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ABSTRACT 

DEVELOPMENT OF PREDICTIVE ENERGY MANAGEMENT STRATEGIES FOR 

HYBRID ELECTRIC VEHICLES 

 

Studies have shown that obtaining and utilizing information about the future state of vehicles 

can improve vehicle fuel economy (FE). However, there has been a lack of research into the impact 

of real-world prediction error on FE improvements, and whether near-term technologies can be 

utilized to improve FE.  This study seeks to research the effect of prediction error on FE. First, a 

speed prediction method is developed, and trained with real-world driving data gathered only from 

the subject vehicle (a local data collection method). This speed prediction method informs a 

predictive powertrain controller to determine the optimal engine operation for various prediction 

durations. The optimal engine operation is input into a high-fidelity model of the FE of a Toyota 

Prius. A tradeoff analysis between prediction duration and prediction fidelity was completed to 

determine what duration of prediction resulted in the largest FE improvement. Results demonstrate 

that 60-90 second predictions resulted in the highest FE improvement over the baseline, achieving 

up to a 4.8% FE increase. A second speed prediction method utilizing simulated vehicle-to-vehicle 

(V2V) communication was developed to understand if incorporating near-term technologies could 

be utilized to further improve prediction fidelity. This prediction method produced lower variation 

in speed prediction error, and was able to realize a larger FE improvement over the local prediction 

method for longer prediction durations, achieving up to 6% FE improvement. This study concludes 

that speed prediction and prediction-informed optimal vehicle energy management can produce 

FE improvements with real-world prediction error and drive cycle variability, as up to 85% of the 

FE benefit of perfect speed prediction was achieved with the proposed prediction methods. 
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1. INTRODUCTION 

1.1 LITERATURE REVIEW 

The fact that the climate is changing is well understood and acknowledged. The burning of 

fossil fuels is generally accepted as one of the largest contributors to climate change and poor air 

quality. The International Energy Agency has determined that of the CO2 produced from burning 

fuels across the world, 23% is emitted from the transportation sector [1]. Of the petroleum fuel 

used and greenhouse gases (GHG) emitted in the transportation sector, 60% is from light duty 

vehicles [2]. To minimize the effects of climate change, most of the countries in the world have 

agreed to the Paris Climate Agreement, which aims to keep global warming under 2 °C [3]. 

Increasingly strict fuel economy and GHG emissions regulations have proven to be one of the most 

efficient policy tools for improving fuel economy [4]. The United States Environmental Protection 

Agency and National Highway Traffic Safety Administration have implemented Corporate 

Average Fuel Economy (CAFE) standards that automakers are required to meet. By 2025, the 

minimum standard for domestically manufactured passenger cars will be 51.3 MPG [5]. These 

standards allow automakers freedom to determine which technologies they utilize to reach the 

required fuel economy and GHG emissions standards. 

Many studies have concluded that hybrid electric vehicles (HEV) and plug-in hybrid electric 

vehicles (PHEV) are the best means to improving near-term sustainability and vehicle FE [6]–[8]. 

Sales of HEVs and PHEVs are increasing in the U.S., as well as globally [7], [9]. However, PHEVs 

and electric vehicles are still in the “early adopter” stage of market penetration [10]. The FE of 

hybrid vehicles is strongly influenced by their energy management strategies (EMS) [11]. Since 

hybrid vehicles have two power sources (typically an internal combustion engine and an electric 
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motor), there is more freedom in determining how to fulfil the driver’s power request. Optimizing 

the EMS is a crucial aspect of increasing FE, and is a very active area of research today. 

To achieve optimal EMS, it is necessary for vehicles to shift from the current, reactive EMS, 

towards predictive EMS that can take into account the power needs of the vehicle in the future 

[12]. The continuous, incremental integration of advanced driver assistance systems (ADAS) and 

intelligent transportation systems (ITS) is making it possible to shift towards predictive energy 

management, and higher FE. 

Implementation of ADAS into vehicles is generally split into two main categories: improving 

FE via driving modification and improving FE without driving modification. Driving modification 

is accomplished through either modifying the route of travel (eco-routing) [13] or by modifying 

the driving characteristics, such as traveling at most efficient speeds, and with less aggressive 

acceleration/decelerations (eco-driving). This study, however, focuses on optimal energy 

management via powertrain control, without changing the responsiveness or dynamics of the 

vehicle.  

There are two main considerations for using ADAS and ITS for optimal EMS: 1) obtaining 

future information, and 2) utilizing that information to achieve optimal (or near optimal) energy 

management. Relevant future information that is desired to be known are things such as future 

vehicle speed, road grade, road speed limits, traffic signals, traffic flow and density. Some of the 

technologies that are either currently available, or are expected to be available in the near future, 

would include GPS location, geographic information system (GIS) information, vehicle-to-vehicle 

communication and vehicle-to-infrastructure (V2I) communication. GPS information is currently 

available on most cars today, GIS information is not readily on cars today, but the information is 

available on off-vehicle networks. V2V and V2I communication is not commercially available. 
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However, many researchers assume one or both of V2V or V2I technologies are available in their 

method of obtaining future information [14]–[16]. The intention of this study is to not assume that 

future technology is available and mature, but rather to develop a method of obtaining future 

information using first, technology that is commercially available today, and next a method of 

implementing low level V2V information to improve prediction accuracy, in turn further 

increasing FE. 

1.1.1 Neural Networks in Vehicle Speed Predictions 

There are a multitude of ways to use these aforementioned technologies to obtain desired 

information and make predictions from it. In general, all methods obtain certain information and 

use it to inform a model, which creates the prediction. Relatively recently, there has been a shift 

away from using analytical models to data-driven, learning-based models for predictions [17]. 

Data-driven models have the advantage of being flexible, not having prior assumptions associated 

with the input variables, and being more robust to noisy data [18].  One of the most widely used 

data-driven models is learning-based Artificial Neural Networks (NN). In general, NNs are useful 

because of their ability to model nonlinear functions, their flexible model structure, and their 

ability to handle multi-dimensional data [19].  

There is a wide range of types of NNs that are used for predicting vehicle conditions: multi-

layer perceptron (MLP NN), radial basis function (RBF NN), long short-term (LST NN), nonlinear 

autoregressive neural network with exogenous inputs (NARX NN) and chaining neural networks 

(CNN) [14], [16], [18], [20]–[22]. These types of NNs are all capable of predicting multiple time 

steps ahead, but have strengths in different applications. MLP NNs have been used in vehicle 

applications to predict future velocities with only previous velocities as the input [21], to predict 

future velocities based on V2V signal strength and vehicle distance [22] and to predict speed 
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reduction and distance from on/off ramps [20]. Radial basis function NNs have been used to predict 

future velocities based on V2V signal strength and vehicle distance [22] and to predict future 

velocity sequences based on previous velocity sequences [23]. LSTM NNs and CNNs have been 

utilized to predict vehicle speeds from V2V and V2I roadside sensors [14], [18]. NARX NNs have 

the added flexibility that they can use other exogenous inputs in addition to predicting multiple 

time steps ahead (by feeding the output of one iteration as an input to the next). Valera et al. use 

NARX NNs to predict the difference between the actual vehicle speed and a pre-calculated 

expected speed trace [16]. Additionally, other methods of speed prediction, such as Markov chains, 

[24] have been studied extensively but are not a focus of this research. In this study, an individual 

vehicle velocity prediction method is developed using a NARX NN, which utilizes the vehicles 

latitude and longitude as exogenous inputs. 

1.1.2 V2V Communication Modeling 

V2V communication is not currently commercially available, but researchers are 

investigating ways to utilize information obtained by V2V to make vehicle speed predictions, as 

the technology will be commercially available in the near future. Many researchers are assuming 

that V2V and V2I are both fully available for obtaining detailed vehicle information [14]–[16]. 

For instance, Valera, et al. doesn’t even differentiate between V2V and V2I, but just say that this 

type of technology can be used to integrate dynamic traffic information into their prediction model 

[16]. The dynamic traffic information they discuss is made up of traffic events, traffic state, 

weather state, etc. In their simulations, this information was added manually, without detailed 

discussion of how that information would be obtained. Zhang, et al. assume full V2V and V2I 

communication capabilities are on all cars, that there is a 200m range of communication and that 

there are no communication errors [14]. Additionally, they assume multiple leading vehicles’ 
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velocities are broadcast to the ego vehicle, along with the leading vehicle’s distance to the next 

stoplight. This all assumes very comprehensive data communication, which is unrealistic for near-

term V2V commercial market penetration scenarios. Another study assumes full V2I and V2V 

communication for a range of 300m where information about vehicles’ current and predicted 

speeds are communicated, as well as traffic speed and density [15]. One study acknowledges there 

will be a transitional period of implementation of this technology [25], and they devised a way to 

utilize limited V2V communication penetration into the flow of traffic. However, this method was 

used to predict the velocity of the vehicle directly in front of the ego vehicle for adaptive cruise 

control purposes, instead of FE. In the current study, so as to model near-term realizable scenarios 

and technologies, we assume that there is a limited amount of information being communicated 

between vehicles: only vehicle speed and GPS location information.  

1.1.3 Prediction Error Handling 

Vehicle speeds are highly transient, random, and are dependent on many factors such as 

traffic, road type, weather, driver style, etc. [26]. Vehicle speed predictions are, therefore, bound 

to have some random and bias errors. There is a range of different procedures for dealing with 

these errors when investigating speed predictions. There have been instances when researchers did 

not address prediction errors and used the prediction, without including error, as if it were the 

actual speed trace [27]. Many acknowledge that the predictions will be erroneous and add different 

amounts of random error into their “predictions” because error quantification is out of their scope 

of study [15], [28], [29]. A more realistic way of introducing errors is to use real-world data to 

derive the speed predictions, which inherently includes realistic errors of both bias and random 

types [30]–[32]. This method allows for a better understanding of the impact of prediction error 

and is the method utilized in this study. 
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1.1.4 Prediction Fidelity Quantification 

For quantifying the accuracy of speed predictions, many researchers use simple error 

calculations such as root mean square error (RMSE) (Eq. 1) or mean absolute percent error 

(MAPE) (Eq. 2) [14], [18], [21], [22], [33].  

 

 

where N is the total number of observations, �௣௥௘ௗ௝is the jth predicted observation, and �௔௖௧௝  is the 

jth actual observation.  However, this might not be provide full insight into the actual accuracy of 

the prediction. For example, if the prediction is trending very well, but shifted (lagging or ahead) 

by a short time, then the calculated error will be very high during transient speed situations. 

