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ABSTRACT 

 

 

 

EVALUATION OF A SURFACE ENERGY BALANCE METHOD BASED ON OPTICAL 

AND THERMAL SATELLITE IMAGERY TO ESTIMATE ROOT-ZONE SOIL MOISTURE 

 

 

Various remote-sensing methods are available to estimate soil moisture, but few address 

the fine spatial resolutions (e.g., 30 m grid cells) and root-zone depth requirements of 

agricultural and other similar applications.  One approach that has been previously proposed to 

estimate fine-resolution soil moisture is to first estimate the evaporative fraction from an energy 

balance that is inferred from optical and thermal remote-sensing images (e.g., using the ReSET 

algorithm) and then estimate soil moisture through an empirical relationship to evaporative 

fraction.  A similar approach has also been proposed to estimate the degree of saturation.  The 

primary objective of this study is to evaluate these methods for estimating soil moisture and 

degree of saturation, particularly for a semiarid grassland with relatively dry conditions.   Soil 

moisture was monitored at twenty-eight field locations in southeastern Colorado with herbaceous 

vegetation during the summer months of three years.  In-situ soil moisture and degree of 

saturation observations are compared with estimates calculated from Landsat imagery using the 

ReSET algorithm.  The in-situ observations suggest that the empirical relationships with 

evaporative fraction that have been proposed in previous studies typically provide overestimates 

of soil moisture and degree of saturation in this region.  However, calibrated functions produce 

estimates with an accuracy that may be adequate for various applications.  The estimates 

produced by this approach are more reliable for degree of saturation than for soil moisture, and 
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the method is more successful at identifying temporal variability than spatial variability in degree 

of saturation for this region. 

  



iv 
 

ACKNOWLEDGMENTS 

 

 

 

We gratefully acknowledge financial support from Colorado State University 

Agricultural Experiment Station.  We thank George McClave, Ron Conrad, Don Higbee, Wendi 

Rider, and their families for allowing us to utilize their properties for our field research near 

Lamar.  We thank Janet Fleshman, Brian Goss, Jeffrey Linn, Roy Miller, Rich Riddle, Jim Scott, 

and Mike Stricker for facilitating access to PCMS.  We thank Mike Bartolo for the use of the 

Arkansas Valley Research Center and equipment.  We thank John Kuzmiak and Nick Young 

from USGS for supplying soil moisture and other data.  We thank Mike Weber, Jeff Siegfried, 

Ryan Hemphill, Kevin Werbylo, Devin Traff, Kayla Ranney, and Amber (Brase) Weber for their 

field assistance.  We thank Steve Middlekauff, Mazdak Arabi, Greg Butters, José Chávez, Mike 

Coleman, Andre Dozier, Darrell Fontane, Tim Gates, Eric Morway, and Lorenz Sutherland for 

their technical assistance.       

 

 

 

  



v 
 

TABLE OF CONTENTS 

 

 

 

ABSTRACT .................................................................................................................................... ii 

ACKNOWLEDGMENTS ............................................................................................................. iv 

INTRODUCTION .......................................................................................................................... 1 

REMOTE-SENSING METHODS.................................................................................................. 7 

FIELD METHODS ....................................................................................................................... 11 

CSU PCMS ............................................................................................................................... 12 

USGS PCMS ............................................................................................................................. 13 

CSU LARV ............................................................................................................................... 14 

ANALYSIS OF FIELD DATA .................................................................................................... 17 

RESULTS AND DISCUSSION ................................................................................................... 20 

CONCLUSIONS........................................................................................................................... 27 

TABLES AND FIGURES ............................................................................................................ 29 

REFERENCES ............................................................................................................................. 39 

LIST OF ABBREVIATIONS ....................................................................................................... 45 

 

 

 

 

 

 

 



1 
 

INTRODUCTION 

 

 

 

Quantitative knowledge of soil moisture patterns is crucial to making prudent decisions in 

a wide range of disciplines.  Weather forecasting, flood prediction, wildfire mitigation, and 

mobility assessments can all benefit from soil moisture information (Scott et al., 2003; 

Hendrickx et al., 2010; Qi et al., 2012; Yebra et al., 2013).  Knowledge of soil moisture patterns 

plays a particularly vital role in agricultural applications.  Practices such as precision farming, 

surge irrigation, and deficit irrigation all hold promise for meeting increasing global needs for 

food supply, but such practices require detailed and up-to-date knowledge of soil moisture 

conditions (Moran et al., 1997; Seelan et al., 2003). 

Remote-sensing techniques have an advantage over in-situ measurements such as time-

domain reflectometry (TDR) because remote-sensing can provide soil moisture estimates over 

large regions through time.  However, passive microwave methods are only sensitive to near-

surface soil moisture (the top 5 cm of the soil or less) (Entekhabi et al., 2004; Jackson et al., 

2005), and the conditions observed at shallow depths do not necessarily correspond to the 

conditions throughout the root-zone (Scott et al., 2003; Kerr, 2007), which are more relevant for 

some applications.   Passive microwave estimates also have very coarse spatial resolutions (10 – 

40 km grid cells) (Entekhabi et al., 2010), which do not capture fine-scale moisture variations 

that can also be important (Western et al., 2002; Hendrickx et al., 2011).    Airborne active 

microwave methods, in particular synthetic aperture radar (SAR), have finer spatial resolutions 

(20 – 100 m) (Moran et al., 2002; Western et al., 2002), but SAR systems have known 

inaccuracies for smoother and natural surfaces (Altese et al., 1996; Davidson et al., 2000; 

Walker et al., 2004).  In addition, this approach is only sensitive to the soil moisture within about 
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10 cm of the surface (Ulaby et al., 1996; Walker et al., 2004; Thoma et al., 2008).  Because the 

global average rooting depth is over four meters (Canadell et al., 1996), this approach still misses 

a large portion of the root-zone soil moisture in much of the world.  Even in semiarid regions, 

grasses can have roots deeper than 10 cm (Weaver, 1958).    

An alternative technique to estimate soil moisture with remote sensing is the triangle or 

trapezoidal method (Moran et al., 1996; Gillies et al., 1997; Carlson, 2007; Stisen et al., 2008).  

This method utilizes imagery from satellites with visible, infrared, and thermal infrared bands 

such as Landsat, AVHRR (Advanced Very High Resolution Radiometer), ASTER (Advanced 

Spaceborne Thermal Emission and Reflection Radiometer), and MODIS (Moderate-resolution 

Imaging Spectroradimeter).  Thus, it can provide estimates with relatively fine spatial resolutions 

(30 m – 1 km).  The trapezoidal method, for example, uses this imagery to make a graph with a 

vegetation index on one axis and the atmospheric-soil temperature difference on the other 

(Verstraeten et al., 2008).  Four vertices that encompass the data from the region are then 

identified, which correspond to well-watered vegetation, water-stressed vegetation, saturated 

bare soil, and dry bare soil.  Soil moisture is then estimated by linearly interpolating between the 

extreme conditions at the vertices of this trapezoid.  The trapezoidal method has two key 

limitations.  First, the region must include locations that span the full range of possible 

vegetation and moisture conditions to properly identify the vertices (Carlson, 2007).  Second, the 

method has an empirical origin, so it may not account properly for topography and other 

complications or provide reliable quantitative soil moisture estimates in all cases. 

