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ABSTRACT

A QUESTIONNAIRE INTEGRATION SYSTEM BASED ON QUESTION CLASSIFICATION
AND SHORT TEXT SEMANTIC TEXTUAL SIMILARITY

Semantic integration from heterogeneous sources involves a series of NLP tasks. Existing re-
search has focused mainly on measuring two paired sentences. However, to find possible identical
texts between two datasets, the sentences are not paired. To avoid pair-wise comparison, this thesis
proposed a semantic similarity measuring system equipped with a precategorization module. It
applies a hybrid question classification module, which subdivides all texts to coarse categories.
The sentences are then paired from these subcategories. The core task is to detect identical texts
between two sentences, which relates to the semantic textual similarity task in the NLP field. We
built a short text semantic textual similarity measuring module. It combined conventional NLP
techniques, including both semantic and syntactic features, with a Recurrent Convolutional Neural
Network to accomplish an ensemble model. We also conducted a set of empirical evaluations. The
results show that our system possesses a degree of generalization ability, and it performs well on

heterogeneous sources.
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Chapter 1

Introduction

1.1 Background

Big Data and Machine Learning have provided advances in information technology that offer
substantial promise to public health and clinical research, and these techniques potentially play a
critical role in enhancing disease prevention. The goal of this paper is to use Big Data and Ma-
chine Learning techniques to support clinical and public health research areas. More specifically,
this study examines obesity, which is one of the most common, serious, and costly public health
issues and one of the major risk factors associated with many serious health conditions (e.g., heart
disease, type-2 diabetes). We collected public-access data and requested restricted data from the

two structured, widely used longitudinal data sources:

e NLSY97 dataset
NLSYO97 consists of a nationally representative sample of approximately 9,000 US youths
who were 12 to 16 years old as of December 31, 1996. Round 1 of the survey took place
in 1997. Measures in employment, schooling, training, health, environment, and similar

indices of wellness are included.

e Add Health dataset
The Add Health cohort (started in 1994-95, grades 7-12) has followed US students into
young adulthood to complete four in-home interviews. The data include measures of so-
cial, economic, psychological, and physical well-being with contextual data on the family,
neighborhood, community, school, friendships, and peer groups, providing unique opportu-
nities to study how social environments and behaviors in adolescence are linked to health

and achievement outcomes in young adulthood.



The differences between the NLSY97 and Add Health datasets indicate that they would be
complementary information resources for the purposes of this study. The premise of this study is
that if we integrate the two datasets, the prediction results will improve. Therefore, the purpose
of this paper is to semantically integrate the two questionnaire datasets, and unifying two tables
requires identifying the common columns. Therefore, to semantically integrate two questionnaires,
the key is to find identical questions. This paper proposed a system for finding possible equivalent

questions across two questionnaire databases.

1.2 Scientific Challenges

The heterogeneity and large size of the questionnaire datasets introduce a set of scientific chal-

lenges:

o Efficiency: : Each questionnaire usually contains thousands of questions. If the system
has to do the element-wise comparison, the time complexity will be O(N?), which is time

consuming.

e Heterogeneity: Heterogeneous sources will introduce potential bias and noise when calcu-
lating the similarity between questions. Many NLP tasks have domain limitation because of
the domain specificity of the input data. We need to train and evaluate our model so that it

can have a degree of generality.

1.3 Research Questions

To integrate two questionnaires, there are two main problems that need to be addressed. Re-

search questions that are explored in this thesis include:

RQ-1 How can we integrate semantically similar questions from multiple questionnaires? The
system should be able to proceed with semantic comparisons at the coarse level to reduce the

processing time. This question is addressed and resolved in Section 3.1 and Section 4.1.



RQ-2 How can we contrast similarity for semantically and syntactically alike questions? The
system should also be able to calculate the semantic similarity between question pairs at the fine

level. This question is addressed and resolved in Section 3.2 and Section 4.2.

1.4 Approach Summary

Our Natural Language Process (NLP) system consists of two modules. One module is respon-
sible for Question Classification (QC), which is used to reduce running times. This module also
contains some minor techniques for data cleaning. The second module mainly finishes the Short
Text Semantic Textual Similarity job. The combination of these two modules makes it possible to
find potentially equivalent questions within a reasonable time.

The purpose of QC is to represent the semantic classes of answers that correspond to targeted
questions. Li & Roth [1] thought QC is a task that, given a question, maps it to one of the pre-
defined k classes, which provides a semantic constraint on the sought-after answer. Sundblad [2]
proposed that QC can loosely be defined as follows: given a question (represented by a set of
features), assign the question to a single category or a set of categories (answer types). Loni [3],
Laokulrat [4], and many other researchers have also offered definitions. Question classification is
a vital part of a Question Answering (QA) system, and it can also be useful in our system. The
scenario we faced involved thousands of questions, and highly similar or identical questions that
potentially can be integrated should be classified into similar categories, though we do not need
to search for their actual answers. Successfully extracting target questions will reduce the amount
of processing time so that we do not need to waste time calculating similarity scores between sen-
tences that are not similar to each other. Our first module applies question classification techniques,
classifying questions into predefined coarse and grained classes. And then for the polar questions,
we implement a triplet extractor to extract subject-predicate-object pairs to further determine the
key information.

The ST-STS module is the core module of our system. Measuring Semantic Textual Similarity

(STS) is the task of determining the similarity between two different text passages. Techniques for



detecting similarity between documents (long texts) have been researched in depth, and approaches
include but are not limited to analyzing shared words and extracting document topics. However,
such methods are effective only when dealing with long documents. In short texts, word co-
occurrence may be rare or even nonexistent. The system we implemented is based on computing
the similarity between short texts (mainly questions), and it employed both conventional NLP
techniques and Deep Learning techniques. The purpose of the conventional NLP module is to
extract NLP features using some traditional NLP techniques. We applied feature generation tools
including Bag-of-Word, Bag-of-Dependency, N-gram overlap, Syntactic Structure overlap, and
WordNet-Augmented overlap. All of the extracted features were input to several regression models
to train a classification model. The Deep Learning Module uses a training dataset to train a Neural
Network model. We built the sentence representations from the Word2Vec pretrained model and
input them to a Recurrent Convolutional Neural Network. The final similarity score is equal to the

average of the above two sub-modules scores.