However, in terms of fuel economy, that short shift may not have a significant impact on the 

velocity prediction and the quality of the controls that are derived from it. Thus, a more holistic 

understanding of the impact of prediction methods and associated error can be gained by using 

vehicle fuel economy as the metric of comparison [28], [29], [34]. Although, these researchers 

have performed their analysis based on FE, they did so to understand how prediction error affects 

the EMS they are using (i.e. adaptive equivalent consumption minimization strategy (A-ECMS), 

model predictive control (MPC)). To isolate the impact of prediction error, it is necessary to use a 

global optimal EMS, such as dynamic programming (DP). With a global optimal EMS, the FE 

performance of a realistic, sub-optimal EMS can then be directly tied to prediction error. 
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1.1.5 Prediction Duration Tradeoffs 

Another consideration for speed prediction that has not been included in many studies is the 

consideration of the tradeoffs of prediction durations. Logically, as prediction durations become 

longer, the prediction will be less accurate. Rezaei and Burl investigated prediction horizon length 

for performance of MPC, but did not consider the impact of prediction errors [33]. He et al. 

considered prediction duration for updating the equivalence factor of the A-ECMS [29]. They 

considered prediction error, but artificially added it in increments of 0-20% error, for all prediction 

horizons, thus not considering that prediction error increases with prediction duration. Sun et al. 

also investigated different prediction lengths to update the equivalence factor of an A-ECMS and 

considered with increasing predictions, there will be more error. They concluded that 60-second 

prediction horizon was optimal for that application [23]. However, they were investigating how 

robust the EMS is to prediction error. We seek to isolate the prediction error impacts by 

investigating the optimal FE that can be derived from real-world predictions, with associated real-

world error, and doing a tradeoff analysis of prediction duration and prediction accuracy.  

1.1.6 Optimization of EMS 

Obtaining future information is only one part of optimal EMS. The second part is the actual 

energy management strategy that is used. Dynamic programming, as a means of deriving the 

optimal control for a given state space, is well understood [35] and its application to the optimal 

HEV energy management is well documented in literature articles [36]–[40] and textbooks [41], 

[42]. The drawback of dynamic programming is that it is computationally costly and thus difficult 

to implement in real time for HEV energy management [43]. As a result, research has moved 

towards more implementable versions of this method such as stochastic dynamic programming 

[44]–[47], model predictive control [48]–[52] and equivalent consumption minimization strategy 
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[14], [23], [28], [29], [34]. Because of the difficulties of real-world implementation of dynamic 

programming, researchers now mainly use it as a convenient (offline calculable) measure of the 

globally optimal results [32], [53]. Dynamic programming is used in the same way in this study; 

to understand the impact of prediction error on fuel economy through comparison to the FE of a 

globally optimal strategy. In the shift to predictive energy management strategies, it is important 

to understand the robustness of FE gain over reactive energy management strategies (the current 

state of art). With this understanding, it is then possible to evaluate predictive EMS as derived in 

real-time. 

1.2 RESEARCH QUESTIONS 

To summarize the state of the art, uncertainty in prediction defines the tradeoff between fuel 

economy improvement and prediction horizon duration.  As the prediction horizon lengthens, the 

optimal controller has more predictive data with which realize higher fuel economy, but as the 

prediction horizon lengthens, the error in prediction grows.  This suggests that to define the 

tradeoff between prediction horizon and fuel economy improvement the uncertainty in each must 

be quantified and informed using real-world datasets and predictions. However, error 

quantification, propagation and robust optimization has been given little attention in the studies 

performed to date.  

The results of this literature review leads to three research questions that inform the 

remainder of this thesis. 

1. The quality and quantity of the driving prediction defines the tradeoff between 

prediction horizon duration and FE.  What duration of prediction horizon realizes the 

largest FE improvement? 
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2. Are the FE benefits of prediction and optimal EMS robust to real-world variability in 

prediction error and drive cycles? 

3. What level of FE can be realized through leveraging near-term low cost technologies, 

such as V2V? 

1.3 NOVEL ASPECTS OF THIS RESEARCH 

This study takes a data-driven, and systems level approach to understanding the impact of 

real-world prediction error on fuel economy. Two methods are developed to make speed 

predictions, which focus on current and near-term technology. One only utilizes technology that 

is commercially available on current vehicles. The other investigates utilizing information that will 

be exchanged in early stages of V2V communication. Both of these methods utilize real-world 

driving data, thus prediction errors are representative of real-world prediction errors. Instead of 

using only standard RMSE quantifications of prediction accuracy, a system level metric of 

performance (fuel economy) is used.  

Through this study, it is intended to understand and quantify the impact of real-world 

prediction error on potential FE improvements, and to understand if these predictions with real-

world error can be used to improve current FE and to conclude if current technology can be 

incrementally implemented to transition from reactive to predictive energy management. 

1.4 THESIS OUTLINE 

The structure of the rest of this thesis is outlined in this section. In Chapter 2, we discuss a 

speed prediction method that involves only local vehicle information that is obtained via 

technology that is commercially available on vehicles today. We investigate the tradeoffs between 

prediction horizon lengths and the realizable FE that be derived from this prediction method. In 
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Chapter 3, we discuss a speed prediction method that incorporates V2V communication. Again, 

we investigate the tradeoffs between prediction horizon lengths and the realizable FE that be 

derived from this prediction method. In Chapter 4, we compare the two prediction methods, and 

then revisit the research questions and draw conclusions from this study in Chapter 5. 
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2. SPEED PREDICTION METHOD 1: LOCAL VEHICLE DATA 

2.1 LOCAL PREDICTION METHODS 

Prediction-based EMS aims to maximize fuel economy by predicting the vehicle speed for 

an upcoming segment of time and optimizing the engine control for that prediction horizon, all in 

real time. In this portion of the study, speed predictions are made using a NARX NN. To 

investigate the tradeoff between prediction horizon and the deviation between predicted and actual 

vehicle speeds (prediction error), a range of prediction horizons is evaluated for their effect on 

vehicle FE.  

The goal of this study is to compare the vehicle FE for differing prediction horizons, to a 

baseline with no speed prediction, and to an idealized case with perfect speed predictions. These 

comparisons will allow for a better understanding of the impact of real-world prediction errors on 

potential FE improvements.  

2.1.1 Baseline Vehicle Fuel Economy Modeling 

The baseline vehicle controller and vehicle plant model operate on an equation-based 

algorithm. The vehicle plant and baseline controller are a high-fidelity FE model of a generation 

three Toyota Prius, previously developed at CSU [32].  Figure 1 shows the general information 

flow through the baseline controller. A model of a driver receives the velocity trace (velocity vs. 

time) and outputs a wheel torque request, i.e. the torque that is required at the wheels to propel the 

vehicle at the desired velocity. The running controller model (sometimes referred to as a hybrid 

supervisory controller) obtains the wheel torque request from the driver model. Based on the 

current vehicle states and the desired wheel torque request, the running controller model 
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determines what the engine, motor and generator torques and speeds should be. The running 

controller model passes these requests to the vehicle plant model, which simulates the physical 

components of the vehicle. The vehicle plant model then outputs (among other things) the vehicle 

speed, ESS SOC and fuel consumed. 

 

Figure 1: Information flow through baseline FE model of a generation three Toyota Prius 

To ensure this model is a valid representation of a generation three Toyota Prius, simulations 

of three EPA drive cycles are developed. The FE results of these simulations are compared to 

actual driving data on these drive cycles for a 2010 Toyota Prius [54]. Table 1 demonstrates this 

comparison. Based on the similarities to real-world FE, the model is considered validated for 

predicting FE of a real-world Toyota Prius. 

Table 1: Comparison of baseline model and experimental FE 

 UDDS HWFET US06 

Experimental 69.6 mpg 67.3 mpg 43.5 mpg 

Simulation 71.8 mpg 67.9 mpg 44.0 mpg 

Percent 

Difference 

3.2% 0.9% 1.0% 
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2.1.2 Drive Cycle Development 

Existing EPA standard drive cycles aim to capture a mixture of generic city and highway 

driving. In order to capture a similar mix, through a shortened drive cycle, a custom cycle in Fort 

Collins, Colorado is developed. A shorter drive cycle is desired because the route needs to be 

driven multiple times. The route that was developed for this study is shown in Figure 2. 

 

Figure 2: Custom drive cycle route in Fort Collins, CO 

Vehicle speed and GPS location are recorded from the Controller Area Network (CAN) bus 

during each trip along the route. An example speed trace is shown in Figure 3. Note that the letters 

show points of correspondence between the location shown in Figure 2, and the speed trace shown 

in Figure 3. 
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Figure 3: Speed trace of custom drive cycle 

To collect data for NARX NN training, this drive cycle is driven 11 times, on different days 

and at different times of day to capture as much variation as possible. Data from eight of the cycles 

is used to train, validate and test the NARX NN, and data from the other three are used in the FE 

simulations. To develop a baseline FE for use as a comparison to speed prediction FE, simulations 

of the custom drive cycles using the baseline controller were developed. These baseline 

simulations provide an important baseline comparison for the optimized FE results. 

2.1.3 Neural Network Vehicle Speed Predictions  

As stated above, a NARX NN is used to make vehicle speed predictions based on current, 

past and future GPS locations and past vehicle speeds. Since the NARX NNs are trained with 

actual driving data, these predictions are representative of how the driver drives. Thus, if the driver 

drives aggressively, the NARX NN will predict aggressive driving behaviors.  

The exogenous inputs to the NARX NN are the vehicle’s longitude and latitude. It is assumed 

that knowledge of the route that is being driven is available, thus future GPS locations are available 

to be used in the NARX NN. The output of the NARX NN is the vehicle speed. Only one hidden 

layer is used. The architecture of the NARX NN is shown in Figure 4. There was no pre-processing 

of the data before using it to train the NARX NN.  
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Figure 4: Closed Loop NARX NN [55] 

A different NARX NN is defined and trained for each prediction horizon. The method of 

developing each NARX NN is the same, but the architecture (number of hidden neurons and input 

delays), and fitted parameters (weights and biases) are different. The general method for 

developing the NARX NN will be explained, and then the method for determining the architecture 

and parameters to be used for each NARX NN will be discussed.  

The architecture parameters, which are changed for each NARX NN, are prediction horizon 

length, number of hidden neurons, and number of input and feedback delays. The number of input 

and feedback delays are set equal to each other for each NARX NN. Each NARX NN only has 

one hidden layer, uses Levenberg-Marquardt backpropagation to update weights and biases, a 

hyperbolic tangent sigmoid transfer function for the hidden layer and a linear transfer function for 

the output layer. 

Once the parameters are set for the NARX NN, it is then trained using the entire cycle dataset 

from the eight drive cycles on an open loop. In a closed loop NARX NN, the output of the current 

time step is used as an input for the next time step. An open loop differs in that rather than using 

the output from the previous time step as the input, it uses the actual, known, target value. This 

makes training of the NARX NN faster and more efficient [55]. Once training is complete, the 

NARX NN is then closed. The input of vehicle speed is now taken from the output of the NARX 
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NN from the previous time step. An example of an open loop NARX NN is shown in Figure 5. It 

can be compared to the closed loop NARX NN depicted in Figure 4. 

