysis using the preconditions and post-conditions found by

the symbolic execution phase.

Marteno et al. [42] extended the above approach to account for state variables

that are instances of, or references to, objects of other classes. In the data-flow

analysis phase, for each class, starting from simplest ones (i.e., classes that do not

contain any aggregated objects), each method of the class is classified into three

types: (1) inspector methods, which only access the state variables, (2) modifier

methods, which define state variables, and (3) inspector-modifier methods, which

can both define and access the state variable. Using the inheritance hierarchy

of each class that contains instances of other classes, calls to modifier methods

are considered to be defs while calls to inspector methods are considered to be

uses. Calls to inspector-modifier methods might be defs or uses depending on the

path taken when the method is called. As pointed by the authors, even for pure

inspector or modifier methods, the approach needs to determine whether the path

taken when the method is executed contains a def or a use of a state variable.

However, such information cannot be obtained by static analysis alone since it

depends on the state of the object that can only be known at run time.

Orso [52, 53] introduced a technique for testing interactions among classes in the

presence of polymorphism. Testing OO programs in the presence of polymorphism

and dynamic binding is challenging since the actual bound methods cannot be

statically identified. Faults can result in either isolated polymorphic calls or in

combined polymorphic calls along the execution path. The technique presented by

Orso [52, 53] is composed of two steps: the identification of an integration order,

and the incremental testing of the polymorphic interactions while adding classes

to the system. Orso [52] defined DUAs that occur in polymorphic methods, and
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used the DUAs to define different test criteria (i.e., all-uses, all-defs).

Chen and Kao [15] describe an approach to testing OO programs called object

flow testing. In their approach, they identify and test possible object bindings that

can occur within a method. The idea is to identify the DUAs that occur within a

method, and also between pairs of methods that are invoked from the same caller.

They defined two criteria that impose testing requirements on a method: (1) all-

bindings, requires executing each possible binding of each object at least once, and

(2) all-du-pairs criterion which requires that every def-clear path between every

def of an object and every use of that object be tested at least once.

Alexander and Offutt [4, 5] described techniques for analyzing and testing the

polymorphic relationships that occur in OO software. Their approach is based

on previous work by Jin and Offutt [35], which presents an approach to inte-

gration testing of OO software based on coupling relationships among procedures.

Coupling-based testing (CBT) uses three types of coupling relations between meth-

ods: (1) parameter couplings, which occur whenever one procedure passes param-

eters to another, (2) shared data couplings, which occur when two procedures

reference the same non-local variable, and (3) external device couplings, which

occur when two procedures access the same external storage device [5]. Coupling

sequences are calls to methods that have coupling relations. Alexander and Of-

futt [5] defined four data-flow test criteria that handle coupling and polymorphism

relations.

Souter and Pollock [63] proposed a contextual data-flow analysis algorithm

for classes. Contextual defs and uses for objects that are part of an aggregation

relation are defined as a chain of method calls leading from the original call site to

the def or use of the object. Contextual DUAs can add increased coverage since

multiple contextual DUAs can be defined for the same context-free association.
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Denaro et al. [19, 20] suggested performing contextual testing of state variables by

using the algorithm of Souter and Pollock [64] to define the DUAs of state variables

as defined by Harrold and Rothermel [28] (i.e., by considering only defs and uses

that reach method boundaries, thereby reducing the complexity of computing the

contextual DUAs).

Rountev et al. [62] presented an approach for data-flow analysis for OO pro-

grams that are built on top of pre-existing library components. Performing data-

flow testing on such OO programs requires having the control and data flow in-

formation available for the tester. Even if such information is available, the cost

of combining the CFGs of library methods with the analyzed program is likely

to be high. Rountev et al. [62] suggested building summary information for the

pre-existing library methods that capture the effects of all relevant library-local

ICFG paths. Depending on the interaction between the analyzed program and the

library, library-local ICFG paths are integrated with the analyzed program ICFG.

3.2.3 Data-flow Testing of AO Programs

Zhao [80] introduced a data-flow unit testing approach for AO programs which is

based on the data-flow model of Harrold and Rothermel [28]. However, instead of

considering the class as the unit of testing, Zhao [80] defined two units of testing in

AO programs: (1) an aspect together with those methods whose behavior may be

affected by the aspect’s advices (called clustering aspect), and (2) a class together

with the advices that may affect its behavior and introductions that may introduce

some new members to the class (called clustering class). A CFG is built for each

method in a clustering aspect or class. For advised methods, the CFG of the advice

is merged into the CFG of the method. Algorithms similar to the ones introduced

by Harrold and Rothermel [28] are used to produce a class call graph, CCFG, and

framed CCFG.

33



Zhao [80] suggested three levels of testing: (1) Intra-module level testing, which

requires testing DUAs within the advised method, class methods, and aspect non-

advice methods, (2) Inter-module testing, which requires testing DUAs that results

from a call to a public module along with some other modules (methods) it calls,

directly or indirectly, and (3) Intra-aspect or intra-class level, which requires test-

ing DUAs that results from sequences of calls to the class or aspect public modules.

Zhao [80] did not define specific criteria for any of the levels or provide any imple-

mentation for program representation or test generation. Although not explicitly

stated, the testing approach seems to consider only variables of primitive types.

Zhao [80] did not show how to handle around advices, dynamic pointcuts, multiple

advices applied to the same join point, and pointcuts that depends on the control-

flow context (e.g., pointcuts that use designators like cflow, cflowbelow). In more

recent work, Zhao [81] added more details about constructing the AO program

CFG but did not give any solution to the above problems.

Rinard et al. [61] presented a classification system and analysis for AO pro-

grams. They identify four types of interactions that occur between methods and

advices executed after a join point: (1) augmentation, where the entire body of

the method is always executed, (2) narrowing, where either the entire body of the

method executes or none executes, (3) replacement, where the method does not

execute at all, and (4) combination, where the method and aspect combine in some

way to produce new behavior (e.g., around advices with proceed, cflow).

Rinard et al. [61] associated a scope with each advice and method. A scope

identifies the correspondence between the concern (method or advice) and accessed

object fields. The authors defined four types of scopes: (1) independent, where the

advice does not write a state variable that the method reads and the method does

not write a state variable that the advice reads, (2) observation, where the advice
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reads state variables that the method writes, (3) actuation, where the advice may

write state variables that the method may read, and (4) interference, where the

advice and method may write the same state variable. This classification helps in

understanding how the advice affects the base class methods and whether object

states can be modified by the aspects. The authors performed escape and pointer

analysis to determine how objects are affected when passed to advices. Escape

analysis determines all the places where a pointer or object can be stored and

whether the lifetime of the pointer or object can be proven to be restricted only

to the current advice or method [63]. While Rinard et al. [61] did not present

a testing approach, their work helps in understanding the data-flow interaction

between aspects and base classes.

Lemos et al. [39] proposed three control and data flow criteria for testing AO

programs. They developed a tool called JaBUTi/AJ that parses the bytecode of

the class under test and derives a data flow graph called aspect-oriented def-use

(AODU) graph for each module, where a module can be a method, an advised

method, a constructor, an advice, or an intertype method.

A node in the AODU graph represents a block of bytecode instructions that

are always executed together. Edges represent either normal control-flow (called

regular edges), or edges that are executed when an exception is triggered (called

exception edges). Sets of nodes and edges that can be reached by paths that do

not contain any exception edge are called exception-independent nodes or edges,

respectively; otherwise, the nodes or edges are called exception-dependent. A node

in the set of exception-independent nodes is called a crosscutting node if it contains

bytecode instructions that represent a join point. Similarly, exception-dependent

edges are called crosscutting edges (c-edges) when either the source or the target

node is crosscutting.
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The AODU graph is used to define the test criteria. The authors divided

the traditional all-edges and all-nodes control-flow criteria into three types each

corresponds to an edge or node type. Thereby, Lemos et al. [39] suggested the

following two control-flow criteria:

• All-crosscutting-nodes (all-nodesc) Criterion: Requires executing each cross-

cutting node in the AODU graph at least once.

• All-crosscutting-edges (all-edgesc) Criterion: Requires executing each cross-

cutting edge in the AODU graph at least once.

Similarly, the authors defined the following data-flow criterion.

• All-crosscutting-uses (all-usesc): Requires exercising each def-use pair whose

uses are in a crosscutting node at least once.

The all-usesc criterion requires testing the advised method’s local variables that

have uses in the advice, which can only occur if the advice receives parameters from

the method. The criterion does not require testing local variables that might be

modified by the advice since this is required by the all-uses criterion of the method

(i.e., if the advice returns a value that is assigned to a method local variable). Class

state variables that have uses or defs in the advices are beyond the scope of Lemos

et al. [39] work. Also their JaBUTi/AJ tool can only handle variables of a scalar

type.

Xu and Rountev [78] proposed a framework for source-code interprocedural

data-flow analysis of AspectJ programs called AJANA. The framework contains

an algorithm that is based on an earlier work of Xu and Rountev [77] that builds

an ICFG for AspectJ programs and is modified by adding data-flow information.

An ICFG contains: (1) CFGs that model the control flow within classes, within

aspects, and between aspects and classes through non-advice method calls, and (2)
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interaction graphs (IGs) that model the interactions between methods and advices

at join points. The ICFG is capable of modeling multiple advices that apply

at the same join point and modeling dynamic advices. The AJANA framework

provides the essential representation for performing data-flow testing on the three

levels suggested by Zhao [80]. In particular, using object effect analysis, data-flow

analysis can be performed on the object that is passed to an advice at a join point

(i.e, the object that has an advised method at the join point).

As pointed by Xu and Rountev [77, 78], performing data-flow analysis at the

source code level has several advantages over doing it at the bytecode level. First,

the mapping between the source code and bytecode entities depends on the weaving

compiler used; different compilers or even different versions of the same compiler

can create different mappings. Second, source code analysis can be performed

before weaving and can thus provide information about the effects advices have

on the base code. When performing analysis at the bytecode level, the bytecode

of the base classes before weaving cannot be obtained unless the Java code is

compiled again. Third, source code level analysis produces more accurate and

easier to visualize results. In the bytecode level, there are many details added

by the compiler, which are not needed for the data-flow analysis. Finally, the

settings of the Java and AspectJ compilers have an effect on the produced bytecode,

which complicates the bytecode level analysis. However, performing bytecode level

analysis is especially useful when the source code of the software is partially or

completely not available [68].

3.2.4 Empirical Studies on Evaluating Data-flow Test Cri-
teria

In this section, empirical studies on evaluating data-flow test criteria are discussed.

Since there are no such studies for AO programs, the discussion is limited to studies
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on procedural and OO programs. The empirical studies aim to evaluate the cost

and effectiveness of the coverage criteria. In the following discussion, unless other

measures are specified, cost is measured in terms of the size of the test suite

required to satisfy the criterion and effectiveness is measured by the number of

faults detected by the test suite.

Frankl and Weiss [25] performed one of the first empirical studies where the

all-uses and all-edges criteria are compared with each other and with random test

suites (null criterion). The study was performed on nine small programs written

in Pascal for which the authors had access to real faults. Comparisons are done

using hypothesis testing using the proportion of adequate test suites that expose a

specific fault as the dependent variable. Test suites were generated from a large test

pool developed for each subject program. Logistic regression was used to model the

relationship between the probability of finding a fault and two covariates: coverage

level and test suite size. Results showed that the all-uses criterion was significantly

more effective than all-edges in five of the nine subjects, and significantly more

effective than the null criterion for six of the nine subjects. In contrast, in those

subjects in which all-edges was more effective than the null criterion, it was usually

only a little more effective. The results also show that reaching 100% coverage for

the all-uses criterion after excluding unexecutable DUAs can significantly improve

the effectiveness of the criterion.

Hutchins et al. [32] performed a study to investigate the effectiveness of both

all-DUs and all-edges on seven moderate size C programs. Ten experienced pro-

grammers manually seeded faults (130 overall) for which test pools of sizes ranging

from 1067 to 5548 were generated to ensure that each reachable coverage unit (edge

or DUA) was covered by at least 30 test cases. Test cases were randomly selected

from the test pool. If a selected test case increased the coverage achieved by the
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previously selected tests, it was added to the test set. Fault detection effectiveness

was measured as the proportion of test suites, within each 2% coverage interval

or 2 size units, that detected the fault in a faulty program version. Hutchins et

al. [32] reported that fault detection for both all-DUs and all-edges increased

exponentially with the coverage level. The gain in fault detection is particularly

significant in the last 10-20% coverage. The All-DUs criterion is more effective

than all-edges criterion but is also more expensive.

Mathur and Wong [2, 69, 70] studied the subsumption relationship, and rela-

tive cost and effectiveness of the all-uses and mutation criteria. They show that

mutation and all-uses cannot be compared using the strict subsumes relation.

Therefore, they defined a relation called ProbSubsumes, which is a probabilistic

definition of the subsumes relation and is restricted to a specific program. Mathur

and Wong [2, 69, 70] used a suite of five faulty programs and used a tool for

generating test cases. For each criterion, they produced 30 test sets that satisfy

the criterion. Their results indicate that mutation criterion is stronger than (i.e.,

ProbSubsumes) all-uses criterion and is more effective. However, the mutation

criterion cost more.

Offutt et al. [51] reported the results of a comparison study between the all-

uses and mutation criteria for unit testing (i.e., methods). The authors compared

the subsumption relation, and the relative cost and effectiveness of the two criteria

using 10 small Fortran and C programs. They produced five independent test

sets for each criteria. Mutation operators, different from the ones used to produce

the mutants, were used to inject faults in the programs. The results show that

mutation ProbSubsumed the all-uses criterion. Mutation was also more effective

but cost more.

Frankl and Iakounenko [24] reported a sharp increase in fault detection in the
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last 10% coverage for the all-uses and all-edges criteria. They tested larger C

programs than the ones used in the above studies. Their results complement the

results obtained by Frankl and Weiss [25].

Andrews et al. [8] reports the results of an empirical study performed on one

industrial program with known system testing faults. The authors investigate

the feasibility of using mutation analysis to assess the cost-effectiveness of four

control and data flow criteria (all-nodes, all-edges,all-p-uses, and all-c-uses). The

results show that mutation analysis is potentially useful to assess and compare

test suites and criteria in terms of their cost-effectiveness by showing that the

results are similar to what would be obtained with actual faults. The authors also

investigated the relative cost and effectiveness of the above four criteria in terms

of fault detection, test suite size, and control/data flow coverage. The results

indicate that none of the four criteria is more cost-effective than the other. More

demanding criteria, such as all-p-uses and all-c-uses, require larger test suites that

detect more faults. In other words, their relationships between fault detection

and test suite size are similar. However, their cost varies significantly for a given

coverage level.
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Chapter 4

A Revised Fault Model for AO
Programs

Several fault models for aspect-oriented programs have been proposed in the liter-

ature [3, 9, 14, 22, 67]. Ferrari et al. [22] presented a summary that combines all

the fault types from previous studies as well as faults that the authors identified.

However, the resulting fault model can be improved in several ways. First, as

the authors themselves stated, inclusion relations between these faults were not

studied (i.e., some of the fault types can overlap). Second, the summary did not

include fault types corresponding to incorrect data-flow interactions in a program.

We define a fault type using a pattern-like description. With each fault type,

we specify fault type name, constructs that can contain the faults, and the effect

of these faults on the program.

We classify the fault types into four categories in a similar way as Ferrari et

al. [22] did, but with some modifications: (1) pointcut descriptor faults, (2) aspect

declaration faults, (3) advice, aspect method, and intertype method implemen-

tation faults, and (4) class implementation faults. We made three modifications.

First, we moved the advice declaration faults that were present in category 3 to

category 2 because we wanted to keep the declaration faults and implementation

faults in two separate categories. Different mutation tools are used to generate the
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faults in these two categories. Second, we included faults that occur in intertype

methods and aspect methods in category 3, which already included faults in the

advice implementation. Third, we added new fault types resulting from incorrect

data-flow interactions to categories 3 and 4 in the fault model.

4.1 Pointcut Descriptor Faults (F1)

Faults in this category occur in the descriptor of a pointcut. The fault types are

as follows:

• (F1-1) The pointcut matches a set of join points that contains only unin-

tended join points [38].

• (F1-2) The pointcut matches a set of join points that contains unintended

join points and some intended join points [38].

• (F1-3) The pointcut matches all intended join points and some unintended

join points [38].

• (F1-4) The pointcut matches a subset of intended join points and no unin-

tended join points [38].

Lemos et al. [38] identified four types of faults that can occur in a pointcut

descriptor. These fault types were also adopted by Ferrari et al. [22] and Delamare

et al. [17]. The fault types are defined according to the set of join points matched

by the pointcut, and these are the first four types in our revised fault model. A

special case of F1-1 and F1-4 occurs when the pointcut does not match any join

point. In our study we treat this case separately and refer to it as F1-5.

van Deursen et al. [67] defined three faults types which Ferrari et al. [22]

adopted. However, their fault types overlap with the fault types we kept in the
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revised model. For example, the fault type “incorrect use of primitive pointcut

designator” or the fault type “incorrect pointcut composition rules”, can generate

a different set of join points than the intended one, and thus, overlap with any of

the fault types, F1-1 through F1-5. In order to prevent overlapping faults, we do

not include Deursen et al.’s fault types separately . Baekken and Alexander [9]

described a fault model for pointcut descriptors based on the constructs that cause

the fault. That is, for every construct, the authors enumerated all possible faults

that might occur. These fault types are subsumed by our revised fault types.

Pointcut descriptor faults can produce several effects on the program. Matching

an unintended join point adds a behavior in an unexpected point in the program,

and may cause incorrect changes in the control-flow of the matched method, in-

correct changes in the object state, and failure to obey the post-condition of the

method where the join point is matched. Missing a join point may result in an

incorrect implementation of the crosscutting concern.

Pointcut descriptor faults can be generated by any pointcut designator, logical

operator, or parameters used in a pointcut description. Baekken and Alexander [9]

described these constructs in detail. The pointcut fault model can be used to define

pointcut mutation operators that generate the faults types in the revised model.

4.2 Aspect Declaration Faults (F2)

In this category, we combine the faults that occur in different declaration state-

ments used in an aspect. These include intertype declarations, aspect precedence,

and advice declarations. The revised fault types are:

• (F2-1) Incorrect method name in introduction, leading to a missing or unan-

ticipated method override [67].

• (F2-2) Incorrect class name in a member-introduction [67].
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• (F2-3) Incorrect declaration of parent class or interface.

• (F2-4) Incorrect declaration of error and warning statements [22].

• (F2-5) Incorrect aspect precedence [67, 3].

• (F2-6) Incorrect aspect instantiation rules and deployment [22].

• (F2-7) Incorrect advice type specification [67, 22].

• (F2-8) Advice bound to incorrect pointcut [22].

Fault type F2-1 occurs when an intertype method unintentionally overrides a

method in the class. The fault is limited to inherited methods because AspectJ

does not allow overriding methods defined in the class by intertype methods. Cec-

cato et al. [14] defined a fault type which they described as “Incorrect changes

in polymorphic calls” that occurs when an aspect incorrectly overrides a method

inherited from a superclass. We do not include Ceccato et al.’s this fault type since

it is actually an effect of a fault of type F2-1.

F2-2 faults occur when the intertype method is defined in a wrong class. Similar

to F2-1, F2-2 faults can also have the effect of incorrect changes in polymorphic

calls, and can also have the effect of having a method body in the wrong place in

the class hierarchy [67].

Type F2-3 faults occur when the aspect declares incorrect parent classes or

interfaces to the classes. The effects of this fault include incorrect changes in the

class hierarchy, inconsistent parent declaration, or inconsistent overridden method

introduction. The last two effects were defined as fault types by van Deursen et

al. [67].

Type F2-4 faults occur in the declare warning or declare error statements,

using which, a developer can instruct the compiler to issue a warning or error at
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specified locations in the program. An incorrect use of these statements can cause

failures in the implementation of both the core and base concerns.

Type F2-5 faults occur in the statement declare precedence, which specifies the

order in which advices that match the same join point must be executed. This fault

type can result in (1) a failure to preserve advised method post-conditions, (2) a

failure to obey advice pre-conditions, and (3) a violation of object state invariants.

Type F2-6 through F2-8 faults occur in the advice declaration statement. A

type F2-6 fault occurs when the developer incorrectly sets the aspect instan-

tiation rule. By default, an aspect has exactly one instance that cuts across

the entire program. However, AspectJ allows using different aspect instantia-

tion rules using the aspect declaration statement (e.g., per executing object using

perthis(Pointcut)) [22]. An incorrect use of such a declaration causes a failure to

preserve the advised method post-condition.

Type F2-7 faults occur when a developer incorrectly specifies the advice type,

such as by using before instead of after. A type F2-8 fault occurs when a developer

associates the advice with the incorrect pointcut. For example, instead of associ-

ating the advice to the pointcut that matches the class constructors, the advice is

associated with the pointcut that matches the class method. Type F2-7 and F2-8

faults might cause a failure in preserving the advised method’s post-condition, a

violation of a state invariant, an incorrect change in data and control dependencies,

and incorrect object states used in advices and methods.

4.3 Advice, Aspect Method, and Intertype Method

Implementation Faults (F3)

Several prior fault models contained faults types in category F3, and were also

adopted by Ferrari et al. [22]. However, three of the fault types were defined based
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on the effects of the faults. The first type was defined by Zhang and Zhao [79]

as “infinite loop resulting from interactions among advices”, which they described

as resulting from “the accidental matching of unexpected join point”. This fault

type is caused by matching unintended join points. The other two types, which

were defined by Alexander et al. [3], are “incorrect control or data flow changes”,

and “violating state invariant and failing to establish expected post-conditions”.

These are also caused by faults that can occur in a pointcut descriptor, an aspect

declaration, or an advice implementation.

The revised fault types are as follows:

• (F3-1) Incorrect guarding statement or missing proceed in around advice [67]:

This fault type occurs when the proceed statement in an around advice is

missed or the guarding condition to call the statement is incorrect.

• (F3-2) Incorrect altering of base class object state variables: An advice has

access to the state variables of the base class instances using the designators

this and target. We added this fault type to include faults that can occur

due to incorrect data-flow interactions in the aspect-oriented program.

• (F3-3) Intra-advice level faults: These faults occur when the functionality of

an advice is implemented incorrectly. They are similar to the method level

faults described by Ma et al. [41] for Java methods.

• (F3-4) Incorrect access to join point static information [22]: This fault type

occurs when the construct, thisJoinPoint, is incorrectly used.

The effects of this category of fault types are summarized in Table 4.1.

46



Table 4.1: Effects of advices, aspect methods, and intertype methods implemen-
tation faults

Type Effects

F3-1 Failure to obey advised method’s post-condition
Violate state invariants
Incorrect changes in data dependencies
Incorrect object state used in advices and methods

F3-2 Failure to obey advised method post-condition
Incorrect changes in data and control dependencies
Incorrect object state used in advices and methods

F3-3 Failure to obey advised method post-condition
Violate state invariants
Incorrect changes in data dependencies
Incorrect object state used in advices and methods

F3-4 Failure to obey advised method post-condition

4.4 Class Implementation Related Faults (F4)

We classify faults in this category as follows. First, we define new implementa-

tion faults that are specific to aspect-oriented programs. These are fault types

F4-1 and F4-2, which result from incorrect data flow interactions. Second, we add

object-oriented fault types that can occur in Java programs. Finally, we include im-

plementation faults that can occur in procedural programming (i.e., intra-method

faults).

• (F4-1) Passing an object in an unexpected state to an advice: An advice

can expect the objects of the base class at a join point to be in a certain

state. Failure to pass an object with the expected state causes an incorrect

behavior during advice execution.

• (F4-2) Arguments passed to the advices have incorrect values: An advice

might require the passed arguments to obey certain pre-conditions. A fault

can be caused by an advised method or another advice that alters these
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values and passes the incorrect values to an advice, which causes the advice

to behave incorrectly.

• (F4-3) Object-oriented faults: These are faults that occur in object-oriented

implementations as described by Ma et al. [41] and include: access control,

inheritance, polymorphism, overloading, and Java-specific features. The last

type refers to Java language features that do not occur in other object-

oriented languages. In this paper we report all object-oriented related faults

as one type.

• (F4-4) Intra-method level faults: These faults occur when the functionality

of a method is implemented incorrectly [41]. We used the faults described

by Ma et al. [41].

Table 4.2 shows the effects that may result from class implementation faults.

Table 4.2: Class implementation faults and their effects

Type Effects

F4-1 Failure to obey advised method post-condition
Incorrect object state used in advice and method

F4-2 Failure to obey advised method post-condition
Violate state invariant

F4-3 Incorrect implementation of the core concern

F4-4 Incorrect implementation of the core concern
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Chapter 5

Approach

This chapter presents the AOSV test criteria, which require testing different types

of data-flow interactions for state variables in an advised class. In Section 5.1, we

describe the advised class representation we used to define the different types of the

state variable DUAs. We present the AOSV data-flow test criteria in Section 5.2.
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5.1 Class Representation

The data-flow test criteria described in this chapter are defined using a framed

ICFG for AO programs. The framed ICFG is obtained by adding a call frame

to the ICFG produced using AJANA [78]. We begin by describing how AJANA

produces the ICFG for AO programs. The description is demonstrated using the

Kettle program shown in Figures 2.1 through 2.3.

5.1.1 How AJANA Works

AJANA constructs the CFGs of the methods and advices in the AO program. The

CFGs of advised methods are then merged with the CFGs of the corresponding

advices using interaction graphs (IG). The IGs model the interaction between

methods and advices at join points. An IG is built for each join point. The role

of the IG is similar to that of the call graph in OO programs. A call graph shows
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methods calling other methods.

The steps performed at each join point that matches a before or an after advice

are: (1) call-site and return-site nodes are inserted in the CFG of the advised

method, (2) the call-site node is connected with entry node in the CFG of the

matched advice, and (3) the exit node in the CFG of the matched advice is then

connected to the return-site node. Figure 5.1 shows the steps performed to obtain

the CFG of the advised default constructor in class Kettle.

For around advices, the CFG of the around advice replaces the CFG of the

advised method. If the around advice contains a proceed statement, the CFG of

the advice is connected to the CFG of the advised method using a call-site and

return-site nodes. Figure 5.2 shows the steps performed to obtain the CFG of the

advised method, addWater. Starting from the CFG of the aroundAdd advice, we

first add call-site and return-site nodes for advice afterHeat, advice afterSafety,

and method addWater. After that, we connect the call and return sites with the

CFG’s of the corresponding advices and method.

5.1.2 Extending AJANA

The ICFG shows what methods and advices are invoked from a single call to

each method and constructor of the class. Figure 5.3 shows the ICFG of the

Kettle class. Using an ICFG, inter-procedural and intra-method DUAs can be

found. For an AO program, this includes DUAs that are defined within the scope

of an advised method (e.g., DUA < waterAmount,H26, S6 > in Figure 5.3).

