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ABSTRACT 
 
 
 

THE PATHOGENESIS AND ENVIRONMENTAL MAINTENANCE OF MYCOBACTERIUM ULCERANS 
 
 

 
Buruli Ulcer Disease (BUD) is a severe, neglected tropical disease of the skin caused by 

the acid-fast bacillus Mycobacterium ulcerans. The disease is characterized by necrosis of 

subcutaneous adipose tissue, and healing with contracture and/or intense scarring of the skin. 

Little is known about the host response to M. ulcerans from transmission and infection, through 

the course of disease and resolution. Understanding the host-pathogen interaction is key to 

development of treatment programs for this neglected disease. In this dissertation, a systems 

biology approach was used to evaluate a laboratory mouse model of M. ulcerans infection and 

an analysis of the capability of Anopheles gambiae mosquitoes to maintain and transmit the 

bacterium is described following the introduction and literature review (Chapters 1 and 2).  

In Chapter 4, the histology and immune responses in a mouse model that mimics human 

M. ulcerans infection is described, providing insight into the host response during active 

infection with M. ulcerans. Specifically, non-toxigenic, virulent M. ulcerans was inoculated into 

the mouse footpad, and the resulting progression of infection and immune response was 

characterized in both a wild-type C57BL/6 mouse and an immunodeficient Rag1tm1Mom (Rag-/-) 

mutant mouse strain. Assessment of the bacterial burden in the mouse as a correlate of the 

infectious process was documented and demonstrated a persistent or latent feature of 

infection. Additionally, a mechanism of host immunosuppression was described in 
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immunocompetent animals, in the absence of the toxin mycolatone, highlighting the need for 

better understanding of virulence determinants employed by the bacilli during infection.   

Chapter 5 reports an expansion of the mouse model to investigate the transmission of 

M. ulcerans by a mosquito vector. After exposure to M. ulcerans, larval A. gambiae mosquitoes 

experienced significant developmental delay, resulting in reduced survival and stunted growth. 

Adult A. gambiae demonstrated bacterial contamination of their external mouthparts with live 

M. ulcerans bacteria. The contamination pattern of adult mosquitoes implicates these insects in 

the mechanical transmission of M. ulcerans. The mouse model from chapter 4 was used to 

evaluate mosquito borne transmission of the bacillus. Infected mosquitoes were allowed to 

take a blood meal from mice. The subsequent immune response of the mice was measured for 

sero-reactivity against M. ulcerans. In addition, larval mosquitoes were documented to readily 

consume water-borne M. ulcerans, consistent with their feeding mechanism. Thus, larval 

mosquitoes represent a reservoir or point of environmental maintenance of the pathogen.   

Chapter 6 details the initiation of a study to investigate the metabolic effects of the 

exposure of adult mosquitoes to virulent M. ulcerans. The developmental delay and subsequent 

stunted growth of adult mosquitoes after exposure to M. ulcerans was analyzed through the 

mass spectrometric investigation of small molecules of metabolism in an attempt to elucidate 

the biological effects of exposure. In summary (Chapter 7), the availability of a well-defined 

animal model for BUD provides a valuable tool, which can be used to investigate the specialized 

pathogenic features of this emerging infection and explore novel disease interventions.  
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LITERATURE REVIEW CHAPTER 1: MYCOBACTERIUM ULCERANS  
 

 
 

History of Buruli Ulcer Disease 

Buruli Ulcer Disease (BUD) is a physically disfiguring and socially debilitating ulcerative 

disease of the integument caused by Mycobacterium ulcerans and is classified as a neglected 

tropical disease. Despite initial characterization of the disease in 1897 by Sir Albert Cook in 

Uganda, basic questions remain regarding the route of transmission, environmental 

maintenance, and disease pathogenesis.  In 1948, formal discovery and description of M. 

ulcerans infection defining a “new mycobacterial infection in man,” was achieved by MacCallum 

et al. (1948) to include ulceration with atypical histological and bacteriological characteristics in 

the Bairnsdale region of eastern Victoria, Australia (2). Preceding this description, and the 

tentative assignment of a mycobacterial etiology, scattered reports of mycobacteria-implicated 

ulcerations in Africa and Australia could be traced back to the second half of the nineteenth 

century. Over the following decades, hundreds of cases of BUD were reported in sub-Saharan 

Africa (3, 4), further refining the description of the disease. While a dozen names have been 

proposed to describe infection with M. ulcerans, including Bairnsdale Ulcer, the designation of 

Buruli Ulcer was coined by Clancey et al. (1962) corresponding to an endemic riverine region in 

Uganda and the location of many of the first characterized patients (5). During these early 

years, continued investigation of M. ulcerans was complicated by the inability to culture the 

bacteria. In a serendipitous breakthrough, the first successful culture was obtained using a 
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defective incubator maintaining 33°C, the temperature coinciding with M. ulcerans tropism for 

the outer layers of the skin.  

 Epidemiologic and bacteriologic investigations were continued throughout the 1970’s. 

This time was characterized by the discovery of risk factors associated with infection, namely 

standing water and insects (6, 7), and attempts to refine the case definition (8, 9). The 

development and testing of a purified protein derivative skin test reagent, termed Burulin, was 

in important breakthrough for the diagnosis of Buruli Ulcer disease (10). However, difficulties 

were arising regarding the specificity and application of the tool in endemic areas (11). 

Importantly, during this time, the only known toxin to be produced by a Mycobacterium was 

identified to be secreted by M. ulcerans and its effects evaluated in a guinea pig model (12). It 

would not be until 25 years later, with the assistance of Delphi Chatterjee from Colorado State 

University, that the toxin would be identified as a small, lipid-like polyketide implicated in a 

variety of potent cytotoxic and immunomodulatory effects associated with infection (13). 

Research in the 21st century has uncovered a vast amount of information regarding M. ulcerans 

infection. The first successful culture from an environmental location provided great insight into 

the mechanisms of bacterial persistence outside the host and the environmental niche of the 

pathogen (14). In 2004, the World Health Assembly passed a resolution calling for advanced 

research into the disease.  Shortly thereafter, multiple research consortia were formed to 

streamline the efforts of collaboration for the development of prevention and control 

strategies. The standardization and acceptance of criteria for staging and guidance for 

healthcare workers greatly improved the long-term prognosis of Buruli Ulcer disease (15). 

Recent advances in Buruli Ulcer disease research have led to the development of new 
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diagnostic approaches using mass spectrometry (16), a developing understanding of the host 

immune response (17), and continued studies investigating the potential vector capacity of 

insects in the transmission of the bacteria (18). The current state of research into this emerging 

pathogen is fraught with many challenges, further compounded by its place at the bottom of 

the research funding scale compared to other neglected tropical diseases (19).  

Taxonomy, Phylogeny, and Genetics 

Mycobacteria are a diverse and ubiquitous genus of microorganisms, encompassing 

species of pathogenic and non-pathogenic bacteria (Figure 1).  The genus Mycobacteria 

contains the infamous pathogens M. tuberculosis and M. leprae, in addition to members of the 

Figure 1: Phylogeny of Mycobacterium genus. Lineages are denoted based on growth rate of organisms. 
Scale represents amino acid difference. Adapted from Veyrier et al. BMC Evol. Biology. 2009 9:196 (1). 
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Mycobacterium avium complex (MAC) and a wide array of newly designated non-tuberculous 

mycobacteria (NTM) of significant public health concern. The evolution of M. ulcerans is 

primarily associated with the genetic divergence from a common ancestor shared by 

Mycobacterium marinum and the acquisition of a large circular plasmid (pMUM001) encoding 

the polyketide toxin, mycolactone (20). This divergence occurred approximately one million 

years ago and describes the evolutionary diversion from a human and fish pathogen into a 

devastating infection of the skin and underlying tissue in humans (Figure 2). Despite the 

contrasting phenotypes of M. marinum and M. ulcerans, the pair share nearly identical genome 

sequences (98.3% homology), compared to a 78.5% identity to M. tuberculosis (21, 22). The 

complete genome sequence of M. ulcerans consists of a circular chromosome of 5632 Kb and a 

virulence plasmid of 174 Kb, interspersed by 771 pseudogenes and 304 insertion sequence 

elements. Through lateral gene transfer and reductive evolution, the M. ulcerans genome has 

lost approximately 1000kb of DNA compared to its M. marinum progenitor, split between 

twelve regions of between 2 and 53 kb in size (23). Multilocus sequence analysis (MLSA) 

revealed clear delineation between M. marinum and M. ulcerans, also describing clonality 

Figure 2: Splits chart of the phylogenetic relationship among M. ulcerans (MU) and M. marinum (MM) 
genotypes. Edges have greater than 80% bootstrap support. Asterisk denotes edges with greater than 60% 
bootstrap support. Adapted from Stinear et al.  J. Bact. 2000 182:22. 
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among genotypes from different geographic locations (23, 24).  It is suggested this genetic 

speciation is in response to environmental changes and mammalian host adaptation, and 

perhaps indicates a passage through an evolutionary bottleneck (21). The evolution from the 

generalist M. marinum to a specialist, niche-adapted pathogen is characterized by gene loss 

due to DNA deletions and rearrangements mediated by some of the 213 copies of IS2404 and 

91 copies of IS2606 insertion sequence elements, disrupting over 110 genes (22). Such 

disruptions involving cell wall biosynthesis, carbon and amino acid metabolism, and the 

reduced transcription levels thereof help to explain, in part, the slow growth of M. ulcerans 

compared to its progenitor (22), in addition to the contribution of reduced genetic redundancy. 

The insertion sequence elements account for nearly 475 kb of DNA distributed throughout the 

genome. Most notable of these are 79 kb of sequence variation specifically among the PE/PPE 

genes encoding Gly-Ala rich cell envelope proteins, comprising 45% of the 157 regions of 

difference between M. ulcerans and M. marinum.  M. ulcerans has low variability in house-

keeping genes and other genetic elements within isolates from the same geographic region. 

However, the genomic sequences of geographic isolates can be differentiated by single 

nucleotide polymorphisims (SNP) and variable number tandem repeats (VNTR) throughout the 

genomes. Ghanaian strains, for example, contain approximately 100 SNPs compared to the 

reference strain AGY99, whereas Japanese strains can contain as many as 26,000 SNPs. VNTR 

analysis identified 9 VNTR loci as useful molecular targets to study the relationships among 

isolates (25). The combined use of multiple sequence differentiation tools (MLSA, VNTR, IS-PCR, 

SNP), the location differences of the insertion sequence elements IS2404/IS2606, and 

mycolactone structure, reveal 12 distinct geographic clades (Figure 3). Interestingly, all African  
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Figure 3: Categorical dendrogram displaying the clustering of genotypes of both M. ulcerans (MU) and M. 
marinum (MM) isolates from different geographic origins. Adapted from Stragier et al. J. Bact. 2005. 187:5. 
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isolates from West and Central Africa, including historical isolates, belong to the same genotype 

(24, 26-28), and display marked spatiotemporal homogeneity (29).   

Epidemiology and Transmission 

Buruli Ulcer disease is the third most common mycobacterial infection in immuno-

competent people following tuberculosis and leprosy (30, 31). In fact, BUD has replaced 

tuberculosis and leprosy as the most prevalent mycobacterial disease in BUD endemic 

communities, affecting up to 22% of the population within affected communities (32). 

Additionally, over the past decade, there has been a noted increase in BUD in several West 

African countries (33-35). Buruli Ulcer disease has been reported in more than 30 countries, but 

the most significant burden of disease remains in sub-Saharan Africa, and particularly the Gulf 

of Guinea region (30, 36-38). Australia has a long history with M. ulcerans and manages active 

foci of infection in the southeastern coastal regions, specifically coastal Victoria, Far North 

Queensland, Bairnsdale and Point Lonsdale (39-47).  Recently, successful cultures from 

environmental samples have demonstrated the appearance of M. ulcerans in aquatic 

environments, though environmental subsistence and the precise source of infection for 

humans remain unknown (14, 48). The route of infection is also unknown. The organism is 

postulated to enter at sites of trauma to the skin (49, 50), following contact with contaminated 

water or vegetation (51). Insects of the Hemiptera and Diptera orders are implicated in the 

transmission of Buruli Ulcer in many geographic regions, specifically the aquatic biting insects 

from the families Belostomatidae and Naucoridae (52, 53), in addition to multiple genera of 

mosquitoes (54). Indeed, an association between M. ulcerans and these insects has been well 

described, although an understanding of the true dynamics of transmission and interaction via 
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insect systems in a natural setting remains undefined.  A multitude of studies have investigated 

the association between these insects and M. ulcerans (53, 55-62). Epidemiological studies have 

described a higher rate of M. ulcerans DNA contamination of captured mosquitoes during an 

outbreak of disease compared to a non-outbreak period of time (63). Additionally, the biting 

water bugs were shown to actively transmit the pathogen to mice in the laboratory via 

contaminated raptorial arms and salivary glands (58).  Taken together, these studies describe a 

close association between the pathogen and insects, and while it is possible that their role in 

the disease lifecycle may be limited to environmental maintenance of the bacterium and not 

directly transmission, they represent a ubiquitous reservoir.  No confirmatory evidence for 

human-to-human transmission exists (64), although prolonged contact or via bite wound has 

been suggested to lead to ulceration (65, 66). 

The primary risk factors associated with transmission of Buruli Ulcer disease include a 

close association with stagnant or standing water, a lack of protective clothing, such as long 

pants and shoes, and biting aquatic insects. Unfortunately, these risk factors fail to explain the 

true dynamics associated with the emergence and development of disease. The complex 

political and socio-economic interactions in endemic areas must be accounted for to develop a 

clear understanding of the epidemiology of disease. An analysis of the socio-political climate of 

the endemic region along the Nyong River in Cameroon provided novel insights into 

mechanisms of disease transmission and susceptibility of humans (67). Deforestation and 

ecological disruptions leading to a transformation of the human interactivity within an 

ecosystem are a crucial factor in the emergence of Buruli Ulcer. Indeed, these ecological 

disruptions have been documented to be associated with disease outbreaks (68, 69). A multi-
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disciplinary approach to investigating the epidemiology of disease will lead to a better 

understanding of the infection dynamics. As an example from a historical perspective, the 

endemic Akonolinga district in Cameroon has undergone significant socio-economic upheaval in 

the last century. The transition from sustainable agriculture to large-scale commercial farming 

operations has resulted in wide-spread deforestation and disruption of the aquatic ecosystem 

(67). The general health of the population in this region has been negatively impacted by the 

reduced diversity of food and reduced community interaction. A well-documented and poorly 

understood feature of Buruli Ulcer disease are the disproportionate rates of infection in young 

children. Correlating this epidemiological finding to the generalized risk factor of environmental 

disruption, it may be surmised that the reduced food diversity has a greater impact on the 

general health and immunological development of children, thereby increasing their 

susceptibility to infection. This interaction could be used as an alternative model to predict 

emergence of the disease in other geographic locations (70). While the social sciences are often 

marginalized by biological researchers, the “One Health” perspective on the surveillance and 

research of emerging diseases will expand our understanding of the true cause and effect 

relationships that underlie the emergence and transmission of Buruli Ulcer disease (71).  

Disease Manifestations  

The pathogenesis of M. ulcerans infection is believed to follow an initial inoculation of 

the dermis, however the mechanisms behind this process are deeply hypothetical. The bacilli 

then replicate in the subcutaneous tissue resulting in necrosis (72-76). 
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After exposure and an undefined incubation period, the disease is observed to begin as a 

nodule, papule, plaque, or localized edema at or near the site of exposure (Figure 4).  

Unmanaged cases can 

progress to large ulcerative 

lesions which if left 

untreated, result in 

debilitating complications 

from scarring with 

contracture or loss of limbs or vital organs (31, 49, 77). The time to development of an 

ulceration from a nodule or other early disease state is suspected to be weeks to months, 

although the true incubation period has not been characterized to include diverse geographic 

locations and strain phenotypes (78). In an Australian cohort of Buruli Ulcer patients, the 

incubation period for the disease was described to range between 34 and 204 days, with the 

average incubation period being 135 days post exposure (79). Exposure in this study was 

described as a documented visit to an endemic region. However, these results may not be 

generalizable to other endemic regions and infection with other geographic isolates.  

Diagnosis and Treatment 

Diagnosis of M. ulcerans infection is based on clinical appearance using the World 

Health Organization case definition and common molecular techniques (34, 77, 80). 

Misclassification is a problem in both pre-ulcerative and ulcerative stages of disease due to the 

high abundance of both infectious diseases (cutaneous leishmaniasis) and cancer (squamous 

cell carcinoma) with a similar presentation.  Case confirmation requires two positive tests out of 

Figure 4: Plaque formation (left) and ulceration (right) characteristic of 
Buruli Ulcer disease (adapted from WHO, Intl.) 
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the following: Ziehl-Neelsen Acid Fast Bacilli (ZN-AFB) staining, culture, polymerase chain 

reaction (PCR), or histopathology (31, 34, 77, 81-83), but if confirmation occurs at all, it is well 

after initial clinical diagnosis and provides limited information for clinical management 

decisions. Additionally, the three later methods are not likely to be adaptable to rural, resource 

poor areas. Treatment options for BUD are limited, but management strategies continue to 

improve. Based on recent research, randomized trials, and increasing clinical experience, a 

consensus document was prepared to standardize the approach to case management in 2007 

(84). Historically, aggressive surgical excision of nodules and lesions followed by skin graft was 

the treatment of choice based upon the prevailing view that antibiotics were ineffective. Recent 

studies using antimycobacterial drug therapy, specifically rifampin-based regimens, have shown 

efficacy if utilized during early stages of disease (33, 85-88), though disease presentation during 

infection, geographic limitations, and variable incubation times influence the options for 

treatment as the disease progresses. Prospective studies in humans and model animals have 

now shown that treatment with antibiotics alone will lead to healing without recurrence (88-

90). The consensus treatment program includes daily rifampin for 8 weeks in conjunction with 

streptomycin or clarithromycin for a further 4-8 weeks (91). Currently, surgery is infrequently 

recommended as a primary intervention, although there is still a significant role for surgery in 

the initial management of severe cases or when antibiotics are contraindicated (92). 

Debridement of necrotic tissue with the goal of improving the rate of wound closure is 

indicated by the presence of bacilli during histological examination of lesion margins post 

antibiotic treatment, or when the lesion has been present for greater than 75 days (93).  
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Nearly 20% of patients experience a paradoxical reaction to antibiotic therapy, and this 

phenomenon has also been described in animal models of treatment (94-96). It is believed that 

the antibiotic therapy causes a reversal of the immunosuppression described during active 

Buruli Ulcer disease, resulting in an intense immunological reaction to persisting bacteria and 

the occasional development of new ulceration (97).  This immunosuppression is primarily 

ascribed to action of the toxin Mycolactone. However, the potency of rifampin against M. 

ulcerans infections indicates the contribution of a protein or peptide-based virulence factor 

involved in immunosuppression or persistence.  Interestingly, some anecdotal reports of a 

naturopathic approach to disease management have had some success. Application of sterile, 

high mineral-content clay to the lesions resulting in a hypoxic environment and the use of high 

temperature wraps (as indicated by the bacterium’s preferred growth temperature of 32°C) are 

viable options when antibiotic or surgical intervention would not be well-tolerated (98, 99). The 

further characterization of animal models of M. ulcerans infection in concert with increased 

awareness and reporting of the disease have significantly reduced the morbidity associated 

with Buruli Ulcer disease over the past decade.  

Physiology and virulence factors of M. ulcerans 

Generally, non-tuberculous mycobacteria (NTM) represent a diverse group of 

opportunistic pathogens capable of producing multifarious infectious phenotypes. Infections of 

lungs, skin, soft tissue, joints and bones as a consequence of NTM infection results in an 

annualized prevalence range between 7.2 and 35 cases per 100,000 persons in the North 

America alone (100, 101). It is assumed that the prevalence and incidence of NTM infection is 

significantly higher in disadvantaged areas where disease reporting and surveillance are lacking. 
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Members of the NTM classification cause a wide degree of infections, and while genotypic and 

phenotypic differences occur between species, many common mycobacterial traits are 

responsible for the potency of these infections. The physiology of mycobacteria during infection 

has been thoroughly researched over the last century, describing a wide array of virulence 

factors implicated in the survival of the bacilli, its resistance to therapeutics, and the 

persistence associated with many infections.  

Mycobacteria, in general, have evolved diverse strategies to survive within and without 

the human host. Established mycobacterial virulence factors include the prevention of the 

acidification of phagocytic vesicles (102), prevention of phagosome-lysosome fusion (103), 

resistance to antimicrobial components of the serum (104), modulation of cytokine secretion 

(105), the ability to replicate intracellularly (106, 107), and various genetic mutations promoting 

antibiotic resistance (108). In common with other bacterial pathogens adapting to new or more 

stable environments such as M. leprae and Yersinia pestis, genetic perturbations have been 

documented in the genome of M. ulcerans, including the accumulation of insertion sequence 

elements and pseudogenes, genome downsizing, and the acquisition of foreign genetic material 

conferring a selective advantage (22). As a result of reductive evolution and pseudogene 

formation, strains of M. ulcerans have lost many genes encoding some common mycobacterial 

virulence factors, in addition to resultant alterations in physiological processes and metabolism. 

While the M. ulcerans cell envelope and associated metabolites have been less well studied 

than other mycobacteria, inferences from the genome sequence can provide clues to the 

metabolic activity in regards to potential virulence determinants of M. ulcerans, namely 

components of carbon and lipid metabolism. However, little is known about metabolic 
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strategies employed by M. ulcerans during survival in any one of the several distinct niches 

thought to be occupied by the bacilli. Indeed, M. ulcerans employs profoundly different survival 

mechanisms within the host compared to other mycobacterial pathogens.  If M. ulcerans 

successfully occupies a distinct insect associated niche, as has been implicated, the synthesis of 

predicted chitinases/transglycosidases may be of significance (Burulist: MUL_0371, MUL_2210, 

MUL_2681) (109). These enzymes may provide a mechanism of attachment to or degradation 

of the N-acetyl-glucosamine polymers that comprise the major component of insect 

exoskeletons, thereby promoting colonization of insect tissues.  

A noteworthy deletion in the M. ulcerans genome includes reduction of ESX loci from 

five in M. marinum to only three in M. ulcerans and the loss of associated effector proteins 

from 18 to 2, respectively (22). The disruption of genes encoding immunodominant proteins 

involved in this system, such as ESAT-6, CFP-10, and hspX, may represent selection pressure-

induced changes resulting in immune evasion mechanisms. In other mycobacterial species, the 

esx1 locus encodes protein secretion machinery (Type VII) involved in intracellular spread and 

immunogenicity (110). Additionally, loss of this system may contribute, in part, to the reduced 

phagocytic uptake and extra-cellular persistence common to M. ulcerans infection.   

Lipid-based molecules are significant antigenic components of the mycobacterial cell 

wall that are also involved in virulence (111). The loss of many of these components in M. 

ulcerans can be explained by the reduction of polyketide synthase (PKS) genes from 27 in M. 

marinum to 12 in M. ulcerans. The contraction of lipid synthesis machinery coincides with a 

reduction of the MmpL family of lipid and polyketide transporters from 25 in M. marinum to six 

in M. ulcerans. Of the 12 remaining PKS genes, 10 are utilized in the production of important 
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cell-wall-associated lipids including mycolic acids, phthiodiolones, phenol phthiodiolones, 

mannosyl-phospholipids, and mycobactins (112, 113).  

As an example, phenolic glycolipids (PGL) are an abundant component of the cell wall of 

most mycobacteria and, as major virulence factors, are involved in host-immune modulation 

(114). M. ulcerans bacilli are able to synthesize the phenolphthiodolone lipid intermediate, 

although they lack the necessary machinery to add the rhamnosyl moiety and complete the PGL 

molecule (115). Additionally, neither M. ulcerans nor M. marinum contain an analogous PKS 

locus for the synthesis of sulfolipids (22).   

  Despite the inability to synthesize many prominent lipid species, M. ulcerans retains a 

full complement of the fatty acid synthase I/II machinery (FAS I/II) (22), and many other lipid-

associated enzymes. The conservation of anabolic lipid mechanisms highlights the importance 

of particular lipids in the physiology of M. ulcerans. Conversely, the degradation or utilization of 

host-derived lipids is also implicated as a virulence factor of M. ulcerans (116). The catabolic 

phospholipase enzymes have already been identified as virulence factors in other species of 

mycobacteria (117). The phospholipase enzymes hydrolyze phospholipids into distinct subunits 

depending on the enzyme subtype. Subsequently, products of this enzyme-catalyzed 

degradation are involved in downstream signaling events within the host (118), and are 

characterized to play a role in pathogenesis of M. tuberculosis infections (119). However, while 

the phospholipase C and D enzymes are actively synthesized and secreted during growth of M.  

ulcerans, their role during infection with M. ulcerans remains uncharacterized. The functional 

disruption or loss of some of the major immunodominant components important to other 
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mycobacterial infections may confer a selective advantage to this emerging pathogen. A 

summary of these components is included in the table below: 

 The secretion of an extra-cellular matrix (ECM) and the formation of a biofilm is another 

striking feature of M. ulcerans that is likely involved in virulence. The formation of a biofilm 

confers an advantage for many pathogenic bacteria, especially those of environmental origin 

(120). Biofilms of other human pathogens, such as Pseudomonas aeruginosa and Haemophilus 

influenzae have been well characterized and early evidence from M. ulcerans suggests biofilm 

formation may also be implicated in pathogenesis and the colonization of environmental and 

insect niches (121). The structure of the biofilm generated by M. ulcerans differs from classic 

biofilms, appearing as a thick covering of the outmost layer of cells (122). This finding contrasts 

with biofilms generated in other pathogenic bacterial species, which usually demonstrate a 

Table 1: Comparison of virulence factors between M. ulcerans and M. marinum based on 
genetic sequence are summarized (adapted from Demangel et al. Nat Rev Micro, 2009). 
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matrix of ECM and distributed bacterial cells (123). Lipids and lipoglycan components of the 

mycobacterial cell envelope such as lipoarabinomannan and PIM have also been described as 

components of M. ulcerans ECM, in addition to a significant contribution of glucose 

polysaccharides and a large variety of chaperone proteins (DnaK, GroEL, GroES) (122).     

The prolific biofilm and ECM produced by M. ulcerans has a diverse functional role, in 

both environmental persistence and pathogenesis. Aquatic plants are known to secrete organic 

compounds which can be used as a substrate for bacterial growth (124). A recent in vitro study 

by Marsollier et al. (2004) described the role aquatic plant extracts have in the promotion of 

biofilm formation of M. ulcerans (121). This study demonstrated a significant decrease in 

doubling-time (from 80 to 40 days in the study) upon exposure to crude organic plant extracts, 

suggesting M. ulcerans gains a distinct advantage by associating with and utilizing compounds 

synthesized by aquatic plants .  

 During pathogenesis of M. ulcerans infections, the ECM is involved in resistance to 

antibiotics, immune evasion, and increased cytotoxic effects (122). This finding coincides with 

other biofilm forming bacteria (125, 126). However, the impact and abundance of the M. 

ulcerans exotoxin and other uncharacterized virulence factors must also be accounted for when 

assigning the pathological contributions of the ECM.    

Toxin synthesis 

Long regarded as the primary virulence factor for M. ulcerans, the exotoxin mycolactone 

has been shown to be responsible for, in part, the dramatic cytotoxic and immunomodulatory 

effects described during infection. Acquisition of the large pMUM001 virulence plasmid 

encoding the toxin is the primary distinguishing factor associated with divergence from the M. 
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marinum common ancestor. As the only species which actively produces a toxin, M. ulcerans is 

unique within the Mycobacterium genus, and the cytopathologic effects tentatively attributed 

to the toxin underlie the case definition of Buruli Ulcer disease. The existence of a secreted 

factor involved in virulence was postulated as early as 1965 (127), although it would not be 

until 1999 that the toxin would be purified and formally described as the first macrolide 

synthesized by a bacterial pathogen (13). Structurally similar compounds have previously been 

characterized to include antibiotics (erythromycin), an immunosuppressant (rapamycin), 

antifungal agents (amphotericin B), among others, although the host derived target of action of 

these compounds can differ (128). Macrolides are complex polyketides produced as secondary 

metabolites of many soil bacteria of the order Actinomycetales and have a wide array of 

functional effects. Indeed, mycolactone is suggested to contribute to the development of 

pathologic features of Buruli Ulcer disease, although the specific role of the toxin in the 

pathogenesis of disease remains under intense investigation.  