 

Figure 5: Open Loop NARX NN  [55] 

To determine the NARX NN parameters for each prediction horizon, many feasible 

combinations of hidden neurons and delays are used to predict the drive cycle. The range of hidden 

neurons explored is from 6-16 and delays from 2-26 seconds. The combination that produces the 

lowest average mean square error, calculated using equation 3 (where where N is the total number 

of observations, �௣௥௘ௗ௝is the jth predicted observation, and �௔௖௧௝  is the jth actual observation), over 

the entire validation drive cycle (one not used at all in training) is used for that prediction horizon. 

Once the training is completed, the NARX NN is ready to make vehicle speed predictions for the 

set prediction horizon. 

 

2.1.4 Development of Predictive Powertrain Controller 

A predictive engine controller that was developed in previous research at Colorado State 

University [32], [53] is leveraged as a foundation in this research to determine optimal engine 

control based on predicted vehicle speeds. The controller uses dynamic programming to evaluate 

all possible states and determine the optimal engine power for each state. The states are the SOC 
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of the ESS and the time over the prediction horizon. The input of the DP algorithm is the speed 

trace and the output is a table of optimal engine power for all combinations of SOC and time steps. 

The optimal engine power is found by minimizing the fuel consumed over the prediction horizon.  

One important constraint of the algorithm is that the SOC at the end of the speed trace is set to be 

a constant (50%), to simulate a charge-sustaining situation.  

2.1.5 Implementation of Prediction and Predictive Powertrain Controller into FE Model 

To evaluate the benefit of predicting future vehicle speeds, the prediction and predictive 

powertrain controller are implemented into the running controller of the FE model so that speed 

predictions and engine control can be developed as the simulated vehicle is driving. The baseline 

controller in the model is adapted to have the capability to use the NARX NN to make speed 

predictions of the upcoming vehicle speed using previous vehicle speed and GPS location. The 

predicted speed is then input into the predictive powertrain controller to calculate the optimal 

engine power for each SOC and time for the upcoming prediction horizon.  

This routine is repeated at 1 Hz to ensure that the maximum realizable FE potential is 

achieved. This does not diminish the benefits of having a longer prediction horizons. The DP 

algorithm in the predictive powertrain controller is run over the entire prediction horizon at each 

time step, so it determines the optimal engine control for that entire prediction horizon. Repeating 

this routine at 1 Hz ensures vehicle information is as up to date as possible and this routine is also 

utilized for the idealized cases of perfect speed predictions. It should be noted that this method 

differs from making a prediction for the prediction horizon and then using that control for the entire 

prediction horizon. Figure 6 shows the flow of information between the local prediction algorithm, 

the predictive powertrain controller, the modified running controller and the vehicle plant model. 
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Figure 6: Information flow through FE model, including the local prediction algortihm and predictive powertrain controller 

Vehicle speed as a function of time is input into the driver model from the drive cycle 

database. The driver model determines the necessary wheel torque request for the speed trace. This 

wheel torque request is then input into the running controller model. In parallel, GPS location 

information from the drive cycle database and current vehicle speed are input into the local speed 

prediction algorithm, which outputs the vehicle speed prediction. This vehicle speed prediction 

serves as an input, along with the current ESS SOC, to the predictive powertrain controller. The 

predictive powertrain controller determines the optimal engine power as a function of time 

between the present and the end of the prediction horizon. This optimal engine power is the second 

external input into the running controller model (along with the wheel torque request). This 

running controller model enforces constraints on the powertrain so that the optimal powertrain 

requests cannot violate powertrain torque, speed, and SOC constraints. The running controller 

model feeds requests for the engine, motor and generator torques and speeds to the plant model, 

which simulates the physical components in the vehicle. The relevant outputs from the vehicle 

plant model are fuel consumed, ESS SOC and vehicle speed. 

This FE model makes it possible to evaluate the tradeoffs of different prediction horizons. If 

the prediction horizon is very short, accurate speed predictions can be made. However, the 

predictive powertrain controller can only realize a limited FE benefit due to the short prediction 
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horizon. Conversely, with longer prediction horizons, the predictive powertrain controller can find 

more optimal ways to operate the engine to minimize the fuel consumed over the prediction 

horizon. However, with longer prediction horizons, the speed predictions will be less accurate and 

the predictive powertrain controller will be optimizing for speeds that the vehicle may not actually 

travel.  

Simulations of different prediction horizons are developed to explore these tradeoffs. 

Simulations for prediction horizons of 5, 10, 15, 20, 30, 45, 60, 90, and 120 seconds are developed. 

In addition, idealized cases are explored. Simulations where the speed prediction algorithm is 

removed and instead the actual speed trace is used as an input to the predictive powertrain 

controller are developed for the same array of prediction horizons. These represent cases in which 

perfect speed predictions could be made. The information flow for this scenario is represented in 

Figure 7. 

 

Figure 7: Information flow through the FE model, including perfect prediction and predictive powertrain controller 

Under this perfect prediction scenario, the predictive powertrain controller with dynamic 

programming derives the powertrain control that results in the maximum possible FE for that 

prediction horizon. By comparing this to the FE of speed prediction simulations with real-world 

prediction, we can gain an understanding of the impact that real-world prediction errors have on 
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FE. Also, by comparing the FE results from speed prediction simulations to that of the baseline 

controller, we can quantify the degree to which FE benefit is robust to real-world prediction errors. 

2.2 LOCAL PREDICTION RESULTS AND DISCUSSION 

Before evaluating the FE benefit of different prediction horizons, a better understanding of 

the tradeoffs between prediction horizon and prediction fidelity needs to be obtained.  

2.2.1 Tradeoffs between Prediction Horizon and Prediction Quality 

Speed prediction error is calculated as the difference in the predicted and actual speed at each 

second of the prediction horizon. Then, the RMSE (Eq.1) for the prediction horizon is calculated. 

Within the vehicle simulations, the speed prediction algorithm is called at 1 Hz, so there is a RMSE 

calculation each second. Figure 8 shows the speed prediction RMSE distribution for each second 

of the drive cycle, and for different prediction horizons, along with the mean and bounds of one 

standard deviation of the prediction RMSE.  
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Figure 8: Scatter plot of prediction RMSE as a function of prediction horizon, along with the mean and bounds of one standard 

deviation of the prediction RMSE for each prediction horizon 

As hypothesized in the research questions discussion, a shorter prediction horizon results in 

speed predictions that are more accurate. Conversely, longer prediction horizons result in larger 

speed prediction errors. As the prediction horizon grows, the prediction error becomes larger. For 

the larger prediction horizons, the prediction error reaches a saturation point because there is an 

inherent limit that is reached. For example, if the vehicle speed in the training dataset never eclipses 

30 m/s, 80 m/s will not be predicted.  

Figure 9 (a) illustrates the shape of these speed prediction RMSE distributions for a shorter 

prediction horizon (5 seconds in this sample result). The prediction RMSEs are more concentrated, 

with many near zero error. As the prediction horizon increases, the RMSE become less 

concentrated, with a larger standard deviation. However, the standard deviation of prediction 

RMSE also reaches a saturation point, as is illustrated in Figure 9 (b) and (c). It can be seen that 
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for 45 and 120-second prediction horizons, the standard deviations of RMSE are comparable; 

however, the mean of prediction RMSE increases as prediction horizon increases.  

 

Figure 9: histograms of RMSE to compare how the magnitude of prediction RMSE increases as prediction horizon increases, but 

standard deviation reaches a saturation point 

While predictions that are more accurate are desirable, there is a drawback to shorter 

prediction horizons, as they result in less information being supplied to the predictive powertrain 

controller. Thus, while shorter prediction horizons provide predictions that are more accurate, they 

are inherently limited in the FE gain that can be achieved. If a prediction horizon is too short, there 

will not be enough information available to realize a FE benefit over the baseline controller. If the 

prediction horizon is too large and there is too much prediction error, the predictive powertrain 

controller will be optimizing for incorrect speed predictions and again, no FE benefit may be 

realized. It is also possible that this prediction can result in a FE decrease over the baseline. This 

could occur if the prediction horizon is so short that the optimization routine is too limited by the 

SOC constraint that it cannot find FE benefit. In addition, a decrease in FE could occur if the speed 

predictions are so erroneous that optimal engine power vastly differs from what is needed to power 

the vehicle. However, these are extreme cases, and only might happen at very short or very long 

(a) (b) (c)
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prediction horizons. A moderate range of predication horizons is explored to find the prediction 

horizon that yields the largest FE improvement. 

2.2.2 Engine Operation Comparison between Optimal and Baseline Control 

A brief discussion of how the predictive powertrain controller derives FE improvement is 

included in this section. A comparison of engine power between the baseline and a 20-second 

prediction horizon simulation is shown in Figure 10. Note this is a subset of the drive cycle, as the 

cycle is over 20 minutes long. 



24 

 

 

Figure 10: A sample baseline and speed prediction engine power comparison, along with SOC and speed trace over the segment 

with a prediction horizon of 20 seconds. 

The predictive powertrain controller leverages the knowledge of future speeds to realize FE 

benefit by keeping the engine off as much as possible, which is illustrated in Figure 10 between 

535-545 seconds. When the engine is turned on, it does so when more power is needed and operates 

along the ideal operating line (IOL). High efficiencies are achieved at higher engine loading. The 

result is that the engine tends to run at a higher power than the baseline when it is operating, 

displayed between 550-565 seconds in Figure 10. For further explanation of how the dynamic 

programming algorithm in the predictive powertrain controller realizes FE improvements, refer to 

previous studies completed at CSU [32], [53]. 
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2.2.3 FE Benefit of Different Prediction Horizons for Cycles 1-3 

With the implementation of the speed prediction and predictive powertrain controller and a 

better understanding of the tradeoffs between prediction horizon and prediction error, we now seek 

to develop a simulation-based quantification of the FE benefit as a function of prediction horizon. 

Simulations of the custom drive cycles using the rules-based baseline controller were developed 

for a baseline comparison. Additionally, simulations of the custom drive cycle using the predictive 

powertrain controller with perfect speed “predictions” (the actual speed trace) were developed for 

each prediction horizon. This serves as a best-case scenario representing the FE benefit that could 

be realized from this predictive powertrain controller if perfect predictions could be achieved.   

Then, simulations are developed for each prediction horizon using speed prediction as the 

input to the predictive powertrain controller. As described in section 2.1.5, a NARX NN, trained 

for each specific prediction horizon, outputs speed predictions that the predictive powertrain 

controller uses as inputs to develop the optimal engine control for that speed prediction. This 

routine is repeated at 1 Hz in simulation time, while the model is driving the drive cycle.  

Three drive cycles were investigated in this study. One drive cycle was recorded during 

relatively low traffic, mid-morning on a weekday in Fort Collins, CO (referred to as cycle 1). The 

other two were recorded at times with high traffic in Fort Collins, CO, during the evening weekday 

rush hour (referred to as cycles 2 and 3). All three cycles were during normal weather conditions, 

as all of the training data was also recorded during normal weather conditions. Investigating the 

effects of adverse weather is out of the scope of this study.  