However, obtaining intra-class DUAs requires having paths between the CFGs of

the class public methods (whether advised or not). For example, consider the

DUA < waterAmount,H26, H18 > in Figure 5.3. This DUA cannot be defined

unless we have a path that connects the CFGs of method addWater and method

pourWater. For OO programs, Harrold and Rothermel [28] proposed the use of a
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Figure 5.3: ICFG of the Kettle AO program.

frame that provides paths between public methods. For AO programs, Zhao [80]

proposed the use of a frame for the ICFG created for the class and the aspect. The

frame provides possible subsequent calls to the class public methods.

Since AJANA does not provide such a frame, we constructed a frame by adding

the following nodes and edges to the ICFG:

• Frame entry node, which represents the entry to the frame and has frame

edges to the entry nodes of the CFGs of the public constructors of the base

class.

• Frame exit node, which represents exiting from the frame. Each exit node

in the CFGs of the base class public methods and constructors have frame

edges connected to the exit frame node.

• Frame edges, which connect the exit node of the CFG of each public method

and constructor to the entry node of the CFG of every public method or

constructor.

Figure 5.4 shows the framed ICFG for the Kettle class. In the figure, a regular
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CFG edge is shown as a solid line while a frame edge is shown as a dashed line.

With the frame, the DUA <waterAmount,H25,H17> can be defined because of the

frame edge that connects the CFGs of the method, addWater, and the method,

pourWater. Methods introduced by aspects (e.g., method readTemperature) are

treated as any other method of the base class. Due to space limitations, the figure

shows only some of the defs and uses of the kettle state variables.
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5.2 AOSV Test Criteria

Data-flow interaction using parameter passing produces DUAs where passed pa-

rameters have defs in the advised methods and uses in the advices (i.e., the passed

parameters defined in the advices do not reach uses in the advised methods). The

all-usesc criterion suggested by Lemos et al. [39] requires covering such interac-

tions. The proposed data-flow test criteria require covering interactions that are
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based on state variables. The criteria also require covering data-flow interactions

between aspects in an AO program.

Taking into account the scope classification described by Rinard et al. [61],

we define the following DUAs for state variables in AO programs (called AOSV-

DUAs):

1. Observation DUAs (oDUAs). Advices might use state variables that the

methods define. In Figure 5.4, the def of state variables size and water-

Amount at statements K11 and K12 in the Kettle class reach their uses in

statement H25 in the HeatControl aspect. Therefore, <waterAmount, K12,

H25>, and <size, K11, H25> are both oDUAs.

Formally, an oDUA is a triple < v, d, u > where d is a node in the CFG of a

method that contains a def of a state variable v ; u is a node in the CFG of

an advice or aspect method that contains a use of v, and there is a def-clear

path between d and u for v in the framed ICFG of the AO program.

2. Activation DUAs (aDUAs). Methods might use state variables that the

advices define. For example, in the framed ICFG in Figure 5.4, both around

advices have defs for state variable waterAmount that can be reached in

method addWater. Therefore, <waterAmount, H26, K17>, <waterAmount,

H19, K17> are both aDUAs.

Formally, an aDUA is a triple < v, d, u > where d is a node in the CFG of an

advice or aspect method that contains a def of state variable v ; u is a node

in the CFG of a method that contains a use of v, and there is a def-clear

path between d and u for variable v in the framed ICFG of the AO program.

3. Class DUAs (cDUAs). In an AO program, DUAs of state variables might

be defined between nodes that belong to the base class methods only. For
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example, in the framed ICFG in Figure 5.4, the def of waterAmount in

statement K12, reaches its use in statement K17.

Formally, a cDUA is a triple < v, d, u > where d and u are nodes in the

CFGs of the base class methods that contain a def or a use of state variable

v, respectively, and there is a def-clear path between d and u for v in the

framed ICFG of the AO program.

4. Aspect DUAs (asDUAs). In an AO program, DUAs of state variables might

be defined between nodes that belong to advices and methods of the same

aspect. In the framed ICFG in Figure 5.4, the def of waterAmount in state-

ment H26, reaches its use in statement H25 in aspect HeatControl.

Formally, an asDUA is a triple < v, d, u > where d and u are nodes in the

CFGs of the advices or methods of aspect s that contain a def or a use of

state variable v, respectively, and there is a def-clear path between d and u

for v in the framed ICFG of the AO program.

5. Multiple Aspects DUAs (maDUAs). An AO program might contain DUAs for

state variables between advices and aspect methods that belong to different

aspects. In the framed ICFG in Figure 5.4, the def of waterAmount in

statement H26 of aspect HeatControl, reaches the use in aspect SafetyControl,

statement S6.

Formally, an maDUA is a triple < v, d, u > where d is a node in the CFG

of an advice or method of aspect s1 that contains a def of state variable v ;

u is a node in the CFG of an advice or method of aspect s2 that contains a

use of v, and there is a def-clear path between d and u for v in the framed

ICFG of the AO program.

Giving the above types of DUAs for state variables in an AO program, we
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define the following AOSV test criteria:

1. All-uses-observation (all-useso) criterion. Requires exercising all oDUAs in

the AO program at least once.

2. All-uses-activation (all-usesa) criterion. Requires exercising all aDUAs in

the AO program at least once.

3. All-uses-class (all-usesc) criterion. Requires exercising all cDUAs in the AO

program at least once.

4. All-uses-aspect (all-usesas) criterion. Requires exercising all asDUAs in the

AO program at least once.

5. All-uses-multiple-aspects (all-usesma) criterion. Requires exercising all maD-

UAs in the AO program at least once.

6. All-uses-state (all-usess) criterion. Requires satisfying the all-useso, all-

usesa, all-usesc, all-usesas, and all-usesma criteria.
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Chapter 6

Tool Implementation

In this chapter, we describe the tool that we developed to measure the coverage

of the AOSV test criteria. Our tool, called Data-flow Coverage Measurement

Tool for AspectJ Programs (DCT-AJ), works in three phases: DUA identification,

program instrumentation, and test execution. Figure 6.1 shows the steps involved

in using DCT-AJ and how the components inside the tool interact. In Sections 6.1

through 6.3, we describe each of the three phases of DCT-AJ. We describe the usage

instructions and the limitations of DCT-AJ in Sections 6.4 and 6.5, respectively.

6.1 Phase 1: DUA Identification

This phase identifies the DUAs for the state variables in each class of the subject

program. DCT-AJ depends on AJANA to produce the ICFG for each class. We

modified and extended AJANA as follows.

1. Extend the ICFG of the class by including calls to non-advised

methods. AJANA produces the ICFG using the interaction graphs of the

advised methods (see Section 5.2). We extend the ICFG by adding calls to

the CFGs of the non-advised methods.

2. Add a frame to the ICFG. We add the frame described in Section 5.2 to
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Figure 6.1: DCT-AJ: Data-flow coverage measurement tool.

the ICFG.

3. Process defs and uses. The ICFG produced by AJANA identifies defs

and uses of variables in each node of the ICFG. DCT-AJ parses this ICFG

and builds a list of defs and uses for each state variable, where a def or a

use is defined by a triple that consists of (1) the class or aspect in which the

def or use resides, (2) the method or advice name that uses or defines the
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state variable, and (3) the statement number which contains the def or use.

We changed the way AJANA deals with variables of array types; it considers

every access to an array element (whether def or use) as a use of the variable.

Accessing an array element is handled by two Jimple statements. The first

statement loads (reads) the array into an intermediate variable. The second

statement accesses the array using the intermediate variable. When we parse

the bytecode, we do not considering the first statement as a use of the array.

Instead, we treat def and use of the intermediate variables as def and use

for the array.

4. List the DUAs. We implemented the iterative data-flow algorithm pro-

posed by Pande et al. [57] to identify the DUAs of the state variables. Our

implementation does not deal with aliasing.

5. Map Jimple method names to Bytecode method names. AJANA

uses the abc1 AspectJ compiler and uses the Jimple representation produced

by the static weaving component of the abc compiler. Jimple is an intermedi-

ate representation suitable for optimization produced by Soot2, a framework

that the abc compiler is built on.

The Jimple representation produces method and advice names different from

their corresponding names in the program bytecode. Therefore, DCT-AJ

parses the program bytecode, using the Apache Bytecode Engineering Li-

1http://abc.comlab.ox.ac.uk

2http://www.sable.mcgill.ca/soot/
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brary (BCEL)3, and maps Jimple methods and advices names to their cor-

responding bytecode names.

6. Classifying and saving DUAs. DUAs are classified according to the types

described in Section 5.2. Finally, DUA information is saved in a file in an

XML format. We save the type of the DUA, and for each def (or use) of

a state variable, we save the class name, method name, source code line

number in which the def (or use) occurred, and whether or not it occurred

in an intertype method.

6.2 Phase 2: Instrumentation

The goal of the instrumentation phase is to produce bytecode instrumented with

code that can monitor the execution of the targeted DUAs and measure their cov-

erage. We used an aspect-oriented approach for performing the instrumentation

because monitoring the execution of the DUAs is a crosscutting concern that can

be implemented with AOP. Moreover, we could use the AspectJ weaver to perform

the instrumentation of bytecode instead of having to write an instrumenter our-

selves. DCT-AJ parses the bytecode of the classes and aspects, and the previously

generated XML files to generate two tracing aspects for each class.

6.2.1 Method Call Tracing Aspect

This aspect traces the currently executing method or advice during program exe-

cution. The aspect name is a concatenation of the word CallTrace, followed by the

package name and the class name. Therefore, identical aspect names will never be

3http://jakarta.apache.org/bcel
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generated for two different classes. The aspect contains two pointcuts:

1. traceMethods, which is matched whenever a method or a constructor of the

class being traced is executed.

2. traceAdvices, which is matched whenever an advice in an aspect in the pro-

gram under test is executed.

Figure 6.2 shows the pointcuts generated for the Kettle class. The traceMeth-

ods pointcut matches the constructor and any method defined inside the Kettle

class. The traceAdvice pointcut uses the AspectJ designator, adviceexecution,

which matches every advice execution. Adding the within designator limits the

scope of the pointcut to match only executions of advices within the aspects,

HeatControl and SafetyControl.

The Method Call Tracing aspect has two before advices: One is called before

a method executes and the other before an advice executes. These before ad-

vices collect the currently executed method or advice information using AspectJ’s

thisJoinPoint designator. The gathered information is passed to the Dataflow

Coverage aspect. Therefore, Method Call Tracing aspect has precedence over the

Dataflow Coverage aspect.

public aspect CallTrace_ekettle_Kettle {

declare precedence: CallTrace_ekettle_Kettle,

DataCoverage_ekettle_Kettle;

pointcut traceMethods(): execution(* ekettle.Kettle.*(..)) ||

execution(ekettle.Kettle.new(..));

pointcut traceAdvices(): adviceexecution() &&

(within(ekettle.HeatControl) ||

within(ekettle.SafetyControl));

// advices are not shown due to space limitations

}

Figure 6.2: Method call tracing aspect for the Kettle class.
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6.2.2 Data-flow Coverage Aspect

This aspect collects dataflow coverage information for a class by tracing the exe-

cution of each DUA in the program. DCT-AJ uses an abstract dataflow coverage

aspect, which defines three abstract pointcuts and implements four advices. The

three pointcuts are:

1. setting, which must match every def of a state variable within the class or

the aspect.

2. getting, which must match every use of a state variable within the class or

the aspect.

3. loadTestDriver, which must match the execution of the test driver.

The abstract aspect contains the following advices:

1. SetTrace: This before advice is executed when the setting pointcut is matched.

The advice obtains the state variable name and statement in which the vari-

able is defined using the thisJoinPoint construct. It uses the currently exe-

cuting method or advice name found by the method call aspect to find which

def of the state variable was executed. We implemented the last reaching

definition approach for monitoring dataflow execution described by Misurda

et al. [47]. In this approach, each def of a state variable, sv, that is executed

is recorded. This def is called the lastDef(sv) and is identified in the Set-

Trace advice. When sv is used, a use of sv is executed and is recorded by

the GetTrace advice. The lastDef(sv) is the def that reaches the use and the

DUA <sv,def,use> is marked as being covered.

2. GetTrace: This before advice monitors the execution of statements matched

by the getting pointcut. Similar to the SetTrace advice, GetTrace gets in-

formation about the used state variable, sv, using thisJoinPoint and the
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currently executing method from the Method Call Tracing Aspect. Then the

GetTrace advice matches the use of sv with the lastDef(sv) to obtain the

covered DUA.

3. LoadInformation: This before advice is executed when the loadTestDriver

pointcut is matched (i.e., before executing the test driver). The LoadInfor-

mation advice loads the XML file that contains the DUA information of the

class.

4. SaveInformation: This after advice is executed when the loadTestDriver

pointcut is matched (i.e., after executing the test driver). The advice saves

the coverage information for the class in an XML file.

DCT-AJ generates a concrete dataflow coverage aspect for each class. The

generated aspect inherits from the abstract aspect and provides concrete imple-

mentations of the three pointcuts. Figure 6.3 shows the Dataflow Coverage aspect

generated for the Kettle class. The aspect name is a concatenation of the word,

DataCoverage, with the package name and the class name. The Setting pointcut

uses the AspectJ pointcut designator, set, to match every def of a variable while

the Getting pointcut uses AspectJ designator get to match every use of a variable.

Both pointcuts limit the scope of the match in the class Kettle, and aspects Heat-

Control and SafetyControl. The loadTestDriver pointcut matches the execution of

the main method in the test driver of the Kettle class.

6.3 Phase 3: Test Execution

Given a test suite, the instrumented bytecode of the classes, and the DUA infor-

mation of the classes under test, the test driver runs the test suite. The Dataflow

Coverage Aspect saves coverage information in the form of coverage reports at the

end of the run. A report is generated for each class. The report includes the num-

63



public aspect DataCoverage_ekettle_Kettle extends DataCoverage {

pointcut getting(): ( get(* *)) &&

( this(ekettle.Kettle) ||

this(ekettle.HeatControl) ||

this(ekettle.SafetyControl));

pointcut setting(): ( set(* *)) &&

( this(ekettle.Kettle) ||

this(ekettle.HeatControl) ||

this(ekettle.SafetyControl));

pointcut loadTestDriver(String a[]):

execution(public static void

testcases.KettleTest.main(..) )

&& args(a);

}

Figure 6.3: Dataflow coverage pointcuts for the Kettle class.

ber of state variables, the number of DUAs for each DUA type, and the percent

of DUAs of each type that were covered during testing. The report also computes

the coverage for each state variable.

6.4 Usage Instructions

Running DCT-AJ requires the following software applications and packages to be

installed:

1. AspectBench compiler4. The compiler is required by AJANA.

2. An AspectJ 1.6 compiler.

3. Apache Bytecode Engineering Library (BCEL)5.

4http://abc.comlab.ox.ac.uk

5http://jakarta.apache.org/bcel/
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4. The DCTgraph graph library. This is an extension of a graph library called

JGraphT 6. We made the extensions to the original library in order to allow

the framed ICFG to hold the DUAs information.

In order to use DCT-AJ, the user needs to execute the three phases of the tool.

We describe below the commands required to execute each phase:

1. DUA identification: Executing the phase requires running the following two

commands from the command line:

(a) java analysis.Main <InputDirName> <ClassName> <OutputDirName>

The command creates an XML file which contain the DUA informa-

tion with Jimple method names. The command takes the following

arguments:

i. The directory that contains the program <InputDirName>.

ii. The targeted class name <ClassName>.

iii. The output directory <OutputDirName> where the XML that con-

tain the DUA information is to be saved.

(b) java mapper.Main <InputDirName> <ClassName> <OutputDirName>

The command maps Jimple method names to bytecode method names

in the XML file created by the previous command.

2. Instrumentation: Creating the tracing aspects described in Section 6.2 re-

quires executing the following command from the command line:

java instrument.Main <InputDirName> <PackageName> <XMLDirName>

<TestDriverName>

6http://jgrapht.sourceforge.net/
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The command takes the following arguments:

(a) The directory that contains the program <InputDirName>.

(b) The highest level package name that contains the targeted class and the

aspects <PackageName>.

(c) The directory <XMLDirName> where the XML file that contains the

DUA information is saved.

(d) The test driver class name <TestDriverName>.

3. Test Execution. In order to execute the test suites and obtain coverage

information for the AOSV test criteria, the user needs to run the test driver

with the following command:

java <TestDriverName> <XMLDirName> <ClassName>

DCT-AJ requires providing the test driver with two parameters: (1) The

directory of the XML file that contains the DUA information, and (2) the

targeted class name.

6.5 Tool Limitations

The current implementation of DCT-AJ has the following limitations:

• DCT-AJ does not trace a DUA when the def or the use is inside an exception

handling code. This is because AJANA does not include exception handling

paths in the ICFG.

• Uses of final state variables cannot be traced unless they are referenced with

this reference. This is because Java inlines final variables. Therefore, the get
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pointcut designator cannot find such uses. In order to overcome this limi-

tation, the user can choose one of the following options: (1) reference each

use of a final state variable with this reference, or (2) remove the final dec-

laration for state variables in the copy of the source code used for obtaining

coverage with DCT-AJ.

• Initialization of intertype state variables cannot be recognized by DCT-AJ.

This is because the get and set pointcut designators do not consider initial-

izations of the intertype state variables in aspects as defs or uses of the state

variables, respectively. In order to overcome this limitation, the initialization

of intertype declared state variables can be performed in an after or a before

advise that matches the class constructor.

• The tool cannot trace defs and uses in static methods of the aspects. This

is because the ICFG generated by AJANA does not include the calls to the

static methods of the aspects.

• The current version of DCT-AJ does not deal with aliasing for state variables.

• AJANA performs a must-alias analysis to identify variables that refer to

the objects of the base class in the aspects. Must aliasing analysis is a

conservative approach that might miss references to the base class objects in

the aspects.

• The current version of DCT-AJ cannot measure coverage in multi-threaded

programs. AJANA does not generate the ICFG for multi-threaded programs.

• The current version of DCT-AJ cannot measure coverage for aspects written

in annotation style. To overcome this limitation, the user can rewrite the

aspects in AspectJ style.
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Chapter 7

Empirical Study Approach

This chapter describes how the empirical study was set up for evaluating the cost

and effectiveness of the AOSV test criteria. Section 7.1 defines control criteria,

which we used to compare with the AOSV test criteria. Section 7.2 states the

research questions. Section 7.3 describes the metrics used to measure cost and

effectiveness. Section 7.4 states the hypotheses for the study. Section 7.5 describes

the approach of measuring coverage. Section 7.6 summarizes the characteristics

of the subject programs. Section 7.7 and Section 7.8 describe the approach for

seeding faults in the programs, and the approach used to generate test suites that

satisfy the test criteria, respectively. Finally, Section 7.9 explains the statistical

analysis approach used to analyze the results.

7.1 Control Criteria

We used two control criteria to compare with the AOSV test criteria. These criteria

are modified versions of the traditional block and branch coverage criteria applied

to advised classes.

1. AO blocks criterion: Requires exercising (1) all blocks in the methods of the

advised class including intertype methods, and (2) all blocks in the advices

that advise methods in the advised class.
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2. AO branches criterion: Requires exercising (1) all branches in the methods

of the advised class including intertype methods, and (2) all branches in the

advices that advise methods in the advised class.

The above AO control-flow criteria are defined in the scope of an advised class.

Thus, they are consistent with the scope of the AOSV test criteria. Several versions

of block and branch coverage criteria have been proposed by other researchers for

AO programs (e.g., [39, 48, 72]). However, these criteria are either defined for

aspects (e.g., Mortensen and Alexander [48], Xie and Zhao [72]), or for advised

classes but without the advices and intertype methods (e.g., Lemos et al. [39]).

Therefore, these criteria have different scope than the AOSV test criteria and

cannot be compared with them.

7.2 Research Questions

Our empirical studies provide answers to the following questions:

1. What is the cost of achieving full coverage for each test criterion? How does

a criterion compare with another in this respect? The AOSV criteria require

satisfying only a subset of the DUAs required by the all-uses criterion. Nev-

ertheless, this subset of DUAs requires executing paths that involve calling

one or more methods of the base class, and executing advices that advise

different methods of the base class. Therefore, we expect that covering these

paths to be hard and, therefore, the cost of the AOSV criteria to be more

than the cost of the AO control-flow criteria. Among the AOSV criteria,

we expect the all-usess criterion to cost more than the other AOSV criteria

because it subsumes all of them. We expect the other AOSV criteria to have

different costs because they require executing different paths.
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2. With 100% coverage, what is the effectiveness of the test criteria in terms

of their ability to detect faults? How do the criteria compare with each

other in this respect? The AOSV criteria target faults related to data-flow

interactions in the program, which are hard to detect by unit testing the

aspects or the classes. Therefore, we expect the AOSV criteria to be more

effective in detecting faults than the AO control-flow criteria. Among the

AOSV criteria, we expect the all-usess criterion to be more effective than

the other AOSV criteria because it subsumes all of them.

3. What types of faults can be detected by using the AOSV test criteria? We

classify the mutants in the study according to the revised AO fault model

presented in Section 4. We expect a variation in the effectiveness of the test

criteria when detecting different types of faults because covering the differ-

ent types of AOSV DUAs requires executing different paths in the advised

classes.

4. What is the cost-effectiveness of achieving high coverage levels for the all-

usess test criterion? Achieving high levels of coverage of some test criteria

can come with relatively high cost. Therefore, it is of practical importance

to know whether achieving high coverage is justified by a significant increase

in fault detection. In our study, we evaluate cost and effectiveness of the

all-usess criterion for three coverage levels: 100%, 90%, and 80% coverage

levels. We choose the all-usess criterion because it subsumes all the other

AOSV criteria. Therefore, it is the most important criterion that requires

covering all the state variables DUAs in the advised class. Moreover, the

number of test requirements corresponding to the other test criteria have

large variations in the classes, which makes it hard to find a single coverage

level that applies to all the test criteria.
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7.3 Metrics

In this section, we define the metrics for measuring the cost and effectiveness of the

test criteria. We measured three dimensions of the cost of a test criterion. These

are as follows:

1. The size of a test suite that satisfies a criterion.

2. The density of a test case

3. The effort of obtaining a test suite that satisfies a criterion.

We measured these dimensions of cost using four cost metrics named c1 through

c4. Metric c1 refers to the number of test cases in a test suite needed to satisfy a

criterion. The metric is used to measure the size of a test suite.

The number of test cases has been widely used to measure the size of a test

suite [11]. However, we noticed that c1 varies in different classes depending on the

number of test requirements for a criterion. For example, two classes class1 and

class2 might have a large difference in the number of test cases in a suite that satisfy

the same criterion in each class because the two classes have a large difference in the

number of test requirements for the criterion. When comparing two test criteria A

and B in two classes, A might have a large number of test requirements in class1

and few in class2, while B might have the opposite. Therefore, we used metric c2

in order to measure the cost regardless of the number of requirements a criterion

might have in a certain class.

The size of a test suite, when used as a measure of cost, does not measure

the effort of obtaining the test suite nor does it measure the cost of obtaining the

test requirements of the criterion. Briand [11] stated that “regardless of how it

is measured, [test suite size] is a very rough cost measure” mainly because it just
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measures one dimension of the cost. Therefore, we define the following two metrics

to measure the time needed to obtain a test suite that satisfies a criterion:

c3. The number of test suites we generate until a test suite that satisfies the test

criterion is obtained.

c4. The number of test suites we generate until a test suite that satisfies the

test criterion is obtained divided by the number of test requirements for the

criterion that the advised class contains.

The time needed to generate a test suite depends on the approach and whether

or not the approach is automated. In our study, we generate test suites by repeat-

edly adding test cases to a suite until the desired coverage is obtained. In each

iteration, we produce a new test suite by adding a test case to the existing test

suite. If coverage is increased, we save the new test suite and repeat the process

of adding test cases until the desired coverage level is reached. In the process, we

produce many test suites. Therefore, we propose to use the number of test suites

(c3) generated until a test suite that satisfies a criterion is obtained as a measure

of cost.

Metric c3 depends on the number of test requirements for the test criterion in

a class. Therefore, we used metric c4, which measures the effort of covering a test

requirement for a criterion.

We did not measure the cost of obtaining the test requirements because we used

tools to obtain the test requirements for the AOSV criteria and the AO control-

flow criteria (i.e., DCT-AJ and CodeCover). The difference in the computational

time of running the tools is negligible.

We measure the effectiveness of a test criterion by the percentage of faults

detected by a test suite that satisfies a test criterion. We generate a number of
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faulty versions of each class, where each faulty version contains one fault. The fault

can be in the base class or in any part of the aspect that interacts with the class

(i.e., in any of the advises that advice methods of the class, in aspect methods that

these advices call, or in intertype methods introduced in the class). In order to

determine what types of faults can be detected using each of the test criteria, we

computed the effectiveness over all the faults as well as for each fault type defined

in Chapter 4.

7.4 Hypotheses

In this section, the hypotheses of the study are presented. The hypotheses reflect

the expectations that (1) there is a difference in the cost and effectiveness between

the test suites that satisfy the AOSV test criteria and those that satisfy the AO

control-flow test criteria, and (2) there is a difference in the cost and effectiveness

between the test suites that satisfy the AOSV test criteria themselves.

We group the hypotheses into 5 groups, where each group corresponds to a

metric described in Section 7.3.

7.4.1 Group A: Comparing the Cost of the Test Criteria
Using the Number of Test Cases in the Test Suites

Hypotheses in group A reflect our expectations that (1) the number of test cases

in the test suites that satisfy the AOSV test criteria differ from the number of test

cases in the test suites that satisfy the AO control-flow test criteria, and that (2)

the number of test cases in the test suites that satisfy the AOSV test criteria differ

from each other. We classify comparisons in this group into two types, which are

as follows:

1. Table 7.1 states the null hypotheses for comparisons between the number of
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test cases in the test suites that satisfy the AOSV test criteria and the number

of test cases in the test suites that satisfy the AO control-flow test criteria.

There are 12 hypotheses for these comparisons numbered A1 through A12.

2. Table 7.2 states the null hypotheses for comparisons between the number

of test cases in the test suites that satisfy the AOSV test criteria with each

other. There are 15 hypotheses for these comparisons numbered A13 through

A27.

The alternative hypotheses for the hypotheses in group A state that:

• The number of test cases in the test suites that satisfy each of all-usesa, all-

usesc, and all-usess is higher than the number of test cases in the test suites

that satisfy each of the AO control-flow criteria.

• There is a difference between the number of test cases in the test suites that

satisfy each of all-useso, all-usesas, and all-usesma, and the number of test

cases in the test suites that satisfy each of the AO control-flow criteria.

• The number of test cases in the test suites that satisfy all-usess is higher

than the number of test cases in the test suites that satisfy each of the

AOSV criteria it subsumes.

• The number of test cases in the test suites that satisfy all-usesc is higher

than the number of test cases in the test suites that satisfy each of all-useso,

all-usesas, and all-usesma.