Chapter 2
Related Works

There have been efforts to perform analytics over scientific data collections [5]. These efforts
typically incorporate support for an underlying storage framework [6—12] and job scheduling [13].
These have included efforts that drive analytics based on queries [14—17], end-to-end frameworks
[18], sketching algorithms [19], and ensemble methods [20,21]. The models thus constructed may

be deployed in settings as diverse as stream scheduling [22,23]to virtualized environments [24].

2.1 Question Classification

There are many existing approaches to Question Target Classification, or Question Classifi-
cation. Traditionally, questions are categorized based on their intents. Li and Roth [1] proposed
a hierarchical classifier, which consists of a Coarse Classifier and a Fine Classifier. The Coarse
Classifier maps input to 6 coarse classes. Afterwards, each coarse class label is expanded to a
fixed set of fine classes. The Fine Classifier then classifies the input questions to different fine
classes. To train and test the module, Li and Roth represented each question as a list of primi-
tive features, including words, pos tags, named-entities, and so on. Subsequent work about QC
processes introduced question categories from the perspective of user-intent analysis, including
Navigational, Informational, Transactional [25], and Social Questions [26], or combined intents
with the contents, such as Solution, Reason, or Fact, which was introduced by Bu, Zhu, et al. [27]
Some researchers classify the questions into more vertical domains, such as Weather, Restaurants,
and Maps, the purpose of which is to achieve a better organized knowledge base and more accurate
answers [28].

This vertical taxonomy directs the QC problem toward a topic classification problem, which
is a basic task in text classification. The content of a given sentence (question) is fully exploited,
such as its lexical features (e.g., n-grams), syntactic features (e.g., parse trees), and semantic (e.g.,

WordNet-based) features. Therefore, based on these textual features, many models have been



developed and applied in QC. For example, specific lexical features are more important for de-
termining the topic, and these methods are independent with languages [29, 30]. Syntactic and
semantic features combined with machine learning models (e.g., support vector machines) are also
capable of classification [1,31,32].

Some scholars have focused on the customization of a classification taxonomy in restricted
domains, intending to improve the accuracy of QC through the analysis of domain characteristics.
However, Hao [1] found that taxonomies for restricted domains have not demonstrated obvious ac-
curacy advantages. Furthermore, this customization may lead to poorer universality and narrower
adaptability. Laokularat [4] summarized the significance of QTC as follows: (1) QTC reduces the
volume of candidate answers (2) helps review different question types and design corresponding
solutions, and (3) filters out irrelevant answers. In our system, the intention is to reduce the num-
ber of comparisons between sentence pairs instead of reducing the volume of the answer pool.
Generally speaking, the more categories in need of mapping, the lower the classification accuracy
obtained. Based on our unique requirements, we would like to balance this tradeoff when choosing

a suitable QC algorithm.

2.2 Semantic Textual Similarity

In general, there is extensive literature on measuring the similarity between documents or long
texts; some ideas on measuring similarity between short texts or sentences are also derived from
those works. The problem lies in the fact that these approaches need adequate information to
perform well, and most likely we cannot find adequate information in single sentences or short
texts. For example, two long, similar texts are likely to have enough co-occurring words, but, at the
sentence level, two similar sentences might easily fail to share common words. Three main kinds
of approaches are popularly used to compute semantic similarity: word co-occurrence approaches,
corpus-based approaches and hybrid approaches.

Word co-occurrence approaches are most frequently used in applications such as information

retrieval(IR). The most widely used word co-occurrence methods are called "bag-of-words" mod-



els. Usually the IR systems have a pre-compiled word list with n words. This list generally consists
of millions of items in order to include all meaningful words in the language. Each document is
represented using these words as a vector in n-dimensional space. The relevant documents are then
retrieved based on the similarity between two document vectors.

Some research has focused on improving word co-occurrence approaches. One extension of
word co-occurrence approaches is the use of a lexical dictionary to compute the similarity of a pair
of words taken from two sentences. Sentence similarity is calculated from lexical relations between
the terms appearing in a sentence and those appearing in others [33]. Some pattern matching
methods that are commonly used in text mining are also applied [34]. The difference between
pattern matching methods and pure word co-occurrence methods is that pattern matching methods
incorporate local structural information. A meaning is conveyed in a limited set of patterns where
each is represented using a regular expression to provide generalization. The problem with these
approaches is that they require a complete pattern set for each meaning of a word. It asks for
manual pattern set compilation, and there seems no automated way to do it.

Corpus-based approaches use the statistical information of words in a corpus. One well-known
corpus-based approach is Latent Semantic Analysis (LSA). LSA uses a word by passage matrix
formed to reect the presence of words in each of the passages used. This matrix is decomposed
by singular value decomposition (SVD), and its dimensionality is reduced by removing small sin-
gular values. Finally, the sentences to be compared are represented in this reduced space as two
vectors containing the meaning of their words. The similarity score is calculated as the similarity
of these two vectors [35,36]. Another well-known approach among corpus-based approaches is
Hyperspace Analogues to Language (HAL) [37]. This approach is closely related to LSA because
they both capture the meaning of a word by using lexical co-occurrence information. Unlike LSA,
which builds an information matrix of words by text units of paragraphs or documents, HAL builds
a word-by-word matrix based on word co-occurrence within a moving window. Subsequently a
sentence vector is formed by adding together the word vectors for all words in the sentence. Simi-

larity between two sentences is calculated using a metric such as Euclidean distance. However, the



authors experimental results showed that HAL was not as promising as LSA in the computation
of similarity for short texts. This limitation might due to the method of building the memory ma-
trix. Possibly, the word-by-word matrix does not capture sentence meaning well, and the sentence
vector becomes diluted as large numbers of words are added to it.

Although LSA and HAL do use word co-occurrence information, their key feature is the use of
corpora, which enables them to find similarity in sentences with no co-occurring words. The main
drawbacks of these approaches at the sentence level are the failure to use syntactic information
and the sparseness of the vector representation. Besides, these methods might ignore very similar
sentences if the sentences have no words in common, and vice-versa, they might regard unrelated

sentences as being similar just because they share common words. For example:

"How old are you?" and "What is your age?"