 Structurally, the mycolactone toxin is comprised of a 12-membered ring with two 

attached unsaturated fatty-acid side chains, encoded by the extrachromosomal pMUM 

virulence plasmid. Different geographical isolates produce different structural variants of 

mycolactone, identified as mycolactone A-G (Figure 5). Structural variants are identified by the 

number and location of hydroxyl groups and double bonds, and the length of the lower 

polyunsaturated acyl side chain, while the structure and arrangement of the upper side chain 

and the 12-membered ring appear to be conserved among geographic isolates. 
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A number of in vitro and in vivo studies in human-drived cell lines and animal models, 

have documented a wide array of mycolactone-mediated effects. In a model system developed 

by Hall et al. (Plos Pathogens 2014), a unifying mechanism of the effects exerted by 

mycolactone was proposed to describe broad spectrum inhibition of protein translocation to 

the endoplasmic reticulum (129), as opposed to inhibition of translational processes previously 

proposed (21, 130) .  While the specific molecular consequences of this action are still under 

investigation, a diverse set of immune proteins were found to be sensitive to mycolactone 

(BCA, MIP-2, G-CSF, GM-CSF, IL-27, C5/5a, IL-1RA), depending on the cell type stimulated and 

Figure 5: Mycolactone congeners of the five naturally occurring structures (A/B-F) and one unnatural structure 
(G). Adapted from Hong et al. Nat. Prod. Rep. 2008.  
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the route of stimulation. Other in vitro studies have shown numerous cell types to be sensitive 

to mycolactone (73), resulting in immunomodulation and decreasing the efficiency of the 

immune response (107). The toxin is also purported to be involved in the painlessness of the 

lesions (131).  Regulation of the toxin in vivo has not been investigated, although mechanisms 

attributed to toxin regulation have been discovered in vitro (132, 133). Overproduction of the 

mycobacterial siderophore, mycobactin, is correlated with a down-regulation of mycolactone. 

In addition, the supplementation or removal of specific carbohydrates in growth media has 

been shown to affect regulation of mycolactone synthesis. This evidence suggests that 

environmental signals may influence regulation of the toxin in different niches and pathologic 

conditions (132).   

Host-Pathogen Interactions  

Pathogenesis 

Infection with M. ulcerans is unique among other common mycobacterial infections 

with regard to the tissue tropism, lifestyle, and phenotype of the host immune response. Unlike 

other common mycobacterial infections, which tend to persist in an intracellular environment, 

Buruli Ulcer lesions predominantly contain extracellular bacilli often exclusively in the 

cutaneous, subcutaneous, and adipose tissues (72). Lesions can occur on any part of the body, 

though they tend to occur on limbs or extremities, and absent secondary infection, are painless. 

Histologic assessment demonstrates extensive coagulative necrosis with a proportionally low 

acute inflammatory response as the hallmark criteria of Buruli Ulcer disease, although there is 

considerable variation in the severity and presentation of the disease among geographic areas. 

Some investigators have considered subcategorizing M. ulcerans strains into eco-varieties or 
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ecovars to better explain the presentation diversity that can occur (134). To date, investigation 

into the mechanisms behind this pathogenesis have focused on the contribution of the toxin 

mycolactone. However, it is not clear how mycolactone contributes to the cytotoxicity or 

immunosuppression during clinical infection, as the extent of tissue degeneration and 

cytotoxicity exceeds that which would be attributable to mycolactone alone (73). It is important 

to consider that infection with non-toxigenic M. marinum, M. haemophilum, and M. 

tuberculosis can result in necrosis and cytotoxicity via other mechanisms (49, 135).   

 The pathogenesis of M. ulcerans infections is categorized based on clinical appearance 

of the lesions into a preulcerative stage (represented by a nodule, plaque, or local edema), 

ulcerative stage, and healed stage (80). After initial exposure, the bacilli survive and multiply 

during a transient, intracellular phase within the host. Initial colonization of neutrophils occurs 

during the early stages of infection (2-48 hours) and promotes persistence of the bacteria in the 

tissue (73). Through a cytotoxic mechanism, the bacilli are released from their phagocytic 

incubators and begin an extracellular lifestyle, resulting in the transition to the preulcerative 

presentation. Histologically, this stage is characterized by abundant extracellular bacilli and 

massive inflammatory cell infiltration.  Over a period of weeks to months, expanding necrosis of 

the subcutaneous and adipose tissues results in sloughing of the outer layers of skin leading to 

ulceration. Histologically, ulcerative disease is characterized by discrete foci representing 

extended acellular necrotic areas containing “clumps” or microcolonies of extracellular bacilli, 

elastolysis, and necrosis of recruited immune cells.  An important consideration during this time 

is the abundant collagen degradation, fibrosis and vasculopathy that impairs immune cell 

migration to the lesion. This pathogenesis also limits the permeation of antimycobacterial 
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treatments to locations containing susceptible bacilli. As necrosis of the subcutaneous tissues 

progresses, the ulcer becomes undermined and can spread beneath healthy epidermis. 

Spontaneous healing has been documented in some cases. The mechanism behind this 

phenomenon is unknown, and unmanaged healing can result in intense fibrosis and disfiguring 

scar formation.   

Innate Immunity 

The skin represents a physical and innate barrier against infection. Within the skin, 

specialized cells (eg. keratinocytes, Langerhans cells, tissue-resident macrophages) recognize 

and initiate immune responses to mycobacteria. This response is coordinated via signaling 

through pattern recognition receptors (PRR). Among the PRRs, the toll-like receptors (TLR) 

critical for recognition of mycobacterial pathogens are TLR2, TLR4, and TLR9 (136). A recent 

study by Peduzzi et al (2007) described the presence and activation of both plasmacytoid and 

myeloid dendritic cells during early lesion formation (137). A finding consistent with other 

dermatological conditions (138). Initial innate cell recognition of the pathogen leads to a 

proinflammatory signaling cascade, characterized by high levels of IL-6, IL-8, IFN-ɣ, and TNF-α.  

Adaptive and Humoral Immunity 

The immune response to M. ulcerans infection can be correlated to the location of the 

bacteria during infection. Early infection response is characterized by the intracellular 

localization of infecting bacilli. The initial induction of a cell-mediated immune response is a 

reaction to this intracellular infection. As infection progresses, and bacilli become 

predominantly extracellular, the cell mediated response is no longer effective. This correlates 

with the transition to a response characteristic of an extracellular infection, and the down-
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regulation of a proinflammatory, cell-mediated response. The pathogenic mechanisms of M. 

ulcerans result in an inefficient and often transitory cell-mediated response, even though 

effector mechanisms of this response are associated with protection.  

The initial immune response to Infection with M. ulcerans in humans begins with the 

induction of a local, neutrophilic inflammatory response in conjunction with the signaling of 

cell-mediated immunity involving cytokines such as TNF-α, IFN-ɣ, IL-1, IL-2, IL-12 and IL-15 (139) 

that are characteristic of a Th1 immune response. Indeed it has been suggested that a Th1 

immune response is protective and may prevent the development of disease in people exposed 

to M. ulcerans, while a Th2 response does not (140). However, the cellular response during 

ulcerative infection is minimal, due to virulence-mediated immunosuppression, resulting in the 

down regulation of the protective IFN-ɣ cytokine, in particular. Other studies have reported the 

discovery of idiopathic T-cell anergy (140, 141) and variable cytokine profiles throughout the 

lesion and over time (139, 142, 143). This suggests that at some point during infection, an 

unknown mechanism results in suppression of CMI, facilitating proliferation of bacilli and, 

inappropriately, a transition to the generation of a non-protective Th2 type response. 

Concordantly, others have demonstrated that expression of cytokines such as IL-10 and IFN-ɣ 

and activation of dendritic cells (a key cell for the induction of adaptive immunity) can vary 

considerably within ulcerative lesions (137), and throughout infection. Subsequently, a 

transition to a Th2 type response associated with lymphocyte apoptosis, necrosis, and fibrosis 

at the infectious foci including a significant decrease in protective cytokines. The mechanisms 

behind the transition to a non-protective response resulting in expansion of the lesion is 

uncharacterized but a correlation between the gradation of immune responses in leprosy and 
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Buruli Ulcer has been suggested (144). This non-protective response is associated with a 

reoccurrence of disease or the maintenance of persistent bacteria resulting in a chronic state of 

infection.  

The antibody response during M. ulcerans infection has been evaluated in the context of 

surveillance and diagnostics for many years (82, 145-147). M. ulcerans specific antigens elicit a 

steady antibody response during infection (148), and this response has been developed for use 

as a screen for exposure to the pathogen (149). Unfortunately, cross reactivity among 

environmental mycobacteria as well as possible previous exposure to M. ulcerans limits the 

application of this assay (148), as many other mycobacteria share immunogenic antigens (150). 

From an immunological perspective, the production of specific antibodies against M. ulcerans 

and their role in the development of immunity has two important aspects. First, the presence of 

specific antibody near the time of infection is associated with a beneficial effect (151), as pre-

ulcerative nodules frequently contain extracellular bacilli (49). Secondly, how antibody-

mediated immunity (AMI) and the downstream signaling of Fc receptors (FcR) (152, 153), 

polymeric Immunoglobulin G (IgG) receptors (154), and parenteral immunoglobulin (155, 156), 

interact with CMI to mount an effective immune response. The interaction between antibodies, 

FcR, and subsequent FcR signaling, may represent a novel aspect of immunogenesis during M. 

ulcerans infection that is involved with the generation of a Th1 response.    
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LITERATURE REVIEW CHAPTER 2: ANOPHELES GAMBIAE 
 

 
 

History and Distribution 

Mosquito-borne pathogens are responsible for significant morbidity and mortality on a 

global scale. The Anopheles gambiae complex (A. arabiensis, A. bwambae, A. merus, A. melas, 

A. quadriannulatus, and A. gambiae sensu stricto) plays a central role in the transmission of 

many diseases, due to diverse habitats and geographical distribution of the insects. Before 

1962, A. gambiae mosquitoes were considered a single species. By 1964, six distinct species had 

been described (identified above), categorized by differences in larval habitat and adult female 

resting and feeding behaviors. While the various A. gambiae species differ in their capacity to 

transmit pathogens, the anthropophilic nature of A. gambiae sensu stricto describes a long 

history of an intimate association between humans and the mosquito. A. gambiae is generally 

described as an afro-tropical mosquito, with the majority of the population distribution 

occuring in sub-Saharan Africa (Figure 6). However, 10 species of the Anopheles gambiae sensu 

Figure 6: The geographical distribution of Anopheles spp. (left) and endemic areas of Buruli Ulcer 
disease (right), showing significant overlap. Adapted from CDC.gov and Bulletin of the World Health 
Organization vol.83 n.10. (2005). 
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lato complex have been identified in Australia. These species show similar variability in terms of 

host-seeking behavior and vector competence described in the African complex of mosquitoes. 

Mosquitoes from multiple genera have been implicated to be involved with the environmental 

persistence of M. ulcerans in multiple geographic locations. While no definitive proof exists 

describing active transmission of M. ulcerans by mosquitoes, there is a growing body of 

evidence suggesting a role for mosquitoes in the maintenance of the bacilli in the environment. 

Best known for the transmission of malaria, lymphatic filariasis, and numerous viral 

infections, the Anopheline mosquitoes have been implicated as disease vectors for millennia. 

The effects of ongoing climate change are predicted to result in expansion of suitable 

environments for Anopheline development (157), which will have a significant impact on the 

incidence of many mosquito-borne pathogens. The hematophagous nature of the mosquito 

provides the insects with a protein source for egg development but also results in exposure to 

pathogens and, subsequently, the potential to transmit those microbes to susceptible 

organisms.      

Development in aquatic environments 

Early development of mosquitoes occurs in an aquatic environment and the subsequent 

lifecycle of the insects is dependent on a close association with water. Larval mosquitoes are 

commonly found in habitats endemic for Buruli Ulcer disease (158). Development of larval 

mosquitoes occurs primarily at the air-water interface near plant stems and algal mats, where 

the larvae feed using labral head fans to filter microbes and organic matter from the water 

column (159, 160). The idea that larval mosquitoes may serve as bioaccumulators or 

concentrators of environmental M. ulcerans, thereby initiating the passage of M. ulcerans 



27 
 

through an aquatic food web has been explored (62, 161).  Thus, it is accepted that larval 

mosquitoes will readily consume M. ulcerans and promote the maintenance of the bacilli in the 

environment.  

Mechanical transmission and Vector Capacity 

Risk factors for the development of Buruli Ulcer disease, including an association with 

standing water and the protective effect of bed nets described previously, implicate an insect in 

the transmission of the disease. Indeed, much of the sympatry existing between A. gambiae 

and M. ulcerans is a result of many common themes regarding the geographic and 

environmental location of the two organisms, which is a requirement for assignment of 

mosquitoes as a vector.  Together with mosquitoes, other insects have been implicated in 

transmission of M. ulcerans and have received considerable attention, specifically members of 

the Naucoridae and Belostomatidae genra (52, 53, 59, 60). However, these insects are not 

hematophagous and only incidentally bite humans (54). Many correlative studies have 

suggested that adult mosquitoes may serve as vectors of the bacilli (30, 61, 63, 162). The 

complex biology associated with the movement of pathogens from the mosquito gut to the 

salivary gland is appreciated during interaction with other pathogens. Unfortunately, there is no 

evidence that mosquitoes are biological vectors of bacterial diseases. However, mechanisms of 

mechanical transmission require far less biological interaction than salivary transmission. As an 

example, Francisella tularensis, the causative agents of Tularemia, has been shown to be 

mechanically transmitted by mosquitoes in some settings (163, 164). The overlap in the 

geographic distribution and the shared association with water between the A. gambiae and M. 

ulcerans highlights the potential interaction that may be occuring in nature.  
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Differences in vector competence among members of the Anopheles complex have 

been described and are attributed to differing preferences for feeding on humans versus 

animals, the tendency to enter structures, and an ability to recover after environmental 

disturbances. It is also suggested that interactions between host and pathogen influence the 

probability that mosquitoes are able to successfully transmit a pathogen. Interaction between 

mosquitoes and transmissible pathogens have been investigated in many systems, and the 

molecular consequences of this interaction are being characterized to discover novel strategies 

employed by both the mosquito and the pathogen that influence this dynamic. The mosquito 

attempts to control the internal development of pathogens, often resulting in immune 

stimulation and imposing a fitness cost. Many pathogens exploit mosquito systems to their 

advantage, resulting in increased probability of transmission and survival of the pathogen. 

While there are likely far fewer biological interactions occurring during instances of mechanical 

transmission compared to biological transmission, a study of the physiology of A. gambiae and 

M. ulcerans during varying spatial and temporal exposures will provide significant insight into 

mechanisms of pathogen control by the mosquito and immune evasion and persistence by the 

bacilli, leading to transmission or maintenance of the pathogen.   
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CHAPTER 3: MOUSE MODEL OF M. ULCERANS INFECTION 
 

 
 

Introduction 

The pathogenesis of M. ulcerans infection is hypothesized to follow an initial 

contamination of the dermis, followed by replication of the bacilli in both an intra- and 

extracellular environment within the host subcutaneous tissue, concurrent with the production 

of a toxin that may contribute to necrosis of the tissue (72-76). Unfortunately, the contribution 

and presence of the toxin remains undefined during infection in humans. Therefore, we sought 

to characterize infection with a mycolactone negative isolate and compare the pathogenesis of 

disease in our mouse model to the human case definition. The disease originate as a nodule, 

papule, plaque, or localized edema, then progresses to ulcerative lesions. The lesions, if left 

untreated, result in debilitating complications from scarring with contracture to loss of limbs or 

vital organs (31, 49, 77).  

Multiple studies have used animal models to investigate infection with M. ulcerans (13, 

131, 165, 166). These studies have demonstrated the mouse and guinea pig susceptibility to 

infection with M. ulcerans, describing similar pathogenesis of disease to that seen in humans 

(167, 168).  To date, few studies have investigated M. ulcerans infection dynamics in 

immunodeficient mouse models (17). In order to better understand the mechanisms of 

persistence and immunosuppression, a comparison between wild-type and immunodeficient 

animals is advantageous. The aim of this present work is to characterize the host immune 

response and disease pathogenesis of a mycolatone-negative isolate by comparing 
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immunocompetent and immunocompromised mice after infection. The direct contribution and 

concentration of mycolactone in human lesions is not well described, and indeed it has been 

shown that the plasmid encoding this toxin is very unstable (169). A comparative investigation 

of the infection dynamics in immunodeficient and immunocompetent mice will provide insight 

into mechanisms employed by the pathogen irrespective of the contribution of mycolactone.   

M. ulcerans strains from different geographic regions have variable virulence 

phenotypes. This variability is commonly correlated with the synthesis (or lack of) of 

mycolactone isotypes or the ratio of isotypes. However, it is likely that other virulence factors 

play a significant role in pathogenesis. Our studies suggest cell-mediated immunity plays an 

important role in the outcome of disease, and that the host becomes immunosuppressed early 

in the course of infection during the asymptomatic stage of disease, irrespective of the 

presence of the toxin. Reactivation of disease into a severe, chronic state is characterized by an 

uncoordinated, cytokine-driven response, concomitant with antigen-specific pathogen 

recognition.  This supports the often conflicting data derived in human studies, and 

demonstrates that a systematic approach to understanding the immune response and its effect 

on BUD disease progression is required for further investigation of novel diagnostics and 

interventions for BUD. 

Materials and Methods  

Animals 

Eighty 8-week-old female wild-type C57BL/6J and immunocompromised B6.129S7-

Rag1tm1Mom/J (Rag-/-) mice were obtained from The Jackson Laboratory Center for Mouse 

Models of Heart, Lung, Blood and Sleep Disorders (Bar Harbor, ME). All mice were maintained 
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in the Animal Biosafety Level 3 facility at CSU, with sterile rodent chow and water ad libitum, 

with 5 animals per cage. The studies involving animals were approved by the Institutional 

Animal Care and Use Committee at Colorado State University, which is accredited by the 

Association for the Assessment and Accreditation of Laboratory Animal Care, International.  

Bacterial Strain and Culture 

M. ulcerans strain 94-511 was selected based on its virulence in humans (originally a 

clinical isolate from endemic Cote d’Ivoire), and its ease of culture and manipulation in multiple 

environments (24, 72). M. ulcerans 94-511 has been documented to produce mycolactone (72), 

although the strain used for this study was considered mycolactone negative. Confirmation that 

the strain was mycolactone-negative was achieved by whole DNA extraction from cells and an 

absence of a 174kb plasmid encoding the toxin, in addition to the absence of reactivity upon 

PCR analysis of the ketoreductase B (KR) domain of the polyketide synthase (mls) gene. For the 

preparation of the M. ulcerans inoculum, acid-fast bacteria (AFB) were grown at 32°C in static 

liquid Middlebrook 7H9 medium for approximately 1 month, or until the formation of a pellicle. 

The resultant pellicle was harvested and allowed to grow again at 32°C in low-mode shaking 

liquid Middlebrook 7H9 medium supplemented with oleic acid, albumin, dextrose, and catalase 

and (OADC)  for approximately 2 months. Cells were harvested via filtration from liquid media 

through 0.22µm membrane, acid fast stained, and counted in a hemocytometer for 

determination of concentration. A glycerol solution was added to a concentration of 10% and 

the culture was aliquoted into working infectivity stocks at approximately 1010 colony forming 

units (CFU)/ml. 
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Experimental Infection 

Mice were infected subcutaneously in the left hind footpad using a tuberculin syringe 

with 20µl containing approximately 6x106 AFB diluted in sterile water (using the right hind 

footpad as a control), or via aerosol with 6x106 AFB using a Middlebrook Aerosol Exposure 

chamber (GlasCol, LLC, Terre Haute, IN). The progression of disease was monitored with time 

points of 1, 7, 14, 28, 60, and 142 days post infection (DPI). At time points, animals were 

euthanized using CO2, their lung, spleen, draining lymph node (DLN) (popliteal), and footpad 

were removed, individually homogenized, and stored on ice for cytokine assays or immediately 

plated for CFU. 

Determination of Bacterial Burden 

M. ulcerans proliferation was assessed in infected mouse lung, spleen, draining lymph 

node (DLN) (Popliteal), and footpad tissues of infected mice at each of the previously described 

time points. Tissue specimens were aseptically harvested from euthanized mice into sterile 

tubes containing 4.5 ml of physiologic saline and briefly homogenized with a PRO250® 

homogenizer (PRO Scientific, Oxford, CT). Four 10-fold dilutions of each homogenate were 

spread onto plates containing Middlebrook 7H11 agar (Difco Laboratories, Detroit, MI) enriched 

with OADC. Plates were incubated at 32°C and CFUs counted after 4 months to ensure growth 

of all cells present. 

Cytokine concentrations in mouse tissues 

Identical volumes of tissue were collected from each animal at each time point. Tissue 

homogenates from the DLN, spleen, and footpad were briefly centrifuged for 10 minutes at 

1000xg to remove cellular debris. The supernatant was collected and assayed to determine 
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protein content with a bicinchoninic acid assay (BCA) (Pierce, Rockford, IL) and diluted to a 

working concentration of 1 mg/ml to standardize the protein concentration. The samples were 

then assayed in triplicate for the cytokines interleukin-2 (IL-2), IL-4, IL-5, IL-6, IL-10, IL-12, IL-13, 

IL-17a, IL-23, Interferon-ɣ (IFN-γ), tumor necrosis factor- α (TNF-α), and transforming growth 

factor-beta (TGF-β), and evaluated against tissue from uninfected control mice. After analysis a 

selection of cytokines are presented here.  The enzyme-linked immunosorbent assay (ELISA) 

(Qiagen) was used for detection of soluble cytokines in infected mouse tissues. Per the 

manufacturer’s instructions, samples were added to wells of an anti-mouse cytokine antibody 

coated plate. The plate was developed using and Avidin-HRP reporter and read using 

wavelength correction subtracting the reading at 450 nm from the reading at 570 nm. 

Histopathological Studies 

The DLN and footpads were harvested, fixed in 10% formalin, and embedded in paraffin. 

Sections were cut and stained with hematoxylin and eosin (H&E; IHC Tech, Aurora, CO). Digital 

microphotographs were taken using a Nikon Eclipse 51E microscope and a Nikon DS-Fi1 camera 

with a DS-U2 unit and NIS elements F software. Images are reproduced without manipulations 

other than cropping and adjustment of light intensity. 

Statistics 

Differences between the means of the CFU load of experimental groups and between 

the concentrations of individual cytokines, was analyzed at each time point using a two-tailed 

Student t-test, and a P value of ≤0.05 was considered significant. Pearson’s correlation analysis 

was performed on the cytokine samples to evaluate the significance of change over time.  
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Results 

Mouse footpad inoculation results in an inflammatory condition of the skin whereas aerosol 

challenge does not 

Although aerosol exposure to Mycobacterium ulcerans represents an unlikely initial 

infection in human cases, many nontuberculous mycobacterial infections (NTM) demonstrate a 

tropism for the respiratory system (170). Aerosol challenge of wild-type C57BL/6 mice and the 

immunodeficient Rag-/- mice with virulent M. ulcerans resulted in a transient, asymptomatic 

infection, and perhaps a period of non-replicating persistence followed by death due to lack of 

nutrients (Figure 7C). Specifically, M. ulcerans was cultured from lung homogenates for up to 60 

Figure 7: Colony forming units (CFU) in mouse tissues during infection. *** denotes P≤0.001. 
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days post infection (DPI); no viable bacilli were recovered after this time point. Furthermore, up 

to 2 log10 colony forming units (CFUs) were also seen in the spleen and liver during the later 

time points (28 and 60 DPI), but not by 142 DPI following aerosol exposure (Figure 7). Our 

studies demonstrated no culturable M. ulcerans in peripheral blood, nor did the mice show 

clinical signs or external pathology representative of a cutaneous M. ulcerans infection during 

any point of the infection. However, the presence of disseminated M. ulcerans in the spleen of 

aerosol infected animals suggests hematogenous trafficking of bacilli. In contrast to aerosol 

infection, inoculation of the footpad resulted in measureable CFU throughout the course of 

infection monitoring. Organisms were observed in the footpad of Rag-/- mice throughout the 

course of infection, while in C57BL/6 mice there was a reduction in CFU at day 14, colonization 

persisted (Figure 7). Further, M. ulcerans was cultured in the draining lymph nodes in both 

immunocompetent and immunocompromised mice during the chronic disease state (Figure 

7B). M. ulcerans is known to grow preferentially at 32°C, in accordance with the cooler outer 

layers of the skin and peripheral tissues (171). In our studies, aerosol exposure and the 

subsequent respiratory infection of the mice was shown to result in a limited, transient 

infection, even in a severally immunocompromised model, consistent with the known biological 

tropism of M. ulcerans.  We therefore chose to pursue the footpad as the only route of 

exposure in our additional experiments. 
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Gross pathological features 

In human patients, the M. ulcerans bacilli are hypothesized to gain entry to the 

subcutaneous layers of the skin at the site of an existing wound or as a result of a puncture. 

Footpad inoculations of mice were performed using 5x106 M. ulcerans CFUs in a 20µl sterile 

water suspension. Injection of the bacterial suspension resulted in a slight wheal formation 

within the footpad. At 1 DPI, the footpad presented with mild edema and erythema in all mice, 

who also avoided using the mildly swollen foot. By 7 DPI the 

swelling had subsided to nearly that of baseline, and usage of 

the foot was unrestricted. These visual observations of the 

gross pathology continued until 28 DPI, when a reappearance 

of the mild edema and a more pronounced erythema was 

apparent.  Between 28 and 60 DPI, the swelling previously 

seen in the footpads was reduced to baseline appearance. By 

60 DPI, visible signs of infection were absent in all mice and 

mice appeared to use the inoculated foot without restriction. 

Neither did the mice appear to suffer from fatigue, malaise, 

and isolation as has been described in other mouse models of 

infection (172), although these variables were not individually 

tested. Mice developed a reactivation of disease after an asymptomatic period of 

approximately 50 days and by 142 DPI, all remaining mice were sacrificed due to edema and 

erythema of the footpad which had expanded proximally (Figure 8) compared to previous 

observations documented on 1 and 7 DPI, accompanied by severely restricted usage of the foot 

Figure 8a (top): dorsal lateral 
view of C57BL/6 hind footpads 
at 142DPI. Figure 8b (bottom): 
view of plantar surface of 
C57BL/6 hind footpads at 
142DPI showing proximal spread 
of inflammation in infected left 
hind footpad. Right hind footpad 
as control. 
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and other signs of illthrift such as huddling, immobile disposition, and ruffled fur. Mice were 

sacrificed before the development of complete footpad ulceration for ethical reasons.  Few 

differences were observed in the gross pathology of either C57BL/6 or Rag-/- mice infected with 

M. ulcerans. Specifically, all mice presented with a similar pathological syndrome over the 

course of the infection, although there were differences in the type and kinetics of the 

pathology observed between the footpads of each strain (Figure 9A). 

Histopathological features 

Histological analysis of the infected footpad and DLN was performed to asses host 

immune cell recruitment and the condition of host tissues during infection.  Mice were infected 

with 5x106 M. ulcerans CFUs in a 20µl sterile water suspension in their left hind footpad and 

sacrificed periodically after infection to determine bacterial numbers in tissues (Figure 7). At 1 

DPI, the Rag-/- and C57BL/6 mice had a similar presentation, represented by focally extensive 

areas of dermal/subcutaneous edema and moderate to severe infiltration of 

polymorphonuclear neutrophils (PMN) and few macrophages. Muscle-fiber and collagen 

Figure 9a (left): Histology score of footpad tissue for pathology during infection. Figure 3b (right): Histology 
scores for immune cell infiltration into footpad tissues during infection. 



