
THESIS

DESIGN AND EVALUATION OF THE FAMILIAR TOOL

Submitted by

Aleksandar Jaksic

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Spring 2014

Master’s Committee:

 Advisor: Robert B. France

 Charles W. Anderson
 Sudipto Ghosh

Lucy J. Troup

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Mountain Scholar (Digital Collections of Colorado and Wyoming)

https://core.ac.uk/display/354445348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright by Aleksandar Jaksic 2014

All Rights Reserved

ii

ABSTRACT

DESIGN AND EVALUATION OF THE FAMILIAR TOOL

Software Product Line Engineering (SPLE) aims to efficiently produce multiple software

products, on a large scale, that share a common set of core development features. Feature

Modeling is a popular SPLE technique used to describe variability in a product family.

FAMILIAR (FeAture Model scrIpt Language for manIpulation and Automatic

Reasoning) is a Domain-Specific Modeling Language (DSML) for manipulating Feature Models

(FMs). One of the strengths of the FAMILIAR language is that it provides rich semantics for FM

composition operators (aggregate, merge, insert) as well as decomposition operators (slice).

The main contribution of this thesis is to provide an integrated graphical modeling

environment that significantly improves upon the initial FAMILIAR framework that was text-

based and consisted of loosely coupled parts. As part of this thesis we designed and implemented

a new FAMILIAR Tool that provides (1) a fast rendering framework for the graphically

representing feature models, (2) a configuration editor and (3) persistence of feature models.

Furthermore, we evaluated the usability of our new FAMILIAR Tool by performing a small

experiment primarily focusing on assessing quality aspects of newly authored FMs as well as

user effectiveness and efficiency.

iii

ACKNOWLEDGEMENTS

This work would not be possible without help and support of many people.

First of all, I would like to thank my adviser, Dr. Robert B. France, for guiding my

research in many ways, his continued support, and great inspiration. Dr. France introduced me to

both research world as well as SPLE. He continues to nurture me in my academic endeavors. I

am grateful to my committee members, Dr. Charles W. Anderson, Dr. Sudipto Ghosh, and Dr.

Lucy J. Troup for their teaching and roles. Dr. Troup and also Dr. Jaime Ruiz provided a

valuable help when I was planning the experiment.

Special thanks to Dr. Mathieu Acher. Although Mathieu managed to misspell my first

name countless number of times, and occasionally ignored my emails for weeks (and still does

both :), I owe him an enormous credit. This thesis would not be possible without Mathieu’s

friendly guidance, and his expertise in SPL, DSML, feature modeling, and, most importantly,

contribution to the FAMILIAR project. Special thanks are also due to Dr. Philippe Collet and

Simon Urli for conducting the FAMILIAR Tool experiment in their graduate SPL class. I am

also very grateful to all CS graduate students who participated in the experiment: fourteen

students from UNSA and three from CSU. Thanks to prof. Bruce Draper, graduate program

director, and James L. Peterson, key academic advisor, who were always responsive, and

provided answers to all of my questions, especially during my first graduate year at CSU. I am

also grateful to Dr. Geri Georg, who gave me invaluable advice when I was looking for an

advisor.

I would like to thank my employer Microsoft for setting a fine example as a world class

software and services company that supports continued education and for encouraging my

iv

research. In addition, I am indebted to my managers at work: Mitch Eatough and Vijayalakshmi

Ramkumar for granting approvals for my graduate work and for taking a personal interest in it.

Finally, all my love goes to my wife Tamara, and children Aleksandra, Gorana and Jana.

Ви сте све што имам у животу, мој понос, љубав и срећа! Само дани које

сам провео са Вама, у којима сам Вас загрллио и пољубио су имали смисао за

мене. Останите увијек заједно, будите поносне на то што јесте, и нека Вас кроз

живот воде Ваша љубав, доброта и разум.

Тата вас бескрајно воли!

v

TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDEMENTS .. iii

1 Introduction ..1

1.1 Research Motivation ...3

1.2 Overview and Scope of Research ..8

1.3 Structure of thesis ..10

2 Background ..11

2.1 Semantics of FMs ..11

2.2 Manipulating FMs ...13

3 Architecture of the FAMILIAR language environment ..18

3.1 Overview ...18

3.2 The Eclipse Platform as a cornerstone ..19

3.2.1 Eclipse Model Framework (EMF) ...20

3.2.2 Graphical Modeling Framework (GMF) ...21

3.2.3 Xtext - A DSL Framework ..22

3.3 Reasoning Back-ends ..24

3.4 Engineering a new FAMILIAR Tool ..24

3.4.1 Requirements Analysis ..25

3.4.2 Design Considerations ...26

3.4.3 Implementation Details ..28

3.5 Usage Example ..32

4 Evaluation of the FAMILIAR Tool ...38

vi

4.1 Study Methodology ...38

4.1.1 Goal, Research Questions, and Context ...39

4.1.2 Hypothesis Formulation ...40

4.1.3 Experiment Design...40

4.1.4 Experiment Objects and Variables ...41

4.1.5 Scenarios ..44

4.2 Experimental Results...44

4.3 Threats to Validity ...50

4.3.1 External Validity ..50

4.3.2 Internal Validity ...51

4.3.3 Construct Validity ..52

5 Related Work ...53

6 Conclusions and Future Work ...54

REFERENCES ..57

APPENDICES ...61

A. Requirements for FAMILIAR Tool ..61

Core Functional Requirements ..61

Advanced Functional Requirements ..64

Non-Functional Requirements ...65

B. Evaluation Scenarios ...66

1

1 Introduction

 Product line engineering emerged as a result of the profound shift that led from mass

production to mass customization [3] in manufacturing industries worldwide. Companies that

long embraced the core engineering principle of systematic reuse, by designing parts that can be

efficiently assembled to build a product line of related products, managed to successfully

produce greater variety and customization in their products. One of the driving objectives for

manufacturers has always been to keep improving productivity. They would accomplish this by

increasing their own product’s functionality and quality while, at the same time, aiming at

reducing development costs and time it takes to reach the market.

 The real-world examples of successful product line development are everywhere around

us. In the telecommunications industry, for instance, Nokia has been building its mobile phone

product line with 25-30 new products annually. In comparison, before they adopted product line

engineering techniques, they produced no more than 5 new products annually. When Nokia’s

production team worked on designing products that will be a part of their mobile phone product

line, among many others, they considered the following: varying number of keys, varying

display sizes, multiple protocols, need for backward compatibility, configurable features, product

behavior, post-release changes, 58 languages, and 130 countries [2].

 Building a new phone would not require coming up with a brand new design and

manufacturing process anymore since a manufacturer can now simply reuse many existing

features from its previously released products. New products are now engineered as related

“lines” of the same product line.

 A product line can be described as a group of products that shares a number of common

features and vary only in certain features. The key considerations driving the development of

2

product lines is how to identify and then reuse this commonality while managing variations in

order to reduce the time, effort, complexity, and therefore the overall costs, of creating and

maintaining a product line of similar products.

There are many parallels than can be drawn between the manufacturing and software

industries. For example, both deal with the same commonality and variability problem, at least

on a conceptual level. Similarly, both continuously strive to deliver high quality artifacts using

processes with shared attributes such as low production costs and short product development

cycle. It is often the case, however, that those activities are governed by conflicting goals.

 A notable and ongoing challenge in software engineering discipline is the inherent

complexity that begins with a problem domain and carries over to a software system that

computes a solution for this problem. Brooks [8] notes that engineers typically deal with two

types of complexity: Essential and Accidental complexity. The former complexity is inherent to

the problem being solved and cannot be removed. On the other hand, the latter form of

complexity is “accidental” to the problem and is more related to the choice of our approach and

actions when working on a solution.

 Models can help us to break down a complex problem through abstraction. Furthermore,

we can also use them to get closer to being able to; ideally, automatically generate a program

code from its model, or at least to narrow the gap between the problem and solution domains.

Attempts to bridge the problem-solution gap with traditional software development approach are

not only labor-intensive but also are tedious and error-prone processes that raise accidental

complexities. As a consequence, software developments costs as well as time-to-deploy tend to

keep increasing [6]. One of the central ideas behind Software Product Line Engineering (SPLE)

is to try to shift away from designing software products separately from all the code that follows.

3

Instead, our engineering mind should focus on creating quality models that would, with the help

of evolving automation technologies and an emergence of widely supported industry standards,

eventually be capable of delivering high quality final product in less time and with no or minimal

accidental complexities [9].

SPLE has emerged as a promising way to improve the software design and development

process by introducing the key aspect of product line discipline which is based on the explicit

modeling of what is common and what differs among software product variants. Under the

umbrella of SPLE, several perspective approaches have been proposed including code generation

[41], components transition [42] and model transformations [43], to name a few.

The SPL process involves a significant shift in software production. When decomposing a

system in terms of the features it provides, one of the main objectives of SPLЕ is to construct a

well-structured product line which is typically represented with a Feature Model (FM).

1.1 Research Motivation

Feature Models are widely used. Feature modeling is a popular model-driven approach

which gives a means to define commonalities and variabilities of a family of (software) products

in terms of features. A feature is any distinctive user-visible aspect, or characteristic of a system

[18]. For example, it can be functionality of a software system that satisfies a requirement or it

can represent a potential configuration option.

The feature model depicted in Figure 1 represents a simple laptop family. An FM

hierarchically structures features and feature groups, in a tree-like top-down fashion, using

parent-child relations. A feature diagram is simply a graphical representation of an FM typically

represented as an And-Or tree with nodes as features. An FM can include constraints that further

clarify dependencies among features.

4

Laptop

Screen ConnectivityWarranty

USB 2.0 USB 3.0s13.3 s17

Feature Diagram

s17 implies Warranty

Textual Notation

Legend:

AND Feature Group

Optional Feature

Mandatory Feature

XOR (alternative, mutually
exclusive) Feature Group [1..1]

OR Feature Group [1..*]

Laptop : Screen [Warranty] Connectivity; // Warranty is optional
Connectivity : (USB 2.0 |USB 3.0)+; // Or Group
Screen : (s13.3|s17); // Xor group
s17 ‐> Warranty; // Constraints

A valid configuration of an FM vs. SPL

{L,S, W, C, s13, U2}
{L,S, W, C, s13, U3}
{L,S, W, C, s17, U2}
{L,S, W, C, s17, U3}
{L,S, W, C, s13, U2, U3}
{L,S, W, C, s17, U2, U3}
{L,S, C, s13, U2}
{L,S, C, s13, U3}
{L,S, C, s13, U2, U3}

For brevity, feature names used below are abbreviated to combination of letters, underlined in the Feature Diagram
given above.

A valid configuration of an FM;
a single product

SPL – A set of (software)
products; Each product in a
products line corresponds to a
valid configuration of an FM

Constraint

 Figure 1: Example of a Laptop FM with different FM notations.

 From the example given above, an FM can be represented in several ways: as a feature

diagram, or a textual form. Transforming a model from one representation to another always

preserves the hierarchy and constraints in their original form.

 Each product of a SPL corresponds to a valid configuration of an FM. A configuration is

obtained by selecting and unselecting features in an FM. A feature model thus defines a set of

valid feature configurations. The validity of a configuration is determined by the semantics of a

feature model. For example, in Figure 1, screens with sizes 13.3” and 17” are mutually exclusive

and cannot be selected at the same time. Similarly, more expensive laptops (i.e., those with 17”

5

screens) must include a warranty meaning that all of the laptops with 17” screen will also come

with the warranty.