To evaluate the FE benefit from each simulation, the fuel consumed during the simulated 

drive cycle, along with the ending ESS SOC and distance traveled, are extracted from each 

simulation. The SAEJ1711 Jun. 2010 Recommended Practice for Measuring the Exhaust 
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Emissions and Fuel Economy of Hybrid-Electric Vehicles, Including Plug-in Hybrid Vehicles is 

used to calculate the charge-sustaining miles per gallon equivalent (CS MPGe) fuel economy.  

Due to the stochastic nature of NN training, each time the NARX NN is trained, it will 

produce a slightly different set of weights and biases, causing it to output a different output for the 

same input. Additionally, with a short drive cycle such as this, variations in the ending SOC have 

a noticeable effect on CS MPGe. To account for this, each prediction horizon FE result is presented 

as a stochastic result, including n=5 trained NARX NNs, driven over each drive cycle. Figure 11 

- Figure 13 are box plots that present this variation. These illustrate both the stochastic nature of 

NARX NN as well as the overall trend of how the prediction horizon length affects the FE benefit.  

 

Figure 11: Box plot of percent energy saved by the local prediction method over the baseline controller, and comparison to 

perfect prediction simulations for Cycle 1. 
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Figure 12: Box plot of percent energy saved by the local prediction method over the baseline controller, and comparison to 

perfect prediction simulations for Cycle 2. 

 

Figure 13: Box plot of percent energy saved by the local prediction method over the baseline controller, and comparison to 

perfect prediction simulations for Cycle 3. 
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The average CS MPGe, percent energy saved over the baseline, and percent of perfect 

prediction FE achieved for each of the prediction horizons and drive cycles is shown in Table 2. It 

can be seen that up to 4.8% CS MPGe improvement over the baseline can be achieved with long 

prediction horizons. This was calculated using the percent change equation, 

 

where ܧܨ௣௥௘ௗ௜௖௧௜௢௡ is the CS MPGe of the velocity prediction simulation and ܧܨ௕௔௦௘�௜௡௘ is the CS 

MPGe of the baseline simulation. Additionally, up to around 75% of the potential FE benefit that 

could be derived with perfect prediction can be achieved by the proposed speed prediction method.  

Table 2: Results of local data based predictions in terms of CS MPGe, the average percent energy saved over the baseline of 5 

NARX NN trainings and the percent of the perfect prediction gains that was achieved via this prediction. 

 

It is difficult to discern overall trends from only three drive cycles where the results display 

as much variability as these do, but a couple generalizations can be made. First, as expected, shorter 

prediction horizons are not as beneficial as longer prediction horizons. However, the longer 

horizons have more speed prediction error associated with them, which can hinder the FE benefit. 

This increased chance of significant prediction error causes there to be non-smooth trends as the 
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prediction horizons increase. Additionally, as the prediction horizon increases, there are more 

issues with the predictive powertrain controller’s ability to charge-sustain, as longer predictions 

are more erroneous. One final, important, thing to note is all prediction horizons investigated 

resulted in FE improvement over the baseline. This suggests that this prediction method is robust 

to real-world prediction error, and that commercially available technology can be incrementally 

implemented to achieve improved FE.  

There are instances where an increased prediction horizon results in a worse FE for the 

perfect prediction (and, often, similarly for the prediction simulations as well). At the end of the 

drive cycle, prediction is stopped one prediction horizon length from the end of the cycle and the 

baseline controller is used for the rest of the cycle. Thus, predictions are ended at different times 

along the drive cycle. It was considered to end predictions at the same time for all prediction 

horizons, however prediction horizons up to 120 seconds were investigated and on an 8 mile drive 

cycle, that is a significant portion of the cycle so it would limit the amount of FE benefit shorter 

prediction horizons could achieve. Instead, the perfect prediction simulations are stopped at the 

same time as the corresponding speed predictions, so an even comparison is drawn. 

It can be seen for this particular drive cycle that between 60 and 90 second prediction horizon 

results in the largest average FE benefit. These represent the best balance of prediction horizon 

and prediction accuracy for the prediction horizons explored. Prediction horizons shorter than this 

realize less FE benefit because less information being supplied to the predictive powertrain 

controller. Prediction horizons longer have a higher likelihood of predicting erroneously, which is 

shown by the larger maximum and minimum trends for the longer prediction horizons. 

Since longer prediction horizons are more erroneous and the predictive powertrain controller 

optimizes engine control for the predicted speed, some simulations for longer prediction horizons 
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did not fully charge-sustain. The rules-based baseline controller has strict charge-sustaining 

behaviors and, thus, when the baseline controller was implemented for the end of the cycle; it 

quickly achieved a CS SOC, at the expense of fuel consumed. Simulations where this occurred 

resulted in lower FE than similar simulations that charge-sustained more effectively. This, 

combined with prediction error, causes sub-optimal engine control, which accounts for the 

difference in FE between the perfect prediction and local speed prediction simulations. A longer 

drive cycle would diminish the effect of the baseline controller achieving a charge-sustaining state, 

more effectively isolating the difference between perfect and speed predictions as solely caused 

by prediction error.  

2.2.4 FE Benefit of Different Prediction Horizons for the Combined Cycle 

In an attempt to reduce the sensitivity of FE to the ending SOC, simulations where all three 

cycles were concatenated together were developed. This cycle is referred to as the combined cycle. 

As with cycles 1-3, the combined cycle was simulated five times for each prediction horizon. 

Figure 14 shows the variance in each prediction horizon by incorporating box plots for percent 

energy saved over the baseline simulation. It can be seen that, in general, the box plots are smaller, 

indicating that SOC sensitivity is a large cause of variability of FE results in the shorter drive 

cycles and that the longer drive cycle reduced this sensitivity.  
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Figure 14: Box plot of percent energy saved over the baseline controller, and comparison to perfect prediction simulations for 

the combined cycle. The reduced size of the boxes shows that ending SOC has a significant impact on the variation between 

simulations of the same prediction horizon. 

It should also be noted that the FE improvement for both speed prediction and perfect 

prediction simulations is reduced in comparison to the shorter cycles, as the baseline CS MPGe is 

higher for the combined cycle than it is for any of the other cycles. Further investigation into this, 

and more generally, the effect of drive cycle length on FE improvement should be explored. 

However, it is out of the scope of this study. Despite the reduced potential FE improvement, similar 

trends as cycles 1-3 are seen with the combined cycle. 

2.3 LOCAL PREDICTION CONCLUSIONS 

This study shows that this method of real-world implementable speed prediction can yield 

FE improvements over the baseline for hybrid electric vehicles when coupled with a predictive 

powertrain controller. The results also show that a large portion – up to 75% – of the FE that could 
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be realized from perfect speed prediction can be achieved with this speed prediction from a NARX 

Neural Network trained with previous real-world driving data from the same route. This indicates 

that even with real-world prediction error, FE improvement can be realized.  

This method can have a wide variety of applications. In this study, information about the 

entire drive cycle is used throughout the cycle. However, the application is not limited by that. If 

there is previous data recorded for a segment of the route, this prediction method could still be 

leveraged, thus information about the whole route is not necessarily needed. It should be noted 

that there are situations in which this method would not be fruitful. For example, if the SOC of the 

ESS were too low, the predictive powertrain controller would be limited in how the engine can be 

operated. Similarly, during highway driving situations, it is typically necessary to have the engine 

operating the majority of the time. 

The results of this study suggest that for this type of mixed driving prediction horizons 

around 60-90 seconds provide the best potential for FE improvements in this vehicle. These 

represent the best tradeoff between gaining enough future information (prediction duration) and 

making speed predictions which are accurate enough to still consistently realize FE benefits 

(prediction fidelity). However, it is difficult to make generalized claims about how prediction 

duration and prediction fidelity will affect FE benefits from this study alone.  

Additionally, technological advances, such as V2V or V2I communication, should increase 

the capability to predict accurate future speeds for larger prediction horizons. This methodology, 

which can be implemented using today’s technology, could continue to provide more FE benefit 

as predicting capability increases. 
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3. SPEED PREDICTION METHOD 2: V2V COMMUNICATION 

3.1 V2V PREDICTION METHODS 

Prediction-based EMS aims to maximize fuel economy by predicting the vehicle speed for 

an upcoming segment of time and optimizing engine control for that prediction horizon, all in real 

time. This prediction method utilizes limited V2V communication and previously recorded driving 

data to predict future vehicle velocities. To investigate the tradeoff between prediction horizon and 

prediction error, a range of prediction horizons is evaluated for their effect on vehicle FE. 

The goal of this study is to compare the vehicle FE for differing prediction horizons, to a 

baseline with no speed prediction, and to an idealized case with perfect speed prediction. These 

comparisons will allow for a better understanding of the impact of real-world prediction errors on 

potential FE benefits.  

3.1.1 Baseline Vehicle Fuel Economy Model 

The same rules-based baseline vehicle FE model that was described in Section 2.1.1 is 

utilized in this V2V communication speed prediction study. 

3.1.2 Drive Cycle Development 

The same drive cycle that was discussed in section 2.1.2 is used for this prediction method. 

We seek to capture the same mix of generic city and highway driving, in a compact drive cycle. 

Additionally, it is desired to compare the accuracy of these two different prediction methods, thus 

using the same drive cycle allows for such a comparison.  
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3.1.3 V2V Communication Simulation 

In order to make vehicle speed predictions based on V2V communication using real-world 

data, a method of simulating V2V communication while obtaining driving data is necessary. To 

simulate this, the drive cycle was driven with two vehicles closely following each other. The 

vehicle in front will be considered the “lead vehicle” and the second vehicle will be considered the 

“ego vehicle.” Speed predictions will be made for the ego vehicle. Each was equipped with data 

logging equipment; vehicle speed and GPS location information was recorded for both. From these 

two sets of recorded data, a common GPS location was used to set an adjusted start time and from 

this, the spatial and temporal relationship of these two datasets is extracted. Figure 15 is an overlay 

of the two velocity traces for one of the drive cycles investigated after the start time adjustment.  

 

Figure 15: Ego and lead vehicle speed trace overlay with time synchronization for simulated V2V communication 

The adjusted speed traces are used to simulate V2V communication between the two 

vehicles. In this study, we assume the lead vehicle communicates its vehicle velocity and GPS 

location information to the ego vehicle. This experimental setup allows for different amounts of 

information exchange to be explored. However, this was not in the scope of this study. It is 
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assumed the ego vehicle obtains information from the lead vehicle that is 5 seconds in the future 

from the ego vehicle’s current state.  

Discussion on the assumption of being able to obtain information from a vehicle that is 5 

seconds ahead is as follows. Digital Short Range Communication (DSRC) is accepted as the form 

of initial V2V communication. Some model-year 2017 vehicles are equipped with DSRC in 

America [56] and Toyota already released some vehicles in Japan with DSRC capabilities [57]. 

The National Highway Traffic Safety Administration (NHTSA) has proposed a mandate that all 

light duty vehicles have V2V capability by 2019, with all new vehicles having it by 2023. 

Information that is proposed to be broadcasted are things such as location, speed, braking, etc. 

