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ABSTRACT

UNBIASED PHISHING DETECTION USING DOMAIN NAME BASED FEATURES

Internet users are coming under a barrage of phishing attacks of increasing frequency and so-

phistication. While these attacks have been remarkably resilient against the vast range of defenses

proposed by academia, industry, and research organizations, machine learning approaches appear

to be a promising one in distinguishing between phishing and legitimate websites. There are three

main concerns with existing machine learning approaches for phishing detection. The first con-

cern is there is neither a framework, preferably open-source, for extracting feature and keeping the

dataset updated nor an updated dataset of phishing and legitimate website. The second concern is

the large number of features used and the lack of validating arguments for the choice of the features

selected to train the machine learning classifier. The last concern relates to the type of datasets used

in the literature that seems to be inadvertently biased with respect to the features based on URL or

content.

In this thesis, we describe the implementation of our open-source and extensible framework

to extract features and create up-to-date phishing dataset. With having this framework, named

Fresh-Phish, we implemented 29 different features that we used to detect whether a given website

is legitimate or phishing. We used 26 features that were reported in related work and added 3 new

features and created a dataset of 6,000 websites with these features of which 3,000 were malicious

and 3,000 were genuine and tested our approach. Using 6 different classifiers we achieved the

accuracy of 93% which is a reasonable high in this field.

To address the second and third concerns, we put forward the intuition that the domain name of

phishing websites is the tell-tale sign of phishing and holds the key to successful phishing detection.

We focus on this aspect of phishing websites and design features that explore the relationship of the

domain name to the key elements of the website. Our work differs from existing state-of-the-art as
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our feature set ensures that there is minimal or no bias with respect to a dataset. Our learning model

trains with only seven features and achieves a true positive rate of 98% and a classification accuracy

of 97%, on sample dataset. Compared to the state-of-the-art work, our per data instance processing

and classification is 4 times faster for legitimate websites and 10 times faster for phishing websites.

Importantly, we demonstrate the shortcomings of using features based on URLs as they are likely to

be biased towards dataset collection and usage. We show the robustness of our learning algorithm

by testing our classifiers on unknown live phishing URLs and achieve a higher detection accuracy

of 99.7% compared to the earlier known best result of 95% detection rate.
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Chapter 1

Introduction

Phishing, defined as, the attempt to obtain sensitive information such as user-names, pass-

words, and credit card details, often for malicious reasons, by masquerading as a trustworthy

entity in an electronic communication [3], is a problem that is as old as the Internet itself. Trying

to get unsuspecting users to give up their money, credentials or privacy is a particularly insidious

form of social engineering that can have disastrous affects on people’s lives. Often this type of

attack arrives in the form of an email containing the first part of what Chaudhry et al. [4] describe

as the lure, the hook and the catch.

The lure is what entices the user to click on a link. It can be advertising a way to get easy

money, obtain an illicit product, or a warning that a user’s account has been compromised or

blocked in some fashion. The hook is often a website that is designed to mimic a legitimate

website of a reputable organization such as a bank or other financial institution. The hook is used

to trick the user into entering and submitting their credentials such as user-name, password, credit

card number, etc. The catch is when the user has submitted private information and the malicious

owner of the website collects and uses this information to exploit the user and his account.

Phishing attacks continue to be of persistent and critical concern to users, online businesses,

and financial institutions. A phishing website lures users into divulging their sensitive information

such as passwords, pin numbers, personal information, and credit card numbers, and uses such in-

formation for financial gains. According to current industry estimates, the annual financial losses

due to phishing attacks across different economies surpasses $3 billion. These losses are cumula-

tively borne by both the users and the online businesses, which are targeted by the phishing attacks.

Especially, for online users, a phishing attack can mean a lot more than just financial losses as the

loss of sensitive personal information has long-term future ramifications as well.

The major problem in detecting phishing attacks is the adaptive nature of strategies used by the

phishers. Generating a phishing website has not only become trivial, but also the attackers are able
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Figure 1.1: Number of unique attacks reported by APWG in year from 2005 to 2016

to bypass most defense strategies with relative ease. For instance, the evolution of extreme phish-

ing, a complex form of phishing that targets the identity of users shows the severity and intensity

of phishing attacks. Phishers are constantly improving phishing toolkits to generate websites that

can evade nearly all forms of defenses available. Therefore, there is a need for developing phish-

ing detection approaches that demonstrate robustness and resiliency against the adaptive strategies

being used by the phishers.

1.1 The Number of Attacks Over Time
Figure 1.1 shows the number of unique attacks reported by Anti-Phishing Working Group

(APWG) in each year. It shows that the number of attacks has steadily increased but it is obvious

that in 2015, the number of these attacks has doubled with more than 1.4 millions ones.

Figure 1.2 is obtained from the report of APWG for the year 2016 [2], shows that there exist

195,475 unique phishing domain names used to attack targets during 2016, the most that have been

recorded in any year since APWG started to work. Also, APWG found that from 195,475 used

domains, 95,424 domain names have been registered maliciously by phishers. This is an all-time

high, and almost three times as many as the number that APWG found in 2015.
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Figure 1.2: Phishing attacks and domains used from 2012 to 2016 [2]

1.2 Adversaries Motivation
In the last decade, phishing techniques have advanced. Phishers now have new motivation for

conducting attacks. Table 1.1 shows the evolution of phishing attacks during the last decade and

the important phishing related milestone at each year. While the term phishing was first used in

1996, in the next two decades, this kind of attacks targeted individuals, financial institutes, and

military organizations.

These days, attackers are less curious about the security of systems but they try to have some

financial benefits. Figure 1.3 shows that 30% of all reported attack was targeted at e-Commerce and

Software/SaaS and 25% at banks and financial institutes. Among 1.3 million complaints received

by the Federal Trade Commission in 2009, identity theft ranked first and accounted for 21% of the

complaints costing consumers over 1.7 billion US dollars [5].
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Table 1.1: Evolution of phishing during 1996 - 2017 [1]

Year Unique Attacks Important Events

1996 Term "phishing" was first used
1997 Media declared the evolution of a new attack called "phishing"
1998 Attackers started using message and newsgroups
1999 Use of mass mailing to escalate the phishing attacks
2000 First use of key loggers and phishers used it for getting login credentials

2001
The first known direct attempt against a payment system affected E-gold, which was
followed up by a "post-9/11 id check" shortly after the September 11 attacks

2002 Use of screen loggers
2003 Use of IM and IRC and the first known phishing attack against a retail bank was reported
2004 Phishing is recognized as a fully organized part of the black market
2005 173,063 Term "spear phishing" was first used
2006 268,126 First phishing over VoIP
2007 327,814 More than 3 billion dollar lost to phishing scams

2008 335,965
Cryptocurrencies such as Bitcoin, introduced in late 2008, facilitate the sale of
malicious software, making transactions secure and anonymous.

2009 412,392 Symantec Hosted Services blocked phishing attacks impersonating 1079 different organizations
2010 313,517 Facebook attracted more phishing attacks than Google and IRS

2011 284,445
110 million customer and credit card records were stolen from Target customers,
through a phished subcontractor

2012 320,081 6 million unique malware samples were identified
2013 491,399 Red October operation attacked more than 69 countries
2014 704,178 750,000 malicious emails were sent using IoT devices reached its peak
2015 1,413,978 Fancy Bear used a zero-day exploit of Java and launching attacks on the White House and NATO

2016 1,380,432
Fancy Bear carried out spear phishing attacks on email addresses associated with
the Democratic National Committee (DNC).

2017 N/A
76% of organizations experienced phishing attacks. Nearly half of information security
professionals surveyed said that the rate of attacks increased from 2016.
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Figure 1.3: Phishing attacks by industry in 2016 [2]

1.3 Problem Statement
We focus on the problem of determining if a target website is a phishing one or not, based

on the information provided on the website. We consider the standard definitions of a phishing

website from literature [6, 7]. Typically, the content of a phishing website is textually and visually

similar to some legitimate website. We focus on characterizing the nature of such websites using

only the information from the website and training a machine learning classifier to distinguish

between phishing and legitimate websites.

1.4 Limitations of Past Work
The state-of-the-art machine learning approaches for phishing detection can be broadly classi-

fied as email, content, and URL based.

The email-based approaches [8–10] focus on analyzing emails based on various features. How-

ever, there has been the considerable evolution of phishing emails against such approaches, which

makes them inadequate for current day context. This is shown by the relatively high rate of success

of spear phishing emails attacks [6] compared to other phishing methods.

The content-based approaches [11–20] perform in-depth analysis of content and build classi-

fiers to detect phishing websites. These works rely on features extracted from the page content as
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well as from third-party services like search engines, and DNS servers. However, these approaches

are not efficient due to a large number of training features and the dependence on third-party

servers. Using third-party servers violates user privacy by revealing the user’s browsing history.

More importantly, several features used in these approaches, like URL related features, do not ac-

curately model the phishing phenomenon. Furthermore, in most of these approaches, except [18],

there is a critical issue of using biased datasets (see Section 1.5 for a detailed discussion) and the

design of features that seem to work well for such datasets. Approaches like [17] examine DOM

content of the pages looking for the similarity of attacks. But, with the advent of newer attacks

like [21, 22] that closely mimic legitimate websites, such approaches will be ineffective.