Another remote-sensing method to estimate root-zone soil moisture at relatively fine 

resolutions is based on inferring the components of the land surface energy balance 

(Bastiaanssen et al., 2000; Scott et al., 2003).  This method uses similar spectral bands as the 
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trapezoidal method and reduces the empiricism associated with the triangle and trapezoidal 

methods. The first step in this approach is to estimate the net radiation, ground heat, and sensible 

heat fluxes.  The residual of the energy balance is the latent heat flux.  These components are 

then used to calculate either the evapotranspiration (ET) or evaporative fraction (Λ), which is 

defined as the ratio between the latent heat flux and available energy (net radiation minus soil 

heat flux) (Shuttleworth et al., 1989; Bezerra et al., 2013).  Then, empirical logarithmic functions 

are used to transform Λ into either root-zone volumetric soil moisture (θ) or degree of saturation 

(s) (Bastiaanssen et al., 2000; Scott et al., 2003).  Several models are available to estimate Λ 

such as SEBAL (Surface Energy Balance Algorithm for Land) (Bastiaanssen et al., 1998a), 

SEBS (Surface Energy Balance System) (Su, 1999), S-SEBI (Simplified Surface Energy Balance 

Index) (Roerink et al., 2000), METRIC (Mapping Evapotranspiration at High Resolution with 

Internalized Calibration) (Allen et al., 2007), and ReSET (Remote Sensing of 

Evapotranspiration) (Elhaddad and Garcia, 2008).  SEBAL utilizes one weather station with 

available wind run data.  SEBS is similar to SEBAL in its utilization of the energy balance, but it 

employs more meteorological data in its calculations.  S-SEBI also utilizes the energy balance, 

but approaches the process from a more simplified approach and thus requires only satellite data.  

METRIC expands upon SEBAL by adding an internal calibration that uses reference ET from 

weather stations.  Finally, ReSET expands upon METRIC by the ability to utilize multiple 

weather stations for reference ET.  

The estimates of ET and Λ from these models have been evaluated in a number of studies 

(Bastiaanssen et al., 1997; Bastiaanssen et al., 1998b; Morse et al., 2000; Mohamed et al., 2004; 

Allen et al., 2007; Santos et al., 2010).  Santos et al. (2010) calculated a mean absolute error 

(MAE) of 0.30 mm day
-1

 when comparing SEBAL estimated ET and Bowen ratio calculated ET.  
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SEBAL was also utilized for a water balance study in the upper Nile region with reported errors 

in ET as high as 27% for one basin and as low as 1.8% and 5.7% for two other basins (Mohamed 

et al., 2004).  Morse et al. (2000) also evaluated SEBAL ET estimates and observed greater 

errors for locations with lower ET values.  Using METRIC, Allen et al. (2007) reported 

differences between measured and modeled ET between 4% and 20% and noted that the greatest 

errors were during drying periods in areas with bare soil.  Bastiaanssen et al. (1997) compared 

the Λ estimates from SEBAL to those from flux towers and reported a root mean square error 

(RMSE) of 0.19.  Similarly, in Bastiaanssen et al. (1998b), SEBAL Λ estimates were found to 

have RMSE values between 0.10 and 0.20.  Estimates of Λ from S-SEBI were found to have a 

maximum relative error of 8% (Roerink et al., 2000). 

The reliability of θ and s estimates from this approach has also been evaluated, but the 

total number of observations used in these evaluations remains limited.  The notion of relating θ 

and Λ predates these remote-sensing methods and is well established in the literature (Davies and 

Allen, 1973; Owe and Van De Griend, 1990; Smith et al., 1992).  In particular, when the soil is 

wetter, more of the available energy is expected to be used for ET (latent heat flux), which 

produces a higher evaporative fraction.  However, Bastiaanssen et al. (2000) proposed a 

particular logarithmic relationship between Λ and θ based on data from FIFE (First ISCLCP 

Field Experiment) (Sellers et al., 1992; Smith et al., 1992) and EFEDA (ECHIVAL Field 

Experiment in Desertification-Threatened Areas) (Bolle et al., 1993).  FIFE was conducted in 

both grazed and ungrazed grasslands in Kansas.  Soil types were primarily alluvium and loess 

with the soil moisture sensor depth at 2.5 cm.  EFEDA was conducted with various vegetation 

and crop types (vineyards, barley, wheat, maize, and alfalfa) in Spain.  Soil types were loamy 

sand with sensor depths that ranged from 10 cm to 50 cm with 10 cm being the most extensively 
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evaluated.  When fitting the logarithmic function to 23 points from these datasets, Bastiaanssen 

et al. (2000) reported a coefficient of determination (R
2
) of 0.855.  Scott et al. (2003) utilized 27 

data points also from both the FIFE and EFEDA sites and estimated a nearly identical 

relationship.  Soils, measurement depths, and vegetation covers were the same for the 

Bastiaanssen et al. (2000) and Scott et al. (2003) studies.  

Utilizing the data from FIFE and EFEDA, Scott et al. (2003) then proposed a modified 

relationship that replaces θ with s, where       and   is the soil porosity.  This modification 

was performed to better account for variations in soil type.  Scott et al. (2003) applied this Λ - s 

relationship to field experiments in the Rechna Doab area in Pakistan and the Lerma-Chapala 

basin in Mexico.  The Rechna Doab sites contain mostly alluvial soils with irrigated rice-wheat 

and cotton-wheat crop rotations, and observations of s were determined by averaging soil 

moisture values at depth increments of 25 cm in the upper 100 cm of the soil and dividing by the 

estimated porosities.  Porosities were estimated from the highest observed value of θ for each 

study area.  The Lerma-Chapala sites contain vertisols with irrigated wheat, alfalfa, and some 

strawberries, and soil moisture was measured at 45 cm depth and used to calculate s.  Ultimately, 

the RMSE is 0.05 from a comparison of 52 pairs of observed and modeled s values.  In a related 

study (Ahmad and Bastiaanssen, 2003), 26 additional points were considered for the same 

Rechna Doab region, and the parameters of the logarithmic relationship were found to change 

very little.  Fleming et al. (2005) evaluated the estimates of s produced by this approach for a 

semiarid region of central New Mexico consisting of mostly grasslands.  Soil types were not 

indicated.  The estimates of s were compared to in-situ values from 0 – 30 cm depth at eight 

locations.  Good qualitative agreement was found, but quantitative assessments were limited due 

to the small dataset.  Bezerra et al. (2013) evaluated the s estimates from this approach for 
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irrigated cotton fields in Brazil.  Soils were classified as sandy clay loam.  Soil moisture 

measurements at six depths (10, 20, 30, 40, 60, and 100 cm) were used to determine the root-

zone average values of s.  Using 24 observations, a RMSE of 0.02 was calculated with Λ ranging 

from 0.56 to 0.96. 

The primary objectives of the present study are to further test the strength of the proposed  

Λ - θ and Λ - s relationships (Bastiaanssen et al., 2000; Scott et al., 2003) and the reliability of θ 

and s estimates that are derived from this approach.  In particular, the study aims to determine 

whether the existing relationships that were calibrated using data from particular regions can be 

reliably applied to other regions.  In addition, the study aims to determine whether this 

methodology is more reliable for estimating θ or s.  To calculate the evaporative fraction, 

Landsat 5 and 7 imagery are used with the ReSET model (Elhaddad and Garcia, 2008), which is 

similar to SEBAL and METRIC.  The model is applied to a semiarid grassland region in 

southeastern Colorado for the summer months (May through August) of 2009, 2011, and 2012.  