38 
 

degeneration was observed in both mouse strains, in addition to mild leukolytic necrosis of 

infiltrating PMN (Figure 10A). By 7 DPI, there was no statistical difference in CFUs between 

groups of mice. In addition, the popliteal lymph node was quiescent and histologically 

unremarkable until 7 DPI, when the C57BL/6 mice began to demonstrate reactive hypertrophy 

and hyperplasia with formation of secondary follicles and active germinal centers in the cortex 

and expansion of the paracortex (Figure 11). 

Figure 10: Representative footpad tissue micrographs with hematoxylin and eosin staining (H&E) from 
C57BL/6 (WT) mice demonstrating initial immune cell recruitment at 1DPI (10x)(A). Immune down-regulation 
resulting in normal appearance of footpad tissue at 28DPI (10x)(B), and 60DPI (10x)(C). Intense immune cell 
influx to footpad tissue resulting in edema and tissue necrosis by 142 DPI (4x)(D). 
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Rag-/- mice retained comparably small nodes composed of dense stroma and few discernible 

post-capillary venules (PCV) accompanied by mild and dispersed infiltration of the stroma by 

neutrophils (Figure 13).   

By 14 DPI, the immunocompetent C57BL/6 mice were able to mount an immune 

response against infection and reduce the bacterial load in the footpad by approximately 2 

log10. Immunodeficient Rag-/- mice were unable to mount an adaptive immune response and 

CFUs in footpad tissues increased by 1 log10 over the course of 28 DPI (Figure 7). The 

histological analysis displayed similar immune cell recruitment pattern between strains of mice. 

Figure 11: Representative popliteal lymph node micrographs with hematoxylin and eosin staining (H&E) from 
C57BL/6 (WT) mice demonstrating moderate neutrophil infiltration at 1 DPI (10x) (A). Moderately hypertrophic 
node containing secondary follicles and active post-capillary venules at 28 DPI (10x) (B). Hypertrophic node with 
several large secondary follicles and expanded paracortex at 60 DPI (10x) (C). Node with high cell density in all 
compartments by 142 DPI. Few secondary follicles with active germinal centers and deep paracortex containing 
high number of mature plasma cells (10x) (D). 
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The immunocompetent mice demonstrated a moderate recruitment of foamy macrophages 

focally in the dermis/subcutis of the pad, with mild edema and few lymphocytes and PMN 

diffusely throughout the interstitum. Similarly, immunodeficient mice presented with mild 

edema and a mild infiltration of macrophages and few PMN in a focally extensive area of the 

dermis/subcutis (Figure 12D).  

 

 

Figure 12: Representative footpad tissue micrographs with H&E staining from Rag-/- (immunodeficient) mice 
demonstrating initial immune cell recruitment at 1DPI (10x)(A). Immune downregulation resulting in 
histologically unremarkable appearance of footpad tissue at 28DPI (10x)(B), and 60DPI (10x)(C). Intense 
neutrophil infiltration to footpad tissue accompanied by sever tissue necrosis and collagen degeneration by 
142 DPI (4x)(D).  
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As expected, Rag-/- mouse lymph nodes remained small and underdeveloped, containing dense 

reticular stroma and small numbers of scattered PMN, mast cells, and foamy macrophages, 

with a notable absence of lymphocytes (Figure 13).  

During the period of 28 DPI to 60 DPI, a plateau of the CFU numbers in both strains of 

mice corresponded to a period of persistence of the bacteria. This plateau phenomenon, or 

persistence, has been documented in other mouse footpad infection models (173) . 

Additionally, during this time period, the infected footpads of both groups of mice progressed 

Figure 13: Representative popliteal lymph node micrographs with hematoxylin and eosin staining (H&E) from 
Rag-/- mice demonstrating dense cortical and medullary stroma, infiltrated by neutrophils and myeloid 
precursor cells at 1 DPI (10x) (A). Tiny node with foamy macrophages in medullary sinuses, few polymorpho-
nuclear cells at 28 DPI (10x) (B). Node with dense reticular stroma and few post-capillary venules. Small 
numbers of foamy macrophages and no apparent lymphocytes at 60 DPI (10x) (C). Node composed of loose 
vasculo-reticular stroma with scattered macrophages and few mast cells, and deep paracortex containing high 
number of mature plasma cells by 142 DPI (10x) (D).  
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from minimal, dispersed infiltration of primarily macrophages and few PMN, to a histologically 

unremarkable state (Figures 10B-C, 12B-C).  During this time course, some bacterial killing was 

apparent, although abundant bacilli were cultured from infected footpads, conflicting with the 

apparent down-regulation of the host immune response (Figure 9B).  

From 60 to 142 DPI, the bacterial load of the C57BL/6 footpad showed a dramatic 2 log10 

increase (Figure 7A). Lymph nodes of C57BL/6 mice exhibited the development of an advanced 

immune response represented by markedly hypertrophic expansion of both the cortex and 

paracortex. The former contained several large secondary follicles and the latter, many active 

PCV characterized by plumb endothelial cells and trans-endothelial lymphocyte migration, and 

mature plasma cells in the medulla (Data not shown). CFUs in the Rag-/- footpad remained in a 

persistent, plateaued state during this time period (Figure 7A).  

By 142 DPI, CFU levels in the footpads of both strains of mouse were identical (Figure 

1A). In the wild type C57BL/6 mouse, the CFUs increased 2 log10 over the steady state described 

from 14 through 60 DPI, to a level statistically indistinguishable from the immunodeficient Rag-/- 

mouse. This final time point of 142 DPI comprised mice which had failed to control the infection 

at a level comparable to immunodeficient mice.  All mice presented with severe disease, on 

both a histological (Figures 10-13) and gross pathologic level (Figure 8). Within the dermis and 

subdermal tissue of C57BL/6 mice, focally and involving musculature, there was moderate to 

marked edema, marked infiltration of monocyte-macrophages, moderate PMN infiltration and 

multifocal tissue necrosis. Within the C57BL/6 lymph node, high cell density was apparent in all 

compartments. There were few secondary follicles, all with active germinal centers, occasional 

PCV appeared with hypertrophic endothelium and the medullary cords and deep paracortex 



43 
 

contained large numbers of mature plasma cells. Comparably, Rag-/- mice presented with more 

severe disease, encompassing most of the soft tissues of the foot (dermis, musculature, nerves, 

periost). There was severe tissue necrosis with loss of identifiable musculature, infiltration of 

predominantly PMN with an admixture of fewer macrophages and scattered mast cells. Blood 

vessels within the affected tissue appeared with leukocytosis, leukocyte margination, 

transmural infiltration and occasionally fibrinoid necrosis. In a focally extensive area of the 

footpad of one mouse, the inflammation and tissue necrosis extended to and involved the 

epidermis with formation of a scab mainly composed of necrotic epithelium and 

degenerate/effete PMN. The underlying dermal collagen was undergoing degeneration (Figure 

10D).   

Mouse cytokine production can be correlated to disease state as a marker of disease progress 

Infection with M. ulcerans in humans and mice induces a local inflammatory response 

that is characterized by the induction of cytokines such as tumor necrosis factor (TNF)-α, 

interferon (IFN)-γ, interleukin (IL)-1, IL-12 and IL-15 (139) characteristic of a Th1 immune 

response. Indeed it has been suggested that a Th1 immune response to M. ulcerans may 

prevent the development of BUD in people exposed to M. ulcerans, while a Th2 response does 

not (140). To identify immunological correlates of infection, we performed a broad screen of 

soluble cytokines from infected mouse tissues (Figure 14). Using a multi-analyte profiling 

approach, we compared the levels of soluble, inflammatory cytokines in the mouse footpad 

homogenates between mouse strains during the development of active infection. Additionally, 

selected cytokine concentrations were measured in the spleen, DLN, and whole blood serum at 



44 
 

the final time point of 142 DPI using a similar approach. By 7 DPI both strains of mice responded 

with higher secretion of IL-6 and IL-12 in the footpad homogenates relative to other measured 

cytokines, and at similar levels (Figure 14C and D). Other cytokines, particularly TNF-α and IFN-

γ, demonstrated similar abundance between groups of mice, and occurred at a low level 

compared to other measured cytokines (Figure 14A and B). During the time course of 14 DPI 

through 28 DPI, measured cytokines appeared to decrease from initial measured levels and 

plateaued, which correlated with the pattern observed in the CFU numbers during this time 

period. By 60 DPI, C57BL/6 mice demonstrated an increased secretion of multiple cytokines, 

relative to the initial stages of infection. IL-6 and IL-12 rose to concentrations measured in 

Figure 15: concentration (pg/ml) of IL-6 
(A) and IL-12 (B) measured over time.  
* denotes P≤0.05 

A B 

C D 

Figure 14: Concentration (pg/ml) of selected cytokines in mouse footpad tissue homogenates over the course 
of infection. Data point represents experimental mean with standard deviation. * denotes P≤0.05 
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earlier time points, while IFN-γ demonstrated a nearly 6-fold increase relative to the 

measurement at 1, 7, 14, or 28 DPI [e.g. 1DPI-IFN-γ: 90.6pg/ml, 60DPI-IFN-γ: 492.7pg/ml, 

experimental mean, n=5]. The increased IFN-γ levels in the C57BL/6 mice correlated with the 

reduced bacterial burden documented at this time point.  

 As described previously, at the terminal time point of 142 

DPI similar gross and histo-pathological conditions were 

apparent in both strains of mice (Figures 10D, 12D). While 

other measured cytokines remain at a low level, a significant 

decrease in the production of IFN-γ was documented in 

C57BL/6 mice relative to that measured at 60 DPI [C57BL/6: 

60DPI-IFNγ: 492.7pg/ml, 142DPI-IFNγ: 34.98pg/ml, 

experimental mean, n=5], although at statistically 

indistinguishable levels between strains of mice in the 

various tissues (Figure 15A), and strongly correlates with the 

rising CFU burden and histological measurements of strong 

disease activity. The concentration of TNF-α in the measured 

tissues demonstrates significant differences between strains 

of mice by the final time point (Figure 15B). By 142 DPI, CFU levels in immunocompetent mice 

rose from a plateau to a level statistically indistinguishable from Rag-/- mice over the same time 

period, perhaps due to the down-regulation of protective cytokines.  

 

 

Figure 15: comparison of the 
concentrations (pg/ml) of IFN-ɣ (A) 
and TNF-α (B) in various tissues 
between strains of mice at the 
final time point (142DPI) 
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Discussion 

 The data from the current study demonstrates the development of active infection after 

experimental inoculation of the mouse footpad that parallels the suspected human route of 

exposure and subsequent presentation of disease, without the contribution of the toxin 

mycolactone. While this mycolactone-negative strain appears attenuated in the wild-type 

C57BL/6 mice, a finding consistent with other mouse footpad models (174), the mice presented 

with degrees of pathology over time, eventually resulting in severe disease regardless of the 

immune state of the host.  Mice of both immunological states rapidly developed necrosis of 

footpad tissues and destruction of the limb, as described previously (165), after a lengthy and 

variably asymptomatic period of time. Many publications of virulent M. ulcerans pathogenesis 

in experimental infections report extensive inflammatory cellular infiltrates to the lesion (2, 

163, 164), consistent with our model. Indeed, the pattern of immune cell recruitment we have 

described is consistent with the finding of Oliveira et. al. (2005), who described strong initial 

recruitment of neutrophils followed by monocytes, to be a feature of M. ulcerans infection 

unrelated to the isolate’s virulence (168). Other publications report minimum or absent 

inflammation in the lesion (30, 134), together with rapid progression into an ulcerative state.  

Taken together, this opposition provides evidence linking the contribution of other virulence 

determinants and variable bacterial phenotypes that still result in necrotizing pathogenesis. 

These studies also highlight a major obstacle in the understanding of M. ulcerans biology. The 

infectious phenotype of different eco-varieties of the pathogen demonstrate significant 

variability, even more so when comparing pathogenesis in distinct genotypes of mice (17). In 
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general, from this study, we were able to obtain valuable insights into the disease progression 

and the relationship with expression of immunity. 

 Immunocompetent mice were able to mount an immune response to the bacteria 

during this time, supported by the recruitment of immune cells into footpad tissue, the 

production of cytokines, and the initial decrease in bacterial load of the footpad. The pattern of 

immune cell recruitment during disease in the immunocompetent C57BL/6 mice is consistent 

with other reports in both mice and humans, in that the initial immune response is 

characterized by strong neutrophilic infiltration and a transition to a monocytic/macophagic 

infiltration during later stages (175). The histologic identification of immune cell necrosis and 

collagen degeneration occurring in the absence of mycolactone production was surprising. This 

finding supports the conjecture that virulence is not solely determined by the action of the 

toxin.  

 At the terminal time point of 142 DPI, the ensuing infection of the mice resulted in a 

severe inflammatory state characterized by a significant increase in bacterial burden and the 

disappearance of Th-1 driven, potentially protective IFN-γ and IL-12 production.                        

The recruitment of host inflammatory cells was most dramatic at this final time-point. In 

addition to the abundance of inflammatory cell infiltrates, extensive tissue necrosis and 

degeneration of musculature and collagen characterized the severe pathology that precedes 

ulceration.  

 All animals eventually succumbed to infection, regardless of immune status, 

supporting the conjecture that BUD pathogenesis is not entirely dependent on immune status, 

co-infection, or the presence of the toxin (176). And while the two models end up with the 
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same outcome, the path to this outcome differs between strains of mice.  The detailed 

histological analyses described here demonstrate that in the absence of mycolactone, cellular 

infiltration drives BUD pathology in the later, chronic disease state (Figures 10D, 12D). Analysis 

of soluble cytokines in the lesions revealed high IL-6 expression in both C57BL/6 and Rag-/- mice 

(Figure 14), and an inverse relationship between IL-6 and IFN-γ.  IL-6 was shown to increase 

when IFN-γ decreased in the C57BL/6 mouse and appears to be continuously elevated in the 

Rag-/- mouse in the absence of IFN- γ. An over production of IL-6 has been associated with 

severe, chronic inflammatory diseases (177), and has been reported as a differentially regulated 

cytokine in BUD patients compared to community controls (178). Additionally, IL-6 has been 

documented as a marker of innate immune activation in clinical specimens of BUD patients 

(137). Indeed, high levels of IL-6 have been reported to enhance other mycobacterial infections 

such as Mycobacterium avium, when occurring both intra- and extracellularly (179, 180). The 

abundant infiltration of neutrophils and monocytes to lesions in our model is consistent with 

the role IL-6 has in the augmentation of cell adhesion molecules and neutrophil transmigration 

(181), suggesting that IL-6 drives leukocyte recruitment to the lesion.  

 Our results indicated a mechanism of localized immunosuppression in concordance 

with immune cell infiltration in C57BL/6 mice.  While other immune avoidance strategies of M. 

ulcerans have been thoroughly described (73), the specific role of IL-6 in this system requires 

further study. Defects in antigen processing and presentation of macrophages, specifically 

suppressing cell-mediated immunity as a result of over-expressed IL-6, have been documented 

(182).  The source of IL-6 induction remains unclear, as TNF-α was not demonstrated to be a 

significant factor during the course of infection. Previous studies described mycobacterial cell 
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wall components such as muramyl dipeptide and lipoarabinomannan as responsible for 

inducing IL-6 production in other models (183, 184), suggesting that a mycobacterial product 

may be involved with IL-6 induction in our model. The up-regulation of IL-6 and IL-12 

demonstrated here may represent novel biomarkers of M. ulcerans infection which may be 

further explored and eventually developed and applied to detect risk of development of BUD.   

 The pathologic state of the C57BL/6 mice during reactivation of disease (>140 DPI), 

represents a failure to adequately control the infection, despite a fully complemented immune 

system, in our model of BUD. Additionally, the absence of IL-4 and IL-5 in our model would 

suggest that Th-2 immunity did not play a role in the development or reactivation of disease. 

Thus, it appears that the Th-1/Th-2 paradigm does not apply here, as has been seen with other 

mycobacterial infections (185, 186). The molecular mechanisms involved in 

immunosuppression and the activation and subsequent degeneration of T cells is in need of 

further characterization, but could represent a crucial piece of understanding of the immune 

evasion strategies of M. ulcerans.  

 Finally, this study demonstrates significant immunosuppression and persistence of 

the M. ulcerans bacilli without the contribution of mycolactone. The characterization of 

additional virulence factors affecting disease progression with or without the presence of 

mycolactone will significantly enhance our understanding of M. ulcerans infection.  
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CHAPTER 4: ROLE OF ANOPHELES GAMBIAE IN THE TRANSMISSION AND MAINTENANCE OF M. 
ULCERANS 

 

 
 

Introduction 

 
 M. ulcerans is a known environmental pathogen, but its specific niche and the 

mechanism of maintenance in the environment remains unknown (187). The source of 

transmission of the pathogen is also unknown, but many aquatic invertebrates have been 

implicated in this process (161). The primary risk factors in the development of disease are a 

close association with standing or stagnant water, the use of protective clothing, and 

inadequate wound management (188). Reports of M. ulcerans DNA contamination of wild-

caught mosquitoes and the successful culture of live M. ulcerans from predatory water bugs 

(Naucoridae, Belostomatidae) have led the initiation of a plethora of studies investigating the 

association between M. ulcerans and aquatic invertebrates (48, 52, 53, 59, 60, 62, 189).   

 Anopheles gambiae, the infamous malaria vector, is commonly found in regions 

endemic to Buruli Ulcer disease, especially in sub-Saharan Africa (190). A. gambiae larvae 

develop in small, diverse bodies of water and filter bacteria from the water column as a source 

of nutrition. The aquatic lifestyle of the Anopheline mosquito, both as larvae and adults, 

potentiates the hypothesis that these mosquitoes could also be associating with natural 

populations of M. ulcerans. In this study, we investigate the association between these two 

organisms and the role A. gambiae may play in the transmission and maintenance of M. 

ulcerans through the use of laboratory models of transmission and a thorough investigation of 

the contamination of the insects. Previous studies have investigated the interaction between 
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M. ulcerans and other genera of mosquitoes, specifically describing a positive correlation 

between disease incidence in Victoria, Australia and M. ulcerans-DNA contamination of wild 

caught mosquitoes. Within the laboratory, a landmark study by Wallace et al. (2010) described 

the interaction among multiple genera of mosquitoes, wild-type and toxin-negative M. 

ulcerans, and the implications this interaction has in ecological trophic relationships (54). 

However, this study lacked an analysis of the interaction between M. ulcerans and any of the 

ubiquitous members of the Anopheles genus. The study described here includes a similar 

analysis of the role of A. gambiae to transmit and maintain the M. ulcerans pathogen within the 

laboratory and the implication of such interaction.  

Materials and Methods 

Mosquito growth 

1st-instar larval mosquitoes were acquired from the colony maintained at the 

Arthropod-borne Infectious Disease Laboratory (AIDL) at Colorado State University. 100 larval 

mosquitoes were distributed to individual cages containing 250ml of sterile water and 

supplemented daily with finely ground fish food.  All cages were setup in duplicate for the 

individual treatment groups and each experiment was repeated in triplicate. Mosquitoes were 

monitored daily and allowed to develop over a period of 10 days in a controlled environment of 

28°C and 70% humidity. Mosquito cages were supplemented with sterile water and raisins, ad 

libitum, upon emergence of adult insects. Upon termination of the study, adult mosquitoes 

were aspirated from the cages and knocked down in 4°C. 10 mosquitoes each were distributed 

for the generation of technical replicates and their use in subsequent assays. 
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Bacterial culture 

 Mycolactone-negative Mycobacterium ulcerans strain 1615-GFP was kindly donated 

by Dr. Pamela Small from the University of Knoxville, Tennessee. The culture was propagated at 

32°C for a period of 3 weeks on Middlebrook 7H11 (Difco Laboratories, Detroit, MI) plates 

supplemented with Kirschner Selecta-Tabs and 10 µg/ml kanamycin (7H9+), then aliquoted into 

infectivity stocks at a concentration of 1010 cells/ml. Expression of GFP was confirmed in the 

final culture with a fluorescent microscope. Contaminating bacteria from mosquito samples 

were acquired by vortexing the tissues of interest in 7H9+ liquid media, performing a 10-fold 

serial dilution and plating the dilutions on Middlebrook 7H11 plates with supplements as 

described.    

Mosquito treatment groups 

 100 1st-instar larval mosquitoes were exposed, in duplicate, to live and dead 

supplemental bacteria, or no supplemental bacteria. 102 cells/ml of live M. ulcerans 1615-GFP, 

102 cells/ml of dead, ɣ-irradiated M. ulcerans 1615-GFP, and dead, ɣ-irradiated Mycobacterium 

tuberculosis were added to the sterile water upon the addition of larval mosquitoes. All groups 

received approximately 100 mg of fish food daily, in addition to the single dose of supplemental 

bacteria. 

Mosquito survival and fitness 

 The mosquito’s survival to adulthood was measured by counting the number of 

emerged adults and generating a Kaplan-Meier survival curve among the treatment groups. The 

relative fitness of emerged adults was evaluated by measuring the wing size of emerged 
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mosquitoes as a proxy for body size. Both wings were removed and measured electronically via 

the publicly available ImageJ program (imagej.nih.gov/ij/) using a line measurement plugin.  

DNA extraction of bacilli from mosquito tissues 

 Mosquitos were collected and dried for 30 minutes under a vacuum. After this time, 

500ul of liquid N2 was added and the mosquitoes were incubated for 30 seconds. Dryed insects 

were homogenized 100 µl sterile DNase/RNase free water with a handheld Eppendorf 

homogenizer then centrifuged at 10,000xg for 10 minutes to remove debris. The supernatant 

was retained and 100 µl of 1M HCl was added and incubated for 30 minutes at room 

temperature for decontamination, then subsequently neutralized by adding an equal volume of 

1M HCl. DNA was extracted and purified using diatomaceous earth, as described (191). Briefly 

50 µl of the decontaminated sample was added to 50 µl of lysis buffer L6 (120g guanidinium 

thiocyanate (GuSCN) (Fluka Chemie; Buchs, Switzerland) dissolved in 100 ml 0.1M Tris-HCl at pH 

6.4, with 22 ml 0.2M EDTA and 26g Triton X-100 (Sigma Aldrich; St. Louis, MO) and stirred 

overnight) in a clean Eppendorf tube and briefly mixed. 10 µl of proteinase K (20 mg/ml) was 

added before an overnight incubation at 60°C in a shaking incubator. To capture DNA, 10 µl of 

diatomaceous earth stock solution (10g diatomaceous earth (Sigma Aldrich; St. Louis, MO) in 50 

ml H20 containing 500ul of 37% (wt/vol) HCl), then placed in a shaking incubator for 2 hours. 

Mixed samples were then centrifuged at 5000xg for 5 minutes. The resultant pellet was twice 

washed with 200 µl of L2 buffer (120 g GuSCN in 100 ml 0.1M Tris-HCL pH 6.4), then centrifuged 

and the pellet washed first with 70% ethanol, then 200 µl acetone. The washed pellet was dried 

under vacuum then resuspended in 20 µl TE buffer and incubated for 20 minutes at 65°C. After 
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incubation, samples were centrifuged at 2000xg for 5 minutes and the supernatant transferred 

to a sterile, PCR grade 1.5ml tube.  

PCR analysis of extracted DNA 

 PCR analysis was performed as described (192). Primers for the amplification were 

MU1 (5’-GGCAGGCTGCAGATGGCAT-3’) and MU2 (5’-GGCAGTTACTTCACTGCACA-3’) directed 

against the IS2404 sequence and producing at 549-bp fragment in the presence of M. ulcerans 

DNA. Briefly, 2 µl samples of purified DNA were amplified in buffer supplied by the 

manufacturer of Taq polymerase (Roche, Indianapolis, IN) in 20 µl reaction mixture containing 

1U of Faststart Taq polymerase, 1 uM primers, 1.5 mM MgCl2, and 200 uM (each) 

deoxynucleoside triphosphates. Amplification occurred in an automated thermal cycler (MJ 

Research) with the following conditions: denaturation at 94°C for 2 minutes, amplification by 35 

cycles of 1 minute steps at 94, 66, and 72°C, and final extension at 72°C for 7 minutes. 15 µl of 

the completed reaction were run on at 1.5% agarose gel in Tris-borate-EDTA buffer stained with 

SYBR safe DNA stain (Life Technologies, Grand Island, NY), and visualized with UV 

transillumination on a gel-doc XR+ system (Biorad) using Image Lab software. 

Immunofluorescence 

10 larval and 10 adult female mosquitoes from each treatment group were subjected to 

immunofluorescence (IFA) screening of internal and external tissues for contamination by M. 

ulcerans. The head, midgut, and salivary glands of adult female mosquitoes were removed and 

immediately placed in 4% paraformaldehyde solution for 10 minutes for fixation and washed in 

phosphate buffered saline (PBS). After fixation, the tissues were permeabilized by the addition 

of 0.1% Triton X-100 for 10 minutes and washed in PBS. To distinguish between green mosquito 
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auto-fluorescence and the GFP expressing bacilli, tissues were first probed using a rabbit anti-

M. ulcerans whole cell antibody developed at Colorado State University. The anti-M. ulcerans 

antibody was then probed with a goat anti-rabbit Cy5 labeled antibody (Life Technologies). 

NucBlue DAPI nuclear stain (Life Technologies) was applied for a period of 5 minutes as a 

counter-stain. Fluorescently labeled tissues were viewed by epifluorescence microscopy 

(Olympus, Center Valley, PA) equipped with a standard epifluorescent attachment filter set. 

Larval mosquitoes were removed from the development cages and immediately placed in 4% 

paraformaldehyde for fixation. Larval mosquitoes were viewed with epifluorescent microscope 

scope as previously described, without additional fluorescent labeling. Images are reproduced 

without alteration besides cropping and adjustment of light intensity.  

Transmission experiments 

 Adult female mosquitoes from each treatment group were analyzed for their ability 

to mechanically transmit the contaminating M. ulcerans bacilli. Firstly, the heads of adult 

female mosquitoes were removed and assayed to confirm the presence or absence of live M. 

ulcerans bacilli as described. A second set of 10 adult female mosquitoes were used for saliva 

collection, a third set of 10 adult female mosquitoes were used for an artificial blood meal, and 

a fourth set of 20 adult female mosquitoes were used for a blood meal from C57BL/6 mice.  

 For saliva collection, 10 adult female mosquitoes were collected from each 

treatment group and anesthetized by a 5 minute exposure to a cotton ball soaked with 

triethylamine (Sigma Aldrich). The wings and legs were removed from the mosquito bodies and 

the proboscis was placed into a capillary tube containing 7H9+ media. Mosquitoes were 

allowed to salivate into capillary tubes for 45 minutes. After this time period, mosquitoes were 



56 
 

removed from the capillary tube and the tube was placed into a cryovial containing 100 µl 7H9+ 

media and centrifuged at 1,000xg for 10 minutes. The resulting sample was divided in half; with 

half subjected to DNA extraction and PCR analysis for the M. ulcerans insertion sequence 

IS2404. The remaining half was 10-fold serially diluted, plated on 7H11+ plates and incubated as 

described.  

 For the artificial blood meal, 10 adult female mosquitoes were collected and placed 

into a clean carton with a mesh lid 24 hours in advance of the experiment, with clean water and 

raisins provided ad libitum. Approximately 4 hours before the experiment, the food and water 

were removed to encourage feeding. A temperature controlled water flow mechanism (VWR 

Radnor, PA) was connected to a glass blood meal apparatus. A hydrated hog gut membrane 

was attached to the bottom of the glass apparatus and the device was filled with 100 µl 

defibrinated sheep blood. Mosquitoes from all treatment groups were allowed to feed on 

individual artificial blood meal devices for approximately 1 hour. After the artificial blood meal 

apparatus was placed on the cages, mosquitoes were stimulated to feed by exhaling breath 

over the cages. After feeding, the defibrinated blood was collected, divided in half, and assayed 

in a similar method as the saliva collection.  