[58]. Thus, this study aims to simulate DSRC-type communication.  DSRC has a range of 200-

300m. Under the assumption that vehicles will be traveling at a maximum speed of 35 m/s (~75 

mph), and that 200m is a reliable range for DSRC, then even when traveling at this maximum 

speed, a vehicle 200m away will be about 5.8 seconds away. Thus, vehicles more than 5 seconds 

ahead of the ego vehicle will be able to communicate with it through DSRC. 

There are other assumptions that are important to note about this method of simulating V2V 

communication. The study of simulating and investigating the impacts of communication errors 

(poor signal, invalid data, etc.) is out of the scope of this study, so it is assumed the information 

communicated is accurate. Additionally, this study assumes that there is always a vehicle 

broadcasting its velocity and location 5 seconds ahead of the ego vehicle.  

3.1.4 V2V Vehicle Velocity Predictions 

The ego vehicle utilizes the obtained information to make vehicle speed predictions. Many 

researchers have investigated making speed predictions based on V2V communication alone, but 

this research combines limited information communicated via V2V with previously recorded 
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driving data. The general process of this speed prediction method is to obtain future information 

from the lead vehicle, use this velocity and location information to identify which previous driving 

route is most similar to the current driving route, and, finally, use the most similar route to predict 

future vehicle velocities. This method can predict further ahead than the 5 seconds of information 

obtained from the lead vehicle. However, again, this relies on the assumption that the route has 

been driven before by the ego vehicle.  

A two-layer feedforward NN is used to classify which drive cycle from the database of 

previously recorded drive cycles is most similar to the one that is currently being driven. The inputs 

to this NN are the lead vehicle’s broadcasted velocity, longitude and latitude information. The 

output is which drive cycle from the database of cycles is most similar to the inputs. Figure 16 

depicts the structure of the pattern recognition NN used in this research.  

 

Figure 16: Structure of pattern recognition NN used to classify most similar drive cycle from lead vehicle information [55] 

Data from eight recorded drive cycles are used to train, test and validate the pattern 

recognition NN. The pattern recognition NN has one hidden layer and is trained using scaled 

conjugate gradient backpropagation. This training method uses backpropagation to calculate the 

derivatives of the performance function with respect to weights and biases. These derivatives are 

used to update the weights and biases of the NN. Refer to Moller’s article in Neural Networks 

journal for a more in-depth description of this training method [59]. Performance of the pattern 



37 

 

recognition NN is calculated by the cross-entropy method. This is used over a more general error 

calculation such as mean square error because it has a high penalty for extremely inaccurate 

outputs and low penalties for close to correct outputs [55]. This behavior is standard with pattern 

recognition algorithms. 

The number of neurons in the hidden layer affects how well the NN can model the desired 

behavior. To determine the optimal number of neurons for this application, a range of different 

numbers of neurons in the hidden layer from 2 to 30 were explored. For each, a new NN is created 

and trained via the method described above. Since the NN’s training process stochastic in nature, 

each time a NN is trained it will result in slightly different weights and biases, thus potentially 

affecting performance. To account for this, 10 NNs with the same number of neurons in the hidden 

layer were trained and the performance was averaged. However, there was essentially no cross-

entropy performance difference between 5 and 20 neurons in the hidden layer from the training 

routine. Thus, we elected to evaluate 5, 10 and 20 hidden layer neurons further, for their effect on 

speed prediction errors.  

As described above, the output of the NN is simply the drive cycle from the database that is 

the most similar to the information obtained from the lead vehicle. This drive cycle is referred to 

as the most similar cycle and is used to make velocity predictions. To make a velocity prediction, 

the location information from the lead vehicle is related to the corresponding location of the most 

similar cycle. From this, the most similar cycle is used to predict velocity for the prediction 

horizon. 

3.1.5 Refinement of V2V Vehicle Velocity Predictions  

There were multiple refinements made to the original velocity prediction method. The first 

refinement was to incorporate a “low speed shutoff” for the prediction. The need for this was 
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driven by the fact that since the speed prediction was merely the most similar drive cycle, there 

were times when the ego vehicle stopped in locations that were not captured in the drive cycle 

database (i.e. stoplights). This caused the speed prediction to be non-zero when the ego vehicle 

was stationary; an example of this behavior is shown in Figure 17. To correct for this, once the 

lead vehicle reached a minimum threshold velocity, the speed prediction was changed to be zero 

until the lead vehicle accelerated past the velocity threshold. It can be seen in Figure 16 that this 

“low speed shutoff” corrected for the erroneous prediction in this instance. 

 

Figure 17: Example of low speed shutoff making better prediction when most similar drive trace did not come to complete stop. 

The second refinement incorporated velocity information from the lead vehicle as the first 5 

seconds of the prediction and then used the velocity trace from the most similar cycle over 

subsequent portion of the prediction horizon. This is desirable because it incorporates information 

from the lead vehicle as part of the prediction. However, this can lead to a discontinuity in the 

velocity prediction when switching from the lead vehicle information to the most similar cycle 

information. To correct for this discontinuity, an offset to the most similar cycle portion is applied. 

This offset is calculated by taking the difference between the last lead vehicle velocity point and 
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the corresponding velocity from the most similar cycle. This shifts the most similar cycle portion 

of the prediction to the lead vehicle velocity while still allowing for the same trend 

(acceleration/deceleration) from the most similar cycle to remain. Instances where this offset could 

be helpful could be during bad weather or traffic causing the flow of traffic to be generally lower, 

or an occasion where traffic is lighter than usual so the flow of traffic is higher. Examples of 

predictions where this method greatly reduced error in the prediction are displayed in Figure 18 

(a-c). Additionally, if the most similar cycle was already a good predictor, this offset does not 

affect it, as shown in Figure 18 (d). It is ensured that prediction of negative velocities does not 

occur as a result of this offset. The third refinement, as mentioned in section 3.1.4, was to choose 

the number of hidden neurons that produced the lowest velocity prediction RMSE mean and 

variance.  
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Figure 18: Examples of where incorporating V2V information and offset into prediction improves prediction fidelity. For (a), (b) 

and (c) the offset shifts prediction close to actual speed trace. In (d) the offset does not significantly affect prediction when most 

similar cycle is not erroneous. 

To evaluate the effectiveness of these refinements, a design of experiments (DOE) was 

developed. For each of the three drive cycles investigated, every combination of the low speed 

shutoff on/off, incorporating lead vehicle information as prediction on/off, and the three number 

of neurons in the hidden layer of the pattern recognition NN were investigated. For each 

combination, a velocity prediction was produced at each second along the drive cycle and the 

RMSE was calculated for the prediction horizon. Thus, there was a RMSE produced every second. 

The mean and variance of the RMSEs over the entire drive cycle was calculated as the metrics of 

(a)  (b)

(c)  (d)
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accuracy for this DOE. Since training methods of NNs are stochastic, this entire process was 

completed 3 times for each number of neurons in the hidden layer (5, 10, and 20). It was observed 

that incorporating the lead vehicle velocity with the offset to the most similar cycle was superior 

to using only the most similar cycle. This held true for all number of neurons, and whether the low 

speed shutoff was on or off. Examples of this improvement on velocity predictions is shown in 

Figure 18 and on error statistics is shown in Figure 19, which shows the variance of the RMSE 

over all the prediction horizons for one drive cycle with 10 neurons in the hidden layer and the low 

speed shutoff not used.  

 

Figure 19: RMSE variance for 2 cases: only using the most similar cycle, and incorporating lead vehicle velocity information 

and offset into the prediction 

The results of this DOE demonstrate that predictions without the low speed shutoff were 

more accurate. Two driving factors cause this. First, predicting velocities of zero for the long 

prediction horizons is not realistic, as it is not often that a vehicle remains idle for up to 90 seconds 

(one of the longer prediction horizons). Second, the velocity offset when transitioning from the 

lead vehicle velocity prediction to the most similar cycle, corrects for the instances when the lead 
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(and hence ego) vehicle is stopping but the most similar cycle does not stop. This offset still allows 

the acceleration phase to be predicted, resulting in predictions that are more accurate, as shown in 

Figure 20.  

 

Figure 20: Example of low speed shutoff weakness, and lead vehicle prediction offset strength 

Additionally, it was observed that the number of hidden neurons had a smaller impact on 

prediction accuracy than the other two factors investigated in the DOE. The differences between 

5 and 10 neurons in the hidden layer were not discernable, and 10 neurons in the hidden layer was 

chosen. 

3.1.6 Tradeoffs between Prediction Horizon and Prediction Quality 

As logic suggests, with a shorter prediction horizon, predictions that are more accurate can 

be achieved. Conversely, longer prediction horizons result in predictions that are more erroneous. 

To investigate this, a range of prediction horizons is explored. The range of prediction horizons 
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are 5, 10, 15, 20, 30, 45, 60, 90, 120, 150 and 180 seconds. For this study, velocity prediction error 

is calculated by the RMSE for each prediction. Figure 21 shows the velocity prediction RMSE 

distribution for different prediction horizon lengths.  

 

Figure 21: Scatter plot of prediction RMSE as a function of prediction horizon, along with the mean and bounds of one standard 

deviation of the prediction RMSE for each prediction horizon 

As the prediction horizon grows, the prediction error does as well. However, the prediction 

RMSE reaches a saturation point because there is an inherent limit to how erroneous a velocity 

prediction will be. For example, if the vehicle speed in the training dataset never eclipses 30 m/s, 

80 m/s will not be predicted. Similarly, the error is not likely to be 20 m/s for the entire prediction 

horizon (which would result in an RMSE of 20).  

The standard deviation of prediction RMSE also reaches a saturation point. This can be seen 

in Figure 21 but is better exemplified in Figure 22. There reaches a point, around 45-60 second 
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horizon, where the standard deviation reaches a maximum, and then begins to decrease slightly as 

the prediction horizon continues to increase. This is because the predictions are becoming more 

erroneous, as seen in Figure 22, where for 180-second prediction horizon (c), the RMSE is 

centralized around 8 m/s, whereas for 5 seconds (a), it is clustered at 0 m/s, and for 45s (b), it is 

more varied.  

 

Figure 22: histograms of RMSE to compare how the magnitude of prediction RMSE increases as prediction horizon increases, 

but deviation reaches a saturation point, and actually decreases 

These results demonstrate that if the prediction horizon is very short, accurate speed 

predictions can be made. However, the predictive powertrain controller can realize only a limited 

FE improvement for short prediction horizons. Conversely, with longer prediction horizons, the 

predictive powertrain controller can find more optimal ways to operate the engine over the 

prediction horizon. However, with longer prediction horizons, the speed predictions will be less 

accurate and the predictive powertrain controller will be optimizing for speeds that the vehicle 

may not actually travel. Further discussion of this tradeoff is in section 3.2.1. 

(a) (b) (c)
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3.1.7 Development of Predictive Powertrain Controller 

The same predictive powertrain controller as described in section 2.1.4 is used. The only 

difference is that now the velocity inputs are coming from the V2V prediction algorithm, instead 

of the local prediction algorithm. 