In-situ soil moisture data were collected and used to estimate θ and s at twenty-eight fields, each 

of which is meant to correspond to a Landsat grid cell.   

The outline of this paper is as follows.  The next section “Remote-sensing methods” 

describes how θ and s were estimated from ReSET.  Then, the “Field methods” section describes 

how the in-situ data were collected.  The “Analysis of field data” section evaluates how well the 

in-situ data represents the average root-zone soil moisture within the Landsat grid cells.  Then, 

the “Results and discussion” section compares the remote-sensing and in-situ estimates, and 

finally the “Conclusions” section summarizes the main conclusions of the study. 
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REMOTE-SENSING METHODS 

 

 

 

ReSET was utilized in this study for three reasons.  First, it expands upon the original 

SEBAL method by utilizing data from multiple weather stations, which allows the method to 

better account for spatial variations within the application region.  Second, similar to METRIC, 

ReSET can be calibrated to ground-based reference ET measurements if available.  ReSET, 

however, uses a raster format that allows the usage of multiple weather stations for calibrating 

the model; such capability is not available in SEBAL or METRIC.  Finally, ReSET has been 

previously applied and tested in the present study’s application region and other similar regions 

(Elhaddad and Garcia, 2008; Elhaddad et al., 2011; Niemann et al., 2011).  No innovations or 

changes were made to ReSET for this study.  Thus, only a brief summary of ReSET is provided 

here, and readers are referred to Elhaddad and Garcia (2008) for a more thorough discussion. 

ReSET uses satellite imagery, digital elevation models (DEMs), and surface roughness to 

calculate the components of the land-surface energy balance equation: 

               (1) 

where λE is the latent heat flux (E is the ET rate in kg∙m-2∙s-1
 and λ is the latent heat of 

vaporization of water in J∙kg
-1

), Rn is the net radiation at the surface (W∙m-2
), G is soil heat flux 

(W∙m-2
), and H is the sensible heat flux (W∙m-2

).  All terms represent the average values within a 

given grid cell of the remote-sensing images.  Net radiation is computed for each pixel from the 

radiation balance using surface albedo obtained from short-wave radiation and the emissivity 

estimated from the long-wave radiation (Bastiaanssen et al., 1998a).  Soil heat flux is estimated 

from net radiation and parameters such as surface albedo, normalized difference vegetation index 

(NDVI), and surface temperature (Bastiaanssen, 2000).  Sensible heat flux is calculated from 
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wind speed, estimated surface roughness for momentum transport, and air temperature 

differences between two heights using an iterative process based on the Monin-Obukhov 

similarity (Monin and Obukhov, 1954).   An average Λ for each pixel in the application region is 

then derived from the components of the energy balance equation: 

  
  

    
 

  

    
       (2) 

 Satellite data requirements for ReSET include reflectance data in the visible, near-

infrared, and infrared bands, as well as emission in the thermal infrared band.  For this study, a 

fine spatial resolution was preferred to facilitate comparison to in-situ measurements, so Landsat 

5 and Landsat 7 were used (This study occurred prior to Landsat 8 images being available).  

Landsat 5 and 7 visible bands (1, 2, and 3) and infrared bands (4, 5, and 7) are all available at a 

30 m resolution.  Landsat 5 and 7 thermal bands (6) are available at 120 m and 60 m resolutions, 

respectively.  From these data, ReSET produces a Λ grid at a 30 m resolution, but Λ estimates in 

adjacent 30 m grid cells are not necessarily independent due to the coarser resolution of the 

thermal bands.   

ReSET also requires a DEM and weather station data.  A DEM with the same or finer 

resolution as the satellite data is needed to account for topographic variations in the energy 

balance components.  Wind run values (24-hour) are required from weather stations to estimate 

the sensible heat flux.  ReSET requires the user to determine the extremes on each end of the ET 

scale: a wet pixel (maximum ET) and a dry pixel (minimum ET).  In ReSET’s calibrated mode, 

instantaneous ET is utilized from weather stations to determine the maximum ET value in the 

processed area and rescale the estimated values.  Reference ET values for ReSET’s calibrated 

mode are calculated utilizing the American Society of Civil Engineers (ASCE) Standardized 

Reference Equation (ASCE-EWRI, 2005) with alfalfa as a reference crop.  The required 
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(weather station) data for this method are air temperature, relative humidity, vapor pressure, solar 

radiation, and wind speed.   

 Once the Λ grid is determined, θ and s can be calculated from the relationships proposed 

by Bastiaanssen et al. (2000) and Scott et al. (2003), respectively.  The Bastiaanssen et al. (2000) 

relationship is: 

       ( )  or     (
    

 
)
     (3) 

where a and b are empirical parameters.  When fitted through FIFE and EFEDA data, 

Bastiaanssen et al. (2000) and  Scott et al. (2003) estimated nearly identical values with a = 

1.284 and b = 0.421.  The Scott et al. (2003) relationship for estimating s is: 

 

    
  (

   

 
)
       (4) 

where c = 1 and d = 0.421.  Scott et al. (2003) imposed c = 1 under the expectation Λ = 1 when 

the soil is fully saturated (s = 1).  Note that both empirical expressions apply for normal (non-

advective) conditions when Λ is expected to range between 0 and 1 (Scott et al., 2003).  Thus, 

the expressions are not expected to hold for low sun angles, cloudy conditions, or areas where 

well-irrigated crops are surrounded by dry hot areas.   

Both θ and s were estimated using this approach during summers of 2009, 2011, and 

2012 by processing Landsat images 31/34 and 32/34 in southeastern Colorado (Figure 1(a)) 

when a satellite was over the region and field data were available.  The required meteorological 

data were obtained from four weather stations in the Colorado Agricultural Meteorological 

Network (CoAgMet) (Andales et al., 2009).  Three of these stations are located near Lamar, and 

the other is near La Junta (Figures 1(a) and (c)).  One additional weather station that is operated 

by Colorado State University (CSU) at the Piñon Canyon Maneuver Site (PCMS) was also used 

(Melliger and Niemann, 2010).  This weather station is co-located with soil moisture probes at 
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the so-called ungullied site (UNGU), which is described in more detail later.  Once θ and s maps 

are developed from ReSET, the θ and s values for any instrumented field are determined from a 

weighted average of any satellite grid cells that overlap the field’s spatial extent.   