The fundamental idea of SPLE is to decompose a software system in terms of the features

it provides. The goal of decomposition is to construct a well-structured software system that can

be tailored to the needs of different users and the application scenarios. Typically, from a set of

features, many different software product lines can be generated that share common features and

differ in other features. Features can also be used to analyze, design, implement, customize,

debug, or evolve a software system. For example, if we define Microsoft Office 2013

applications as individual features, then a set of top-level features would include Word 2013,

Excel 2013, PowerPoint 2013, Access 2013, and so on. Depending on the selected set of features

we might be able to generate different software products. For instance, a product named “Office

2013 Home and Student” would include Word, Excel and PowerPoint, but not Access. On the

other hand, a product named “Office 2013 Professional” would contain all four applications with

additional sub-packages.

 As feature models are rapidly emerging as a viable and important systems development

tools, they are also becoming increasingly complex. Managing feature models of industrial size

is a tedious and error prone process. To manage the complexity of real-world product lines

development, there is a need to create a language that is capable of not only creating, updating,

and managing FMs, but also separating, relating and composing them while supporting

automated reasoning. To meet this requirement of handling large and complex FMs in a scalable

way, the domain-specific modeling language (DSML) FAMILIAR was developed [1, 15, 21].

FAMILIAR is an executable scripting language that has the built-in capability to

compose and decompose feature models, and also to manipulate and reason about FMs.

6

FAMILIAR allows stakeholders to describe domain concepts in terms of commonalities and

differences within a family of software or product systems. Feature models are typically passed

in to the FAMILIAR interpreter in a textual notation. However, the FAMILIAR framework

translates this representation to a propositional formula; so that it can verify the validity of a

model, its semantics and perform various computations on an FM such as reasoning and

composing operations. In addition, FAMILIAR can interpret a script in order to perform a

sequence of operations on feature models. Such scripts are reusable [5].

 However, the current text-based version of FAMILIAR has several drawbacks, and this

thesis focuses on one in particular: Lack of FM visualization. A number of textual feature

modeling languages [11, 36, 37, 38], including FAMILIAR [1, 4] have been proposed during the

last decade as a practical solution to the SPL modeling challenge. There are many reasons for

choosing textual syntax over graphical since it has many advantages on its own. For example,

developing a text-based modeling language requires less effort. This approach is particularly

appealing when creating a DSML prototype in an academic environment. Typically, a

lightweight textual DSML does not require a rich and dedicated modeling tool since there are

already established tools that are available for text-based editing, manipulation, formal

reasoning, and versioning. In addition, it is easier to achieve better interoperability of textual

models among various languages. However, the problem is that such modeling languages usually

do not fit well to the context of established SPL tools such as FeatureIDE. A disadvantage of

languages that exclusively support text-based modeling arises from the scale of real-world

models. Large models can easily grow exponentially to incorporate thousands of features (i.e.,

the feature model of a Linux kernel [28]). For example, creating a large text-based FM with

thousands of features, and inspecting it while looking for inconsistencies or possible

7

enhancements or simply comparing it to other FMs, might require a significant mental obstacle

for a modeling practitioner.

 Cognitive research is a scientific discipline that attempts to gain insights on how the

human mind analyzes information, creates knowledge, and solves problems. In the context of

SPL and feature modeling, information and knowledge are primarily represented in feature

models. There is growing evidence of the cognitive power of visualization [26]. A tool support

of visualization models can help modeling practitioners amplify their cognition [27]. The

increase in cognitive effectiveness leads directly to improved speed, ease and accuracy with

which a model representation can be processed by humans [31]. An incentive for using visual

notations is the widely-held belief that they convey information more effectively than text,

especially to novices [32].

Modeling practitioners would obviously benefit from additional insights when provided

with feature model visualizations in intuitive notations they are already familiar with (e.g., a

FODA-like notation) [16, 23]. Allowing users to model feature models in its native, tree-like top-

down hierarchical notation, should result in improved efficiency, effectiveness, learnability and

model quality.

In summary, using the current text-based version of FAMILIAR might result in a limited

modeling experience with inadequate overall usability and productivity. Lower user productivity

might also be correlated to a higher number of errors or inconsistencies resulting in lower-quality

FMs in general.

The goal of this thesis is to not only enhance the FAMILIAR language itself but also to

benefit its modeling practitioners by increasing their productivity as well as quality of FMs they

work with.

8

1.2 Overview and Scope of Research

 In this thesis, we are motivated by the following question:

 How we can enhance the FAMILIAR language to help modeling practitioners

improve quality of their modeling work, especially in terms of the usability

context and FM quality?

One technique that can help us tackle this challenge is visualization. Clearly, there is a need for

an UI tool that practitioners can use to manage feature modeling with more user efficiency and

effectiveness.

 As a part of this thesis, we enhanced the FAMILIAR framework, by adding visualization

features, without giving up its powerful textual capabilities. The dual coding theory postulates

that visual information (e.g., graph-based models) and verbal information (e.g., text-based

models) are stored and processed differently via separate mental channels that do not compete

with each other [29]. In other words, using text and graphics together to convey information is

more effective than using either on their own.

Supporting both textual and graphical notations in FAMILIAR enables users to better

build and manipulate large and complex feature models. As users create or analyze a model they

often want to visualize the current state of the model through some graphical notation as an

alternative to editing the text-based model. While, on the one hand, text syntax is a perfectly

valid way to view, edit, and formally reason about feature models, offering many desirable

characteristics such as expressiveness, scripting, reusability, compactness, reproducibility and

readability, on the other hand, the graphical notation, might bring improved usability and

widespread adoption. Ultimately, the new FAMILIAR Tool must handle the text-based model

and the visual model simultaneously by keeping them both fully synchronized in real-time.

9

 In addition, we added a configuration editor and a persistence mechanism as a part of the

new tool so that work can be preserved and resumed in subsequent modeling sessions.

 In summary, we enhanced the FAMILIAR framework by designing and implementing a

new, fully integrated, authoring tool with features such as an intuitive UI, a configuration editor,

FM persistence and a graphical representation of FMs with the cross-platform support that SPL

practitioners can use to better manage feature modeling. To work with the new standalone

FAMILIAR Tool, no external tools such as Eclipse, console, or text editors are needed. The new

tool may also make FAMILIAR and SPL in general, more accessible to non-experts.

 In addition to the application-based component of this thesis work, there is an

experimental component. We performed a small scientific evaluation of the new GUI tool

(treatment object) while using the existing text-based tool (control object) in order to get answers

to our two research questions:

 (RQ 1) Does visualization of feature models help improve the quality of feature

models and reduce user-based errors?

 (RQ 2) Does visualization of feature models help modelers to manage/analyze

feature models with improved user efficiency and effectiveness?

 Finally, it is important to note that the thesis does not address other aspects of SPLE such

as generating implementations from FMs, transforming models, developing a compositional

DSML framework (i.e., developing the means to separate language concerns in terms of reusable

language fragments representing features), or converting FAMILIAR from external to internal

DSML.

10

1.3 Structure of thesis

The remainder of this thesis is organized as follows. Section 2 provides the background

needed to understand the work described in this thesis. Section 3 presents the architecture of the

FAMILIAR framework and also details the rationale behind the design and implementation of

the new graphical SPL research tool. In this section we also explain some of the visualization

and interaction features implemented. We conclude Section 3 with a usage example. Section 4

presents a small experiment that evaluates FM quality and usability aspects of the new

FAMILIAR Tool. Section 5 discusses related work. Finally, section 6 describes future work and

concludes this thesis.

11

2 Background

 In this chapter, we describe the semantics of Feature Models, manipulation operators as

implemented by FAMILIAR, and also provide an overview of tools used in this research.

2.1 Semantics of FMs

 A feature model structures product aspects, in a top-down fashion, into multiple levels of

increasing detail. When de-composing a feature into sub features, the sub features may be

optional or mandatory or may form Alternative-, Or-, or And-groups.

 A valid configuration is determined by the following set of rules [1]:

 Any selected feature (node) means that its parent feature (node) is also always

selected.

 If a node represents a feature group, and when that node is selected, then the

following sub features (child nodes) must also be selected:

o If a node is an And-group (which may contain mandatory and/or optional

features), then all of its mandatory sub features are also selected.

o If a node is an Alternative-group (exclusive OR), then exactly one sub

feature is also selected.

o If a node is an Or-group, then at least one sub feature is also selected.

 Constraints relating features must always hold.

 FM semantics allows one to rigorously reason about feature models by applying Boolean

logic. The Boolean expressions simply consist of the constants true (1) and false (0), the

operators of conjunction (˄), disjunction (˅), negation (¬), implication (⇒) and bi-implication

(⇔) as well as propositional variables. A feature model can be converted into a propositional

formula. Feature models are translated to a propositional formula through semantic operations

12

where (1) each feature of the feature model corresponds to a variable of the propositional

formula, (2) each relationship of the model is mapped into one or more formulas depending on

the type of relationship groups, (3) the resulting formula is the conjunction of all the resulting

formulas specified in (2) as well as additional propositional constraints (if any) of the feature

model. In his work, Batory [11] explores the use of SAT solvers to reason about feature models

whereas Storm [19] considers BDD packages for the same purpose. On the other hand,

Czarnecki [10] proposes an algorithm for automatically translating the propositional formula

back to a feature model through feature model synthesis (or render operation).

 Figure 1 showed graphical and textual representation of an FM. Figure 2a provides an

example of the propositional formula for the given feature model of a laptop.

Laptop

Screen ConnectivityWarranty

USB 2.0 USB 3.0s13.3 s17

Feature Diagram

s17 implies Warranty

Propositional Formula

Legend:

AND Feature Group

Optional Feature

Mandatory Feature

XOR (alternative, mutually
exclusive) Feature Group [1..1]

OR Feature Group [1..*]

LFM ↔ (S ⇒	L) ˄ (W ⇒	L) ˄ (C ⇒	L) ˄ (s13 ⇒	S) ˄
 (s17 ⇒	S) ˄ (U2 ⇒	C) ˄ (U3 ⇒	C) ˄ // Child‐parent
 (L ⇒	S) ˄ (L ⇒	C) ˄ // Mandatory

 (C ⇒ U2 ˅ U3) ˄ // Or‐Group
 (S ⇒ s13 ⊕ s17) ˄ // Xor‐Group
 (s17 ⇒	W) // Constraints

For brevity, feature names used below are abbreviated to combination of letters, underlined in the Feature Diagram
given above.

Constraint

 Figure 2a: Example of a Laptop FM with a propositional formula.

13

The propositional formula of a feature model is satisfiable if and only if its variables can

be assigned to values for which the formula evaluates to true. Otherwise, the propositional

formula is not satisfiable. If the propositional formula of a feature model is satisfiable, then all

features assigned to True, for any given evaluation, represent a valid configuration. Figure 2b

shows an example of a Laptop FM with a valid configuration.

 Figure 2b: Example of a Laptop FM with a satisfiable propositional formula. All

selected features (set to True in a propositional formula) represent one valid configuration of a

Laptop FM.

2.2 Manipulating FMs

 One of the most powerful characteristics of the FAMILIAR language is its composition

operators that are designed for supporting the separation of concerns in feature modeling. This

section provides a brief overview of mechanisms that FAMILIAR uses for composition (i.e.,

insert, merge, aggregate) as well as decomposition (i.e., slice).

 Manually creating FMs is tedious and error prone process. One of the goals of SPL

languages and tools is to automate manipulation processes. The resulting FM is formally

14

synthetized from possibly multiple FMs using underlying semantics. In their work, Thüm et al.