3.1.8 Implementation of Prediction and Predictive Powertrain Controller into FE Model 

The only change to the FE model is that now the V2V prediction algorithm is used to make 

velocity predictions. Both prediction methods use GPS location as one of the inputs to the 

prediction algorithm. However, the V2V prediction algorithm contains velocity inputs from the 

lead vehicle. These changes are reflected in Figure 23. As with the local prediction method (section 

2.1.5), the routine of making velocity predictions for the prediction horizon, and optimizing engine 

power for that prediction is repeated at 1 Hz.  

 

Figure 23: Information flow through FE model, including the V2V prediction method and predictive powertrain controller 

Simulations of different prediction horizons are developed to explore the tradeoffs discussed 

in section 3.1.6. In addition, idealized cases are explored, as described in section 2.1.5. Under this 

perfect prediction scenario, the predictive powertrain controller with dynamic programming 

derives the powertrain control that results in the maximum possible FE for that prediction horizon. 

By comparing this to the FE of speed prediction simulations with real-world prediction, we can 
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gain an understanding of the impact real-world prediction errors have on FE. Also, by comparing 

the FE results from speed prediction simulations to those of the baseline controller, we can quantify 

the degree to which FE benefit is robust to real-world prediction errors. 

3.2 V2V PREDICTION RESULTS AND DISCUSSION 

We seek to develop a simulation-based quantification of the fuel economy benefit as a 

function of prediction horizon. This will provide insight into the tradeoff between increasing 

prediction horizons and prediction fidelity. As the prediction horizon grows, more information is 

obtained for the predictive powertrain controller, but the predictions are more erroneous. This 

tradeoff can only be understood via a systems level analysis by incorporating the predictive 

powertrain controller and FE model. 

3.2.1 FE Benefit of Different Prediction Horizons for Cycles 1-3 

Three drive cycles were investigated in this study. One drive cycle was recorded during 

relatively low traffic, mid-morning on a weekday in Fort Collins, CO (referred to as cycle 1). The 

other two were recorded at times with high traffic in Fort Collins, CO, during the evening weekday 

rush hour (referred to as cycles 2 and 3). All three cycles were during normal weather conditions, 

as all of the training data was also recorded during normal weather conditions. Investigating the 

effects of adverse weather is out of the scope of this study.  

Simulations for each prediction horizon are developed and compared to the baseline 

simulation, as well as the idealized case where perfect predictions over the same prediction horizon 

are possible. These comparisons provide two insights: first, the comparison to the baseline 

controller provides insight into whether or not this prediction method and predictive powertrain 

controller are robust to real-world prediction errors. Second, by comparing to the idealized case 



47 

 

we seek to understand how effective current and near-term technologies are in making vehicle 

velocity predictions. 

After each simulation, the final ESS SOC, fuel consumed and distance traveled are extracted. 

The SAEJ1711 Jun. 2010 Recommended Practice for Measuring the Exhaust Emissions and Fuel 

Economy of Hybrid-Electric Vehicles, Including Plug-in Hybrid Vehicles is used to calculate the 

CS MPGe. Since NN training is stochastic, each prediction horizon is simulated five times to 

capture the variation that is incorporated with training differences. Additionally, with a short drive 

cycle such as this, variations in the ending SOC have a noticeable effect on CS MPGe. By running 

multiple simulations, these effects of variances can be explored.  

Figure 24 - Figure 26 capture the variance in each prediction horizon by incorporating box 

plots for percent energy increased over the baseline simulation. These also show the perfect 

prediction scenario as well. This represents a ceiling for the percent energy that could be saved 

over the baseline controller for this drive cycle. Note that there are instances where an increased 

prediction horizon results in a worse FE for the perfect prediction (and, often, similarly for the 

V2V prediction simulations as well). At the end of the drive cycle, prediction is stopped one 

prediction horizon length from the end of the cycle and the baseline controller is used for the rest 

of the cycle. Thus, predictions are ended at different times along the drive cycle. We considered 

ending predictions at the same time for all prediction horizons, however prediction horizons up to 

180 seconds were investigated and on an 8 mile drive cycle.  The 180-second prediction window 

is a significant portion of the cycle and it would limit the amount of FE benefit shorter prediction 

horizons could achieve. Instead, the perfect prediction simulations are stopped at the same time as 

the corresponding V2V predictions, so that an even comparison is drawn. 



48 

 

 

Figure 24: Box plot of percent energy saved over the baseline controller, and comparison to perfect prediction simulations for 

Cycle 1. 

 

Figure 25: Box plot of percent energy saved over the baseline controller, and comparison to perfect prediction simulations for 

Cycle 2. 
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Figure 26: Box plot of percent energy saved over the baseline controller, and comparison to perfect prediction simulations for 

Cycle 3. 

The average CS MPGe and average percent of energy saved over the baseline controller for 

all prediction horizons and individual drive cycles investigated is displayed in Table 3. Up to about 

6% CS MPGe improvement over the baseline is achieved and up to about 85% of the potential FE 

benefit that could be derived with perfect prediction can be achieved by this speed prediction 

method.  Additionally, few trends can be extracted from this study. First, only utilizing information 

from the lead vehicle (the 5-second prediction horizon) does result in increased FE, but only 

marginally. Only incorporating that information is not fruitful, a prediction method is also 

necessary to achieve significant FE improvements. Second, as the prediction horizon increases, so 

does the FE benefit. The point where FE benefit begins to decrease for long prediction horizons 

are where the benefit from gaining more future information is offset by the prediction being too 

erroneous. This tipping point was seen to be at 120-second prediction horizon for cycle 2 and 3. 

For cycle 1, the FE continued to increase for each prediction horizons investigated. There are a 
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few possibilities for this. Recall that cycle 1 was the cycle that was driven in non-rush hour traffic, 

whereas cycles 2 and 3 were in driven in rush hour traffic. Also, recall that the prediction method 

is completed by identifying the most similar cycle from a database of previously recorded drive 

cycles. If the database contains more cycles that are more similar to lower traffic periods, that 

could cause cycle 1 to increase FE more in comparison to cycles 2 and 3. It should be noted that 

longer prediction horizons were not investigated in this study because the drive cycle is eight miles 

long and takes ~20 minutes to drive. Thus, predicting more than three minutes ahead causes a 

significant portion of the cycle at the end to be driven on the baseline controller. Additionally, as 

the prediction horizon increases, there are more issues with the predictive powertrain controller’s 

ability to charge-sustain, as longer predictions are more erroneous. One final, important, thing to 

note is all prediction horizons investigated resulted in FE improvement over the baseline. This 

suggests that this prediction method is robust to real-world prediction error, and that near-term 

technology can be incrementally implemented to achieve improved FE. 

Table 3: Results of V2V communication based predictions in terms of CS MPGe, the percent energy saved over the baseline and 

the percent of the perfect prediction gains that was achieved via this prediction. 
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3.2.2 FE Benefit of Different Prediction Horizons for the Combined Cycle 

As described in section 2.2.4, the FE of these simulations is sensitive to the ending ESS SOC. 

Simulations where the predictive powertrain controller was not able to fully charge-sustain 

resulted in lower vehicle FE than similar simulations that did fully charge-sustain. In an attempt 

to reduce the sensitivity of FE to the ending SOC, simulations where all three cycles were 

concatenated together were developed. This cycle will be referred to as the combined cycle. As 

with cycles 1-3, the combined cycle was simulated five times for each prediction horizon.  

Figure 27 shows the variance in each prediction horizon by incorporating box plots for 

percent energy saved over the baseline simulation. It can be seen that, in general, the box plots are 

smaller, indicating that SOC sensitivity is a large cause of variability of FE results in the shorter 

drive cycles and that the longer drive cycle reduced this sensitivity.  
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Figure 27: Box plot of percent energy saved over the baseline controller, and comparison to perfect prediction simulations for 

the combined cycle. The reduced size of the boxes shows that ending SOC has a significant impact on the variation between 

simulations of the same prediction horizon.  

It should be noted that the FE improvement for both speed prediction and perfect prediction 

simulations is reduced in comparison to the shorter cycles, as the baseline CS MPGe is higher for 

the combined cycle than it is for any of the other cycles. The effect of drive cycle length on FE 

improvement should be investigated further. However, it is out of the scope of this study. Despite 

the reduced potential FE improvement, similar trends as cycles 1-3 are seen with the combined 

cycle. 

3.3 V2V PREDICTION CONCLUSIONS 

 In this study, a vehicle velocity prediction method was developed that utilizes V2V 

communication involving only limited information exchange, along with previously recorded local  

vehicle information. The prediction method is trained and simulated using real-world data, so real-
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world prediction errors are developed. This allowed the ability to see if velocity predictions are 

robust to real-world prediction errors. To evaluate how this prediction method can be employed to 

increase FE, a systems level analysis that incorporated the speed prediction method with a 

predictive powertrain controller and Toyota Prius HEV FE model was completed. 

Different prediction horizons ranging from 5-180 seconds were investigated to understand 

the tradeoffs between increasing amount of information obtained at the expense of prediction 

fidelity. Short prediction horizons are limited by not obtaining as much information to be utilized 

by the predictive powertrain controller. However, long prediction horizons are more erroneous, 

causing the predictive powertrain controller to optimize for speed that the vehicle does not travel. 

Thus, there is a point where those opposing forces are equally offset. For this prediction method, 

on the drive cycles investigated, a prediction horizon of 120 seconds resulted in the greatest FE 

improvement. 

Additionally, the results of these simulations show that FE benefits are robust to real-world 

prediction error, as all prediction horizons investigated resulted in FE improvements over the rules-

based baseline controller. The V2V prediction simulations were also compared to an idealized case 

where perfect speed prediction was possible. This comparison allows us to understand the impact 

prediction error has on the potential FE improvement. For some of the longer prediction horizons, 

the V2V prediction simulations were able to achieve up to about 85% of the FE improvement of 

the perfect prediction simulations. As sensing technology improves, the gap between the speed 

prediction and perfect prediction scenarios will continue to decrease.  

Overall, this study adds to the growing body of evidence that predictive powertrain control 

is more efficient the current reactive control. Additionally, it shows that predictions can be made 
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with technology that is on the brink of being commercially available on vehicles and that the 

predictions are robust to real-world prediction errors and drive cycle variability. 

.  
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4. OVERALL RESULTS AND DISCUSSION 

4.1 COMPARISON OF VELOCITY PREDICTION METHODS 

Two methods of speed prediction were developed in this study; the first utilizes only local, 

previously recorded driving data to make future speed predictions. The second utilizes limited 

V2V communication information and incorporates that with local, previously recorded driving 

data to make future speed predictions. This section seeks to compare these two prediction methods 

via two methods of comparison. The first compares the prediction methods based on RMSE 

calculations. The second uses FE as the metric of prediction accuracy, which results in a more 

holistic view of prediction fidelity. Additionally, the first 5 seconds of both prediction methods is 

explored further to provide insight into differences between information obtained from other 

vehicles and local information. 