Some estimates of θ and s from the remote-sensing method were eliminated from 

consideration in this study.  Landsat 7 images have bands of missing data due to a Scan Line 

Corrector failure (Barsi et al., 2006), which results in the loss of soil moisture estimates at some 

fields for some dates.  Additional dates and fields were eliminated due to clouds.   Several 

studies have noted that clouds and cloud shadows can create a discrepancy between estimated 

and actual Λ due to the satellite-perceived temperature differences (Crago and Brutsaert, 1996; 

Lhomme and Elguero, 1999; Gentine et al., 2007).  To avoid any possible effects from clouds, 

the thermal images were also inspected for any abrupt differences in temperature (typically 

greater than 5 K over distances less than 500 m) that could not be explained by changes in 

terrain, irrigation activities, or other physical features.  Any sites where the θ and s estimates 

were potentially impacted by clouds were eliminated from analysis.  Also, several wildfires 

burned approximately 18,000 ha in the application region June 5 – 21, 2011 (Michalak and 

Kriegbaum, 2013).  The estimates from three fields during 2011 were excluded from 

consideration due to close proximity to the burned areas (within 500 m).  In addition, 13 sites 

that were downwind from the burned areas were excluded for June 26, 2011 due to the 

possibility of smoke over these sites. 
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FIELD METHODS 

 

 

 

The in-situ θ and s observations come from three distinct datasets.  Two of these datasets 

are comprised of preexisting sites located at PCMS.  PCMS is a large and almost completely 

undeveloped Army training site that is intermittently used for exercises.  The first dataset (CSU 

PCMS) consists of three fields and was installed for a previous soil moisture study that began in 

2008 (Melliger and Niemann, 2010).  The second dataset (USGS PCMS) is from the United 

States Geological Survey (USGS), who installed thirteen sites for prior USGS research projects 

(Von Guerard et al., 1987; Stevens et al., 2008).  Figure 1(a) shows the locations of the CSU 

PCMS and USGS PCMS fields relative to the Landsat image footprints, and Figure 1(b) shows a 

closer aerial view of these locations at PCMS.  The third dataset (CSU LARV) is comprised of 

fields that were newly instrumented for this study.  These fields are located in the Lower 

Arkansas River Valley (LARV), which is northeast of PCMS (Figure 1(a)).  Twelve fields (six 

pairs of fields) are included in this dataset (Figure 1(c)). 

Vegetation cover at all monitored fields is similar.  All fields fall within the same 

Environmental Protection Agency (EPA) Ecoregion classification, which is:  Level 1:  Great 

Plains, Level 2:  South Central Semi-Arid Prairies, Level 3:  Southwestern Tablelands, Level 4:  

Piedmont Plains and Tablelands (Omernik, 1987).  In addition, all fields are classified by the 

2006 National Land Cover Data (NLCD 2006) as grassland/herbaceous.  The vegetation consists 

mainly of shallow root-zone prairie grasses (primarily galleta (Pleuraphis jamesii), alkali sacaton 

(Sporobolus airoides), sand dropseed (Sporobolus cryptandrus), sideoats grama (Bouteloua 

curtipendula)) with active root layers typically in the top 50 cm of the soil (Weaver, 1958; 

Coupland and Johnson, 1965; West et al., 1972).  Other species that comprise a small percentage 
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of the vegetation cover include soapweed yucca (Yucca glauca)), cacti (pinkflower hedgehog 

(Echinocereus fendleri), kingcup hedgehog (Echinocereus triglochidiatus), and plains prickly 

pear (Opuntia polyacantha)), Colorado pinyon (Pinus edulis), and juniper (oneseed juniper 

(Juniperus monosperma) and Rocky Mountain juniper (Juniperus scopulorum)).  Some of these 

species have deeper roots than the herbaceous vegetation and might affect the definition of the 

root-zone θ and s.  For example, yuccas have the potential for rooting depths greater than 6 m 

(McGinnies et al., 1991).  These species were avoided to the extent possible.  The depth that is 

most closely associated with the remote-sensing estimates is examined in more detail later. 

CSU PCMS 

The CSU PCMS dataset includes three fields, and each field has an extent of 

approximately one 30 x 30 m Landsat pixel.  The westernmost field is identified as ungullied 

(UNGU), and it has less than 1 m of total relief.  The two other fields are located approximately 

700 m southeast of UNGU and are referred to as the southwest gully (SWGU) and northeast 

gully (NEGU).  These fields each have a total relief greater than 3 m.  NEGU also has a few 

juniper trees near its eastern edge (within 3 m) but outside the instrumented area.  The thermal 

pixel used to calculate Λ might be impacted by these woody plants and their deeper roots. 

Soil moisture at 0-10 cm depth is measured hourly for the CSU PCMS fields using 

multiple TDR probes that are oriented perpendicular to the soil surface.  At UNGU, 32 probes 

are installed in 4 parallel transects that are 5.5 m apart.  Each transect contains 8 probes, which 

are approximately 6 m apart.  Additionally, two locations at UNGU have 10 cm probes buried 

perpendicular to the soil surface to measure moisture at 10 – 20 cm and 20 – 30 cm depths.  

SWGU also has 32 surface probes installed in 4 transects, which are 5.5 m apart.  Each transect 

has 8 probes, which are located at the midpoints between breaks in topographic slope.  The 
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average length of each transect at SWGU is approximately 40 m.  Additional probes are buried at 

2 locations within SWGU to measure soil moisture at 10 – 20 cm and 20 – 30 cm depths.  NEGU 

has 20 surface probes installed in 4 transects, which are 5.5 m apart.  Each transect has five 

probes, which are located at the midpoints between breaks in topographic slope.  The average 

length of each transect at NEGU is approximately 20 m.  Additional probes are buried at one 

location within NEGU to measure soil moisture at 10 – 20 cm and 20 – 30 cm depths. 

Campbell Scientific, Inc. (CSI) TDR100’s are used to generate the waveforms, and CSI’s 

waveform interpretation algorithm is used to obtain the apparent permittivity (Ka).  The Topp et 

al. (Topp et al., 1980) equation is then used to transform Ka to θ.  The soil moisture 

measurements were previously verified by comparing to gravimetrically-derived θ values.  The 

MAE was reported as 0.014 m
3
/m

3
 by Melliger and Niemann (2010).  To remove occasional 

anomalous soil moisture readings, any individual values greater than two standard deviations 

from the spatial average for the associated field were eliminated.  The remaining values from 

each field were then used to obtain the final average soil moisture for the field when the satellite 

was overhead.   

The average degree of saturation s was then calculated by dividing the average soil 

moisture by a single average porosity (ϕ) for the field.  For each CSU PCMS field, the average 

porosity was estimated from multiple bulk density values that were measured by Melliger and 

Niemann (2010) (Table 1).  Those authors also collected soil texture information, which suggests 

that the soils at the CSU PCMS fields are mostly clay loam.   

USGS PCMS 

Hourly soil moisture is measured at each USGS PCMS field by a single sensor.  An 

Automata Aqua-Tel TDR 94-29 is installed at eight fields, and an Aqua-Tel TDR 630-8019 is 
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installed at the remaining five fields.  All probe lengths are 48.3 cm.  The probes are all buried 

horizontally, but the burial depths range from 3.8 cm to 10.2 cm (Table 1).  Soil moisture is 

derived by an internal waveform interpretation algorithm.  Site-specific calibrations were 

performed by USGS to best reproduce gravimetrically-derived soil moisture observations 

(Kuzmiak, 2013).  Bulk densities were also measured by USGS and have been used to calculate 

the porosity at each site (Table 1).  Soil texture data are not available for these sites, but the 

USDA NRCS Web Soil Survey indicates that the soil texture is primarily silt loam (Table 1).  

Vegetation at the USGS PCMS sites is primarily herbaceous, but a few fields (BIGA, CANT, 

and UBEN) have pinyon pines and junipers that can fall within the thermal pixel used to 

calculate evaporative fraction.  To determine if this vegetation impacts the study results, the three 

fields in question were temporarily removed from the dataset, and the results did not 

significantly change. 