• There is a difference between the number of test cases in the test suites that

satisfy each of all-useso, all-usesas, and all-usesma compared with each other.
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Table 7.1: Null hypotheses for comparing the cost of the AOSV test criteria with
the cost of the AO control-flow test criteria using the number of test cases in the
test suites that satisfy the criteria (c1)

H0A1: There is no difference between the number of test cases in the test suites that satisfy
all-usesa and the number of test cases in the test suites that satisfy AO blocks.
H0A2: There is no difference between the number of test cases in the test suites that satisfy
all-usesa and the number of test cases in the test suites that satisfy AO branches.
H0A3: There is no difference between the number of test cases in the test suites that satisfy
all-useso and the number of test cases in the test suites that satisfy AO blocks.
H0A4: There is no difference between the number of test cases in the test suites that satisfy
all-useso and the number of test cases in the test suites that satisfy AO branches.
H0A5: There is no difference between the number of test cases in the test suites that satisfy
all-usesc and the number of test cases in the test suites that satisfy AO blocks.
H0A6: There is no difference between the number of test cases in the test suites that satisfy
all-usesc and the number of test cases in the test suites that satisfy AO branches.
H0A7: There is no difference between the number of test cases in the test suites that satisfy
all-usesas and the number of test cases in the test suites that satisfy AO blocks.
H0A8: There is no difference between the number of test cases in the test suites that satisfy
all-usesas and the number of test cases in the test suites that satisfy AO branches.
H0A9: There is no difference between the number of test cases in the test suites that satisfy
all-usesma and the number of test cases in the test suites that satisfy AO blocks.
H0A10: There is no difference between the number of test cases in the test suites that satisfy
all-usesma and the number of test cases in the test suites that satisfy AO branches.
H0A11: There is no difference between the number of test cases in the test suites that satisfy
all-usess and the number of test cases in the test suites that satisfy AO blocks.
H0A12: There is no difference between the number of test cases in the test suites that satisfy
all-usess and the number of test cases in the test suites that satisfy AO branches.

7.4.2 Group B: Comparing the Cost of the Test Criteria
Using Size Metric c2

Hypotheses in group B reflect our expectations that (1) the number of test re-

quirements for each of the AOSV test criteria that can be covered by a test case

differ from the number of blocks or branches that can be covered by a test case,

and (2) the number of DUAs that can be covered by a test case differ depending

on the different types of the AOSV DUAs. We classify comparisons in this group

into two types, which are as follows:

1. Table 7.3 states the null hypotheses for comparisons between the AOSV test

75



Table 7.2: Null hypotheses for comparing the cost of the AOSV test criteria with
each other using the number of test cases in a test suite that satisfies a criterion
(c1)

H0A13: There is no difference between the number of test cases in the test suites that satisfy
all-usess and the number of test cases in the test suites that satisfy all-usesa.
H0A14: There is no difference between the number of test cases in the test suites that satisfy
all-usess and the number of test cases in the test suites that satisfy all-useso.
H0A15: There is no difference between the number of test cases in the test suites that satisfy
all-usess and the number of test cases in the test suites that satisfy all-usesc.
H0A16: There is no difference between the number of test cases in the test suites that satisfy
all-usess and the number of test cases in the test suites that satisfy all-usesas.
H0A17: There is no difference between the number of test cases in the test suites that satisfy
all-usess and the number of test cases in the test suites that satisfy all-usesma.
H0A18: There is no difference between the number of test cases in the test suites that satisfy
all-usesa and the number of test cases in the test suites that satisfy all-useso.
H0A19: There is no difference between the number of test cases in the test suites that satisfy
all-usesa and the number of test cases in the test suites that satisfy all-usesc.
H0A20: There is no difference between the number of test cases in the test suites that satisfy
all-usesa and the number of test cases in the test suites that satisfy all-usesas.
H0A21: There is no difference between the number of test cases in the test suites that satisfy
all-usesa and the number of test cases in the test suites that satisfy all-usesma.
H0A22: There is no difference between the number of test cases in the test suites that satisfy
all-useso and the number of test cases in the test suites that satisfy all-usesc.
H0A23: There is no difference between the number of test cases in the test suites that satisfy
all-useso and the number of test cases in the test suites that satisfy all-usesas.
H0A24: There is no difference between the number of test cases in the test suites that satisfy
all-useso and the number of test cases in the test suites that satisfy all-usesma.
H0A25: There is no difference between the number of test cases in the test suites that satisfy
all-usesc and the number of test cases in the test suites that satisfy all-usesas.
H0A26: There is no difference between the number of test cases in the test suites that satisfy
all-usesc and the number of test cases in the test suites that satisfy all-usesma.
H0A27: There is no difference between the number of test cases in the test suites that satisfy
all-usesas and the number of test cases in the test suites that satisfy all-usesma.

criteria and the AO control-flow test criteria using size metric c2. There are

12 hypotheses for these comparisons numbered B1 through B12.

2. Table 7.4 states the null hypotheses for comparing the AOSV test criteria

with each other using size metric c2. There are 15 hypotheses for these

comparisons numbered B13 through B27.
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Table 7.3: Null hypotheses for comparing the cost of the AOSV test criteria with
the cost of the AO control-flow test criteria using size metric (c2)

H0B1: There is no difference between the value of the size metric c2 for the all-usesa

criterion and the value of the size metric c2 for the AO blocks criterion.
H0B2: There is no difference between the value of the size metric c2 for the all-usesa

criterion and the value of the size metric c2 for the AO branches criterion.
H0B3: There is no difference between the value of the size metric c2 for the all-useso

criterion and the value of the size metric c2 for the AO blocks criterion.
H0B4: There is no difference between the value of the size metric c2 for the all-useso

criterion and the value of the size metric c2 for the AO branches criterion.
H0B5: There is no difference between the value of the size metric c2 for the all-usesc

criterion and the value of the size metric c2 for the AO blocks criterion.
H0B6: There is no difference between the value of the size metric c2 for the all-usesc

criterion and the value of the size metric c2 for the AO branches criterion.
H0B7: There is no difference between the value of the size metric c2 for the all-usesas

criterion and the value of the size metric c2 for the AO blocks criterion.
H0B8: There is no difference between the value of the size metric c2 for the all-usesas

criterion and the value of the size metric c2 for the AO branches criterion.
H0B9: There is no difference between the value of the size metric c2 for the all-usesma

criterion and the value of the size metric c2 for the AO blocks criterion.
H0B10: There is no difference between the value of the size metric c2 for the all-usesma

criterion and the value of the size metric c2 for the AO branches criterion.
H0B11: There is no difference between the value of the size metric c2 for the all-usess

criterion and the value of the size metric c2 for the AO blocks criterion.
H0B12: There is no difference between the value of the size metric c2 for the all-usess

criterion and the value of the size metric c2 for the AO branches criterion.

The alternative hypotheses for the hypotheses in group B state that:

• The size metric c2 for each of the AOSV test criteria is higher than the size

metric c2 for each of the AO control-flow criteria.

• The size metric c2 for all-usess is higher than the size metric c2 for each of

the AOSV criteria it subsumes.

• The size metric c2 for all-usesa is lower than the size metric c2 for all-useso

and all-usesc.

• The size metric c2 for all-usesma is higher than the size metric c2 for all-useso,

all-usesc, and all-usesas.
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Table 7.4: Null hypotheses for comparing the cost of the AOSV test criteria with
each other using size metric (c2)

H0B13: There is no difference between the value of the size metric c2 for the all-usess

criterion and the value of the size metric c2 for the all-usesa criterion.
H0B14: There is no difference between the value of the size metric c2 for the all-usess

criterion and the value of the size metric c2 for the all-useso criterion.
H0B15: There is no difference between the value of the size metric c2 for the all-usess

criterion and the value of the size metric c2 for the all-usesc criterion.
H0B16: There is no difference between the value of the size metric c2 for the all-usess

criterion and the value of the size metric c2 for the all-usesas criterion.
H0B17: There is no difference between the value of the size metric c2 for the all-usess

criterion and the value of the size metric c2 for the all-usesma criterion.
H0B18: There is no difference between the value of the size metric c2 for the all-usesa

criterion and the value of the size metric c2 for the all-useso criterion.
H0B19: There is no difference between the value of the size metric c2 for the all-usesa

criterion and the value of the size metric c2 for the all-usesc criterion.
H0B20: There is no difference between the value of the size metric c2 for the all-usesa

criterion and the value of the size metric c2 for the all-usesas criterion.
H0B21: There is no difference between the value of the size metric c2 for the all-usesa

criterion and the value of the size metric c2 for the all-usesma criterion.
H0B22: There is no difference between the value of the size metric c2 for the all-useso

criterion and the value of the size metric c2 for the all-usesc criterion.
H0B23: There is no difference between the value of the size metric c2 for the all-useso

criterion and the value of the size metric c2 for the all-usesas criterion.
H0B24: There is no difference between the value of the size metric c2 for the all-useso

criterion and the value of the size metric c2 for the all-usesma criterion.
H0B25: There is no difference between the value of the size metric c2 for the all-usesc

criterion and the value of the size metric c2 for the all-usesas criterion.
H0B26: There is no difference between the value of the size metric c2 for the all-usesc

criterion and the value of the size metric c2 for the all-usesma criterion.
H0B27: There is no difference between the value of the size metric c2 for the all-usesas

criterion and the value of the size metric c2 for the all-usesma criterion.

• There is a difference between c2 for each of all-useso, all-usesc, and all-usesas

compared with each other.

7.4.3 Group C: Comparing the Cost of the Test Criteria
Using the Effort Metric c3

Hypotheses in group C reflect our expectations that (1) the effort of generating test

suites that satisfy the AOSV test criteria differ from the effort of generating test

suites that satisfy the AO control-flow test criteria, and (2) the effort of generating
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Table 7.5: Null hypotheses for comparing the cost of the AOSV test criteria with
the cost of the AO control-flow criteria using effort metric (c3)

H0C1: There is no difference between the value of the effort metric c3 for the all-usesa

criterion and the value of the effort metric c3 for the AO blocks criterion.
H0C2: There is no difference between the value of the effort metric c3 for the all-usesa

criterion and the value of the effort metric c3 for the AO branches criterion.
H0C3: There is no difference between the value of the effort metric c3 for the all-useso

criterion and the value of the effort metric c3 for the AO blocks criterion.
H0C4: There is no difference between the value of the effort metric c3 for the all-useso

criterion and the value of the effort metric c3 for the AO branches criterion.
H0C5: There is no difference between the value of the effort metric c3 for the all-usesc

criterion and the value of the effort metric c3 for the AO blocks criterion.
H0C6: There is no difference between the value of the effort metric c3 for the all-usesc

criterion and the value of the effort metric c3 for the AO branches criterion.
H0C7: There is no difference between the value of the effort metric c3 for the all-usesas

criterion and the value of the effort metric c3 for the AO blocks criterion.
H0C8: There is no difference between the value of the effort metric c3 for the all-usesas

criterion and the value of the effort metric c3 for the AO branches criterion.
H0C9: There is no difference between the value of the effort metric c3 for the all-usesma

criterion and the value of the effort metric c3 for the AO blocks criterion.
H0C10: There is no difference between the value of the effort metric c3 for the all-usesma

criterion and the value of the effort metric c3 for the AO branches criterion.
H0C11: There is no difference between the value of the effort metric c3 for the all-usess

criterion and the value of the effort metric c3 for the AO blocks criterion.
H0C12: There is no difference between the value of the effort metric c3 for the all-usess

criterion and the value of the effort metric c3 for the AO branches criterion.

test suites that satisfy the AOSV test criteria differ from each other, where effort

is measured using metric c3. We classify comparisons in this group into two types,

which are as follows:

1. Table 7.5 states the null hypotheses for the comparisons between the effort

of generating test suites that satisfy the AOSV test criteria and the effort

of generating test suites that satisfy the AO control-flow test criteria. There

are 12 hypotheses for these comparisons numbered C1 through C12.

2. Table 7.6 states the null hypotheses for comparing the cost of the AOSV test

criteria with each other using effort metric c3. There are 15 hypotheses for

these comparisons numbered C13 through C27.
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Table 7.6: Null hypotheses for comparing the cost of the AOSV test criteria with
each other using effort metric c3

H0C13: There is no difference between the value of the effort metric c3 for the
all-usess criterion and the value of the effort metric c3 for the all-usesa criterion.
H0C14: There is no difference between the value of the effort metric c3 for the
all-usess criterion and the value of the effort metric c3 for the all-useso criterion.
H0C15: There is no difference between the value of the effort metric c3 for the
all-usess criterion and the value of the effort metric c3 for the all-usesc criterion.
H0C16: There is no difference between the value of the effort metric c3 for the
all-usess criterion and the value of the effort metric c3 for the all-usesas criterion.
H0C17: There is no difference between the value of the effort metric c3 for the
all-usess criterion and the value of the effort metric c3 for the all-usesma criterion.
H0C18: There is no difference between the value of the effort metric c3 for the
all-usesa criterion and the value of the effort metric c3 for the all-useso criterion.
H0C19: There is no difference between the value of the effort metric c3 for the
all-usesa criterion and the value of the effort metric c3 for the all-usesc criterion.
H0C20: There is no difference between the value of the effort metric c3 for the
all-usesa criterion and the value of the effort metric c3 for the all-usesas criterion.
H0C21: There is no difference between the value of the effort metric c3 for the
all-usesa criterion and the value of the effort metric c3 for the all-usesma criterion.
H0C22: There is no difference between the value of the effort metric c3 for the
all-useso criterion and the value of the effort metric c3 for the all-usesc criterion.
H0C23: There is no difference between the value of the effort metric c3 for the
all-useso criterion and the value of the effort metric c3 for the all-usesas criterion.
H0C24: There is no difference between the value of the effort metric c3 for the
all-useso criterion and the value of the effort metric c3 for the all-usesma criterion.
H0C25: There is no difference between the value of the effort metric c3 for the
all-usesc criterion and the value of the effort metric c3 for the all-usesas criterion.
H0C26: There is no difference between the value of the effort metric c3 for the
all-usesc criterion and the value of the effort metric c3 for the all-usesma criterion.
H0C27: There is no difference between the value of the effort metric c3 for the
all-usesas criterion and the value of the effort metric c3 for the all-usesma criterion.

The alternative hypotheses for the hypotheses in group C state that:

• The effort metric c3 for all-usesa and all-usess is higher than the effort metric

c3 for each of the AO control-flow criteria.

• There is a difference between c3 for all-useso, all-usesc, all-usesas, and all-

usesma and c3 for each of the AO control-flow criteria.

• The effort metric c3 for all-usess is higher than the effort metric c3 for each
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of the AOSV criteria it subsumes.

• There is a difference between c3 for each of all-usesa, all-useso, all-usesc,

all-usesas, and all-usesma compared with each other.

7.4.4 Group D: Comparing the Cost of the Test Criteria
Using the Effort Metric c4

Table 7.7: Null hypotheses for comparing the cost of the AOSV test criteria with
the cost of the AO control-flow test criteria using effort metric (c4)

H0D1: There is no difference between the value of the effort metric c4 for the all-usesa

criterion and the value of the effort metric c4 for the AO blocks criterion.
H0D2: There is no difference between the value of the effort metric c4 for the all-usesa

criterion and the value of the effort metric c4 for the AO branches criterion.
H0D3: There is no difference between the value of the effort metric c4 for the all-useso

criterion and the value of the effort metric c4 for the AO blocks criterion.
H0D4: There is no difference between the value of the effort metric c4 for the all-useso

criterion and the value of the effort metric c4 for the AO branches criterion.
H0D5: There is no difference between the value of the effort metric c4 for the all-usesc

criterion and the value of the effort metric c4 for the AO blocks criterion.
H0D6: There is no difference between the value of the effort metric c4 for the all-usesc

criterion and the value of the effort metric c4 for the AO branches criterion.
H0D7: There is no difference between the value of the effort metric c4 for the all-usesas

criterion and the value of the effort metric c4 for the AO blocks criterion.
H0D8: There is no difference between the value of the effort metric c4 for the all-usesas

criterion and the value of the effort metric c4 for the AO branches criterion.
H0D9: There is no difference between the value of the effort metric c4 for the all-usesma

criterion and the value of the effort metric c4 for the AO blocks criterion.
H0D10: There is no difference between the value of the effort metric c4 for the all-usesma

criterion and the value of the effort metric c4 for the AO branches criterion.
H0D11: There is no difference between the value of the effort metric c4 for the all-usess

criterion and the value of the effort metric c4 for the AO blocks criterion.
H0D12: There is no difference between the value of the effort metric c4 for the all-usesma

criterion and the value of the effort metric c4 for the AO branches criterion.

Hypotheses in group D reflect our expectations that (1) there is a difference

between the effort of obtaining a test case that cover any type of AOSV DUAs

and the effort of obtaining a test case that covers a block or a branch in advised

classes, and (2) there is a difference in the effort of obtaining a test case that covers
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Table 7.8: Null hypotheses for comparing the cost of the AOSV test criteria with
each other using effort metric (c4)

H0D13: There is no difference between the value of the normalized effort metric c4 for the
all-usess criterion and the value of the normalized effort metric c4 for the all-usesa criterion.
H0D14: There is no difference between the value of the normalized effort metric c4 for the
all-usess criterion and the value of the normalized effort metric c4 for the all-useso criterion.
H0D15: There is no difference between the value of the normalized effort metric c4 for the
all-usess criterion and the value of the normalized effort metric c4 for the all-usesc criterion.
H0D16: There is no difference between the value of the normalized effort metric c4 for the
all-usess criterion and the value of the normalized effort metric c4 for the all-usesas criterion.
H0D17: There is no difference between the value of the normalized effort metric c4 for the
all-usess criterion and the value of the normalized effort metric c4 for the all-usesma criterion.
H0D18: There is no difference between the value of the normalized effort metric c4 for the
all-usesa criterion and the value of the normalized effort metric c4 for the all-useso criterion.
H0D19: There is no difference between the value of the normalized effort metric c4 for the
all-usesa criterion and the value of the normalized effort metric c4 for the all-usesc criterion.
H0D20: There is no difference between the value of the normalized effort metric c4 for the
all-usesa criterion and the value of the normalized effort metric c4 for the all-usesas criterion.
H0D21: There is no difference between the value of the normalized effort metric c4 for the
all-usesa criterion and the value of the normalized effort metric c4 for the all-usesma criterion.
H0D22: There is no difference between the value of the normalized effort metric c4 for the
all-useso criterion and the value of the normalized effort metric c4 for the all-usesc criterion.
H0D23: There is no difference between the value of the normalized effort metric c4 for the
all-useso criterion and the value of the normalized effort metric c4 for the all-usesas criterion.
H0D24: There is no difference between the value of the normalized effort metric c4 for the
all-useso criterion and the value of the normalized effort metric c4 for the all-usesma criterion.
H0D25: There is no difference between the value of the normalized effort metric c4 for the
all-usesc criterion and the value of the normalized effort metric c4 for the all-usesas criterion.
H0D26: There is no difference between the value of the normalized effort metric c4 for the
all-usesc criterion and the value of the normalized effort metric c4 for the all-usesma criterion.
H0D27: There is no difference between the value of the normalized effort metric c4 for the
all-usesas criterion and the value of the normalized effort metric c4 for the all-usesma criterion.

a DUA of each type of the AOSV DUAs. We classify comparisons in this group

into two types, which are as follows:

1. Table 7.7 states the null hypotheses for comparisons between c4 of each of

the AOSV test criteria and c4 for each of the AO control-flow test criteria.

There are 12 hypotheses for these comparisons numbered D1 through D12.

2. Table 7.8 states the null hypotheses for comparing c4 for the AOSV test
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criteria with each other. There are 15 hypotheses for these comparisons

numbered D13 through D27.

The alternative hypotheses for the hypotheses in group D state that:

• The effort metric c4 for all-usesa, all-usesas, all-usesma, and all-usess is higher

than the effort metric c4 for each of the AO control-flow criteria.

• There is a difference between c4 for all-useso, all-usesc, and c4 for each of the

AO control-flow criteria.

• There is a difference between c4 for each of the AOSV criteria compared with

each other.

7.4.5 Group E: Comparing the Effectiveness of the Test
Criteria

Hypotheses in group E reflect our expectations that (1) the effectiveness of the

test suites that satisfy the AOSV test criteria differ from the effectiveness of the

test suites that satisfy the AO control-flow test criteria, and (2) the effectiveness

of the test suites that satisfy the AOSV test criteria differ from each other, where

effectiveness is measured by the percentage of faults detected by the test suites

that satisfy the criterion. We classify comparisons in this group into two types,

which are as follows:

1. Table 7.9 states the null hypotheses for comparisons between the effectiveness

of the test suites that satisfy the AOSV test criteria and the effectiveness of

the test suites that satisfy the AO control-flow test criteria. There are 12

hypotheses for these comparisons numbered E1 through E12.
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Table 7.9: Null hypotheses for comparing the effectiveness of the AOSV test criteria
with the effectiveness of the AO control-flow test criteria

H0E1: There is no difference between the percentage of faults detected by test suites
that satisfy the all-usesa criterion and that satisfy the AO blocks criterion.
H0E2: There is no difference between the percentage of faults detected by test suites
that satisfy the all-usesa criterion and that satisfy the AO branches criterion.
H0E3: There is no difference between the percentage of faults detected by test suites
that satisfy the all-useso criterion and that satisfy the AO blocks criterion.
H0E4: There is no difference between the percentage of faults detected by test suites
that satisfy the all-useso criterion and that satisfy the AO branches criterion.
H0E5: There is no difference between the percentage of faults detected by test suites
that satisfy the all-usesc criterion and that satisfy the AO blocks criterion.
H0E6: There is no difference between the percentage of faults detected by test suites
that satisfy the all-usesc criterion and that satisfy the AO branches criterion.
H0E7: There is no difference between the percentage of faults detected by test suites
that satisfy the all-usesas criterion and that that satisfy the AO blocks criterion.
H0E8: There is no difference between the percentage of faults detected by test suites
that satisfy the all-usesas criterion and that satisfy the AO branches criterion.
H0E9: There is no difference between the percentage of faults detected by test suites
that satisfy the all-usesma criterion and that satisfy the AO blocks criterion.
H0E10: There is no difference between the percentage of faults detected by test suites
that satisfy the all-usesma criterion and that satisfy the AO branches criterion.
H0E11: There is no difference between the percentage of faults detected by test suites
that satisfy the all-usess criterion and that satisfy the AO blocks criterion.
H0E12: There is no difference between the percentage of faults detected by test suites
that satisfy the all-usess criterion and that satisfy the AO branches criterion.

2. Table 7.2 states the null hypotheses for comparisons between the effectiveness

of the test suites that satisfy the AOSV test criteria with each other. There

are 15 hypotheses for these comparisons numbered E13 through E27.

The alternative hypotheses for the hypotheses in group E state that:

• The percentage of faults detected by test suites that satisfy each of the AOSV

test criteria is higher than the percentage of faults detected by test suites

that satisfy each of the AO control-flow criteria.

• The percentage of faults detected by test suites that satisfy all-usess is higher

than the percentage of faults detected by test suites that satisfy each of the

AOSV criteria it subsumes.
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Table 7.10: Null hypotheses for comparing the effectiveness of the AOSV test
criteria with each other

H0E13: There is no difference between the percentage of faults detected by test suites
that satisfy the all-usess criterion and that satisfy the all-usesa criterion.
H0E14: There is no difference between the percentage of faults detected by test suites
that satisfy the all-usess criterion and that satisfy the all-useso criterion.
H0E15: There is no difference between the percentage of faults detected by test suites
that satisfy the all-usess criterion and that satisfy the all-usesc criterion.
H0E16: There is no difference between the percentage of faults detected by test suites
that satisfy the all-usess criterion and that satisfy the all-usesas criterion.
H0E17: There is no difference between the percentage of faults detected by test suites
that satisfy the all-usess criterion and that satisfy the all-usesma criterion.
H0E18: There is no difference between the percentage of faults detected by test suites
that satisfy the all-usesa criterion and that satisfy the all-useso criterion.
H0E19: There is no difference between the percentage of faults detected by test suites
that satisfy the all-usesa criterion and that satisfy the all-usesc criterion.
H0E20: There is no difference between the percentage of faults detected by test suites
that satisfy the all-usesa criterion and that satisfy the all-usesas criterion.
H0E21: There is no difference between the percentage of faults detected by test suites
that satisfy the all-usesa criterion and that satisfy the all-usesma criterion.
H0E22: There is no difference between the percentage of faults detected by test suites
that satisfy the all-useso criterion and that satisfy the all-usesc criterion.
H0E23: There is no difference between the percentage of faults detected by test suites
that satisfy the all-useso criterion and that satisfy the all-usesas criterion.
H0E24: There is no difference between the percentage of faults detected by test suites
that satisfy the all-useso criterion and that satisfy the all-usesma criterion.
H0E25: There is no difference between the percentage of faults detected by test suites
that satisfy the all-usesc criterion and that satisfy the all-usesas criterion.
H0E26: There is no difference between the percentage of faults detected by test suites
that satisfy the all-usesc criterion and that satisfy the all-usesma criterion.
H0E27: There is no difference between the percentage of faults detected by test suites
that satisfy the all-usesas criterion and that satisfy the all-usesma criterion.

• There is a difference between the percentage of faults detected by test suites

that satisfy each of all-usesa, all-useso, all-usesc, all-usesas, and all-usesma

criteria compared with each other.
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7.5 Coverage Measurement

Coverage of test suites is measured using two tools (1) DCT-AJ, which we devel-

oped to measure coverage for the AOSV test criteria, and (2) CodeCover 7, which

we used to measure the coverage for the AO control-flow criteria. There are two

limitations of DCT AJ that can effect measuring coverage in the subject programs

(Section 6.5). These are (1) initialization of intertype state variables cannot be

recognized by DCT-AJ, and (2) DCT-AJ cannot trace defs and uses in static

methods of the aspects. Therefore, We made the following two modifications to

the original programs:

1. Initialization of intertype state variables is performed in an advice that runs

after the class constructor.

2. In the Telecom program, getter methods for intertype state variables are

implemented as static methods of the aspect methods. We changed the

static methods to intertype methods.

CodeCover is an open source tool that measures statement and branch coverage

in Java programs. However, the tool does not support AspectJ programs. In order

to measure the coverage in the aspects, we rewrote the aspects using the annotation

style, which is a feature of AspectJ 5, also known as @AspectJ annotation. This

notation allows writing aspects with regular Java syntax and then annotate the

aspect declarations so that they can be interpreted by the AspectJ weaver. Since

the aspect written in the annotation style appears as a Java class, CodeCover

was able to measure coverage of branches and blocks in the aspect. CodeCover

7http://codecover.org

86



creates separate coverage reports for each class and aspect. In order to measure

the coverage of advised classes, we measure coverage only within the advices that

advise methods in a class.