"My neighbour has a dog with four legs.” and "My neighbour has four legs."

Some researchers indicated that negations and antonyms are not processed by these approaches.
For example, "He is a teacher.”" and "He is not a teacher.” are considered very similar. For many
previous researches about calculating short text similarity, this is considered a flaw while it is not
too important in our scenario.

There are also hybrid approaches that use both corpus-based and knowledge-based techniques.
Li tried to overcome the limitations of both techniques by forming the word vector entirely based
on the words in the compared sentences, then computing the semantic similarity by combining
information drawn from a structured lexical database and from corpus statistics [38]. Mihalcea
proposed a combined unsupervised method that uses six WordNet-based measures and two corpus-
based measures and combines the results to show how these measures can be used to derive a
short-text similarity measure [39]. The major disadvantage of this method is that it computes the
similarity of words using eight different methods, which is not computationally efficient.

Olivia proposed a syntax-based measure for short-text semantic similarity, SyMSS. SyMSS
captures and combines syntactic and semantic information to compute the semantic similarity of

two sentences. Semantic information is obtained from WordNet, and syntactic information is



obtained through a deep parsing process that finds the phrases that make up the sentence as well
as the phrases syntactic functions [40]. Islam and Inkpen presented a method for measuring the
semantic similarity between short texts using a corpus-based measure of semantic word similarity
and normalized and modified versions of the Longest Common Subsequence(LCS) string matching
algorithm [41].

Another area related to our task is Paraphrase Identification (PI). This process is especially use-
ful for overcoming the challenge of high redundancy in Twitter and the sparsity inherent in Twitter
users short texts. Many researchers have investigated ways of automatically detecting paraphrases
on formal texts like newswire texts. Qiu proposed a supervised, two-phase framework that detects
dissimilarity between sentences and makes its paraphrase judgement based on the significance of
such dissimilarities [42]. Das and Smith introduced a probabilistic model, which makes use of
three quasi-synchronous grammar models as components. They then combined the model with a
complementary logistic regression model based on lexical overlap features [43]. Socher, Huang,
et al. introduced a method for paraphrase detection based on recursive autoencoders (RAE). The
RAE targets vector representations. These researchers built the unsupervised RAEs based on an
unfolding objective and learned feature vectors for phrases in syntactic trees. By combining the
RAESs and a dynamic pooling layer which computes a fixed-sized representation from the variable-
sized matrices, the pooled representation is used as input to the classifier [44]. Ji and Eisenstein
designed a new discriminative term-weighting metric TF-KLD which includes the term frequency
and the KL-divergence. They then combined the latent representation from matrix factorization
as features with fine-grained n-gram overlap features in a classification algorithm to achieve the
task [45]. There are many ideas and goals that Paraphrase Identification shares with our task. First,
PI usually focuses on short texts or sentence pairs. Second, PI normally cares more about whether
two sentences are semantically identical, the degree of similarity is not that important. Our system
uses some good ideas from these studies. However, we still applied similarity measurements in our
system because some cases that can be integrated are not paraphrases. Consider a test case in the

Microsoft Research Paraphrase Corpus (MSR): "A BMI of 25 or above is considered overweight;



30 or above is considered obese." and "A BMI between 18.5 and 24.9 is considered normal, over
25 is considered overweight, and 30 or greater is defined as obese." These two sentences are not
considered paraphrased because there is some information missing. However, they will have a high

similarity score, and they can be integrated into our scenario.
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Chapter 3
Methodology

To integrate semantically similar questions from multiple questionnaires efficiently, we de-
signed and developed a question classification module to subdivide all questions to coarse cate-
gories. This avoids element-wise comparison for the whole dataset, which will reduce the process-
ing time significantly. Meanwhile, to answer the second research question, we built a short text
semantic textual similarity module to measure semantic similarity between comparable question
pairs. This module combined conventional NLP techniques including both semantics and syntactic

features, and a Recurrent Convolutional Neural Network to finish the task.

3.1 Question Classification

Figure 3.1 shows the basic structure of the question classification module. This module con-
tains three parts: a feature extractor integrated with the Stanford NLP parser, a maximum entropy
classifier, and a triplet extractor. The maximum entropy classifier is used to classify question types,
mainly SBARQ (clauses introduced by subordinating conjunction). The triplet extractor [46] is for
further information extraction for SQ (Yes/No questions and subconstituents of SBARQ without
wh-elements). The reason for both parts is that, unlike the most QC datasets, almost 80 percent
of the questions in our questionnaire dataset are polar questions. Regardless of whether question
categories are coarse or grained, our system does not further classify the questions. By taking
another step and extracting triplets, subject-predicate-object, we can further narrow the question

content, and reduce the number of comparisons.

3.1.1 Feature Construction

Each question is represented as a vector of features before being fed into the ME classifier. This
section introduces four binary feature sets that are used in the model: the question word feature,

the N-gram feature, the head word feature, and the WordNet semantic feature [29].
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Figure 3.1: Structure of Question Classification Module

3.1.1.1 Question Word Feature

The question word feature is the question word that leads the question. For example, the
question word of the question What is the population of China? is what. Therefore, we have what,
which, when, who, how, why, be, and rest. Rest is the question type that does not belong to any

previous type. For example, the question Your weight? is a rest-type question.

3.1.1.2 N-grams Feature

A N-gram is a sub-sequence of N words from a given sentence. For example, unigram is
equivalent to the bag of words feature, and bigram forms the pairs of words feature, and so forth.
We adopted unigram, bigram, and trigram features in our system. The reason to use these features
is to provide word sense disambiguation for questions such as How long do you sleep everyday?
and How long is it from your home to work? because how long could either refer to duration or

distance. This feature can help us to clarify this ambiguity.