CSU LARV 

Twelve additional fields were instrumented in the LARV to complement the two 

preexisting datasets.  The primary criterion in field selection was to match the vegetation of the 

preexisting fields.  The new fields were selected in the LARV because this region lies in the 

overlap between the 32/34 and 31/34 image footprints.  As a result, remote-sensing estimates can 

be obtained for these fields approximately every eight days instead of every sixteen days like the 

PCMS sites.  The fields were also selected to avoid areas with high salinity which can impact 

how easily vegetation can extract the needed moisture and in turn affect the Λ – θ relationship.  

Fields with heavy grazing, which might affect the relationship between Λ and θ or s, due to soil 

compaction and plant degradation, were also avoided.  They were also selected to avoid any 

feature that could affect the remote-sensing algorithm (a tree, water body, road, etc.).  The fields 
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were also selected to have homogeneous topography and vegetation, where homogeneity was 

judged based on aerial photos and field inspections.  This homogeneity facilitates measurement 

of the spatial-average θ and s with limited point measurements.  In addition, Λ maps were 

utilized so that the fields as a group span the widest possible range of Λ values (to observe as 

much of the relationship with θ or s as possible). 

Six general areas were selected for fields, and two 30 x 30 m fields were instrumented in 

each area.  The two fields are far enough apart so each field falls in a different pixel in the 

thermal images (see schematic in Figure 2).  Within each field, soil moisture was measured at 

two locations near the center of the field (and 10 m apart).  At each location, an installation hole 

was excavated, and 15 cm TDR probes were installed with their heads located at 25 cm and 50 

cm depths.  To avoid any unnatural accumulation of water on top of the probes, they were 

inserted downward at a 45 degree angle.  Thus, the probes measure soil moisture at 25 – 36 cm 

and 50 – 61 cm depths.  The probes were not installed directly above/below each other to avoid 

possible interactions.  In addition, TDR measurements were taken at the surface by inserting a 15 

cm probe at a 45 degree angle (measuring soil moisture at 0 – 11 cm depth).  Surface 

measurements were taken within 1 m (but not directly above) the buried probes. 

Soil moisture data were collected for the CSU LARV sites only during the summers of 

2011 and 2012.  On each date when Landsat images were available, a portable CSI TDR100 was 

used to obtain the soil moisture values.  For a given date, location, and depth, three 

measurements were taken and averaged.  The field measurements were collected on the same 

day as the satellite estimate but not at the exact time of the overpass (approximately 10:30 A.M. 

MST) because the TDR was transported to each field and measurements were taken manually.  

The difference in the time of the satellite and in-situ measurements was evaluated as a potential 
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source of error, but it does not significantly affect the results of the study.  CSI’s algorithm was 

used to interpret TDR waveforms and obtain Ka.  Then, the Ka values were transformed into soil 

moisture values using a calibration equation that was developed for each pair of fields using the 

procedures recommended by Evett et al. (2008).   The average R
2
 value for these equations is 

0.98, and the average MAE is 0.007 m
3
/m

3
 and the average RMSE is 0.008 m

3
/m

3
 when 

comparing the TDR soil moisture estimates with gravimetrically-derived soil moisture.  To help 

interpret the intermittent soil moisture measurements from the CSU LARV sites, a Davis 

Instruments 7852 tipping bucket rain gauge was installed at each field.  The rain gauges recorded 

precipitation values in 0.254 mm increments, which were totaled to obtain hourly rainfall rates.   

To calculate s at the CSU LARV fields, two soil samples were taken from the top 10 cm 

in each field.  Bulk density values were calculated and used to estimate the porosity.  The 

estimated porosities were compared to the ranges given for the corresponding soil types in the 

NRCS Web Soil Survey, and all porosity values fell with +/-5% of the ranges. 
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ANALYSIS OF FIELD DATA 

 

 

 

A significant challenge in evaluating remote-sensing estimates is ensuring that the ground 

measurements are representative of the variable being estimated remotely.  For the present study, 

ensuring comparability between these two sources requires addressing two main issues.  First, 

the remote-sensing method is expected to estimate the spatial-average soil moisture over a 30 m 

x 30 m grid cell whereas the ground measurements estimate nearly point values at a limited 

number of locations.  Second, the remote-sensing method is expected to estimate the root-zone 

average soil moisture (Scott et al., 2003; Bezerra et al., 2013) whereas the ground measurements 

observe particular depths. 

First, we examine how well the average soil moisture that is calculated from the two 

central points at the CSU LARV fields estimates the average soil moisture for a 30 m x 30 m 

area.  For one date at each field, a 5 by 5 grid was surveyed with 6.25 m spacing between each 

grid point.  Surface soil moisture measurements (0 – 11 cm depth) were collected at each of the 

25 points using the same procedures that were used for routine monitoring at these fields.  The 

average soil moisture from the 25 temporary points was compared to the average soil moisture 

from the 2 permanent points.  In addition, the quartiles from the 25 points were calculated 

(Figure 3(a)).  For comparison, the quartiles were also calculated for the CSU PCMS fields using 

the numerous probes that are permanently installed at those fields (Figure 3(b)). 

Comparing the box-and-whisker plots in Figure 3 suggests that the CSU LARV fields 

have much more homogeneous soil moisture than the CSU PCMS fields.  This result is expected 

because the CSU LARV fields were selected to have flat topography and homogeneous 

vegetation.  The average of the two points can fall outside the upper or lower quartiles from the 
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25 points.  However, because the quartiles span such a narrow range at the CSU LARV fields, 

the actual difference between the two averages is small.  On average, the MAE of the 2-point 

average value is 0.007 m
3
/m

3
.  Considerable spatial variability occurs at the CSU PCMS fields, 

especially at higher moisture contents (Figure 3(b)).  This behavior is also expected given the 

variable topography in these fields.  However, because 20 to 32 locations are monitored on all 

dates, the estimated average soil moisture is expected to be reliable for the CSU PCMS sites as 

well. 

Spatial variability of soil moisture within the USGS PCMS fields could not be 

determined due to access restrictions at PCMS.  These fields have little topographic relief and 

generally homogeneous vegetation, so they are expected to resemble the CSU LARV fields more 

than the CSU PCMS fields.  However, only one probe is available at each USGS PCMS field, so 

these in-situ soil moisture values are expected to be less reliable estimates of the 30 m x 30 m 

average than the other datasets. 

A second analysis was performed to determine whether the surface soil moisture 

measurements are representative of the depth of soil moisture that is estimated from the remote-

sensing method.  For this analysis, we considered the fields where soil moisture measurements 

are available at multiple depths (i.e. CSU LARV and CSU PCMS).  For each field, the root-zone 

average soil moisture was estimated from a weighted average of the in-situ measurements from 

the three available depths.  The weights and the parameters (a and b) were all simultaneously 

adjusted to maximize the agreement between the estimated root-zone soil moisture and the 

remote-sensing estimates based on the Nash Sutcliffe Coefficient of Efficiency (NSCE) (Nash 

and Sutcliffe, 1970).  NSCE has a maximum possible value of one, which would indicate perfect 

agreement.  Lower values indicate worse performance (negative values are possible).  The best 
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agreements occur when the weights of the surface measurements are near 100%.  To illustrate 

this result, Figure 4 includes only the two depths that are consistent in both datasets (surface and 

25 cm) and shows the NSCE as the weights are varied.  Similar to using three depths, the NSCE 

is highest when the surface weight approaches 100%.  This result suggests that the use of the 

larger dataset of surface soil moisture measurements to evaluate the remote-sensing estimates is 

appropriate. 
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RESULTS AND DISCUSSION 

 

 

 

Calibration of the ReSET model to reference ET values from weather stations should 

improve the accuracy of the Λ estimates, but if weather station data are inaccurate, the 

calibration could actually introduce errors.  Both the uncalibrated and calibrated modes of 

ReSET were used to process images from the summer of 2009.  Figure 5 plots the Λ values from 

both modes against the in-situ θ measurements from the same subset of dates.  For the 

uncalibrated mode (Figure 5(a)), the Λ values span a very broad range even when θ is small 

(below 0.2).  When the calibrated mode is used, these unexpectedly large Λ values are reduced 

and the data are more consistent with the proposed Bastiaanssen et al. (2000) relationship.  In the 

calibrated mode, the weather station data are used to determine a more reliable upper limit for 

the ET, which provides an improved estimate for the range.  Thus, the calibrated mode produces 

more realistic results and is used in the remainder of this study. 