[33] identified four possible FM adaptations: (1) refactoring - no new configurations are added

and no existing configurations are removed; (2) specialization - some existing configurations are

removed and no new configurations are added; (3) generalization - new configurations are added

and no existing configurations removed; and (4) arbitrary edits - a change that is none of the

above. FAMILIAR supports all four categories of FM adaptations.

 Kang et al. [23] introduced the concept of “composition rules” in which “features are

related to one another primarily through the use of composition rules, which are a type of

constraint on the use of a feature”. It is important to note that although the SPL discipline has

offered a multitude of composition approaches, where each one focuses on manipulating artifacts

of different types (i.e., code, models, aspects, documents, data types, etc.), FAMILIAR, in its

current state, focuses exclusively on the composition of feature models. In FAMILIAR, the

semantics of an FM is the set of all valid configurations that contain sets of selected features that

respect the dependencies entailed by the diagram and the cross-tree constraints. FAMILIAR thus

defines the semantic properties of each (de)composing operator in terms of the relationship

among the configuration sets of the input models and the resulting feature model [1].

 For composition of FMs, FAMILIAR supports insert, merge, and aggregate operators.

The insert operator creates a new FM by inserting an input (a.k.a. aspect) FM into another base

(a.k.a. target) FM. Other than those two input arguments, the insert operator takes a 3rd argument,

an operator mode (i.e., Or, Xor, Opt or Mand) that determines the form of the insertion, that is,

whether the insertion preserves the set of configurations defined by an input FM or not. This

preservation is the generalization property. The precondition of the insert operation requires that

the intersection between the set of features of the base feature model and the one of the aspect

15

feature model is empty. In other words, it preserves the well-formed property of the composed

feature model which states that each feature name is unique. If this precondition is not respected,

insert returns false and the base (target) feature model is not modified. Figure 2c shows an

example of the insert operation.

 Figure 2c: Example of the FM insert operation with OPT mode.

 The merge operator is used to combine two or more FMs, and produce a new, integrated,

FM. The merge uses name-based matching: two features match if and only if they have the same

16

name. Several modes are defined for this operator. They indicate how the merge is done in terms

of set of configurations preserved in the resulting FM. Similar to the semantics of the insertion

operation, the semantics of the merge operator is based on a relationship that exists between the

resulting FM and two input FMs. The user is expected to specify this semantics as the 3rd

argument: A merge mode, which is either based on the on the union or the intersection of the two

input configuration sets. Figure 2d shows an example of two FMs that were created with the

merge operator, one with Diff and another one with Union merge mode. In this example, two

input FMs, base and aspect, happen to share a feature with the same name, “Connectivity”, but

different sub-structures.

Another composing operator that is supported by FAMILIAR is the aggregate operator.

It is used to inter-relate a set of FMs, eventually with cross-tree, propositional constraints.

Contrary to the merge operator, the aggregate operator does not expect a common feature

between two input FMs.

When it comes to decomposing FMs, FAMILIAR uses the slice operator, which basically

produces a feature model that contains only a relevant subset of features.

17

 Figure 2d: Example of the FM merge operation with Diff and Union modes.

18

3 Architecture of the FAMILIAR language environment

 In this chapter, we describe the main components of the FAMILIAR language

environment - its framework, interpreter, solvers and the existing standalone text-based tool. We

then describe the design and implementation of the new FAMILIAR Tool [40, 21] that was

developed as a part of this thesis. We conclude the chapter by providing an example of how the

new FAMILIAR Tool can be used.

3.1 Overview

FAMILIAR adopts a layered architecture, allowing for extensible design and easier

integration with other DSML languages and 3rd party libraries that it uses internally.

As depicted in Figure 3a, FAMILIAR has three main layers

*.fml

FAMILIAR Java API

Xtext

Solvers

*.treeml ConsoleP
re

fu
se

BDD SAT

Legend

UI Layer

Framework Layer

3rd Party Libraries

Converters/Bridges
Layer

FM Editor
Configuration
Editor

EMF

Interpreter

S
2T

2
 B

ri
dg

e

F
e

a
tu

re
 I

D
E

B
ri

dg
e

S
P

L
O

T

S
X

F
M

T
V

L

 Figure 3a: Architecture of the FAMILIAR language.

 Framework: This is the cornerstone of the FAMILIAR language. The framework

specifies the language grammar which allows FAMILIAR to interpret FMs by

19

building an internal abstract syntax tree (AST) structure. The interpreter uses 3rd

party off the shelf solvers (BDD and SAT) to check for satisfiability property of a

propositional formula of a feature model. The framework integrates several

converters and bridges that allow for integration with other DSML languages and

tools. Finally, it exposes its functionality through non-public Java API interface,

which is used by both its tools, the visual Editor as well as the text-based console.

 UI Layer: This layer integrates with the Prefuse visualization framework, and

exposes the full power of the framework to the end user through FM Editor. FM

Editor completely integrates both the Configuration Editor and the Console into

unique modeling environment known as FAMILIAR Tool. Console is also

available as standalone text-based tool.

 Converters/Bridges: This layer supports several other SPL FM tools and notations.

 FAMILIAR’s components, shown in yellow in Figure 3a, were developed as part of this

thesis work. FAMILIAR Tool leverages all three layers, and provides complete functionality of

the FAMILIAR language in an integrated environment.

 The next subsections will provide more details about every major FAMILIAR

component.

3.2 The Eclipse Platform as a cornerstone

FAMILIAR supports tailoring to specific domains by means of feature model

configuration, reusable components, and the reasoning back-ends. It is an executable scripting

language that supports manipulating and reasoning about feature models. Moreover, FAMILIAR

can interpret a textual script in order to perform a sequence of operations on feature models.

20

Such operations are reproducible and reusable. In addition, you can import, export, compose,

decompose, edit, configure, reason about feature models and combine these operations to realize

complex variability management tasks.

 FAMILIAR is originally based on Xtext, a popular framework used for creating new

DSLs, and then further evolved on the Eclipse platform in Java. FAMILIAR internally uses two

off-the-shelf reasoning back-end libraries: SAT4J (SAT solver) and JavaBDD (Binary Decision

Diagrams) to support its Boolean-based calculations. Before we developed the graphical editor,

FAMILIAR was used either as a standalone (console) application in an interactive mode or as an

Eclipse plugin, text-based editor combined with an interpreter that could execute its scripts. In

order to boost academic experimentation, the FAMILIAR language supported several notations

for specifying feature models including SPLOT/SXFM, FeatureIDE, S2T2, as well as a subset of

TVL.

 The Eclipse IDE provides a fully integrated and extensible environment well suited for

the modeling and building DSMLs such is FAMILIAR. Eclipse integrates Java programing

language, Xtext framework, and EMF together with the version control system Subversive

(SVN). Eclipse uses plug-in architecture to provide all functionality within the Java runtime

system. In fact, the Eclipse IDE products are excellent examples of a software product line with

12 products and 27 features [20].

3.2.1 Eclipse Model Framework (EMF)

The Eclipse Modeling Framework (EMF) is a model management framework

implemented atop the Eclipse platform. Eclipse’s EMF provides powerful support for defining

models and building modeling tools. The core EMF construct is a meta-model (Ecore)

component for specifying models and runtime support for the models, including change

21

notification, persistence support with default XMI serialization, and a reflective API for

manipulating EMF objects generically. EMF separates a meta-model from an actual model. A

meta-model describes the structure of models. A model is then the instance of a meta-model.

Once the meta-model is specified, EMF generates a set of Java classes for the model, along with

a set of adapter classes that enable viewing and command-based editing of the model, and a basic

editor [14]. Ecore models are by default specified in XMI, but they can also be defined using

either annotated Java, UML, or XML documents. Both Eclipse and EMF are considered de facto

standard technologies in the Model-Driven Development (MDD) community. Using EMF to

define the FAMILIAR’s meta-model (or domain model) has several advantages. Firstly, it aims

to increase productivity and consistency that result from automatic code generation. Secondly, it

generates Java classes with clean, simple, and defect-free code. Finally, it supports built-in object

persistence and notifications based on the Observer pattern.

The use of EMF also allows us to leverage Graphical Modeling Framework (GMF) in

order to build the FAMILIAR editor by using its Ecore model.

3.2.2 Graphical Modeling Framework (GMF)

In addition to EMF, the Eclipse platform offers the GMF. Its main purpose is to enable

end-users to generate capable graphical editors for constructing and editing models as defined by

the Ecore meta-model. GMF adopts a generative approach to achieving its objective. Its

workflow starts with the Ecore meta model which specifies the abstract syntax of the modeling

language, and then proceeds with transformations by deriving and maintaining a set of more fine

grained, lower-level models that describe graphical syntax and implementation options, and

which then can be consumed by the GMF code generator to realize the editor. EMF and GMF are

22

designed to be used together. They can provide particularly powerful functionality, offering rich

customization options for almost every aspect of the generated editor.

3.2.3 Xtext - A DSL Framework

A new DSML language is typically developed with a software tool, or a DSL designed for

a development of such languages, or by following a traditional development approach and using

a general-purpose programming language of choice. FAMILIAR, which is a DSML, was

developed with Xtext, which is a DSL. Xtext [12] is a powerful framework used for the

development of external DSLs. Xtext is capable of generating not only a parser but also a

semantic model built on EMF, for the Abstract Syntax Tree (AST). It is important to note that

Xtext treats a semantic model and AST as the same concept. However, it is better if a semantic

model is distinguished from AST [13] since it enables a clear separation of concerns between

parsing a language (i.e., the legal expressions of the FAMILIAR program) and the resulting

semantics (i.e., what FAMILIAR scripts or commands do when execute).

 FAMILIAR’s grammar is specified in Xtext's grammar language (figure 3b). The

grammar language is a DSL itself designed for the description of textual languages. From this

grammar, Xtext produces two artifacts. First, it derives an Ecore model which is an in-memory

object graph. The object-graph is an instance of the EMF meta-model. This artifact is used to

describe FAMILIAR’s concrete syntax and determines how it is mapped to its semantic model.

Second, it generates an ANTLR parser and the Java source code for the object model.

23

Figure 3b: Part of the FAMILIAR’s grammar.

Before the FAMILIAR interpreter executes a script or a command, it first checks whether

its statement conforms to the FAMILIAR syntax specified by its grammar. If there are no syntax

errors, then the interpreter’s semantics is to simply execute Java code attached to grammar

elements. They are represented as terminal nodes in FAMILIAR’s grammar.