3.1.1.3 Head Word Feature

In linguistics, the head word of a phrase is the word that determines the syntactic category of
that phrase. For example, the head of the noun phrase boiling hot water is the noun water. To

obtain the head word feature, we need to apply a syntactic parser. A syntactic parser is a model
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ROOT ROOT

SHARQ(did) SBARQ(ycur)

WHMNP(What) S0Q(did) H WHNP(year) SQCTianic)
wr NN VRD NI(Titanie) VP ? wp NN VHD NP(Titanic) VP ¥
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the Titanie  sink the Titanic  sink
ROOT ROOT
SHARQ(Is) SHBARQ((tax)
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W ViZ NIP(tax) ] wp VBZ NIP(tax) ?
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| i
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| | |
the sitles lax in  NNP the sales L in  NNP
Minnesota Minnesota

Figure 3.2: The difference between Klein and Manning’s and Huang’s head word definition

that outputs the grammatical structure of the given sentence. There are various state-of-art parsers
available such as the OpenNLP parser [47], the Stanford Parser [48] and the Berkeley Parser [49].
We used the Stanford Parser in our system to identify the head word because the Stanford NLP
library provides the most complete group of NLP tasks. For further analysis, we wanted to do
tokenization, pos-tagging, syntactic parsing, dependency parsing, and other parsing tasks using
only one query in order to reduce the cost of computation, so we chose the Stanford Parser.

There are various rules developed throughout the literature to guide semantic analysis [29, 50,
51]. In particular, the rules for finding the semantic head word of phrases including SBARQ, SQ,
VP, and SINV, have been redefined such that there is a preference for using a noun or noun phrase
rather than a verb or verb phrase for this task. The difference is shown inFigure 3.2. For example,
in the question "What year did the Titanic sink?" The head word finder rules proposed by Klein

and Manning [50] will extract the verb did as the head word. On the other hand, Huang’s [29]

13



revised rules will extract the noun year as the head word. We found that the latter algorithm fit our
situation better.

In the same paper, Huang also compiled a list of regular expressions to help question head word
identification [29]. We adopted the question head word extraction algorithm proposed by Huang
and revised it a bit to suit our requirements better.

Note that we only kept two regular patterns because the rest of Huangs papers appear frequently
in QA system research, but they are rarely seen in the questionnaire area. There is no head word
returned for when, where, or why-type questions, as these wh-words are informative enough. The

reason for doing both is to reduce potential noisy information.

Revised question head word extraction Algorithm

Input: Question q
Qutput: Question head word

1. if q.type == when|where|why then

2 return null

3. end if

4. if q.type == how|which then

B return the word following word “how” | “which”

6. end if

7. if q.type == what && q.matches “DESC:reason pattern” then
8. return “DESC:reason™

9. end if

10. if g.type == who 8& q.matches “HUM:desc pattern” then

11 return “HUM:desc”

12. String candidate = head word extracted from question parse tree
13. if candidate.tag starts with NN then

14 return candidate

15. end if

16. return the first word whose tag starts with NN

DESC:reason pattern The question begins with what causes/cause
HUM:desc pattern The question begins with Who is/was and follows
by a word starting with a capital letter

Figure 3.3: Revised question head word extraction algorithm
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3.1.1.4 WordNet Semantic Feature

WordNet [52] is a large English lexicon where meaningfully related words are connected via
cognitive synonyms. It is a useful tool for word semantic analysis and has been widely used
in question classification. One of the most widely used type of information that is provided by
WordNet is hypernyms: If A is a hypernym of B, then every A is a (kind of) B. In WordNet, words
are organized into hierarchies with hypernym relationships; this process provides a natural way to
augment hypernyms features from the original head word. For example, the question What bread
did you eat today? requires knowing that baked goods are the hypernym of bread, and food is
the hypernym of baked goods (bread—baked goods—food). We adopted Huang’s first approach,
which directly introduces hypernyms for the extracted head words.

The augment of hypernyms for given head word can be useful because it can introduce useful
additional information, but on the other side, it can also bring some degree of noise if the hy-
pernyms are not well identified. Three vital points should be taken into consideration during this
process:

1) which part of speech senses should be augmented?

2) which sense of the given word should be augmented?

3) how long of the hierarchies is required to strike a balance between the generality and the
specificity?

The first issue can be resolved by mapping the Penn Treebank pos tag of the given head word
to its WordNet pos tag. The second problem is actually a word sense disambiguation (WSD) [53]
problem. The Lesk algorithm [54] is a classical algorithm for resolving the WSD problem. It is
based on the assumption that words in a given context are more likely to share a common topic. A
basic implementation of this algorithm is described as follows:

a. Choosing pairs of ambiguous words within a context.

b. Checks their definitions in a dictionary, i.e. WordNet.

c. Chooses the senses so that to maximize the number of common terms in the definitions of

the chosen words.
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Here, the context words are words in the question other than the head word, and the dictionary
is the gloss of a sense for a given word. The algorithm in Figure 3.4 shows the adapted Lesk

algorithm:

Lesk algorithm for head word sense disambiguation

Input: Question q and its head word h
Output: Disambiguated sense for h

int count = @
int maxCount = -1
sense optimum = null
for each sense s for h do

count = @

for each context word w in q do

int subMax = maximum number of common words in s def

inition (gloss) and definition of any sense of w
8. count = count + sumMax
9, end for
10. if count > maxCount then
11. maxCount = count
12. optimum = s
13. end if
14. end for
15. return optimum

N A wNE

Figure 3.4: Lesk Algorithm for head word sense disambiguation

In detail, for each sense of given head word, this algorithm computes the maximum number
of common words between gloss of this sense and the gloss of any senses of the context words.
Among all head word senses, the sense that results in the maximum number of common words is
chosen as the optimal sense for augmenting hypernyms.

Finally, we addressed the third problem in a heuristic way based on the experiments. In the
experiments described in Chapter 4, we selected a subset of training data and ran the algorithm for
depth = 1,2, 3,4, 5,6. Considering the tradeoff between accuracy and time cost, 3 was chosen for

the depth of the hierarchy length to detect common sense.
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3.1.1.5 Triplet extraction for polar questions

For this study, the triplet was the [subject, predicate, object] set extracted from a sentence.
The reason we chose these three elements as the index of a sentence is that they deliver the core
information of a sentence, and our target dataset consists of questionnaires. A questionnaire dataset
contains more polar questions (Yes/No questions) than a QA dataset. The purpose of the Question
Classification module is to reduce the number of comparisons between two datasets, so we need
to extract information to further subdivide these questions if the majority of the dataset are polar
questions.