The complete dataset from all fields and all three summers (280 points) is shown in 

Figure 6.   In particular, Figure 6(a) plots the Λ values from the calibrated mode of ReSET 

against the in-situ measurements of θ.  A large majority of the points (84%) fall above the 

Bastiaanssen et al.(2000) relationship, which implies that for a given θ, Λ is typically higher than 

expected from that relationship.   This disagreement might occur for several reasons.  First, it is 

possible that despite the calibration, ReSET overestimates Λ when θ is small, which shifts the 

data upwards on the graph.  It is also possible that the small dataset used by Bastiaanssen et al. 

(2000) (only 23 points) is not representative of the relationship between Λ and θ for the present 

application region.  For example, the Λ – θ relationship could depend on the sparse vegetation 

cover and shallow root-zone depth in the region.  Leaf area index (LAI) was calculated using the 
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formula presented in Allen et al. (2007), and the average value for all fields was about 0.10.  

This low value suggests that soil evaporation is likely more important for the present study.  

Bastiaanssen et al. (2000) also used soil moisture measurements as deep as 50 cm, whereas the 

observations in Figure 6 are all from 0 cm to 11 cm.  A shallower root-zone might make any 

moisture more available for soil evaporation and increase Λ for a given θ.  To evaluate the 

possibility that the depth might play a role, the Bastiaanssen et al. (2000) relationship was 

reevaluated using the deeper soil moisture values that are available in our application region.  

Some deeper soil moisture values are more consistent with the Bastiaanssen et al. (2000) 

relationship for limited locations and times, but others remain similar to the behavior of the 

shallow soil moisture data; overall utilizing deeper depths produces greater scatter and poorer 

performance.   

It is also possible that differences in soil texture between the application regions affect 

the Λ – θ relationship.  Previous studies considered sandy clay loam or loamy sand, which have 

median sand contents of 77% - 83% (Bastiaanssen et al., 2000; Scott et al., 2003; Bezerra et al., 

2013).  The majority of the USGS PCMS fields are silt loam, which has a median sand content of 

30%.  The majority of the CSU LARV fields are loam, which has a median sand content of 50%.  

Most of the remaining fields are clay loam, which has a median sand content of 50%. 

Figure 6(b) plots the Λ values from ReSET against the in-situ measurements of s.  To 

generate this figure, the in-situ θ values were converted to s by dividing by the porosity estimated 

for each field.  Similar to Figure 6(a), a large majority of the data are above the relationship 

suggested by Scott et al. (2003).  Thus, a difference in the typical porosities between the 

application regions are unlikely to explain the disagreement between the dataset and the 

relationship proposed by Bastiaanssen et al. (2000) that was seen earlier.  However, accounting 
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for the porosity does improve the agreement between the three sources of data for the application 

region.  In Figure 6(a), one can see that the CSU LARV dataset almost always has lower θ values 

for a given Λ than the CSU PCMS and USGS PCMS datasets.  However, the CSU LARV 

dataset has s values that are somewhat more consistent with the other two datasets.  This result 

suggests that Λ might be more directly related to s than to θ, but the continued inconsistency 

between the datasets might suggest that some roles of soil texture remain unaccounted for. 

Scott et al. (2003) suggested that porosity could potentially be estimated from the 

maximum observed in-situ soil moisture value.  Thus, s = θ/θmax where θmax is the largest soil 

moisture observed at a location.  This approach was also implemented, but it produced poorer 

results than estimating the porosity from the bulk density measurements.  Estimating the porosity 

with this approach is likely less reliable because of the dry conditions that prevailed during the 

study period and the limited data available at the CSU LARV fields. 

Because the data do not agree with the relationships proposed by Bastiaanssen et al. 

(2000) and Scott et al. (2003), calibrated relationships were developed to estimate θ and s from 

Λ.  Figure 6(a) shows two calibrated relationships to estimate θ.  Both relationships have the 

same logarithmic form as the one proposed by Bastiaanssen et al. (2000), but the parameters a 

and b were selected to maximize the NSCE of the θ estimates.  One of these relationships is also 

constrained to pass through the point (θ = 0.5, Λ = 1), which is consistent with the Bastiaanssen 

et al. (2000) relationship.  This constraint was added because the large number of very dry points 

in the dataset overwhelms the influence of the wetter points and produces a very steep 

relationship if not constrained.  Figure 6(b) shows two similarly calibrated relationships to 

estimate s.  Both relationships use the c and d values that maximize the NSCE of the s estimates, 

but one is constrained to pass through (s = 1, Λ = 1), which is consistent with Scott et al. (2003). 
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Figure 7 plots the θ and s values that are estimated from the different relationships against 

the corresponding observed values, and Table 2 summarizes various measures of performance 

for the θ and s estimates.  Figure 7(a) shows that using the Bastiaanssen et al. (2000) relationship 

tends to overestimate θ except perhaps at the higher observed values of θ.  Similarly, using the 

Scott et al. (2003) relationship tends to overestimate s except at the highest observed values of s 

(Figure 7(c)).  Both of these tendencies result in the large positive bias values in Table 2.  Figure 

7(b) and 7(d) show that the calibrated relationships exhibit little bias except at the highest 

observed θ and s values where those relationships tend to provide underestimates.  The bias 

values in Table 2 confirm that the fitted relationships have much less overall bias than the 

Bastiaanssen et al. (2000) and Scott et al. (2003) relationships.   

The NSCE is negative when the Bastiaanssen et al. (2000) relationship is used to estimate 

θ (Table 2), which suggests a poor ability to reproduce the variability in the observations.  The 

poor NSCE is expected given the substantial bias.  The NSCE is still negative when the Scott et 

al. (2003) relationship is used to estimate s, but the value is a little better.  This improvement 

again suggests that Λ is more strongly related to s than θ.  Because using the space-time average 

of the s observations as an estimate would produce an NSCE value of zero, this performance is 

still quite poor.  When the fitted relationships are used to estimate θ, the NSCE values become 

positive.  The RMSE and MAE values for θ are below 0.05 m
3
/m

3
, which suggests that the 

method provides an approximate soil moisture estimate that might be suitable for some 

applications.  When the fitted relationships are used to estimate s, the NSCE is even better.  The 

RMSE and MAE values for s are below 0.09 m
3
/m

3
, which is again sufficient to provide 

approximate estimates for s.  These values are higher than the ones for θ because s has a larger 
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range of variation than θ.  In all cases, the mean relative errors (MREs) are quite large in part 

because many observed θ and s values are small. 