Mouse Transmission 

 For the mouse blood meal, 20 adult female mosquitoes were collected, divided, and 

placed into a clean carton with a mesh lid to make duplicate groups of 10 mosquitoes per 

treatment group. Eight C57BL/6 mice were gently anesthetized by an intraperitoneal injection 

of 100 µl ketamine-xylazine solution (100 µl ketamine, 75 µl xylazine, 825 µl PBS) and allowed 

to rest for 10 minutes. The anesthetized mice were placed onto the mesh lid of the mosquito 
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cage and remained in place for approximately 1 hour. A separate group of mice received an 

inoculation of 106 M. ulcerans cells in a 10ul inoculation into the tail. An additional control 

group of mice received a mock puncture inoculation in the tail using a 22 gauge needle dipped 

in a suspension of M. ulcerans. Every 14 days post inoculation or mosquito blood meal, a 20ul 

blood sample was collected from the tail vein of all mice. Blood was allowed to clot and the 

sera was retained for western blot analysis against M. ulcerans whole cell lysate.  

Statistics 

 Statistical significance of the survival and fitness data was determined using a two-

sided student’s t-test between individual treatment groups.   

Mouse Care 

Twenty 8-week-old female wild-type C57BL/6J mice were obtained from The Jackson 

Laboratory Center for Mouse Models of Heart, Lung, Blood and Sleep Disorders (Bar Harbor, 

ME). All mice were maintained in the Animal Biosafety Level 2 facility at CSU, with sterile rodent 

chow and water ad libitum, with 5 animals per cage. The studies involving animals were 

approved by the Institutional Animal Care and Use Committee at Colorado State University, 

which is accredited by the Association for the Assessment and Accreditation of Laboratory 

Animal Care, International.  
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Results 

Within the aquatic environment, larval 

mosquitoes are known to filter bacteria from the water 

column as a source of nutrition. During mosquito 

development in the contaminated water, A. gambiae 

larvae readily consume the M. ulcerans bacilli, 

measured by fluorescent microscopy of the larval 

alimentary canal (Figure 16). Larval mosquitoes readily 

consume supplemental bacteria, but the effect on 

survival and development of adult mosquitoes is only 

encountered in groups consuming live M. ulcerans.  

Upon emergence from the aquatic environment, adult mosquitoes remain in contact with the 

contaminated water source. To determine the contamination patterns of adult mosquitoes, 

emerged adult female mosquitoes were collected, fixed, and fluorescently labeled. Since most 

vector-borne pathogens are transmitted by mosquitoes via salivary expression into the 

puncture wound, we first analyzed the salivary glands of adult female mosquitoes and 

discovered no measurable contamination by M. ulcerans using IFA. The salivary glands were 

also homogenized and subjected to PCR against the M. ulcerans insertion sequence IS2404 and 

culture. We found no contamination of the mosquito salivary glands using this approach. 

Additionally, analysis of the midgut tissues revealed no contamination by M. ulcerans.  

Figure 16: Alimentary canal of larval A. 
gambiae mosquito packed with M. 
ulcerans 1615-GFP, viewed under a 
fluorescent microscope (10x). 
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A microscopic analysis of the distal end of the female mosquito’s proboscis reveals a 

complex tissue structure composed of chitinous scales and sensory hairs. IFA analysis of this 

structure demonstrated intense contamination by M. ulcerans bacilli (Figure 17). These 

contaminating bacilli are active and demonstrate positive growth upon culture (data not 

shown). The length of time that the contaminating M. ulcerans remains alive on the mosquito 

mouthparts was not measured.  From these data, it could be suggested that mosquitoes may 

transmit the bacilli through a mechanical mechanism, as opposed to the common biological 

mechanism of other pathogens. All mosquitoes sampled from the live M. ulcerans groups 

demonstrate this external pattern of contamination. The ɣ-irradiated M. ulcerans and M. 

tuberculosis groups do not show a similar pattern of contamination, although few ɣ-irradiated 

M. ulcerans cells could be detected on the mosquito mouthparts.  

Figure 17: Immunofluorescence image of labral tissues of mosquito proboscis at 40x magnification. M. 
ulcerans bacilli (labelled in red) contaminated these external structures (left). High contrast microscopy of 
labral tissues of proboscis for reference (right).  
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An analysis of survival to adulthood among the treatment groups reveals a significant 

difference in survival among the treatment groups. As a source of nutrition, the ɣ-irradiated M. 

ulcerans and M. tuberculosis bacilli provide a significant increase in survival compared to the 

control groups, which rely solely on fish food. Conversely, mosquitoes which have consumed 

live M. ulcerans bacilli during development are measured to have a significantly reduced 

survival rate compared to the controls (Figure 

18).  In addition, the emerged adult 

mosquitoes are significantly smaller than 

their counterparts which have consumed 

control fish food and ɣ-irradiated bacilli 

(Figure 19).  Interestingly, when M. ulcerans 

bacilli are used as a monotypic food source 

(without supplemental fish food), the effect 

on the larval mosquitoes is lethal (data not 

shown). According to our study, this effect 
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Figure 18: Kaplan-Meier plot of Survival to adulthood for mosquitoes from all treatment groups (left). 
Individual M. ulcerans (Mu) exposed treatment groups separated for comparison revealing a significant 
difference in survival (right). ***= p.001  
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Figure 19: Comparison of the wing size of emerged 
female mosquitoes as a proxy for body size. Adult 
mosquitoes are significantly smaller than their control 
counterparts as a result of exposure to live M. ulcerans.   
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seems to be specific to A. gambiae mosquitoes, as Culex sp. mosquitoes can consume live M. 

ulcerans bacilli as a monotypic food source, even in concentrations as high as 1010 cells/ml 

without any measured developmental effects or reduced survival (data not shown).    

To determine if the contaminated 

mosquitoes could mechanically 

transmit the bacilli, contaminated 

mosquitoes were collected and saliva 

was extracted. The collected samples 

were then interrogated for the 

presence of M. ulcerans via PCR 

against the IS2404 sequence and 

culture. This procedure did not detect 

any replicating bacteria in the 

collection medium via culture (data 

not shown). The PCR analysis results 

were positive for the presence of M. 

ulcerans DNA in the saliva sample, as expected (Figure 20; Lanes 9,10), by the presence of a 

549-bp band. No contaminating bacilli or M. ulcerans DNA was detected in the saliva collected 

from the control mosquitoes (data not shown). 

To further refine the transmission hypothesis, contaminated and control mosquitoes 

were allowed an artificial blood meal through a hog-gut membrane and by feeding on 

anesthetized mice. After demonstrating the positive contamination of adult female mosquitoes 

Figure 20: PCR analysis of experimental samples. Lanes:  
1: high mass DNA ladder  
2: control mosquito homogenate (negative control)  
3: M. ulcerans gDNA (1ug) (positive control) 
4: Mosquito homogenate spiked with M. ulcerans gDNA (1ug) 
5: homogenate of mosquitoes exposed to M. tuberculosis 
6: homogenate of mosquitoes exposed to M. tuberculosis 
spiked with M. ulcerans gDNA (1ug) 
7: homogenate of mosquitoes exposed to live M. ulcerans 
8: homogenate of mosquitoes exposed to dead M. ulcerans 
9: saliva sample from mosquito exposed to live M. ulcerans 
10: saliva sample from mosquito exposed to dead M. ulcerans 
11: low mass DNA ladder 
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from the same group (Figure 21: Lanes 6,8), 

the remaining mosquitoes were placed in a 

clean cage as described. The mosquitoes 

and the defibrinated blood were collected 

and analyzed. Subsequently, mosquito 

tissues did not demonstrate growth of live 

M. ulcerans upon culture but remained PCR 

positive (Figure 21: Lane 7). The collected 

blood did not demonstrate positive culture 

or PCR signals after the feed (Figure 21: 

Lane 5). Contaminated and control 

mosquitoes were also allowed to feed on 

anesthetized mice for a period of 1 hour. 

The subsequent analysis of mosquito 

exposed mouse serum demonstrated no reactivity to whole cell lysate via western blot over a 

period of 20 weeks (data not shown). Mice inoculated with the sham needle puncture did not 

develop antibodies against M. ulcerans antigens during the study period 

Discussion 

Due to the significant overlap in the geographic and environmental distribution of both 

A. gambiae and M. ulcerans, it is highly likely that these two organisms interact on some level. 

Other studies have demonstrated an association between mosquitoes and outbreaks of Buruli 

Ulcer disease (61). Indeed, the use of bed nets has been shown to reduce the risk of infection 

Figure 21: PCR analysis of samples from transmission 
experiments. Lanes: 
1: high mass DNA ladder 
2: control mosquito homogenate (negative control) 
3: M. ulcerans gDNA (positive control) 
4: water sample from live M. ulcerans mosquito cage 
5: defibrinated blood after artificial blood meal of 
mosquitoes exposed to live M. ulcerans 
6: homogenate of mosquito exposed to live M. ulcerans 
before artificial blood meal 
7: homogenate of mosquito exposed to live M. ulcerans 
after artificial blood meal 
8: homogenate of mosquito exposed to live M. ulcerans 
before mouse blood meal 
9: homogenate of mosquito exposed to live M. ulcerans 
after mouse blood meal 
10: M. ulcerans gDNA (positive control) 
11: low mass DNA ladder  
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with M. ulcerans. Unfortunately, the role mosquitoes play in the transmission and maintenance 

of M. ulcerans in the wild remains elusive. In this study, we report two distinct contamination 

patterns of A. gambiae mosquitoes. Larval mosquitoes readily consume introduced M. ulcerans, 

and may serve as a bioaccumulator of the pathogenic bacteria in the wild. A study by Mosi et al 

(2008), demonstrated the contamination of the raptorial arms of predacious water bugs after 

the consumption of contaminated mosquito larvae, further encouraging the role of mosquitoes 

in the passage of M. ulcerans through the aquatic food web (52). In this study, we show larval 

mosquitoes can successfully maintain live, active M. ulcerans in their alimentary canal during 

their development. Larval mosquitoes are a prominent member of the aquatic food chain, and 

are eaten by a wide variety of higher order insects, amphibians, birds, and fish. The association 

between larval mosquitoes and M. ulcerans bacilli may represent a ubiquitous mechanism of 

maintenance of the bacteria in the natural setting. However, it is not likely that mosquito larvae 

would be exposed to the concentration of bacilli used in this study while developing in their 

natural habitat, although the actual distribution and concentration of M. ulcerans in the wild in 

unknown.       

Once emerged from the water column, adult mosquitoes must still associate with the 

aquatic environment for breeding and hydration. The appearance of contaminated bacilli on 

the external structures of the adult mosquito and the lack of internal contamination of gut and 

salivary glands suggests that contamination of the adult mosquitoes occurs post emergence 

from the aquatic stage of development. These emerged, contaminated mosquitoes are small 

and may be more likely to be eaten by higher predators. While it may seem disadvantageous 

for the pathogen to negatively affect the development of the mosquito, it further promotes the 
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idea of a biological relationship between the two organisms. However, it is unknown whether 

the fitness cost from the association with the live M. ulcerans is due to larval consumption of 

the bacilli, the external contamination of the adults, or through some other mechanism. Size of 

the adult mosquito can influence epidemiologically relevant traits, thus the probability that 

mosquitoes actively transmit the contaminating pathogen is low (193). Although, it could be 

suggested that contaminated mosquitoes with reduced fitness may also contribute to 

environmental maintenance of the bacilli. 

Our transmission studies further 

implicate mosquitoes’ role in 

maintenance and not as a vector. In our 

model, the contaminated mosquitoes 

were not able to measurably transmit the 

pathogen (Figure 22). While the true 

infective dose is unknown, it is highly 

likely that a potential dose received from 

a mosquito would contain very few, if any, cells. The mouse model of transmission did not 

demonstrate any measurable immune recognition of the pathogen potentially vectored by the 

mosquitoes. Our mouse transmission study models the potential transmission of bacilli from 

contaminated mosquitoes to fully immunocompetent mice. However, it is suspected that the 

nutritional status or general health of human populations plays a significant role in their 

susceptibility to M. ulcerans infection, and the inclusion of an immunosuppressed model would 

be advantageous. Epidemiological studies in the field have not been able to definitively 

Figure 22: The position of the adult female anopheles 
mosquito during a blood meal. Arrow indicates the 
anatomy of the proboscis and labral tissues during the 
bloodmeal. Image credit: who.org. 
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demonstrate mosquito-borne transmission. However, it is still possible that mosquitoes could 

play a role in transmission, and the development of a model to accurately predict this 

phenomenon would require more extensive study. 

Finally, analysis of contaminated insects via PCR, while incredibly sensitive and specific, 

can result in easily misinterpreted data. Our procedure of tandem PCR and culture 

demonstrated that positive PCR signals do not predict the presence of live, transmissible M. 

ulcerans bacilli upon culture. The source of the captured DNA must be considered when 

analyzing PCR results, as DNA from lysed cells and as a part of the M. ulcerans extra-cellular 

matrix may be exceedingly abundant.    

Current studies suggest a limited role for mosquitoes in the transmission of M. ulcerans, 

and perhaps a significant role in environmental maintenance. While the findings of Williamson 

et al (2014) highlight the importance of a puncture-type inoculation for eventual development 

of classical disease, thus the implication of mosquitoes, a wide variety of blood-feeding insects 

have yet to be evaluated. The family Ceratopogonidae contains 4,000 species of blood-feeding 

insects, better known as the biting midge. This family of insects is responsible for the 

transmission of the filarial worm Mansonella and a wide variety of viral pathogens. Additionally, 

pool-feeding insects such as horse flies (family Tabanidae) and black flies (family Simuliidae) are 

aggressive and widely distributed blood-feeding insects responsible for the transmission of 

Trypanosoma, the filarial worm Loa Loa, anthrax, tularemia, and Onchocerciasis (194-198). A 

member of these insect families, with their global distribution and established vector capacity, 

could represent the enigmatic source of transmission that many have been searching for. 
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CHAPTER 5: ANALYSIS OF MOSQUITO METABOLOME AFTER EXPOSURE TO M. ULCERANS 
 

 
 

Introduction 

Infection with Mycobacterium ulcerans results in a necrotizing ulceration of the subcutaneous 

tissue and is a major cause of morbidity in more than 30 countries (63). West and Central 

Africa, Australia, and similar tropical localities have reported an increasing incidence of the 

disease over the past decade (199, 200).  Exposure to the bacteria is thought to occur from a 

yet unknown, but persistent, environmental niche. Serological studies of patients in endemic 

areas indicate high sero-prevelence rates compared to disease incidence rates, suggesting that 

exposure to the pathogen without the development of disease is common.  After exposure, and 

over a variable incubation period, infection can progress from a painless nodule, plaque, or 

edema to severe ulceration. It is likely that M. ulcerans persists within a complex food web, 

through the passage and maintenance by various arthropods and mammals within a particular 

ecosystem (201). Recently, other non-human mammals have been discovered to be susceptible 

to infection by M. ulcerans, potentially indicating a diversity of reservoirs used by the bacilli to 

promote persistence in the environment (45). However, the mechanism used to bridge the 

environmental reservoir and susceptible populations has remained elusive, despite numerous 

studies.    

Several insect genera have been investigated for their ability to maintain and transmit 

the pathogen, including mosquitoes (Culex, Anopheles, and Aedes) and biting water bugs 

(Naucoridae, Belostomatidae) (54, 202).  Epidemiological studies have reported strong 
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associations between M. ulcerans and mosquitoes in endemic areas, with Buruli Ulcer patients 

often recalling mosquito bites after visits to endemic areas (61). Thus, a close association with 

insects has been proposed as a potential source of infection (189). Before vector-borne 

transmission was suspected by investigators, it was widely believed that the acid-fast bacilli 

(AFB) could be introduced into a previously existing cut or abrasion and subsequently result in 

Buruli Ulcer (203). This mode of exposure was deemed unlikely in a current study by Williamson 

et al (2014), which demonstrated a lack of pathology associated with M. ulcerans infection 

when abraded guinea pig skin was inoculated with a suspension of M. ulcerans (204). This study 

also suggested that the mechanism of exposure to most likely result in classical Buruli Ulcer 

disease was via injection of the bacteria into the skin, further implicating vector-borne 

transmission.  

Laboratory studies have confirmed M. ulcerans’ ability to colonize many invertebrate 

species. The mechanisms employed by the bacilli to colonize a particular environmental or 

invertebrate niche are not well understood, though it is likely that additional virulence factors, 

not limited to mycolactone, participate in the survival of the bacilli in these varied 

environments. The polyketide toxin mycolactone is the primary virulence factor encoded by M. 

ulcerans. Although it is well known that mycobacteria employ a diverse set of virulence 

determinants promoting their persistence in the environment and the host (205), many of 

which are encoded by M. ulcerans (206).  Indeed, expression of mycolactone is not required for 

colonization in some invertebrate models (52).         

Complex host-pathogen interactions have been thoroughly researched in other models 

of vector-borne diseases, describing intricate host-immune and metabolic disruptions leading 
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to survival and subsequent transmission of pathogens by insects (207). This interaction is 

influenced by the physiology of both the pathogen and the vector, resulting in intertwined 

metabolism. An intriguing and valuable research objective investigating the mechanisms of 

pathogen survival in the host and the dynamics of this interaction have led to innovative 

strategies for vector and pathogen control (53).  

A. gambiae, the infamous malaria vector, is well-known for its ability to transmit a very 

large and complex pathogen (Plasmodium falciparum), and species of the A. gambiae complex 

are distributed throughout geographic locations endemic for Buruli Ulcer disease (190). Some 

of this sympatry has been documented in studies describing M. ulcerans DNA contamination of 

wild-caught mosquitoes from endemic regions and not from non-endemic regions (61, 63). 

Thus, it is highly likely, that due to the abundance and distribution of these two organisms, 

interaction is occurring at some trophic level.   

The objective of this study was to examine the interaction between M. ulcerans and the 

A. gambiae mosquito using untargeted ultra-high-performance liquid-chromatography coupled 

tandem mass spectrometry (UPLC-MS/MS) to identify novel metabolic biomarkers of exposure 

to the pathogen. An untargeted approach in the capture and analysis of metabolites results in 

an unbiased, holistic methodology to generate a metabolic fingerprint associated with a 

specified treatment or exposure. This approach has been used to evaluate metabolic 

perturbations in other pathogenic and nonpathogenic disease states, including cancer, and 

represents an extremely sensitive tool (208). UPLC-MS/MS based metabolomic studies offer the 

most versatility when interrogating a sample set containing molecules of diverse molecular 

characteristics, with the aim to identify and semi-quantify small molecules involved in 
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metabolism (209). Subsequently, identified molecules are mapped to known metabolic 

pathways within an organism to assist in the understanding of biological interactions. To 

evaluate the interaction between these two organisms, A. gambiae larvae were allowed to 

develop in water containing live M. ulcerans, dead (ɣ irradiated) M. ulcerans, or without 

supplemental bacteria. Upon emergence, adult mosquitoes were captured and their metabolic 

patterns were analyzed to investigate pathogen associated effects on development. An 

understanding of the mechanisms employed by the pathogen to promote its survival in the 

mosquito system will ultimately provide significant insight into the persistence of the bacilli in 

the environment and clues towards understanding additional virulence factors utilized by M. 

ulcerans during pathogenesis.  

Materials and Methods 

Bacterial strain and culture 

Mycolactone-negative Mycobacterium ulcerans strain 1615-GFP was kindly provided by 

Dr. Pamela Small from the University of Knoxville, Tennessee. The culture was propagated at 

32°C for a period of 3 weeks on Middlebrook 7H11 (Difco Laboratories, Detroit, MI) plates 

supplemented with Kirschner Selecta-Tabs and 10 µg/ml kanamycin (7H9+), then aliquoted into 

infectivity stocks at a concentration of 1010 cells/ml. Contaminating bacteria from mosquito 

samples were acquired by vortexing the tissues of interest in 7H9+ liquid media, performing a 

10-fold serial dilution and plating the dilutions on Middlebrook 7H11 plates with similar 

antibiotic supplements.  
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Mosquito species and maintenance 

1st-instar larval Anopheles gambiae mosquitoes were acquired from the colony 

maintained at the Arthropod-borne Infectious Disease Laboratory (AIDL) at Colorado State 

University. 100 larval mosquitoes were distributed to individual cages containing 250ml of 

sterile water and supplemented daily with finely ground fish food. All cages were setup in 

duplicate for the individual treatment groups and each experiment was repeated in triplicate. 

Mosquitoes were monitored daily and allowed to develop over a period of 10 days in a 

controlled environment of 28°C and 70% humidity. Mosquito cages were supplemented with 

sterile water and raisins, ad libitum, upon emergence of adult insects. Upon termination of the 

study, adult mosquitoes were aspirated from the cages and briefly knocked down in 4°C. 10 

mosquitoes each were distributed for the generation of technical replicates and their use in 

subsequent assays. 

Invertebrate infections 

100 1st-instar larval mosquitoes were exposed, in duplicate, to live or dead 

supplemental M. ulcerans bacteria, or no supplemental bacteria. 102 cells/ml of live M.ulcerans 

1615-GFP, 102 cells/ml of dead, ɣ-irradiated M. ulcerans 1615-GFP, were added to the sterile 

water upon the addition of larval mosquitoes. All groups received approximately 100mg of fish 

food daily, in addition to the single initial dose of supplemental bacteria. 

Detection of bacteria on mosquito tissues 

A sample of 10 mosquitoes was acquired from each treatment group to determine the 

presence of contaminating M. ulcerans bacilli. Mosquito whole-bodies were collected and 
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assayed for the presence of contaminating M. ulcerans via PCR analysis and culture as 

described (Chapter 4). 

Survival analysis  

The mosquito’s survival to adulthood was measured by counting the number of 

emerged adults and generating a Kaplan-Meier survival curve among the treatment groups, as 

described (Chapter 4). The relative fitness of emerged adults was evaluated by measuring the 

wing size of emerged mosquitoes as a proxy for body size. Both wings were removed and 

measured electronically via the publicly available ImageJ program (imagej.nih.gov/ij/) using a 

line measurement plugin. 

Extraction and purification of small molecules 

5 adult female mosquitoes from each treatment group were collected and immediately 

placed at in 100% methanol at -80°C to preserve their metabolic profile. Frozen mosquitoes 

were then placed in a small Eppendorf tube containing 100ul of cold (-20 degree) 100% 

methanol and homogenized with a handheld eppendorf homogenizer. The suspension was 

briefly centrifuged for 10 minutes at 10,000xg to remove large debris. The supernatant was 

then pushed through a 0.22um filter attached to a 1ml syringe to remove remaining small 

debris. The filtered methanol extract was used for LC-MS/MS analysis.   

Mass Spectrometry 

Acquisition: 1 uL injections of the filtered methanol extract were performed on a Waters 

Acquity UPLC system.  Separation was performed using a Waters Acquity UPLC T3 column (1.8 

µM, 1.0 x 100 mm), using a gradient from solvent A (water, 0.1% formic acid) to solvent B 
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(Acetonitrile, 0.1% formic acid).  Injections were made in 100% A, which was held for 1 min, a 

12 minute linear gradient to 95%B was applied, and held at 95 % B for 3 minutes, returned to 

starting conditions over 0.05 minutes, and allowed to reequilibrate for 3.95 minutes.  Flow rate 

was constant at 200 µL/min for the duration of the run.  The column was held at 50°C, samples 

were held at 5°C. Column eluent was infused into a Waters Xevo G2 Q-Tof MS fitted with an 

electrospray source.  Data was collected in positive ion mode, scanning from 50-1200 at a rate 

of 0.2 seconds per scan, alternating between MS and MSE mode.  Collision energy was set to 6 

V for MS mode, and ramped from 15-30 V for MSE mode. Calibration was performed prior to 

sample analysis via infusion of sodium formate solution, with mass accuracy within 1 ppm. The 

capillary voltage was held at 2200V, the source temp at 150°C, and the desolvation 

temperature at 350°C at a nitrogen desolvation gas flow rate of 800 L/hr. 

Processing: XCMS peak detection was performed on both the low and high collision energy 

channels (MS and MSe).  The datasets were separated following alignment, and the idMS/MS 

workflow described previously was applied for generation of indiscriminant MS/MS spectra for 

library searching and compound identification (210). 

Statistical analysis  

All data collected were subjected to principle component analysis (PCA) for dimensional 

reduction, linear transformation, and consolidation of variables before any labelling. All 

idMS/MS spectra were analyzed by two-way ANOVA (P≤0.05 considered significant) to generate 

a dataset containing only compounds that demonstrated statistically significant abundance 

among all treatment groups. From this dataset, the abundance of individual compounds 

between treatments were compared using a two-sided student’s t-test (p≤0.05) to generate a 
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dataset containing compounds dually significant by both ANOVA and t-test. These dually 

significant compounds were then subjected to library searching for identification.  

Library searching and compound identification 

MS/MS spectra from dually significant compounds were compared against in-house 

small molecule libraries developed and validated by the Proteomics and Metabolomics Core 

facility (PMF) at Colorado State University, the Metlin Mass Spectral database, and NISTv12 for 

identification via spectral matching and retention time data.  Annotation confidence levels as 

recommended by the Metabolites Standards Initiative were applied (211). Briefly, samples were 

initially compared against the PMF validated chemical reference library. A compound was 

identified with level I confidence upon matching the mass spectra, retention time, and m/z of 

the chemical reference standard validated with identical instrumental conditions. Compounds 

annotated with level II confidence are based upon similarity of mass spectra, exact mass, and 

m/z of the putative compound with the commercialized Metlin database and NISTv12. Level III 

identification was based on similarity of the mass spectra of putative compounds to known 

compounds in a chemical class. Unknown compounds, which were still differentiated and 

quantified using the techniques described, contain unique chromatographic features and are 

reported as "unknown.” 

Results and Discussion 

Time course of mosquito exposure and survival  

100-1st instar A. gambiae larvae were distributed into cages in duplicate. Upon 

initiation, groups receiving supplemental bacteria (live M. ulcerans or ɣ-irradiated M. ulcerans) 
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were dosed. Treatment groups received a single dose of supplemental bacteria at initiation of 

the experiment, then received ground fish food daily. Mosquitoes were allowed to develop 

over a period of 10 days until they emerged as adults. During this time course, survival of the 

mosquitoes were measured via daily counts of larvae. Upon emergence, the number of 

mosquitoes which survived to adulthood were counted to evaluate survival over the duration of 

development (Chapter 4).  Briefly, mosquitoes exposed to live M. ulcerans were found to have 

reduced survival and fitness by adulthood, compared to the control groups (Figure 23).  

 

Composition and analysis of methanol extracts of mosquito after exposure to M. ulcerans 

A sample of 15 adult female mosquitoes was collected from each treatment group and 

divided into replicates of 5 adult mosquitoes per sample. After homogenization in cold 

methanol and filtration, the samples were subjected to UPLC-MS/MS for semi-quantitative 

global detection of metabolites. The preservation of the metabolite profile is paramount in any 

metabolomics study, hence the use of rapid freezing and methanol quenching. Metabolite 
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Figure 23: Summary of mosquito survival (left) and size (right) from Chapter 4. Mosquitoes exposed to live M. 
ulcerans are significantly smaller than controls and have reduced survival to adulthood. ***=p<0.001. 
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extraction procedures can significantly 

influence the quality and composition 

of metabolites in a study, leading to a 

biased analysis of the biological 

significance of small molecules (212).     

Multivariate analysis (PCA) of the 

metabolite data demonstrates distinct 

separation of metabolic profiles 

among treatment groups (Figure 24). 

Treatment groups are well separated 

whereas replicates within each 

treatment are closely clustered.  Clustering of compounds based on similar retention times and 

abundance reduces background and 

streamlines analysis of significant compounds. 

Bubble plots of metabolites from this 

experiment reveal the sheer number of small 

molecules captured and clusters of significant 

features (Figure 25). The cluster highlighted in 

Figure 25 represents a significant cluster of 

lipids via differential analysis. After data 

reduction and clustering, a list of 134 

compounds were found to have statistically 

Figure 24: PCA plot of untargeted metabolite analysis 
demonstrates significant clustering of compounds based on 
exposure. Control group in black (upper right); dead M. 
ulcerans group in red (bottom left); and live M. ulcerans 
group in green (top left).    