FeatureModel : ('FM'|'featuremodel') LEFT_PAREN (
 (
 (root=ID ';')|((features+=Production ';')+
 (expr+=CNF ';')*)
)| (file=StringExpr)) RIGHT_PAREN ;

Production : name=ID ':' features+=Child+ ;

Child : (Mandatory | Optional | Xorgroup | Orgroup | Mutexgroup) ;

Mandatory : name=FT_ID ;
Optional : LEFT_HOOK name=ID RIGHT_HOOK ;
Xorgroup : LEFT_PAREN features+=FT_ID (B_OR features+=FT_ID)+ RIGHT_PAREN ;
Orgroup : LEFT_PAREN features+=FT_ID (B_OR features+=FT_ID)+ RIGHT_PAREN
PLUS ;
Mutexgroup : LEFT_PAREN features+=FT_ID (B_OR features+=FT_ID)+ ')?' ;

CNF : Or_expr ;

Or_expr returns CNFExpression:
And_expr ({Or_expr.left=current} B_OR right=And_expr)*;

And_expr returns CNFExpression:
 Impl_expr ({And_expr.left=current} B_AND right=Impl_expr)*;

Impl_expr returns CNFExpression:
 Biimpl_expr ({Impl_expr.left=current} B_IMPLY right=Biimpl_expr)*;

Biimpl_expr returns CNFExpression:
 Unary_expr ({Biimpl_expr.left=current} B_BIMPLY right=Unary_expr)*;

Unary_expr returns CNFExpression: Neg_expr | Primary_expr ;

terminal LEFT_PAREN : '(' ;
terminal RIGHT_PAREN : ')' ;

terminal B_NOT : '!' | '~' ; // 'not' |
terminal B_AND : '&' | 'and' ; //| '&' ;
terminal B_OR : '|' | 'or' ;
terminal B_IMPLY : '‐>' | 'implies' | 'requires' ;

terminal B_BIMPLY : '<‐>' | 'biimplies' ;

24

3.3 Reasoning Back-ends

As it was discussed in section 2.1, the idea of transforming feature models to propositional

formulas, and then solving the satisfiability problem has been studied by several authors. A

propositional formula is satisfiable if it is possible to find a configuration that makes the

propositional formula of a feature model true. FAMILIAR uses this approach to reason about

FMs using either BDDs or SAT solvers. However, its composing/decomposing operations are

currently limited to using BDDs only [1].

3.4 Engineering a new FAMILIAR Tool

As a part of this thesis, we worked on extending the FAMILIAR framework to support its

use as a graphical standalone authoring tool. This work had several phases. First, we analyzed

the existing architecture of the FAMILIAR framework. As a result of the analysis, the

stakeholders agreed that the most optimal course of action would be to extend it in such way to

add a GUI layer, an editor application that will be integrated on top of the FAMILIAR

framework through its middleware API. Secondly, we worked on gathering the requirements for

a new tool. Thirdly, we considered different design approaches, and actually tried two of them:

MDD as well as traditional development approach. Our motivation was to assess the current

state-of-the-art of MDD tooling using the actual, real-world, product. Fourthly, we worked on

implementing an editor in Java using the Prefuse visualization kit. This was an agile driven effort

with multiple iterations and test-driven development. There was also notable testing work that

was running simultaneously with design and development. During this stage we fixed dozens of

newly found or existing issues, and improved the code base in other ways. Finally, we performed

an evaluation of the new FAMILIAR Tool, comparing it to the legacy text-based console, to

study the usability impact of our new visual SPL tool, especially on novice practitioners.

25

This chapter describes the development activities. The next chapter describes the

evaluation experiment setup, and its results.

3.4.1 Requirements Analysis

 Our main goal was to develop a new, user-friendly and easy-to-use, standalone tool

which supports (1) visualization of feature models, (2) provides a configuration editor and (3)

enables the persistence of FMs. The new tool would provide an integrated modeling environment

within the FAMILIAR framework without requiring use of any other IDE (i.e., Eclipse) or

plugins. In addition, the tool would still expose all of the original expressiveness,

de/composition, reasoning, editing, scripting, interoperability and other facilities of the

FAMILIAR language. The complete list of all formal requirements can be reviewed in Appendix

A. The following paragraph briefly outlines the most important features of the tool:

 FM visualization: Feature models are presented in their basic, propositional form

(FODA-Like). The tool supports visual operations such as expanding/collapsing,

zooming in/out, zooming to fit, and panning of feature models. In addition, the tool

supports fast rendering of even relatively large FMs with 1000+ features, groups and/or

constraints.

 Configuration Editor: The tool supports creating and editing configurations of feature

models. The editing operation enables a user to visually select or deselect features of an

FM. The tool checks for a validity of the configuration on-the-fly. In other words,

features that are currently selected or deselected represent one valid configuration of an

FM. A valid configuration of an FM represents a product in a product line.

 FM persistence: Feature models can be saved to an XML file, and loaded from the same

file format. This file format is proprietary of the FAMILIAR Tool. In addition, feature

26

models created with the FAMILIAR Tool can be easily interchanged with several other

notations with tool’s import and export operations.

 Interpreter: The tool embeds the text-based console that can interactively execute

FAMILIAR operations and/or scripts. All commands, regardless of their input mode (i.e.,

visual or textual) are directed to the same FAMILIAR environment. This provides

complete consistency and integrity of loaded FMs during modeling sessions.

3.4.2 Design Considerations

 This section presents our two approaches to designing and implementing the FAMILIAR

Tool.

3.4.2.1 The MDD Approach

The main focus of MDD approach is to create a model, as a first class development

artifact of software and then transform it to produce the source code. The basic idea, as it was

described before, it to gradually evolve this abstract model into the final product through a

process of incremental refinement, without requiring a change in used methodology or

development platform. The advantage of this approach should be self-evident since there are no

risk-laden semantic gaps to overcome when transferring a design into production.

Before we began working on the tool, we developed the text-to-model framework (Xtext)

that mapped a FAMILIAR’s FM textual notation to its abstract syntax model. This was defined

by EMF’s Ecore meta model, and it represented the FAMILIAR’s core model. Since FAMILIAR

itself was built on the notion of MDD paradigm, it seemed natural to adopt the MDD approach

where we would start with the existing FAMILIAR’s Ecore model and then use Eclipse’s GMF

to transform it to a fully functional graphical editor.

27

This approach appeared like a good starting step for a number of reasons. Firstly, we

already had the Ecore model that we could reuse to initiate the GMF workflow. Secondly, we felt

this approach might spare us from the hassle of dealing with the implementation details required

to build the editor. This approach would not only boost our productivity but also reduce the

accidental complexities that would otherwise be introduced with the traditional development

approach. Another benefit would be manifested in a reduced total development time. Our initial

estimate was that it would take anywhere from 3 to 4 months for one seasoned engineer to

design, implement and test the editor with Eclipse/Java development platform. On the other

hand, GMF appeared to be capable of speeding up this whole operation by three or fourfold,

even for the same person, who was not previously accustomed to the GMF tooling. Thirdly, the

advantage of the MDD approach with GMF is that it uses de-facto standard platform for the

construction of the models which supports good interoperability environment. Finally, we

wanted to assess the current state-of-the-art of MDD tools on the real world project, and to be

able to compare the outcomes of adopting the traditional development vs. MDD approach on the

same software project.

As it turned out, this approach did not work well for our particular case. After three

weeks of numerous trials, we did manage to transform the initial Ecore model to the complete

editor at the end. However, its functionality was extremely limited, both with respect to feature

set and performance. This attempt revealed several difficulties when solving the problem of

transforming models to code. Firstly, we had the problem of complexity. Each subsequent

GMF’s phase represents a model with a different (mostly reduced) level of abstraction. Since the

GMF workflow requires several models to be produced along the way, until the code gets

generated, this increases complex interrelationships among the models making the overall

28

artifact harder to efficiently produce. Secondly, we found that GMF’s model transformation

process required lots of hand crafted inputs. Combined with lack of documentation and wider

community support, our process quickly resulted in a loosely guided and error-prone effort.

3.4.2.2 Second Approach: Traditional software development

Our second approach was simply to use the traditional software development. We

followed two core guiding goals when designing the FAMILIAR Tool:

 Goal #1: Model visualization - Improve cognitive effectiveness for users to enable

more effective modeling.

 Goal #2: Model mapping - Achieve a non-ambiguous mapping among three main

internal model representations. This implies that model elements of the textual

(source) model had to be entirely mapped to model elements of the graphical (target)

model without losing their semantic meaning. In addition, the graphical model is

serialized to the data storage model.

3.4.3 Implementation Details

 Most of the design and development work was completed within four months. The

following section provides some of the implementation features.

3.4.3.1 Visualization of Feature Models

 We realized that the choice of a visualization toolkit should be made early in our design

process since this decision imposes not only visualization techniques but also a data structure to

work with. Since our development platform was Eclipse with Java legacy code base, we

considered only the visualization kits available on Java platform such are Zest, JUNG, Prefuse,

Protovis, SWT, and GEF to name a few. Our design choice was to use the Prefuse Visualization

29

toolkit. It is an interactive graphical open source library designed to support the development of

interactive visualizations. The architecture of Prefuse utilizes the Visualization Pipeline, which

decomposes design into a piped process of, firstly, representing abstract data, secondly, mapping

data into intermediate, visualizable form, and then finally using these visual constructs to provide

interactive views. This improves scalability and representational flexibility. In addition, this

separation of concerns provides a degree of flexibility unmatched by existing toolkits, supporting

multiple views, semantic zooming, data and visual transformations, and fine grained

customizations [30].

 Figure 3c below shows the main window of FAMILIAR Tool.

Figure 3c: FAMILIAR Tool - Screen snapshot of main window.

 The main window of FAMILIAR Tool has two sections: Visual (upper section) and

embedded console (bottom section). FMs that are displayed in visual section are read from and

written directly to the FAMILIAR environment. Similarly, textual commands that are issued

30

either interactively through the embedded console or by running the script, are written to the

same FAMILIAR environment. This way, any model update, no matter how it is done (i.e.,

visually, interactively through command console or through script execution), always keep all of

the FMs in a fully synchronized and consistent state. The environment is initialized when the tool

is booted, and it is released when the tool is closed.

 A user can choose to create a new feature model, or load an existing one. This can be

done in several ways. For example, a user can create a new feature model from the scratch. This

can be either done interactively with pop-up menu commands, or embedded text commands, or

by running a script, or by importing an FM from other SPL tools and/or notations, or by loading

a (saved) FM from previous FAMILIAR sessions, or by combining any of above. A feature

model is displayed and accessible under a single tab, that is, each FM gets a visualization of its

own, and can be modeled independently from other loaded FMs. Executing a script that, among

other things, creates several feature models, would create several tabs, each of them containing

pre-loaded feature model. Closing a tab would not remove its associated feature model from the

environment. For that purpose, a user can run “Console -> Unload FMs”.

 We also integrated the existing FAMILIAR’s commands that were used for visualizing

feature models through the FeatureIDE plugin (i.e. ‘gdisplay’ command). This was simply

achieved through the observer pattern. For example, once the FAMILIAR interpreter detects

‘gdisplay’ statement, it would create an observer handler as well as an observable event source

with feature model variable name. Then, it would subscribe the observer handler event to the

event source. Finally, this observable event would be handled on GUI level by loading an

appropriate feature model variable that corresponds to the given feature model variable name.

31

3.4.3.2 Persistence of Feature Models

 Unlike the text-based tool, the new tool enables feature model persistence. The

persistence of feature models is achieved through a serialization of a feature model, from its

visual representation to its persistent storage with an XML-like structure. This, in turn, leads to a

more complex design since it imposes a constraint that requires maintaining one-to-one mapping

among three internal FM model representations: (1) FM environment variable with its associated

AST model of a feature diagram, (2) visual FM object with its associated Prefuse interactive

view model, and (3) serialized FM to XML storage with its associated in-memory representation.

3.4.3.3 Integration with command line interpreter

 Integration with the command line interpreter was simply achieved by forwarding down

the system input stream (text-based commands) from the embedded console (GUI control) to the

FAMILIAR framework, and by redirecting the system output streams back to the same GUI

control. This way, the embedded FAMILIAR console which is part of tool (bottom section of the

main window shown in Figure 3c) behaves the same way, syntactically and semantically, as the

old standalone text-based tool. In addition, any action that is committed directly through the

embedded console control is automatically propagated up to visualized objects.

3.4.3.4 Configuration Editor

 The Configuration Editor is implemented as an interactive Java tree control that

represents an FM with its set of selected and/or deselected features. A feature is allowed to be

selected or deselected only when its FM’s propositional formula is satisfiable.