Rusu [46] presented an approach to extracting subject-predicate-object triplets from a given
sentence. He proposed an algorithm that is simply based on English grammar and syntactic struc-
ture. There are two reasons that this algorithm fits our needs:

1) The output subject-predicate-object triplet is informative enough for further deciding whether
two polar questions have the same meaning.

2) The algorithm just analyzes the structure of syntactic parse tree of the given sentence. It
does not need any training or learning process, which will substantially reduce time cost.

We applied a revised triplet-extraction algorithm based on the syntactic parse tree produced by
the Stanford NLP parser and revised it according to our specific needs as shown in Figure 3.5.

The modification we made is that we changed the polar questions to declarative sentences first.
Then, we considered that not every sentence has an object. For example, we cannot extract an
object from the question "Did you exercise everyday?" Therefore, instead of returning a failure,

we return an empty string for the object-extraction function.

3.1.2 Maximum Entropy Classifier

We decided to select Maximum entropy models, also known as log-linear and exponential
learning models, which provide a general-purpose machine learning technique for classification
and prediction. This technique has been applied successfully to natural language processing in-

cluding part-of-speech tagging and named entity recognition.
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Revised Triplet-Extraction Algorithm

1. function TRIPLET-EXTRACTION(question):

2. if wh-words of question == Did/Do/Does:

3. remove Did/Do/Does from the question

4. else if wh-words of question == Be:

5. exchange the wh-word with the word after it

6. result = EXTRACT-SUBJECT(NP_subtree) U EXTRACT-
PREDICATE(VP_subtree) U EXTRACT-OBJECT(VP_siblings)

7. if result # failure then

8. return result

9. else

10. return failure

1L,

12, function EXTRACT-ATTRIBUTES(word):

13. // search among the word’s siblings

14. if word is adjective

15. result = all RB siblings

16. else if word is noun

17. result = all DT, PRP$, POS, JJ, CD, ADJP, QP, NP sibling
H

18. else if word is verb

19. result = all ADVP siblings

20. // search among the word’s uncles

21. if word is noun or word is adjective

22, if uncle = PP

23. result = uncle subtree

24, else if word is verb and uncle is verb

25. result = uncle subtree

26. if result # failure then

2% return result

28. else

29, return failure

30.

31. function EXTRACT-SUBJECT(NP_subtree):

32. subject = first noun found in NP_subtree

33. subjectAttributes = EXTRACT-ATTRIBUTES(subject)

34. result = subject U subjectAttributes

35. if result # failure then

36. return result

37. else

38. return failure

39;

408. function EXTRACT-PREDICATE(VP_subtree):

41. predicate = deepest verb found in VP_subtree

42, predicateAttributes = EXTRACT-ATTRIBUTES(predicate)

43, result = predicate U predicateAttributes

44, if result # failure then

45, return result

46. else

47, return failure

48.

49, function EXTRACT-OBJECT(VP_subtree):

58. siblings = find NP, PP and ADIP siblings of VP_subtree

51 for each value in siblings do

52. if value = NP or PP

53, object = first noun in value

Figure 3.5: Revised triplet extraction algorithm
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For this study, we adopted the NLTK implementation in our system, which can integrate fea-
tures from many heterogeneous information sources for classification. Each feature corresponds
to a constraint within a model. The following section introduces the principle of the ME classifier.

The principle of the maximum entropy classifier, which is the basis of the maximum entropy
model, states that the probability distribution which best represents the current state of knowledge
is the one with the largest entropy.

Suppose P(z) is the probability density function of discrete random variable z, then the entropy

of P(x) is:

H(z) == pilogp:. (3.1)
i=1

Assuming that the classification model is a conditional probability distributionP(y|x),z €
X C R", represents the input, y € Y represents the output, X, Y is the input set and output set,
respectively. The purpose of this model is to, for the given input x, output y according to the
conditional probability P(y|z).

For a given training dataset,

T = ('Tlayl):(m%yZ)? "'7(xN7yN) (32)

The purpose of training is to select the best classification model based on the maximum entropy
principle. For the given dataset, we can obtain the empirical distribution of joint distribution and
marginal distributions. We use the feature function f;(z, y) to describe a fact that occurs between

x and y:.

1, x and y satisfy some fact
f(z,y) = (3.3)

0, otherwise

The expected value of feature function f(z,y) on the model P(y|x) and the empirical distribu-

tion P(z,y), denoted as Ej(f).
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Therefore, if x € {1, 22, ..., 2}, € {¥1, Y2, ..., Ym } is discrete random variable, given X, the

conditional entropy of Y can be defined as:

H(y|z) Zp H(yle =) ==Y plz:) Y ply;|z:)logp(y;le:).  (3.4)
=1 7j=1

Based on knowing the above, the maximum entropy model is the model within model set C'

that satisfies all constraints:

C={PeP|E(f) = Es(fi),i=1,2,...,n}. (3.5)

The model with the maximum conditional entropy H (P) is then called the maximum entropy

model.

3.2 Short-Text Semantic Textual Similarity

After we have done the question classification, we can pass the questions that share the same
category to the short-text semantic textual similarity module. Figure 3.6 shows the structure of this
module. It contains two sub-modules:

Conventional NLP Module extracts NLP features using some traditional NLP techniques. For
the features that are independent of each other, like the Bag-of-Words feature, we first represented
each sentence with these features and then adopted the kernel-based method to calculate the sim-
ilarity of a pair of sentences. On the other hand, features that are calculated from two sentences,
such as the N-gram overlap feature, can be simply calculated from directly. Both types of features
together are poured into regression algorithms to make predictions.

Deep Learning Module encodes input sentence pairs into distributed vector representations.
There are multiple widely used trained vectors like Word2Vec [55] and GloVe [56], which we used
to train the end-to-end Recurrent Convolutional Neural Networks to obtain similarity scores.

The final similarity score generated by this process is the average of the above two sub-modules

scores. In the next section, we will describe the system in detail.
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Figure 3.6: Structure of Semantic Textual Similarity

3.2.1 Conventional NLP Module

3.2.1.1 Feature weighting

In the process of feature construction, prior research showed that reweighting the counts of
some distributional features will improve the paraphrase detection.