Figure 25: Bubble plot of total metabolite demonstrates 
spectral clustering of compounds for all treatment 
groups. Line separating chart represents P<0.05 cutoff 
for significance. Oval highlighting significant cluster of 
features as a function of retention time.  
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significant differences in abundance among treatment groups. From this list, 25 were identified 

with level I confidence (211) (Table 2).  A significant number of compounds were not 

identifiable with Level I confidence (Table 2). This may be due to a lack of coverage of 

Anopheles-specific metabolites in spectral libraries. Representative head-to-tail plots of 

selected compounds are shown in appendix I and the total ion chromatogram of treatment 

groups is shown in figure 26. While metabolomics is quickly becoming a valuable tool for global 

assessment of exposure-induced metabolic effects, the confident identification of small 

molecules and the assignment of biological significance represents a bottleneck in the analyses 

of these studies (212). The expansion of spectral libraries and the availability of open-source 

metabolomics data repositories will aid the analysis of future applications of metabolomics.   
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Figure 26: Total ion chromatograms (TIC) by treatment group. A: TIC of control mosquitoes. B: TIC of mosquito 
exposure to dead M. tuberculosis. C: TIC of mosquitoes exposed to live M. ulcerans. D: TIC of mosquitoes 
exposed to dead M. ulcerans. 
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Table 2: Dually significant compounds  

 

         

IDa Compound Annotationb KEGG IDc Retention timed m/ze P-valuef 
ID 

confidenceg 

Control 
vs Mu+ 

FCh 

Control 
vs Mu- 

FCi 

C589 unknown n/a 521.3 440.277 0.003 IV 4.150 2.810 

C341 unknown n/a 484.9 199.133 <0.001 IV 3.450 2.390 

C828 Orotic acid-like C00295 781.3 297.279 0.010 III 3.392 0.536 

C724 1-oleoyl-2-palmitoyl-sn-glycero-3-PC 18:1/16:0 C04317 759.8 760.597 0.010 I 2.754 0.896 

C814 GPEtn 42:3 C04475 858.6 804.557 0.040 III 2.753 0.483 

C355 GPEtn (20:0/20:0) C04475 737.7 782.579 <0.01 III 2.438 1.067 

C753 unknown n/a 792.7 738.627 0.003 IV 2.346 1.181 

C321 unknown n/a 583.6 510.356 0.010 IV 2.320 1.590 

C209 unknown n/a 807.7 826.541 0.016 IV 2.260 0.755 

C426 Lyso-PC 24:0 C04317 575.7 570.355 0.004 III 2.215 1.114 

C506 unknown n/a 792.0 800.528 0.045 IV 2.199 0.765 

C591 unknown n/a 560.4 307.227 0.001 IV 2.110 1.800 

C686 GPEtn 42:3 C04475 720.4 804.579 <0.001 III 2.002 1.070 

C78 unknown n/a 650.0 309.243 0.006 IV 1.917 0.851 

C295 riboflavin C00255 229.1 377.146 0.010 I 1.879 1.287 

C456 peptide fragment n/a 556.4 546.284 0.005 III 1.874 0.807 

C643 unknown n/a 772.2 760.593 0.030 IV 1.860 0.985 

C465 oxytocin-like C00746 550.0 955.584 0.012 III 1.851 0.970 
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C24 Dodecylbenzenesulfonic acid n/a 752.6 554.177 <0.01 III 1.830 1.050 

C493 Sphingomyelin 40:5 C00550 825.5 786.509 0.027 III 1.759 0.806 

C737 GPEtn(18:3(6Z,9Z,12Z)/ 18:3(6Z,9Z,12Z)) C04475 829.8 737.539 0.050 I 1.726 1.776 

C795 unknown n/a 589.5 1001.670 0.008 IV 1.688 2.027 

C482 unknown n/a 734.1 331.263 0.005 IV 1.661 1.006 

C186 1-hexadecanoyl-sn-glycero-3-PC C04317 522.7 518.325 0.030 II 1.660 0.740 

C443 unknown n/a 530.8 522.379 0.002 IV 1.600 0.750 

C555 dynorphin-like C01574 646.2 508.341 0.006 III 1.592 1.306 

C187 unknown n/a 517.5 452.277 <0.001 IV 1.570 1.050 

C703 unknown n/a 522.9 544.268 0.009 IV 1.560 1.011 

C338 unknown n/a 549.4 509.345 <0.01 IV 1.560 1.490 

C326 GPEtn(7:0/20:4(5E,8E,11E,14E)) C04475 513.6 472.364 0.020 III 1.550 1.415 

C52 Lyso-PC 16:0 C05209 520.0 476.279 0.034 III 1.523 0.850 

C750 unknown n/a 763.6 684.581 <0.001 IV 1.449 1.311 

C217 Sphingomyelin (d19:1(4E)/26:1(17Z)) C00550 948.0 85.086 0.020 III 1.420 1.220 

C240 Lyso-PC 18:0 C04317 618.5 524.372 0.030 III 1.400 0.978 

C379 unknown n/a 774.7 712.611 0.020 IV 1.394 0.850 

C71 GPSer (15:0/25:0) C18125 768.1 761.609 0.004 III 1.380 0.920 

C67 1-oleoyl-2-hydroxy-sn-glycero-3-PC 18:1 C04317 546.1 544.340 0.010 I 1.359 0.681 

C449 ACTH-like C02017 508.4 468.309 <0.01 II 1.356 1.410 

C442 unknown n/a 536.3 544.341 0.001 IV 1.353 0.921 

C183 Lyso-PE 18:1 C05209 586.4 959.613 0.020 III 1.350 1.570 

C390 unknown n/a 916.8 804.556 0.015 IV 1.326 0.922 
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C575 ACTH-like C02017 587.9 587.940 0.033 III 1.309 1.780 

C243 2-oleoyl glycerol n/a 595.1 542.299 0.020 III 1.300 1.080 

C344 ACTH-like C02017 500.0 468.308 0.017 III 1.290 1.285 

C461 unknown n/a 540.6 498.379 0.038 IV 1.259 0.837 

C32 GPCho(16:0/16:1(7Z)) C00157 530.5 494.324 <0.01 I 1.241 1.818 

C35 1-palmitoyl-2-hydroxy-sn-glycero-3-PC 16:0 C04317 571.6 496.340 0.010 I 1.237 1.192 

C83 GPEtn (5:0/24:4(5Z,8Z,11Z,14Z) C04475 558.3 500.395 0.027 III 1.234 0.986 

C335 GPEtn(9:0/18:3(6Z,9Z,12Z)) C04475 545.1 474.379 0.030 III 1.230 0.856 

C245 peptide fragment n/a 528.1 452.277 <0.001 III 1.220 1.930 

C799 phenytoin, 1.5,5-Diphenylhydantoin C07443 528.1 253.100 <0.01 II 1.217 1.958 

C444 Lyso-PE 29:5 C05209 530.0 498.379 0.018 III 1.212 0.692 

C562 Lyso-PE 20:4 C05209 574.1 361.274 0.014 III 1.202 0.395 

C195 unknown n/a 548.1 466.293 0.020 IV 1.200 2.160 

C560 angiotensin-like C15850 578.8 1031.713 0.010 III 1.197 1.376 

C328 unknown n/a 520.2 516.306 <0.01 IV 1.180 1.600 

C107 neurotensin-like n/a 552.3 502.294 0.040 III 1.150 0.890 

C29 1-oleoyl-2-hydroxy-sn-glycero-3-PC 18:1 C04317 589.4 522.356 <0.01 I 1.150 1.332 

C512 TG 61:5; [M+Na]+; TG(19:0/20:5/22:0) C00422 1001.0 703.575 <0.01 I 1.148 0.583 

C194 Lyso-PE C05209 543.5 502.294 0.050 III 1.140 0.840 

C794 locustachykinin II C16098 589.5 1065.693 <0.01 II 1.121 1.712 

C440 
1-oleoyl-2-hydroxy-sn-glycero-3-

phosphoethanolamine 
C01233 586.4 480.309 <0.01 I 1.117 1.267 

C104 GPCHo (17:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)) C05212 520.3 494.324 <0.01 II 1.100 1.400 

C581 choline C00114 526.9 564.307 0.010 I 1.099 1.759 
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C123 Lyso-PE 16:1 C05209 536.0 311.259 <0.01 III 1.090 1.800 

C705 unknown n/a 520.3 517.311 0.018 IV 1.087 1.410 

C80 1-oleoyl-2-hydroxy-sn-glycero-3-PC 18:1 C04317 578.6 522.356 0.020 I 1.074 1.118 

C315 iosprene unit n/a 575.6 975.633 0.014 III 1.070 1.165 

C807 unknown n/a 520.2 1014.612 0.010 IV 1.069 1.773 

C711 unknown n/a 546.1 299.132 0.045 IV 1.065 0.799 

C590 Lyso-PC 20:1 C04317 520.3 266.639 0.008 III 1.060 1.360 

C790 GPEtn 28:6 C04475 574.1 621.303 0.008 III 1.057 0.512 

C712 adrenosterone-like C05285 546.2 582.300 0.011 III 1.016 0.749 

C810 1-heptadecanoyl-2-hydroxy-sn-glycero-3-PC 17:0 C04317 556.7 473.272 0.030 I 1.002 1.208 

C422 unknown n/a 633.1 283.263 <0.001 IV 0.999 2.127 

C22 Lyso-PE 16:1 C05209 517.6 474.260 <0.01 III 0.980 1.610 

C96 8,11,14-Eicosatrienoic acid C03242 705.1 305.248 <0.01 I 0.974 0.684 

C550 unknown n/a 708.6 179.143 0.028 IV 0.971 0.819 

C401 adenosine C00212 98.1 141.959 <0.01 I 0.966 0.642 

C120 1-octadecanoyl-sn-glycero-3-PE C04475 623.8 482.324 0.017 III 0.964 0.856 

C818 unknown n/a 728.8 308.265 0.011 IV 0.952 0.692 

C223 Lyso-PE 21:0 C05209 264.2 520.338 0.050 III 0.951 1.122 

C205 Oleic acid-like C00712 749.0 283.264 0.044 III 0.943 0.851 

C800 1-tetradecanoyl-sn-glycero-3-PC 14:0 C04317 517.6 253.603 0.030 I 0.934 1.375 

C709 unknown n/a 539.7 743.395 0.026 IV 0.923 0.770 

C203 GPEtn(17:1(9Z)/17:1(9Z)) C04475 749.1 689.561 0.022 III 0.922 0.589 

C95 1-octadecanoyl-sn-glycero-3-PE C04475 716.0 357.300 0.031 III 0.921 0.642 
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C577 unknown n/a 536.3 571.290 0.015 IV 0.910 1.529 

C118 unknown n/a 704.2 235.169 0.010 IV 0.900 0.600 

C447 unknown n/a 525.6 299.628 0.011 IV 0.885 0.744 

C234 unknown C11045 708.9 281.248 <0.01 III 0.880 0.830 

C179 20-Hydroxy-(5Z,8Z,11Z,14Z)-eicosatetraenoic acid C14748 559.8 303.232 0.010 I 0.877 0.904 

C180 prostaglandin-like C00639 697.3 329.248 <0.01 III 0.870 0.670 

C408 GPEtn (20:0/18:2) C04475 670.1 379.283 0.001 III 0.867 0.586 

C787 8,11,14-Eicosatrienoic acid C03242 694.6 305.248 0.030 I 0.856 0.629 

C583 unknown n/a 516.7 298.626 0.010 IV 0.850 0.539 

C688 pimelic acid-like C02656 708.8 245.227 0.001 III 0.850 0.781 

C125 Lyso-PC 20:5 C04317 516.8 564.306 <0.01 III 0.840 0.620 

C414 
4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic 

acid 
n/a 708.6 239.202 0.040 III 0.829 0.809 

C178 unknown n/a 669.9 171.122 0.020 IV 0.828 0.753 

C568 unknown n/a 568.3 318.131 0.037 IV 0.825 0.730 

C416 GPEtn(15:0/18:2(2E,4E)) C04475 708.7 264.241 0.010 III 0.820 0.799 

C415 3-cyclohexyl-1-propanol n/a 708.8 83.086 0.019 III 0.818 0.809 

C93 Androstane-like C03772 669.9 267.212 0.004 III 0.806 0.836 

C430 unknown n/a 568.6 279.232 0.017 IV 0.798 0.846 

C663 unknown n/a 946.6 304.299 0.017 IV 0.797 1.120 

C322 peptide fragment n/a 534.3 641.271 0.035 III 0.796 0.907 

C366 unknown n/a 825.0 529.881 <0.001 IV 0.783 0.958 

C704 unknown n/a 523.3 270.120 0.006 IV 0.760 0.851 

C808 1-hexadecanoyl-sn-glycero-3-PC 16:0 C04317 559.7 478.327 <0.01 I 0.752 1.125 
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Table 2 key:  
a) In house clustered feature identifier. b) identification of compound based on match of mass spectra, m/z ratio, and/or retention time to available 
databases. c) compound identifier from Kyoto Encyclopedia of Genes and Genomes (www.genome.jp/kegg/) d) generated via liquid chromatography. e) 
mass to charge ratio of the largest peak from the mass spectra. f) level of significance of pairwise comparison between treatment and controls groups. g) 
confidence level of identification based on matching of chromatographic and mass spectral characteristics for each compound to validated compound 
library or publicly available databases, from Sumner et al. 2007. Metabolomics. h/i) fold change in abundance of compound compared between control 
and treatment groups.  Abbreviations: PC: phosphocholine; GPCho: glycerophosphocholine; GPEtn: glycerophosphoethanolamine; GPSer: 
glycerophosphoserine; ACTH: adrenocorticotropic hormone; X:N represents number of carbons to double bonds in a given compound.  

C227 Deoxyadenosine monophosphate C00360 360.3 98.512 <0.01 III 0.743 0.770 

C38 histamine-like C00388 990.5 130.159 0.048 III 0.730 0.694 

C102 Lyso-PE 16:0 C05209 528.0 245.616 0.020 III 0.730 1.600 

C548 unknown n/a 708.5 139.112 0.001 IV 0.727 0.663 

C177 Deoxyadenosine monophosphate C00360 356.4 98.512 0.030 III 0.710 0.790 

C151 Lyso-PC 20:0 C04317 646.5 468.345 0.017 III 0.710 0.790 

C336 Lyso-PE 17:1 C05209 549.6 506.323 <0.01 III 0.680 0.391 

C593 unknown n/a 554.9 530.320 0.007 IV 0.670 0.279 

C421 GPCho (14:0/17:1(9Z)) C05212 598.9 508.339 <0.001 III 0.654 0.213 

C100 GPCho (17:1(9Z)/22:5(4Z,7Z,10Z,16Z)) C05212 586.2 508.340 <0.01 II 0.600 0.170 

C641 Dodecylbenzenesulfonic acid n/a 849.2 703.217 <0.01 II 0.524 0.482 

C578 unknown n/a 534.3 424.324 0.011 IV 0.488 0.275 

C766 trans-8, trans-10-Dodecadien-1-ol C02679 1031.0 141.959 <0.001 I 0.467 0.579 

C528 unknown n/a 24.6 173.021 <0.001 IV 0.463 0.784 

C699 unknown n/a 517.6 398.327 0.033 IV 0.454 0.485 

C349 trans-8, trans-10-Dodecadien-1-ol C02679 1074.8 141.959 0.020 I 0.369 0.398 
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Phospholipid pathways affected by exposure to M. ulcerans 

An analysis of the metabolites of contrasting abundance among treatment groups was 

analyzed in an attempt to correlate the disruption of metabolic pathways with the reduced 

survival and fitness described in the adult mosquitoes (Chapter 4 and Figure 23). Of the 

identified compounds with significantly different regulation among treatments, the vast 

majority belong to the lipid metabolism functional group. The primary metabolites showing the 

most significant fold change in abundance among treatments belong to the phospholipid and 

ether lipid class of molecules, comprising the main components of biological membranes (213). 

In particular, diacylated glycerophosphocholine (PC) 

molecules were found to be in abundance in live M. 

ulcerans exposure groups (Table 2). While this class 

of molecules is ubiquitous in membranes, the high 

levels of these molecules in mosquitoes exposed to 

live M. ulcerans compared to other groups, may 

indicate an impaired mechanism of PC hydrolysis 

occurring in live-pathogen exposed groups. 

Specifically, the accumulation of 1-oleoyl-2-

palmitoyl-PC in live M. ulcerans groups compared to 

both the control and dead M. ulcerans groups suggests a mechanism of live-pathogen induced 

disruption of utilization or disruption of the mosquito’s membrane integrity during exposure 

(Figure 27).  

Figure 27: Box and whisker plots of the 
abundance of 1-oleoyl-2-palmitoyl-PC 
(top)(C724) and 1-oleoyl-2-hydroxy-PC 
(bottom)(C67) compared to other treatment 
groups. CTRL:control; Mu-:irradiated M. 
ulcerans; Mu+: live M. ulcerans; Trt: 
treatment 

1-oleoyl-2-palmitoyl-PC 
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Accumulation of lyso-phosphatidylcholine compounds (LysoPC) (monoacylated 

glycerophosphocholine) occurs primarily in mosquitoes exposed to dead M. ulcerans compared 

to both the control and live M. ulcerans treatment groups. Hydrolysis of the PC molecule 

resulting in the formation of 2-LysoPC is the result of cleavage of the sn-2 acyl bond potentially 

by a putative Anopheles encoded phospholipase A2 (UniProt: T1EAP2_ANOAQ) or via enzyme 

secretion from commensal microbiota assisting in digestion, and represents the most abundant 

LysoPC in nature (214). This finding suggests that mosquitoes exposed to live pathogen, thus 

resulting in low abundance of 2-LysoPC compared to controls, may have impaired transcription 

and regulatory functions as a result (214) (Figure 28).  

 

Glycerophospholipid metabolism in Anopheles mosquitoes is a critical component of 

metabolism utilized for the generation of lipid energy sources, components of cell membranes, 

and signaling pathway modulators (215). Mosquitoes rely on a lipid carrier protein, lipophorin, 

as a reusable shuttle for the transportation of lipid molecules from sites of storage or synthesis 

to sites of utilization as an energy source or as precursors to triacylglycerol and phospholipid 

Figure 28: Box and whisker plots of the abundance of 2-LysoPC compounds detected in mosquito tissues. C808 
represents the abundance of 1-hexadecanoyl-LysoPC 16:0 (left) and C800 represents the abundance of 1-
tetradecanoyl-sn-glycero-3-LysoPC 14:0 (right) in mosquitoes exposed to irradiated M. ulcerans (Mu-) in 
comparison to control (CTRL) and live M. ulcerans (Mu+).  

1-tetradecanoyl-sn-glycero-3-LysoPC 1-hexadecanoyl-LysoPC 
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synthesis. In contrast with other eukaryotic organisms which store lipids as mixtures of mono-, 

di-, and triglycerides, triacylglycerides (TG) are the major component of mosquito lipid storage 

and may be cleaved to release fatty acids as an energy source (215). In our model, TG was 

found to have significantly higher abundance in mosquitoes exposed to live M. ulcerans, 

perhaps suggesting some mechanism of pathogen induced disruption of the utilization of this 

molecule. In contrast, mosquitoes exposed to dead M. ulcerans, had lower abundance of TG 

than control mosquitoes (Figure 29), suggesting a reduced requirement for TG accumulation, or 

a greater utilization of the molecule 

when provided a lipid-rich mycobacterial 

diet resulting in increased survival and 

size compared to control mosquitoes 

(Chapter 4 and Figure 23). An abundance 

of unsaturated fatty acids and 

glycerophospholipds in mosquitoes is 

thought to be an adaptation to an 

aquatic environment (216), and the 

composition and distribution of these 

molecules in insect’s tissues has also been 

shown to differ with diet (217) (Figure 30).  

 

Figure 29: Abundance of Compound 512 
(triacylglyceride-TG) in treatment groups. Mosquitoes 
exposed to dead M. ulcerans have significantly lower 
abundance of TG than control while mosquitoes 
exposed to live M. ulcerans have significantly higher 
levels than controls. 

Triacylglyceride 
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Figure 30: Phospholipids (PL) are a major constituent of biological membranes. PL are characterized by a 
glycerol backbone attached to a phosphodiester group and a polar head group. Phosphatidylcholine (PC) is a 
functional class of PL molecule characterized by a choline head group. The fatty acid composition of PC can 
vary, but is generally composed of one saturated fatty acid and one unsaturated fatty acid, attached in the R 
position (A). Phospholipase hydrolysis of the PC molecule results in a plethora of subunits involved in many 
downstream signaling and metabolic processes (B). As PC molecules are cleaved by phospholipase A/B/C/D 
(Pla/b/c/d), fatty acids are released (C), in addition to other cleavage products such as diacylglycerol (DAG), 
phosphatidic acid (PA), and choline (D).  Fatty acids liberated from PC, DAG, TG, LysoPC can be elongated 
and/or modified to form ubiquitous signaling molecules. In this study, eicosatrienoic acid and 20-hydroxy 
eicosatetraenoic acid (hydroxy arachidonic acid) were found to be in lower abundance in groups exposed to M. 
ulcerans than controls. Images obtained from Kyoto Encyclopedia of Genes and Genomes (www.Kegg.jp/kegg/) 

A 

B 

C 

D 

D 
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Disruption of host-lipid metabolism is a well-characterized feature of many 

mycobacterial infections, in addition to an increasing number of intra- and extracellular 

pathogens including Clostridium perfringens, Corynebacterium pseudotuberculosis, 

Pseudomonas aeruginosa, Staphylococcus aureus, Listeria moncytogenes, M. leprae, and M. 

avium (218). Additionally, histopathological analysis of mouse footpad tissues revealed the 

presence of foamy macrophages during late M. ulcerans infection (Chapter 3: Figure 10D, 

Figure 13). During active and chronic infection with M. tuberculosis, the accumulation of TG-rich 

lipid bodies in foamy macrophages is used as an energy source for the intracellular pathogen 

(219). The development of P. falciparum in infected mosquitoes is also associated with 

disruption of host lipid metabolic pathways, thus our findings seem consistent with 

mechanisms employed by other pathogens for survival in the mosquito (220). The discovery of 

the high abundance of TG in mosquitoes contaminated by live M. ulcerans, but not dead M. 

ulcerans, is consistent with these reports and has not yet been described in the mosquito 

system. 

Hormone-like compounds 

Secondary metabolites of the lipid metabolic pathways are involved in immune signaling 

in both vertebrates and invertebrates. Hormones are used to signal the generation and 

utilization of these lipid mediators. An analog of the ACTH-releasing molecule (corticotropin-

releasing factor, CRF) has been discovered in mosquitoes (221), and ACTH-like molecules are 

present in insect cells with phagocytic activity (222). This molecule functions as a stress 

response hormone involved in immune cell chemo-attraction, phagocytosis, and capsule 

formation, factors of the primary immune response in most insects (223).  Counterparts of the 
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full vertebrate CRF-ACTH endocrine system have not 

yet been described in Anopheles systems, although 

analogs of these compounds in insects may 

represent evolutionary precursors to the vertebrate 

systems (221). An ACTH-like compound was found 

to be in high abundance in both mosquito groups 

exposed to M. ulcerans bacteria compared to the 

control group (Figure 31). A high abundance of this 

molecule in both groups of mosquito exposed to M. 

ulcerans suggests the initiation of an immunological or 

neurological response to the presence of the mycobacteria. The neuroendocrine system is a 

highly complex network of metabolic pathways and endocrine activity, thus, speculation 

regarding the effects of differentially regulated compounds within this system must be taken 

with caution. 

In vertebrate systems, hormones such as ACTH stimulate arachidonate release, which 

can then be converted into eicosanoid compounds such as prostiglandins and lipoxygenase 

metabolites (224). Eicosanoids are oxygenated metabolites of polyunsaturated fatty acids and 

are potent signaling molecules involved in inflammation, immunity and the nervous system of 

vertebrates, invertebrates, and many eukaryotic microbes (225). Interestingly, suppression of 

eicosanoid synthesis within the host is a major mechanism utilized by entomopathogenic 

bacteria during infection and during protozoan development in anopheles mosquitoes (226, 

227). These findings suggest that modulation of eicosanoid signaling by pathogenic 

Figure 31: Abundance of C449, an 
adrenocorticotropin hormone (ACTH)-like 
molecule found to be in high abundance 
in mosquitoes exposed to both live and 
dead M. ulcerans compared to controls.   

ACTH-like molecule 
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contaminants of invertebrate systems facilitates survival of these pathogens. In line with this, 

mosquitoes in our model of M. ulcerans infection were found to have significantly lower 

abundance of the eicosanoids 8,11,14-Eicosatrienoic acid and 20-Hydroxy-(5Z,8Z,11Z,14Z)- 

eicosatetraenoic acid (20-HETE) (Figure 32), and may represent a rudimentary mechanism of 

immune suppression.  

 

  

 

 

 

 

 

Figure 32: Abundance of eicosanoid compounds in mosquitoes exposed to live (Mu+) and dead (Mu-) M. 
ulcerans bacteria compared to control mosquitoes. Eicosanoids are mediators of a wide variety of immune 
signaling processes, and the down regulation of these compounds is suspected to increase the survival of 
contaminating pathogens. C179 (left) represents the abundance of 20-HETE and C787 (right) represents the 
abundance of Eicosatrienoic acid.  

20-HETE Eicosatrienoic acid 
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Fatty acid mediators and signaling 

Many effects of eicosanoid modulation are not well known insect systems, although a 

decreased abundance of these compounds may be due to the active modulation by M. ulcerans 

or due host immune non-recognition of the pathogen, therefore leading to the depressed 

function of a non-necessary system.  For example, the compound 20-HETE, a metabolite of 

arachidonic acid, is involved in the detoxification response via the cytochrome P450 system 

(228). Lower abundance of the 20-HETE lipid mediator may result in reduced capacity of the 

P450 system to generate reactive oxygen species in an effort to combat the contaminating M. 

ulcerans bacilli.   

Secondary metabolites 

In addition to the various perturbations of lipid metabolic pathways discovered in this 

study, the abundance of other compounds are deserving of mention. However, the analysis of 

their role in our model of infection is undertaken with restraint due to the lack of available 

information regarding the dynamics of these molecules in the anopheles mosquito. Insects use 

a variety of pheromones during reproduction and host-seeking behavior. The codling moth 

(Cydia pomonella) produces dodecadienol as a precursor in the synthesis of a sex hormone 

(229). Although the presence of this compound is not yet described in mosquito systems, the 

significantly reduced abundance of 8-10-dodecadienol in mosquitoes exposed to both live and 

dead M. ulcerans in our model may be a marker of reduced fecundity. However, mosquitoes 

exposed to dead M. ulcerans bacilli have higher survival rates compared to control mosquitoes, 

in concert with low abundance of the putative pheromone, thus contradicting this finding.  
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Riboflavin is an essential B vitamin in nearly all pro- and eukaryotic organisms, serving as 

a precursor for the synthesis of flavin coenzymes and flavin adenine dinucleotide which are 

essential cofactors for a wide variety of metabolic enzymes and electron transport (230). This 

molecule was found to be significantly upregulated in 

mosquitoes exposed to live M. ulcerans compared to 

both control mosquitoes and mosquitoes exposed to 

dead M. ulcerans. In addition to metabolic processes, 

riboflavin is also involved in areas of yellow 

pigmentation, such as the eyes and malpighian tubules 

(231). The accumulation of riboflavin in mosquitoes 

exposed to live M. ulcerans, and the less extreme 

accumulation in mosquitoes exposed dead M. ulcerans 

is surprising. Mycobacterium smegmatis and the 

closely related Corynebacterium diptheriae is considered to be overproducers of riboflavin 

(230). The proteins involved in riboflavin synthesis and processing have been documented in 

the M. ulcerans proteome (NCBI accession: WP_011740179 (riboflavin kinase) and 

WP_011740778 (riboflavin biosynthesis protein)). The dynamics of riboflavin metabolism are 

not specifically defined in M. ulcerans, however a flavin analog (F420-dependent reductase) is 

synthesized using a riboflavin precursor and is involved in the degradation of aflatoxins (232). 

The accumulation of riboflavin in our model may be due to an overproduction of the molecule 

by contaminating bacilli, or a disrupted mechanism of metabolism of the molecule in the 

mosquito due to M. ulcerans exposure (Figure 32). It has also been suggested that an 

Figure 32: Box and whisker plot showing the 
abundance of riboflavin in treatment groups. 
Mosquitoes exposed to live M. ulcerans 
(Mu+) show a significant accumulation of 
riboflavin compared to the other groups 
(CTRL: control, and Mu-: dead M. ulcerans. 