3.4.3.5 Basic Code Metrics

 The basic statistics we present here is given for the work committed on the package level

only. Any modifications performed on FAMILIAR’s API or framework level (i.e., use of the

32

observer pattern to support ‘gdisplay’ command or simply refactor functionality of the

framework to better handle requests from GUI level) is not included here:

 Number of files: 30

 Number of classes: 78

 Number of images: 7

 Lines of code (including comments, no blank lines): ~4,020

 Lines of code (including comments, with blank lines): ~4,560

 Total project size (.java files only): 160KB

3.5 Usage Example

 In this section, we demonstrate the core capabilities of FAMILIAR Tool by using a

simple example, a Digital Calculator SPL. The example scenario is given below.

 Small software company ABC Inc. develops and sells digital calculator software products

offering three basic applications: Standard Digital Calculator, Scientific Digital Calculator, and

Programmer Digital Calculator. Recently, ABC Inc. learned more about some of the potential

benefits of using software product lines so their management decided to enhance its software

production process by adopting a SPL engineering practice. After doing research on SPL tools,

they choose FAMILIAR Tool to help them with this transition. The FAMILIAR Tool was their

top choice since it appeared to have several decent features they were ideally looking for in a

visual SPL tool: (1) Built-in FM composition/decomposition operators, (2) SPL configuration

editor, (3) FM editing and reasoning capabilities, (4) interoperability with other SPL tools and

FODA-like notations, (5) scripting and (6) integrated standalone SPL authoring tool, easy to use

and learn.

33

 The modeling task is assigned to a senior software engineer in their company who is

familiar with the architecture of Digital Calculator’s software product line. The SPL modeler

begins using the FAMILIAR Tool. First thing that he notices after booting the tool is that it

preloads an example of a generic Laptop feature model. He appreciates this template since it

allows him to get started quickly without prior exposure to the tool itself. He performs several

basic editing and reasoning ad-hoc operations trying to become more familiar with tool’s core

features (Figure 3c).

 The modeler then proceeds by creating three new feature models for their existing Digital

Calculator applications (product line). He uses context-sensitive pop-up menus to build up new

feature models. While doing this work he is careful to use the same root name for all three

feature models so that they can easily be merged and then configured in subsequent steps. By

leveraging his knowledge of the architecture of Digital Calculator applications, he first creates an

FM of standard calculator. Each node and feature group in his model represents the real

subsystem, class or module of their software. The modeler then creates two remaining FMs while

being careful to use the same names for all features that share the same code base.

Figure 3d: Feature model of Standard Calculator

34

Figure 3e: Feature model of Scientific Calculator

Figure 3f: Feature model of Programmer Calculator

 The modeler then decides to save his work so that it can easily be modified and revised in

future modeling sessions. He proceeds by saving each feature model to a file “File -> Save

FAMILIAR FM As … (*.treeml)”. However, he realizes that he can further improve productivity

and consistency of his modeling work by automating the tasks that he had already executed so

far. This reproducibility might come handy particularly in cases when more modeling revisions

might be required to further fine tune or even revise the existing feature models. Rather than

manually reloading every FM individually, the reproducible semi-automated scenario can be

easily achieved with a FAMILIAR script that would use text-based syntax of each FM to

construct (and load) new FM objects. To create this script, the modeler first needs to get a FM

text-based description from its visual notation. For each FM, he navigates to “Reasoning ->

Textual Syntax”, and then copies the resulting string to a file that he named “Calc.fml”. While

35

doing this he also makes sure to assign a unique feature model variable name (i.e. standardCalc)

to each generated FM textual definition:

standardCalc = FM (Calculator : Operations UILayout ;

 UILayout : SimpleLayout ;

 Operations : (Arithmetic|Roots)+ ;)

sciCalc = FM (Calculator : Operations UILayout ;

 UILayout : SciLayout ;

 Operations :

(Exponents|NumericalBaseConversions|Logarithms|Arithmetic|Trigonometry|Roots)

+ ;

 Trigonometry : (Gradians|Radians|Degrees) ;

 (Trigonometry -> SciLayout) ; (Exponents -> SciLayout) ;

(NumericalBaseConversions -> SciLayout) ; (Logarithms -> SciLayout) ;)

progCalc = FM (Calculator : Operations NumeralSystem IntSize UILayout ;

 UILayout : ProgLayout ;IntSize : (Word|Byte|Qword|DWord)

;NumeralSystem : (Oct|Hex|Bin|Dec) ;

 Operations : (BooleanLogic|Arithmetic|Roots)+ ;

 (IntSize -> ProgLayout) ; (BooleanLogic -> ProgLayout) ; (NumeralSystem

-> ProgLayout) ;)

Figure 3g: FAMILIAR script which creates three Calculator feature models

 Running this script at any given time, “Script -> Run FAMILIAR Script (*.fml)”, will

simply construct, load and then visualize all three feature models in a current FAMILIAR

environment.

36

The next step is to generate a final model, a Digital Calculator SPL, by composing three

existing FMs (i.e., using the ‘merge’ operator):

calcSPL = merge sunion { standardCalc sciCalc progCalc }

 Figure 3h: Using ‘merge’ operator to combine several FM into the single one

The next figure shows the resulting Digital Calculator SPL:

 Figure 3i: Digital Calculator SPL of the ABC Inc. company

 The modeler then decides to verify validity of this newly composed FM by running some

of the formal reasoning operators (i.e., check for valid configurations, dead features, etc.).

 Finally, the modeler decides to create a configuration of Digital Calculator SPL. This is

simply done by right click on the root node and then selecting ‘New Configuration’. Figure 3j

shows the outcome:

37

 Figure 3j: Configuration of Digital Calculator SPL

The modeler can now start analyzing and configuring the Digital Calculator SPL. For

example, he wants to find an answer to a question: “What work would be required to produce a

new product called Statistics Digital Calculator”? Or “How we can refactor our existing

architecture or design of our product line to speed up delivery of new releases without giving up

on quality and feature set”?

38

4 Evaluation of the FAMILIAR Tool

 In this chapter, we describe the evaluation of our new FAMILIAR Tool [40, 21]. In

particular, we present specific features of the small scale lab experiment we performed in order

to identify differences when using our newly developed, GUI-based, FAMILIAR Tool (with

visualized feature models) vs. legacy standalone console (with text-based feature models) by

measuring the usability aspects. Furthermore, we outline our investigative approach used to plan,

execute, and analyze the evaluation data. Finally, we report on immediate results and interpret

them according to the MUSIC methodology [24].

4.1 Study Methodology

 We want to investigate the usability of our new modeling tool. The challenge arises from

the fact that usability does not exist in any absolute sense. Rather, it would make sense only to

define it with reference to particular contexts. ISO 9241 [25] defines usability in terms of the

quality of use as the “effectiveness, efficiency and satisfaction with which specified users

achieve specified goals in particular environments”. Bevan [24] uses this standard to describe a

method called MUSiC (Metrics for Usability Standards in Computing) for specifying the context

of use when measuring user effectiveness, efficiency, and satisfaction. The context need to

define who the intended users of the system are, the tasks those users will perform with it, and

the characteristics of the organizational or social environment in which it will be used. This

method seems particularly suitable for our evaluation since (1) it focuses on usability attributes

that we are interested in measuring, and (2) it relies on ISO 9241 which appears to be widely

adopted standard industry wide.

 Evaluating the FAMILIAR Tool would be possible to perform in such a way that

provides us with a high level of control over the variables that can affect the study outcome.

39

Similarly, by running the tool in order to accomplish and measure certain scenarios it would be

possible to achieve a high level of replication in an environment where both the difficulty of

control and the cost of replication are fairly low. As such, we propose using a formal experiment

as our primary type of study.

4.1.1 Goal, Research Questions, and Context

We formulate the goal of the FAMILIAR Tool evaluation using the Goal-Question

Metric (GQM) template [17] as follows:

 Evaluate the FAMILIAR Tool to better understand the impact on usability aspects of

implementing feature model visualizations on the FAMILIAR language from the

viewpoint of modeling practitioners.

Based on this goal, we focus on the following research questions:

 RQ1: Does visualization of feature models help modelers to author FMs of a better

quality?

 RQ2: Does visualization of feature models help modelers to manage/analyze feature

models with better efficiency?

 RQ3: Does visualization of feature models help modelers to manage/analyze feature

models with better effectiveness?

The context selection represented situations where researchers and SPL/MDD

practitioners perform feature modeling, in particular, working on creating new FMs. The

controlled experiment will be conducted within two groups of graduate Computer Science

students with a total of 17 participants from two countries, United States and France. Our first

group involves 3 graduate students that are under Dr. France’s supervision at the Colorado State

University (CSU). Our second group involves 14 Master and PhD students that took a graduate

40

SPL course taught by Dr. Philippe Collet, at the University of Nice Sophia Antipolis (UNSA),

France. We decided that UNSA participants, since it is a larger group, form a treatment group by

working only with the new FAMILIAR Tool (Visual). On the other hand, CSU participants will

form a control group by working only with the legacy standalone tool (Text-based).

4.1.2 Hypothesis Formulation

Presenting models in a visualized form helps the user grasp the information landscape

more quickly and intuitively than presenting models in textual form.

 Hypothesis: Using the FAMILIAR Tool with visualized feature models yields higher FM

quality, user effectiveness, and efficiency than using the same tool with text only mode,

when creating new FMs.

4.1.3 Experiment Design

 Participants will be asked to go through several stages before they run the experiment.

These stages will involve the following steps: (1) a basic training on SPL, Feature Modeling, and

the FAMILIAR language, (2) a preparation for the experiment, and (3) an experiment session.

Firstly, we will provide minimal overview of SPL, Feature Modeling, and brief

introduction to the FAMILIAR language and its environment. The training provided will be at

the very basic level, and we expect that students do not spend more than one hour before starting

the experiment sessions. Secondly, preparation for the experiment will, among the other things,

involve getting the FAMILIAR environment properly configured. Finally, the experiment

session should last no longer than 55 minutes, and it will consist of two sub-tasks (3.1) analyzing

the online configurator for Audi cars, and then (3.2) modeling it by creating a new FM file for

the Audi configurator. Students will be asked to work at their own pace, independently of one

another. They will also be required to record all of their interactions with the tools during the

41

experiment session. By doing this, we can uniformly measure number of modeling tasks that

users successfully completed, the accuracy with which users completed tasks (i.e., some

quantification of errors), the duration of tasks, users’ learning of the interface, and finally, asses

quality of FMs created, and calculate user efficiency and effectiveness.

4.1.4 Experiment Objects and Variables

In our experiment, we have one independent variable and three target variables. Since V

group is compared to T group regarding its FM Quality as well as user effectiveness and

efficiency, choice of the used tool could be called the independent variable and FM quality,

user effectiveness, and user efficiency are all the dependent variables. The treatment object is

the group that uses new FAMILIAR Tool (GUI) and works with visualized FMs. The control

object is the group that uses a legacy FAMILIAR console and works with textual FMs.

Table 4a: Experiment variables.

Independent (State) Variable Dependent (Response\Target)
Variables

Scale of
Measurement

 Used Tool
Group V – Works with visualized
FMs.
Group T – Works with textual
FMs.

 FM Quality Ordinal

 User Effectiveness Ordinal

 User Efficiency Ordinal

4.1.4.1 Dependent Variable - FM Quality

According to the MUSiC method, a quality is a measure of the degree to which the output

achieves the task goals. For the purpose of this experiment, the quality is expressed in terms of a

final FM quality. Table 4b breaks down the criteria that we are going to use to assess the quality

of an FM:

42

Table 4b: Experiment variables.