The URL-based approaches [23–26] analyze various features based on the target URL such as

length of the URL, page rank of the URL, number of dots in the URL, presence of special char-

acters, hostname features like IP address, domain age, DNS properties, and geographic properties,

among other features. While the intuition in these approaches is sound, i.e., the URL is a good

indicator of phishing attacks, the structural changes of modern-day URLs negates several lexical

features identified by these approaches. For instance, these days, the URLs generated by websites

like Google and Amazon, are long and contain many non-alphabetic characters, which dilute the

lexical similarity of legitimate URLs. For this reason, the URL based approaches inadvertently

tend to be biased towards the datasets being used and are likely to be ineffective in the future. A

few hybrid detection mechanisms [27, 28] combine content and URL features, but suffer from the

same problems as described. The work in [27] also discusses features based on the Fully Qualified

Domain Name (FQDN) of the phishing website. However, their approach depends on the results

of search engines and incurs a significant delay.

1.5 Bias in Datasets
There are two reasons for bias in datasets: dataset usage and URL based features. First, to

create a labeled dataset, many researchers [11, 13, 14, 19, 20, 25] used Alexa.com website to

create the list of legitimate websites. But, for the phishing dataset, they used anti-phishing sites like
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PhishTank.com or Openphish.com. The reasoning is that Alexa.com ranks domain name

of websites in the Internet and publishes the list of such highly ranked domains and a researcher

will be able to generate the dataset based only on the first pages of these ranked websites. Whereas

the anti-phishing sites list the entire URLs of the phishing web pages. For instance, many phishers

use 000webhost.com, a free hosting service to host their phishing sites whereas this domain

name itself is ranked highly in Alexa.com. For legitimate websites, the URL is just URL of

the first page of the websites while for phishing websites, it is the URL of a specific web-page.

As a concrete illustration, for the feature defined as number of sub domains in the URL, most of

the legitimate website instances obtained from Alexa.com will not have any sub-domains while

many of phishing web pages will have sub-domains.

The second reason is that URL based detection [23–26] does not guarantee good distinguishers

between legitimate and phishing URLs. This is because adversaries have complete control over the

URL, excepting domain name, to obfuscate against any number of measures. For instance, features

based on URLs, like the length of the URL, number of subdomains in the URL, number of dots

("."), the presence of special characters, number of suspicious words and so on, are not necessarily

unique to phishing URLs. This also explains the reason for the high True Negative Rate (TNR) in

existing works.

Except the work by Marchal et al. [18] where they used unbiased datasets made available

by Intel Security, no other work in literature has specifically addressed this concern. However,

their approach focused on eliminating bias in datasets and did not explore intuitive feature design.

Our work achieves similar classification accuracy with only seven features compared to the 200+

features used in [18]. If the same approaches were to be applied in real-world, these schemes will

have lower detection rate, e.g. [25].

1.6 Thesis Organization
The rest of the thesis is organized as follows. Chapter 2 presents a comprehensive survey

of existing detection approaches applied to the problem. In chapter 3 we introduce our initial
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attempt to solve this problem including discussion about pros and cons of this approach followed

by experiments and results in chapter 4. In chapter 5 we discuss our proposed approach and

the intuitive behind it. Also, we explain how this approach can be completely useful in fighting

against phishing websites. In chapter 6 we discuss our machine learning model that we used

in our experiments. We evaluate our proposed approach to conducting different experiments and

practical measurement in chapter 7. Finally, chapter 8 concludes the thesis and discusses directions

for future work.
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Chapter 2

Literature Survey

Phishing attacks classify as social engineering attack. In this kind of attack, the adversary

does not necessarily look for a vulnerability in the system but also, looks for unaware users to

lure them. For example, an attacker creates a webpage similar to a login page of a well-known

email provider and sends the link to the users and asks them to log in. In this example, there

is not any security concern relates to the Email provider. If the end-user does not aware of the

potential threats, they may be fooled by the attacker. During last decade, different researchers tried

to come up with different approaches. From a higher perspective, we categorize all of these efforts

in two major categories. In the first category, we discuss the approaches that try to address the

problem in a human-based manner. The approaches in this category increase the knowledge of

end-users and help them to make a good decision when they face a suspicious websites. In the

second category, we study the software-based approaches. In this approach, different techniques

adapt to distinguish between legitimate websites and phishing ones and takes them down without

considering end-users. The result of this category may also be fed to the first category to help

end-users. Figure 2.1 shows a classification framework for different existing approaches.

2.1 Human Related Approaches
The strategy of phishing attackers is based on taking advantage of unaware or inexperienced

users. The users who do not know about these attacks are in more danger.

Knowledge management helps to increase user’s information about the attacks and educate

them when faced with it.But, the List-based approach shows a warning to prevent the user being

fooled by the phishing website.
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Figure 2.1: Classification framework for different phishing detection approaches

2.1.1 Knowledge Management and User Educating

The users are the ones who are under risk so it is beneficial to educate them and increase their

ability to protect themselves against these attacks.

Matthew L. Jensen et al. [29] explored how an organization can utilize its employees to combat

phishing attacks collectively through coordinating their activities to create a human firewall. They

utilize knowledge management research on knowledge sharing to guide the design of an exper-

iment that explores a central reporting and dissemination platform for phishing attacks. Results

demonstrate that knowledge management techniques are transferable to organizational security

and that can benefit from insights gained from combating phishing. Specifically, they highlight

the need to both publicly acknowledge the contribution to a knowledge management system and

provide validation of the contribution by the security team. They reported that doing only one or

the other does not improve outcomes for correct phishing reports.

Steve Sheng et al. [30] design an online game that teaches users good habits to help them

avoid phishing attacks and used learning science principles to design and iteratively refine the

game. The participants were tested on their ability to detect phishing website from the legitimate

one before and after playing the designed game including playing the game itself and reading an
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article about phishing. The results show that playing the game can increase the ability to find

the phishing website of the participant. Nalin Asanka et al. [31] create a mobile version of a

game aimed to enhance avoidance behavior through motivation of home computer users to protect

against phishing threats [32].

To explore the effectiveness of embedded training, researchers conducted a large-scale exper-

iment that tracked workers’ reactions to a series of carefully crafted spear phishing emails and a

variety of immediate training and awareness activities [8]. Based on behavioral science findings,

the experiment included four different training conditions, each of which used a different type of

message framing. The results from three trials showed that framing had no significant effect on the

likelihood that a participant would click a subsequent spear phishing email and that many partici-

pants either clicked all links or none regardless of whether they received training. The study was

unable to determine whether the embedded training materials created framing changes in suscep-

tibility to spear phishing attacks because employees failed to read the training materials

2.1.2 List-Based

List-based solutions have the fast access time but they suffer from the low detection rate espe-

cially for the zero-day attacks.

Afroz et al. [33] build profiles of trusted websites based on fuzzy hashing techniques. This

approach combines white-listing with black-listing and heuristic approach to warn users of attacks.

Jain et al. [34] used an auto-updated white-list of legitimate sites accessed by the individual user.

When users try to open a website, which is not available in the white-list, the browser warns

users not to disclose their sensitive information. However, all list-based approaches suffer from

the problem of dynamic updates and scalability, which makes these approaches impractical for

client-side detection.

The modern browsers use list-Based approach in an embedded manner and update the list

regularly. The browser checks every single website that users want to visit against that list and
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if the webpage is listed there, give a warning to the user. Figure 2.2 shows an example of that

warning shown to the users by Google Chrome and Microsoft Edge.

Figure 2.2: Warning of phishing attacks in two different browsers; Left: Google Chrome - Right: Microsoft
Edge

Firefox checks each website that user visits against reported phishing, unwanted software, and

malware lists. These lists are automatically downloaded and updated every 30 minutes by default

when the "Phishing and Malware Protection" feature is enabled [35].

Microsoft SmartScreen, used in Windows 10 and both Internet Explorer 11 and Microsoft

Edge, helps to defend against phishing by performing reputation checks on visited sites and block-

ing any sites that are thought to be phishing sites. SmartScreen also helps to defend people against

being tricked into installing malicious against phishing attacks. Google’s Safe Browsing infras-

tructure displays warning messages across Chrome, Android, and Gmail if the user tries to access

a potentially malicious site or download malware and viruses [36].

2.2 Software-Related Approaches
Relying solely on the end-user in the fight against phishing attacks does not lead to beat the

adversarial. The end-users are prone to fault in facing with phishing attacks and make an incorrect

decision, albeit with vast education and awareness. Addressing this problem needs the help of

Software-Related techniques to prevent, detect and take down phishing attacks and campaign. In
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this section, we will discuss different software-related techniques to fight against them namely

Visual and Textual Similarity, Machine Learning, and Heuristics.

2.2.1 Machine Learning

Machine learning algorithms have been proven to have the ability to discover complex correla-

tion among different data items of similar nature. Many algorithms consist of two steps: learning

and testing. In the learning step, the algorithms try to learn from supporting examples and in the

testing phase, the researchers evaluate the accuracy of the algorithms.

Attackers often use email to send out phishing URLs to the victim. Consequently, detecting

potentially dangerous emails helps lead to prevent users to be caught in the phishing website.

There is a wide literature on automating detection for phishing email by looking at the context of

the email. For example, Basnet et al. [12] used 16 features to detect phishing email. While they

use email messages as a source to extract the features, we only focus on the website itself rather

than how the attacker tries to tempt the users.

Ma et al. [24] described an approach based on URL classification using statistical methods

to discover the lexical and host-based properties of malicious web site URLs. They use lexical

properties of URLs and registration, hosting, and geographical information of the corresponding

hosts to classify malicious web pages at a larger scale. These methods are able to learn highly pre-

dictive models by extracting and automatically analyzing tens of thousands of features potentially

indicative of suspicious URLs. The resulting classifiers obtain 95-99% accuracy, detecting large

numbers of malicious websites by just using their URLs. However, their approach requires a large

feature set and extracts host information with the help of third-party servers. In section 1.4 and 1.5

we discussed why using URL-based features and third-party services lead to a biased dataset.