TF-IDF is a numerical statistic that is intended to reect how important a word is to a docu-
ment in a corpus. The TF-IDF value is the product of two statistics: term frequency and inverse
document frequency. This combination makes the TF-IDF value increase proportionally to the

number of times a word appears in the document, and it is offset by the frequency the word in the
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corpus. There are various schemes for calculating these two statistics, noting that the document in
the dataset is a single question. Therefore, we used Boolean frequencies as the term frequency as
follows: tf(t,d) = 1iftoccursind, and idf(t, D) = log(1 + nﬂt) where NN stands for the total
number of documents (questions) in the corpus, and 7, stands for the number of documents where

the term ¢ appears. At last, the TF-IDF value can be represented as:

TF-IDF(t,d, D) = tf(t,d) - idf(t, D). (3.6)

3.2.1.2 Corpus-based Features
The corpus-based features are the features that are related to the whole corpus. They are bag-
of-word features and bag-of-dependency features. After calculating these features, we will apply

several kernels to the sentence pair to reduce the dimensionality of the features.

Bag of Words
Each question is represented as the bag of its words, disregarding grammar and word order, but

keeping multiplicity. Also, we weighted each word by its TF-IDF value.

Bag of Dependency
For each sentence, we interpreted its dependency tree as a set of triples: [governor, dependency—
label, subordinate]. This feature is similar to the BOW feature in that we treat triples as words

and represent each sentence as a bag of dependency-triples.

Dimensionality Reduction

The dimensionality of the features constructed above from BOW and BOD is huge (approxi-
mately more than 70K features), and the high dimensionality suppresses the discriminating power
of other features. In the latter part of the paper, we will see that the dimensionality of features
constructed from a sentence pair (less than 100) and the deep learning network (less than 1K) is

much smaller in our system. In order to reduce the high dimensionality of corpus-based features,
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Table 3.1: List of 10 kernel functions

Type Measures
Linear kernel Cosine distance, Manhattan distance, Euclidean distance, Chebyshev distance
Stat kernel Pearson coefficient, Spearman coefficient

Non-linear kernel polynomial, rbf, laplacian, sigmoid

we used 10 kernel functions to calculate sentence pair similarities. Table 3.1 lists all the kernel
functions we used in this module. In total, we collected 20 corpus-based features after dimension

deduction.

3.2.1.3  Pair Features

Three types of sentence pair matching features are designed to directly calculate the similarity
between two questions based on the N-gram overlap, syntactic structure overlap, and WordNet-

Augmented word overlap.

N-gram Overlap Features
Let S; and S, be the sets of consecutive N-grams in the first and the second questions respec-

tively. The N-gram overlap feature is defined as follows [57]:

ngo(Sy, S2) = 2 X 15, + 15| h (3.7)
’ [S1NSa| ~ [S1 NSy

We obtained N-grams at the lemmatized word level. We applied n = [1, 2, 3] and collected 3

features.

WordNet-Augmented Word Overlap

The N-gram overlap feature will output a high similarity value only if exactly the same words (or
lemmas) appear in both questions. To allow for some lexical variation, we used WordNet to assign
partial scores to words that are not common to both questions. We used the definition provided by

Sarié [57]:
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1

Py N(S1,5;) = Sl Z score(wy, Ss) (3.8)
2’ w1 €51
1 ifweS
score(w, S) = (3.9)
max sim (w,w’) otherwise
w'e

where sim(-, -) represents the WordNet path length similarity. The overall feature is defined as

the harmonic mean of Py n (81, 52) and Py n (52, Sl)

Syntactic Structure Overlap Features

N-gram, BOW, and other features discussed above are purely lexicon-based approaches, which
are often inadequate for performing more complex tasks involving the use of more varying syntac-
tic structures. In order to use more structural or syntactical information and capture higher order
dependencies between grammar rules, we adopted Wangs [58] syntactic tree matching algorithm,
which originated from Collinss [59] approach.

According to Zhangs [32] definition, the tree fragments of a syntactic tree are all of its sub-
trees that include at least one terminal word or one production rule, with the restriction that no
production rules can be broken into incomplete parts. Wang proposed the following weighting
schemes for the tree fragments:

Preliminary 1: The weighting factor §; denotes the importance of node ¢ in the parsing tree.

Its value differs for different types of nodes:
e ); = 1.2, where node 7 is either the POS tag VB or NN.
e ); = 1.1, where node 1 is either the POS tag VP or NP.
e 4, = 1, for all other types of nodes.

This preliminary came from the intuition that nouns and verbs are considered to be more important

than other types of terms.
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Preliminary 2: The weighting coefficient 6, for tree fragment k conveys the importance of the
tree fragment, whose value is the production of all weighting factors of node 7 that belong to the
tree fragment k, i.e. 6, = Hiefmgment 2 0i

This preliminary means that the more important nodes a tree fragment contains, the more im-
portant this tree fragment is.

The next two preliminaries define the size of sub-tree S; and its weighting factor A, together
with the depth of the sub-tree D; and its weighting factor 4 as follows:

Preliminary 3: The size of the tree fragment .S; is defined by the number of nodes that it
contains. The size of the weighting factor ) is a tuning parameter indicating the importance of the
size factor.

Preliminary 4: The depth of the tree fragment D; is defined as the level of the tree fragment
root in the entire syntactic parsing tree, with D, ... The depth weighting factor p is a tuning
parameter indicating the importance of the depth factor.

Given the parameters listed above, Wang gave the following weighting scheme for the tree
fragment:

Definition 1: The weight of a tree fragment w; is defined as 6; A% ;1”?, where 0; is its weighting
coefficient, .5; is the size of the sub-tree, A is the size weighting factor, D; is the depth of the
sub-tree, and p is the depth weighting factor.

Based on the weighting scheme of tree fragments above, Wang proposed an algorithm to cal-
culate the weight of matching tree fragments along with similarity metrics.

Preliminary 5: If two tree fragments 7'F; and T'F5 are identical, the weight of their resulting

matching tree fragment 7'F" is defined to be:

w(TF) = w(TF)w(TF) (3.10)

From here, we can calculate the overall matching score between two nodes r; and 75 to be the

multiplication of the weights of all matched tree fragments under the roots of r; and 7:
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0 if’f’l 7é (]
M(r1,7s) = (3.11)

?:1 w (T'F;(ry,7m2)) otherwise

where 1y # 1 stands for the fact that either labels or production rules for r; and r5 are different.
TF;(ry,72) is the i-th matching tree fragment under r; and 75, and 7 is the total number of tree
fragments.