FM Quality Assigned
Weight

Description

Poor quality 0.2 FM cannot be properly parsed by the tool (i.e.,
model contains an inconsistent and/or an invalid
element(s), or simply it is not syntactically well-
formed).

Satisfactory quality 0.4 FM is properly loaded by the tool but lacks
majority of features and/or groups.

Good quality 0.6 FM is mostly complete (i.e., includes various Audi
model lines) and has neither inconsistencies nor
invalid elements.

Very good quality 0.8 FM includes comprehensive features set but might
fail to accurately represent certain group
dependencies (i.e., used AND-group when XOR-
group would be more appropriate).

Excellent quality 1.0 FM includes comprehensive and diverse features
set, and provides solid foundation for further
breaking down the model as an SPL artifact.
Different feature groups, dependencies and
constraints were used in terms of both quantity and
quality. (i.e., this FM, if offered with an online
configurator, has enough details to allow a
customer to pick up a model of a custom Audi car
tailored for her needs).

FM quality is expressed as a numerical value between 0.2 and 1 where 0.2 describes an

FM of the lowest quality, and 1 stands for an FM of the highest quality. The FM Quality uses the

ordinal scale of measurement.

4.1.4.2 Dependent Variable - User Effectiveness

To assess user effectiveness, we’ll also need to define a quantity. Quantity is basically a

measure of the amount of a task completed by a user. It is defined as the proportion of the task

goals represented in the output of the task. For the purpose of this experiment, the quantity

reflects a measure of FM completeness in terms of a number of features (#F), number of

43

constraints (#C), valid configurations (#VC) and FM depth (#D). Each of those four categories

contributes 25% of a total quantity value. Table 4c shows how we can calculate quantity as a

measure of FM completeness:

Table 4c: Experiment variables.

FM Completeness
Category

Assigned
Weight

Description

Number of features 0.25
0.5
0.75
1

20-29 features
30-39 features
40-49 features
50 or more

Number of constraints 0.25
0.5
0.75
1

1 constraint
2-3 constraints
3-4 constrains
5 or more

Valid configurations 0.25
0.5
0.75
1

Up to 100 configurations or above 25k
Up to 4999 configurations
Up to 9999 configurations
Between 10k and 25k

FM depth 0.25
0.5
0.75
1

Depth of 1
Depth of 2
Depth of 3
Depth of 4 or more

Quantity is then simply calculated as (#F + #C + #VC + #D) / 4. It is expressed as a

number between 1 and 100 where 1 represents the least complete FM, and 100 represents the

most complete FM. Note that the quantity measure does not (and it should not) reflect the quality

of an FM. Finally, the user effectiveness is given as a percentage number, and is calculated with

the following formula:

User Effectiveness = (FM Quantity x FM Quality) %

44

4.1.4.3 Dependent Variable - User Efficiency

Note that the user effectiveness does not take into account a time required to complete a

given task. On the other hand, the user efficiency calculation does include the time component.

The user efficiency is calculated with the following formula:

User Efficiency = User Effectiveness / Scenario Time

Therefore, the user efficiency measures the user effectiveness in terms of time it takes to

complete a task. The higher this number is the user is more efficient relative to other users. Note

that both user effectiveness as well as user efficiency also use the ordinal scale of measurement.

4.1.5 Scenarios

The complete list of evaluation tasks that were given to the participants is presented in

Appendix B. Since not all students completed all of the steps, we’ll be considering only Task #1

which asks participant to create a partial feature model supporting the whole structure of the

AUDI configurator.

4.2 Experimental Results

We used the Small Stata 12.1 package to perform a statistical analysis and chart all of the

graphs shown in this section. Table 4d shows the main experiment data:

45

Table 4d: Summarized experiment results.

Group	 Time		
(min)	

#	of	
user	
errors	

#	of	
features	
created	

FM	
quality	

User	
Effectiveness	

User	
Efficiency

V	 24.8 10 38 0.8 55% 0.53
V	 11.4 1 23 0.4 23% 0.48
V	 18.6 3 44 0.4 18% 0.23
V	 16.2 3 37 0.4 13% 0.19
V	 45.2 42 48 1.0 75% 0.40
V	 25.3 12 39 0.4 18% 0.17
V	 20.2 8 26 0.4 15% 0.18
V	 29.0 12 71 0.6 38% 0.31
V	 12.4 4 37 0.4 23% 0.44
V	 19.8 4 54 0.6 34% 0.41
V	 13.6 0 46 0.6 30% 0.53
V	 6.8 7 27 0.4 10% 0.36
V	 5.8 3 27 0.4 18% 0.72
T	 30.0 1 51 0.2 15% 0.12
T	 9.9 5 17 0.4 15% 0.36
T	 16.4 25 40 0.2 13% 0.18

The last three columns (dependent variables) are determined by the study methodology as

it was described in section 4.1.4.

Let’s first visualize the data. Figure 4a shows the box plots of all three dependent variables

FM Quality, Effectiveness and Efficiency, grouped by the tool used (T and V). Looking at the

box plots for the two groups we can observe that T-group has no outliers, and V-group has 2.

The medians are indicated by the red diamonds. Note that the median values for all dependent

variables are higher for V-group than T-group. Each of the box plots illustrates a different

skewness pattern. It appears that the Effectiveness in particular exhibit the non-symmetric

distribution which might imply non-normality data.

46

 Figure 4a: Box plots of dependent variables, by group

In addition to the graph shown above, Table 4e shows the calculated median values for all

dependent variables by group:

Table 4e: Median values of dependent variables, by group.

Group	 FM	
quality	

User	
Effectiveness

User	
Efficiency	

V	 0.4 23% 0.40
T	 0.2 15% 0.18

We are not concerned with averages since they do not make sense for ordinal data. Based

on our small sample data, it is clear that participants who used the visualized SPL tool did better

47

than participants who used the text-based tool in terms of all three categories: FM quality, user

effectiveness and user efficiency. For example, 2 out of 3 participants from T-group failed to

produce a valid FM, whereas all of 13 participants from V-group produced valid FMs that could

be independently verified after the experiment was completed. However, we need to determine

whether this difference in medians between two groups is statistically significant before we can

come up with the experiment conclusions.

Figure 4b shows correlation between a number of features in an FM and its impact on an

FM quality. It appears that, for the text-based tool, more features in a model tend to reduce an

overall quality of an FM. This might make sense since the larger textual models require

increased cognitive efforts on the user side. However, the visual tool demonstrates the opposite

tendency: More features in an FM in general lead to a slight linear increase of a FM quality.

48

 Figure 4b: Scatter plot that correlates a number of features in an FM and its

impact on a FM quality

 Next question that we need to answer is whether the data come from normal

distributions? Unfortunately, our samples are very small. We are going to use the Shapiro-Wilk

W test for normal data with a P-value of 0.05 as a cutoff:

Table 4f: Shapiro-Wilk W test for normal data.

variable obs W V z Prob > z
fmquality 16 0.93052 1.408 0.679 0.24841
effectiveness 16 0.77929 4.472 2.975 0.00146
efficiency 16 0.95110 0.991 -0.018 0.50731

The lower the P-value is, the smaller the chance that the sample data comes from a normal

distribution. Table 4f shows that only the P-value of Effectiveness is lower than 0.05, which

means that its sample deviates from normality.

Our experimental design uses one independent variable with two levels (independent

groups V and T). In addition, the scale of measurement for all three dependent variables is

ordinal with mixed picture when it comes to distribution of the data. Because of all of this, we

decided to use the Mann-Whitney Rank Sum Test (also known as Wilcoxon Rank Sum Test) for

the statistical analysis of the experimental results. It is a non-parametric test for comparing two

groups, and as such, it implies testing analysis that does not assume anything about data

normality. Essentially, the Rank Sum Test attempts to provide a statistical answer to a question

of whether the two population distributions are different. Another advantage of this test is that is

not sensitive to outliers. This is important consideration for the experiment analysis, since it

49

relies on a very small population sample (13 from V-group and 3 from T-group, 16 participants

in total) with 2 outliers.

Tables 4g-4i show the outcome of the Mann-Whitney Rank Sum Tests.

Table 4g: Two-sample rank-sum test for the FM quality variable.

method obs rank sum expected unadjusted variance 55.25
t 3 10 25.5 adjustment for ties -10.16
v 13 126 110.5 adjusted variance 45.09
combined 16 136 136

Ho: fmquality(method=t) = fmquality(method=v)
z = -2.308
Prob > z = 0.0210
P{fmquality(method=t) > fmquality(method=v)} = 0.103

Table 4h: Two-sample rank-sum test for the user effectiveness variable.

method obs rank sum expected unadjusted variance 55.25
t 3 12.5 25.5 adjustment for ties - 0.81
v 13 123.5 110.5 adjusted variance 54.44
combined 16 136 136

Ho: effectiveness(method=t) = effectiveness(method=v)
z = -1.762
Prob > z = 0.0781
P{effectiveness(method=t) > effectiveness(method=v)} = 0.167

Table 4i: Two-sample rank-sum test for the user efficiency variable.

method obs rank sum expected unadjusted variance 55.25
t 3 13 25.5 adjustment for ties - 0.24
v 13 123 110.5 adjusted variance 55.01
combined 16 136 136

Ho: efficiency(method=t) = efficiency(method=v)
z = -1.685
Prob > z = 0.0919

50

P{efficiency(method=t) > efficiency(method=v)} = 0.179

 The rank sum tests the null hypothesis that two independent samples are from

populations with the same distribution. With only 16 observations, the departure would have to

be substantial to reject the uniform null hypothesis. We used the "porder" option of the rank sum

command to calculate this departure, that is, the probability that a random draw from the first

sample (T group) is larger than a random draw from the second sample (V group). The

probabilities for FM Quality, Effectiveness and Efficiency were 10.3%, 16.7% and 17.9%

respectively. In other words, the rank sum tests for all three samples rejected the null hypothesis

meaning that there is significant statistical difference between the group that used text-based tool

and the group that used visual SPL tool.

 In this experiment, we only evaluated impact of the new tool on novice SPL practitioners

when working with relatively small FMs. The experiment results showed several benefits after

enhancing the text-based language with FM visualizations. The users not only authored FM of a

higher quality but also consistently demonstrated improved productivity expressed in terms of

user effectiveness and efficiency. However, further research is required to identify whether this

outcome still holds for SPL experts working with much larger FMs.

4.3 Threats to Validity

4.3.1 External Validity

Our evaluation is based on the assumption that we were measuring effects of working

with representative FMs that model a real-world artifact. However, the models created as a part

of this experiment came from the academic environment, and as such, there is no guarantee that

they share characteristics with industrial FMs. Majority of practical FMs have a couple of

51

hundreds features at most. The number of features we saw in our evaluation FMs ranged from

20s to 70s. One of the largest documented FM in the feature model of a Linux kernel [28] with

over 5500 features, and thousands of constraints. While the FM of this scale would clearly pose a

challenge to the FAMILIAR Tool in its current state, we will continue to work on improving its

performance in the future. Another important aspect to state here is that the experiment

population consisted of novice participants exclusively. All of the participants were graduate CS

students that had no or very little exposure to SPL and feature modeling prior to this experiment.

Since this experiment was conducted on two geographic locations, and we had limited

resources with time constraints, we could not afford to ask both groups to evaluate both tools.