4.1.1 Prediction Method Comparison 

This section compares the prediction methods by investigating the RMSE in speed prediction 

for each prediction horizon of both prediction methods. Predictions are made every second along 

the drive cycle and the RMSE of the prediction is calculated for each prediction. The mean and 

variance of the RMSEs over the entire drive cycle are calculated for each prediction method. Figure 

28 illustrates the trends of RMSE mean for five different iterations of both the local and V2V 

prediction methods of cycle 1. Figure 29 illustrates the prediction RMSE variance for five different 

iterations of both the local and V2V prediction methods. Figure 37- Figure 40 (in appendix 1) 

demonstrate the RMSE mean and variance for the other two cycles investigated. It can be seen that 

the V2V prediction method results in lower and more consistent mean and variance of prediction 

RMSE.  
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Figure 28: Comparison between local and V2V prediction methods via RMSE mean of all predictions from cycle 1 

 

Figure 29: Comparison between local and V2V prediction methods via RMSE variance of all predictions from cycle 1 

Improved velocity prediction RMSE is not necessarily indicative of an improvement in terms 

of FE, which is stakeholders’ top priority. This is the case because during 

acceleration/decelerations, any shift in time for the prediction (even with similar trends), will result 
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in large calculated RMSE. Examples of predictions with a larger RMSE but that are actually 

perhaps beneficial for FE improvement because they trend with the actual velocity trace are shown 

in Figure 30. The corresponding RMSE calculations are included in Table 4. 

 

Figure 30: Illustrative examples of when lower RMSE quantification may lead to less accurate prediction of vehicle velocity  

 

(a) (b)

(c) (d)
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Table 4: Corresponding RMSE Calculations that show examples of RMSE calculations not providing accurate descriptions of 

prediction accuracy. 

Corresponding Figure V2V RMSE (m/s) Local RMSE (m/s) 

(a) 6.23 7.45 

(b) 2.23 1.99 

(c) 2.24 2.50 

(d) 3.25 4.86 

 

This type of comparison can be used to compare the prediction accuracy. However, this 

comparison does not provide insight into their “overall value” to the system level view of 

investigating FE. Thus, the prediction methods will be compared in terms of FE in the next section. 

4.1.2 Fuel Economy Comparison 

To gain a better understanding of the costs and benefits between these two prediction 

methods, a systems level analysis is completed. By evaluating the prediction methods through the 

metric of FE, we can determine which prediction method is superior. Figure 31 illustrates the 

average FE benefit over the baseline for each of the four cycles investigated. It can be seen that 

there is no significant difference in the overall performance of the three individual drive cycles, 

but the overall FE improvement potential for the combined cycle is lower. In general, the local 

prediction is more accurate at shorter prediction horizons, although, those do not gain as much FE 

as longer prediction horizons do. It should be noted that for the 5-second prediction horizon, the 

local prediction actually performed better than the V2V prediction. This indicates that the local 

prediction method produces more accurate predictions than the lead vehicle’s velocity. This is 

discussed further in section 4.1.3. 
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Figure 31: Comparison between local and V2V prediction methods of average FE improvement over baseline reactive EMS for 

all three drive cycles as well as the combined cycle 
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For longer prediction horizons, the V2V method consistently realized a higher FE 

improvement over baseline than the local prediction method. This indicates that choosing one drive 

cycle as the prediction is, overall, more accurate than the prediction produced by the NARX NN. 

The fact that the V2V prediction method improves FE more consistently for longer prediction 

horizons is consistent with the RMSE comparison of the two prediction methods. It should be 

noted that the local prediction method had issues with not achieving a charge-sustaining state. 

Additionally, for long prediction horizons (greater than 120 seconds) the local prediction would 

sometimes produce predictions that were so erroneous that the predictive powertrain controller 

could not find a solution. Thus, simulations greater than 120-second prediction horizons were not 

completed for the local prediction method.  

While the local prediction method is limited in its prediction horizon, it is able to achieve 

significant improvements over the baseline controller, and only utilizes technology that is readily 

available on vehicles today. This suggests that prediction methods such as this can begin to be 

implemented into today’s vehicles to switch from reactive to predictive energy management 

strategies. Looking into the near future, DSRC V2V communication is being implemented on some 

model-year 2017 vehicles, and will become commercially available in the next few years. The 

V2V prediction method proved to produce predictions that are more accurate for longer horizons, 

and is only utilizing information that will be communicated over initial V2V communication. This 

method also has the ability to utilize more information that might be shared between vehicles in 

the future, such as the lead vehicle broadcasting its own velocity prediction, which could be 

utilized to further improve both prediction accuracy and achievable prediction horizon lengths.  
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4.1.3 Comparison of 5-Second Prediction Horizon 

Figure 31 illustrates that, in all 4 cases of the 5-second prediction horizon, the local prediction 

method realized a larger FE benefit than the V2V prediction method. This is particularly interesting 

because for the V2V prediction method, the 5-second prediction horizon is simply the V2V 

communicated information. This ascertains that the local prediction method for 5 seconds is 

actually more accurate than velocity information obtained from a vehicle traveling directly in front 

of the ego vehicle. We hypothesize that this could be a result of the local prediction method being 

trained on driving data from the ego vehicle, so the driver’s driving characteristics (i.e. 

accelerations and braking aggressiveness) are learned by the local prediction method whereas in 

the V2V method, there is no relation between the drivers in the lead and ego vehicles. To test this 

hypothesis, a comparison of the predicted and actual vehicle accelerations for both prediction 

methods is completed. The average acceleration for each 5-second prediction and the 

corresponding 5 seconds of actual vehicle acceleration were plotted on x and y axes, respectively. 

This is illustrated in Figure 32 (a) for the local prediction method and Figure 32 (b) for the V2V 

prediction method for cycle 2.  
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Figure 32: Comparison of predicted and actual vehicle accelerations with linear regression provides insight into why the local 

prediction method (a) realizes a larger FE benefit than the V2V prediction method (b) for 5-second prediction window on cycle 2 

 A linear regression of the raw data provides insight into the relationship between the actual 

and predicted vehicle accelerations. If the predictions were perfect, this plot would have a linear 

regression with a slope of 1, which would indicate that each of the predicted and actual velocities 

were the same. The closer the linear regression slope is to 1, the more similar the predicted 

acceleration is to the actual vehicle acceleration. Since the actual vehicle acceleration is plotted on 

the y-axis, linear regression slopes that are greater than 1 means the actual accelerations are larger 

(or more aggressive) than the predictions. Linear regression slopes less than 1 indicate that the 

predicted accelerations are more aggressive than the actual vehicle accelerations. 

Figure 32 illustrates that the linear regression slope of the local prediction method is closer 

to 1 than the V2V prediction method – 0.979 compared to 0.905. Thus, the predicted accelerations 

derived from the local prediction method were closer to the actual vehicle accelerations than those 

of the V2V method, which supports our hypothesis. Similar trends can be seen for the other two 

individual cycles, illustrated in Figure 41 and Figure 42 in Appendix 0. 

(a) (b)



63 

 

Note that the coefficient of determination (R2) for the local prediction method is lower than 

that of the V2V prediction method, indicating that the V2V linear regression is a better fit. This 

indicates that, while the local prediction method produces predictions where the accelerations are 

more similar to the actual vehicle overall, there is more variation compared to the V2V prediction 

method. This can also be seen visually in Figure 32. 

4.2 ESS CAPACITY LIMITATION 

It can be seen in Figure 31 that the FE benefit over the baseline controller reaches a saturation 

point where larger prediction horizons do not realize larger FE benefit. This is caused by vehicle 

architecture limitations, specifically the capacity of the ESS. There is no added benefit to 

predicting further into the future than the amount of time it would take to charge/discharge the 

ESS. For example, even with more information, the predictive powertrain controller would not be 

able to save ESS power for a lot of stop and go behavior at the end of the drive cycle. Further 

evidence of this saturation can be seen in Table 5. This presents the FE benefit of the 4 cycles 

investigated for the perfect prediction scenario with a 120-second prediction horizon, as well as 

the FE benefit if the entire drive cycle could be predicted perfectly.  

Table 5: Comparison of FE improvement of perfect prediction for 120-second prediction horizon and full cycle prediction 

 Cycle 1 Cycle 2 Cycle 3 Combined 

FE benefit 

120s horizon 

7.44% 6.41% 5.85% 5.33% 

FE benefit 

entire cycle 

7.50% 7.41% 6.87% 5.82% 

 

It can be seen that there is not much more FE improvement over the baseline controller for 

predicting the entire (roughly 20 minutes for the shorter cycles) drive cycle, as there is with only 
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predicting 120 seconds ahead. Thus, if the ESS were larger, as is in a PHEV, this saturation limit 

would be pushed out to a longer prediction horizon. For example, the Prius simulated in this study 

has a 1.31 kWh ESS, whereas the first generation of the Prius PHEV (2012-2015) has a 4.4 kWh 

ESS. The saturation point of where the predictive powertrain controller is limited by the ESS 

capacity would be extended significantly if a PHEV were studied. 

4.3 ENGINE OPERATION COMPARISON FOR DIFFERENT PREDICTION HORIZONS 

We also desire to understand the impact of prediction horizon on the way the predictive 

powertrain controller operates the engine. To understand this, two different prediction horizons 

over the same cycle are investigated. This computational experiment seeks to understand whether 

different amounts of velocity prediction information have a significant impact on the optimal 

engine operation. In the figures below, the speed predictions are displayed, along with the drive 

cycle, SOC, engine power and fuel consumed for both the shorter (20-second) and longer (60-

second) prediction horizons. It should be noted that the predictions and predictive powertrain 

controller are updated at 1 Hz, so the predictions that are shown do not show the full picture of the 

velocity predictions that were used to determine the optimal engine power. It should also be noted 

that for the V2V comparisons (Figure 33 and Figure 34) the predicted speeds are the same for the 

duration of the shorter prediction horizon. This is the case because of how the predictions are 

constructed for the V2V method. The lead vehicle information is used to identify the most similar 

cycle at that given time. Since we are seeking to see the impact of prediction horizon on engine 

operation, the same pattern recognition NN is used for both, thus the same lead vehicle information 

results in the same best match cycle identification that is used for the prediction. 
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In general, the engine operation is similar for the two different prediction horizons. Often, 

when the engine is on is the same, but the magnitudes vary in some instances. Figure 33 and Figure 

34 depict situations where similar engine operation is seen, despite differences in prediction 

horizon and speed predictions. This behavior suggests that the prediction horizon alone does not 

often have a large impact on how the engine is operated. However, the ESS SOC also affects how 

the engine is operated. For instance, if there is a big difference in the SOC between the different 

prediction horizons, it will result in different engine operation, as shown in Figure 35.  
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Figure 33: First example of similar engine operation in comparison of different prediction horizons 

 

Figure 34: Second example of similar engine operation in comparison of different prediction horizons 
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Figure 35: Example of shorter prediction horizon being forced to operate engine to meet predictive powertrain controller SOC 

CS constraints in comparison of different prediction horizons 

The predictive powertrain controller aims at a charge-sustaining operation at the end of each 

prediction horizon. Thus, the shorter prediction horizons don’t have as much flexibility for 

allowing the SOC to vary from the 50% CS SOC setpoint. The influence of this is depicted in 

Figure 36. It can be seen that the longer prediction horizon allows the SOC to vary more, and twice 

the shorter prediction horizon is forced to turn on the engine to maintain CS behavior. 
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Figure 36: Example of different engine operation caused by different SOC values in comparison of different prediction horizons 

To capture a more holistic view of the similarities of engine operation throughout a full drive 

cycle, the percent difference of engine power for the two prediction horizons was calculated, using 

Equation 5, 

 

where  �௘௡�௦ℎ௢௥௧  is the engine power for the 20-second prediction horizon and �௘௡��௢௡�  is the 

engine power for the 60-second prediction horizon. 