Riboflavin 
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overproduction or supplementation of riboflavin may help to control the development of P. 

falciparum in the mosquito (233).  

The compounds identified in our model and the putative assignment of biological 

significance thereof may represent the cumulative effects of virulence mechanisms employed 

by M. ulcerans during contamination of mosquitoes. Many of the features describing disrupted 

metabolism in the mosquito due to exposure to M. ulcerans are novel, although they are based 

on analogous mechanisms from many similar interactions. While many of the disrupted 

pathways described here have been documented to be affected by other mycobacterial 

pathogens in other systems, an metabolic investigation of the host-pathogen dynamics 

between A. gambiae and M. ulcerans how not been done before and will contribute significant 

evidence towards the understanding of additional virulence mechanisms employed by M. 

ulcerans. This study is the initiation of not only a better understanding of M. ulcerans metabolic 

interaction with A. gambiae, but can be generalized as a complex in vitro model of M. ulcerans 

pathogenesis.  Metabolism is inherently temporal and spatial, so continued analysis of this 

interaction must include additional or repeated measures for a more complete understanding. 

Representative head-to-tail plots are displayed in appendix I, including some compounds that 

were not able to be confidently identified with the tools available and are annotated as 

unknown.  
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CHAPTER 6: FINAL CONCLUSIONS AND FUTURE DIRECTIONS 
 

 
 

Final Conclusions 

In comparison to other notable mycobacterial diseases, Buruli Ulcer disease has a 

proportionally small impact on global health. Lack of surveillance and health care resources in 

the exceedingly rural environment of endemic regions complicates the accurate measure of 

disease burden. Some estimates report between 5,000-7,000 new cases per year, with nearly 

half of those originating from just Cote d’Iviore (234).  M. ulcerans infection has a major impact 

on the individual however, evidenced by estimates that 66% of people with healed lesions had 

some degree of permanent physical disability (235). The median age of patients in the 

aforementioned study was only 12 years old. In fact, nearly 50% of patients affected by Buruli 

Ulcer disease are under the age of 15 (236). This predilection of infection in children is one of 

the most unfortunate aspects of Buruli Ulcer disease. A better understanding of this 

phenomenon will likely involve investigation from a variety of different approaches, including 

an analysis of the effects of environmental disruption, availability nutritional resources, and 

climate change.      

Our understanding of the basic mechanisms surrounding the survival and maintenance 

of the bacterium in the environment, coupled with a lack of knowledge regarding transmission 

of the pathogen and subsequent pathogenic features of infection is evidenced by the increasing 

incidence and prevalence of the disease. Recently, the condition has been reported or 

suspected in more than 33 countries and the number of reported cases is growing (237). West 
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and central Africa bears the brunt of M. ulcerans infection, similar to other neglected tropical 

diseases, while other important foci are found in Australia, French Guiana, Peru, and Papua 

New Guinea (200, 238, 239). Recently, reports of M. ulcerans infection have spread to Japan 

(240). No confirmed infections have been documented in the United States, although evidence 

of M. ulcerans contamination of marsh lands in Louisiana brings the potential for infection close 

to home (241).   

The value and application of animal models of Buruli Ulcer can be appreciated by the 

recent shift in treatment protocols. Historically, extensive surgery left Buruli Ulcer patients with 

massive, debilitating scars, not unlike those from unmanaged infection. The extensive use of 

animal models to assess different treatment modalities has resulted in a better understanding 

of the host immune response to M. ulcerans and the deployment of an effective antibiotic 

regimen (242).  These advances have resulted in reduced severity of cases than what was seen 

a decade ago (15). The mouse model presented in Chapter 3 is the first to describe a 

mycolactone-negative infection in immunocompetent and immunodeficient mice resulting in 

immunosuppression. The strain used in the study is considered attenuated due to the lack of 

mycolactone expression, although it is clear that many pathogenic features common to 

infection with M. ulcerans are still retained. The analysis of the cytokine concentrations in 

mouse tissues confirms the extent of immune suppression, resulting in a significant decrease in 

the concentrations of protective IFN-ɣ in conjunction with an increase in pathology of the 

footpad. Additionally, the abundance of cytokines IL-6 and IL-12 in both early and late infection 

may serve as markers for the disease, as the presence of these cytokines has been documented 

in other studies (142). However, due to lack of experimental data, the variability of cytokine 
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expression due to host and environmental factors resulting in a specific presentation or 

prognosis as not been substantiated. Further clinical studies will help to refine the extent that 

host-factors influence pathogenesis.   

Currently, the route of transmission and mechanism of environmental persistence is 

unknown. As such, a throng of researchers have published dozens of papers regarding putative 

modes of transmission or environmental niches for the bacteria, including research found in 

this dissertation. Despite the intensity of research into these areas, many aspects of M. ulcerans 

pathobiology remain elusive. Ulceration most often occurs on the limbs or extremities of 

patients and, in one documented instance, on a child’s ear (63). This feature led many to 

suspect vector-borne transmission of the disease. Since the early 1999, many groups have 

investigated the role of aquatic insects in transmission, with varying results. Two reports stand 

out among many: the first cultivation of M. ulcerans from an aquatic insect (14) and the 

transmission of M. ulcerans by a biting water bug (60). In the first study mentioned, M. ulcerans 

was cultured from a water strider (Gerris sp.), thus establishing the role of aquatic insects in the 

maintenance of the bacilli in the wild. The second study was the first to describe transmission 

via aquatic insect to a mouse through contaminated raptorial arms. Unfortunately, the insect 

used in this study (Naucoridae sp.) is not hematophagous and does not associate with humans. 

Other studies have described a strong association between M. ulcerans and mosquitoes of 

many genera. As of yet, no study has been able to document mosquito-borne transmission of 

the bacilli, although many still suspect this route to be likely. Transmission via puncture wound 

as a result of a mosquito bite containing active M. ulcerans in the context of 

immunomodulatory mosquito saliva remains an attractive hypothesis.  Additional studies using 
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more thorough microbiological methods for detection of active M. ulcerans bacilli in and on 

mosquito tissues, beyond PCR, is greatly needed. Unfortunately, endemic regions of Buruli 

Ulcer disease are not conducive to the application of intricate scientific methods. Despite 

evidence presented here (Chapter 4 and 5), that mosquitoes represent an unlikely vector of M. 

ulcerans, in addition to a recent study with corroborating conclusions (161), the well 

documented sympatry between the pathogen and mosquitoes highlights the need for 

continued study into the extent of association between these two organisms.  

 There exists a major discrepancy between two primary areas of research into the 

biology of M. ulcerans. The discrepancy lies in the significant lack of research into virulence 

mechanisms employed by M. ulcerans beyond the toxin mycolactone, compared to other 

aspects of the disease. Non-toxigenic members of the Mycobacterium genus have caused 

infections for thousands of years, resulting in significant morbidity and mortality. Many of the 

virulence mechanisms used by other species of mycobacteria have analogous genetic loci in M. 

ulcerans (22), although a characterization of the presence and role of these mechanisms is 

severely overshadowed by research into the effects of mycolactone. There is little doubt that 

mycolactone can cause dramatic cytopathology, measured in both in vitro cell culture models 

and model infections in animals. However, the presence of and specific role of mycolactone 

during clinical infection with different ecovars of the bacilli is severely lacking.  

Since the investigation of mycolactone has monopolized research over many years, 

isolates commonly used during experimental infections produce a significant amount of the 

toxin. These isolates may have been selected due to their mycolactone-associated virulence, in 

an effort to analyze its effects. This has led to many important discoveries regarding the 
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mechanisms of the toxin. However, an important distinction between clinical isolates and 

commonly used experimental isolates may exist, in that strains over expressing mycolactone 

may be supra-virulent compared to isolates of an environmental origin commonly infecting 

people. More specifically, that the over-expressing strains commonly evaluated in model 

infections do not accurately represent the phenotype of M. ulcerans in endemic areas. 

Experiments presented in this dissertation, in concert with a few studies investigating infection 

by mycolactone-negative mutants, have documented severe pathogenesis as a result of 

infection (Chapter 3). Mycolactone was also not required for colonization of A. gambiae 

mosquitos (Chapter 4) and other species of insects (52), indicating the presence of mechanisms 

for persistence in environmental and aquatic niches irrespective of the toxin. This dissertation 

has initiated the study of uncharacterized virulence factors that influence pathogenesis.  Until 

more stringent efforts are made to characterize the presence of the toxin during natural 

infection, an evaluation of additional virulence determinants of M. ulcerans will be critical to 

the understanding of this pathogen during its lifecycle.  

A common feature during infection with M. tuberculosis, M. marinum, and M. leprae is a 

disruption of host-lipid metabolism (219, 243, 244). Analogous mechanisms were proposed in 

Chapter 5 regarding disruption of lipid metabolism of mosquitoes exposed to M. ulcerans 

bacilli. The lack of research into other virulence mechanisms encoded by M. ulcerans is severely 

hampering a thorough understanding of this pathogen. Interestingly, Corynebacterium ulcerans 

and C. pseudotuberculosis bacteria, phylogenetic relatives of the Mycobacterium genus, secrete 

phospholipase D as an exotoxin involved with virulence (245).  The most recent study describing 

the synthesis and secretion of phospholipase C and D in M. ulcerans (116), was published nearly 
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15 years ago. This finding is significant for many reasons. The activity of the phospholipase C 

(Plc) enzyme results in the cleavage of phosphatidylcholine (PC) into diacylglycerol (DAG) which 

can then activate protein kinase C, causing malfunction of phagocytes (116, 117) (Figure 17). 

Secretion of Plc by other bacterial pathogens has been shown to disrupt tissue epithelium and 

increase sub-epithelial tissue destruction via matrix metalloproteinase production (246). 

Disruption of phagocytes and subepithelial cell destruction has initially been attributed to 

mycolactone (247), with very little analysis of the activities of M. ulcerans encoded Plc working 

concurrently. Additionally, the activity of M. ulcerans encoded phospholipase D (Pld) results in 

the cleavage of PC producing phosphatidic acid (PA). PA has been shown to promote 

colonization of tissues and apoptosis during infection with C. paratuberculosis and may have 

analogous mechanisms during M. ulcerans infection (248). No additional studies have 

investigated the role of this potent, and relatively common, virulence mechanism during 

infection with M. ulcerans.   

Biochemical analyses of host-pathogen interactions are becoming increasingly common, 

as the application of more sensitive and complex tools such as mass spectrometry become 

more user-friendly. The group of omics technologies are powerful tools for the analysis of these 

interactions. The use of unbiased, global analysis of biological conditions is useful for the 

discovery of biomarkers and descriptive studies, although a holistic approach is necessary for 

complete understanding. The use of omics tools can provide a significant amount of data, but 

reductionist use of these tools limit their application to the understanding of component parts 

of an interaction. LC-MS based metabolomic studies are inherently more holistic than the other 

omics applications, due to their analysis on a comparatively larger scale, especially in the case 
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of host-pathogen interactions.  Metabolism is an intrinsically dynamic process, complete with 

temporal and spatial effects. A single analysis of the metabolome of a given interaction will only 

capture a small snapshot of the metabolites present. To further enhance the biological 

significance of the data collected, and to get a complete picture of the interaction, repeated 

measures must be analyzed.  The application of metabolomics in Chapter 5 is an initiation of a 

study to better understand the virulence mechanisms promoting survival of M. ulcerans in 

mosquitoes. From this study we were able to gain insight into potential virulence mechanisms 

employed by the pathogen which subsequently affect the development of the mosquito. Taken 

together, the data provided here represent a systems biology approach to understanding the 

biology of M. ulcerans in many environments.   

Future Directions 

The sheer number of unknowns still associated with infection with M. ulcerans leaves 

much room for expanded studies. Since a shared association of environmental locations 

between mosquitoes and M. ulcerans is well established, continued studies investigating the 

role of mosquitoes in transmission is critical. Unfortunately, many aspects of this investigation 

are exceedingly difficult. From an epidemiological viewpoint, many factors influence the 

probability that mosquitoes will actively transmit an infection. These factors have been 

mathematically modeled and are used to predict aspects of transmission in other mosquito-

borne diseases (249). An analysis of these factors as they related to Buruli Ulcer disease would 

significantly enhance our understanding of the vectorial capacity of mosquitoes to transmit M. 

ulcerans. The probability that a mosquito becomes infected during its lifetime is unknown, 

although high rates of M. ulcerans DNA contamination of mosquitoes in endemic areas suggests 
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high rates of exposure or at least contact. The next measure would be the mosquito feeding 

rate, or the proportion of mosquitoes that have fed on a human. If the probability that 

mosquitoes can become infected is high, the rate they feed on humans will influence the 

likelihood that the bacteria can be transmitted. As an example, if mosquitoes truly vector the 

pathogen, mosquito bites should account for roughly 99% of the reported 7000 cases per year. 

Estimates of the biting rate of A. gambiae are subject to seasonal rainfall amounts and 

proximity to larval habitats, among other factors, although the biting rate of infected versus 

uninfected mosquitoes is another variable to consider. Considering the high density of 

Anopheles mosquitoes in endemic regions, and the number of mosquito bites received by a 

susceptible individual, the rate of infected mosquitoes biting people and successfully 

transmitting the pathogen would be very low. Based on our mosquito studies (Chapters 4,5), 

the developmental defects associated with exposure to M. ulcerans would further reduce the 

likelihood that a contaminated mosquito would transmit the infections. However, in a pilot 

study we determined that Culex sp. mosquitoes do not suffer any developmental delay or 

reduced fitness upon exposure to the bacilli. We did not measure the external contamination 

rate of the mosquitoes, although stronger, more aggressive mosquitoes may be more likely to 

transmit the bacilli. It may be that mosquitoes other than Anopheles sp. (or Anopheles species 

other than A. gambiae) may be better equipped to handle exposure to the pathogen.   

A more thorough characterization of clinical isolates for mycolactone expression and 

other virulence factors would dramatically enhance our understanding of M. ulcerans biology. 

Our studies have revealed mechanisms of disruption of host-lipid metabolism in the absence of 

mycolactone. These findings represent a solid foundation for the investigation of other 
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virulence factors that contribute to pathogenesis. A metabolomic study of model infection or 

clinical infection has not been performed and would contribute a vast amount of information 

regarding host metabolic disruptions upon infection. This avenue of research is attractive, as 

metabolic analyses in mammal systems would be easier to perform compared to insect 

systems. Libraries of metabolic molecules are better characterized in mammal systems, thus an 

investigation of this nature may provide more biological significance than our investigation of 

the mosquito model.  Infection by a selection of strains with diverse phenotypes could be 

modeled in mice. Subsequently, an analysis of host metabolism over the course of infection 

could be compared to gross pathogenesis and histological assessment. It is likely that many M. 

ulcerans ecovars would utilize a base set of virulence factors, such as phospholipase C/D, and 

the presence of mycolactone might affect the temporal and spatial characteristics of lesion 

development. Additionally, the metabolomic analysis of mycolactone negative infection in 

mammals would provide a sound basis of evidence for the effects of virulence factors without 

the contribution of mycolactone.  

A major research gap in the analysis of M. ulcerans infection is lack of knowledge 

regarding the actual infective dose or the contribution of dose in the pathogenesis during 

infection. Most infectious disease have a strong relationship between dose and incubation 

period. One of the only studies to investigate the incubation period of Buruli Ulcer disease 

described an average of 135 days in an Australian cohort of patients (79). This finding may 

suggest that due to the exceptionally slow growth of the bacilli coupled with what is likely to be 

a very small dose, they bacteria require a long incubation period in order to achieve a 

population sufficient to produce a clinically symptomatic infection (48).  A dose response study 
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in a model infection of a rodent (Thryonomys swinderianus) found a relationship between dose 

and onset of symptoms (250). The authors found that the high inoculum dose resulted in an 

earlier onset of lesions with more severe presentation compared to the low dose, and 

speculate that the infective dose may account for differences in clinical presentation. However, 

another study using different doses to infect armadillos found no difference in pathology 

between doses, but a reportable difference in pathology within each dose (251). Unfortunately, 

the lowest dose reported used in the armadillo study was 3x105 cells per inoculation, whereas 

the low dose used in the Thryonomys model was 3x108 cells per inoculation. It is extremely 

unlikely that an insect vector would introduce 300 million cells during a bloodmeal.  Thus, new 

studies investigating the pathogenesis of low-dose infections is required if an insect vector is to 

be seriously considered.  Along these lines, the sialome (molecular components of saliva) of 

mosquitoes contains a large number of bioactive molecules including anti-inflammatory and 

immunomodulatory agents, and allergenic compounds (252). These salivary components play a 

crucial role in pathogen transmission and the induction or suppression of host-immune and 

inflammatory responses (253). The injection of M. ulcerans bacilli in the context of 

immunomodulatory components of mosquito saliva is an attractive hypotheses investigating 

vector-borne transmission. Since little is known about the pathogenesis of infection after 

inoculation with fewer than 300,000 cells, a study describing the pathogenesis of infection 

when 10-100 cells are inoculated with purified mosquito salivary extracts could provide 

definitive data regarding the capacity of mosquitoes to transmit the disease, the contribution of 

mosquito saliva in the initiation of infection, and the dose required for development of classical 

infection.    
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The unfortunate position on the bottom of the funding scale compared to other 

neglected tropical disease will continue to influence our understanding of Mycobacterium 

ulcerans. Increased awareness and the dissemination of knowledge are the primary 

countermeasures against the continued emergence of these deadly and disfiguring infections. 

This practice is supported by passionate and dedicated scientists. A holistic approach to 

understanding the mechanisms involved in disease transmission and persistence in the 

environment in concert with better knowledge of factors that influence host susceptibility 

provides the ideal environment for continued advancement. 



105 
 

REFERENCES 
 

 

1. Veyrier F, Pletzer D, Turenne C, Behr MA. 2009. Phylogenetic detection of horizontal 
gene transfer during the step-wise genesis of Mycobacterium tuberculosis. BMC 
evolutionary biology 9:196. 

2. Mac CP, Tolhurst JC, et al. 1948. A new mycobacterial infection in man. J Pathol 
Bacteriol 60:93-122. 

3. Connor DH, Lunn HF, de Paola D. 1965. [Buruli ulcer. New nosological entity of the 
tropics]. Hospital (Rio J) 67:677-686. 

4. Lunn HF, Connor DH, Wilks NE, Barnley GR, Kamunvi F, Clancey JK, Bee JD. 1965. Buruli 
(Mycobacterial) Ulceration in Uganda. (a New Focus of Buruli Ulcer in Madi District, 
Uganda): Report of a Field Study. East Afr Med J 42:275-288. 

5. Clancey J, Dodge R, Lunn HF. 1962. Study of a mycobacterium causing skin ulceration in 
Uganda. Ann Soc Belg Med Trop (1920) 42:585-590. 

6. Barker DJ. 1973. Epidemiology of Mycobacterium ulcerans infection. Transactions of the 
Royal Society of Tropical Medicine and Hygiene 67:43-50. 

7. Barker DJ, Carswell JW. 1973. Mycobacterium ulcerans infection among tsetse control 
workers in Uganda. Int J Epidemiol 2:161-165. 

8. Radford AJ. 1973. Letter: Nomenclature for infections due to Mycobacterium ulcerans. 
Transactions of the Royal Society of Tropical Medicine and Hygiene 67:424. 

9. Revill WD, Morrow RH, Pike MC, Ateng J. 1973. A controlled trial of the treatment of 
Mycobacterium ulcerans infection with clofazimine. Lancet 2:873-877. 

10. Stanford JL, Revill WD, Gunthorpe WJ, Grange JM. 1975. The production and 
preliminary investigation of Burulin, a new skin test reagent for Mycobacterium ulcerans 
infection. J Hyg (Lond) 74:7-16. 

11. Shield MJ, Stanford JL, Paul RC, Carswell JW. 1977. Multiple skin testing of tuberculosis 
patients with a range of new tuberculins, and a comparison with leprosy and 
Mycobacterium ulcerans infection. J Hyg (Lond) 78:331-348. 

12. Krieg RE, Hockmeyer WT, Connor DH. 1974. Toxin of Mycobacterium ulcerans. 
Production and effects in guinea pig skin. Arch Dermatol 110:783-788. 

13. George KM, Chatterjee D, Gunawardana G, Welty D, Hayman J, Lee R, Small PL. 1999. 
Mycolactone: a polyketide toxin from Mycobacterium ulcerans required for virulence. 
Science 283:854-857. 

14. Portaels F, Meyers WM, Ablordey A, Castro AG, Chemlal K, de Rijk P, Elsen P, Fissette 
K, Fraga AG, Lee R, Mahrous E, Small PL, Stragier P, Torrado E, Van Aerde A, Silva MT, 
Pedrosa J. 2008. First Cultivation and Characterization of Mycobacterium ulcerans from 
the Environment. PLoS Negl Trop Dis 2:e178. 

15. Organization WH. 2012. Treatment of Mycobacterium ulcerans disease (Buruli Ulcer) 
Guidance for Heath Workers, Geneva, Switzerland. 



106 
 

16. Sarfo FS, Phillips RO, Rangers B, Mahrous EA, Lee RE, Tarelli E, Asiedu KB, Small PL, 
Wansbrough-Jones MH. 2010. Detection of Mycolactone A/B in Mycobacterium 
ulcerans-Infected Human Tissue. PLoS Negl Trop Dis 4:e577. 

17. Fraga AG, Cruz A, Martins TG, Torrado E, Saraiva M, Pereira DR, Meyers WM, Portaels 
F, Silva MT, Castro AG, Pedrosa J. 2011. Mycobacterium ulcerans triggers T-cell 
immunity followed by local and regional but not systemic immunosuppression. Infect 
Immun 79:421-430. 

18. Rodhain F. 2012. [Buruli ulcer: hypothetical modes of transmission of Mycobacterium 
ulcerans]. Bull Acad Natl Med 196:685-690; discussion 690-681. 

19. Kelland K. 2011. Report urges focus on drugs for neglected diseases. Thomson Reuters 
Foundation. 

20. Stinear TP, Pryor MJ, Porter JL, Cole ST. 2005. Functional analysis and annotation of the 
virulence plasmid pMUM001 from Mycobacterium ulcerans. Microbiology 151:683-692. 

21. Demangel C, Stinear TP, Cole ST. 2009. Buruli ulcer: reductive evolution enhances 
pathogenicity of Mycobacterium ulcerans. Nat Rev Microbiol 7:50-60. 

22. Stinear TP, Seemann T, Pidot S, Frigui W, Reysset G, Garnier T, Meurice G, Simon D, 
Bouchier C, Ma L, Tichit M, Porter JL, Ryan J, Johnson PD, Davies JK, Jenkin GA, Small 
PL, Jones LM, Tekaia F, Laval F, Daffe M, Parkhill J, Cole ST. 2007. Reductive evolution 
and niche adaptation inferred from the genome of Mycobacterium ulcerans, the 
causative agent of Buruli ulcer. Genome Res 17:192-200. 

23. Kaser M, Rondini S, Naegeli M, Stinear T, Portaels F, Certa U, Pluschke G. 2007. 
Evolution of two distinct phylogenetic lineages of the emerging human pathogen 
Mycobacterium ulcerans. BMC evolutionary biology 7:177. 

24. Portaels F, Fonteyene PA, de Beenhouwer H, de Rijk P, Guedenon A, Hayman J, 
Meyers MW. 1996. Variability in 3' end of 16S rRNA sequence of Mycobacterium 
ulcerans is related to geographic origin of isolates. Journal of clinical microbiology 
34:962-965. 

25. Ablordey A, Swings J, Hubans C, Chemlal K, Locht C, Portaels F, Supply P. 2005. 
Multilocus variable-number tandem repeat typing of Mycobacterium ulcerans. J Clin 
Microbiol 43:1546-1551. 

26. Stragier P, Ablordey A, Meyers WM, Portaels F. 2005. Genotyping Mycobacterium 
ulcerans and Mycobacterium marinum by using mycobacterial interspersed repetitive 
units. J Bacteriol 187:1639-1647. 

27. Chemlal K, De Ridder K, Fonteyne PA, Meyers WM, Swings J, Portaels F. 2001. The use 
of IS2404 restriction fragment length polymorphisms suggests the diversity of 
Mycobacterium ulcerans from different geographical areas. The American journal of 
tropical medicine and hygiene 64:270-273. 

28. Stinear T, Davies JK, Jenkin GA, Portaels F, Ross BC, Oppedisano F, Purcell M, Hayman 
JA, Johnson PD. 2000. A simple PCR method for rapid genotype analysis of 
Mycobacterium ulcerans. Journal of clinical microbiology 38:1482-1487. 

29. Stinear TP, Jenkin GA, Johnson PD, Davies JK. 2000. Comparative genetic analysis of 
Mycobacterium ulcerans and Mycobacterium marinum reveals evidence of recent 
divergence. Journal of bacteriology 182:6322-6330. 



107 
 

30. Johnson PD, Stinear T, Small PL, Pluschke G, Merritt RW, Portaels F, Huygen K, 
Hayman JA, Asiedu K. 2005. Buruli ulcer (M. ulcerans infection): new insights, new hope 
for disease control. PLoS Med 2:e108. 

31. Asiedu K, Wansbrough-Jones M. 2007. Mycobacterium ulcerans infection (Buruli or 
Bairnsdale ulcer): challenges in developing management strategies. Med J Aust 186:55-
56. 

32. Johnson RC, Sopoh GE, Boko M, Zinsou C, Gbovi J, Makoutode M, Portaels F. 2005. 
[Distribution of Mycobacterium ulcerans (Buruli ulcer) in the district of Lalo in Benin]. 
Trop Med Int Health 10:863-871. 

33. Ackumey MM, Gyapong M, Pappoe M, Weiss MG. 2011. Help-Seeking for Pre-Ulcer and 
Ulcer Conditions of Mycobacterium ulcerans Disease (Buruli Ulcer) in Ghana. Am J Trop 
Med Hyg 85:1106-1113. 

34. Ackumey MM, Kwakye-Maclean C, Ampadu EO, de Savigny D, Weiss MG. 2011. Health 
services for Buruli ulcer control: lessons from a field study in Ghana. PLoS Negl Trop Dis 
5:e1187. 

35. Agbenorku P, Agbenorku M, Amankwa A, Tuuli L, Saunderson P. 2011. Factors 
enhancing the control of Buruli ulcer in the Bomfa communities, Ghana. Trans R Soc 
Trop Med Hyg 105:459-465. 

36. Asiedu K, Etuaful S. 1998. Socioeconomic implications of Buruli ulcer in Ghana: a three-
year review. Am J Trop Med Hyg 59:1015-1022. 

37. Chukwuekezie O, Ampadu E, Sopoh G, Dossou A, Tiendrebeogo A, Sadiq L, Portaels F, 
Asiedu K. 2007. Buruli ulcer, Nigeria. Emerg Infect Dis 13:782-783. 

38. Sopoh GE, Johnson RC, Chauty A, Dossou AD, Aguiar J, Salmon O, Portaels F, Asiedu K. 
2007. Buruli ulcer surveillance, Benin, 2003-2005. Emerg Infect Dis 13:1374-1376. 

39. 1975. Editorial: Mycobacterium ulcerans in Australia. The Medical journal of Australia 
2:660-661. 

40. Boyd SC, Athan E, Friedman ND, Hughes A, Walton A, Callan P, McDonald A, O'Brien 
DP. 2012. Epidemiology, clinical features and diagnosis of Mycobacterium ulcerans in an 
Australian population. Med J Aust 196:341-344. 

41. Bryson AM. 1975. Letter: Mycobacterium ulcerans in Australia. The Medical journal of 
Australia 2:887. 

42. Lavender CJ, Globan M, Johnson PD, Charles PG, Jenkin GA, Ghosh N, Clark BM, 
Martinello M, Fyfe JA. 2012. Buruli ulcer disease in travelers and differentiation of 
Mycobacterium ulcerans strains from northern Australia. J Clin Microbiol 50:3717-3721. 