Originally, we wanted to use the blocking technique as a part of our experimental design and

rotate the groups, asking each group to replicate the experiment with another tool. However, this

turned out to be time consuming practice, and we had to adopt more feasible, smaller-scale,

option. As a consequence, the Group V, which happen to have somewhat better exposure to SPL

and Feature Modeling, served as our treatment group working with visualized FMs. This created

the specific situation of the experiment that might limit its generalizability. In order to mitigate

this risk, we made sure to provide the same introductory training to all participants.

4.3.2 Internal Validity

When considering the experimental independent variable groups, we used two tools from

the same FAMILIAR environment. This helped us to mitigate the tool selection bias risk when

evaluating the effect of presenting FMs (e.g., visual vs. textual form). Similarly, all participants

were alike (e.g., grad CS students, novice SPL practitioners) with regard to the independent

variable.

52

Repeatedly attempting to perform FM creation during the experiment session, would

eventually teach participants to create better FMs in less time. We imposed the restriction of

allowing only one session with the FAMILIAR Tool (with no allowed repetitions), regardless of

its outcome.

4.3.3 Construct Validity

The most significant threat for the construct validity of the experiment might be due to

the fact that all of our dependent variables use an ordinal scale. Does the experimental data

provide accurate measurements of what it is intended to measure? According to [39], there are

several notable threats caused by the ordinal scale measurement. First, the ordinal labels could be

inconsistently interpreted among different users. Second, users might treat ordinal scales as if

they had the properties of ratio scales and hence could provide unreliable analysis. Third, the

distance between the different labels of an ordinal scale might not present clear comparison

between the significance of various ordinal labels. Taken together, these problems could have

impacted the construct validity of the FAMILIAR Tool evaluation.

In order to mitigate this threat we used the statistics methods that do respect specifics of

ordinal data. Our analysis therefore focused on summarizing the central tendencies and statistical

significances rather than trying to come up with exact metrics.

53

5 Related Work

 There are at least few dozen SPL feature modeling tools available today and most of

them came from the academic (research) environment during the last decade. Feature modeling

tools can nowadays be classified as either graphical or textual, depending on their supported

representation of FM’s Feature Diagrams. Graphical SPL tools that use FODA [16, 23] notation

are most widely used. FeatureIDE [34] is an Eclipse plug-in that provides a comprehensive

support for feature modeling, including graphical editors for creating, configuring or reasoning

about feature models. In addition, FeatureIDE facilitates the integration with other reasoning

tools since it offers a Java API for working with FMs. SPLOT [35] is a web based SPL tool with

an interactive FM editor, an automated analysis, a configuration editor with automatic decision

propagation and repository of FMs.

 However, there are several important differences between those tools and the FAMILIAR

Tool. First, to the best of our knowledge, FAMILIAR is the first FM tool with native support for

working with multiple feature models. Its composition and decomposition operators can be used

to synthetize, refactor, update, compare or reason about FMs. In addition, its multi FM display

improves the user understanding of FMs and reduces accidental complexities during the iterative

modeling process. Secondly, the FAMILIAR Tool is designed as a standalone rich desktop

application. Even though it comes with built-in extensibility and interoperability features, it can

function independently of other SPL environments or IDEs. Finally, as far as we know it, this is

the first work which completely describes and evaluates the conversion from the text to graphical

tooling. Having essentially the same underlying environment for both FAMILIAR tools allows

us to observe the potential benefits of FM visualization in isolation, without interfering

differences that would likely arise from using various tools.

54

6 Conclusions and Future Work

The idea behind SPLE is to focus on features that are common and that vary from one

product to the other, so as to efficiently produce family of related products by facilitating reuse

and adaptation. SPL tools are important part of this discipline as they help automating many

operations that could otherwise, if done manually, introduce accidental complexity. As a

consequence, this could potentially seriously hinder the quality and efficiency modeling of large

scale systems.

Tools improvement continues to represent one of the most important factors critical for

the success of a SPL and DSML evolution [7]. In this thesis, our work combines two basic

approaches: application-based, which involves developing a new SPL tool for our existing

FAMILIAR framework, and experimental, which involves designing a formal experiment on a

small-scale to evaluate the usability of this tool and analyzing the experimental data collected.

One of the main goals of this thesis was to enhance the text-based FAMILIAR framework by

adding graphical support to it. Additional enhancements included supporting FAMILIAR’s

integrated modeling environment by combining together Configuration Editor, Console

interpreter and FM Editor as well as supporting persistence of FMs by implementing

FAMILIAR’s proprietary file storage given in an XML-based schema. Our motivation was to

provide a common environment for modeling practitioners so that they can focus on feature

modeling with FODA-like notations without giving up on the interoperability of other FM tools.

As a result of the tool enhancement, we expect to observe several benefits in a future

practice. Firstly, in terms of learnability, the learning curve of the FAMILIAR Tool [40, 21] is

expected to be favorable for SPL practitioners since new graphical support, when combined

together with the restricted set of well-defined operators, provides simple and intuitive learning

55

concepts. Secondly, in terms of expressiveness, the FAMILIAR Tool completely preserves all of

the domain-specific advantages of a DSML. In addition, its existing scripting support adds to this

expressiveness. Thirdly, in terms of reusability, the existing modular mechanisms and

parameterized scripts, when combined together with FM persistence support, offer modeling

solutions that should be readily available for reuse. Fourthly, in terms of interoperability,

FAMILIAR’s new .treeml file format seamlessly integrates with all of the FM notifications of

other SPL tools that FAMILIAR already supports. Finally, in terms of usability, our focus was

on user efficiency, effectiveness as well as FM quality. We conducted a small-scale experiment

in which we evaluated the impact of model visualizations on the usability in the context of the

FAMILIAR environment. For this purpose, we formed two experimental groups from graduate

CS students, a treatment group (V-group) that only run new FAMILIAR’s visual tool, as well as

a control group (T-group) that only run old FAMILIAR’s text-based standalone console. Our

conclusion was that the new FAMILIAR Tool clearly benefited from FM visualization and

helped SPL practitioners to improve their efficiency, effectiveness as well as a quality of FMs

they worked with. This was the main goal of the thesis.

In this thesis, after the introduction given in Chapter 1, we introduced basic terms about

software product lines, and feature modeling. Chapter 2 provided a background on FM semantics

as well as FM manipulations particularly focusing on FAMILIAR’s current composition

operators. Chapter 3 presented the high-level architecture of the FAMILIAR language. Along

this, we also analyzed core aspects of the FAMILIAR framework by exploring different paths in

order to enhance it. The overall goal was to take the FAMILIAR platform to whole new level

and offer it as a rich and integrated visualized modeling environment. The result of this effort

was the newly developed tool. While in the one hand, visual FMs containing a number of

56

diagrams in various views and at different levels of abstraction are more suitable to the

representation and understanding of users’ requirements involving various stakeholders, on the

other hand, FM textual specifications are more suitable to be used by experienced practitioners

for modeling of the more complex workflows or systems. The FAMILIAR Tool helped bridging

the gap between those two concepts. We concluded Chapter 3 with sections on two design

approaches that we attempted, implementation details as well as use case example of the new

tool. Chapter 4 completely described the experiment: its goals, design, hypothesis, methodology,

threats to validity, as well as the experimental results with data, statistical analysis and finally,

the research conclusion. We needed an in-depth, quantitative evaluation to formally measure the

impact of the new tool on practitioner’s productivity. However, due to limited people and time

resources our experiment was conducted on a rather small population sample.

Future work should be geared towards further improving the FAMILIAR Tool by

refining and implementing advanced functional requirements specified in Appendix A as well as

evaluating its usability and other relevant metrics in more depth. Another important area where

we can further improve FAMILIAR is to further extend its plain FM formalism and take it to the

whole new level, that is, support generating configurations or code from FMs. In addition to this,

we should attempt to refactor FAMILIAR to make it a generic tool capable of supporting not

only software products but families of domain-specific languages. Finally, performing a larger

experiment, with the blocking technique as a part of the experimental design and rotating the

groups, by asking each group to replicate the experiment with switched tool, would provide us

with more comprehensive data on finding a fine balance between visual and text notations in

SPL tools, and finding ways to further enhance the existing SPL tooling. This experiment should

not necessarily be limited to the FAMILIAR Tool.

57

REFERENCES

[1] Acher, Mathieu. “Managing Multiple Feature Models: Foundations, Language and
Applications”, PhD thesis, 2011.

[2] Northrop, Linda. "Software product lines essentials." Software Engineering Institute,
Carnegie Mel-Ion University (2008).

[3] Pine, B. Joseph. Mass customization: the new frontier in business competition. Harvard
Business Press, 1999.

[4] Acher, Mathieu, Collet, Philippe, Lahire, Philippe, and France, Robert B. "Managing
feature models with familiar: a demonstration of the language and its tool support."
Proceedings of the 5th Workshop on Variability Modeling of Software-Intensive
Systems. ACM, 2011.

[5] Acher, Mathieu, Collet, Philippe, Lahire, Philippe, and France, Robert B. "Composing
feature models." Software Language Engineering. Springer Berlin Heidelberg, 2010.
62-81.

[6] France, Robert, and Bernhard Rumpe. "Model-driven development of complex
software: A research roadmap." 2007 Future of Software Engineering. IEEE Computer
Society, 2007.

[7] Djebbi, Olfa, Camille Salinesi, and Gauthier Fanmuy. "Industry survey of product lines
management tools: Requirements, qualities and open issues." Requirements
Engineering Conference, 2007. RE'07. 15th IEEE International. IEEE, 2007.

[8] Brooks, F. P. “No silver bullet essence and accidents of software engineering.
Computer”, 20:10–19. 1987.

[9] Selic, Bran. "The pragmatics of model-driven development." IEEE software 20.5
(2003): 19-25.

[10] Czarnecki, Krzysztof, and Andrzej Wasowski. "Feature diagrams and logics: There and
back again." Software Product Line Conference, 2007. SPLC 2007. 11th International.
IEEE, 2007.

[11] Batory, Don. Feature models, grammars, and propositional formulas. Springer Berlin
Heidelberg, 2005.

[12] Eclipse-Foundation: Xtext, http://www.eclipse.org/Xtext.

[13] Fowler, Martin. Domain-specific languages. Pearson Education, 2010.

[14] Eclipse-Foundation: EMF, http://www.eclipse.org/modeling/emf.

58

[15] Acher, Mathieu, Collet, Philippe, Lahire, Philippe, and France, Robert B. "Familiar: A
domain-specific language for large scale management of feature models." Science of
Computer Programming 78.6 (2013): 657-681.

[16] Kang, Kyo C., et al. "FORM: A feature-; oriented reuse method with domain-specific
reference architectures." Annals of Software Engineering 5.1 (1998): 143-168.

[17] Wohlin, Claes, et al. Experimentation in software engineering. Springer, 2012.

[18] Ferber, A., Haag, J. and Savolainen, J: Feature Interaction and Dependencies -
Modeling Features for Re-engineering a Legacy Product Line. in Proc. 2nd Software
Product Line Conference (SPLC-2), San Diego, CA, USA, (August 19-23 2002).
Springer, Lecture Notes in Computer Science, 2002, pp. 235- 256.

[19] Van Der Storm, Tijs. Variability and component composition. Springer Berlin
Heidelberg, 2004.

[20] Johansen, Martin Fagereng, et al. "Generating better partial covering arrays by
modeling weights on sub-product lines." Model Driven Engineering Languages and
Systems. Springer Berlin Heidelberg, 2012. 269-284.