Miyamoto et al. [37] provided an overview of nine different machine learning techniques,

including Support Vector Machine, Random forests, Neural Networks, AdaBoost, Naive Bayes,

and Bayesian Additive Regression Trees. They analyzed the accuracy of each classifier on the

CANTINA dataset [11], a state of the art dataset, and achieved a maximum accuracy of 91.34%
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using AdaBoost. They used a wide range of classifiers but based on adaptive nature of these attacks

and not using an updating dataset cannot guarantee the resiliency of the solution.

Aburrous et al. [38] proposed association data mining algorithms to characterize and identify

the rules to classify the phishing websites. They implemented six different classification algo-

rithms and techniques to mine the phishing training datasets. They used a phishing case study that

was applied to illustrate the website phishing process. The rules generated from their associative

classification model showed the relationship between some important characteristics like URL and

domain identity, security and encryption criteria, etc.. The experimental results demonstrated the

feasibility of using Associative Classification techniques in real applications and its better perfor-

mance as compared to other traditional classifications algorithms.

Xiang et al. [14] proposed a layered anti-phishing solution with a rich set of features. They

proposed 15 features that exploit the Document Object Model (DOM) of webpages including using

search engine capabilities, and third-party services, with machine learning techniques to detect

phishing attacks. Also, they designed two filters to help reduce False Positive Rate (FPR) and

achieve runtime speedup. The first is a near-duplicate phish detector that uses hashing to catch

highly similar phish. The second is a login form filter, which directly classifies webpages with no

identified login form as legitimate. The key shortcoming of this approach is that the experiments

were conducted with biased datasets. The Alexa.com website, which provided most of the

legitimate websites in this dataset, only gives the domain name of legitimate websites. While

the phishing websites taken from PhishTank.com are mostly complete URLs of phishing web

pages. So the types of data instances are different. Also, using third-party services to extract some

features may endanger the privacy of users by revealing their browsing history. Moreover, this

algorithm is not efficient as it uses a large number of features.

In 2015, Verma et al. [25] described an approach based on textual similarity and frequency

distribution of text characters in URLs. For instance, they examined the character frequencies in

phishing URLs and the presence of suspicious words as features. However, this approach is entirely

based on URLs and is likely to be biased in the modern day context. Some of their features, like
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presence of suspicious words, will need to be updated frequently as newer phishing attack surfaces

come in.

Jain et al. [19] described a machine learning based approach that extracts the features from

client side only. Their approach examined the various attributes of the phishing and legitimate

websites in depth and identified 19 features to distinguish phishing websites from legitimate ones.

Their approach has a relatively high accuracy in detection of phishing websites as it achieved

99.39% true positive rate and 99.09% of overall detection accuracy. While their approach relied

only on the client-side feature and did not use any third-party features, but there are some draw-

backs in this approach. Fox example, their method of dataset creation is flawed. For phishing

websites, they used PhishTank.comas a source of phishing websites. For legitimate websites,

they used mostly Alexa.com, which ranks the most top ranked domain names in the world.

While PhishTank.comgenerated the phishing pages, Alexa.comgives only domain names

and not the internal pages of the domain. As a result, their features are biased with respect to the

dataset. This factor was not considered in the feature extraction process. For example, one feature

in their approach is the number of dots in the given URL. In the training phase, while all given

legitimate instances consist of only domain names, the phishing instances consist of entire URLs.

Another feature looks for suspicious words in the URL, but many legitimate websites also have

these words.

Al-Janabi et al. [26] described a supervised machine learning classification model to detect

the distribution of malicious content in online social networks (OSNs). Multisource features have

been used to detect social network posts that contain malicious URLs. These URLs direct users

to websites that contain malicious content, drive-by download attacks, phishing, spam, and scams.

For the data collection stage, the Twitter streaming API was used. They just focused only on one

OSN network (Twitter) and applied their approach. Their features can neither be extracted locally

nor guarantee the security of users outside of the network during regular browsing.

Recently, Marchal et al. [16,18] proposed a client-side detection approach and completed with

a browser extension [39] using custom datasets from Intel Security and tried to eliminate bias in
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datasets. They developed a target identification component that can identify the target website that

a phishing web page is attempting to mimic. However, their approach uses over 200+ features for

classification, which indicates a significant time for feature extraction and classification. Moreover,

not much is known about the exact design of their features and the dataset used is not available to

replicate their results.

Rao et al. [20] proposed a classification model based on an ensemble of features that are ex-

tracted from URL, source code, and third-party services. Their approach is inefficient and suffers

from the same problems as other techniques using URL based features. Furthermore, this approach

uses third-party servers and reveals a user’s browsing history to untrusted servers.

2.2.2 Visual and Textual Similarity

Since over 90% of users rely on the website appearance to verify its authenticity [40], the

adversaries try to create the visual appearance of phishing websites nearly identical to that of

legitimate ones. Consequently, the researchers try to use the similarity between websites as a key

feature to discriminate between legitimate and phishing websites. Some approaches use visual

similarity between websites while others use textual similarity.

Visual Similarity

Chen et al. [41] proposed an approach for detecting visual similarity between two web pages.

They tested their system using the most popular web pages to examine its real-world applicability.

Accuracy in case of true positive and false positive rates reached 100 and 80 percent, respectively.

Fu et al. [42] used Earth Mover’s Distance (EMD) to measure webpage visual similarity. They

first converted the involved web pages into low-resolution images and then used color and coor-

dinate features to represent the image signatures. Then they used EMD to calculate the signature

distances of the images of the web pages. They employed an EMD threshold vector for classifying

a web page as a phishing or a normal one. Also, they built up a real system which is already used

online and it has caught many real phishing cases.
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Routhu Srinivasa Rao et al. [43] proposed a combination of white-list and visual similarity

based techniques. They used computer vision technique called SURF detector to extract discrimi-

native key point features from both suspicious and targeted websites followed by computing simi-

larity degree between the legitimate and suspicious pages.

All these approaches need a target website to compare the similarity between two webpages

and detect one of them as phishing.

Textual Similarity

Zhang et al. [13] created a framework using a Bayesian approach for content-based phishing

web page detection. The model takes into account textual and visual contents to measure the

similarity between the protected web page and suspicious web pages. A text classifier, an image

classifier, and an algorithm fusing the results from classifiers are described. But, this process is

expensive and often results in false positives.

Recently, there has been a rise in extreme phishing attacks [21, 22], a form of fine-grained

content mimicking phishing, on financial institutions where the phishing website mimics the le-

gitimate website to an alarming degree. Typically, these websites are meant to defeat visual and

textual similarity analysis. The high level of noise introduced in such websites is likely to defeat

most content-based machine learning approaches in the past. Compared to past work, our ap-

proach relies on a nominal set of features for classification and does not examine the content of the

websites in depth.

2.2.3 Heuristic Approaches

Neil et al. [44] implemented SpoofGuard, a plugin for Internet Explorer, that detects phishing

attempts on the client-side. It weights different anomalies found in the HTML page of websites

and assign a score. If the assigned score cross the certain threshold, it will label the website as a

phishing and sends a warning to the user. This tool runs on the client-side and can detect phishing

websites based on that anomalies in the page but as it is not using
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Cui et al. [17] tried to find similarities between different attacks during a 10-month study by

monitoring around 19000 websites. The study showed that 90% of phishing websites have similar

DOM structure and over 90% of these attacks were actually replicas or variations of other attacks

in the database.
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Chapter 3

Initial Attempt: Fresh-Phish Framework

3.1 Creating a Phishing Dataset
The dataset based on features of websites on the internet quickly become out of date and stale.

We built a framework that can address this problem. Using that, it is possible to add/remove a

feature to/from the dataset. In addition, the user can redo the extracting step to get the updated

values for currently defined features. In the initial attempt, we use features that Mohammad et

al. [45] defined, but we implement them in the Python.

To create our dataset, we scanned the top 3000 sites in the Alexa.com database and 3000

online phishing websites obtained from phishtank.com.We made two assumptions here: first,

all of the websites gotten from Alexa.com are legitimate websites. We believe this to be a valid

assumption because of the ephemeral nature of phishing websites, they tend to pop in and out

of existence (as is evidenced by the short domain registration times) to evade being blocked or

tagged as phishing. The top sites ranked in Alexa.com must be popular and have been around

for a longer period of time to attain this ranking. Second, we assumed that websites found on

the Phishtank.com were phishing websites. PhishTank.com incorporates a community

of registered users who report sites as phishing. Each member is ranked by the community and

builds a good reputation by correctly reporting if a website is phishing or not. Since it is a very

well-known repository for phishing websites, we can trust its decision for labeling a website as a

phishing one.

3.2 Implemented Features
Mohammad et al. [45] used 29 different features to create their dataset and we used their

definitions to create our own dataset. These features can be categorized into five categories: URL

based, DNS based, External statistics, HTML based, and JavaScript based.
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3.2.1 URL Based

URL based features are based on some aspect of the URL of the website. Attackers try to use

the URL to deceive users by obfuscating it in some fashion. For example, URLs that have an IP

address, an ’at’ symbol (@), double slash, contain a prefix or suffix are all methods employed to

disguise a URL. Other notable methods are the length of URL, whether the website has a sub-

domain, uses a shortening service or uses a non-standard port.

1. Having IP Address: If an IP address is used as an alternative of the domain name in the

URL, such as "http://125.98.3.123/fake.html", users can be sure that someone is trying to

steal their personal information. In a Python script, we checked that if the website URL is in

the form of an IP, we assume it as a phishing website otherwise it is legitimate.

2. URL Length: To ensure the accuracy of our study, we calculated the length of URLs in

the data set and produced an average URL length. The results showed that if the length

of the URL is greater than or equal 54 characters then the URL classified as phishing. By

reviewing our dataset, we were able to find 1220 URLs whose lengths equal to 54 or more

which constitute 48.8% of the total dataset size.