We manually identified unreachable code by inspecting the subject programs.

We dropped unreachable blocks and branches from the coverage computation for

the AO control-flow criteria. For the AOSV criteria, we used an XML editor (XML

Marker8) to remove unreachable DUAs from the XML file that contains the DUAs.

7.6 Subject Programs

We used 4 subject programs in our study. Table 7.11 shows the main character-

istics of these programs. For each program shown in column 1, column 2 shows

the lines of code (LOC). The third and fourth columns show the number of classes

and the number of aspects in each program, respectively. The number of tested

classes in each program is shown in column 5. Columns 6, 7, and 8 show the num-

ber of before, after, and around advices, respectively. The last column in the table

shows the number of intertype methods. The subject programs contain a variety of

characteristics that can be present in aspect-oriented programs, including different

types of advices, intertype declarations, multiple advices that match the same join

point, and different types of data flow interactions. The programs also cover several

applications of aspect-oriented programming, such as contract enforcement, log-

ging, and composition of separate concerns. We provide brief descriptions of each

program below, except for the Kettle program, which we described in Chapter 2.

Telecom is a simulation of a telephony system that is shipped with the ajc

AspectJ compiler [66]. This program allows customers to make, accept, merge,

8http://xml-marker.en.softonic.com/
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Table 7.11: Main characteristics of the subject programs

Program LOC #Classes #Aspects #Tested #Before #After #Around #ITM
Classes advices advices advices

Kettle 125 1 2 1 0 2 2 2
Telecom 928 10 3 5 0 9 0 9
Banking 243 2 2 2 0 0 1 1
CruiseControl 1008 9 3 3 4 7 2 12
All 2304 22 10 11 4 18 5 24

and hangup both local and long distance calls. Telecom contains three aspects:

1. Timing aspect, which measures the connection duration for customers by

initializing and stopping a timer associated with each connection.

2. Billing aspect, which specifies the payer of each call and ensures that local

and long distance calls are appropriately charged.

3. TimerLog aspect, which implements a log that prints the times whenever a

connection is established or dropped.

The Banking program was developed by Laddad [37] as an example of a banking

account management system. A customer can have multiple accounts that are

managed by two aspects as follows:

1. MinimumBalanceRuleAspect implements a minimum balance banking policy

by ensuring that the balance of an account does not go below a minimum

required balance.

2. OverdraftProtectionRuleAspect implements an overdraft coverage policy by

allowing a customer to cover overdraft withdrawals from the customer’s other

accounts.
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Xu et al. [76] developed an aspect-oriented implementation of a legacy cruise

control system called CruiseControl. The program contains classes that simulate

a car, a cruise controller, and a speed controller. These classes interact with the

following three aspects:

1. CarSimulatorFix is an incremental modification aspect that enforces the pre-

condition that the car engine is on for accelerate and brake events.

2. CruiseControlIntegrator adds the implementation of a cruise controller to a

car

3. SpeedControlIntegrator adds the implementation of a speed controller to a

cruise controller.

Table 7.12: Number of test requirements for the AOSV test criteria in the classes
of the subject programs.

Subject Class oDUA aDUA cDUA asDUA maDUA allDUA
Kettle Kettle 16 10 12 10 6 54
Banking Account 11 4 18 2 1 36

Customer 0 0 5 0 0 0
Telecom Local 2 0 9 5 1 17

LongDistance 2 0 9 5 1 17
Customer 0 0 8 8 0 16
Call 0 0 9 0 0 0
Timer 0 0 7 0 0 0

Cruise CarSimulator 6 0 127 17 0 150
Control CruiseController 45 0 65 6 0 116

SpeedControl 4 8 49 2 0 63
Total No. of DUAs 86 22 318 55 9 469
No. of Classes with this DUA type 7 3 11 8 4 8

Table 7.12 shows the number of test requirements for the AOSV test criteria in

each class in the subject programs. The first and second columns of the table show

the programs and the classes names, respectively. Columns 3 through 8 show the
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number of DUAs of each of the AOSV DUAs. The last two rows show the number

of DUAs of each type in all the classes and the number of classes that have DUAs

of the type in each column, respectively. For example, the fourth column in the

last two rows shows that there are 318 cDUAs that occurred in 11 classes. The

reported numbers exclude DUAs that have defs and uses in exception handling

segments and unreachable DUAs. As the table shows, two of the advised classes

have all types of DUAs. These are the Kettle class of the Kettle program and

the Account class of the Banking program. Note that the maDUAs are the least

frequent in terms of the number of DUAs in the classes. This is because maDUAs

occur only when there are data dependencies between advices in different aspects,

which did not occur frequently in the tested classes.

DUAs of type aDUA occurred only in 3 classes, while oDUAs occurred in 7

of the 8 advised classes. These are about 4 times more oDUAs than there are

aDUAs, which shows that aspects use data from variables provided by base classes

more than they alter their values.

asDUAs occurred in all the advised classes because the aspects in the subject

programs needed to introduce state variables in the base classes in order to imple-

ment the crosscutting concern. Since these introduced state variables are defined

and used only in the aspect that introduced them, we had this high number of

asDUAs, compared to other types of AOSV DUAs.

cDUAs occurred in all the 11 classes, whether the classes were advised or not.

Recall that cDUAs are defined between defs and uses of the state variable that

occur in the base class. Therefore, such DUAs can occur in non-advised classes.

In our studies, we tested three non-advised classes, which are Customer in the

Banking program, and Call and Timer in the telecom program. We tested these

classes in order to evaluate the cost and effectiveness of the cDUAs in non-advised
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classes.

Table 7.13: Number of test requirements for the AO control-flow test criteria in
the classes of the subject programs.

Subject Class Blocks Branches

Kettle Kettle 21 16

Banking Account 21 12
Customer 6 0

Telecom Local 19 0
LongDistance 19 0
Customer 18 0
Call 18 9
Timer 5 0

Cruise CarSimulator 52 23
Control CruiseController 32 25

SpeedControl 22 10

Sum No. Test Requirements 233 95

No. Classes 11 6

Table 7.13 shows the number of test requirements for the AO control-flow test

criteria in each class of the subject programs. The reported numbers exclude blocks

and branches in exception handling segments and unreachable blocks and branches.

The table shows that there are five classes that do not contain test requirements

with respect to the AO All-Branches criterion. This is because CodeCover only

counts branches that are produced by a decision statement. Methods or advices

that contain only one path are not counted. This is also the reason why the number

of branches is less than the number of blocks in the other six classes.

7.7 Mutant Generation

Experimental studies in software testing require the evaluation of the ability of a

testing approach to detect known faults in subject programs. However, researchers

often have a problem finding subject programs that meet their research require-
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ments and also contain real faults. Even when such programs are available, the

number of real faults is often not large enough to allow achieving statistically

significant results [7]. Therefore, researchers typically seed faults in the subject

programs, either manually or with mutation operators. The latter approach has

several advantages. A large number of faulty versions can be generated in a system-

atic and easily replicatable manner [49]. Moreover, Andrews et al. [7, 8] provided

evidence that faults generated with mutation operators are similar to real faults in

evaluating test effectiveness, while hand-seeded faults are harder to detect than real

faults. Therefore, we chose to seed faults in the subject programs using mutation

operators.

7.7.1 Mutant Generation Using Mutation Tools

We used three mutation tools AjMutator, Proteum/AJ, and µJava. AjMutator

was developed by Delamare et al. [17]. It implements a subset of the operators for

pointcut descriptors proposed by Ferrari et al. [22]. AjMutator parses a pointcut

descriptor from the aspect source code and performs the mutations. The modified

pointcut is then used to generate a mutant. AjMutator classifies the mutants

according to the set of join points they match compared to the set of join points

matched by the original pointcut. If the two sets are equal, the mutant is classified

as equivalent. The tool also identifies non-compilable mutants and runs JUnit test

cases.

Proteum/AJ [23] implements three more pointcut mutation operators than

AjMutator from the same set of operators proposed by Ferrari et al. [22]. The

tool also implements two advice declaration operators, four advice implementation

operators, and 5 intertype declaration operators. Proteum/AJ is not yet available

for public use. Therefore, we sent the subject programs to the developers of the

tool and they generated the mutants for us.
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Proteum/AJ allows the tester to selectively apply the operators. The tool uses

the same concept of equivalent pointcut mutants as that used in AjMutator. The

tool also runs JUnit test cases and computes the mutation score for a given test

suite. Proteum/AJ is not yet available for public use. Therefore, we sent our

subject programs to the developers of the tool and they generated the mutants for

us.

Table 7.14 lists the operators from AjMutator and Proteum/AJ that generated

mutants for the subject programs. Operators that apply to constructs not used

in the programs are not shown (e.g., operators that mutate annotations). The

first and second columns of the table show the operator name and description,

respectively. The third and fourth columns specify whether the operator is im-

plemented in Proteum/AJ and AjMutator, respectively. The fifth column shows

the fault category of the generated mutant classified according to the revised AO

fault model described in Chapter 4. There are eight pointcut operators (category

F1) from both the tools. Note that some operators are implemented in both the

tools but in different ways. For example, POPL in Proteum/AJ is implemented

by adding or removing the parameter list, which is how the operator is defined by

Ferrari et al. [22]. However, AjMutator only removes the parameter list from the

descriptor if the list is specified. In our studies, we used the mutants from both

tools. When the operators generate identical mutants, we keep the mutants from

Proteum/AJ.

To mutate the rest of the code, we used µJava [41]. µJava is a widely used

tool for mutating Java programs. µJava provided two types of mutation operators,

class level and method level. Class level mutation operators generate faults related

to object-oriented features while method level operators generate intra-method

faults. µJava relies on the tester to manually identify equivalent mutants.
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Table 7.14: Mutation operators implemented by AjMutator and Proteum/AJ that
generated mutants in the subject programs

Operator Description Proteum/AJ AjMutator Fault
Category

PCCE Replace call/execution/ yes only F1
initialization/preinitialization call/execution

PCLO Change logical operators in yes yes F1
pointcut descriptor

PCTT Replace this/target yes yes F1

POEC change exception throwing yes yes F1

POAC change after[returning yes no F1
|throwing]

POPL Change the parameter list yes Delete only F1

PSWR Remove wildcard yes yes F1

PWIW adds wildcard yes yes F1

ABAR Changes advice kind yes No F2

ABPR change pointcut advice yes No F2
binding

DAPC swap aspects precedence yes No F2

DAPO Remove declare precedence yes No F2

ABHA remove advice yes No F3

APER change guard condition of yes No F3
around

APSR remove proceed statement yes No F3

The current version of µJava does not support AspectJ. That is, the tool cannot

seed faults in the aspects, and to the best of our knowledge, except for the 4

operators implemented in Proteum/AJ, there is no tool that can directly seed faults

into the advice, aspect methods, and introduced methods. Therefore, we used an

indirect approach to seed faults in the aspects using µJava. We generate a class

from the aspect bytecode with the help of a decompilation tool (Jad9). We mutate

the decompiled class with µJava. We choose the mutated line that resides in the

9http://www.varaneckas.com/jad
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advices, intertype methods, or aspect method and copy it back to the aspect. We

repeat this step to generate all the mutants, where each mutant contains one fault.

Note that since the mutated class is produced from the bytecode, it contains some

extra methods that are not present in the source code of the aspect. These methods

include those that the aspect inherits from the AspectJ base class (e.g., methods

aspectOf, hasAspect), and methods that correspond to some AspectJ constructs.

For example, the declare precedence statement is compiled into a method in the

bytecode. We discard mutants that reside in these extra methods.

We use µJava directly on the base classes to generate their mutants. µJava

only produces mutants that compile. However, µJava compiles mutants with a

Java compiler by default, not an AspectJ compiler. Therefore, we compile all

mutants generated by µJava with the AspectJ ajc compiler.

One major problem with seeding faults using mutation operators is that the

operators generate a large number of equivalent mutants. In our study, about 31%

of the compiled mutants were equivalent. These mutants need to be identified and

eliminated before measuring the effectiveness of the test criteria. Both AjMuta-

tor and Proteum/AJ can identify equivalent mutants when the set of join points

matched by the mutants is equal to the set of join points matched by the original

program. This concept only applies for a subset of the pointcut mutants because

there are some pointcut mutants match different set of join points and are still

equivalent to the original program (e.g., in some programs, there is no difference

between using a call and execution pointcut designators). Therefore, we manually

inspected all the mutants and identified the equivalent ones. We consider a mutant

to be equivalent if the fault seeded by the mutation operator did not propagate to

produce a different output from the original program.
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7.7.2 Generation of Higher Order Mutants

In order to answer research question 3, we need to seed faults of the types described

in the revised AO fault model as long as the programs contain constructs that can

be mutated to generate faults of each type. By classifying the mutants generated

by the tools, we found that faults of type F1-2 were generated in only one class,

while there are 7 other classes that can have faults of this type. The reason is that

faults of type F1-2 require expanding the set of matched join points to include

extra join points and at the same time, narrowing the set to miss some of the

intended join points. The operators implemented by AjMutator and Proteum/AJ

(like all traditional first-order mutation operators) perform one change in the code,

which does not guarantee that F1-2 mutants can be generated, especially when the

pointcuts are bound to objects of specified types, like the pointcuts in the subject

programs. This observation leads us to consider generating mutants by applying

two operators. The resulting mutant is called a higher order mutant (HOM) [18,

34]. Mutants can be classified into first order mutants (FOMs), which are created

by applying a mutation operator once, and higher order mutants (HOMs) of degree

k, which are generated by applying mutation operators more k times [18, 34]. A

HOM of degree two (or a second order mutant) is constructed by applying two

mutation operators.

Our goal is to generate faults of the types that the FOMs missed. Given two

mutants m1 and m2, where m1 produces a fault of type f1 and m2 produces a fault

of type f2, the following four conditions must hold before we generate the HOMs:

1. Condition 1: Sm1
6= Sm2

, where Sm1
and Sm2

are the sets of join points

matched by mutants m1 and m2, respectively.

2. Condition 2: Sorig 6= ∅, where Sorig is the set of join points matched by the

original pointcut.
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3. Condition 3: Sm1
6= Sorg and Sm1

6= Sorg, i.e., the mutants m1 and m2 are

not equivalent to the original program.

4. Condition 4: m1 and m2 mutate the same pointcut descriptor.

Given conditions 1 through 4, we take a mutant corresponding to fault type

F1-3 and one mutant of type F1-4 and combine them to get a mutant of type F1-2.

In the Kettle program, we have 2 mutants of type F1-3 and 4 mutants of type

F1-4. We could generate 4 HOMs of type F1-2 because every mutant of type F1-

3 mutates the same pointcut in two of F1-4 mutants. In the telecom program,

we have 5 mutants of type F1-3, and 18 mutants of type F1-4. We were able to

generate 6 HOMs of type F1-2 because 3 of the 5 F1-3 mutants mutate the same

pointcut of 2 mutants of type F1-4. For the rest of the classes that do not have

mutants of type F1-2, we could not generate HOM for them since conditions 1

through 4 did not hold.

Figure 7.1 shows a higher order mutant generated for the telecom program.

Mutant 1 generated by operator PWIW is of type F1-3 because the mutant matches

a superset of the intended join points. Mutant 2 generated by operator POAC is

of type F1-4 because it matches a subset of the intended join points (i.e., it misses

the join point when the method Timer.start throws an exception). The generated

HOM is of type F1-2 because it matches a subset of the intended join points (i.e.,

it misses the join point after an exception is thrown), and some unintended join

points (i.e., after returning from other methods of class Timer).

7.7.3 Classification of Mutants

In this section, we show the distribution of the generated mutants on the types

of faults of the revised AO fault model presented in Chapter 4. Table 7.15 shows

the distribution of the mutants generated from the aspect pointcuts (category 1).
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//original

after(Timer t): target(t) && call(* Timer.start())

//Mutant 1

after(Timer t): target(t) && call(* Timer.*())

//Mutant 2

after(Timer t) returning: target(t) && call(* Timer.start())

//HOM

after(Timer t) returning: target(t) && call(* Timer.*())

Figure 7.1: HOM for telecom

The first and second columns of the table show the program and class names,

respectively. Columns 3 through 7 show the number of mutants in each type for

each of the classes. The last column shows the total number of pointcut mutants

generated for each class, while the last row shows the total of the number of

mutants in each type for all the classes. In classes Kettle, Local, and LongDistnace,

mutants of all fault types are present. Class Account has only one pointcut mutant.

The reason is that the pointcut in aspect OverdraftProtectionRuleAspect, which

matches one method in class Account, is written to exactly match the signature of

the advised method. Therefore, all the mutants that the tools generated for the

pointcut either did not compile or were equivalent, except for one mutant generated

by operator POEC. We also could not generate HOMs for the Account class since

we need at least two non-equivalent FOMs.

Table 7.16 shows the classification of the mutants generated from aspect dec-

larations (category F2). We have faults of types F2-5, F2-7, and F2-8 in the

programs. We could not seed faults of types F2-1 and F2-2 because Proteum/AJ

does not have operators than can seed such types of faults. Other fault types (i.e.,

F2-4 and F2-5), do not occur in the subject programs. For class Account in the

Banking program, and the 3 classes of the CruiseControl program, we could not
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Table 7.15: Classification of mutants generated from aspect pointcuts

Subject Class F1-1 F1-2 F1-3 F1-4 F1-5 All

Kettle Kettle 0 4 2 4 6 16

Banking Account 0 0 0 0 1 1

Telecom Local 16 6 5 14 20 61
LongDistance 16 6 5 14 20 61
Customer 6 0 0 4 8 18

Cruise CarSimulator 0 2 6 10 5 23
Control CruiseController 2 0 3 8 1 14

SpeedControl 0 0 0 3 2 5

All 40 18 21 57 63 199

Table 7.16: Classification of mutants generated from aspect declarations

Program Class F2-5 F2-7 F2-8 All

Kettle Kettle 2 2 2 6

Banking Account 0 0 0 0

Telecom Local 2 5 13 20
LongDistance 2 5 13 20
Customer 2 0 5 7

Cruise CarSimulator 0 0 20 20
Control CruiseController 0 8 19 27

SpeedControl 0 0 0 0

All 8 20 72 100

Table 7.17: Classification of mutants generated from aspect implementation

Program Class F3-1 F3-2 F2-3 All

Kettle Kettle 27 38 30 95

Banking Account 10 28 34 72

Telecom Local 0 8 22 30
LongDistance 0 8 22 30
Customer 0 20 4 24

Cruise CarSimulator 3 8 6 17
Control CruiseController 16 17 34 67

SpeedControl 0 17 29 46

All 56 144 181 381
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seed faults of type F2-5 since there are no precedence rules for the aspects in these

programs. For class Account, we could not generate any fault of type F2 because

type F2-7 requires having before and after advices while the program only has

an around advice. Fault type F2-8 requires having more than one advice in the

aspect, which is not the case in the Banking program.

Table 7.18: Classification of mutants generated from class implementation

Program Class F4-1 F4-2 F4-3 F4-4 All

Kettle Kettle 31 5 3 6 45

Banking Account 33 0 3 6 42
Customer 2 0 3 0 5

Telecom Local 8 0 1 5 14
LongDistance 8 0 1 5 14
Customer 17 0 6 12 35
Call 6 0 4 12 22
Timer 14 0 2 7 23

Cruise CarSimulator 106 0 17 128 251
Control CruiseController 76 0 10 72 158

SpeedControl 84 0 20 84 188

All 385 5 70 337 797

Table 7.19: Summary of the generated mutants for the subject programs

Program Class F1 F2 F3 F4 All

Kettle Kettle 16 6 95 45 162

Banking Account 1 0 72 46 119
Customer 0 0 0 5 5

Telecom Local 61 20 30 14 125
LongDistance 61 20 30 14 125
Customer 18 7 24 35 84
Call 0 0 0 22 22
Timer 0 0 0 23 23

Cruise CarSimulator 23 20 17 251 311
Control CruiseController 14 27 67 158 266

SpeedControl 5 0 46 188 239

All 199 100 381 801 1481
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Table 7.17 shows the classification of the mutants generated from aspect im-

plementations (category F3). The table combines the mutants generated by Pro-

teum/AJ and µJava. Classes of the telecom program and the SpeedControl class

of the CruiseControl program do not have faults of type F3-1 since these classes

are not advised by around advices.

Table 7.18 shows the classification of the mutants generated from Java classes

(category F4). Note that only class Kettle has faults of type F4-2. This is because

only the Kettle program contains advices that receive arguments from the base

classes.

Table 7.19 summarizes the number of mutants of all types generated for the

classes in the subject programs. Note that non-advised classes only have faults in

category F4 since these classes do not directly interact with the aspects.

7.8 Test Suite Generation

We used RANDOOP [55], which generates JUnit test cases for Java programs.

RANDOOP generates new test cases by randomly selecting a method to call and

finding arguments from among previously found inputs. Since RANDOOP is not

designed for AspectJ, we performed the following steps to use RANDOOP for

AspectJ programs:

• We rewrote the aspects in the subject programs using the annotation style.

In @AspectJ annotation, intertype methods are declared in an interface that

the class implements. This feature allows RANDOOP to recognize these

methods since they are now part of the class declaration and RANDOOP

can generate calls for them.

• We generate test cases only for the classes in the subject programs (i.e., not

for the aspects). RANDOOP allows the tester to specify which classes to
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test and which methods can be called by the test cases. Using this feature,

we can avoid having calls to aspect methods and advices directly from the

test cases.

For each subject program, we generated a pool of test cases, starting from 3000

test cases. In order to ensure that the test cases in the pool can satisfy the test

criteria, we measured the coverage the AOSV test criteria obtained by the test

cases in the pool. If the criteria were not fully covered, we generated a another

pool with 1000 more test cases (i.e., 4000 test cases in all). We stopped when the

pool contains at least one test case that covers each of requirements of the test

criteria. The sizes of the pools for each subject program are given in Table 7.20.

Table 7.20: Size of the test pool for each of the subject programs

Subject Program Test Pool Size

Kettle 3,000

Banking 7,000

Telecom 6,000

CruiseControl 14,000

We provided RANDOOP with a set of input values suitable for the subject

programs. For example, for the telecom program, we provided RANDOOP with a

set of customer names to chose from, and values for call durations that must be

used. We also used an option of RANDOOP called the observers option, which is

not yet available for public use, for creating custom assertions. In the public version

of RANDOOP, the tool generates assertions that check for null values, reflexivity,

and symmetry of equality of the variables [43]. However, using the observers option,

we can specify observer methods that help generate stronger assertions that are

application-specific. RANDOOP considers a method as an observer method if all

of the following hold: (1) the method has no parameters, (2) the method is public
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and non-static, (3) the method returns values of primitive types or Strings, and

(4) the name of the method is size, count, length, toString, or begins with get

or is.

Following the approach of generating test suites described in Section 7.3, we

generated 30 test suites that satisfy each test criterion in each of the advised class.

The use of 30 test suites allows analyzing the results for cost and effectiveness at

a significant level (i.e., p < 0.05).

7.9 Data Analysis

Using the SPSS10 package, we performed a repeated measures ANOVA analysis on

the data collected for the cost and effectiveness of the test criteria. For each of the

classes, we compared each pair of test criteria that apply to the class. Each of the

repeated measures ANOVA tests was performed using 30 observations. We used

repeated measures ANOVA because the measurement of the independent variable

is repeated. We used repeated measures ANOVA to test the hypotheses in all

of the 5 groups. Normality is tested using Kolmogorov-Smirnov test the sample

size is small (less than 50 observations). The data in our experiments passed

the normality We used the Mauchly’s test which tests the hypothesis that the

variances of the differences between conditions are equal (i.e., test the assumption

of sphericity). When data violated the sphericity assumption, we applied the

suitable correction to correct the degrees of freedom.

10http://www.spss.com
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Chapter 8

Empirical Study Results

We present the results of the empirical study in this chapter. Sections 8.1 through 8.4

address each of the four research questions in turn. Section 8.5 discusses the threats

to the validity of the study.

8.1 Comparing the Cost of the Test Criteria

We address the first research question in this section. Our answer is based on the

results of testing the hypotheses in groups A through D. Table 8.1 shows statistics

about the sizes of the test suites that satisfy the criteria. For each criterion shown

in column 1, and for each class in row 1, Table 8.1 shows: (1) the means of the

number of test cases in the test suites that satisfy a test criterion (top line), (2)

the standard deviations of the number of test cases in the test suites that satisfy a

test criterion (second line), (3) the minimum and maximum of the number of test

cases in the test suites that satisfy a test criterion (third line), and (4) the number

of test requirements for a test criterion in the class (fourth line). For any class, the

symbol (**) on the first line indicates that the average size of the test suite that

satisfies the criterion is the smallest, while the symbol (*) indicates that it is the

largest. For example, the entry in the second row and second column shows that

in the Kettle class (1) the mean number of test cases in the test suites that satisfy
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Table 8.1: Statistics for the number of test cases in the test suites that satisfy the
test criteria
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all-usesa 7.9 2.3 6.4
0.99 0.5 0.77
5-10 2-3 4-7
10 4 8

all-useso 6.6 5.5 1** 1** 4.8** 26.2 2.5
1.16 1.04 0 0 0.74 1.85 0.57
5-9 4-7 1-1 1-1 3-6 23-30 1-3
16 11 2 2 6 45 4

all-usesc 8.1 6.1 2* 7 4.7 2.1 5.4* 3.4* 51.4 26.4 15.7
1.48 1.28 0.67 0.93 1 0.68 0.93 0.97 6.09 1.83 2.05
6-12 4-8 1-3 5-8 2-7 1-4 3-7 2-5 37-61 23-29 11-21
12 18 5 9 9 8 9 7 127 65 49

all-usesas 6.8 1.8 2.8 1.9 4.3 11.7 4** 2**
1.1 0.38 0.41 0.52 1.03 1.62 0.89 0
4-9 1-2 2-3 1-3 2-6 9-16 2-6 2-2
10 2 5 5 8 17 6 2

all-usesma 4.8 1** 1** 1**
1.04 0 0 0
3-6 1-1 1-1 1-1
6 1 1 1

all-usess 15.8* 11.4* 8.3* 4.8* 4.9* 54.7* 34.3* 21.2*
2.7 1.3 1.61 0.97 1.09 4.85 2.16 2.29
10-21 9-15 4-11 3-7 3-7 44-63 30-38 17-27
54 36 17 17 18 150 116 63

AO 3.7** 2 1** 2.1 2.2 1.6** 2.1** 3.2** 5.1 4.8 4.3
blocks 1.72 0 0 0.89 0.79 0.5 0.35 1.22 0.94 1.18 0.91

1-6 2-2 1-1 1-3 1-3 1-2 2-3 1-4 3-8 3-8 3-6
21 21 6 19 19 18 18 5 52 32 22

AO 4.7 3 4.1 5.8 5.2 5.2
branches 1.73 0.85 1.52 1.55 1.47 0.95

2-7 2-4 2-6 3-8 3-8 3-7
16 12 9 23 25 10

the all-usesa criterion is 7.9, (2) the standard deviation is 0.99, (3) the number

of test cases in the test suites that satisfy all-usesa ranges from one to three test
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cases, and (4) there are 10 aDUAs in the class. Column 2 shows that for the Kettle

class, the number of test cases that satisfies all-usess is the largest while the test

suite that satisfies AO blocks is the smallest. Empty cells in the table indicate that

the criterion does not have test requirements in the class.