For the local prediction method on the combined cycle, 55% of the time the engine operation 

was within 5% of each other. If we look at only instances when at least one of the engines was 

operating (neglecting when both engines are off), 52% of the time the engine operation was within 

50% difference. This indicates that engine on/off operation is very similar between the two 
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prediction horizons. When the engine is operated, the way in which it is operated, is still relatively 

similar. It should be noted that SOC differences are not isolated for this calculation, so different 

engine operations caused by SOC differences, such as that shown in Figure 36 impacts these 

calculations. 

Likewise, for the V2V prediction horizon for the combined cycle, 65% of the time, the engine 

operation was within 5% of each other and when looking at only engine on periods, 67% of the 

time engine operations were within 50% of each other. These values likely are higher because the 

predictions are the exact same for the duration of the shorter prediction horizon, causing there to 

be more instances when the engine is operated alike. Overall, it seems that the optimal engine 

operation is not significantly impacted by the prediction horizon alone.   
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5. CONCLUSIONS 

In this study we developed two methods of making future vehicle velocity predictions to be 

used to further understand if a shift from reactive to predictive EMS can be implemented with 

today’s technology. The following section serves to answer the original research questions, 

restated here:  

1. The quality and quantity of the driving prediction defines the tradeoff between 

prediction horizon duration and FE.  What duration of prediction horizon realizes the 

largest FE improvement? 

2. Are the FE benefits of prediction and optimal EMS robust to real-world variability in 

prediction error and drive cycles? 

3. What level of FE can be realized through leveraging near-term low cost technologies, 

such as V2V? 

5.1 TRADEOFFS BETWEEN PREDICTION HORIZON AND PREDICTION FIDELITY 

In Chapter 2, we developed a vehicle speed prediction method using only currently-available, 

and on-vehicle technologies to investigate the tradeoff between fuel economy improvement and 

prediction fidelity. There is a competing relationship between prediction horizon length and 

prediction fidelity. Shorter prediction horizons produce predictions that are more accurate, but 

limit the FE benefit that the predictive powertrain controller can derive, as shorter prediction 

horizons do not obtain as much information. Conversely, longer prediction horizons provide more 

information to the predictive powertrain controller, but at the cost of prediction fidelity, as the 

predictions are more erroneous. Thus, the predictive powertrain controller will be optimizing 
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engine operation for speeds the vehicle may not actually travel. By understanding this tradeoff, we 

can determine the prediction horizon that balances these opposing forces.  

For the local prediction method on the drive cycles investigated in this study, we conclude 

that 60-90 second prediction horizons result in the highest FE, achieving up to a 4.8% increase in 

CS MPGe over the baseline. For the V2V prediction method, the largest FE improvement was 

realized around the 120-second prediction horizon, resulting in up to a 6% increase in CS MPGe 

over the baseline. These represent the best balance between obtaining enough information for the 

predictive powertrain controller and producing accurate predictions to inform the predictive 

powertrain controller. Prediction horizons shorter than these are not obtaining enough information 

for the predicative powertrain controller to be able to realize as large FE improvements. Prediction 

horizons longer than this are too erroneous and the predictive powertrain controller will be 

optimizing for speeds vastly different from what the vehicle will actually drive. 

5.2 ROBUSTNESS TO REAL-WORLD VARIABILITY 

Before discussing the second research question, it is important to clarify the definition of 

robustness that in described in this study. In this context, we are defining robustness in terms of 

design robustness (or Taguchi robust design) [60] rather than robust control. In this, we want to 

understand if, even with variations, will the product – the prediction method and optimal EMS – 

still achieve its desired function – improving FE over the baseline. In this definition of robust 

design, the prediction and optimal EMS need to be able to achieve a FE improvement with 

variations that cannot be controlled, such as traffic, prediction error, NN training variations, etc. 

Both prediction methods were developed and trained on real-world driving data, and FE 

simulations were completed with real-world driving data. Thus, prediction errors are real-world 
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prediction errors. All prediction horizons for each of the three individual cycles produced FE 

improvements over the baseline controller. This allows us to conclude prediction and optimal EMS 

are, indeed, robust to real-world prediction errors.  

The three cycles that were simulated were along the same route, but driven at different times. 

The simulation results of the three drive cycles showed similar FE trends. This suggests that the 

prediction and optimal EMS are robust against real-world variability in drive cycles. However, 

further investigation into the impact of different lengths of drive cycles is needed, as the FE 

improvements for the combined cycle was reduced for all prediction horizons. However, this study 

suggests these speed prediction methods and EMS are robust real-world variability in the same 

drive cycle. 

These prediction methods were able to achieve up to 85% of the maximum possible FE 

benefit while only utilizing technology that is commercial or near-term. This suggests that 

extremely accurate velocity predictions are not necessary to achieve real-world FE benefits and 

that any future information, even if erroneous, can be used to improve the FE of today’s vehicles. 

5.3 INCORPORATING NEAR-TERM TECHNOLOGIES FOR INCREASED FE 

V2V communication was chosen to incorporate into a speed prediction method because it is 

a near-term and low cost technology. It is important to understand how near-term technologies can 

be utilized in the shift from reactive to predictive EMS. Additionally, the information of GPS 

location and vehicle speeds we assumed to be communicated between vehicles will be included in 

the first V2V communication systems. The V2V prediction method improved the viable prediction 

horizon range, as it consistently outperformed the local prediction method for prediction horizons 

greater than 60-90 seconds. It raised the FE improvement over baseline controller from the 
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maximum 4.8% improvement achieved by the local prediction to a maximum of 6% improvement 

when V2V was incorporated. Additionally, this prediction method produced predictions with a 

lower prediction RMSE mean and variance, as displayed in Figure 29. This study demonstrates 

that new technologies can be incrementally included into prediction and energy management 

strategies to continue to improve FE. However, we also conclude that current technology can be 

implemented into speed prediction methods to improve FE, and transition from reactive to 

predictive EMS. 

5.4 FUTURE WORK 

Several aspects of this study warrant further research to understand fully the impact of 

prediction error on FE improvement, as well as moving towards physical implementation. 

Investigating longer drive cycles would be insightful. The combined cycle resulted in a higher 

baseline FE, and also limited the FE improvement potential. Investigating different drive cycle 

lengths would allow for an understanding of the impact of drive cycle length on FE improvement 

potential. Additionally, a longer drive cycle should be investigated to further isolate sub-optimal 

FE results as being caused by prediction error. The drive cycle used in this study was convenient 

because many cycles need to be driven to gather training data for the prediction methods. However, 

a short drive cycle caused the ending SOC to have a significant impact on the FE of the drive cycle. 

A longer drive cycle would make the FE calculations less sensitive to the ending SOC.  

The comparison between prediction methods for the 5-second prediction horizon suggest that 

the local prediction method produced predictions that were more similar to the actual vehicle 

velocity than the V2V method. As a result of this, it would be intriguing to modify the V2V 

prediction method by replacing the 5 seconds of V2V information with a locally predicted 5 second 
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prediction (from the NARX NN), and see if it would produce a larger FE improvement over the 

baseline. It would be interesting to compare this new combination of prediction methods with the 

V2V prediction method and see if the information obtained from the lead vehicle is actually 

improving FE. 

Implementing these two prediction methods in the distance domain, rather than in the time 

domain, could potentially affect the FE improvement. It would be interesting to replicate this study, 

but shift everything from the time to distance domain. This could potentially improve the 

predictions, as issues such as stop light length, and variations between predicted and actual speed 

causing different distances to be traveled, would be corrected for. A similar investigation into the 

optimal prediction horizon (in distance) could be completed. A conclusion of whether predicting 

in the time or distance domain is superior could then be drawn. 

Investigation into the sensitivity of prediction fidelity to the number of cycles in the drive 

cycle database and driving conditions captured in the training dataset could provide valuable 

insight into how many training cycles are needed to produce predictions with high enough fidelity 

to provide FE improvement. If more than eight drive cycles were included in the cycle database, 

would the prediction fidelity increase? As mentioned previously, all of the driving data in this 

study was taken during normal weather conditions. Studying the impact of poor weather on the 

prediction fidelity, as well as how many poor weather drive cycles in the training data set are 

needed to eliminate reduced prediction fidelity would be beneficial. 

Many opportunities to improve the accuracy of the prediction methods exist. Incorporating 

more inputs into the NN, such as altitude, weather, or traffic data could produce more accurate 

predictions. Additionally, adding previous prediction error into the NARX NN would allow the 

NN to learn where it is producing highly erroneous predictions and use that to improve future 
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predictions. Adding in more information exchanged between the lead and ego vehicles, such as 

traffic or lead vehicle speed predictions could be used to increase prediction quality of the V2V 

prediction method. 

In order to implement this prediction method into an actual vehicle, a predictive powertrain 

controller that is less computationally expensive is necessary. A controller that uses model 

predictive control, stochastic DP, or adaptive equivalent consumption minimization strategy would 

allow this to be run in real time [28], [45], [49]. The EcoCAR 3 Camaro would be an excellent 

platform to incorporate this in real-time after a real-time capable predictive powertrain controller 

is developed. 
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APPENDIX 

1. SUPPLEMENTAL PLOTS FOR PREDICTION METHOD RMSE COMPARISON 

 

Figure 37: Comparison between local and V2V prediction methods via RMSE mean of all predictions from cycle 2 

 

Figure 38: Comparison between local and V2V prediction methods via RMSE variance of all predictions from cycle 2 
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Figure 39: Comparison between local and V2V prediction methods via RMSE mean of all predictions from cycle 3 

 

Figure 40: Comparison between local and V2V prediction methods via RMSE variance of all predictions from cycle 3 
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2. SUPPLEMENTAL PLOTS FOR COMPARISON OF 5-SECOND PREDICTION HORIZON 

 

 

Figure 41: Comparison of predicted and actual vehicle accelerations with linear regression provides insight into why the local 

prediction method (a) realizes a larger FE benefit than the V2V prediction method (b) for 5-second prediction window on cycle 3 

 

Figure 42: Comparison of predicted and actual vehicle accelerations with linear regression provides insight into why the local 

prediction method (a) realizes a larger FE benefit than the V2V prediction method (b) for 5-second prediction window on cycle 3 
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