3. Shortening Service: URL shortening is a method on the web in which a URL may be made

considerably smaller in length and still lead to the same webpage. This is accomplished by

means of an "HTTP Redirect" on a domain name that is short, which links to the webpage

that has a long URL. For example, TinyURL is a service that makes the URL shorter. The

URL like "http://portal.hud.ac.uk/" can be shortened to "bit.ly/19DXSk4" using this service.

If it used TinyURL, we will assume it as a phishing, otherwise, it is a legitimate website.

4. Having At (@) Symbol: A URL that contains a "@" symbol is not trusted as the browser

generally ignores everything proceeding the "@". If the URL contains the "@" sign we

marked it as phishing.

5. Double Slash Redirecting: URLs that contain "//" are marked as phishing as the double

slash is used to redirect users to another site. Phishing URLs employ this method to hide
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their real URL. An example is

http://www.colostate.edu//http://www.phishing.com.

6. Prefix Suffix: The dash symbol is rarely used in legitimate URLs. Phishers tend to add

prefixes or suffixes separated by (-) to the domain name so that users feel that they are dealing

with a legitimate webpage. For example, http://www.Confirme-paypal.com/.In

our framework, we check whether that website uses a "-" in the name of URL or not. If it is

used, we assume it as a phishing website.

7. Having Subdomain: Let us assume we have the following link:

http://www.hud.ac.uk/students/.A domain name might include the country-

code top-level domains (ccTLD), which in our example is "UK". The "ac" part is shorthand

for "academic", the combined "ac.uk" is called a second-level domain (SLD) and "hud" is

the actual name of the domain. To produce a rule for extracting this feature, we first have

to omit the (www.) from the URL which is, in fact, a subdomain in itself. Then, we have

to remove the (ccTLD) if it exists. Finally, we count the remaining dots. If the number

of dots is greater than one, then the URL is classified as "Suspicious" since it has one

subdomain. However, if the dots are greater than two, it is classified as "Phishing" since it

will have multiple subdomains. Otherwise, if the URL has no subdomains, we will assign

"Legitimate" to the feature. We calculated the number of dots in a URL. If it is more than,

we classify as phishing otherwise it is a legitimate website.

8. Unusual Port: Most legitimate websites use ports 80 for unencrypted traffic and port 443

for encrypted traffic. We mark the sites that use other ports as phishing.

3.2.2 DNS Based

DNS based features use information of the domain such as when the domain was first registered

and how long the registration is valid.
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1. Domain Update Date: This feature gets data of "Update Field" from WHOIS. This field

demonstrates the latest time that domain owner updated the DNS record on the WHOIS

database. The legitimate websites updated their information on the WHOIS database more

often than the phishing website. If the updated date is less than half of a year, we mark this

site as legitimate.

2. HTTPS Token: Phishing URLs will often try to make it look like the URL

uses HTTPS. They will include HTTPS as part of the URL, for example,

http://https-colostate.edu.We mark this URL as phishing.

3. Age of Domain: This feature can be extracted from WHOIS database. Most phishing web-

sites live for a short period of time. By reviewing our dataset, we find that the minimum age

of the legitimate domain is 6 months. Rule: If the age of domain is greater than 6 months,

we will assume it as legitimate otherwise we will assume it as phishing.

4. DNS Record: This feature can be extracted from WHOIS database. For phishing sites,

either the claimed identity is not recognized by the WHOIS database or the record of the

host-name is not founded. If the DNS record is empty or not found then the website is

classified as phishing, otherwise, it will classify as legitimate. We implement a Python script

which gets DNS information from www.WHOISXMLAPI.comand check if the DNS record

is empty or not.

3.2.3 External Statistics

External statistics based features use data gathered from places like Alexa’s page rank and if

the site is present in Google’s search index.

1. Page Rank: This feature looks at if the site is ranked in the Alexa database. If the site is not

ranked or has no traffic, then we mark the site as phishing.

2. Google Index: This feature examines whether a website is in Google’s index or not. When

a site is indexed by Google, it is displayed on search results. Usually, phishing web pages
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are merely accessible for a short period and as a result, many phishing web pages may not be

found on the Google index. To find Google index of each site, we send a request to Google

website then search website inside the result. If a website is indexed by Google, we mark it

as legitimate. Otherwise, we mark it as phishing.

3.2.4 HTML Based

The HTML served by a website contains many valuable features used to determine if the site

is phishing or not. Examples of these features include whether the website has a favicon and

if the images and JavaScript have the same source URL as the serving website. Other HTML

based features are whether the site implements iFrames, how many links point outside the serving

domain, etc.

1. Favicon: A favicon is a graphic image (icon) associated with a specific webpage. Many

existing user agents such as graphical browsers and newsreaders show favicon as a visual

reminder of the website identity in the address bar. If the favicon is loaded from a domain

other than that shown in the address bar, then the webpage is likely to be considered a

phishing website. For this attribute, we checked the HTML code of each website and found

where the Favicon is loading from. If it is loaded from a foreign domain, we assume that

website is a phishing.

2. Request URL: This feature examines whether the external objects contained within a web-

page such as images, videos and sounds are loaded from another domain. In legitimate

webpages, the webpage address and most of the objects embedded within the webpage are

obtained the same domain. We implemented a Python script which looks at all of the ad-

dresses and marks them as domain-inside or domain-outside. If more than half of addresses

are domain-outside, we will mark the site as phishing otherwise it is a legitimate one.

3. URL of Anchor: This feature looks at the links in the website. If the links in the website

point to a domain different from the domain of the website more than 50% of the time, then

the site is marked as phishing.

23



4. Links in Tags: This feature looks at the domain in the tags of the header such as <SCRIPT>,

<META>, and <LINK> tags. If more than 50% of these tags point to a domain different from

that of the site, the site is marked as phishing.

5. Submit Form Handler: This feature examines the action of the submit form on the page.

If the action is, "None", "blank", or "about:blank", then we mark the site as phishing. Legit-

imate sites will point to a URL.

6. Redirect Page: If the site uses the HTML 301 redirect in the header, then we mark the site

as phishing.

7. Using iFrame: HTML used the <IFRAME> tag to display another page inside of the current

page. This feature looks at if there is an <IFRAME> tag in the page and its border is set to

transparent. If these two things are present, then we mark the website as phishing.

8. Links Pointing to Page: This feature looks at how many links from other websites are

pointing the target site. If there are no links to the target page, then it is marked as phishing.

We did not implement this and assigned the score of this feature as neutral.

3.2.5 JavaScript Based

JavaScript-based features look for specific ways that JavaScript can be used to trick the end

user. Some of these include using JavaScript to submit form data to email, mouse over techniques

that hide URLs or prevent right clicks and pop-up windows.

1. Submitting to Email: This feature looks for a "mailto:" action in the submit form. If it

exists, then we mark the site as phishing.

2. On Mouse Over: This method looks for the on mouse over re-writing of links in the status

bar. This type of ruse has become less effective as browsers usually ignore this. We used

the Python library Dryscrape to run a headless instance of web-kit. This allows us to run

and evaluate JavaScript linked or embedded in the page. If the window.status JavaScript call

exists in conjunction with onMouseOver then this site is marked as phishing.
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3. Right Click: This feature looks for JavaScript code that disables the right-click action on a

web page. This is meant to deter users from looking at the HTML source code for the site. It

looks specifically for "event.button==2" in the JavaScript. If that presents, we mark the site

as phishing.

4. Pop-up Window: This method uses Dryscrape which implements web-kit and can scrape

a web page for JavaScript has well as HTML. JavaScript has alert, confirm, prompt, win-

dow.open methods if any of these are found then the site is marked as phishing.

3.3 Modifying Features Definition
Mohammad et al. [45] defined all features of dataset with binary values: −1 as legitimate, and

1 as legitimate. Since many of the features like the length of URL or age of the domain cannot

be defined using binary values, they used a threshold to convert non-binary values to binary ones.

This approach has several problems. First, defining a threshold and converting continuous values to

binary ones, a lot of useful information that can help classifiers to make a better decision is missed.

Second, determining the accuracy and efficacy of the threshold and fine tuning it periodically is an

important issue that must be addressed. The choice of the correct threshold becomes very critical

as it is the threshold which decides whether a feature is phishy or not instead of the classifier so

we decided to remove the threshold and use the actual values of the features that we have obtained

from [45].

3.4 Added Feature: Most Important Words
In this section, we explain TF-IDF algorithm and how it works and how we used it to make a

new effective feature.
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3.4.1 TF-IDF Algorithm

TF-IDF, a well-known technique in information retrieval, is a numerical statistic intended to

reflect how important a word is to a document in a collection or corpus. It is often used as a

weighting factor in information retrieval, text mining, and user modeling [46].

In this technique, the algorithm tries to find out most important words in a text. The term fre-

quency (TF) shows the number of appearances of a word in a text and the term inverse document

frequency (IDF) says the number of appearances of the same word in the entire corpus. For exam-

ple, if a word is repeated in a text 10 times more than its regular frequency in the corpus, it will

get a higher weight in comparison with a word that has the same frequency in both the given text

and corpus. The algorithm will give high weights to the words with high repetition in a document

and low repetition in the entire corpus and give low weights to the words with low repetition in

the document and high in the corpus. By sorting all the weights, it is possible to find out the most

important words in the given text.

3.4.2 Used Corpus

These algorithms need a corpus with which to compare the given text. For this purpose, we used

Manually Annotated Sub-Corpus MASC from Open American National Corpus OANC [47]. It

includes approximately 500,000 words of contemporary American English written and spoken

data. While this is an annotated dataset, we just used the plain data to have a normal distribution

of English words in our corpus.