All the test suites that satisfy the all-usesma criterion in Account, Local, and

LongDistance classes contain only one test case. This is because these classes con-

tain only one maDUA. Similarly, the test suites that satisfy the all-useso criterion

in Local and LongDistance classes also contain only one test case. This is because

the 2 oDUAs in the classes are covered by executing the same path (i.e., they are

always covered together).

The maximum number of test cases in a test suite does not exceed the number

of test requirements for a criterion. This is because of the iterative procedure we

performed to generate the test suites (i.e., adding a test case only if it improves

coverage).

Columns 5 and 6 show that the average number of test cases in the test suites

that satisfy each of the test criteria in the Local class is higher than in the LongDis-

tance class, even though both classes implement the same super class (class Con-

nection), and differ only in the constructors. RANDOOP test cases exercised more

LongDistance calls than Local calls because RANDOOP tends to randomly gen-

erate different values for area codes. This results in more calls to different area

codes than calls to the same area code.

Table 8.1 shows that in all the advised classes, the average number of test cases

in the test suites that satisfy all-usess is higher than c1 for all other test criteria.

In the non-advised classes, the average number of test cases in the test suites that

satisfy all-usesc is higher than c1 for the AO control-flow criteria. However, the

smallest c1 in each class is not consistent for one of the test criteria.
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8.1.1 Comparing the Cost of the Test Criteria Using Size
Metric c1

We present the results from testing the hypotheses in group A, in which the cost

of the test criteria is compared using the number of test cases in a test suite that

satisfies a criterion. Section 8.1.1.1 presents the results of testing hypotheses H0A1

through H0A12, in which c1 of the AOSV test criteria is compared with c1 of the

AO control-flow criteria. Section 8.1.1.2 presents the results of testing hypotheses

H0A13 through H0A27, in which the AOSV test criteria are compared with each

other using c1.

8.1.1.1 Comparing the Cost of the AOSV Test Criteria with the Cost
of the AO Control-Flow Criteria Using Size Metric c1

Table 8.2 shows the results of testing hypotheses H0A1 through H0A12. Column 1

shows which criteria are being compared and row 1 shows the class names. Columns

2 through 12 show the results of testing the hypotheses in each class. For each

hypothesis, we report the difference between the means of number of test cases in

the test suites sizes that satisfy the compared criteria and the p-value of the test.

We reported the p-value using the symbol ∗∗ when p < 0.01, the symbol ∗ when

p < 0.05, “ns” when there is no significant difference to reject the null hypothesis,

and “na” when testing the hypothesis is not applicable because repeated measures

ANOVA requires that the variances of the compared observations to be not equal

to zero, while all the observations for the compared criteria have the same value.

For example, the entry in the second row and second column shows that in the

Kettle class (1) there is a significant difference between the number of test cases

in the test suites that satisfy all-usesa and the number of test cases in the test

suites that satisfy AO blocks, (2) the number of test cases in the test suites that

satisfy all-usesa is significantly higher than the number of test cases in the test
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Table 8.2: Hypotheses test results for comparing the cost of the AOSV test criteria
with the cost of the AO control-flow criteria using the number of test cases in a
test suite that satisfies a test criterion

Hypotheses K
et

tl
e

A
cc

ou
n
t

C
u
st

om
er

(B
an

k
in

g)

L
o
ca

l

L
on

gD
is

ta
n
ce

C
u
st

om
er

(T
el

ec
om

)

C
al

l

T
im

er

C
ar

S
im

u
la

to
r

C
ru

is
eC

on
tr

ol
le

r

S
p
ee

d
C

on
tr

ol

H0A1 : 4.2 0.8 2.1
all-usesa-blocks ** ** **
H0A2 : 3.2 -0.4 1.2
all-usesa-branches ** ns **
H0A3 : 2.9 3.5 -1.1 -1.2 -0.3 21.4 -1.8
all-useso-blocks ** ** ** ** ns ** **
H0A4 : 2.0 2.5 -1.0 21.0 -2.7
all-useso-branches ** ** ** ** **
H0A5 : 4.4 4.1 0.9 4.9 2.2 0.5 3.3 0.2 46.3 21.5 11.5
all-usesc-blocks ** ** ** ** ** ** ** ns ** ** **
H0A6 : 3.5 3.2 1.3 45.6 21.2 10.6
all-usesc-branches ** ** ** ** ** **
H0A7 : 3.0 -0.2 .7 -.2 2.7 6.6 0.9 -2.3
all-usesas-blocks ** ns ** ns ** ** ns **
H0A8 : 2.1 -1.1 5.9 -1.2 -3.2
all-usesas-branches ** ** ** * **
H0A9 : 1.0 -1.0 -1.1 -1.2
all-usesma-blocks ns na ** **
H0A10 : 0.1 -2.0
all-usesma-branches ns **
H0A11 : 12.1 9.4 6.2 2.6 3.3 49.6 29.4 16.9
all-usess-blocks ** ** ** ** ** ** ** **
H0A12 : 11.2 8.4 49.9 29.1 16.0
all-usess-branches ** ** ** ** **

suites that satisfy AO block (p < 0.01), and (3) the difference between the mean

of the number of test cases in the test suites that satisfy all-usesa and the means

of the number of test cases in the test suites that satisfy AO blocks is 4.17. Empty

cells in the table indicate that the hypothesis cannot be tested in the class because

the class does not contain test requirements for the two criteria compared in the

hypothesis.
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The results from testing hypotheses H0A1 through H0A12 support the alterna-

tive hypotheses and show that there is a significant difference between c1 for each

of the AOSV test criteria and each of the AO control-flow criteria in 58 out of

66 hypothesis tests performed in the classes. The results from testing hypotheses

H0A1, H0A2, H0A5, H0A6, H0A11, and H0A12 show also that c1 for each of the

all-usesa, all-usesc, and all-usess criteria, is significantly higher than c1 for each

of the AO control-flow criteria. For the other AOSV test criteria (i.e., all-useso,

all-usesas, and all-usesma), the difference in c1 is inconsistent over all the classes.

In the classes that contain few DUAs and DUAs that can be covered by any test

case, c1 for the AO control-flow is higher. For example, the Local and LongDis-

tance classes each contain only two oDUAs that are covered by one path, and

therefore, one test case is enough to satisfy all-useso. However, each of these two

classes contain 19 blocks, 11 of which are in the aspects. Therefore, c1 for AO

blocks in Local and LongDistance is significantly higher than c1 for all-useso. On

the other hand, the CruiseController class contains 45 oDUAs, of which 17 require

paths that do not cover any other oDUAs (i.e., a path covers only one oDUA).

Therefore, c1 for the all-useso criterion in the CruiseController class is significantly

higher than c1 for AO blocks and AO branches.

The reason why c1 for all-usesa is significantly higher than c1 for each of the AO

control-flow criteria is that in the tested classes, the paths that cover the aDUAs

always require two consecutive calls to the advised methods that contain the def

and the method that contain the use. This is because all the defs are in either an

after or an around advice and in order to reach a use (even if the use is in the same

method), another call to the method that contains the use is needed. The other

types of AOSV DUAs also require consecutive calls for some of the DUAs, but not

for all of them (i.e., they have DUAs than can be satisfied by a path through one
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method).

There are two reasons why c1 for the all-usesc criterion is significantly higher

than c1 for each of the AO control-flow criteria. First, the classes have a higher

percentage of cDUAs than other types of AOSV DUAs as can be seen in Table 8.3.

The table shows each class in column 1, the number of cDUAs in column 2, the

total number of AOSV DUAs in column 3, and the percentage of cDUAs from

the total number of AOSV DUAs in column 4. Except for the Kettle class, the

cDUAs contribute at least 50% of all ASOV DUAs. In the CarSimulator class,

the cDUAs contribute about 86% of all the AOSV DUAs. The second reason

is that some cDUAs require covering paths that are easily executed by the test

cases (e.g., paths between setter and getter methods), while some cDUAs require

covering paths that are not frequently executed by the test cases.

We encountered four types of cDUAs in the tested classes, which are as follows:

• The def and use are in the same method.

• The def and use are in non-advised methods.

• Either the def or the use but not both are in advised methods.

• Both the def and use are in advised methods.

When a class has more of the last two types of cDUAs, then covering all-

usesc requires more paths and therefore, more test cases. For example, in the

Kettle class, in order to cover the cDUA <WaterAmount, K26, K26>, a test case

needs to make two consecutive calls to the method addWater so that the proceed

statement gets executed in both calls. Covering the cDUA <Size, K15, K36>

requires only calling the getSize method after the constructor.

The Timer, which is not advised by any aspect, is the only class in which

there is no significant difference between c1 for all-usesc and c1 for AO blocks.
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This is because objects of type Timer are only referenced by classes Local and

LongDistance, and a test case does not contain calls to all methods of classes that

are referenced by other classes. Thus, the number of test cases required to cover

the blocks in the class is increased.

Table 8.3: Percentage of cDUAs in the classes

Class # cDUAs # AOSV DUAs Percentage of cDUAs

Kettle 12 54 22

Account 18 36 50

Local 9 17 53

LongDistance 9 17 53

Customer 8 16 50

CarSimulator 127 150 85

CruiseController 65 116 56

SpeedControl 49 63 78

All 297 469 63

The results from testing hypotheses H0A9 and H0A10 show that c1 for all-

usesma is significantly lower than c1 for each of the AO control-criteria, except in

the Kettle class, in which the difference is not significant. This is because all the

classes, except the Kettle class, contain only one maDUA and, therefore, the test

suites that satisfy all-usesma contain only one test case. The Kettle class contains

6 maDUAs which require at least 3 different paths to be covered, and therefore,

increases c1 for all-usesma.

Testing hypothesis H0A7 in the Account class is not applicable. c1 for all-

usesma and c1 for AO blocks have the same value for all the 30 observations (1 and

2, respectively). However, the difference between the means of c1 for all-usesma

and the mean of c1 for AO blocks shows that c1 for all-usesma is higher, which

supports the alternative hypothesis.

Finally, the results from testing hypotheses H0A11 and H0A12 show that c1 for
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all-usess is significantly higher than c1 for each for the AO control-flow criteria in

all the classes. These results match our expectations.

8.1.1.2 Comparing the Cost of the AOSV Test Criteria with Each
Other Using Size Metric c1

Table 8.4 shows the results from testing hypotheses H0A13 through H0A27. The

table is organized in the same way as Table 8.2 but does not show the non-advised

classes since they do not contain any of the AOSV criteria other than all-usesc.

The results from testing hypotheses H0A13 through H0A27 support the alternative

hypotheses and show that there is a significant difference between c1 for the AOSV

test criteria compared to each other in 66 out of 73 hypothesis tests performed in

the classes.

The results from testing hypotheses H0A13 through H0A17 show that c1 for

the all-usess criterion is significantly higher than c1 for the other AOSV criteria

in all the classes, except for all-usesc in the LongDistance class, and all-usesas

in the Customer class, in which it is higher but not significantly. These results

match our expectations since all-usess subsumes all other AOSV criteria. In the

LongDistance class, the test suites that covered all-usesc also covered most of the

other AOSV DUAs. Therefore, these test suites were close in terms of c1 to the

ones that cover all-usess. In the Customer class, which contains only DUAs of

the types cDUA and asDUA, the test cases that covered the asDUAs also covered

most of the cDUAs, making c1 for all-usesas close to c1 of all-usess.

The results from testing hypotheses H0A19, H0A22, H0A25, and H0A26 show

that:

• H0A19: c1 for all-usesc is significantly higher than c1 for all-usesa in 2 out

of 3 classes in which these criteria are compared. In the Kettle class, it is

higher but not significantly.
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Table 8.4: Hypotheses test results for comparing the cost of the AOSV criteria
with each other using the number of test cases in a test suite that satisfies a test
criterion
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H0A13 : 7.9 8.8 14.8
all-usess-all-usesa ** ** **
H0A14 : 9.2 5.9 7.3 3.8 49.9 8.1 18.7
all-usess-all-useso ** ** ** ** ** ** **
H0A15 : 7.7 5.3 1.3 0.4 2.8 3.3 7.9 5.4
all-usess-all-usesc ** ** * ns ** ** ** **
H0A16 : 9.1 9.6 5.5 2.8 0.3 43.0 30.3 19.2
all-usess-all-usesas ** ** ** ** ns ** ** **
H0A17 : 11.1 10.4 7.3 3.8
all-usess-all-usesma ** ** ** **
H0A18 : 1.3 -2.9 3.9
all-usesa-all-useso ** ** **
H0A19 : -0.2 -3.6 -9.3
all-usesa-all-usesc ns ** **
H0A20 : 1.1 0.7 4.4
all-usesa-all-usesas * ** **
H0A21 : 3.1 1.6
all-usesa-all-usesma ** **
H0A22 : -1.5 -0.6 -6.0 -3.4 -46.6 -0.2 -13.3
all-useso-all-usesc * ns ** ** ** ns **
H0A23 : -0.1 3.7 -1.8 -0.9 -6.9 22.2 0.5
all-useso-all-usesas ns ns ** ** ** ** **
H0A24 : 1.9 4.5 0 0
all-useso-all-usesma ** ** na na
H0A25 : 1.4 4.3 4.22 2.4 -2.2 39.7 22.4 13.7
all-usesc-all-usesas * ** ** ** ** ** ** **
H0A26 : 3.4 5.1 6.0 3.4
all-usesc-all-usesma ** ** ** **
H0A27 : 2.0 0.8 1.8 0.9
all-usesas-all-usesma ** ** ** **

• H0A22: c1 for all-usesc is significantly higher than c1 for all-useso in 5 out

of 7 classes in which these criteria are compared. In the Account and the

CruiseController classes, it is higher but not significantly.
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• H0A25: c1 for all-usesc is significantly higher than c1 for all-usesas in all the

classes in which these criteria are compared, except in the Customer class,

in which it is significantly lower.

• H0A26: c1 for all-usesc is significantly higher than c1 for all-usesma in all the

classes in which these criteria are compared.

As explained in the previous section, the classes have a high percentage of

cDUAs compared with the other types of AOSV DUAs. Therefore, c1 for all-

usesc is significantly higher than c1 for all the other AOSV criteria, except when

the cDUAs in the class are of type that is easy to cover by any test case. In

the Account class, 50% of the cDUAs are either in the same method or between

non-advised methods. In the CruiseController class, there is a high percentage of

oDUAs compared with the cDUAs (45 oDUAs, and 65 cDUAs). Therefore, the

difference between c1 for all-usesc and c1 for all-useso is not significant. The Kettle

class contains fewer cDUAs than other classes but more aDUAs, and thus, the

difference between c1 for all-usesc and c1 for all-usesa is not significant. In the

Customer class, the cDUAs are covered by any test case because most of them

require executing paths between setter and getter non-advised methods.

The results from testing hypotheses H0A20 and H0A21 show that c1 for all-usesa

is significantly higher than c1 for all-usesas and all-usesma. As explained earlier,

aDUAs require more paths to be covered than other AOSV DUAs. The results

from testing hypotheses H0A24 and H0A27 show that c1 for all-useso and c1 for

all-usesas are significantly higher than c1 for all-usesma. This is because 3 out of 4

of the tested classes contain only one maDUA.

114



8.1.2 Comparing the Cost of the Test Criteria Using Size
Metric c2

We present the results from testing the hypotheses in group B, in which the cost

of the test criteria is compared using the number of test requirements that can be

covered by a test case. Section 8.1.2.1 presents the results from testing hypotheses

H0B1 through H0B12, in which c2 for the AOSV test criteria is compared with c2

for the AO control-flow criteria. Section 8.1.2.2 presents the results from testing

hypotheses H0B13 through H0B27, in which the AOSV test criteria are compared

with each other using c2.

8.1.2.1 Comparing the Cost of the AOSV Test Criteria with the Cost
of the AO Control-Flow Criteria Using Size Metric c2

Table 8.5 shows the results from testing hypotheses H0B1 through H0B12. Column

1 shows which criteria are being compared while row 1 shows the class names.

Columns 2 through 12 show the results of testing the hypotheses in each class. For

each hypothesis, we report the difference between the means of c2 for the compared

test criteria rounded to the nearest two decimal digits, and the p-value of the test.

We reported the p-value using the symbol ∗∗ when p < 0.01, the symbol ∗ when

p < 0.05, “ns” when there is no significant difference to reject the null hypothesis,

and “na” when testing the hypothesis is not applicable. Empty cells in the table

indicate that the hypothesis cannot be tested in the class because the class does

not contain test requirements compared in the hypothesis.

The results from testing hypotheses H0B1 through H0B12 support the alterna-

tive hypotheses and show that c2 for each of the AOSV test criteria is significantly

higher than c2 for each of the AO control-flow criteria in 62 out of 66 hypothesis

tests performed in the classes. These result confirm our expectations that a test

case can cover more blocks or branches than it can cover any of the AOSV DUAs
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Table 8.5: Hypotheses test results for comparing the cost of the AOSV criteria
with the cost of the AO control-flow criteria using size metric c2
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H0B1 : .61 .55 .61
all-usesa-blocks ** ** **
H0B2 : .50 .39 .28
all-usesa-branches ** ** **
H0B3 : .24 .41 .39 .39 .70 .43 .42
all-useso-blocks ** ** ** ** ** ** **
H0B4 : .12 .25 .54 .37 .10
all-useso-branches ** ** ** ** ns
H0B5 : .50 .25 .23 .67 .37 .18 .48 .15 .31 .26 .13
all-usesc-blocks ** ** ** ** ** ** ** ** ** ** **
H0B6 : .39 .09 .14 .15 .20 -.20
all-usesc-branches ** ** ** ** ** **
H0B7 : .50 .82 .36 .27 .45 .59 .51 .81
all-usesas-blocks ** ** ** ** ** ** ** **
H0B8 : .39 .67 .44 .45 .48
all-usesas-branches ** ** ** ** **
H0B9 : .62 .91 .89 .89
all-usesma-blocks ** na ** **
H0B10 : .50 .75
all-usesma-branches ** **
H0B11 : .12 .22 .38 .17 .22 .27 .14 .14
all-usess-blocks ** ** ** ** ** ** ** **
H0B12 : 0 .07 .11 .09 -.18
all-usess-branches ns ** ** ** **

in the advised classes. This is because a path in a test case that covers any of the

AOSV DUA contains many branches and blocks. The shortest path that covers

a DUA consists of two blocks and one branch. However, most of the paths that

cover the AOSV DUAs are longer because these paths exist between defs and uses

in different methods or advices. We discuss below the 4 tests which do not confirm

the alternative hypotheses.

The SpeedControl class contains branches that require the execution of a high
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number of different paths in order to be covered. This can be observed from the

results from testing hypotheses H0B4, H0B6, and H0B12, which show that (1)

c2 for AO branches is not significantly different from c2 for all-useso, and (2) c2

for AO branches is significantly higher than c2 for all-usesc and c2 for all-usess,

respectively. These branches are part of the paths that cover the aDUAs and the

asDUA in the class. This is the reason why all-usesa and all-usesas are the only

AOSV criteria for which c2 is significantly higher that c2 for AO branches in the

SpeedControl class. Similarly, in the Kettle class, c2 for AO branches is high due to

the branches in the aspects, but it is not significantly different from c2 for all-usess.

Finally, testing hypothesis H0B9 in the Account class is not applicable. In the

Account class, c2 for the all-usesma and c2 for AO blocks have the same value for

all 30 observations (1 and 0.095, respectively). However, the difference between

the means of c2 for the test criteria shows that c2 for all-usesma is higher, which

supports the alternative hypothesis.

8.1.2.2 Comparing the Cost of the AOSV Test Criteria with Each
Other Using Size Metric c2

Table 8.6 shows the results from testing hypotheses H0B13 through H0B27. The

table is organized in the same way as Table 8.5 but does not show the non-advised

classes since they do not contain any of the AOSV criteria other than the all-

usesc. The results from testing hypotheses H0B13 through H0B27 are in favor of

the alternative hypotheses and show that there is a significant difference between

c2 for the AOSV test criteria compared with each other in 61 out of 73 hypothesis

tests performed in the classes.

The results from testing hypotheses H0B13 through H0B17 show that c2 of the

all-usess criterion is significantly lower than c2 of the other AOSV test criteria in

27 out of 32 tests performed for the hypotheses. This is because all-usess subsumes
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Table 8.6: Hypotheses tests results for comparing the cost of the AOSV criteria
with each other using size metric c2
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H0B13 : -.50 -.33 -.46
all-usess-all-usesa ** ** **
H0B14 : -.12 -.18 -.01 -.22 -.43 -.29 -.28
all-usess-all-useso ** ** ns ** ** ** **
H0B15 : -.49 -.02 -.29 -.21 .04 -.04 -.11 .02
all-usess-all-usesc ** ns ** ** ns ** ** ns
H0B16 : -.38 -.60 .02 -.11 -.24 -.32 -.37 -.66
all-usess-all-usesas ** ** ns ** ** ** ** **
H0B17 : -.50 -.68 -.51 -.72
all-usess-all-usesma ** ** ** **
H0B18 : .38 .14 .18
all-usesa-all-useso ** ** **
H0B19 : .11 .30 .48
all-usesa-all-usesc * ** **
H0B20 : .11 -.28 -.20
all-usesa-all-usesas * ** **
H0B21 : 0 -.36
all-usesa-all-usesma ns **
H0B22 : -.26 .16 -.28 .02 .39 .18 .30
all-useso-all-usesc ** ** ** ns ** ** **
H0B23 : -.26 -.42 .03 .11 .11 -.08 -.38
all-useso-all-usesas ** ** ns ** * ns **
H0B24 : -.38 -.50 -.50 -.50
all-useso-all-usesma ** ** na na
H0B25 : 0 -.58 .32 .10 -.28 -.28 -.26 -.68
all-usesc-all-usesas ns ** ** * ** ** ** **
H0B26 : -.12 -.66 -.22 -.52
all-usesc-all-usesma * ** ** **
H0B27 : -.12 -.08 -.53 -.61
all-usesas-all-usesma ns ns ** **

the other AOSV test criteria, and therefore, a test case in a test suite that satisfies

all-usess covers different types of DUAs than it covers a particular type.

Metric c2 for all-usess is a measure of how many DUAs of the AOSV types can

be covered by executing the same path. When covering the AOSV DUAs requires
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executing more different paths, then c2 for all-usess becomes larger. When the

comparison between c2 for all-usess and c2 for an AOSV test criterion shows no

significant difference, then the DUAs required by the criterion that is compared

with all-usess are covered by the test suites that satisfy the other AOSV criteria.

For example, testing hypothesis H0B13 in the Account class shows that there is no

significant difference between c2 for all-usess and c2 of all-usesc. This means that

most of the cDUAs in the Account class are covered by the test suites that satisfy

the all-usesa, all-useso, all-usesas, and all-usesma criteria.

The results from testing hypotheses H0B18 and H0B19 show that the means for

c2 for all-usesa is significantly higher than c2 for all-useso and all-usesc in all classes

in which the hypotheses are tested, respectively. This is because, as mentioned in

Section 8.1.1.2, the aDUAs require more different paths than the other AOSV

DUAs. However, the result from testing hypothesis H0B20 shows that c2 for all-

usesa is significantly different than c2 for all-usesas but not higher. In the Account

and SpeedControl classes, c2 for all-usesas is significantly higher than c2 for all-

usesa. This is because in these classes, all the asDUAs required executing two

consecutive calls to the debit method of the Account class. Thus, the number of

test cases needed to cover the asDUAs in the class is increased.

The results from testing hypotheses HB25, HB26, and HB27 show that c2 for all-

usesma is significantly higher than c2 for each of all-useso, all-usesc, and all-usesas

(except for HB27 in the Kettle and Account classes, in which it is higher but not

significantly). This is because a path between a def in an aspect and a use in

a different aspect do not cover many other maDUAs. Testing hypothesis HB24 is

not applicable in the Local and LongDistance classes because the variances of the

compared observations are zero. However, the difference between the means of c2

for the criteria shows that c2 of all-usesma is higher, which supports the alternative
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hypothesis.

The results from testing hypotheses H0B22, H0B23, and H0B25 show that there

is a significant difference between c2 for all-useso, all-usesc, and all-usesas, but none

of these criteria costs more than the others. In some classes, the oDUAs, cDUAs,

and asDUAs are easily covered by any test case (e.g., oDUAs, asDUAs in the Local

class, and cDUAs in the Account class). In other classes, they require different

paths, and therefore, more test cases (e.g., oDUAs in the CruiseController class,

asDUAs in the SpeedControl class, and cDUAs in the CarSimulator class).

8.1.3 Comparing the Cost of the Test Criteria Using Effort
Metric c3

We present the results from testing the hypotheses in group C. These hypotheses

compare the effort needed to obtain the test suites that satisfy the various test

criteria. Section 8.1.3.1 presents the results from testing hypotheses H0C1 through

H0C12, in which c3 for the AOSV test criteria is compared with c3 for the AO

control-flow criteria. Section 8.1.3.2 presents the results from testing hypotheses

H0C13 through H0C27, in which the AOSV test criteria are compared with each

other using c3.

In Table 8.7, we show statistics for the effort needed to obtain the test suites

that satisfy the test criteria. We use these statistics to explain the results from

testing the hypotheses in group C and group D. For each test criterion shown in

column 1, and for each class in row 1, Table 8.7 shows: (1) the means of c3 for

the test criteria rounded to the nearest decimal digit (top line), (2) the standard

deviations of c3 rounded to the nearest decimal digit (second line), and (3) the

minimum and maximum values of c3 (third and fourth lines, respectively). For

example, the entry in the second row and second column shows that in the Kettle

class (1) the mean value of c3 for generating the test suites that satisfy all-usesa is
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Table 8.7: Statistics for measuring the cost of the test criteria using effort metrics
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all-usesa 85.2 2500.4 415.6
8.3 174.7 313.8
23 426 100
216 3981 1289

all-useso 32 1992.5 13.9 4 32.5 10567.6 6.8
3.5 173.5 16.2 2.7 17.3 1650.2 4
7 458 1 1 6 7389 1
75 3736 78 10 86 13404 16

all-usesc 92.8 28.5 2.8 646.2 24.3 3.7 619.5 15.3 10236.8 11170.1 951.8
11.2 3 1.6 498.1 15 3.5 473.6 9.8 2627.5 1718.9 572.3
25 4 1 45 4 1 1656 30 4919 7661 300
322 71 8 1941 69 19 63 1 13940 14023 2529

all-usesas 160.2 1002 463.8 3.4 22 220.2 281.7 39
20.2 126.2 333 2.7 16.6 128.9 267.6 42.3
22 6 44 1 2 38 15 3
413 2276 1438 8 63 512 1045 217

all-usesma 45.2 369.4 3.2 2.7
7.9 54.6 2.3 2
3 31 1 1
202 1060 10 9

all-usess 213.8 2248.8 911.3 21.2 22 10670.5 11081.9 925.2
30.3 148.2 490.5 17.6 12.7 2414.2 1377.2 490.3
40 793 156 5 74 5828 8997 217
751 3878 2458 79 4 13982 13823 2253

AO 23.9 234.7 2.1 125.9 17 1.6 214.5 13.3 140.2 158.4 69.8
blocks 2.5 22.3 0.8 32.8 5.7 0.5 111.9 8.7 32.8 100.9 16.4

3 43 1 80 1 1 41 45 73 46 42
48 486 3 196 26 2 399 3 186 405 98

AO 36.3 335.1 2547 267.7 172.3 77.8
branches 3.1 30 130.5 114.3 98.4 17.7

7 63 477 88 15 51
58 546 41 512 405 121

85.2, (2) the standard deviation is 8.3, and (3) c3 ranges from 23 to 216. Empty

cells in the table indicate that the class does not contain test requirements for the

criterion.