After calculating the node matching score between two nodes, we are able to find the simi-
larity score between the two syntactic parsing trees 7} and 7. By traversing the parsing trees in
post-order and calculating the pair-wise node matching scores, we can get a |7;] X |T5| matrix
of M(ry,r2). The summation of all scores is used to represent the similarity score between two

parsing trees as follows:

sim(T,T) = Z Z M(ry,m2) (3.12)

r1€Ty ro€lh

and the normalized similarity score would be
sim(Tl, TQ)

stm2(Ty,Ty) = 3.13
( ! 2) \/Sim(Tl,Tl)Sim(Tg,Tg) ( )

By applying a dynamic programming technique, we can calculate the final similarity score

between two parsing trees in polynomial time.

3.2.1.4 Regression Models

The modules above generated 14 features altogether. Next, we explore four learning algorithms
for regression: Random Forests (RF), Support Vector Machine (SVM), Gradient Boosting (GB),
and XGBoost (XGB). The first three algorithms are available in the Scikit-Learn [60] library and

XGB [61] is open source and accessible on Github.
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3.2.2 Recurrent Convolutional Neural Network

The conventional approach to measuring similarity between texts as described above is lim-
ited because some of processes lose the order information and some of them ignore the context.

Consider, for example, the following sentence:
A sunset stroll along the South Bank affords an array of stunning vantage points.

To analyze the word Bank in the sentence, we cannot identify its correct meaning if we isolate
this word. A bank can be either a financial institution or sloping land. Therefore, we need to
include more context to achieve disambiguation. If we see one word ahead and get the South Bank
bi-gram, we can see that both words are capitalized. People who are unfamiliar with London may
think this is the name of a bank. However, by analyzing enough contextstrolling along the South
Bankwe can ensure that it means the name of a location, and it has nothing to do with the bank.

Recently, pretrained word vector and deep learning models have introduced new approaches
to NLP tasks. Socher [44, 62, 63] proposed a process for building Recursive Neural Networks.
This approach has proved to be effective for semantic construction at the sentence level. However,
building a recursive neural network requires a tree structure to process semantic construction, and
the quality of the network depends strongly on the accuracy of the tree. Moreover, to construct the
textual tree requires at leastO(n?) time complexity, where n stands for the length of the sentence.
Finally, when representing documents, the relationship between two sentences does not always
form a tree structure, which makes semantic construction difficult.

A Recurrent Neural Network (RNN) can finish semantic construction in O(n) time. This model
processes the whole document word by word, and it saves all context information to a fix-sized
hidden layer. The advantage of an RNN is that it can capture the context information and process
on the long-distance context better than conventional approaches. However, for a forwarding RNN,
for instance, the posterior words will have more importance than the anterior ones. Therefore, the
RNN will consider more of the information from the latter part when building semantics for the
whole document. However, because not all documents will emphasize the latter part, the algorithm

of the RNN may affect the accuracy of semantic representation.
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To deal with the problem encountered by RNNs,, Collobert [64] proposed a Convolutional
Neural Network (CNN) to build the semantic representation. By using a max-pooling technique,
a CNN can find the most useful textual section, and the time complexity is also O(n). Therefore,
a CNN usually performs better on semantic representation. However, the current CNN model
usually applies a relatively simple convolutional kernel, like a fixed input window [64, 65]. When
using these models, the method of determining the window size is crucial. When the window is
too narrow, the context information may be insufficient. While when the window size is too large,
it will lead to the increase of the parameters, which increases the difficulty of model optimization.

To resolve the defects above, Lai [66] proposed a Recurrent Convolutional Neural Network
(RCNN). This approach first applies a bi-directional recurrent structure, which may introduce con-
siderably less noise compared to a traditional window-based neural network, to capture the contex-
tual information to the greatest extent possible when learning word representations of texts. The
next step employs a max-pooling layer that automatically decides which features play key roles
in text classification to capture the key component in the texts. By combining these two features,
an RCNN has the advantages of both an RNN and a CNN, so an RCNN depicts context informa-
tion better and provides an unbiased representation of the whole document. Moreover, the RCNN
model shows a time complexity of O(n), which is linearly correlated with the length of the text

length.

3.2.2.1 Background: Deep Learning Models

Recursive Neural Network
The structure of the Recursive Neural Network model is shown inFigure 3.7.The concept follows
a tree structure, summarizing the word semantic representation to phrases and finally achieving the
whole sentences semantic representation.
The Recursive Neural Network usually uses a binomial tree, in some cases (like the dependency

parse tree [67]) a multinomial tree is used. Now we would like to introduce the Recursive Neural
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Figure 3.7: The Structure of Recursive Neural Network

Network by demonstrating the methods for constructing the tree structure and the composition
function y = f(a, b) from the child node to the parent node.

There are two common ways to build the tree: 1) Use a parser to build a syntax tree [44, 63 ]or
2) use a greedy algorithm to rebuild the neighbor child subtree that has the smallest error [62].
Using a semantic parser will ensure that the tree structure is a syntax tree. Each leaf in the tree will
respond to a word in the sentence. The node after composition will also represent the phrases in
the sentence. The second approach, which is also unsupervised, can automatically find the pattern
in the data, but it cannot ensure that each node in the tree has an actual syntactic meaning.

There are generally three types of composition function y = f(a, b) from child node to parent

node:

a. Syntax-based

Child node is represented as vector a, b, and parent node can be calculated thusly:

y = ¢(H|a; b]) (3.14)
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where ¢ stands for non-linear activation function, and weighting matrix / can either be fixed
[68], or varied based on the different syntax structure. This method is often used in syntax

analysis.

. Matrix-based

In vector-based method, each node is represented by two parts: a matrix and a vector. For [A,

and [B, b] child nodes, the composition function is as follows:

y = ¢(H[Ba, Ab]) (3.15)
A

Y =Wy (3.16)
B

where W, € Rlel*2lal which ensures that the semantic transformation matrix corresponding to
the parent node Y € Rlalxlal has the same dimensionality as the matrix A, B. Each word has
a semantic transformation matrix in this method. For the words that affect other parts of the
sentence, like the negation words, the normal syntax-based method cannot accurately depict the

relations. The matrix-based method can resolve this problem.