3.4.3 Adapting TF-IDF

For any given website in the dataset, we first prepared a plain-text version of it which the users

see it in the browser since the phishers try to deceive users by the plain-text version of the website.

In the plain-text version, there are no HTML tags or scripts. Then we gave this version to the

TF-IDF algorithms and calculated the weight of each word in it and sorted all the words.
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We select the 5 most important words on the website and we put them against the domain name

of each website. We then do a search on these 5 words. If the website appears in the response to

the search, we mark this feature as −1 or legitimate. otherwise, we mark it as 1 or phishy. The

phishers try to mimic a phishy website as a clean one and all of the items on the web pages refer

to a targeted website. The only thing that phishers cannot change is the domain name so they try

to hide it. The search using the word set will return the domain names of the clean websites, but

not the phishy ones. We chose 5 most important words because our experiments and statistical

calculations indicated that the optimum number of the most important words is 5. Note that, Yue

et al. [11] also used 5 most important words in his experiments. We used Python package of

TfidfVectorizer developed by Scikit-learn [48] to implement this algorithm.

3.5 Added Feature: Shared in GooglePlus
Today, the social networks play an important role in our lives and many users spend a lot of

time on them. We believe that gathering statistics from those networks and adding them to the

dataset will improve the accuracy of the classifier. We added the number of times that a webpage

was shared in the social network Google Plus. We used a Python library named SeoLib [49] for

measuring this feature.

3.6 Added Feature: Content Security Policy
The Content-Security-Policy (CSP) HTTP response header helps users to cut the risk of cross-

site scripting (XSS). The website administrator can declare what dynamic resources are allowed to

be loaded in this particular web pages [50]. It also needs to be supported by web browsers. By this

declaration, if a resource is out of the domain, the browser will not load it. As this is a very new

capability, few numbers of websites support this as now.
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Chapter 4

Initial Attempt: Experiment and Evaluation

The implemented framework starts with loading the list of websites from a Commas Separated

Values (CSV) file. The input file contains the URLs of websites whose we plan to extract feature

values and add them to the final dataset. If we know the website is legitimate, we will label it

as a −1. Otherwise, we will label it as 1. The DataLoader class is responsible for loading all of

URL and labels and sending them to the Evaluator class. The Evaluator class goes through all of

the given URLs and measures features and puts it in a result vector. For example, if the feature

is the "Length of URL", the Evaluator class will calculate the length of given URL and add it to

the result vector. Some of the features, like "the Domain Age", needs external information so the

framework will use external APIs to get the values. When all the features have been evaluated, the

vector is completed and will be returned as a result of this step. The framework will convert this

vector to a comma-separated string and append it at the end of the dataset file. When framework

goes through all of the websites, this process will finish. The Algorithm 1 describes the formal

algorithm of this process.

Algorithm 1 Creating Dataset
1: procedure CREATE DATASET(SourceAddress)
2: URLs, Labels← DataLoader(SourceAddress)
3: while end of URL list do
4: FeatureV ector ← Evaluator.MeasureFeature(URL)
5: V ectorInCSV ← CSV (FeatureV ector)
6: DatasetF ile← Append(V ectorInCSV )

7: return DatasetF ile

In the next step, we get information from 6,000 different websites including 3,000 legitimate

ones that we obtained from Alexa.com and 3,000 phishing websites that we obtained from

Phishtank.com. We measured the values for each feature and added them to the dataset.
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Table 4.1: Performance evaluation for dataset

Classifier Accuracy AUC
TensorFlow Adagrad 89.3 90.1
TensorFlow Adadelta 91.7 91.3
TensorFlow GradientDescent 91.6 91.1
TensorFlow Linear 81.5 85.4
SVM Linear 80.1 81.4
SVM Guassian 93.7 96.6

To evaluated the efficacy of the dataset, we used Support Vector Machine (SVM) which is a

well-known machine learning classifier that uses some kernel function for classification. We used

two different kernel functions: Linear and Gaussian. We ran all of our trained classifiers against the

data collected. Using TensorFlow and TFcontrib (Abadi et al., 2016) we built a Deep Neural Net-

work (DNN) using the following built-in optimization: GradientDescent, Adagrad, Adadelta. We

also used TensorFlow to implement a linear classifier. We used Stratified-K-Fold cross-validation

with five-fold.

In Table. 4.1 we show the performance of the implemented approach. We get the best accuracy

by using to SVM with a Gaussian kernel. The accuracy is 93.7% which is considered very good.

We developed a framework that can extract any defining feature and create the up-to-date

dataset. We took 3000 clean websites and 3000 phishing websites and subsequently we trained our

classifiers over this dataset. We also analyzed a TensorFlow-based neural network, a TensorFlow-

based linear classifier, an SVM with a Gaussian and linear kernel. We achieved an accuracy of

93.7%.

Having this framework helped us to extract features and conduct the experiment more easily

but we had some more concerns. Using third-party services can not preserve the privacy of the

users. Also, it takes much longer time to decide whether a website is phishing or not. We need to

have a set of features and approaches that can be implemented on the client-side completely and

will not use any third-party services. In addition, TF-IDF feature is a data-agnostic feature that

relies on the dataset. So we need to define a better solution to address all these problems. In the
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next chapters, we will describe our final solution that uses the domain name as the viable parameter

in defining feature and how we did address all problems mentioned prevoisuly.
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Chapter 5

Improved Approach: Domain Name Based Features

With the Fresh-Phish framework, we learned several lessons and were able to get a better

understanding of the features that need to be used for phishing detection. For instance, one lesson

we learned is that the problem of phishing cannot be viewed in a statistical way and needs to

consider the intent of the attackers for fooling the users. Therefore, the features should be finally

chosen for phishing detection, should reflect this intuition. Another important lesson we learned

was there is a strong correlation between the domain name and the nature of the websites. Based

on these observations, we now describe our solution. Our work is the first solution to be entirely

focused on the domain name of the phishing website. In our work, the domain name is the string

before the top-level domain identifier, e.g., for the URL google.co.uk, the domain name is

google. We only concern ourselves with examining the landing page of this website and with

the information that can be extracted from this page without the help of third-party servers, search

engines or DNS servers.

Our approach is based on the intuition that the domain name of the phishing websites is a key

indicator of a phishing attack. We design several features that are based on the domain name and

train a machine learning classifier based on sample data. The trained classifier is used to test a

suspicious website against these features. In the following, we describe the key challenges in our

proposed approach and our solutions to these challenges.

The primary challenge is to justify the design of domain name based features. Towards this

end, first, we highlight the subtle distinctions between the impact of the domain name and the

URL of a phishing website. A URL can be a complex combination of special characters, numer-

ical values, and other obfuscating features. A phisher has much control over the formation and

structure of the URL and therefore, can generate noisy URLs that can bypass most machine learn-

ing approaches. On the other hand, the phisher has limited control over the domain name, i.e., the

adversary can generate several types of URLs with the same domain, but the domain name remains
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fixed throughout. While the phisher can change domain names, it usually takes some time to reg-

ister a domain name and use it for such attacks. Second, domain name based features are likely

to be more independent of the content in the phishing pages. The structure of the page layout, the

HTML tags, and the dynamic content will no longer be a major part of the detection algorithm.

Third, a phishing domain name typically can contain additional characters or numbers to give the

illusion of a legitimate website. Such peculiarities continue to be part of several malicious phishing

domains, e.g., gooogle.com. These variations are subtle and are likely to provide sufficient sta-

tistical distinctions between legitimate and phishing websites. Hence, based on these arguments,

we claim that the domain name based features are likely to exhibit more regularity than URL based

features.

The next challenge is that the designed features could be data driven, that is, they can be biased

with respect to the training data. To address this, our features exploit the relationship between the

domain name and the visible content of the web page. For instance, one feature calculates the rank

of the domain against all visible text on the web page, which is exhibited by almost all phishing

websites. But, designing such features is a major challenge and requires deep analysis of the

phishing websites over a period of time. Therefore, to get higher detection accuracy, we combine

these with other features that are based on observations of phishing domain names reported on

PhishTank.com and from observations of other researchers in the community. Our feature set

is a mix of existing features and some new features. However, since our features are based on the

domain names, we redesign the existing features and derive new features that reflect the nature of

the phishing website.

The penultimate challenge concerns the validity of the features. Among the several possible

domain name based features, many features may not add value to the machine learning classifier.

We perform a statistical validation against a small sample of the data to verify the distribution

of the features across the phishing and legitimate websites. With this approach, we were able to

eliminate several features and our final classifier consists of only seven features.
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The final challenge is testing the resiliency of the domain based features to detect unknown or

zero-day phishing attackers. To address this, we tested the classifier against a blacklist of URLs that

are taken from the latest updates on OpenPhish.com. Our approach showed excellent resiliency

and was able to detect 97-99.7% of the URLs, in varying learning conditions.

5.1 Key Contributions
(a) We describe a machine learning (ML) based approach for phishing detection that relies en-

tirely on domain name based features. Our approach is the first approach that has the combination

of several benefits such as not using third-party servers, search engines, suspicious words and URL

specific features.

(b) Our approach achieves 97% accuracy on a set of 2000 URLs with a five-fold cross-validation.

(c) Our approach achieves 97-99.7% detection rate on live blacklist data from

OpenPhish.com, validating our base hypothesis of bias in datasets and at the same time, demon-

strating the remarkable robustness of our learning model against phisher induced noise.

(d) The run-time detection speed of our approach is 4 times faster for legitimate websites and

10 times faster than the state-of-the-art work [18] in this domain.

(e) We demonstrate the bias induced in the learning model by certain features, such as URL

length, which raises the question of revisiting many of the existing works in literature.