43. Lavender CJ, Senanayake SN, Fyfe JA, Buntine JA, Globan M, Stinear TP, Hayman JA, 
Johnson PD. 2007. First case of Mycobacterium ulcerans disease (Bairnsdale or Buruli 
ulcer) acquired in New South Wales. The Medical journal of Australia 186:62-63. 

44. Lavender CJ, Stinear TP, Johnson PD, Azuolas J, Benbow ME, Wallace JR, Fyfe JA. 2008. 
Evaluation of VNTR typing for the identification of Mycobacterium ulcerans in 
environmental samples from Victoria, Australia. FEMS Microbiol Lett 287:250-255. 

45. O'Brien CR, Handasyde KA, Hibble J, Lavender CJ, Legione AR, McCowan C, Globan M, 
Mitchell AT, McCracken HE, Johnson PD, Fyfe JA. 2014. Clinical, microbiological and 
pathological findings of Mycobacterium ulcerans infection in three Australian Possum 
species. PLoS Negl Trop Dis 8:e2666. 



108 
 

46. O'Brien DP, Friedman ND, McDonald A, Callan P, Hughes A, Athan E. 2014. Clinical 
features and risk factors of oedematous Mycobacterium ulcerans lesions in an 
Australian population: beware cellulitis in an endemic area. PLoS Negl Trop Dis 8:e2612. 

47. O'Brien DP, Jenkin G, Buntine J, Steffen CM, McDonald A, Horne S, Friedman ND, 
Athan E, Hughes A, Callan PP, Johnson PD. 2014. Treatment and prevention of 
Mycobacterium ulcerans infection (Buruli ulcer) in Australia: guideline update. Med J 
Aust 200:267-270. 

48. Merritt RW, Walker ED, Small PL, Wallace JR, Johnson PD, Benbow ME, Boakye DA. 
2010. Ecology and transmission of Buruli ulcer disease: a systematic review. PLoS Negl 
Trop Dis 4:e911. 

49. Dobos KM, Quinn FD, Ashford DA, Horsburgh CR, King CH. 1999. Emergence of a 
unique group of necrotizing mycobacterial diseases. Emerg Infect Dis 5:367-378. 

50. Meyers WM, Shelly WM, Connor DH, Meyers EK. 1974. Human Mycobacterium 
ulcerans infections developing at sites of trauma to skin. Am J Trop Med Hyg 23:919-
923. 

51. Buckle G. 1972. Notes on mycobacterium ulcerans. Aust N Z J Surg 41:320-323. 
52. Mosi L, Williamson H, Wallace JR, Merritt RW, Small PL. 2008. Persistent association of 

Mycobacterium ulcerans with West African predaceous insects of the family 
belostomatidae. Applied and environmental microbiology 74:7036-7042. 

53. Silva MT, Portaels F, Pedrosa J. 2007. Aquatic insects and Mycobacterium ulcerans: an 
association relevant to Buruli ulcer control? PLoS medicine 4:e63. 

54. Wallace JR, Gordon MC, Hartsell L, Mosi L, Benbow ME, Merritt RW, Small PL. 2010. 
Interaction of Mycobacterium ulcerans with mosquito species: implications for 
transmission and trophic relationships. Applied and environmental microbiology 
76:6215-6222. 

55. Doannio JM, Konan KL, Dosso FN, Kone AB, Konan YL, Sankare Y, Ekaza E, Coulibaly 
ND, Odehouri KP, Dosso M, Sess ED, Marsollier L, Aubry J. 2011. [Micronecta sp 
(Corixidae) and Diplonychus sp (Belostomatidae), two aquatic Hemiptera hosts and/or 
potential vectors of Mycobacterium ulcerans (pathogenic agent of Buruli ulcer) in Cote 
d'Ivoire]. Med Trop (Mars) 71:53-57. 

56. Marion E, Deshayes C, Chauty A, Cassisa V, Tchibozo S, Cottin J, Doannio J, Marot A, 
Marsollier L. 2011. [Detection of Mycobacterium ulcerans DNA in water bugs collected 
outside the aquatic environment in Benin]. Med Trop (Mars) 71:169-172. 

57. Marsollier L, Andre JP, Frigui W, Reysset G, Milon G, Carbonnelle B, Aubry J, Cole ST. 
2007. Early trafficking events of Mycobacterium ulcerans within Naucoris cimicoides. 
Cell Microbiol 9:347-355. 

58. Marsollier L, Aubry J, Coutanceau E, Andre JP, Small PL, Milon G, Legras P, Guadagnini 
S, Carbonnelle B, Cole ST. 2005. Colonization of the salivary glands of Naucoris 
cimicoides by Mycobacterium ulcerans requires host plasmatocytes and a macrolide 
toxin, mycolactone. Cell Microbiol 7:935-943. 

59. Marsollier L, Aubry J, Milon G, Brodin P. 2007. [Aquatic insects and transmission of 
Mycobacterium ulcerans]. Med Sci (Paris) 23:572-575. 



109 
 

60. Marsollier L, Robert R, Aubry J, Saint Andre JP, Kouakou H, Legras P, Manceau AL, 
Mahaza C, Carbonnelle B. 2002. Aquatic insects as a vector for Mycobacterium 
ulcerans. Appl Environ Microbiol 68:4623-4628. 

61. Lavender CJ, Fyfe JA, Azuolas J, Brown K, Evans RN, Ray LR, Johnson PD. 2011. Risk of 
Buruli ulcer and detection of Mycobacterium ulcerans in mosquitoes in southeastern 
Australia. PLoS Negl Trop Dis 5:e1305. 

62. Portaels F, Elsen P, Guimaraes-Peres A, Fonteyne PA, Meyers WM. 1999. Insects in the 
transmission of Mycobacterium ulcerans infection. Lancet 353:986. 

63. Johnson PD, Azuolas J, Lavender CJ, Wishart E, Stinear TP, Hayman JA, Brown L, Jenkin 
GA, Fyfe JA. 2007. Mycobacterium ulcerans in mosquitoes captured during outbreak of 
Buruli ulcer, southeastern Australia. Emerg Infect Dis 13:1653-1660. 

64. van der Werf TS, Stienstra Y, Johnson RC, Phillips R, Adjei O, Fleischer B, Wansbrough-
Jones MH, Johnson PD, Portaels F, van der Graaf WT, Asiedu K. 2005. Mycobacterium 
ulcerans disease. Bull World Health Organ 83:785-791. 

65. 2002. Buruli ulcer disease. Weekly Epidemiological Record 77:271. 
66. Debacker M, Zinsou C, Aguiar J, Meyers WM, Portaels F. 2003. First case of 

Mycobacterium ulcerans disease (Buruli ulcer) following a human bite. Clinical infectious 
diseases : an official publication of the Infectious Diseases Society of America 36:e67-68. 

67. Giles-Vernick T, Owona-Ntsama J, Landier J, Eyangoh S. 2014. The puzzle of Buruli ulcer 
transmission, ethno-ecological history and the end of "love" in the Akonolinga district, 
Cameroon. Social science & medicine. 

68. Marion E, Landier J, Boisier P, Marsollier L, Fontanet A, Le Gall P, Aubry J, Djeunga N, 
Umboock A, Eyangoh S. 2011. Geographic expansion of Buruli ulcer disease, Cameroon. 
Emerg Infect Dis 17:551-553. 

69. Duker AA, Carranza EJ, Hale M. 2004. Spatial dependency of Buruli ulcer prevalence on 
arsenic-enriched domains in Amansie West District, Ghana: implications for arsenic 
mediation in Mycobacterium ulcerans infection. International journal of health 
geographics 3:19. 

70. Leach M, Scoones I. 2013. The social and political lives of zoonotic disease models: 
narratives, science and policy. Social science & medicine 88:10-17. 

71. Zinsstag J, Schelling E, Waltner-Toews D, Tanner M. 2011. From "one medicine" to "one 
health" and systemic approaches to health and well-being. Preventive veterinary 
medicine 101:148-156. 

72. Dobos KM, Small PL, Deslauriers M, Quinn FD, King CH. 2001. Mycobacterium ulcerans 
cytotoxicity in an adipose cell model. Infect Immun 69:7182-7186. 

73. Silva MT, Portaels F, Pedrosa J. 2009. Pathogenetic mechanisms of the intracellular 
parasite Mycobacterium ulcerans leading to Buruli ulcer. Lancet Infect Dis 9:699-710. 

74. Sarfo FS, Le Chevalier F, Aka N, Phillips RO, Amoako Y, Boneca IG, Lenormand P, Dosso 
M, Wansbrough-Jones M, Veyron-Churlet R, Guenin-Mace L, Demangel C. 2011. 
Mycolactone diffuses into the peripheral blood of Buruli ulcer patients--implications for 
diagnosis and disease monitoring. PLoS Negl Trop Dis 5:e1237. 

75. En J, Ishii N, Goto M. 2011. [Role of mycolactone in the nerve damage of Buruli ulcer 
(Mycobacterium ulcerans infection)]. Nihon Hansenbyo Gakkai Zasshi 80:5-10. 



110 
 

76. Hong H, Coutanceau E, Leclerc M, Caleechurn L, Leadlay PF, Demangel C. 2008. 
Mycolactone Diffuses from Mycobacterium ulcerans-Infected Tissues and Targets 
Mononuclear Cells in Peripheral Blood and Lymphoid Organs. PLoS Negl Trop Dis 2:e325. 

77. Sizaire V, Nackers F, Comte E, Portaels F. 2006. Mycobacterium ulcerans infection: 
control, diagnosis, and treatment. Lancet Infect Dis 6:288-296. 

78. Glynn PJ. 1972. The use of surgery and local temperature elevation in mycobacterium 
ulcerans infection. Aust N Z J Surg 41:312-317. 

79. Trubiano JA, Lavender CJ, Fyfe JA, Bittmann S, Johnson PD. 2013. The incubation period 
of Buruli ulcer (Mycobacterium ulcerans infection). PLoS Negl Trop Dis 7:e2463. 

80. van der Werf TS, van der Graaf WT, Tappero JW, Asiedu K. 1999. Mycobacterium 
ulcerans infection. Lancet 354:1013-1018. 

81. Mwanatambwe M, Fukunishi Y, Yajima M, Suzuki K, Asiedu K, Etuafel S, Yamada N, 
Asano G. 2000. Clinico-histopathological findings of Buruli ulcer. Nihon Hansenbyo 
Gakkai Zasshi 69:93-100. 

82. Okenu DM, Ofielu LO, Easley KA, Guarner J, Spotts Whitney EA, Raghunathan PL, 
Stienstra Y, Asamoa K, van der Werf TS, van der Graaf WT, Tappero JW, Ashford DA, 
King CH. 2004. Immunoglobulin M antibody responses to Mycobacterium ulcerans allow 
discrimination between cases of active Buruli ulcer disease and matched family controls 
in areas where the disease is endemic. Clin Diagn Lab Immunol 11:387-391. 

83. Phillips RO, Sarfo FS, Osei-Sarpong F, Boateng A, Tetteh I, Lartey A, Adentwe E, Opare 
W, Asiedu KB, Wansbrough-Jones M. 2009. Sensitivity of PCR targeting Mycobacterium 
ulcerans by use of fine-needle aspirates for diagnosis of Buruli ulcer. J Clin Microbiol 
47:924-926. 

84. Johnson PD, Hayman JA, Quek TY, Fyfe JA, Jenkin GA, Buntine JA, Athan E, Birrell M, 
Graham J, Lavender CJ, Mycobacterium ulcerans Study T. 2007. Consensus 
recommendations for the diagnosis, treatment and control of Mycobacterium ulcerans 
infection (Bairnsdale or Buruli ulcer) in Victoria, Australia. Med J Aust 186:64-68. 

85. Converse PJ, Nuermberger EL, Almeida DV, Grosset JH. 2011. Treating Mycobacterium 
ulcerans disease (Buruli ulcer): from surgery to antibiotics, is the pill mightier than the 
knife? Future Microbiol 6:1185-1198. 

86. Etuaful S, Carbonnelle B, Grosset J, Lucas S, Horsfield C, Phillips R, Evans M, Ofori-Adjei 
D, Klustse E, Owusu-Boateng J, Amedofu GK, Awuah P, Ampadu E, Amofah G, Asiedu 
K, Wansbrough-Jones M. 2005. Efficacy of the combination rifampin-streptomycin in 
preventing growth of Mycobacterium ulcerans in early lesions of Buruli ulcer in humans. 
Antimicrob Agents Chemother 49:3182-3186. 

87. Ruf MT, Schutte D, Chauffour A, Jarlier V, Ji B, Pluschke G. 2011. Chemotherapy 
associated changes of histopathological features of Mycobacterium ulcerans lesions in a 
Buruli ulcer mouse model. Antimicrob Agents Chemother. 

88. Sarfo FS, Phillips R, Asiedu K, Ampadu E, Bobi N, Adentwe E, Lartey A, Tetteh I, 
Wansbrough-Jones M. 2010. Clinical efficacy of combination of rifampin and 
streptomycin for treatment of Mycobacterium ulcerans disease. Antimicrob Agents 
Chemother 54:3678-3685. 



111 
 

89. Friedman ND, Athan E, Hughes AJ, Khajehnoori M, McDonald A, Callan P, Rahdon R, 
O'Brien DP. 2013. Mycobacterium ulcerans disease: experience with primary oral 
medical therapy in an Australian cohort. PLoS Negl Trop Dis 7:e2315. 

90. Chauty A, Ardant MF, Marsollier L, Pluschke G, Landier J, Adeye A, Goundote A, Cottin 
J, Ladikpo T, Ruf T, Ji B. 2011. Oral treatment for Mycobacterium ulcerans infection: 
results from a pilot study in Benin. Clin Infect Dis 52:94-96. 

91. Nienhuis WA, Stienstra Y, Thompson WA, Awuah PC, Abass KM, Tuah W, Awua-
Boateng NY, Ampadu EO, Siegmund V, Schouten JP, Adjei O, Bretzel G, van der Werf 
TS. 2010. Antimicrobial treatment for early, limited Mycobacterium ulcerans infection: a 
randomised controlled trial. Lancet 375:664-672. 

92. Simpson C, O'Brien DP, McDonald A, Callan P. 2013. Mycobacterium ulcerans infection: 
evolution in clinical management. ANZ journal of surgery 83:523-526. 

93. O'Brien DP, McDonald A, Callan P. 2014. Risk factors for recurrent Mycobacterium 
ulcerans disease after exclusive surgical treatment in an Australian cohort. Med J Aust 
200:86. 

94. O'Brien DP, Robson ME, Callan PP, McDonald AH. 2009. "Paradoxical" immune-
mediated reactions to Mycobacterium ulcerans during antibiotic treatment: a result of 
treatment success, not failure. Med J Aust 191:564-566. 

95. Nienhuis WA, Stienstra Y, Abass KM, Tuah W, Thompson WA, Awuah PC, Awuah-
Boateng NY, Adjei O, Bretzel G, Schouten JP, van der Werf TS. 2011. Paradoxical 
Responses After Start of Antimicrobial Treatment in Mycobacterium ulcerans Infection. 
Clin Infect Dis. 

96. Ruf MT, Chauty A, Adeye A, Ardant MF, Koussemou H, Johnson RC, Pluschke G. 2011. 
Secondary Buruli ulcer skin lesions emerging several months after completion of 
chemotherapy: paradoxical reaction or evidence for immune protection? PLoS Negl Trop 
Dis 5:e1252. 

97. O'Brien DP, Robson M, Friedman ND, Walton A, McDonald A, Callan P, Hughes A, 
Rahdon R, Athan E. 2013. Incidence, clinical spectrum, diagnostic features, treatment 
and predictors of paradoxical reactions during antibiotic treatment of Mycobacterium 
ulcerans infections. BMC infectious diseases 13:416. 

98. Krieg RE, Wolcott JH, Confer A. 1975. Treatment of Mycobacterium ulcerans infection 
by hyperbaric oxygenation. Aviat Space Environ Med 46:1241-1245. 

99. Meyers WM, Shelly WM, Connor DH. 1974. Heat treatment of Mycobacterium ulcerans 
infections without surgical excision. Am J Trop Med Hyg 23:924-929. 

100. Falkinham JO, 3rd. 1996. Epidemiology of infection by nontuberculous mycobacteria. 
Clin Microbiol Rev 9:177-215. 

101. Al Houqani M, Jamieson F, Chedore P, Mehta M, May K, Marras TK. 2011. Isolation 
prevalence of pulmonary nontuberculous mycobacteria in Ontario in 2007. Canadian 
respiratory journal : journal of the Canadian Thoracic Society 18:19-24. 

102. Sattler N, Monroy R, Soldati T. 2013. Quantitative analysis of phagocytosis and 
phagosome maturation. Methods Mol Biol 983:383-402. 

103. He Y, Li W, Liao G, Xie J. 2012. Mycobacterium tuberculosis-specific phagosome 
proteome and underlying signaling pathways. J Proteome Res 11:2635-2643. 



112 
 

104. Kotilainen H, Lokki ML, Paakkanen R, Seppanen M, Tukiainen P, Meri S, Poussa T, 
Eskola J, Valtonen V, Jarvinen A. 2014. Complement C4 Deficiency - A Plausible Risk 
Factor for Non-Tuberculous Mycobacteria (NTM) Infection in Apparently 
Immunocompetent Patients. PLoS One 9:e91450. 

105. Scanga CA, Bafica A, Feng CG, Cheever AW, Hieny S, Sher A. 2004. MyD88-deficient 
mice display a profound loss in resistance to Mycobacterium tuberculosis associated 
with partially impaired Th1 cytokine and nitric oxide synthase 2 expression. Infect 
Immun 72:2400-2404. 

106. Coutanceau E, Decalf J, Martino A, Babon A, Winter N, Cole ST, Albert ML, Demangel 
C. 2007. Selective suppression of dendritic cell functions by Mycobacterium ulcerans 
toxin mycolactone. J Exp Med 204:1395-1403. 

107. Coutanceau E, Marsollier L, Brosch R, Perret E, Goossens P, Tanguy M, Cole ST, Small 
PL, Demangel C. 2005. Modulation of the host immune response by a transient 
intracellular stage of Mycobacterium ulcerans: the contribution of endogenous 
mycolactone toxin. Cell Microbiol 7:1187-1196. 

108. Zhang ZY, Sun ZQ, Wang ZL, Hu HR, Wen ZL, Song YZ, Zhao JW, Wang HH, Guo XK, 
Zhang SL. 2013. Identification and pathogenicity analysis of a novel non-tuberculous 
mycobacterium clinical isolate with nine-antibiotic resistance. Clin Microbiol Infect 
19:91-96. 

109. Tafelmeyer P, Laurent C, Lenormand P, Rousselle JC, Marsollier L, Reysset G, Zhang R, 
Sickmann A, Stinear TP, Namane A, Cole ST. 2008. Comprehensive proteome analysis of 
Mycobacterium ulcerans and quantitative comparison of mycolactone biosynthesis. 
Proteomics 8:3124-3138. 

110. Brodin P, Rosenkrands I, Andersen P, Cole ST, Brosch R. 2004. ESAT-6 proteins: 
protective antigens and virulence factors? Trends Microbiol 12:500-508. 

111. Jarlier V, Nikaido H. 1994. Mycobacterial cell wall: structure and role in natural 
resistance to antibiotics. FEMS Microbiol Lett 123:11-18. 

112. Portevin D, De Sousa-D'Auria C, Houssin C, Grimaldi C, Chami M, Daffe M, Guilhot C. 
2004. A polyketide synthase catalyzes the last condensation step of mycolic acid 
biosynthesis in mycobacteria and related organisms. Proc Natl Acad Sci U S A 101:314-
319. 

113. Matsunaga I, Bhatt A, Young DC, Cheng TY, Eyles SJ, Besra GS, Briken V, Porcelli SA, 
Costello CE, Jacobs WR, Jr., Moody DB. 2004. Mycobacterium tuberculosis pks12 
produces a novel polyketide presented by CD1c to T cells. J Exp Med 200:1559-1569. 

114. Spencer JS, Brennan PJ. 2011. The role of Mycobacterium leprae phenolic glycolipid I 
(PGL-I) in serodiagnosis and in the pathogenesis of leprosy. Lepr Rev 82:344-357. 

115. Daffe M, Varnerot A, Levy-Frebault VV. 1992. The phenolic mycoside of Mycobacterium 
ulcerans: structure and taxonomic implications. Journal of general microbiology 
138:131-137. 

116. Gomez A, Mve-Obiang A, Vray B, Remacle J, Chemlal K, Meyers WM, Portaels F, 
Fonteyne PA. 2000. Biochemical and genetic evidence for phospholipase C activity in 
Mycobacterium ulcerans. Infect Immun 68:2995-2997. 



113 
 

117. Johansen KA, Gill RE, Vasil ML. 1996. Biochemical and molecular analysis of 
phospholipase C and phospholipase D activity in mycobacteria. Infect Immun 64:3259-
3266. 

118. Meena LS, Rajni. 2010. Survival mechanisms of pathogenic Mycobacterium tuberculosis 
H37Rv. The FEBS journal 277:2416-2427. 

119. King CH, Mundayoor S, Crawford JT, Shinnick TM. 1993. Expression of contact-
dependent cytolytic activity by Mycobacterium tuberculosis and isolation of the 
genomic locus that encodes the activity. Infect Immun 61:2708-2712. 

120. Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: a common cause of 
persistent infections. Science 284:1318-1322. 

121. Marsollier L, Stinear T, Aubry J, Saint Andre JP, Robert R, Legras P, Manceau AL, 
Audrain C, Bourdon S, Kouakou H, Carbonnelle B. 2004. Aquatic plants stimulate the 
growth of and biofilm formation by Mycobacterium ulcerans in axenic culture and 
harbor these bacteria in the environment. Applied and environmental microbiology 
70:1097-1103. 

122. Marsollier L, Brodin P, Jackson M, Kordulakova J, Tafelmeyer P, Carbonnelle E, Aubry J, 
Milon G, Legras P, Andre JP, Leroy C, Cottin J, Guillou ML, Reysset G, Cole ST. 2007. 
Impact of Mycobacterium ulcerans biofilm on transmissibility to ecological niches and 
Buruli ulcer pathogenesis. PLoS pathogens 3:e62. 

123. Werner E, Roe F, Bugnicourt A, Franklin MJ, Heydorn A, Molin S, Pitts B, Stewart PS. 
2004. Stratified growth in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 
70:6188-6196. 

124. Chrost RJ. 1983. Plankton photosynthesis, extracellular release and bacterial utilization 
of released dissolved organic carbon (RDOC) in lakes of different trophy. Acta 
microbiologica Polonica 32:275-287. 

125. Falkinham JO, 3rd. 2007. Growth in catheter biofilms and antibiotic resistance of 
Mycobacterium avium. J Med Microbiol 56:250-254. 

126. Shiau AL, Wu CL. 1998. The inhibitory effect of Staphylococcus epidermidis slime on the 
phagocytosis of murine peritoneal macrophages is interferon-independent. 
Microbiology and immunology 42:33-40. 

127. Connor DH, Lunn HF. 1965. Mycobacterium ulcerans infection (with comments on 
pathogenesis). Int J Lepr 33:Suppl:698-709. 

128. Kanoh S, Rubin BK. 2010. Mechanisms of action and clinical application of macrolides as 
immunomodulatory medications. Clin Microbiol Rev 23:590-615. 

129. Hall BS, Hill K, McKenna M, Ogbechi J, High S, Willis AE, Simmonds RE. 2014. The 
Pathogenic Mechanism of the Mycobacterium ulcerans Virulence Factor, Mycolactone, 
Depends on Blockade of Protein Translocation into the ER. PLoS pathogens 
10:e1004061. 

130. Simmonds RE, Lali FV, Smallie T, Small PL, Foxwell BM. 2009. Mycolactone inhibits 
monocyte cytokine production by a posttranscriptional mechanism. J Immunol 
182:2194-2202. 

131. George KM, Pascopella L, Welty DM, Small PL. 2000. A Mycobacterium ulcerans toxin, 
mycolactone, causes apoptosis in guinea pig ulcers and tissue culture cells. Infect Immun 
68:877-883. 



114 
 

132. Deshayes C, Angala SK, Marion E, Brandli I, Babonneau J, Preisser L, Eyangoh S, 
Delneste Y, Legras P, De Chastellier C, Stinear TP, Jackson M, Marsollier L. 2013. 
Regulation of mycolactone, the Mycobacterium ulcerans toxin, depends on nutrient 
source. PLoS Negl Trop Dis 7:e2502. 

133. Tobias NJ, Seemann T, Pidot SJ, Porter JL, Marsollier L, Marion E, Letournel F, Zakir T, 
Azuolas J, Wallace JR, Hong H, Davies JK, Howden BP, Johnson PD, Jenkin GA, Stinear 
TP. 2009. Mycolactone gene expression is controlled by strong SigA-like promoters with 
utility in studies of Mycobacterium ulcerans and buruli ulcer. PLoS neglected tropical 
diseases 3:e553. 

134. Doig KD, Holt KE, Fyfe JA, Lavender CJ, Eddyani M, Portaels F, Yeboah-Manu D, 
Pluschke G, Seemann T, Stinear TP. 2012. On the origin of Mycobacterium ulcerans, the 
causative agent of Buruli ulcer. BMC Genomics 13:258. 

135. Kathuria P, Agarwal K, Koranne RV. 2006. The role of fine-needle aspiration cytology 
and Ziehl Neelsen staining in the diagnosis of cutaneous tuberculosis. Diagnostic 
cytopathology 34:826-829. 

136. Jo EK. 2008. Mycobacterial interaction with innate receptors: TLRs, C-type lectins, and 
NLRs. Curr Opin Infect Dis 21:279-286. 

137. Peduzzi E, Groeper C, Schutte D, Zajac P, Rondini S, Mensah-Quainoo E, Spagnoli GC, 
Pluschke G, Daubenberger CA. 2007. Local activation of the innate immune system in 
Buruli ulcer lesions. J Invest Dermatol 127:638-645. 

138. Wollenberg A, Wagner M, Gunther S, Towarowski A, Tuma E, Moderer M, 
Rothenfusser S, Wetzel S, Endres S, Hartmann G. 2002. Plasmacytoid dendritic cells: a 
new cutaneous dendritic cell subset with distinct role in inflammatory skin diseases. J 
Invest Dermatol 119:1096-1102. 

139. Phillips R, Horsfield C, Mangan J, Laing K, Etuaful S, Awuah P, Nyarko K, Osei-Sarpong 
F, Butcher P, Lucas S, Wansbrough-Jones M. 2006. Cytokine mRNA expression in 
Mycobacterium ulcerans-infected human skin and correlation with local inflammatory 
response. Infect Immun 74:2917-2924. 

140. Gooding TM, Johnson PD, Campbell DE, Hayman JA, Hartland EL, Kemp AS, Robins-
Browne RM. 2001. Immune response to infection with Mycobacterium ulcerans. Infect 
Immun 69:1704-1707. 

141. Stanford JL. 1973. An immunodiffusion analysis of strains of Mycobacterium ulcerans 
isolated in Australia, Malaya, Mexico, Uganda and Zaire. Journal of medical microbiology 
6:405-408. 

142. Zavattaro E, Mesturini R, Dossou A, Melensi M, Johnson RC, Sopoh G, Dianzani U, 
Leigheb G. 2010. Serum cytokine profile during Mycobacterium ulcerans infection 
(Buruli ulcer). Int J Dermatol 49:1297-1302. 

143. Tsang AY, Farber ER. 1973. The primary isolation of mycobacterium ulcerans. Am J Clin 
Pathol 59:688-692. 

144. Walsh DS, Portaels F, Meyers WM. 2010. Recent advances in leprosy and Buruli ulcer 
(Mycobacterium ulcerans infection). Curr Opin Infect Dis 23:445-455. 

145. Fenner F, Leach RH. 1952. Studies on Mycobacterium ulcerans. I. Serological 
relationship to other mycobacteria. Aust J Exp Biol Med Sci 30:1-10. 



115 
 

146. Roberts B, Hirst RG. 1997. Diagnostic potential of a serological assay for the diagnosis of 
ulcerans disease based on the putative Mycobacterium ulcerans toxin. J Med Microbiol 
46:333-339. 