[21] FAMILIAR Project, http://familiar-project.github.com.

[22] Heidenreich, Florian, et al. "Relating Feature Models to Other Models of a Software
Product Line." Transactions on aspect-oriented software development VII. Springer
Berlin Heidelberg, 2010. 69-114.

[23] Kang, Kyo C., et al. Feature-oriented domain analysis (FODA) feasibility study. No.
CMU/SEI-90-TR-21. Carnegie-Mellon Univ Pittsburgh PA Software Engineering Inst,
1990.

[24] Bevan, Nigel. "Measuring usability as quality of use." Software Quality Journal 4.2
(1995): 115-130.

[25] ISO 9241-11. Ergonomic requirements for office work with visual display terminals
(VDTs)-Part 11: Guidance on usability, 1998.

[26] Mandl, Heinz, and Joel R. Levin, eds. Knowledge acquisition from text and pictures.
Elsevier, 1989.

[27] Winn, William. "Learning from maps and diagrams." Educational Psychology Review
3.3 (1991): 211-247.

[28] Sincero, Julio, and Wolfgang Schröder-Preikschat. "The Linux Kernel Configurator as a
Feature Modeling Tool." SPLC (2). 2008.

[29] Paivio, Allan. "Dual coding theory: Retrospect and current status." Canadian Journal of
Psychology/Revue canadienne de psychologie 45.3 (1991): 255.

59

[30] Heer, Jeffrey, Stuart K. Card, and James A. Landay. "Prefuse: a toolkit for interactive
information visualization." Proceedings of the SIGCHI conference on Human factors in
computing systems. ACM, 2005.

[31] Larkin, Jill H., and Herbert A. Simon. "Why a diagram is (sometimes) worth ten
thousand words." Cognitive science 11.1 (1987): 65-100.

[32] Britton, Carol, and Sara Jones. "The untrained eye: how languages for software
specification support understanding in untrained users." Human–Computer Interaction
14.1-2 (1999): 191-244.

[33] Thum, Thomas, Don Batory, and Christian Kastner. "Reasoning about edits to feature
models." Software Engineering, 2009. ICSE 2009. IEEE 31st International Conference
on. IEEE, 2009.

[34] Christian Kastner, Thomas Thum, Gunter Saake, Janet Feigenspan, Thomas Leich,
Fabian Wielgorz, and Sven Apel. 2009. FeatureIDE: A tool framework for feature-
oriented software development. In Proceedings of the 31st International Conference on
Software Engineering (ICSE '09). IEEE Computer Society, Washington, DC, USA,
611-614.

[35] Kirk, Diana C., Stephen G. MacDonell, and Ewan Tempero. "Modelling software
processes: a focus on objectives." Proceedings of the 24th ACM SIGPLAN conference
companion on Object oriented programming systems languages and applications. ACM,
2009.

[36] Van Deursen, Arie, and Paul Klint. "Domain-specific language design requires feature
descriptions." Journal of Computing and Information Technology. 2001.

[37] Classen, Andreas, Quentin Boucher, and Patrick Heymans. "A text-based approach to
feature modelling: Syntax and semantics of TVL." Science of Computer Programming
76.12 (2011): 1130-1143.

[38] Bąk, Kacper, Krzysztof Czarnecki, and Andrzej Wąsowski. "Feature and meta-models
in Clafer: mixed, specialized, and coupled." Software Language Engineering. Springer
Berlin Heidelberg, 2011. 102-122.

[39] Hubbard, Douglas, and Dylan Evans. "Problems with scoring methods and ordinal
scales in risk assessment." IBM Journal of Research and Development 54.3 (2010): 2-1.

[40] Jakšić, Aleksandar. "FAMILIAR Tool v1.0.5 (Beta) - Demo."
http://www.screencast.com/t/BdPgI8yF17Y

[41] Czarnecki, Krzysztof, Eisenecker Ulrich W. “Generative programming: methods, tools,
and applications”. ACM Press/Addison-Wesley Publishing Co., New York, NY, 2000.

[42] Asikainen, Timo, Tomi Männistö, and Timo Soininen. "Using a configurator for
modelling and configuring software product lines based on feature models." Workshop
on Software Variability Management for Product Derivation, Software Product Line
Conference (SPLC3). 2004.

60

[43] García, F. Javier Pérez, Laguna, Miguel A., González-Carvajal, Yania Crespo, and
González-Baixauli , Bruno. "Requirements variability support through MDD and graph
transformation." Graph and Model Transformation, 2006.

61

APPENDICES

A. Requirements for FAMILIAR Tool

Core Functional Requirements

 CFR 1. The tool shall support Java standalone GUI application with menus, toolbars,

context-sensitive popup menus and an interactive interpreter console.

o The tool should be delivered as a binary .jar file that will be easy to run. The .jar

file will include all of the dependent libraries into a single file.

 CFR 2. The tool shall support visualization of an FM.

 CFR 2a. Visualization Mode: FM in its basic, propositional FODA-Like form with:

o Mandatory/optional features

o Feature groups, and

o Constraints: Implies and excludes relationships

 CFR 2b. FAMILIAR FM operations:

o Enable building of a FM a tree from scratch:

 Adding a root feature

 Adding a child feature (either Mandatory feature or Optional feature)

 Adding a sibling feature (either Alternative-group, Or-group or And-

group)

 Adding a constraint

o Altering an FM:

 Rename a FM name (i.e., a feature model variable)

 Renaming a feature

62

 Removing a feature

 Removing all constraints

o Reasoning about an FM:

 Check if a feature model is semantically valid

 Count features, constraints, valid configurations as well as a depth of an

FM tree

 Display valid configurations, cores and dead feature sets

 Display a textual notation of a visualized FM

 Compare FMs

o Perform checks and enforce rules for

 syntactic (well-formed rules) checks (i.e., a constraint referring to features

that are not in the feature model) and

 semantic (configuration) checks (i.e., whether a feature model has at least

one valid configuration).

 CFR 2c. Visual FM Operations:

o Expanding/collapsing

o Zooming in/out

o Zooming to fit

o Panning

 CFR 3. The tool shall support FM Configuration operations:

o Creating a new configuration view

o Editing a configuration

63

 CFR 4. The tool shall support multiple views. Use one tab for each feature model or a

configuration view:

o Create a new tab:

 If an FM or its configuration already exists, a new display is generated

from the existing FM/configuration environment variable.

 If an FM or its configuration does not exist, then a new display is created

together with an FM/configuration environment variable.

o Close an existing tab: Only view of an FM or its configuration is removed.

Associated FM/configuration environment variable would continue to exist.

o Display all of the existing FM/configuration environment variables. See “Create a

new tab” from above.

 CFR 5. The tool shall support an embedded FAMILIAR interpreter view: An interactive

console that accepts and processes all of the FAMILIAR text-based commands. This will

allow creating and/or updating environment variables directly (without graphical edits),

as well as using text-based features that have not been yet exposed through the GUI.

 CFR 6. The tool shall support the persistence of FMs (.treeml) by using FAMILIAR’s

new proprietary XML file model.

o Open a FAMILIAR FM

o Save a FAMILIAR FM

o Save as a FAMILIAR FM

 CFR 7. The tool shall support interoperability operations with other FM tools/notations

through Import/Export menus:

o SPLOT/SXFM (*.xml)

64

o FeatureIDE (*.m)

o S2T2 (*.fmprimitives)

o TVL (*.tvl)

 CFR 8. The tool shall support implicit synchronization between two model

representations (FM/configuration display as well as environment variables). The third

model representation (.treeml) is synchronized (serialize/deserialize) when a user

explicitly requests it.

 CFR 9. The tool shall support the help page content.

 CFR 10. The tool shall support enabling/disabling verbose logging.

Advanced Functional Requirements

 AFR 1. Visualization modes: The tool shall support at least two FM visualization modes

such as file-explorer like and FODA-like.

 AFR 2. Search Query: The tool shall support a way to navigate in the "feature" space,

typically with a search query to look for features names.

 AFR 3. Collapsing: The tool shall support a way "collapse" a sub-tree of an FM.

 AFR 4. Zooming: The tool shall support an advanced zoom technique which relies on the

slice operator. When a user zooms on some parts of a feature model, the slicing operator

is applied (in the background) by including the features that are currently visible in the

editor. This would allow a user to better understand local relations among features.

 AFR 5. Attributes: The tool shall support attributes over features. We need a way to

describe a feature by associating information about its rationale, "type", or some

qualitative information such as price, performance, etc. This work will also support

65

editing of attributes, serialization of attributed feature models, specification of attributed

feature models, and finally, reasoning over feature attributes.

 AFR 6. Attributes/Colors: The tool shall support additional visual operations such as to

colorize features implemented as a special attribute of a feature. This would allow, for

example, performing “slicing” of a feature model based on a criterion of the marked

features.

Non-Functional Requirements

 NFR 1. Aesthetics: The tool shall support visually appealing and modern look-and-feel

GUI.

 NFR 2. Usability: The tool shall support easy to use and intuitive user interface.

Modeling practitioners should be able to start using it without additional training time.

 NFR 3. Performance: The tool shall support smooth rendering an FM or configuration

tree with over 1,000 nodes (features, groups and/or constraints) on an average PC

machine used today.

 NFR 4. Portability: The tool shall run and compile on Windows, Mac and Linux

platforms.

 NFR 5. Modifiability: The tool code shall be object-oriented, well-designed, extendible,

and maintainable.

 NFR 6. Platform Constraints: The tool shall be backward compatible with Java

Runtime/SDK 5, 6 and 7. In addition, the tool shall run on all supported platforms (see

NFR 4) independently of the Eclipse environment.

66

B. Evaluation Scenarios

We initially planned to carry out six Tasks, but since we had time and resource

restrictions, we scaled the experiment down to the Task0 and Task1 only which ask participants

to do the modeling work with the FAMILIAR Tool by creating a new feature model of the online

AUDI configurator. For the sake of completeness we present all of the original tasks:

Task Description
Task0 Visit the AUDI configurator and spend some time (~10 minutes) to play with the

configurator and observe how it works. You will only do this task one time for the
whole experiment, however don’t forget to record your actions.

Task1 In 20 minutes, create a partial feature model supporting the whole structure of the
AUDI configurator.

Task2 Take a “model line” (e.g. Audi A1, Audi A3, etc.) and create a feature model
representing all the variability of the model line. Follow only the step 1 and 2:
Exterior, Interior and Equipment are not required. Try to go to the essential and
don’t spend too much time on details. Also, don’t forget that FAMILIAR only

67

allows strings in feature names.
Task3 Let us play with our feature model.

First, let us check some (basic) properties and better understand our specification:
 the feature model represents at least one valid configuration
 there is no “dead” feature
 features included in all configurations (core features) of the feature model

should correspond to non-configurable options (e.g. steps, category,
containers’ name)

 there is no “false optional” feature
 create some partial configurations that are actually consistent with the

behavior of the configurator
 create some complete configurations that are actually consistent with the

behavior of the configurator
Task4 Repeat tasks 1 or 2 for each model line. Name your different files with the model

name (e.g. Task1_AudiA1.fml, Task1_AudiA1.ogv, Task2_AudiA1.fml, etc.)
Task5 When you finished all feature models, merge it into a single one and test the same

properties of task 2. Compare the obtained feature model with the feature model of
task 1. Put your conclusions in few lines in a text file.

Task6
(bonus)

As the number of configuration options can be huge, we decide to build a set of
simplified feature models in order to focus only on some aspects of an Audi car.
Propose and try different strategies using decomposition mechanisms.