5.2 Correlation of Domain Name to Phishing Intent
In Figure 5.1, we show the differences between a legitimate website and phishing web-

site. Figure 5.1 shows two webpages: one image belongs to legitimate Facebook.comwhich

the domain name is Facebook. Another one belongs to a phishing website that mimics the

Facebook.com,with a different domain name: Sanagustanturismo. The intuition behind this

is adversaries try to hide their domain name in a phishing webpage while the legitimate websites

try to emphasize the domain name in the webpage. Based on this intuition, we defined the fea-

tures. For example, in the legitimate picture of Facebook.com, the page title contains the domain
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Figure 5.1: Domain name features for websites - Top: Legitimate website, Bottom: Phishing website
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name. While in the phishing page, an adversary tries to hide the actual domain name, it does not

include the domain name. Also, the legitimate Facebook.com includes the domain name near to

the copyright logo while the phishing page does not have the copyright logo.

5.3 Feature Engineering and Validation
In this section, we characterize the phishing attacks using domain name based features and

provide the necessary statistical validation for each of these features. As far as possible, our feature

design attempts to be content-agnostic, i.e., the feature design attempts to model the principles of

phishing attacks and reduce the dependence of the features on specific data values. This is a

challenging task and hence, we also consider additional features that are based on observations

from real phishing attacks. Our feature sets consists of two types of features: binary, i.e., the

feature value is 0 or 1, and non-binary, i.e., the feature is real-valued. In summary, the key point

of our feature engineering is that all features depend on the domain name of the website and the

relation of the domain with respect to the content of the website. These aspects ensure that our

features are not affected by biased datasets and are robust to noise.

To validate the intuition behind each feature, we tested the empirical cumulative distribution

function (ECDF) of the feature for 1000 known phishing websites against 1000 known legitimate

websites. The ECDF of a real-valued random variable X , or just distribution function of X , evalu-

ated at x, is the probability that X will take a value less than or equal to x. For x-axis distribution,

we used the feature values in the dataset, and for y-axis, we used the probability that features value

will take values less than or equal to x. For the binary features, we counted the number of 1s for

legitimate and phishing websites for each feature. For the non-binary features, we draw an ECDF

plot for phishing and legitimate websites.

We also indicate if the features are "New", meaning designed by us, or "Existing", meaning

that other researchers have designed it, in parentheses for each feature.
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5.4 Domain-Base features

5.4.1 Feature 1 (Existing) : Domain Age

The domain age, given in number of years, is the count of time since the domain was registered

and became active. Intuitively, the domain age of a phishing domain will be smaller than the

domain age of a legitimate website. To evaluate this feature, we obtained the Whois information

of registered domain from WhoisXMLAPI service and calculated the age of domain in years.

Although this feature has been used by many other researchers in the past, we did not use it since

we need to obtain it from a third party server. Further, in a sample experiment, which we do

not report here, we discovered a surprising result that it does not have any positive impact on the

classification accuracy.

5.4.2 Feature 2 (New) : Domain Length

The attackers who want to register a domain for phishing have to choose longer domain name

in comparison with the legitimate website. The length of the domain name is the number of

characters in the domain name string. As shown in Figure 5.2, the ECDF of this feature shows

sufficient distinction between the legitimate websites and the phishing websites.

5.4.3 Feature 3 (Existing) : URL Length

The URL length is a popular feature among all known phishing detection approaches and is

based on the intuition that phishing URLs are longer than legitimate URLs. We describe this

feature here primarily to highlight the issue of dataset bias discussed in Section 1.5. In Figure

5.2, we show the ECDF of this feature. On the surface, it seems an excellent feature, however, it

is completely data dependent and most existing works have generated results that are likely to be

heavily influenced by the distribution of this feature in the phishing and legitimate datasets. We

generated two sets of classification results: with and without the URL length, to demonstrate the

impact of classification due to this feature. The average accuracy of classification increases by 2%

because of this feature and reaches 99%, which matches the state-of-the-art result when the only
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accuracy is considered. If the feature extraction time is also considered, we show that our results

are better than the state-of-the-art works.

Figure 5.2: Domain length, Length of the URL

5.4.4 Feature 4 (Existing) : Link Ratio in BODY

This feature is defined as the ratio of the number of hyperlinks pointing to the same domain to

the total number of hyperlinks on the web page. The intuition is that, in the process of making a

phishing website similar to the legitimate website, the attackers refer the hyperlinks on the landing

page to a legitimate domain name, which is different from the domain name displayed in the

address bar of the browser. This feature is content-agnostic as the ratio can compute for any

phishing website that exhibits this behavior. For example, the phishers create a phishing page to

mimic a well-known payment service where all links on the page are to a legitimate website except

the login-form in which the users need to enter their information. Accordingly, the ratio of the

links referring to current domain compared to all links found in the website will be different when

compared between a phishing website and a legitimate website. To evaluate this feature, we find

all of the links in the page and the ratio of links referring to the current page over the number of

all links found on the page. However, some legitimate websites also exhibited this behavior and

therefore, we used a scaling process to derive the final value of the feature. For instance, if for a

given website the ratio was in the range [0.1, 0.2], we assigned the value 20 to this feature. Figure
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5.3, shows the ECDF of this feature (of the raw ratios) with sufficient separation between the two

distributions.

5.4.5 Feature 5 (Existing) : Links in Meta-header (HEADER)

This is the defined as the ratio of the number of hyperlinks in the META section of the page

that point to the same domain to the total number of links in the META section. The attackers use

some of the scripts in META section of the HTML page from a legitimate website to refer to a

website outside of the current domain. Therefore, if this ratio is small then it indicates a phishing

website, as shown in Figure 5.3. However, this feature was not found to be that useful as shown

in Figure 5.3 as many legitimate websites tended to use many outside links like Google Ads

or Google Analytics, images from other websites and so on. Therefore, we did not use this

feature in our final classification.

Figure 5.3: Link Ratio in BODY, Link Ratio and Domain Name Frequency

5.4.6 Feature 6 (New) : Frequency of Domain Name

This feature counts the number of times the domain name appears as a word in the visible text

of the web page. The intuition is that many web pages repeat the domain name several times on

their web page, as part of disclaimers, privacy terms and so on. Therefore, if the domain name

does not appear at all on the web page, then there is something suspicious about such a web page.
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Table 5.1: Binary feature distribution

Feature Legitimate Phishing
HTTPS Present 0.92 0.23
Non-alphabetical Characters 0.05 0.36
Copyright Logo Match 0.26 0.0
Page Title Match 0.87 0.03

This is yet another feature that captures the relationship of the domain name to the web page. The

ECDF of this feature is shown in Figure 5.3.

The ECDF is shown in Figure 5.3. This feature was used in a different way by other researchers,

notably [14], but with the help of search engines. Our definition captures a different essence

compared to their approach and does not rely on third-party servers.

5.4.7 Feature 7 (Existing) : HTTPS Present

An SSL certificate is issued for a particular domain name. Most legitimate websites used SSL

certificates and operated over HTTPS protocol. Therefore, if a website uses HTTPS, the feature

value is 1 and if not, it is 0.

5.4.8 Feature 8 (New) : Non-alphabetical Characters in Domain Name

The attackers use non-alphabetical characters, like numbers or hyphen, to generate new un-

registered phishing domain names, which are very similar to legitimate domain names. If domain

name includes any non-alphabetic character, this feature will be evaluated to 1, otherwise, it will

be set to 0. Many past works [19, 25] have considered a variant of this feature, i.e., they examined

the number of special characters in the entire URL. However, as we stated earlier, generating cus-

tom based noisy URLs is a relatively easy task for the attackers. Table 5.1 shows the percentage

distribution of the binary features.

5.4.9 Feature 9 (New) : Domain Name with Copyright Logo

Many legitimate websites use the copyright logo to indicate the trademark ownership of their

organization name. Usually, the domain name is placed before or after the copyright logo for such
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websites. To generate this feature, we considered up to 50 characters before and after the copyright

logo, removed the white spaces, and checked for the presence of the domain name in the resulting

string. Surprisingly, we found that none of the phishing websites placed their actual domain names

along with the copyright logo. To do so, would have aroused the suspicion of any web user and

therefore, we found this feature to be an excellent distinguisher.

5.4.10 Feature 10 (New) : Page Title and Domain Name Match

Many legitimate websites repeat the domain name in the title of the web page. We found that

many phishing websites used this feature to deceive users into believing that they were visiting

legitimate websites. But, clearly, a phishing website would not use the phishing domain name on

the title page as it would be clearly visible to the user. Our intuition proved right and we found that

less than 3% of the phishing websites were using this feature, but over 87% of legitimate websites

had this feature. Table 5.1, shows the distribution of these features on the sample dataset.

A Comparison with [18]. In [18], although the authors have alluded to the use of the domain

name as one of the factors and described several features, they did not base their approach entirely

on this aspect as we have done in our work. Some of the features common with our work are

Feature 6, the frequency of occurrence of the domain name, and Feature 10, the match of the

domain name with the title along with some more domain name based features. Furthermore, the

approach in [18] uses many other features, over 200, to perform the final classification and even

ignored some domain name based features. For instance, they ignored the Feature 9, domain name

match with copyright logo, which we found very useful in detecting phishing websites.
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Chapter 6

Machine Learning Models

We briefly describe the classifiers and the configuration settings used in our experiments. We

used five standard classifiers: Support-Vector Machine (SVM) with two different kernels, linear

and Gaussian , Decision tree, Gaussian Naive Bayes, k-nearest-neighbors (kNN) and Gradient

Boosting. We also considered Majority voter, which uses a major voting approach to classify an

instance. In our approach, we assume that a particular classifier is attempting to classify a given

website into one of two classes: legitimate or phishing.