121



8.1.3.1 Comparing the Cost of the AOSV Test Criteria with the Cost
of the AO Control-Flow Criteria Using Effort Metric c3

Table 8.8: Hypotheses test results for comparing the cost of the AOSV criteria
with the cost of the AO control-flow criteria using effort metric c3
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H0C1 : 61 2266 346
all-usesa-Nodes ** ** **
H0C2 : 48 2165 338
all-usesa-branches ** ** **
H0C3 : 8 1758 -112 -13 -108 10409 -63
all-useso-Nodes ns ** ** ** ** ** **
H0C4 : -4 1657 -235 10395 -71
all-useso-branches ns ** ** ** **
H0C5 : 69 -206 1 520 7 -2 405 2 10097 11012 882
all-usesc-Nodes ** ** ns ** ns ns ** ns ** ** **
H0C6 : 57 -307 365 9969 10998 874
all-usesc-branches ** ** ** ** ** **
H0C7 : 136 767 338 -14 17 80 123 -31
all-usesas-Nodes ** ** ** ** ** * ns *
H0C8 : 124 667 -48 109 -39
all-usesas-branches ** ** ns ns **
H0C9 : 21 135 -123 -14
all-usesma-Nodes ns ns ** **
H0C10 : 9 34
all-usesma-branches ns ns
H0C11 : 190 2014 785 4 17 10530 10924 855
all-usess-Nodes ** ** ** ** ** ** ** **
H0C12 : 178 1914 10401 10910 847
all-usess-branches ** ** ** ** **

Table 8.8 shows the results from testing hypotheses H0C1 through H0C12. The

table is organized in the same way as Tables 8.2 and 8.5. We rounded the difference

between the means of the effort metric c3 for the compared criteria to the nearest

integer.

The results from testing hypotheses H0C1 through H0C12 are in favor of the
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alternative hypotheses except for hypothesis H0C10, for which the results show that

there is no significant difference between c3 for all-usesma and c3 for AO branches.

The results from testing hypotheses H0C1, H0C2, H0C11, and H0C12 also show

that c3 for all-usesa and c3 for all-usess are significantly higher than c3 for each of

the AO control-flow criteria, respectively. As explained in the previous sections,

the aDUAs require more different paths that are hard to be exercised by the test

cases than the other types of AOSV DUAs. This is because aDUAs always require

two consecutive calls to the advised methods that contain the def and the method

that contain the use. Covering all AOSV DUAs in the classes requires significantly

more effort than covering the branches and blocks because (1) the classes contain

a higher number of AOSV DUAs than they contain of one type of DUAs, and (2)

the DUAs require executing more paths that are hard to be exercised by the test

cases than the paths required to cover the branches and blocks.

The results from testing hypotheses H0C3 through H0C8 show that there are

significant differences between c3 for all-useso, all-usesc, and all-usesas, and c3 for

each of the AO control-flow criteria, but these differences are not consistent (i.e.,

the results do not show that c3 for any pair of compared criteria is higher in all

classes).

The two factors that contribute to the effort of obtaining a test suite that

covers a criterion are (1) the number of test cases in the pool that can cover the

test requirements of a criterion, and (2) the number of test requirements a class

contains for the criterion. When the pool of test cases contains many test cases

that cover the test requirements of a criterion, the effort in covering the criterion

decreases since there is higher likelihood that the randomly selected test case from

the pool can cover the requirements. Some classes contain AOSV DUAs that

are easily covered by most of the test cases, which therefore, decreases the effort
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needed to satisfy the criteria. Some classes contain AOSV DUAs that require

covering paths that are hard to be executed by in the test cases.

We can make the same conclusions for the AO control-flow criteria. For exam-

ple, satisfying AO blocks in the Customer class of the Telecom program and the

Customer class of the Banking program requires an average c3 of only 2.1 and 1.6

iterations, respectively. This is because these two classes are simple (i.e., they do

not contain branches and the aspects do not contain requirements). On the other

hand, satisfying AO blocks in the CruiseController class requires an average c3 of

158.4 iterations because there are blocks in the aspects that are part of hard to

cover paths.

The results for the all-usesc criterion show how much there are variations in

the effort needed to satisfy an AOSV test criterion in different classes. In the

non-advised Customer class in the Banking program, and the non-advised Timer

class in the Telecom program, satisfying all-usesc does not require more effort

than satisfying AO blocks. Note that these two classes do not contain branches,

which makes the paths between the cDUAs easy to cover. In the non-advised Call

class, all-usesc requires more effort to satisfy than both of the AO control-flow

criteria because the class contains defs and uses of state variables inside loops.

In the Account class, as mentioned in Section 8.1.1, most of the cDUAs occur

between setter and getter methods, while the AO control-flow criteria have test

requirements in the aspects. Therefore, satisfying all-usesc requires less effort than

satisfying the AO control-flow criteria in the Account class. In the classes of the

CruiseControl program (CarSimulator, CruiseController, and SpeedControl), the

effort needed to satisfy all-usesc is significantly higher than the effort of satisfying

the AO control-flow criteria because the classes contain many cDUAs where the

def and use are in advised methods. These cDUAs and also some oDUAs are the
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reason why we needed to generate a pool that contains 14,000 test case in order

to satisfy the criteria in the classes of the CruiseControl program.

8.1.3.2 Comparing the Cost of the AOSV Test Criteria with Each
Other Using Effort Metric c3

Table 8.9: Hypotheses test results for comparing the cost of the AOSV test criteria
with each other using the effort metric c3
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H0C13 : 129 252 510
all-usess-all-usesa ** ns **
H0C14 : 182 256 898 17 10638 514 918
all-usess-all-useso ** ns ** ** ** ns **
H0C15 : 121 2220 265 3 18 434 -88 -27
all-usess-all-usesc ** ** ns ns ** ns ns ns
H0C16 : 54 1247 448 18 -1 10450 10800 886
all-usess-all-usesas ns ** ** ** ns ** ** **
H0C17 : 169 1879 908 19
all-usess-all-usesma ** ** ** **
H0C18 : 53 507 409
all-usesa-all-useso ** ns **
H0C19 : -8 2472 -536
all-usesa-all-usesc ns ** **
H0C20 : -75 1498 377
all-usesa-all-usesas ** ** **
H0C21 : 40 2131
all-usesa-all-usesma ns **
H0C22 : -61 1964 -632 -20 -10204 -603 -945
all-useso-all-usesc ** ** ** ** ** ns **
H0C23 : -128 991 -450 1 -188 10286 -32
all-useso-all-usesas ** ** ** ns ** ** **
H0C24 : -13 1623 11 1
all-useso-all-usesma ns ** * ns
H0C25 : -67 -974 182 21 -19 10017 10888 913
all-usesc-all-usesas ns ** ns ** ** ** ** **
H0C26 : 48 -341 643 22
all-usesc-all-usesma ns ** ** **
H0C27 : 115 633 2 1
all-usesas-all-usesma ** ** ** ns
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Table 8.9 shows the results from testing hypotheses H0C13 through H0C27. The

table is organized in the same way as Table 8.8 but does not show the non-advised

classes. The results from testing hypotheses H0C13 through H0C27 are in favor of

the alternative hypotheses, except for hypothesis H0C15, which shows that there

is no significant difference between c3 for all-usess and c3 for all-usesc in most of

classes.

The results from testing hypotheses H0C13, H0C14, H0C16, H0C17 show that

c3 for all-usess is significantly higher than c3 for all-usesa, all-usesas, all-usesas,

and all-usesma, respectively, in 17 out of 22 tests performed for theses hypotheses.

The remaining 5 tests show that the difference is not significant. The differences

occurred in the classes that contain a type of AOSV DUAs that require significantly

higher effort to cover than the other types of AOSV DUAs in the class. For

example, in the Local class, the results show that selecting the test cases that

satisfy the 9 cDUAs in the pool of test cases for the Telecom program, which

contains 6000 test cases, requires 265 fewer iterations than that required to find

the test cases that cover all the 17 DUAs in the class. In the classes where the effort

needed to cover a particular type of AOSV DUAs is not significantly different than

the effort needed to cover all AOSV DUAs, the effort of covering that type is also

significantly higher than the effort needed to cover the remaining AOSV DUAs in

the class. For example, in the SpeedControl class, there is no significant difference

between c3 for all-usess and c3 for all-usesc, but c3 of all-usesc is significantly higher

than c3 for the other AOSV criteria in the class (all-usesa, all-useso, and all-usesas).

The results from testing hypothesis H0C15 supports the null hypothesis in 5

out of 8 classes. In the remaining 3 classes, c3 for all-usess is significantly higher

than c3 for all-usesc. In the 5 classes in which the results of testing H0C15 show

no significant difference, c3 for all-usesc is significantly higher than c3 for the other
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AOSV test criteria. In other words, the results show that whenever there is a type

of AOSV DUAs that requires higher effort to cover in the class compared with

other AOSV DUAs, the effort of covering this type of DUAs becomes close to the

effort of covering all the AOSV DUAs in the class.

The results from testing hypotheses H0C18 through H0C23 show significant

differences between c3 for the AOSV test criteria in 34 out of the 45 tests performed

for the hypotheses, but the differences in c3 between each pair of compared criteria

are not consistent in all classes. This is because c3 for any of the AOSV DUAs

varies from class to class depending on how many DUAs of each type a class

contains and whether the test cases that execute the paths that cover the DUAs

are hard to find in the pool of test cases.

8.1.4 Comparing the Cost of the Test Criteria Using Effort
Metric c4

We present the results from testing the hypotheses in group D. Section 8.1.4.1

presents the results from testing hypotheses H0D1 through H0D12, in which c4

for the AOSV test criteria is compared with c4 for the AO control-flow criteria.

Section 8.1.4.2 shows the results from testing hypotheses H0D13 through H0D27,

in which the AOSV test criteria are compared with each other using c4.

8.1.4.1 Comparing the Cost of the AOSV Test Criteria with the Cost
of the AO Control-Flow Criteria Using Effort Metric c4

Table 8.10 shows the results from testing hypotheses H0D1 through H0D12. The

results are in the favor of the alternative hypotheses and show that there is a

significant difference between c4 for each of the AOSV test criteria and each of the

AO control-flow criteria in 58 out of 67 hypothesis tests in the classes. The results

also show that c4 for all-usesa is significantly higher than c4 for each of the AO

control-flow criteria in all classes.
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Table 8.10: Hypotheses test results for comparing the cost of the AOSV test criteria
with the cost of the AO control-flow criteria using effort metric c4
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H0D1 : 7.4 613.9 48.8
all-usesa-blocks ** ** **
H0D2 : 6.3 597.2 44.2
all-usesa-branches ** ** **
H0D3 : 0.9 170.0 0.34 1.1 2.7 229.9 -1.5
all-useso-blocks ns ** ns ** ** ** **
H0D4 : -0.3 153.2 -6 227.9 -6.1
all-useso-branches ns ** ** ** **
H0D5 : 6.6 -9.6 0.2 65.2 1.8 0.2 56.9 1.2 77.9 166.9 16.3
all-usesc-blocks ** ** ** ** ** ns ** ** ** ** **
H0D6 : 5.5 -26.3 40.5 69.2 165 11.7
all-usesc-branches ** ** ** ** ** **
H0D7 : 14.9 489.8 70.7 -0.2 2.5 10.3 42 16.3
all-usesas-blocks ** ** ** ns ** ** ** **
H0D8 : 13.8 473.1 1.6 40.1 11.7
all-usesas-branches ** ** ns ** ns
H0D9 : 6.4 358.2 -3.4 1.8
all-usesma-blocks ** ** ** **
H0D10 : 5.3 341.4
all-usesma-branches * **
H0D11 : 2.8 51.3 47.0 0.4 1.1 68.4 90.6 11.5
all-usess-blocks ** ** ** ns ** ** ** **
H0D12 : 1.7 34.5 59.8 88.6 6.9
all-usess-branches ns ** ** ** **

The result from testing hypothesis H0D7 shows that c4 for all-usesas is signif-

icantly higher than c4 for AO blocks in 7 out of 8 classes in which the hypothesis

is tested. In the LongDistance class, there is no significant difference. This is be-

cause objects of type LongDistance are frequently used in the test cases, and this

class contains asDUAs that are covered by most of the test cases. The result from

testing hypothesis H0D8 show that c4 for all-usesas is significantly higher than c4
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for AO branches in 3 out of 5 classes in which the hypothesis is tested. In the

remaining two classes (CarSimulator and SpeedControl), the effort is higher but

not significantly. The test cases that execute the branches in the aspects for these

two advised classes are hard to find in the pool of test cases.

The result from testing hypothesis H0D10 shows that the effort needed to cover

an maDUA is significantly higher than the effort needed to cover a branch in all the

advised classes in which H0D10 is tested. The results from testing hypotheses H0D3

through H0D6 show that there is a significance difference between c4 for all-useso

and c4 for all-usesc, and c4 for each of the AO control-flow criteria, respectively.

However, the differences are inconsistent in the different classes.

Finally, the results from testing hypothesis H0D11 and H0D12 show that the

effort needed to cover any type of AOSV DUAs is significantly higher than the

effort needed to cover a block or a branch in 11 out of 13 tests performed for the

hypothesis. In the other two tests, there is no significant difference. These are the

test of hypothesis H0D11 in the LongDistance class, and the test of H0D12 in the

Kettle class. As discussed earlier, satisfying a criterion for the LongDistance class

requires less effort due to high use of the class in the test cases, and the test cases

that execute the branches in the aspects of the Kettle class are hard to find in the

pool of test cases.

8.1.4.2 Comparing the Cost of the AOSV Test Criteria with Each
Other Using Effort Metric c4

Table 8.11 shows the results from testing hypotheses H0D13 through H0D27. The

results show that the differences in the effort needed to satisfy the AOSV criteria

are inconsistent over all the classes, except for the results from testing hypotheses

H0D18 and H0D19, which show that c4 for all-usesa is significantly higher than c4

for all-useso and c4 for all-usesc, respectively.
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Table 8.11: Hypotheses test results for comparing the cost of the AOSV criteria
with each other using effort metric c4
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H0D13 : -4.6 -562.6 -37.3
all-usess-all-usesa ** ** **
H0D14 : 2.0 -118.7 46.6 -0.7 65.7 -139.3 13
all-usess-all-useso ns ** ** ns ** ** **
H0D15 : -3.8 60.9 -18.2 -1.5 0.9 -9.5 -76.3 -4.7
all-usess-all-usesc * ** ns ** ** ns ** ns
H0D16 : -12.1 -438.5 -23.7 0.6 -1.4 58.2 48.6 -4.8
all-usess-all-usesas ** ** ns ns * ** ** ns
H0D17 : -3.6 -306.9 50.4 -1.4
all-usess-all-usesma * ** ** ns
H0D18 : 6.5 444.0 50.3
all-usesa-all-useso ** ** **
H0D19 : 0.8 623.5 32.5
all-usesa-all-usesc ns ** **
H0D20 : -7.5 124.1 32.4
all-usesa-all-usesas * ns **
H0D21 : 1.0 255.7
all-usesa-all-usesma ns **
H0D22 : -5.7 179.6 -64.8 -0.7 -75.2 63 -17.7
all-useso-all-usesc ** ** ** ns ** ** **
H0D23 : -14.0 -319.9 -70.3 1.3 -7.5 187.9 -17.8
all-useso-all-usesas ** ** ** ** ** ** **
H0D24 : -5.5 -188.7 3.8 -0.7
all-useso-all-usesma ** * ns ns
H0D25 : -8.3 -499.4 -5.5 2.0 -2.3 67.7 124.9 -0.1
all-usesc-all-usesas ** ** ns ** ** ** ** ns
H0D26 : 0.2 -367.8 68.6 0.0
all-usesc-all-usesma ns ** ** ns
H0D27 : 8.3 131.6 74.1 -0.2
all-usesas-all-usesma ** ns ** ns

Metric c4 for criterion all-usess is an average of the effort needed to cover the

different types of AOSV DUAs. In the classes in which the effort of satisfying a

particular type of AOSV DUAs is significantly higher than satisfying the other

types, c4 for the criterion that requires satisfying that particular type of DUAs
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is higher than c4 for the all-usess. The results from testing hypotheses H0D13

through H0D17 show that there is no particular type of the AOSV DUAs that

always requires above average effort except the aDUAs. This is also confirmed

by the results of testing hypotheses H0D18, H0D19, H0D20, and H0D21, which

show that c4 for all-usesa is higher than c4 for all-useso, all-usesc, all-usesas, and

all-usesma in 10 out of 11 tests performed for these hypotheses.

8.2 Comparing the Effectiveness of the Test Cri-

teria

Table 8.12: Means and standard deviations of the mutations scores of the test
suites that satisfy the test criteria
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A
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all-usesa 92.9 87.3 84.8 87.8
2.5 2.6 5

all-useso 91 86.9 62.2 70.6 62.2 89.4 77.2 76.6
3 2.4 8.2 4.1 5.9 2.2 4.9

all-usesc 92.3 52.3 44.7 74 80.1 82.8 70 97.9 94.3 90.4 90 85.3
1.4 8.7 10.1 6.8 5.7 8.4 30.6 3.3 0.9 2 4.2

all-usesas 91.7 59.9 69.3 67.9 91.7 75.3 66.5 78.8 74.8
3.7 10.4 6.8 8.6 3 6.8 6.4 3.9

all-usesma 88.7 57.8 67 67.6 71.8
6.2 11.2 9.5 8.7

all-usess 94.4 89.6 86.6 81.4 93.5 96.5 94.2 95.1 92.4
5.7 0 6.9 5.2 2 0.7 1.5 2.3

AO 72.6 47.2 46 49 56.1 73.6 49.3 83.6 45.8 57.6 64.6 57.6
blocks 12.5 6.8 0.8 26.3 20.6 14.6 29.1 22.5 5.1 4.7 4.9
AO 77.6 40.1 73.7 60 60.9 70.6 63.2
branches 10.9 10.8 33.2 8 4 5.2

We address the second research question in this section. Table 8.12 shows the

effectiveness results for the test criteria. For each test criterion in column 1 and for
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each class in row 1, the table shows: (1) the average mutation score obtained by the

test suites that satisfy a test criterion (top line), and (2) the standard deviation of

the mutation scores obtained by the test suites that satisfy a test criterion (bottom

line). The means and standard deviations are computed over the 30 test suites

that satisfy each criterion in the class. For example, the entry in the second row

and second column shows that in the Kettle class (1) the mean mutation score of

the test suites that satisfy all-usesa is 92.9%, and (2) the standard deviation is 2.5.

The standard deviations of the mutations scores for the AOSV test criteria are

small compared with the standard deviations of the AO control-flow criteria, which

means that the variations in mutation scores between the 30 test suites that satisfy

each of the AOSV test criteria are small. The last column in the table shows the

means of the mutation scores of the test criteria taken over all the classes. The

overall mean is computed by dividing the total of the average number of mutants

killed by the test suites in each class by the total number of mutants. Note that

all-usess has the highest overall mutation score while AO blocks has the lowest.

Section 8.2.1 presents the results from testing hypotheses H0E1 through H0E12,

in which the effectiveness of the AOSV test criteria is compared with the effective-

ness of the AO control-flow criteria. Section 8.2.2 presents the results of testing

hypotheses H0E13 through H0E27, in which the effectiveness of the AOSV test

criteria is compared with each other.

8.2.1 Comparing the Effectiveness of the AOSV Test Cri-
teria with the Effectiveness of the AO Control-Flow
Criteria

Table 8.13 shows the results from testing hypotheses H0E1 through H0E12. The

results of testing hypotheses H0E1, H0E2, H0E11, and H0E12 show that the mu-

tation scores of the test suites that satisfy all-usesa and all-usess are significantly
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Table 8.13: Effectiveness results for comparing the AOSV test criteria with the
AO control-flow criteria
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H0E1 : 20.3 40.1 20.2
all-usesa-Nodes ** ** **
H0E2 : 15.3 47.2 14.2
all-usesa-branches ** ** **
H0E3 : 18.5 39.7 13.1 14.5 16.3 31.8 12.6
all-useso-Nodes ** ** ns ns ** ** **
H0E4 : 13.4 46.9 2.5 28.5 6.6
all-useso-branches ** ** ns ** **
H0E5 : 19.8 5.1 -1.3 25 24 9.2 20.7 14.3 48.5 32.8 25
all-usesc-Nodes ** ns ns ** ** ns ** ** ** ** **
H0E6 : 14.8 12.3 -3.7 34.7 29.5 19
all-usesc-branches ** ** ns ** ** **
H0E7 : 19.1 12.7 20.2 11.8 18 29.6 8.9 14.3
all-usesas-Nodes ** ** ** ns ** ** ** **
H0E8 : 14.1 19.8 15.8 5.6 8.3
all-usesas-branches ** ** ** ** **
H0E9 : 16.1 10.6 17.9 11.4
all-usesma-Nodes ** ** * ns
H0E10 : 11.1 17.8
all-usesma-branches ** **
H0E11 : 21.8 42.4 37.6 25.2 19.9 49.7 36.6 30.6
all-usess-Nodes ** ** ** ** ** ** ** **
H0E12 : 16.8 49.5 35.9 33.3 24.6
all-usess-branches ** ** ** ** **

higher than the mutation scores of the test suites that satisfy each of the AO

control-flow criteria in all the classes in which these hypotheses are tested. For the

rest of the AOSV criteria, the results show that these criteria have significantly

higher mutation scores in most of the classes (39 out of 48 tests), and there is no

significant difference in 9 tests.

Our expectations are that criterion all-usess is more effective than the AO
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control-flow criteria, and this is matched by the results. For the other AOSV crite-

ria, we expected differences in their effectiveness depending on the paths that they

require and the number of test requirements contained in the class. For example,

the mutation scores of the test suites that satisfy all-usesc are not significantly

higher than the mutation scores of the test suites that satisfy AO blocks in the

Account and Customer classes of the Banking program, and the Customer in Tele-

com program. Recall from Section 8.1.1 that these classes contain many cDUAs

between setter and getter methods that are not advised, which means that the

criterion does not require executing paths in the advices. However, in the classes

that contain advised methods and a high number of cDUAs, test suites that satisfy

all-usesc are more effective than the test suites that satisfy the AO control-flow

criteria.

In the Local and LongDistance classes, the mutation scores of the test suites

that satisfy all-useso are not significantly higher than the mutation scores of the

test suites that satisfy AO blocks. Recall from previous sections that these two

classes have only 2 oDUAs that are covered by executing one path. Note also

that in the LongDistance class the mutation scores of the test suites that satisfy

all-usesas and all-usesma are not significantly higher than the mutation score of

the test suites that satisfy AO blocks. These two criteria do not require executing

many different paths in the class (Section 8.1.1). In the Local class, for which

RANDOOP generated fewer test cases, the test cases that covered them are longer

and cover many other DUAs, which increased their effectiveness.

8.2.2 Comparing the Effectiveness of the AOSV Test Cri-
teria with Each Other

Table 8.14 shows the results from testing hypotheses H0E13 through H0E27. The

results show that the mutation scores of the test suites that satisfy all-usess are
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significantly higher than the mutation scores of the test suites that satisfy the other

AOSV test criteria, which are also subsumed by all-usess. The only exception is in

the LongDistance class in which the mutation scores for the test suites that satisfy

all-usess is higher than the mutation scores of the test suites that satisfy all-usesc,

but not significantly. The reason is that the test suites that satisfy all-usesc in the

LongDistance class also cover most of the other AOSV DUAs. Recall that also

in this class the sizes of the test suites that satisfy all-usess are not significantly

higher than the sizes of the test suites that satisfy all-usesc.

Comparisons between the other AOSV criteria show that there is a significant

difference in their effectiveness as measured by the mutation score. Out of 45

tests, 17 show an insignificant difference. However, there is no consistency in the

difference between the criteria, except for the result from testing hypothesis H0E21,

which shows that all-usesa is more effective than all-usesma. The reason for these

differences is effectiveness depend on how many different paths the DUAs cover

in the advised class. For example, all-useso is significantly more effective than

all-usesas in the CruiseConttroller class and significantly less effective than all-

usesas in the CarSimulator class (i.e., result of testing hypothesis H0E23). That is

because the CruiseController class contains 45 oDUAs and only 6 asDUAs, while

the CarSimulator class contains 17 asDUAs and 6 oDUAs. The number of DUAs

is not the only factor that decides the effectiveness. However, when a criterion

requires a high number of DUAs, more paths are covered in the advised class.

8.3 Effectiveness of the AOSV Test Criteria Based

on Fault Types

We present the answer to research question 3 in this section. We organize this

section according to the fault categories of the revised AO fault model given in
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Table 8.14: Effectiveness results for comparing the AOSV test criteria with each
other
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H0E13 : 1.5 2.3 10.3
all-usess-all-usesa ** ** **
H0E14 : 3.4 2.6 24.5 10.7 33.4 4.8 18
all-usess-all-useso ** ** ** ** ** ** **
H0E15 : 2 37.2 12.6 1.2 10.6 1.2 3.8 5.6
all-usess-all-usesc ** ** ** ns ** ** ** **
H0E16 : 2.7 29.7 17.4 13.5 1.8 20.1 27.7 16.3
all-usess-all-usesas * ** ** ** * ** ** **
H0E17 : 5.7 31.7 19.7 13.8
all-usess-all-usesma ** ** ** **
H0E18 : 1.9 0.3 7.6
all-usesa-all-useso ns ns **
H0E19 : 0.5 35 -4.8
all-usesa-all-usesc ns ** *
H0E20 : 1.2 27.4 6
all-usesa-all-usesas ns ** **
H0E21 : 4.2 29.4
all-usesa-all-usesma ** **
H0E22 : -1.3 34.6 -11.8 -9.5 -32.2 -1 -12.4
all-useso-all-usesc ** ** ** ** ** ns **
H0E23 : -0.7 27.1 -7.1 2.7 -13.3 22.9 -1.7
all-useso-all-usesas ** ** ** ns ** ** ns
H0E24 : 2.3 29.1 -4.8 3.1
all-useso-all-usesma ** ** ns ns
H0E25 : 0.7 -7.5 4.8 12.2 -8.8 18.9 23.9 10.7
all-usesc-all-usesas ns ns ns ** ** ** ** **
H0E26 : 3.7 -5.5 7.1 12.6
all-usesc-all-usesma ns ns * **
H0E27 : 3 2 2.3 -13.5
all-usesas-all-usesma ns ns ns **

Chapter 4. For each fault type, we inspected the live mutants and identified the

reasons why the mutants were not killed by the test suites that satisfy all-usess

(i.e., the test suites that cover all types of AOSV DUAs). We also explain why

there are differences between the mutation scores of the test suites that cover each
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type of AOSV DUAs.