When calculating the performance metrics described above, values for all locations and 

dates were combined together.  Thus, the metrics consider the method’s ability to reproduce both 

spatial and temporal variability in the dataset.  To test whether the method is successful at 

reproducing spatial variations in s on a given date, NSCE was calculated separately for each date 

and then averaged.  When the Scott et al. (2003) relationship is used, the average NSCE is -18.8.  

When the fitted relationship with no constraint is used, the average NSCE increases to -4.56.  

When the fitted relationship with the constraint to pass through (s = 1, Λ = 1) is used, the NSCE 

is -4.81.  In all cases, the performance varies widely between dates.  For the fitted relationship 

with the constraint, the best day has an NSCE of 0.571, and the worst day has an NSCE of –32.1 

(Figure 8(a)).  Thus, the remote-sensing method is poor at reproducing the spatial variations in s 

in this dataset.  It should be noted that all the fields in the dataset are semiarid grasslands, so the 

spatial variations in moisture are relatively small.  If, for example, wetter points from irrigated 

fields were included in the dataset, it is very likely that the method would identify those points as 

wetter and the spatial variability that is reproduced would increase substantially.  Nonetheless, 

these results suggest that the method is poor at differentiating the moisture values that occur 

across the naturally-vegetated portions of this relatively flat and homogeneous landscape. 

A similar analysis was performed to examine the method’s ability to reproduce the 

temporal variability at each field.  The NSCE was calculated separately for each field and then 

averaged.  Using the Scott et al. (2003) parameters (a = 1, b = 0.421), the average NSCE is -2.87, 

best NSCE at any field is 0.746, and the worst is -15.5.  When the fitted relationship without the 

constraint is used, the average NSCE is 0.141.  When the fitted relationship with the constraint is 
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used, the average NSCE is -0.043.  For this last case, the best NSCE at any field is 0.808, and the 

worst NSCE at any field is -1.72 (Figure 8(b)).   Thus, the remote-sensing method is more 

successful at reproducing temporal variability than spatial variability in this dataset.  This result 

likely occurs because a wider variation in moisture occurs through time in each field in the 

dataset than occurs between different fields on a given date. 

The dataset was partitioned in a variety of other ways to try to identify more specific 

sources of error.  For example, the data were separated into groups based on the time since the 

most recent rainfall event to investigate whether rainfall disturbs the relationships with Λ.  

Rainfall can potentially increase the soil moisture quicker than plants can transpire the available 

water (Laio et al., 2001).  In addition, soil heat flux is also quickly impacted by rainfall events 

(Cammalleri et al., 2012).  However, the error does not exhibit a clear dependence on the time 

following the most recent rainfall event or other factors considered.  In addition, the possibility 

that Λ is related to an average s over a preceding period of time was considered.  The soil 

moisture observations at each location were used to calculate the average s over varying periods 

(up to 2 weeks) leading up to the time when Λ is estimated from ReSET.  However, Λ is most 

strongly related to s at the coincident time. 

The remaining errors might stem from a variety of sources.  The Λ values likely include 

some errors.  For example, ReSET assumes that the aerodynamic roughness is homogeneous, 

and various studies have indicated that variability in the aerodynamic roughness can impact the 

estimates of the surface fluxes (Hignett, 1994; Prueger et al., 2004; Lu et al., 2009; Chávez et al., 

2012).  Although the fields in this study were selected to be as homogeneous as possible, 

vegetation heights do vary and bare patches do occur within the fields.  Other errors might stem 

from the use of a unique relationship between Λ and s.  Modeling studies have shown substantial 
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scatter in the soil moisture values that are associated with a given transpiration rate (Entekhabi et 

al., 1992; Tripp and Niemann, 2008).  Such scatter can occur if plants extract water from one 

layer to compensate for dry conditions in another layer.  It could also occur due to hysteresis in 

relationship between soil moisture and the suction head, which is likely more closely related to 

Λ.  Such scatter would make it difficult to estimate soil moisture from the transpiration rate by 

way of a single static equation.  The density of vegetation cover has also been shown to impact 

the relationship between evaporative fraction and soil moisture (Jamiyansharav et al., 2011; 

Krishnan et al., 2012).  ET from bare areas is dominated by soil evaporation, which is expected 

to extract water from near the surface.  On the other hand, ET from more densely vegetated areas 

has a higher contribution from transpiration and is expected to extract water from deeper in the 

soil.  Thus, the depth that is most closely associated with evaporative fraction is expected to vary 

in space and potentially in time.   
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CONCLUSIONS 

 

 

 

The main objectives of this study were to test the strength of the proposed Λ - θ and Λ - s 

relationships and to evaluate the estimation of θ and s when Λ is inferred from optical and 

thermal imagery.  The main conclusions from this study are as follows: 

1. For the semiarid grassland where this study was conducted, the estimates of θ and s from 

the remote-sensing method are most strongly related to soil moisture in the top 10 cm of 

the soil.  The roots of the herbaceous vegetation in this region can reach 50 cm in depth 

and the roots of other particular species (e.g., yuccas) can reach much deeper.  However, 

the shallow soil moisture likely plays a strong role because a large proportion of the total 

roots are near the surface and because evaporation from bare patches of soil also 

contributes significantly to Λ. 

2. The empirical relationship between Λ and θ that was proposed by Bastiaanssen et al. 

(2000) and the empirical relationship between Λ and s that was proposed Scott et al. 

(2003) are not universally applicable.  In the application region, these equations 

overestimate θ and s when supplied with Λ from ReSET.  This bias also leads to negative 

NSCE values for the θ and s estimates.   However, if calibrated relationships are 

determined using the in-situ observations, the biases in the estimates of θ and s are 

substantially smaller and the NSCE values become positive.  Furthermore, the RMSE and 

MAE values suggest that the method can be used to gain rough approximations of θ or s.   

3. Estimates produced by the remote-sensing method are somewhat more reliable for s than 

θ.  For a given Λ, the in-situ θ values are consistently lower in the LARV region than the 

PCMS region while the in-situ s values are a bit more consistent between the regions.  In 
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addition, the NSCE values for the s estimates are higher than the NSCE values for the θ 

estimates.  This suggests that Λ is more directly related to s than θ.  However, some 

inconsistency persists between the sites with different soils when estimating s, which 

might suggest that some roles of soil texture are not fully resolved by replacing θ with s. 

4. This method is more successful at capturing temporal variation than spatial variation for 

this relatively homogeneous grassland.  The poor ability to reproduce spatial variations 

probably occurs because relatively little variation in θ or s is observed between different 

locations on the same date.  In contrast, relatively large variations occurred between 

different dates at the same locations, which are more easily detected. 

Overall these results confirm that an association between Λ and s occurs.  However, the precise 

form of the relationship differs between the dataset collected here and those from other regions.  

In addition, considerable scatter occurs around the relationship.  Further research is needed to 

gain a better understanding of the physical origin of this relationship, the site characteristics that 

can affect the relationship, and the times and locations when the relationship is stronger and 

weaker.  Additional research should also determine whether related methods such as SEBAL, 

SEBS, S-SEBI, and METRIC can produce improved results. 

 

(Bastiaanssen et al., 1997; Bastiaanssen et al., 1998b; Fleming et al., 2005; Evett et al., 2008)  
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TABLES AND FIGURES 

 

 

Table 1.  Soil moisture measurement depth, soil type, and average porosity values for each field.  