6.1 Support Vector Machine (SVM)
SVMs [51, 52] are supervised learning models that represent data as points in space and con-

struct a hyperplane in high-dimensional space to separate the data points into different categories.

We used two different kernel functions: linear and Gaussian, to classify a set of n points

{ ~x1, y1}, · · · , { ~xn, yn} where each ~x is a d-dimensional vector and d corresponds to the number

of features characterizing ~x and yi corresponds to one of the classification labels {−1, 1} of ~xi.

Broadly speaking, the linear kernel uses a linear mathematical function such as, ~w.~x − b = 0

where b is a system parameter, to define a best possible hyper-plane that divides the group of

points ~xp where y = 1 from the points where y = −1.

Similarly, a Gaussian kernel uses a radial-basis function (RBF) defined as:

k(~xi, ~xj) = exp(−γ‖~xi − ~xj‖2)

It achieves a similar result based on γ, a system defined parameter. For Gaussian kernel, we

need to specify two important parameters: cost and γ. The cost parameter determines the margin

for examples to be ignored because they are classified incorrectly [48]. The γ parameter adjusts

how similar two points are in order to be considered "similar" and labels them identically. One
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well-known approach for assigning cost and γ parameters are by using a grid search, where one

axis of the grid represents cost and the other denotes gamma. In our experiments, we used a grid

search to find the best available value for cost and γ.

6.2 Decision Tree Classifier
Decision tree classifier [53] is a decision tree based classifier, which consists of tree nodes

with values "learned" from the training instances and branches leading towards the best possible

decision about the input instance. A decision tree’s interior node contains an attribute test, such

as a range, on one more variable. Each internal node can be seen as a "splitter" that partitions the

instance space into two or more smaller sub-spaces based on the attribute test. The leaf nodes of

a decision tree corresponding to the decisions or classes of a particular input instance that satisfies

the conditions along the path from the root node to the leaf node. The general problem of learning

an optimal decision tree is proven to be NP-complete. For large attribute spaces, decision trees

can create complex trees, a problem known as overfitting, which indicates the poor quality of data

space partitioning. Decision trees perform quite well on small attributes spaces. Our approach uses

only seven attributes, which makes decision trees quite effective. We used the default values set in

the Scikit-learn Python package [48].

6.3 Gradient Boosting
Gradient boosting [54, 55] is a gradient descent based learning approach that produces a pre-

diction model as an ensemble of weak prediction models. The learning starts with a "weak"

model, typically Gradient Boost Regression Tree (GBRT) that tries to learn the data space and

is iteratively improved by the next model that reduces the error of the previous model. The goal

of gradient boosting is to combine weak learning models into a single strong model as shown:

F (x) =
∑M

m=1 γmhm(x). Typically, hm is GBRT of fixed depth, which is iteratively improved

over M trials and γm is the regression parameter for that particular iteration. At each step, the

model is improved as follows:
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Fm+1(x) = Fm(x) + γm+1hm+1(x)

The hm+1 is chosen to minimize the loss function L in the current model’s fitting of a data point

xi: Fm(xi) as shown:

Fm+1(x) = Fm(x) + argmin
h

n∑
i=1

L(yi, Fm(xi) + h(x))

For implementation we used Scikit-learn library [48] and we set the tool-kit specific parameters

as follows: n_estimators = 100, which denotes the number of weak learners, and the maximum

depth of each tree is controlled by max_depth parameter. We set the learning_rate = 1.0 and

max_depth = 1.

6.4 Gaussian Naive Bayes Classifier
Gaussian Naive Bayes classifier [56] is a set of supervised learning algorithms based on apply-

ing Bayes theorem with the assumption of independence between every pair of features. Briefly,

given a data vector: ~x = {x1, x2, · · · , xn}with n distinct features, the Bayes conditional probabil-

ity model assigns the following conditional probability: P (Ck|x1, x2, · · · , xn), for each possible

type of class Ck. Since each of the features is independent, this equation can be computed in a

straight-forward manner using Bayes theorem and the chain rule of conditional probability. Using

this result, the Bayes classifier is constructed by calculating the maximum a posteriori probability

and assigning the corresponding class label to the data instance in question. The main advantage

of naive Bayes is that it only requires a small amount of training data to estimate the parameters

necessary for classification.

6.5 k-nearest-neighbors (kNN)
kNN [57, 58] is an effective supervised learning method for many problems including security

techniques [59]. The kNN algorithm is based on the clustering of the elements that have the same

characteristics; it decides the class category of a test example based on its k-neighbors close to
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it. The value of k in the kNN depends on the size of the dataset and the type of the classification

problem [60].

6.6 Majority Voter
This is a classifier that we defined to combine the results from other classifiers as a voter to

decide whether a given instance is legitimate or not. The classifier is based on the majority-vote

rule, i.e., the common decision of the majority of classifiers is the decision of this classifier. To

make this classifier, we employed all another classifier that we discussed and trained them in this

classifier. For testing purpose, we test given instance with all other classifiers and get the predicted

value for that using the majority vote.
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Chapter 7

Improved Approach: Performance and Evaluation

7.1 Experimental Methodology
We conducted two sets of experiments to assess the performance of our model trained with

various machine learning classifiers. The first set of experiments were conducted on a prepared

dataset and the second set of experiments were conducted on live unknown phishing dataset from

OpenPhish.com. Only one past work [25] demonstrated a similar result on unknown datasets

with a detection rate of 95%. In contrast, our approach achieves much higher detection accuracy,

close to 99.7%.

7.2 Feature Set
For our experiments we did not include the domain age (Feature 1) and link ratio in HEADER

(Feature 5) The domain age feature requires a third-party service, which violates user privacy, and

the link ratio in HEADER feature did not really exhibit significant variation across the legitimate

and phishing datasets. For the other experiments, we performed the experiments in two variations:

without including the URL length feature (Feature 3) and by including this feature. The URL

length feature is one such feature that will exhibit significantly different distribution for phishing

and legitimate URLs, as phishing URLs are typically longer in the datasets available in public

domain.

We report the various classification metrics including true positive rate and accuracy. We show

the time taken to extract the feature values for each website, the training time for each classifier, and

the time is taken by the classifier to predict whether a website is phishing or not. We implemented

our approach using the Sci-kit [48] library in Python 2.7 on a desktop running Fedora 24 OS with

Intel Corer 2 Duo CPU E8300 c© processor having 6 GB RAM and clocking at 2.4 GHz.
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Table 7.1: Number and source of instances used in creating dataset

# Source # instances Category Usage
1 Alexa.com 1000 Legitimate Train & Test
2 PhishTank.com 1000 Phishing Train & Test
3 Openphish.com 2013 Phishing Test

7.3 Datasets
For creating a dataset and extracting the features, we used three different sources. For the

list of legitimate websites, we obtained the 1000 top ranked websites from the Alexa.com and

assumed them as legitimate. For the phishing websites, we got 1000 phishing websites from

PhishTank.com and another 2013 phishing websites from OpenPhish.com. We describe the

use of these datasets in the following discussion. Note that, all our features, except URL length,

only examine the domain name and its relation to the web page, they do not behave differently for

URLs of different lengths.

7.3.1 Dataset 1: DS-1

This set includes 1000 legitimate websites from Alexa.com and 1000 phishing websites from

PhishTank.com. In the experiments, we trained and tested on this dataset with 80% data for

training and 20% data for testing using five-fold cross-validation.

7.3.2 Dataset 2: DS-2

This dataset includes 1000 legitimate websites from Alexa.com and 3013 phishing websites

from both PhishTank.com and OpenPhish.com. For this dataset, we considered 1000 le-

gitimate and 1000 phishing websites for training without cross-validation. The remaining 2013

websites were used for testing. Table 7.1 shows the testing and training configurations of these

datasets.
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7.4 Performance Metrics
For evaluating our approach, we used standard metrics used to judge any machine learning

based anti-phishing detection approach. We calculated True Positive Tate (TPR), True Negative

Rate (TNR), Positive Predictive Value (PPV), Accuracy (ACC) and Area Under Curve (AUC) to

evaluate the performance of proposed approach. Table 7.2 shows the metrics used for classification

of phishing and legitimate websites.

• NL denotes the total number of legitimate websites in the dataset.

• NP denotes the total number of phishing websites in the dataset.

• NL → L denotes number of legitimate websites classified as legitimate.

• NL → P denotes number of legitimate websites classified as phishing.

• NP → P denotes number of phishing websites classified as phishing.

• NP → L denotes number of phishing websites classified as legitimate.

Table 7.2: Performance metrics used in the study
Measure Formula Description
TPR NP→P

NP
∗ 100 Rate of correctly classified phishing

TNR NL→L
NL

∗ 100 Rate of correctly classified legitimate

PPV NP→P
NP→P+NL→P ∗ 100 Rate of correctly predicted phishing over total predicted phishing

ACC NL→L+NP→P
NL+NP

∗ 100 Rate of classified correctly in the dataset height

7.5 Experiment1: Performance on DS-l
We designed two different experiments to evaluate the accuracy of classifiers on DS-1.

In the first experiment, we used all the features described in Section 5.2 except domain age,

URL length and Links in Meta-header features. The age of the domain is a feature that requires

the help of a third-party server.
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In the second experiment, we included URL length and demonstrated the increase in classifi-

cation accuracy. However, this increase is only due to the bias of the dataset with respect to this

feature, i.e., for phishing websites we have full URLs and for legitimate websites we have only the

index pages of the domains.

7.5.1 Results without URL Length Feature

Our domain name based approach achieves 97% accuracy and validates our basic hypothesis.