8.3.1 Pointcut Descriptor Related Faults (F1)

We discuss in this section the effectiveness of the test criteria in terms of detecting

faults of each type in category F1. Table 8.15 shows the average mutation scores

of the test suites that satisfy each of the AOSV criteria for faults resulting from a

pointcut that matches only unintended join points (fault type F1-1). In the table,

column 1 shows the class names. Column 2 shows the number of mutants of type

F1-1 in each class. Columns 3 through 8 show the average mutation score for the

test suites that satisfy each of the AOSV criteria. The average is taken over the 30

test suites that satisfy a criterion in each class. The symbol “na” means that the

mutation score for the criterion is not available because the class does not contain

test requirements for the criterion. The last row in the table shows the overall

averages of the mutation scores of a criterion taken overall the classes. The overall

average is computed by dividing the total of the average number of mutants killed

by the test suites in each class by the total number of F1-1 mutants. Classes that

do not contain fault of type F1-1 are not shown in the table. Note that all-usesa

is not shown in Table 8.15 because the classes that contain faults of type F1-1 do

not contain aDUAs.

Table 8.15: Effectiveness of the AOSV test criteria in detecting faults of type F1-1

Class # Mut all-useso all-usesc all-usesas all-usesma all-usess

Local 16 72.3 79.2 77.1 78.5 99
LongDistance 16 67.5 87.5 76.9 79.6 100
Customer 6 na 97.2 100 na 100
CruiseController 2 100 100 100 na 100
All 40 75.9 86.3 81.6 79.1 99.6

The results show that test suites that satisfy all-usess killed all mutants of type

F1-1 in the LongDistance, Customer, and CruiseController classes. In the Local
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//original

after(Connection conn, Customer cust): this(conn) && args(cust, ..) &&

execution(Connection+.new(..)){

conn.payer = cust; }

//Mutant 1

after(Connection conn, Customer cust): this(conn) && args(cust, ..) &&

!execution(Connection+.new(..)){

conn.payer = cust; }

//class Connection constructor

public Connection(Customer a, Customer b) {

this.caller = a; // matched by mutant 1

this.receiver = b; // matched by mutant 1

}

Figure 8.1: A hard to kill mutant of type F1-1. The mutant is from the Billing
aspect which is woven with the Local class

class, 25 test suites killed all the mutants and the remaining 5 test suites failed to

kill one of the 16 mutants.

Figure 8.1 shows a mutant, which is not always killed by the test suites that

satisfy the all-usess criterion. The mutant is generated by operator PCLO by

negating the condition in the poinctut descriptor. The pointcut of the mutant

matches statements in methods whenever the running object is of type Connec-

tion, and the first argument is of type Customer. The original pointcut matches

the constructor of the Connection class. The mutant pointcut matches the two

statements in the Connection class constructor. Matching the last statement in

the constructor results in defining the receiver of the call as the payer (instead of

the caller). However, some test cases use the same object for the caller and the

callee, and therefore, these test cases are not able to kill the mutant. In the other

test cases, the mutant is killed by covering the asDUA between the def in the after

advice and the use in the getPayer intertype method. This mutant is also always
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killed by the test suites that satisfy all-usess in the LongDistance class because the

caller and the receiver are always different objects.

The results show that all-usesc is more effective than the other AOSV criteria,

except all-usess. This can be explained by the effect of faults of type F1-1 on the

advised class. A fault of type F1-1 has two effects: (1) the mutated pointcut misses

all the intended join points, and (2) the mutated pointcut matches unintended join

points. All the AOSV DUAs require executing paths that contain calls to advised

methods and therefore, can help in detecting neglected join points. However,

cDUAs also require executing paths where the def and the use are in non advised

methods. Therefore, all-usesc helps more than the other AOSV test criteria in

detecting unintended join points.

Table 8.16 shows the average mutation scores of the ASOV-adequate test suites

for faults resulting from pointcut that match a subset of the intended join points

and some unintended join points (fault type F1-2). The table is organized in the

same way as table 8.15. The all-usess criterion killed all the mutants of type F1-2

in the Kettle and CarSimulator classes. In the Local and LongDistance classes, 1 of

the 6 mutants is never killed. This mutant shown in Figure 8.2 is a case when the

fault generated by operator PWIW which replaces the class name with the match

all symbol (*), is combined with the fault generated by operator POAC, which

replaces after with after returning. The mutant pointcut matches the constructors

of the Connection class, and also the constructors of the subclasses Local and

LongDistance, which causes the after advice to be executed 3 times instead of only

once. This fault is not detected by the AOSV criteria since DCT-AJ does not

measure coverage in exception handling code, and executing the advice 3 times

instead of once does not cause a failure.

Covering the AOSV DUAs helps in detecting faults of type F1-2 because they

139



Table 8.16: Effectiveness of the AOSV test criteria in detecting faults of type F1-2

Class # Mut all-usesa all-useso all-usesc all-usesas all-usesma all-usess

Kettle 4 100 100 100 100 100 100
Local 6 na 62.2 72.2 63.3 65.6 83.3
LongDistance 6 na 68.9 79.4 62.8 66.1 83.3
CarSimulator 2 na 100 100 100 na 100
All 18 100 77 83.9 75.4 74.4 88.9

//original

after (Connection c): target(c) && execution(Connection.new(..)){

c.timer = new Timer();

}

//Mutant

after (Connection c) returning: target(c) && execution(*.new(..)){

c.timer = new Timer();

}

Figure 8.2: A subtle mutant of type F1-2 from the Timing aspect, which is woven
with the Local and LongDistance classes

require executing paths that contain calls to advised methods (which the mutant

pointcut might miss), and not advised methods (which the mutant pointcut might

match). The all-usesc criterion is more effective than all-useso, all-usesas, and

all-usesma because it requires covering paths between non-advised methods. The

differences between the effectivenesses of all-useso, all-usesas, and all-usesma are

small and vary with the number of DUAs required by the criteria. Finally, since

all-usesa only requires the coverage of DUAs in one class that have faults of type F1-

2 (the Kettle class), the effectiveness of all-usesa is compared with the effectiveness

of the other AOSV criteria only in the Kettle class, in which all the criteria killed

all the mutants.

Table 8.17 shows the average mutation scores of the AOSV-adequate test suites

for faults resulting from pointcut that match a superset of the intended join points
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(fault type F1-3). The table is organized in the same way as Table 8.15. The table

shows that for all the classes, all-usess test suites killed all the mutants of type

F1-3, except one mutant in the Local and LongDistance classes. The live mutant,

which is shown in Figure 8.3, is generated by operator PWIW and is the same

mutant that is used to generate the HOM of type F1-2 shown in Figure 8.3. The

mutant caused the after advice to be executed 3 times instead of only once.

Table 8.17: Effectiveness of the AOSV test criteria in detecting faults of type F1-3

Class # Mut all-usesa all-useso all-usesc all-usesas all-usesma all-usess

Kettle 2 100 100 100 100 100 100
Local 5 na 53.3 62 63.3 64 80
LongDistance 5 na 66 77.3 63.3 64 80
CarSimulator 6 na 66.7 100 66.7 na 100
CruiseController 3 na 78.9 83.3 72.2 na 100
All 21 100 68.3 83.2 69 70 90.5

//original

after (Connection c): target(c) && execution(Connection.new(..)){

c.timer = new Timer();

}

//Mutant

after (Connection c): target(c) && execution(*.new(..)){

c.timer = new Timer();

}

Figure 8.3: A subtle mutant of type F1-3 from the Timing aspect which is woven
with the Local and LongDistance classes

The results of the other AOSV criteria show that all-usesc is more effective

than all-useso, all-usesas, and all-usesma because it requires covering paths between

non-advised methods. The CarSimulator class contains an example of 2 faults that

involve unintended join points and require covering the cDUAs in the class. In the
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CarSimulator class, both all-useso and all-usesas were unable to kill 2 mutants of

type F2-3, which all-usesc killed. These 2 mutants caused advices that accelerate

the car speed and turn the brakes on to execute after the class constructor. Killing

these two mutants requires covering the cDUAs between the constructor and the

getter methods of the 2 state variables.

Table 8.18 shows the average mutation scores of the AOSV-adequate test suites

for faults resulting from pointcut that match a subset of the intended join points

(fault type F1-4). The table is organized in the same way as Table 8.15. The

table shows that about 56% of the mutants are killed by all-usess and 50% in

5 out of 7 classes. In these 5 classes, all mutants of type F1-4 are generated by

operator POAC, which generated two mutants for each after advice by (1) changing

after to after returning, and thus, matching only normal method returns, and (2)

changing after to after throwing, and thus, matching only exceptional method

returns. Mutants of the latter type are always killed by the test suites that satisfy

all-usess because the advices miss all the normal returns. The mutants of the

former type are not killed by any of the test suites because they require test cases

that cause an exception to be thrown in the advised methods (i.e, test cases that

cause the after throwing path to be executed).

Table 8.18: Effectiveness of the AOSV test criteria in detecting faults of type F1-4

Class # Mut all-usesa all-useso all-usesc all-usesas all-usesma all-usess

Kettle 4 50 50 50 50 50 50
Local 14 na 30.7 50 50 50 50
LongDistance 14 na 46.2 50 50 50 50
Customer 4 na na 45.8 50 na 50
CarSimulator 10 na 41 50 46.3 na 50
CruiseController 8 na 71.7 73.8 68.3 na 87.5
SpeedControl 3 66.3 54.4 66.7 66.7 na 66.7
All 57 57.1 54.4 53.9 52.8 50 56.1
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The effectiveness scores of the remaining AOSV criteria are close to each other.

In some classes that have few test requirements of a criterion (e.g., all-useso in

the Local and LongDistance classes), the criterion effectiveness decreases since the

criterion requires executing few paths in the advised class.

Table 8.19 shows the average mutation scores of the AOSV-adequate test suites

for faults resulting from pointcut that does not match any join point (fault type

F1-5). The table is organized in the same way as Table 8.15. The all-usess criterion

killed all the mutants of type F1-5. The other AOSV criteria killed most of the

mutants in all the classes, except in the LongDistance and Local classes, in which

all the criteria (except all-usess) obtained mutation scores that were less than

70%. This is because in these two classes, named pointcuts are not used (i.e., the

advices have their own pointcuts), which caused the fault to propagate in fewer

paths. Other than these two classes, mutants of type F1-5 are easy to kill by the

AOSV-adequate test suites because when the pointcut does not match any join

points, then the defs and uses in the advices are not executed, causing the fault

to propagate in many paths.

Table 8.19: Effectiveness of the AOSV test criteria in detecting faults of type F1-5

Class # Mut all-usesa all-useso all-usesc all-usesas all-usesma all-usess

Kettle 6 93.3 94.4 100 91.7 89.9 100
Account 1 100 100 100 100 100 100
Local 20 na 63 65.3 67 67.5 100
LongDistance 20 na 67.5 66.3 66.8 69.8 100
Customer 8 na na 93.8 100 na 100
CarSimulator 5 na 82 100 93.3 na 100
CruiseController 1 na 100 100 100 na 100
SpeedControl 2 100 100 100 100 na 100
All 63 95.6 72.5 77.5 77.7 71.9 100

Table 8.20 shows the average mutation scores obtained by the test suites that

satisfy each of the AOSV criteria for all faults in the pointcut descriptor category.
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Column 1 in the table shows the AOSV test criteria. For each criterion, column

2 shows the total number of mutants that are generated in the classes. Column 3

shows the number of classes tested by the criterion. Column 4 shows the overall

mutation score of the test suites that satisfy the criterion. The overall mutation

score is computed by dividing the total of the average number of mutants killed by

the test suites in each class by the total number of mutants in the classes tested

by the criterion and have faults in category F1.

Table 8.20: Effectiveness of the AOSV test criteria in detecting faults in category
F1

Criteria # Mutants # Classes Average Mutation Score (%)

all-usesa 22 3 84.5

all-useso 181 8 65.2

all-usesc 199 8 73.8

all-usesas 199 8 70.2

all-usesma 139 4 68.6

all-usess 199 8 85.1

The all-usesa criterion has a higher mutation score than the other AOSV criteria

(excluding all-usess). However, all-usesa is tested only on three classes in which the

mutation scores of all the AOSV criteria are high. Therefore, we cannot conclude

that the test suites that cover the aDUAs are more effective than the test suites

that cover other types of AOSV DUAs. However, test suites that satisfy all-usesc

are more effective than the test suites that satisfy all-useso, all-usesas, and all-

usesma. We summarize the effectiveness results of the AOSV criteria in detecting

faults in category F1 as follows:

• Covering all the AOSV DUAs can help detect faults of the types in category

F1, especially for faults of types F1-1, F1-2, F1-4, and F1-5, for which the

mutation score of the test suites that satisfy all-usess ranges from 88.9% to

100%.
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• A set of faults of type F1-4 are not detected by the AOSV criteria because

killing these mutants requires executing paths that include exceptions. These

mutants contribute 25 out of the 26 mutants that the test suites that satisfy

the all-usess criterion never killed.

• The all-usesc criterion is more effective than all-useso, all-usesas, and all-

usesma in detecting faults in the types that causes the pointcut to match

unintended join points (i.e., faults of type F1-1, F1-2, and F1-3). This is

because all-usesc requires executing paths between non-advised methods.

• The differences between the mutation scores of all-useso, all-usesas, and all-

usesma (and also all-usesa in the Kettle class) are small and depend whether

the criteria require covering DUAs that require executing the missed intended

advices or the matched unintended ones.

8.3.2 Aspect Declaration Related Faults (F2)

We discuss in this section the effectiveness of the test criteria in detecting faults

of each type in category F2. As we showed in Section 7.7.3, mutants generated for

the programs fall into 3 types: F2-5, F2-7, and F2-8.

Faults of type F2-5 (incorrect aspect precedence) are generated by two muta-

tion operators: (1) DAPC, which changes the aspect precedence declared in the

program, and (2) DAPO, which removes the aspect precedence declaration from

the program. Two of the subject programs Kettle and Telecom, have precedence

rules. The average mutation scores of the AOSV-adequate test suites in detecting

faults of type F2-5 are given in Table 8.21. The table is organized in the same

way as Table 8.15. All the AOSV-adequate test suites killed all the mutants of

type F2-5, except one subtle mutant in the Kettle class. The AOSV criteria killed

all the mutants because swapping the precedence causes faults in all the paths
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that contain calls to advised methods and the AOSV DUAs require covering these

paths.

Table 8.21: Effectiveness of the AOSV test criteria in detecting faults of type F2-5

Class # Mut all-usesa all-useso all-usesc all-usesas all-usesma all-usess

Kettle 2 50 50 50 50 50 50
Local 2 100 100 100 100 100 100
LongDistance 2 100 100 100 100 100 100
Customer 2 100 100 100 100 100 100
All 8 87.5 87.5 87.5 87.5 87.5 87.5

The mutant that remained alive is generated by operator DAPO. The mutant

cannot be killed because in the absence of declare precedence directive, AspectJ

chooses to execute aspects in an arbitrary order. In the Kettle program, the

arbitrary order happened to be the same order as that specified by the original

program.

Table 8.22 shows the average mutation scores of the AOSV-adequate test suites

for faults resulting from incorrectly specifying the advice type (fault type F2-7).

The table is organized in the same way as Table 8.15. The test suites that satisfy

all-usess killed all the mutants. This is because swapping an after advice with a

before advice affects many AOSV DU paths in the program since all the advices

have some uses or defs of the state variables.

Table 8.22: Effectiveness of the AOSV test criteria in detecting faults of type F2-7

Class # Mut all-usesa all-useso all-usesc all-usesas all-usesma all-usess

Kettle 2 68.3 100 83.3 90 63.3 100
Local 5 na 38.7 56 54 52.7 100
LongDistance 5 na 37.3 54.7 57.3 55.3 100
CruiseController 8 na 97.5 87.5 81.3 na 100
All 20 68.3 68 71 69.3 55.6 100

Results for the remaining AOSV criteria show small differences in their effec-
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tivenesses in detecting faults of type F2-7. All-useso is more effective than the

remaining AOSV criteria in two classes: Kettle and CruiseControl. This is be-

cause executing the path between a def in a method and a use in the advice that

advises the method guarantees that the path that contains the fault is executed.

We also found that when the mutant of type F2-7 is in an advice that contains a

use of an oDUA, then the fault is always detected. In the LongDistance and Local

classes, the effectiveness of all-useso is low because the classes have only 2 oDUAs

that are covered by executing one path.

Table 8.23 shows the average mutation scores of the AOSV-adequate test suites

for faults resulting from binding an advice to an incorrect pointcut (fault type F2-

8). Faults of type F2-8 were generated by operator ABPR that swaps the pointcut

bound to the advice with other pointcuts in the aspect. Depending on the pointcut

selected by the operator, the mutant might match any set of join points as described

in category F1. This is reflected in the results of the AOSV test criteria in detecting

faults of type F2-8. Note that all-usesc is more effective than the other criteria

(except all-usess) because it requires covering paths between non-advised methods.

Table 8.23: Effectiveness of the AOSV test criteria in detecting faults of type F2-8

Class # Mut all-usesa all-useso all-usesc all-usesas all-usesma all-usess

Kettle 2 100 73.3 80 100 90 100
Local 13 na 65.1 79.2 77.4 77.4 92.3
LongDistance 13 na 78.2 86.2 77.7 78.2 91
Customer 13 na na 66.7 100 na 100
CarSimulator 20 na 71.8 91.3 85.7 na 97.2
CruiseController 27 na 70 77 68.6 na 100
All 72 100 71.4 82.4 79.6 78.7 96.2

The results of the all-usess criterion shows that covering all the AOSV DUAs

is effective in killing all the mutants, except 3 subtle mutants, which we discuss

below. Two mutants in the Local and LongDistance classes are not always killed by
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the test suites that satisfy all-usess. These two mutants cause the Timer object in

the Local and LongDistance classes to log the value of the state variable stopTime

(i.e., the time when the call stops) at the beginning of the phone call and to log

the value of state variable startTime at the end of the call. In order to check the

logged values, the test cases need to cover the DUAs in the Timer class, which

are not in the test requirements of the Local and LongDistance classes. In other

words, to detect such faults, the test criteria also need to cover the DUAs in the

classes of the referenced objects.

Table 8.24: Effectiveness of the AOSV test criteria in detecting faults in category
F2

Criteria # Mutants # Classes Average Mutation Score (%)

all-usesa 6 3 72.8

all-useso 93 7 71.4

all-usesc 100 8 80.5

all-usesas 100 8 78.2

all-usesma 46 3 73.3

all-usess 100 8 96.3

Table 8.24 shows the average mutation scores obtained by the test suites that

satisfy each of the AOSV criteria for all faults in category F2. The table is orga-

nized in the same way as Table 8.20. We summarize the results for the effectiveness

of the AOSV criteria in detecting faults in category F2 as follows:

• Covering all the AOSV DUAs can help detect faults of the types in category

F2. The test suites that satisfy all-usess obtained an average mutation score

of 96.6% in all faults of category F2.

• A subtype of faults of type F2-8 are not always detected by the test suites

that satisfy all-usess because detecting these faults requires covering DUAs

in the classes of the referenced objects.
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• The all-usesc criterion is more effective than the all-useso, all-usesas, all-

usesma criteria in detecting faults of type F2-8 because the criterion requires

executing paths between non-advised methods.

8.3.3 Advice, Aspect Method, and Intertype Method Im-
plementation Faults (F3)

We discuss in this section the effectiveness of the AOSV test criteria in detecting

faults of the types in category F3. Table 8.25 shows the average mutation scores

of the AOSV-adequate test suites for faults resulting from an incorrect guarding

statement or missing proceed in around advices (fault type F3-1). The table is

organized in the same way as Table 8.15. The table does not show classes from

the Telecom program because the program does not contain around advices.

The results show that the test suites that satisfy all-usess killed all the mutants

of type F3-1 except one mutant that is not always killed in the CruiseController

class. This mutant is shown in Figure 8.4. The mutant changes the logical and

operator (&&) to the logical or operator (‖). The mutant cannot be killed when

the two conditions evaluate to true.

//original

if (controller.controlState != controller.INACTIVE

&& sc.isMinCruiseSpeedReached() ) {

//Mutant

if (controller.controlState != controller.INACTIVE

|| sc.isMinCruiseSpeedReached() ) {

Figure 8.4: A hard to kill mutant of type F3-1 from the SpeedControlIntegrator
aspect which is woven with the CruiseController class

The results show that all of the AOSV test criteria are effective in detecting

faults of type F3-1. All-usesa is more effective than the other AOSV test criteria
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Table 8.25: Effectiveness of the AOSV test criteria in detecting faults of type F3-1

Class # M. all-usesa all-useso all-usesc all-usesas all-usesma all-usess

Kettle 27 100 94.7 96.8 97.7 94.1 100
Account 10 100 95.3 53.5 68.7 67.3 100
CarSimulator 3 na 75.6 100 93.3 na 100
CruiseController 16 na 91.7 93.8 84.6 na 94
All 56 100 92.4 88.3 88.5 86.8 98.3

because all the around advices have aDUAs between the advice and the original

code body of the advised method (i.e, the body of the method called by proceed).

All-usesc is not effective in the Account class because most of the cDUAs in the

class are between getter and setter methods. The results also show that all-usesma

in the Account class is not effective. This is because the maDUA that the class

contains requires executing a path that does not include the code called by proceed.

Table 8.26: Effectiveness of the AOSV test criteria in detecting faults of type F3-2

Class # M. all-usesa all-useso all-usesc all-usesas all-usesma all-usess

Kettle 38 95 93.8 93.9 94.3 91.7 96.8
Account 28 82.6 80.7 31.5 70.6 70.1 85.7
Local 8 na 79.2 90 82.1 80 100
LongDistance 8 na 80 88.3 81.3 78.8 100
Customer 20 na na 99.2 100 na 100
CarSimulator 8 na 70 91.7 92.9 na 91.7
CruiseController 17 na 89.4 92.4 85.7 na 93.9
SpeedControl 17 93.1 89.6 90 80 na 93.3
All 144 90 86.3 81.2 86.3 81.9 94.4

Table 8.26 shows the average mutation scores of the AOSV-adequate test suites

for faults resulting from incorrect altering of base class object state variables (fault

type F3-2). The table is organized in the same way as Table 8.15. The results

show that all-usess is effective in detecting faults of type F3-2. The few subtle

mutants that are not killed by the test suites that satisfy all-usess do not always
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produce a failure. We show an example from the Kettle program of such mutants

in Figure 8.5. The figure shows a mutant that alters the value of state variable

status in the after advice in the HeatControl aspect. Note that when the state

variable status is not OFF, the fault does not propagate because of the defs that

get executed if the condition holds. If the status is OFF, then the fault might not

also propagate depending on the method called after the advice is executed. We

found 8 such mutants in the programs.

//original

if (t.status != OFF) {

if (t.temperature >= 100)

t.status = HOT;

else t.status = HEATING;

//Mutant

if (t.status-- != OFF) {

if (t.temperature >= 100)

t.status = HOT;

else t.status = HEATING;

Figure 8.5: A hard to kill mutant of type F3-2 from the HeatControl aspect which
is woven with the Kettle class

Figure 8.6 shows another example of a mutant which is not always killed by

the test suites that satisfy all-usess. The example represent a type of mutants in

which the fault occurs in intertype getter methods for intertype state variables.

The AOSV DUAs require executing paths to the use in the intertype method but

there is no requirement to execute any method after the test case calls the getter

method. In the test cases, the assertions are always executed at the end, and

therefore, there is no guarantee that the intertype state variable will have a use

after the mutated getter method is called. Moreover, the intertype methods cannot

be called from the methods in the class. Detecting such faults requires executing

the intertype methods by other classes (i.e., inter-class data-flow testing).
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//original

public int Kettle.readTemperature()

{

return temperature;

}

//Mutant

public int Kettle.readTemperature()

{

return temperature++;

}

Figure 8.6: A hard to kill mutant of type F3-2 from an intertype method in the
HeactControl aspect which is woven with the Kettle class

The results of the other AOSV test criteria show that there are small differences

in their effectivenesses in terms of detecting faults of type F3-2. The effectiveness

depends on the number of test requirements contained in the aspects. Most of the

criteria cover many paths in the aspects and thus, the test suites that satisfy them

have high mutation scores, except all-usesc in the Account class.

Table 8.27: Effectiveness of the AOSV test criteria in detecting faults of type F3-3

Class # M. all-usesa all-useso all-usesc all-usesas all-usesma all-usess

Kettle 30 94 89.3 92 91 89.1 94.7
Account 34 91 91.1 26.7 80.7 78 94.1
Local 22 na 80.3 84.5 77.4 77 91.4
LongDistance 22 na 78.9 86.5 80 78.3 90
Customer 4 na na 100 100 na 100
CarSimulator 6 na 82 94.4 90.6 na 94.4
CruiseController 34 na 90.7 92.9 82.6 na 94.3
SpeedControl 29 81.7 75.2 81.1 70 na 95.2
All 181 89.1 85 76.9 81.3 81 93.7

Table 8.27 shows the average mutation scores of the AOSV-adequate test suites

for intra-advice level faults (fault type F3-3). The table is organized in the same

way as Table 8.15. The results show that all-usess is effective in detecting faults
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of type F3-2. The few mutants that are not killed by the test suites that satisfy

all-usess require test cases that include boundary values for the input domains for

the state variables. For example, killing the mutant shown in Figure 8.7 requires

testing the value of state variable temperature of the Kettle class to have the value

100 that reach the mutated if statement. While we provided RANDOOP with s

set of input values to be used by the test cases, RANDOOP does not guarantee

that all these input values will be used for each state variable and there is no

guarantee that the test suites that satisfy the AOSV test criteria will contain the

test cases with the boundary values.