Data sources are identified by their region and the organization that collected the data.  PCMS is 

Pinon Canyon Maneuver Site, and LARV is the Lower Arkansas River Valley.  USGS is the 

United States Geological Survey, and CSU is Colorado State University.  Each field is then 

given a unique four character designation.  For example, the three CSU PCMS fields are 

Northeast Gully (NEGU), Southwest Gully (SWGU), and Ungullied (UNGU). 

 

Data 

Source 
Field 

Measurement 

Depth (cm) 

USDA Soil 

Classification 

Average 

Porosity 

USGS 

PCMS 

BEAR 7.6 silt loam 0.53 

BIGA 5.1 silt loam 0.52 

BRSH 3.8 loam 0.47 

BURS 7.6 silt loam 0.53 

CANT 10.2 silt loam 0.54 

CAWM 7.6 silt loam 0.55 

CIGS 7.6 clay loam 0.52 

GUTI 10.2 silty clay loam 0.58 

MINC 7.6 clay loam 0.50 

ROUR 7.6 silt loam 0.57 

RTWM 3.8 silt loam 0.57 

UBEN 7.6 clay loam 0.55 

URED 7.6 sandy loam 0.45 

CSU 

PCMS 

NEGU 0 - 10 clay loam 0.49 

SWGU 0 - 10 clay loam 0.49 

UNGU 0 - 10 silty clay loam 0.50 

CSU 

LARV 

LA1E 0 - 11 loam 0.43 

LA1W 0 - 11 loam 0.46 

LA2E 0 - 11 loam 0.43 

LA2W 0 - 11 loam 0.46 

LA3E 0 - 11 loam 0.46 

LA3W 0 - 11 loam 0.46 

LA4E 0 - 11 loam 0.45 

LA4W 0 - 11 loam 0.48 

LA5E 0 - 11 clay loam 0.43 

LA5W 0 - 11 clay loam 0.46 

LA6E 0 - 11 sandy loam 0.46 

LA6W 0 - 11 sandy loam 0.36 
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Table 2.  Measures of performance when various relationships are used to estimate θ and s.   

Variable 

Estimated 

Relationship Used NSCE RMSE MAE MRE BIAS 

θ Bastiaanssen et al. (2000) -1.116 0.075 0.064 100% 0.058 

 Fitted Equation 0.322 0.042 0.032 42% -0.0004 

 Fitted and Forced Through 

(θ = 0.5, Λ = 1) 

0.260 0.044 0.034 43% -0.0022 

s Scott et al. (2003) -1.017 0.141 0.117 90% 0.109 

 Fitted Equation 0.355 0.079 0.061 39% -0.0008 

 Fitted and Forced Through 

(s = 1, Λ = 1) 

0.288 0.084 0.065 41% -0.0056 
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Figure 1.  (a)  Application region with approximate Landsat 5 and 7 image footprints (32/34, 

31/34) and instrumented field locations.  (b) A zoomed view of the PCMS region with 

instrumented fields.   (c) A zoomed view of the LARV region with the instrumented fields 

shown (adjacent east and west fields too close to be distinguished in the figure).  
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Figure 2.  Schematic diagram showing the instrumentation layout for a pair of fields in the CSU 

LARV dataset. 

  



33 
 

 

Figure 3.  Characterization of the spatial variability of soil moisture within the CSU LARV and 

CSU PCMS fields for all available dates.  Upper and lower edges of the boxes correspond to 

upper and lower quartiles, and the upper and lower limits of the whiskers indicate maximum and 

minimum values. 
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Figure 4.  NSCE when estimates of θ from the remote-sensing method are compared with in-situ 

values that are calculated from a weighted average of measurements at two depths (surface and 

25 cm) common to both data sets. 
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Figure 5.  Evaporative fraction calculated using ReSET’s (a) uncalibrated mode and (b) 

calibrated mode.   These values are plotted against the surface in-situ soil moisture 

measurements that are available from 2009 (only CSU PCMS and USGS PCMS data). 
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Figure 6.  Evaporative fraction plotted against (a) in-situ surface soil moisture measurements 

and (b) degree of saturation values.  Graphs include data from all available dates and locations 

(280 points).  The fitted relationship to estimate θ uses a = 1.508 and b = 0.427.  The fitted 

relationship for θ that includes the constraint uses a = 1.204 and b = 0.294.  The fitted 

relationship to estimate s uses c = 1.211 and d = 0.428.  The fitted relationship for s that includes 

the constraint uses c = 1 and d = 0.294. 
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Figure 7.  Comparisons of estimated θ or s values against observed θ or s values as indicated in 

the plots.  (a)  Uses the Bastiaanssen et al. (2000) relationship, (b) uses the fitted relationship that 

is forced through (θ = 0.5, Λ = 1), (c) uses the Scott et al. (2003) relationship, and (d) uses the 

fitted relationship for s that is forced through (s = 1, Λ = 1).   
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Figure 8.  (a) NSCE values calculated separately for each date and (b) NSCE values calculated 

separately for each location. 
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LIST OF ABBREVIATIONS 

 

 

 
ASCE American Society of Civil Engineers   MRE Mean relative error 

ASTER Advanced Spaceborne Thermal 

Emission and Reflection Radiometer   

NDVI Normalized difference vegetation 

index 

AVHRR Advanced Very High Resolution 

Radiometer   
NEGU Northeast Gully (CSU PCMS field) 

BIGA USGS Field, see Table 2   NLCD National Land Cover Data 

CANT USGS Field, see Table 2 
  

NRCS Natural Resources Conservation 

Service 

CoAgMet Colorado Agricultural Meteorological 

Network   
NSCE Nash Sutcliffe Coefficient of 

Efficiency 

CSI Campbell Scientific   PCMS Piñon Canyon Maneuver Site 

CSU Colorado State University   ReSET Remote Sensing Evapotranspiration 

CSU 

LARV 

CSU Lower Arkansas River Valley 
  

RMSE Root mean square error 

CSU 

PCMS 

CSU Piñon Canyon Maneuver Site 
  

s Degree of saturation 

DEM Digital Elevation Model   SAR Synthetic Aperture Radar 

ECHIVAL European International Project on 

Climatic and Hydrological 

Interactions between the Vegetation, 

the Atmosphere and the Land-surface   

SEBAL Surface Energy Balance Algorithm 

for Land 

EFEDA  ECHIVAL Field Experiment in 

Desertification-Threatened Areas   

SEBS Surface Energy Balance System 

EPA Environmental Protection Agency 

  

S-SEBI Simplified Surface Energy Balance 

Index 

ET Evapotranspiration   SWGU Southwest Gully (CSU PCMS field) 

FIFE First ISCLCP Field Experiment   TDR Time domain reflectometry 

ISCLCP International Satellite Land Surface 

Climatology Project   
UBEN USGS Field, see Table 2 

Ka Apparent permittivity   UNGU Ungullied (CSU PCMS field) 

LAI Leaf area index   USGS United States Geological Survey 

LARV Lower Arkansas River Valley 
  

USGS 

PCMS 
USGS Piñon Canyon Maneuver Site 

MAE Mean absolute error 

  

θ Volumetric soil moisture 

METRIC Mapping Evapotranspiration at 

High Resolution with Internalized 

Calibration   

Λ Evaporative fraction 

MODIS Moderate-resolution Imaging 

Spectroradimeter  
  

 