We ran our experiments with a five-fold cross-validation and show the results in Figure 7.1 and

Figure 7.2. For each of the parameters, we show the maximum value achieved and the average

value across all the validations. Of all the classifiers, Gradient Boosting performed the best with

a maximum accuracy of 99.55% percentage and an average accuracy of 97.74%. For Gradient

Boosting and Majority Voting, the TPR is very high, 98.12% and 97.46%, respectively, showing

the high phishing detection capability of the classifiers. There is a similar trend in TNR for these

two classifiers, i.e., it is very high, showing the ability of the learning models to identify legiti-

mate websites. We note that our average accuracy of 97.74% is very high when compared several

existing works that used a rather large and diverse set of features.

Figure 7.1: PPV and TNR on DS-1 without URL length feature
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Figure 7.2: TPR and ACC on DS-1 without URL length Feature

7.5.2 Results with URL Length Feature

The URL length feature results in higher accuracy and clearly demonstrate the bias induced

in the dataset.

We show the results of these experiments in Figure 7.3 and Figure 7.4. There is an increasing

trend across all the classifiers for all the parameters considered. The main benefit is seen in the

TNR whose average value increased from 95%, in the previous experiment, to 98% across SVM

linear, kNN, Decision tree and Majority voting classifiers. Excepting Gaussian Naive Bayes, all

other classifiers recorded a TPR of 98% and above, on an average, with the maximum hitting 100%

for three classifiers. The accuracy also showed an increasing trend with the average accuracy in-

creasing to 98.8% for Gradient Boosting, and the maximum accuracy reaching 99.55% for several

other classifiers. This experiment clearly shows that features like URL length that depend on the

URL tend to impact classification accuracy depending on the dataset.

In Table 7.3 and Table 7.4, we show the corresponding table of performance metrics of our

classifiers. For clarity, we show both the mean and maximum achieved values for each metric,

except for the AUC.
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Figure 7.3: PPV and TNR on DS-1 with URL length feature

Figure 7.4: TPR and ACC on DS-1 with URL length feature

Table 7.3: Performance metrics for DS-1 without URL length

Classifier TPR TNR PPV ACC AUC
Mean Max. Mean Max. Mean Max. Mean Max. Mean

SVM Linear 95.99 99.18 93.73 96.97 95 97.58 94.98 98.19 0.9879
SVM Gaussian 95.75 99.18 95.75 97.98 96.55 98.33 95.75 98.19 0.9872
Gaussian NB 93.45 96.72 94.53 97.98 95.5 98.29 93.94 95.93 0.9816
kNN 96.15 99.18 95.75 97.98 96.55 98.37 95.97 98.64 0.9814
Decision tree 97.05 99.19 96.25 97.98 96.99 98.37 96.7 98.64 0.9872
Gradient Boosting 98.12 100 97.27 98.99 97.8 99.19 97.74 99.55 0.9926
Majority Voting 97.46 100 96.96 98.99 97.55 99.19 97.24 99.55 0.9914
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Table 7.4: Performance metrics for DS-1 with URL length

Classifier TPR TNR PPV ACC AUC
Mean Max. Mean Max. Mean Max. Mean Max. Mean

SVM Linear 98.53 100 98.38 100 98.7 100 98.46 99.55 0.9942
SVM Gaussian 98.69 99.19 95.85 97.96 96.74 98.36 97.42 98.19 0.9919
Gaussian NB 96.97 99.19 94.74 100 95.85 100 95.97 99.55 0.9867
kNN 98.04 99.18 98.07 98.99 98.44 99.18 98.05 99.1 0.9903
Decision tree 98.36 99.19 98.48 100 98.77 100 98.42 99.55 0.9814
Gradient Boosting 98.85 100 98.68 100 98.94 100 98.78 100 0.9941
Majority Voting 98.85 100 98.79 100 99.02 100 98.82 99.55 0.9943

7.5.3 Timing Analysis for DS-1

Although the timing analysis can vary from machine to machine, we attempt to show that our

approach is quite efficient even when it is run from a relatively low-end desktop configuration such

as ours.

Feature extraction timings

Our feature extraction time is very low, of the order of few milliseconds, and demonstrates the

efficiency of our feature set.

Table 7.6 shows the results of our feature extraction. The total time for extracting features

of a legitimate website is about 0.117 seconds and for a phishing website is 0.02 seconds, which

indicates the real-time nature of our approach. This is extremely low compared to the state-of-the-

art approach in [18] where the extraction time was in the order of a few seconds. Furthermore, we

would like to emphasize that the average loading time of a web page like msn.com, is around 1

second and our feature extraction adds only a few milliseconds overhead to this process.
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Table 7.5: Training and classification timings

Classifier Training Time (in ms) Testing (in µs)
SVM Linear 1339.85 6.74
SVM Gaussian 703.62 38.32
Gaussian Naive Bayes 2.28 1.47
kNN 7.36 14.85
Decision tree 2.49 0.80
Gradient Boosting 2737.56 450.48
Majority Voting 177.73 3.25

Table 7.6: Feature extraction timings

Feature Legitimate (µs) Phishing (µs)
HTTPS Present 4.12 3.87
Domain Length 63.45 66.45
Page Title Match 26.9 32.3
Frequency Domain Name 333.8 33.09
Non-alphabetic Characters 32.64 13.68
Copyright Logo Match 2737.56 450.48
Link Ratio in Body 114482.87 19445.67
URL Length 0.3576 0.5066
Total Time (in seconds) 0.117 0.02

Training and Classification Timings

Our classifier training and classification times are very low, of the order of few microseconds,

and again demonstrates the efficiency of our approach.

The testing times reported are the average across the five-fold cross-validation and do not in-

clude the feature extraction time. The training can be done off-line and the testing takes a few

microseconds to perform, after the feature extraction. Given that cumulative time for feature ex-

traction and testing is less than 2 milliseconds, we claim that our approach can be deployed in

practice as a client-side browser plug-in.
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Table 7.7: Performance metrics for DS-2 without and with URL length

Classifier TPR without URL Length TPR with URL Length
SVM Linear 94.09 94.24
SVM Gaussian 92.75 90.81
Gaussian Naive Bayes 91.06 92.75
kNN 93.74 99.7
Decision tree 97.91 97.27
Gradient Boosting 98.21 99.75
Majority Voting 95.33 97.67

7.6 Experiment 2: Performance on DS-2
In this experiment, we examine the robustness of our learning approach on unknown and un-

seen data. We obtained a list of 2013 live phishing websites from OpenPhish.com. Although a

higher number of sites were listed, many sites were unavailable and few were blocked by the cor-

responding ISPs. We trained the classifier in two modes: without including the URL length feature

and with the URL length feature included. Finally, we tested the resulting classifier on the 2013

data instances and show the results in Table 7.7. These results show the remarkable performance of

our approach. Unlike the previous approach [25], which attempted a similar experiment, for many

of our classifiers, the TPR largely remains unchanged across both the experiments and even shows

a slight increase for Decision tree and Gradient Boosting classifiers. Furthermore, when including

URL length, the TPR even reaches 99.7%(!) for kNN and Gradient Boosting. This result also

confirms our hypothesis that the domain name based features can accurately capture the nature of

a phishing website.

7.7 Comparison with Previous Work
We compare our results empirically with existing state-of-the-art solutions in Table 7.8. Our

basis for comparison is the number of features, the accuracy, whether client-side features only are

used or third-party features are included and average accuracy. We did not include the run-times

of the approaches as that is a system specific metric. However, we note that our scheme reports
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micro-second level feature extraction and classification time, even when running on a relatively

low-performance laptop with Core 2 Duo processor.

Table 7.8: Comparison with state-of-the-art approaches

Approach ] Leg ] Phish ] Features ACC Client Side
Cantina [11] 2100 19 7 96.97 No
Cantina+ [14] 1868 940 15 97 No
Verma et al. [25] 13274 11271 35 99.3 Partial
Off-the-Hook [18] 20000 2000 210 99.9 Yes
Our App. Without URL Length 1000 3013 8 97.7 Yes
Our App. Wth URL Length 1000 3013 9 98.8 Yes
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Chapter 8

Conclusions and Future Work

8.1 Conclusion
In this work, we considered the problem of phishing detection using machine learning ap-

proaches. In our first attempt, called Fresh-Phish Framework, we identified several interesting

features by looking at the problem from the statistical point of view. From the lesson of Fresh-

Phish, we found that viewing problem purely from statistical point of view is insufficient to solve

it effectively. The intent of the phishing attacker also needs to be considered for an effective solu-

tion.

We described the first approach towards the design of only domain name based features for

detection of phishing websites using machine learning. Our feature design emphasized on the

elimination of the possible bias in classification due to differently chosen datasets of phishing

and legitimate pages. Our approach differs from all previous works in this space as it explores

the relationship of the domain name to its intent for phishing. With only seven features we are

able to achieve a classification rate of 97% with cross-validated data. Furthermore, we were able

to show a detection rate of 97-99.7% for live black-listed URLs from OpenPhish.com. This

shows that our approach is able to adapt to the complex strategies used by phishers to evade such

detection mechanisms. As our features explore the content found in the visible space of the web

page, an attacker will need to put huge effort to bypass our classification. In trying to bypass

our approach, an adversary may end up designing a page that will make any user suspicious of its

intent. Furthermore, we demonstrated the shortcoming of using URL features such as URL lengths,

that seem to give higher accuracy but may not do so in the near future. Our feature extraction and

classification times are very low and show that our approach is suitable for real-time deployment.

Our approach is likely to be very effective in modern day phishing strategies like extreme phishing

that are designed to deceive even experienced users.
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8.2 Future Work
In future, we wish to explore the robustness of machine learning algorithms for phishing detec-

tion in the presence of newer phishing attacks. We are also developing a real-time browser add-on

that will provide warnings when visiting suspicious sites.
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