//original

if (t.temperature >= 100)

t.status = Hot;

else t.status = HEATING;

//Mutant

if (t.temperature > 100)

t.status = HOT;

else t.status = HEATING;

Figure 8.7: A mutant of type F3-3 that require testing with boundary input values.
The mutant is from the HeatControl aspect which is woven with the Kettle class

The results of the other AOSV test criteria show that there are small differences

between their effectivenesses in detecting faults of type F3-3. The effectiveness of

the AOSV test criteria depends on the number of test requirements contained in

the aspects. Most of the criteria cover many paths in the aspects and thus, the test

suites that satisfy them have high mutation scores. Finally, we show the average

mutation scores obtained by the test suites that satisfy each of the AOSV test

criteria for all faults in category F3 in Table 8.28. The table is organized in the

same way as Table 8.20.

Our results for the effectiveness of the AOSV criteria in detecting faults in
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Table 8.28: Effectiveness of the AOSV test criteria in detecting faults in category
F3

Criteria # Mutants # Classes Average Mutation Score (%)

all-usesa 37 3 91.3

all-useso 357 7 86.7

all-usesc 381 8 80.2

all-usesas 381 8 84.3

all-usesma 227 4 82.3

all-usess 381 8 94.7

category F3 show the following:

• The average mutation scores of the test suites that satisfy the all-usess cri-

terion range from 93.7% for fault type F3-3 to 98.3% for fault type F3-1.

Therefore, covering the AOSV DUAs can help in detecting a high percent-

age of the faults in category F3.

• Covering the aDUAs helps more than covering the other AOSV DUAs in

detecting faults of type F3-1 because covering the aDUAs requires executing

the paths that contain the call to proceed.

• Detecting faults of type F3-2 that occur in getter intertype methods requires

performing intra-class data-flow level testing, which is not a requirement for

the AOSV criteria.

• Detecting some faults of type F3-3 requires performing boundary testing.

8.3.4 Class Implementation Related Faults (F4)

We discuss in this section the effectiveness of the AOSV test criteria in terms of

detecting faults of the types in category F4. Table 8.29 shows the average mutation

scores of the AOSV-adequate test suites for faults that result from passing an object

in an unexpected state to an advice (fault type F4-1). The table is organized in the
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same way as Table 8.15. The results show that the all-usess criterion is effective in

detecting faults of type F4-1. The few subtle mutants that are not always killed by

the test suites that satisfy all-usess occurred in getter methods where the mutant

altered the value of state variables. The results of the other AOSV test criteria

show that all-usesc is more effective than all-useso, all-usesas, and all-usesma in all

the classes because it requires covering paths between non-advised methods.

Table 8.29: Effectiveness of the AOSV test criteria in detecting faults of type F4-1

Class # Mut all-usesa all-useso all-usesc all-usesas all-usesma all-usess

Kettle 31 97.4 98 99.8 96 94.2 100
Account 33 85.8 87.6 87.8 30.6 28 87.9
Customer (B) 2 na na 100 na na na
Local 8 na 50 84.6 62.5 36.3 87.5
LongDistance 8 na 51.3 86.3 55.8 42.5 88.8
Customer (T) 17 na na 85.7 98.8 na na
Call 6 na na 100 na na na
Timer 14 na na 100 na na na
CarSimulator 106 na 62.5 96.9 69.2 na 99.2
CruiseController 76 na 95.6 93.7 54.2 na 98.4
SpeedControl 84 96.2 83.2 94.5 88.7 na 100
All 385 94.1 79.5 94.4 70.3 55.9 97.8

Table 8.30 shows the average mutation scores of the AOSV-adequate test suites

for faults that result from passing arguments to the advices that have incorrect

values (fault type F4-2). The table is organized in the same way as Table 8.15.

Faults of type F4-2 occurred only in the Kettle program because the advices in the

other programs do not receive arguments from the base class. The results show

that the test suites that satisfy each of the AOSV test criteria are able to kill all

the mutants of type F4-2. This is because the arguments passed to the advices in

the Kettle program are used in all the paths in the advices. Therefore, covering

any of the paths in the advices is sufficient to detect these faults.

Table 8.31 shows the average mutation scores of the AOSV-adequate test suites
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Table 8.30: Effectiveness of the AOSV test criteria in detecting faults of type F4-2

Class # Mut all-usesa all-useso all-usesc all-usesas all-usesma all-usess

Kettle 5 100 100 100 100 100 100

in detecting object-oriented faults (fault type F4-3). The table is organized in the

same way as Table 8.15. The table shows that mutation scores of the test suites

that satisfy the AOSV test criteria are low. The average mutation score of the

all-usess criterion on all classes is 45.4%. In the Kettle class, none of the mutants

of type F4-3 are killed. The reason is that many of the faults of type F4-3 are

generated by the class operator JSI of µJava which changes the state variables to

static. Killing these mutants requires verifying the values of the static variables

with more than one object of the same class. That is, a test case needs to execute

a path between the def of the static variable with an object, and the use of the

static variable with another object. In other words, killing these mutants requires

test suites that cover intra-class data-flow interactions.

The mutation scores in Table 8.31 show that the test suites that satisfy the

cDUAs are more effective than the test suites that cover other types of AOSV

DUAs. Covering the cDUAs helped in killing the mutants of type F4-3 other than

the ones generated by the JSI operator. These include mutants that remove or

insert the keyword this, mutants that incorrectly initialize the state variables, and

mutants that assign references with other comparable variables. These mutants

are killed by the test suites that satisfy all-usesc because the criterion requires

covering the paths that have defs and uses of the state variables in the class.

Table 8.32 shows the average mutation scores of the AOSV-adequate test suites

for intra-method faults (fault type F4-4). The table is organized in the same way

as Table 8.15. The results show that the test suites that satisfy all-usess killed
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Table 8.31: Effectiveness of the AOSV test criteria in detecting faults of type F4-3

Class # Mut all-usesa all-useso all-usesc all-usesas all-usesma all-usess

Kettle 3 0 0 0 0 0 0
Account 3 66.7 66.7 66.7 66.7 66.7 66.7
Customer (B) 3 na na 5.6 na na na
Local 1 na 16.7 20 10 10 56.7
LongDistance 1 na 10 13.3 3.3 3.3 40
Customer (T) 6 na na 18.9 15 na 18.9
Call 4 na na 35 na na na
Timer 2 na na 76.7 na na na
CarSimulator 17 na 16.8 60.6 16.8 na 60.6
CruiseController 10 na 2 13 2 na 13
SpeedControl 20 na 4 60 15 na 60
All 70 14.6 11 43.1 10.4 26.7 45.4

most of the mutants of type F4-4. The mutants that are not always killed by the

test suites require performing boundary testing. For the other AOSV test criteria,

all-usesc is the most effective criterion since it has more test requirements in the

class.

Table 8.32: Effectiveness of the AOSV test criteria in detecting faults of type F4-4

Class # Mut all-usesa all-useso all-usesc all-usesas all-usesma all-usess

Kettle 6 100 98.9 100 47.8 90.6 100
Account 6 100 98.9 100 43.9 39.4 100
Local 5 na 16 82 70.7 50.7 77.3
LongDistance 5 na 36 77.3 47.3 54 80.5
Customer (T) 12 na na 76.6 100 na 100
Call 13 na na 66.7 na na na
Timer 7 na na 100 na na na
CarSimulator 128 na 64.8 100 86.3 na 97
CruiseController 72 na 94.2 95.8 63.6 na 92.6
SpeedControl 84 91.5 86 96 91.2 na 100
All 389 92.6 78.7 96 81.5 59.2 98.7

Finally, we show the average mutation scores obtained by the test suites that

satisfy each of the AOSV test criteria for all faults in category F4 in Table 8.28. The
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Table 8.33: Effectiveness of the AOSV test criteria in detecting faults in category
F4

Criteria # Mutants # Classes Average Mutation Score (%)

all-usesa 22 3 84.5

all-useso 181 8 65.2

all-usesc 199 8 73.8

all-usesas 199 8 70.2

all-usesma 139 4 68.6

all-usess 199 8 85.1

table is organized in the same way as Table 8.20. Our results for the effectiveness

of the AOSV criteria in detecting faults in category F4 show the following:

• Test suites that cover all the AOSV DUAs can kill most of the mutants of

type F4-1, F4-2, and F4-4. Faults of type F4-2 require test suites that satisfy

intra-class data-flow interactions.

• Covering cDUAs can help in detecting faults of the types in category F4 more

than the other AOSV DUAs. This is because covering the cDUAs requires

executing more paths in a class.

8.4 Cost-Effectiveness of Achieving High Levels

of Coverage for Criterion all-usess

We address the fourth research question in this section. The goal is to find whether

it is cost-effective to achieve high levels of coverage for the all-usess criterion. We

computed the cost and effectiveness of all-usess at 3 coverage levels: 100%, 90%,

and 80% coverage levels. We measured the cost using only metrics c1 and c3 only

because the other metrics (c2 and c4) are designed to compare the cost with other

test criteria.

Table 8.34 shows in columns 2 through 4 the mean number of test cases in
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Table 8.34: Means of the number of test cases in the test suites that satisfy all-usess

at 100%, 90% and 80% coverage levels

Class Mean Test Suites Size Increase (%)
100% 90% 80% 90% to 100% 80% to 90

Kettle 15.8 12.4 12 22 3

Account 11.4 10.2 9.2 11 10

Local 8.3 6.6 6.4 20 3

LongDistance 4.7 4.1 3.3 12 20

Customer 4.9 3.9 3.3 20 15

CarSimulator 54.7 48.7 43.9 11 10

CruiseController 34.3 30.2 25.7 12 15

SpeedControl 21.1 18.1 14.8 14 19

All 156.2 135.2 119.3 13 12

the test suites that satisfy all-usess at 100%, 90%, and 80% coverage levels, re-

spectively. Column 5 shows the increase in the number of test cases required to

reach 100% coverage compared with the number of test cases that cover 90% of the

AOSV DUSA. Column 6 shows the increase in the number of test cases required

to reach 90% coverage compared with the number of test cases that cover 80% of

the AOSV DUAs. For example, the second row shows that for the Kettle class (1)

the number of test cases in the test suites at 100% coverage level is 22% higher

than the number of test cases in the test suites at 90% coverage level, and (2) the

number of test cases at the 90% coverage level is 3% higher than the number of

test cases at the 80% coverage level.

The results in Table 8.34 show that the number of test cases at 100% coverage

level is more than 10% higher than the number of test cases at 90% coverage level.

This indicates that the last 10% of the AOSV DUAs require more different paths

than the DUAs that are covered at the 90% coverage level. This is expected since

most of the DUAs that can be executed by common are covered with test suites

with lower coverage levels. In other words, the DUAs that get covered only at high
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coverage levels are the most costly in terms of the number of test cases. Note than

in the Kettle and Local classes, the increase in the number of test cases in the test

suites that cover 90% of the AOSV DUAs compared with the number of test cases

in the test suites that cover 80% of the AOSV DUAs is only 3%, which means that

the costly DUAs in these two classes are less than 10%.

Table 8.35 shows in columns 2 through 4 the mean effort metric c3 for obtaining

the test suites at 100%, 90%, and 80% coverage levels, respectively. Column 5

shows the increase in the effort of obtaining the test suites at 100% coverage level

compared with the effort of obtaining test suites that cover 90% of the AOSV

DUAs. Column 6 shows the increase in the effort of obtaining the test suites at

90% level compared with the effort of obtaining test suites at the 80% coverage

level. For example, the second row shows that for the Kettle class (1) the effort

of obtaining the test suites at 100% coverage level is 59% more than the effort

of obtaining the test suites at 90% coverage level, and (2) the effort of obtaining

the test suites at the 90% coverage level is 2% more than the effort of obtaining

the test suites at the 80% coverage level. The results show that covering the last

10% of the AOSV DUAs requires 40% higher effort compared with the effort of

covering the AOSV DUAs at the 90% level. These results are expected because

the hard to cover AOSV DUAs require performing many iterations of selecting

random test cases from the pool since the test cases that cover them are few in the

pool. Our results are consistent with the results of covering all-uses in procedural

and object-oriented programs, which also show that reaching full all-uses coverage

highly increases the cost.

Table 8.35 shows in columns 2 through 4 the means of the mutations scores

for the test suites at 100%, 90%, and 80% coverage levels, respectively. Column

5 shows the increase in the means of the mutations scores for the test suites at
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Table 8.35: Means of the effort of obtaining the test suites that satisfy all-usess at
100%, 90% and 80% coverage levels

Class Mean Effort Metric c3 Increase (%)
100% 90% 80% 90% to 100% 80% to 90

Kettle 214 88 87 59 2

Account 2249 1542 1071 31 31

Local 911 256 232 72 10

LongDistance 21 10 8 55 12

Customer 22 9 8 58 16

CarSimulator 10671 6402 5634 40 12

CruiseController 11082 6982 6423 37 8

SpeedControl 925 444 395 52 11

All 3262 1967 1732 40 12

Table 8.36: Means of the mutation scores for the test suites that satisfy all-usess

at 100%, 90% and 80% coverage levels

Class Mean Mutation Score Increase (%)
100% 90% 80% 90% to 100% 80% to 90

Kettle 94.4 93.4 85.6 1 8

Account 89.6 88.3 80.5 1 9

Local 86.6 83.2 63.8 4 23

LongDistance 81.4 77.8 58.9 4 24

Customer 93.5 90.8 73.7 3 19

CarSimulator 96.5 94.8 89.6 2 6

CruiseController 94.2 93.1 82.9 1 11

SpeedControl 95.1 94.3 76.2 1 19

All 92.4 91.3 79.3 1 15

100% coverage level compared with the means of the mutations scores of test suites

that cover 90% of the AOSV DUAs. Column 6 shows the increase in the means

of the mutation score of the test suites at 90% coverage compared with the means

of the mutation scores at 80% coverage. The results shows that only 1% more

mutants are killed by the test suites that cover all the AOSV DUAs compared

with the test suites that cover 90% of the DUAs. However, the mutation scores
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for the test suites that cover 80% of the AOSV DUAs are about 15% less than the

mutation scores of the suites that cover 90% of the AOSV DUAs. Therefore, it is

cost-effective to obtain test suites at the 90% coverage level.

The reason that explains why covering the last 10% of the AOSV DUAs killed

only a few more mutants is that most of the faults in the mutants propagate in

paths that are required to be executed by more than one DUA. In other words,

covering the AOSV DUAs executes many paths in the advised classes in which

the faults might propagate and few mutants are left to be killed by the last 10%

of the DUAs. Note that the Local, and LongDistance classes have more mutants

that were only killed by the test suites that cover all AOSV DUAs compared to

the other classes. These are the mutants that have faults in the method that drops

a call. Detecting these mutants requires checking the state of the call after it has

been dropped. Note that few test cases called the drop method, and thus, the test

suites need to include the hard- to-cover AOSV DUAs in order to detect these

faults.

While our results show that obtaining full coverage comes with high cost and

small increase in effectiveness, it is the decision of the tester to choose whether

detecting 1% more faults is worth spending about 40% more effort.

8.5 Threats to Validity

We identify three types of threats to the validity of our empirical study: internal

validity, external validity, and construct validity. Internal validity is concerned

with cause and effect relationships, the extent to which we can state that the

changes in dependent variables are caused by changes in independent variables.

We have five dependent variables in our study, which are the metrics that we used

to measure the cost and effectiveness of the test criteria. We recognize two internal
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threats to validity, which are as follows:

1. The test suites that satisfy a test criterion also cover some branches or AOSV

DUAs that are not required by the test criterion. Covering these test require-

ments might increase the effectiveness of the test criteria. However, this

threat is minimized by the use of 30 test suites that satisfy each criterion.

2. RANDOOP can produce long test cases, which contain sequence of methods

calls that help achieve high coverage for the AOSV test criteria. Therefore,

such test cases reduce the cost of the AOSV test criteria when the number

of test cases is used as a measure of cost. On the other hand, having a long

sequence of method calls results in covering paths that are not required by

the AO control-flow criteria, which results in increasing the effectiveness of

the AO control-flow criteria as well. This threat is minimized by the use of 30

test suites that satisfy each criterion. The threat can be further minimized

by using other test generation tools.

External validity refers to how well the results can be generalized outside the

scope of the study [21]. We recognize two external threats to the validity of our

study, which are as follows:

1. We studied four programs and there is no evidence that the results can

be extended or generalized to other aspect-oriented programs. However, as

mentioned earlier, the four programs contain many characteristics of aspect-

oriented software.

2. The sizes of the studied programs are relatively small (less than 1000 lines

of code), which is not adequate to evaluate the scalability of the testing

approach. However, the programs contain many different types of data-flow
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interactions with large variations between the classes. In the future, we plan

to study additional programs with larger sizes.

Construct validity refers to the meaningfulness of measurements [36]. For the

measurement of cost, a notable construct validity issue is the extent to which the

four metrics we used to measure cost are adequate measures for cost. We measure

two dimensions of the cost: the size of the test suites and the effort required to

obtain a test suite that satisfies a test criterion. However, the cost of applying any

test approach includes other components, such as the derivation of the test model

(e.g., the CFGs), the identification of the test requirements, the development of

test drivers and stubs, the derivation of test oracles for test cases, and the execution

of the test [11]. We did not measure the cost of these components because we used

tools to obtain them. The difference in the computational time of running the

tools is negligible.

One threat to construct validity for the measurement of effectiveness is how

realistic are the seeded faults. The results of the study performed by Andrews et

al. [7, 8] show that mutants can provide realistic results under the conditions of

the removal of equivalent mutants and possibly the selection of a subset of mutants

that are neither too easy nor too difficult to detect. Therefore, we reduced this

threat by performing an unbiased and systematic seeding of faults using a suitable

set of mutant operators.
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Chapter 9

Conclusions and Future Work

We presented a data-flow testing approach for aspect-oriented programs. The

approach classifies five types of DUAs based on class state variables and proposes

six test criteria, called AOSV test criteria, which require covering these DUAs.

We implemented a tool called DCT-AJ, which measures coverage of five types of

DUAs. DCT-AJ works in three phases: (1) DUA identification, in which it obtains

the DUAs for the state variables, (2) instrumentation, in which the program is

instrumented using an AO approach with code that can monitor the execution of

the DUAs and measure their coverage, and (3) test execution, in which we run the

test suites that cover the test criteria, and generate coverage reports.

We revised existing fault models for AspectJ programs and proposed a fault

model that (1) eliminates overlapping between fault types, and (2) includes 3 fault

types that result from incorrect data-flow interactions in the program. These fault

types are: (1) incorrect altering of the base class state variables, (2) passing an

object in an unexpected state to an advice, and (3) passing arguments to the

advices that have incorrect values.

We performed a cost-effectiveness study for the AOSV test criteria using four

subject programs. The programs contain a variety of characteristics that can be

present in aspect-oriented programs and cover different application domains. We
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seeded faults in the subject programs using mutation operators. We used three

mutation tools, AjMutator,Proteum/AJ, and µJava. Since the current version of

µJava does not support AspectJ, we used an indirect approach to seed faults in

the aspect using µJava by decompiling the aspects into a class and mutating the

decompiled class with µJava. The study shows that automated test generation

tools for Java programs can be used for AspectJ programs if aspects are written

using the @AspectJ annotation style and with suitable tool settings. Seeding of

faults using mutation operators, however, requires applying more than one tool

and manual intervention. Therefore, a tool that automates this process is needed

for AO programs.

We classified the generated mutants according to the revised fault model. Our

results show that µJava and Proteum/AJ can seed faults of all types that occur in

the classes, and the advices and methods in the aspects. However, both AjMutator

and Proteum/AJ did not generate one type of faults in the pointcut descriptor.

The missed fault type requires performing two changes in the pointcut descriptor.

We propose using HOMs for generating mutants of this type. We presented a set

of rules that can be used to produce pointcut HOMs from FOMs. HOMs can be

a promising approach for generating mutants of fault types that FOMs cannot

produce, or to produce mutants that are harder to kill.

We used a test generation tool called RANDOOP to generate a pool of random

test cases. To produce a test suite that satisfies a criterion, we randomly selected

test cases from the test pool until required coverage for a criterion is reached.

We evaluated two dimensions of the cost of a test criteria and measured each

dimension by two metrics. The first dimension is the size of the test suites that

satisfies a test criterion, which we measured by (1) the number of test cases in

the test suite, and (2) the number of test cases in the test suite divided by the
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number of test requirements for the criterion. The second cost dimension is the

effort of obtaining a test suite that satisfies a criterion which we measured by (1)

the number of iterations needed for randomly selecting test cases from the pool of

test cases until a test criterion is satisfied, and (2) the number of iterations needed

for randomly selecting test cases from the pool of test cases in order to cover a test

requirement. Measuring the size and effort per requirement allows comparing the

cost of the test criteria over all classes, which have a large variation in the number

of test requirements for a criterion. We measured effectiveness by the mutation

scores of the test suites that satisfy a criterion. We evaluated effectiveness for all

faults and for each fault type in the revised fault model.

The empirical study compared the cost and effectiveness of the AOSV test

criteria with two control-flow criteria. These are (1) AO blocks criterion, which

requires exercising all the blocks in the methods of the advised class, and (2) AO

branches criterion, which requires exercising all the branches in the methods of the

advised class.

The results for measuring the cost of the test criteria are as follows:

• The number of test cases in a test suite that satisfies a criterion depends on

two factors: (1) the number of test requirements in a class for a criterion, and

(2) the number of paths needed to cover the test requirements. Our results

show that even if the AOSV test criteria require more paths, having few test

requirements in the classes makes the number of test cases in the test suites

that satisfy them not significantly higher than the number of the test cases

that satisfy the AO control-flow criteria. These results were shown in the

classes that have few AOSV DUAs. However, three of the AOSV test criteria

always required a higher number of test cases than each of the AO control-

flow criteria. These are (1) all-usesa, because it requires executing different
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paths for each of the aDUAs, (2) all-usesc, because it has high number of test

requirements in all the classes, and (3) all-usess, because it requires covering

all the AOSV DUAs in the advised classes, and therefore, has a high number

of test requirements that require different paths.

• The results of using metric c2, which measures size by the number of test

requirements that can be covered by a test case, show that a test case can

cover more blocks or branches in an advised class than it can cover any of

the AOSV DUAs. In other words, the number of different paths that the

AOSV DUAs require to be executed are higher than the number of different

paths needed to cover all blocks or branches in an advised class.

• The effort of satisfying a test suite as measured by metric c3 depends on two

factors: (1) the number of test requirements in a class for a criterion, and (2)

the number of test cases in the pool that can cover the test requirements of a

criterion. Our results show that for the classes that have few AOSV DUAs of

any type, the effort needed to obtain the test suites that cover these DUAs is

not significantly higher than the effort needed to obtain the test suites that

satisfy each of the AO control-flow criteria. However, three of the AOSV test

criteria required higher effort than the AO control-flow criteria. These are

all-usesa, all-usesc, and all-usess. When we compared the AOSV test criteria

with each other, the differences in c3 do not show that a certain type of

AOSV DUAs require more effort to satisfy. However, the results show that if

a certain type of AOSV DUAs in a class requires more effort to satisfy than

the other types of AOSV DUAs, the effort needed to obtain test suites that

cover that type of DUAs becomes close to the effort needed to obtain test

suites that cover all the AOSV DUAs.
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• The results of measuring the effort of covering a test criterion (i.e., metric

c4), show that the effort needed to obtain a test case that covers any type

of AOSV DUAs is higher than the effort needed to obtain a test case that

covers a block or a branch in an advised class. The results also show that

aDUAs require more effort than the other types of AOSV DUAs. Our results

are consistent with the results for procedural and object-oriented programs:

Satisfying strong test criteria, such as all-uses, requires covering paths that

are hard to generate with test case generation tools. RANDOOP was able

to generate test cases that cover all the criteria with the help of two features

of the tool. First, we did not set up a limit on the size of test cases, which

allowed the tool to produce test cases that contain long sequences of different

method calls. Second, we allowed RANDOOP to produce large number of

test cases by running for a long time. This let RANDOOP produce test cases

that can execute hard to cover paths.

Our results show that the AOSV test criteria are more effective than the control-

flow criteria. Test suites that cover all-usess detected 38% and 31% more faults

than the test suites that cover the blocks and branches, respectively. Moreover,

the test suites that any type of the AOSV DUAs were also more effective than the

test suites that cover the blocks and branches in most of the classes.

The test suites that satisfy the all-usess criterion obtained an average mutation

score of 92.4% over all the classes. The all-usess is effective in detecting faults that

result from incorrect data-flow interactions in the advised classes. The mutation

scores obtained by the test suites that satisfy all-usess for these fault types range

from 94.4% to 100%. The live mutants in these types are subtle mutants. Among

the AOSV criteria that are subsumed by all-usess, the all-usesc criterion is more

effective than the other criteria for the faults that result from passing an object
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an unexpected state to an advice (i.e., fault type F4-1). This is because all-

usesc requires covering more paths in the base class. For the other two data-flow

interactions fault types (i.e., Fault types F3-1 and F4-2), the AOSV criteria have

close effectiveness results, except all-usess, which is more effective than the criteria

it subsumes.

The results also show that the covering the data-flow for the state variable

can detect most types of faults in AspectJ programs. The mutation scores of the

test suites that satisfy all-usess range from 87.5% to 100% on the different fault

types. However, two types of faults require targeting different test requirements.

These are the faults that occur in the exception handling code and faults that

require covering data-flow interactions between classes (i.e., inter-class data-flow

level testing).

In order to evaluate the cost-effectiveness of reaching high levels of coverage

for the all-usess criterion, we evaluated cost and effectiveness of all-usess for three

coverage levels: 100%, 90% and 80% coverage levels. Our results show that the

test suites that cover satisfy all-usess at 100% coverage level are only 1% more

effective than the test suites that cover 90% of the AOSV DUAs, and need 40%

more effort and 13% more test cases. However, the test suites that cover 80% of

the AOSV DUAs are 16% less effective than the suites at full coverage. Therefore,

it is cost-effective to obtain test suites at the 90% coverage level.

We identified three directions to extend this work, which are as follows:

1. Investigation of other types of data-flow interactions in aspect-oriented pro-

grams: These include data-flow interactions within the aspects, data-flow

interactions between classes, and data-flow interactions for the objects refer-

enced by classes and aspects. Our results for state variable DUAs show that

there is a type of faults that require covering such data-flow interactions.
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2. Investigation of the use of mutation testing for aspect-oriented programs:

Mutation testing has been widely used for procedural and object-oriented

programs. However, the cost and effectiveness of mutation testing have not

been evaluated for testing aspect-oriented programs.

3. Investigation of the use of HOMs for aspect-oriented programs: HOM is

a promising approach that has not been evaluated for aspect-oriented pro-

grams. We used HOMs in our work to produce mutants of types that FOMs

were not able to generate. Our work can be extended by investigating the

use of combinations of first order mutants in different constructs of the as-

pect, not just the pointcut (e.g., one mutant in the pointcut combined with

another mutant in the advice), investigating orders higher than 2, and sub-

suming HOMs.
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