147. Phanzu DM, Ablordey A, Imposo DB, Lefevre L, Mahema RL, Suykerbuyk P, Meyers 
WM, Portaels F. 2007. Short report: edematous Mycobacterium ulcerans infection 
(Buruli ulcer) on the face: a case report. The American journal of tropical medicine and 
hygiene 77:1099-1102. 

148. Dobos KM, Spotts EA, Marston BJ, Horsburgh CR, Jr., King CH. 2000. Serologic response 
to culture filtrate antigens of Mycobacterium ulcerans during Buruli ulcer disease. 
Emerg Infect Dis 6:158-164. 

149. Nackers F, Tonglet R, Slachmuylder V, Johnson RC, Robert A, Zinsou C, Glynn JR, 
Portaels F, Gala JL. 2007. Association between haemoglobin variants S and C and 
Mycobacterium ulcerans disease (Buruli ulcer): a case-control study in Benin. Tropical 
medicine & international health : TM & IH 12:511-518. 

150. Pidot SJ, Porter JL, Marsollier L, Chauty A, Migot-Nabias F, Badaut C, Benard A, Ruf MT, 
Seemann T, Johnson PD, Davies JK, Jenkin GA, Pluschke G, Stinear TP. 2010. Serological 
evaluation of Mycobacterium ulcerans antigens identified by comparative genomics. 
PLoS Negl Trop Dis 4:e872. 

151. Glatman-Freedman A. 2006. The role of antibody-mediated immunity in defense 
against Mycobacterium tuberculosis: advances toward a novel vaccine strategy. 
Tuberculosis (Edinb) 86:191-197. 

152. Ablordey A, Fonteyne PA, Stragier P, Vandamme P, Portaels F. 2007. Identification of a 
new variable number tandem repeat locus in Mycobacterium ulcerans for potential 
strain discrimination among African isolates. Clin Microbiol Infect 13:734-736. 

153. Moore T, Ekworomadu CO, Eko FO, MacMillan L, Ramey K, Ananaba GA, Patrickson 
JW, Nagappan PR, Lyn D, Black CM, Igietseme JU. 2003. Fc receptor-mediated antibody 
regulation of T cell immunity against intracellular pathogens. J Infect Dis 188:617-624. 

154. Phanzu DM, Bafende EA, Dunda BK, Imposo DB, Kibadi AK, Nsiangana SZ, Singa JN, 
Meyers WM, Suykerbuyk P, Portaels F. 2006. Mycobacterium ulcerans disease (Buruli 
ulcer) in a rural hospital in Bas-Congo, Democratic Republic of Congo, 2002-2004. The 
American journal of tropical medicine and hygiene 75:311-314. 

155. Stragier P, Ablordey A, Bayonne LM, Lugor YL, Sindani IS, Suykerbuyk P, Wabinga H, 
Meyers WM, Portaels F. 2006. Heterogeneity among Mycobacterium ulcerans isolates 
from Africa. Emerging infectious diseases 12:844-847. 

156. Glatman-Freedman A, Casadevall A. 1998. Serum therapy for tuberculosis revisited: 
reappraisal of the role of antibody-mediated immunity against Mycobacterium 
tuberculosis. Clin Microbiol Rev 11:514-532. 

157. Afrane YA, Githeko AK, Yan G. 2012. The ecology of Anopheles mosquitoes under 
climate change: case studies from the effects of deforestation in East African highlands. 
Annals of the New York Academy of Sciences 1249:204-210. 

158. Williamson HR, Benbow ME, Nguyen KD, Beachboard DC, Kimbirauskas RK, McIntosh 
MD, Quaye C, Ampadu EO, Boakye D, Merritt RW, Small PL. 2008. Distribution of 
Mycobacterium ulcerans in buruli ulcer endemic and non-endemic aquatic sites in 
Ghana. PLoS neglected tropical diseases 2:e205. 



116 
 

159. Merritt RW, Dadd RH, Walker ED. 1992. Feeding behavior, natural food, and nutritional 
relationships of larval mosquitoes. Annu Rev Entomol 37:349-376. 

160. Orr BK, Resh VH. 1989. Experimental test of the influence of aquatic macrophyte cover 
on the survival of Anopheles larvae. Journal of the American Mosquito Control 
Association 5:579-585. 

161. Benbow ME, Williamson H, Kimbirauskas R, McIntosh MD, Kolar R, Quaye C, Akpabey 
F, Boakye D, Small P, Merritt RW. 2008. Aquatic invertebrates as unlikely vectors of 
Buruli ulcer disease. Emerg Infect Dis 14:1247-1254. 

162. Ross BC, Johnson PD, Oppedisano F, Marino L, Sievers A, Stinear T, Hayman JA, Veitch 
MG, Robins-Browne RM. 1997. Detection of Mycobacterium ulcerans in environmental 
samples during an outbreak of ulcerative disease. Applied and environmental 
microbiology 63:4135-4138. 

163. Christenson B. 1984. An outbreak of tularemia in the northern part of central Sweden. 
Scandinavian journal of infectious diseases 16:285-290. 

164. Eliasson H, Lindback J, Nuorti JP, Arneborn M, Giesecke J, Tegnell A. 2002. The 2000 
tularemia outbreak: a case-control study of risk factors in disease-endemic and 
emergent areas, Sweden. Emerg Infect Dis 8:956-960. 

165. Addo P, Owusu E, Adu-Addai B, Quartey M, Abbas M, Dodoo A, Ofori-Adjei D. 2005. 
Findings from a buruli ulcer mouse model study. Ghana Med J 39:86-93. 

166. Ruf MT, Schutte D, Chauffour A, Jarlier V, Ji B, Pluschke G. 2012. Chemotherapy-
associated changes of histopathological features of Mycobacterium ulcerans lesions in a 
Buruli ulcer mouse model. Antimicrob Agents Chemother 56:687-696. 

167. Fenner F. 1956. The pathogenic behavior of Mycobacterium ulcerans and 
Mycobacterium balnei in the mouse and the developing chick embryo. Am Rev Tuberc 
73:650-673. 

168. Oliveira MS, Fraga AG, Torrado E, Castro AG, Pereira JP, Filho AL, Milanezi F, Schmitt 
FC, Meyers WM, Portaels F, Silva MT, Pedrosa J. 2005. Infection with Mycobacterium 
ulcerans induces persistent inflammatory responses in mice. Infect Immun 73:6299-
6310. 

169. Stinear TP, Hong H, Frigui W, Pryor MJ, Brosch R, Garnier T, Leadlay PF, Cole ST. 2005. 
Common evolutionary origin for the unstable virulence plasmid pMUM found in 
geographically diverse strains of Mycobacterium ulcerans. Journal of bacteriology 
187:1668-1676. 

170. Simons S, van Ingen J, Hsueh PR, Van Hung N, Dekhuijzen PN, Boeree MJ, van 
Soolingen D. 2011. Nontuberculous mycobacteria in respiratory tract infections, eastern 
Asia. Emerging infectious diseases 17:343-349. 

171. Walsh DS, Portaels F, Meyers WM. 2011. Buruli ulcer: Advances in understanding 
Mycobacterium ulcerans infection. Dermatol Clin 29:1-8. 

172. Sherry CL, Kramer JM, York JM, Freund GG. 2009. Behavioral recovery from acute 
hypoxia is reliant on leptin. Brain Behav Immun 23:169-175. 

173. Sarfo FS, Converse PJ, Almeida DV, Zhang J, Robinson C, Wansbrough-Jones M, Grosset 
JH. 2013. Microbiological, histological, immunological, and toxin response to antibiotic 
treatment in the mouse model of Mycobacterium ulcerans disease. PLoS Negl Trop Dis 
7:e2101. 



117 
 

174. Converse PJ, Almeida DV, Nuermberger EL, Grosset JH. 2011. BCG-mediated protection 
against Mycobacterium ulcerans infection in the mouse. PLoS Negl Trop Dis 5:e985. 

175. Martins TG, Gama JB, Fraga AG, Saraiva M, Silva MT, Castro AG, Pedrosa J. 2012. Local 
and regional re-establishment of cellular immunity during curative antibiotherapy of 
murine Mycobacterium ulcerans infection. PLoS One 7:e32740. 

176. Stienstra Y, van der Werf TS, van der Graaf WT, Secor WE, Kihlstrom SL, Dobos KM, 
Asamoa K, Quarshi E, Etuaful SN, Klutse EY, King CH. 2004. Buruli ulcer and 
schistosomiasis: no association found. The American journal of tropical medicine and 
hygiene 71:318-321. 

177. Mihara M, Hashizume M, Yoshida H, Suzuki M, Shiina M. 2012. IL-6/IL-6 receptor 
system and its role in physiological and pathological conditions. Clin Sci (Lond) 122:143-
159. 

178. Gooding TM, Johnson PD, Smith M, Kemp AS, Robins-Browne RM. 2002. Cytokine 
profiles of patients infected with Mycobacterium ulcerans and unaffected household 
contacts. Infection and immunity 70:5562-5567. 

179. Denis M. 1992. Interleukin-6 is used as a growth factor by virulent Mycobacterium 
avium: presence of specific receptors. Cell Immunol 141:182-188. 

180. Denis M, Gregg EO. 1991. Recombinant interleukin-6 increases the intracellular and 
extracellular growth of Mycobacterium avium. Can J Microbiol 37:479-483. 

181. Romano M, Sironi M, Toniatti C, Polentarutti N, Fruscella P, Ghezzi P, Faggioni R, Luini 
W, van Hinsbergh V, Sozzani S, Bussolino F, Poli V, Ciliberto G, Mantovani A. 1997. Role 
of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. 
Immunity 6:315-325. 

182. VanHeyningen TK, Collins HL, Russell DG. 1997. IL-6 produced by macrophages infected 
with Mycobacterium species suppresses T cell responses. J Immunol 158:330-337. 

183. Zhang Y, Broser M, Rom W. 1995. Activation of the interleukin 6 gene by 
Mycobacterium tuberculosis or lipopolysaccharide is mediated by nuclear factors NF IL 6 
and NF-kappa B. Proc Natl Acad Sci U S A 92:3632. 

184. Sanceau J, Falcoff R, Beranger F, Carter DB, Wietzerbin J. 1990. Secretion of interleukin-
6 (IL-6) by human monocytes stimulated by muramyl dipeptide and tumour necrosis 
factor alpha. Immunology 69:52-56. 

185. Modlin RL. 1994. Th1-Th2 paradigm: insights from leprosy. J Invest Dermatol 102:828-
832. 

186. Herring AC, Hernandez Y, Huffnagle GB, Toews GB. 2004. Role and development of 
TH1/TH2 immune responses in the lungs. Semin Respir Crit Care Med 25:3-10. 

187. Lavender CJ, Fyfe JA. 2013. Direct detection of Mycobacterium ulcerans in clinical 
specimens and environmental samples. Methods Mol Biol 943:201-216. 

188. Steffen CM. 2014. Risk factors for recurrent Mycobacterium ulcerans disease after 
exclusive surgical treatment in an Australian cohort. Med J Aust 200:85-86. 

189. Rodhain F. 2012. [Buruli ulcer: hypothetical modes of transmission of Mycobacterium 
ulcerans]. Bull Acad Natl Med 196:685-690; discussion 690-681. 

190. Sinka ME, Bangs MJ, Manguin S, Coetzee M, Mbogo CM, Hemingway J, Patil AP, 
Temperley WH, Gething PW, Kabaria CW, Okara RM, Van Boeckel T, Godfray HC, 
Harbach RE, Hay SI. 2010. The dominant Anopheles vectors of human malaria in Africa, 



118 
 

Europe and the Middle East: occurrence data, distribution maps and bionomic precis. 
Parasites & vectors 3:117. 

191. Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dillen PM, van der Noordaa J. 
1990. Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28:495-
503. 

192. Ross BC, Marino L, Oppedisano F, Edwards R, Robins-Browne RM, Johnson PD. 1997. 
Development of a PCR assay for rapid diagnosis of Mycobacterium ulcerans infection. J 
Clin Microbiol 35:1696-1700. 

193. Lyimo EO, Koella JC. 1992. Relationship between body size of adult Anopheles gambiae 
s.l. and infection with the malaria parasite Plasmodium falciparum. Parasitology 104 ( Pt 
2):233-237. 

194. Traore S, Enyong P, Mandiangu ML, Kayembe D, Noma M, Seketeli A. 2007. [African 
programme for onchocerciasis control (APOC): entomological aspects of Onchocerca 
volvulus transmission by Simulium neavei in the Basin of Sankuru (Eastern Kasai, 
Democratic Republic of Congo)]. Med Trop (Mars) 67:33-37. 

195. Solano P, Amsler-Delafosse S. 1995. [Trypanosoma congolese in different species of 
horse flies (Diptera: Tabanidae) in Burkina Faso]. Revue d'elevage et de medecine 
veterinaire des pays tropicaux 48:145-146. 

196. Gouteux JP, Noireau F, Staak C. 1989. The host preferences of Chrysops silacea and C. 
dimidiata (Diptera: Tabanidae) in an endemic area of Loa loa in the Congo. Annals of 
tropical medicine and parasitology 83:167-172. 

197. Fasanella A, Garofolo G, Galella M, Troiano P, De Stefano C, Pace L, Aceti A, Serrecchia 
L, Adone R. 2013. Suspect vector transmission of human cutaneous anthrax during an 
animal outbreak in Southern Italy. Vector borne and zoonotic diseases 13:769-771. 

198. Jellison WL. 1950. Tularemia; geographical distribution of deerfly fever and the biting 
fly, Chrysops discalis Williston. Public health reports 65:1321-1329. 

199. Bayonne Manou LS, Portaels F, Eddyani M, Book AU, Vandelannoote K, de Jong BC. 
2013. [Mycobacterium ulcerans disease (Buruli ulcer) in Gabon: 2005-2011]. Medecine 
et sante tropicales 23:450-457. 

200. Morris A, Gozlan R, Marion E, Marsollier L, Andreou D, Sanhueza D, Ruffine R, Couppie 
P, Guegan JF. 2014. First detection of Mycobacterium ulcerans DNA in environmental 
samples from South America. PLoS Negl Trop Dis 8:e2660. 

201. Fyfe JA, Lavender CJ, Handasyde KA, Legione AR, O'Brien CR, Stinear TP, Pidot SJ, 
Seemann T, Benbow ME, Wallace JR, McCowan C, Johnson PD. 2010. A major role for 
mammals in the ecology of Mycobacterium ulcerans. PLoS Negl Trop Dis 4:e791. 

202. Gamboa M, Kimbirauskas RK, Merritt RW, Monaghan MT. 2012. A molecular approach 
to identifying the natural prey of the African creeping water bug Naucoris, a potential 
reservoir of Mycobacterium ulcerans. Journal of insect science 12:2. 

203. Landier J, Boisier P, Fotso Piam F, Noumen-Djeunga B, Sime J, Wantong FG, Marsollier 
L, Fontanet A, Eyangoh S. 2011. Adequate wound care and use of bed nets as protective 
factors against Buruli Ulcer: results from a case control study in Cameroon. PLoS Negl 
Trop Dis 5:e1392. 



119 
 

204. Williamson HR, Mosi L, Donnell R, Aqqad M, Merritt RW, Small PL. 2014. 
Mycobacterium ulcerans Fails to Infect through Skin Abrasions in a Guinea Pig Infection 
Model: Implications for Transmission. PLoS Negl Trop Dis 8:e2770. 

205. Gordon S, Andrew PW. 1996. Mycobacterial virulence factors. Society for Applied 
Bacteriology symposium series 25:10S-22S. 

206. Roltgen K, Stinear TP, Pluschke G. 2012. The genome, evolution and diversity of 
Mycobacterium ulcerans. Infect Genet Evol 12:522-529. 

207. Sreenivasamurthy SK, Dey G, Ramu M, Kumar M, Gupta MK, Mohanty AK, Harsha HC, 
Sharma P, Kumar N, Pandey A, Kumar A, Prasad TS. 2013. A compendium of molecules 
involved in vector-pathogen interactions pertaining to malaria. Malaria journal 12:216. 

208. Broeckling CD, Heuberger AL, Prenni JE. 2013. Large scale non-targeted metabolomic 
profiling of serum by ultra performance liquid chromatography-mass spectrometry 
(UPLC-MS). J Vis Exp:e50242. 

209. Gika HG, Theodoridis GA, Plumb RS, Wilson ID. 2014. Current practice of liquid 
chromatography-mass spectrometry in metabolomics and metabonomics. Journal of 
pharmaceutical and biomedical analysis 87:12-25. 

210. Broeckling CD, Heuberger AL, Prince JA, Ingelsson E, Prenni JE. 2012. Assigning 
precursor–product ion relationships in indiscriminant MS/MS data from non-targeted 
metabolite profiling studies. Metabolomics:33-43. 

211. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TW, Fiehn O, 
Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, 
Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR. 2007. Proposed 
minimum reporting standards for chemical analysis Chemical Analysis Working Group 
(CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3:211-221. 

212. Hollywood K, Brison DR, Goodacre R. 2006. Metabolomics: current technologies and 
future trends. Proteomics 6:4716-4723. 

213. Piotto S, Trapani A, Bianchino E, Ibarguren M, Lopez DJ, Busquets X, Concilio S. 2014. 
The effect of hydroxylated fatty acid-containing phospholipids in the remodeling of lipid 
membranes. Biochimica et biophysica acta 1838:1509-1517. 

214. D'Arrigo P, Servi S. 2010. Synthesis of lysophospholipids. Molecules 15:1354-1377. 
215. Atella GC, Shahabuddin M. 2002. Differential partitioning of maternal fatty acid and 

phospholipid in neonate mosquito larvae. The Journal of experimental biology 
205:3623-3630. 

216. Sushchik NN, Yurchenko YA, Gladyshev MI, Belevich OE, Kalachova GS, Kolmakova AA. 
2013. Comparison of fatty acid contents and composition in major lipid classes of larvae 
and adults of mosquitoes (Diptera: Culicidae) from a steppe region. Insect science 
20:585-600. 

217. Hanson BJ, Cummins KW, Cargill AS, Lowry RR. 1985. Lipid content, fatty acid 
composition, and the effect of diet on fats of aquatic insects. cOMP Biochem Physiol 
80b:257-276. 

218. Raynaud C, Guilhot C, Rauzier J, Bordat Y, Pelicic V, Manganelli R, Smith I, Gicquel B, 
Jackson M. 2002. Phospholipases C are involved in the virulence of Mycobacterium 
tuberculosis. Mol Microbiol 45:203-217. 



120 
 

219. Caire-Brandli I, Papadopoulos A, Malaga W, Marais D, Canaan S, Thilo L, de Chastellier 
C. 2014. Reversible lipid accumulation and associated division arrest of Mycobacterium 
avium in lipoprotein-induced foamy macrophages may resemble key events during 
latency and reactivation of tuberculosis. Infect Immun 82:476-490. 

220. Vlachou D, Schlegelmilch T, Christophides GK, Kafatos FC. 2005. Functional genomic 
analysis of midgut epithelial responses in Anopheles during Plasmodium invasion. 
Current biology : CB 15:1185-1195. 

221. Chang CL, Hsu SY. 2004. Ancient evolution of stress-regulating peptides in vertebrates. 
Peptides 25:1681-1688. 

222. Franchini A, Miyan JA, Ottaviani E. 1996. Induction of ACTH- and TNF-alpha-like 
molecules in the hemocytes of Calliphora vomitoria (Insecta, Diptera). Tissue & cell 
28:587-592. 

223. Boucias D, Pendland JC. 1998. Principles of insect pathology. Kluwer Academic 
Publishers, Boston. 

224. Rouzer CA, Marnett LJ. 2011. Endocannabinoid oxygenation by cyclooxygenases, 
lipoxygenases, and cytochromes P450: cross-talk between the eicosanoid and 
endocannabinoid signaling pathways. Chemical reviews 111:5899-5921. 

225. Stanley D. 2006. Prostaglandins and other eicosanoids in insects: biological significance. 
Annu Rev Entomol 51:25-44. 

226. Hwang J, Park Y, Kim Y, Hwang J, Lee D. 2013. An entomopathogenic bacterium, 
Xenorhabdus nematophila, suppresses expression of antimicrobial peptides controlled 
by Toll and Imd pathways by blocking eicosanoid biosynthesis. Archives of insect 
biochemistry and physiology 83:151-169. 

227. Garcia ES, Machado EM, Azambuja P. 2004. Inhibition of hemocyte microaggregation 
reactions in Rhodnius prolixus larvae orally infected with Trypanosoma rangeli. Exp 
Parasitol 107:31-38. 

228. Antoun J, Goulitquer S, Amet Y, Dreano Y, Salaun JP, Corcos L, Plee-Gautier E. 2008. 
CYP4F3B is induced by PGA1 in human liver cells: a regulation of the 20-HETE synthesis. 
Journal of lipid research 49:2135-2141. 

229. El-Sayed A, Liblikas I, Unelius R. 2000. Flight and molecular modeling study on the 
response of codling moth, Cydia pomonella (Lepidoptera: Tortricidae) to (E,E)-8,10-
dodecadien-1-ol and its geometrical isomers. Zeitschrift fur Naturforschung. C, Journal 
of biosciences 55:1011-1017. 

230. Abbas CA, Sibirny AA. 2011. Genetic control of biosynthesis and transport of riboflavin 
and flavin nucleotides and construction of robust biotechnological producers. 
Microbiology and molecular biology reviews : MMBR 75:321-360. 

231. Nickla H. 1972. Interaction between pteridine synthesis and riboflavin accumulation in 
Drosophila melanogaster. Canadian journal of genetics and cytology. Journal canadien 
de genetique et de cytologie 14:105-111. 

232. Lapalikar GV, Taylor MC, Warden AC, Scott C, Russell RJ, Oakeshott JG. 2012. F420H2-
dependent degradation of aflatoxin and other furanocoumarins is widespread 
throughout the actinomycetales. PLoS One 7:e30114. 



121 
 

233. Akompong T, Eksi S, Williamson K, Haldar K. 2000. Gametocytocidal activity and 
synergistic interactions of riboflavin with standard antimalarial drugs against growth of 
Plasmodium falciparum in vitro. Antimicrob Agents Chemother 44:3107-3111. 

234. Dufresne SS, Frenette J. 2013. Investigation of wild-type and mycolactone-negative 
mutant Mycobacterium ulcerans on skeletal muscle: IGF-1 protects against 
mycolactone-induced muscle catabolism. Am J Physiol Regul Integr Comp Physiol 
304:R753-762. 

235. Agbenorku P, Edusei A, Agbenorku M, Diby T, Nyador E, Nyamuame G, Saunderson P. 
2012. Buruli-ulcer induced disability in ghana: a study at apromase in the ashanti region. 
Plastic surgery international 2012:752749. 

236. O'Brien DP, Walton A, Hughes AJ, Friedman ND, McDonald A, Callan P, Rhadon R, 
Holten I, Athan E. 2013. Risk factors for recurrent Mycobacterium ulcerans disease after 
exclusive surgical treatment in an Australian cohort. Med J Aust 198:436-439. 

237. Roupie V, Pidot SJ, Einarsdottir T, Van Den Poel C, Jurion F, Stinear TP, Huygen K. 2014. 
Analysis of the vaccine potential of plasmid DNA encoding nine mycolactone polyketide 
synthase domains in Mycobacterium ulcerans infected mice. PLoS Negl Trop Dis 
8:e2604. 

238. Guerra H, Palomino JC, Falconi E, Bravo F, Donaires N, Van Marck E, Portaels F. 2008. 
Mycobacterium ulcerans disease, Peru. Emerging infectious diseases 14:373-377. 

239. Chany AC, Tresse C, Casarotto V, Blanchard N. 2013. History, biology and chemistry of 
Mycobacterium ulcerans infections (Buruli ulcer disease). Natural product reports 
30:1527-1567. 

240. Ohtsuka M, Kikuchi N, Yamamoto T, Suzutani T, Nakanaga K, Suzuki K, Ishii N. 2014. 
Buruli ulcer caused by Mycobacterium ulcerans subsp shinshuense: a rare case of 
familial concurrent occurrence and detection of insertion sequence 2404 in Japan. JAMA 
dermatology 150:64-67. 

241. Hennigan CE, Myers L, Ferris MJ. 2013. Environmental distribution and seasonal 
prevalence of Mycobacterium ulcerans in Southern Louisiana. Appl Environ Microbiol 
79:2648-2656. 

242. Phillips RO, Sarfo FS, Abass MK, Abotsi J, Wilson T, Forson M, Amoako YA, Thompson 
W, Asiedu K, Wansbrough-Jones M. 2014. Clinical and Bacteriological Efficacy of 
Rifampin-Streptomycin Combination for Two Weeks followed by Rifampin and 
Clarithromycin for Six Weeks for Treatment of Mycobacterium ulcerans Disease. 
Antimicrob Agents Chemother 58:2488. 

243. Lee W, VanderVen BC, Fahey RJ, Russell DG. 2013. Intracellular Mycobacterium 
tuberculosis exploits host-derived fatty acids to limit metabolic stress. The Journal of 
biological chemistry 288:6788-6800. 

244. Al-Mubarak R, Vander Heiden J, Broeckling CD, Balagon M, Brennan PJ, Vissa VD. 
2011. Serum metabolomics reveals higher levels of polyunsaturated fatty acids in 
lepromatous leprosy: potential markers for susceptibility and pathogenesis. PLoS Negl 
Trop Dis 5:e1303. 

245. McKean SC, Davies JK, Moore RJ. 2007. Expression of phospholipase D, the major 
virulence factor of Corynebacterium pseudotuberculosis, is regulated by multiple 



122 
 

environmental factors and plays a role in macrophage death. Microbiology 153:2203-
2211. 

246. Firth JD, Putnins EE, Larjava H, Uitto VJ. 1997. Bacterial phospholipase C upregulates 
matrix metalloproteinase expression by cultured epithelial cells. Infect Immun 65:4931-
4936. 

247. Hall B, Simmonds R. 2014. Pleiotropic molecular effects of the Mycobacterium ulcerans 
virulence factor mycolactone underlying the cell death and immunosuppression seen in 
Buruli ulcer. Biochemical Society transactions 42:177-183. 

248. McNamara PJ, Cuevas WA, Songer JG. 1995. Toxic phospholipases D of 
Corynebacterium pseudotuberculosis, C. ulcerans and Arcanobacterium haemolyticum: 
cloning and sequence homology. Gene 156:113-118. 

249. Smith DL, McKenzie FE. 2004. Statics and dynamics of malaria infection in Anopheles 
mosquitoes. Malaria journal 3:13. 

250. Addo P, Adu-Addai B, Quartey M, Abbas CA, Okang I, Owusu E, Ofori-Adjei D, B. A. 
2006. Clinical and Histopathological Presentation of Buruli Ulcer in Experimentally 
Infected Grasscutters. The Internet Journal of Tropical Medicine 3. 

251. Walsh DS, Meyers WM, Krieg RE, Walsh GP. 1999. Transmission of Mycobacterium 
ulcerans to the nine-banded armadillo. Am J Trop Med Hyg 61:694-697. 

252. Ribeiro JM, Francischetti IM. 2003. Role of arthropod saliva in blood feeding: sialome 
and post-sialome perspectives. Annu Rev Entomol 48:73-88. 

253. Arca B, Lombardo F, Francischetti IM, Pham VM, Mestres-Simon M, Andersen JF, 
Ribeiro JM. 2007. An insight into the sialome of the adult female mosquito Aedes 
albopictus. Insect biochemistry and molecular biology 37:107-127. 

 

 

 

 

 

 

 

 

  

  



123 
 

APPENDIX I 

 

 

Appendix figure 1: NIST spectral match and head-to-tail plot for compound C67. 
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Appendix figure 2: NIST spectral match and head-to-tail plot for compound C100. 
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Appendix figure 3: NIST spectral match and head-to-tail plot for compound C440. 
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Appendix figure 4: NIST spectral match and head-to-tail plot for compound C355. 
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Appendix figure 5: NIST spectral match and head-to-tail plot for compound C180. 
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Appendix figure 6: NIST spectral match and head-to-tail plot for compound C252. 
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Appendix figure 7: NIST spectral match and head-to-tail plot for compound C240. 
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Appendix figure 8: NIST spectral match and head-to-tail plot for compound C336. 