Recurrent Neural Network

The Recurrent Neural Network (RNN) model was first proposed by Elman in 1990 [69]. The

idea is to recurrently input each word in the document while building a hidden layer that keeps all

of the context information.

The RNN model is a special case of a Recursive Neural Network. It can be seen as a tree where

the left child of each non-leaf node is a leaf node. This special structure produces two important

characteristics. First, since the network structure is fixed, the model only needs O(n) time to

build the semantics, which is much more efficient than the Recursive Neural Network. Second,

the RNN structure is very deep. The depth of the network is equivalent to the number of words
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in the sentence. Therefore, the traditional training method does not work on RNN because of
the vanishing or exploding gradient problem, which needs to be resolved by special optimization

techniques.

e(w;) h(i—1)

(a) Recurrent Structure (b) Expanded Recurrent Structure

Figure 3.8: Structure of Recurrent Neural Network

The semantic construction process of the RNN model is similar to that of the Recursive Neural
Network model. Each word and all of the hidden layers representing its left-side context together
form the new hidden layer (structure is shown in Figure 3.8, and equation is shown in Eq.3.17).
The process moves from the first word of the sentence to the last, and the hidden layer of the last

word represents the whole text semantics.

h(i) = ¢ (Hle(w;); h(i — 1)]) (3.17)

Regarding optimization techniques, there are differences between the RNN and other neural
networks. For normal neural networks, a back-propagation algorithm can be implemented easily
with the help of the chain rules of derivatives. However, in the RNN, the weighing matrix H is
reused, so directly differentiating the matrix is difficult. One naive method is Back-propagation
Though Time (BPTT). In this method, we first expand the network to the format as shown in Fig-

ure 3.8(b). For each level, the model uses the normal BP technique to update each hidden layer and
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repeatedly update the weighing matrix H. There are several ways to deal with the vanishing gradi-
ent problem. The most straightforward method is that when using BPTT to optimize the network,
only propagate for a fixed-sized length (5 levels, for example). Hochreither and Schmidhuber[43]
proposed the Long Short-Term Memory (LSTM) model in 1997. This model introduces a memory
cell, which can save long distance information, and it is a widely-used optimization scheme.
However, regardless of how the model is optimized, the semantics in the RNN are more likely
to lean to the latter part. Therefore, the RNN model is rarely applied to represent the whole
documents semantics. Because it can effectively represent the context information, this model is

more commonly seen in the sequence labeling task.

Convolutional Neural Network

The Convolutional Neural Network (CNN) approach was first proposed by Fukushima in 1982
[70]. Then, LeCun added an important improvement in 1998 [71]. The CNN model is widely
used in natural language processing. Collobert first applied it to a semantic labeling task [64]. ].
Kalchbrenner and Kim presented work using a CNN for text classification [72,73].

The structure of CNN is shown in Figure 3.9. The core concept is local connection and weight
sharing. In a normal feedforward neural network, each node in the hidden layer has full connection
with all of the nodes in the input layer. While in the CNN, each node in the hidden layer only has
connections to a fixed-sized area in the hidden layer. The size is denoted as wind (stands for

window). For instance, the structure in the figure has wind = 3. It can be formulated as follows:

vy = [e(Wi—jwinaya); - e(wi); -5 e(Witwindsa))] (3.18)

rY = tanh(Wx; + b) (3.19)

After building several hidden layers, the CNN usually applies a pooling technique to compress
the hidden layers with various sizes to a fixed-size hidden layer. Commonly used techniques are

average-pooling and max-pooling. The max-pooling formula is
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Figure 3.9: The Structure of Convolutional Neural Network

h? = miax h” (3.20)

i=1
By using a convolutional kernel, a CNN can model different parts of a sentence and achieve

the full semantics from all local nodes with the help of the pooling layer. Also, the overall time

complexity is only O(n).

3.2.2.2 Applying Recurrent Convolutional Neural Network

There are some attempts to combine the Recurrent Neural Network and the Convolutional
Neural Network called the Recurrent Convolutional Neural Network. This model can have the dual
advantages of the RNNs ability to consider long enough context and the CNN models unbiased
nature and easy training. Siwei Lai [66] proposed an RCNN model to build document semantics.
The figure below shows the network structure he proposed. The input of the network is document

D, which consists of a word sequence wyq, ws, - - - , w,. The number of the output node is 2, which
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corresponds to whether two questions are identical or not. We use P (I|Q,, Qs, ) to represent
whether question a and question b are identical, and @ is the parameters of the network.

Lai combined the word and its context to represent the word itself. The context can help with
disambiguation to achieve more accurate semantics. This process uses a bi-directional recurrent
structure. We modified it for the purpose of calculating sentence pair similarity.

We define that ¢;(w;) is the left-side context semantic representation for the word wy, ¢,.(w;) is
the right-side context representation for the word w;. Both ¢;(w;) and ¢, (w;) are dense real vectors.

The dimensionality is |c|. The formula for ¢;(w;) is shown below:

a(wy) = ¢ (Wq(wi—1) + We(w;_1))) (3.21)

Here e(w;_1) is the word vector for the word w;_;.The word vector is also a real vector with low
dimensionality |e|. All left-side context ¢;(w;) for the first word w, is shared between sentences.
W® is a matrix that transforms the hidden layer from the previous words left-side context into the
current one. WY is a matrix that is used to combine the previous word vector with the current
word vector. ¢ is a non-linear activation function. The formula for right-side context representation

is similar:

er(w;) = ¢ (W, (wipr) + WEe(wsy)) (3.22)

The left-side and right-side context vectors, respectively, can capture the semantic information.
After getting the context information for the word w;. We can define the word representation x; to
be the concatenation of the word s left-side context vector ¢;(w;), the word w;s word vector e(w;),

and the word w;s right-side context vector ¢, (w;):

z; = [a(w;); e(w;); ¢ (w;)] (3.23)

The recurrent structure helps us to acquire all left-side context representations ¢; with only one

forward scanning. Similarly, with one backward scanning, we can acquire all right-side context
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