
THESIS

A QUESTIONNAIRE INTEGRATION SYSTEM BASED ON QUESTION CLASSIFICATION

AND SHORT TEXT SEMANTIC TEXTUAL SIMILARITY

Submitted by

Yu Qiu

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Fall 2018

Master’s Committee:

Advisor: Sangmi Lee Pallickara

Shrideep Pallickara
Kaigang Li

ABSTRACT

A QUESTIONNAIRE INTEGRATION SYSTEM BASED ON QUESTION CLASSIFICATION

AND SHORT TEXT SEMANTIC TEXTUAL SIMILARITY

Semantic integration from heterogeneous sources involves a series of NLP tasks. Existing re-

search has focused mainly on measuring two paired sentences. However, to find possible identical

texts between two datasets, the sentences are not paired. To avoid pair-wise comparison, this thesis

proposed a semantic similarity measuring system equipped with a precategorization module. It

applies a hybrid question classification module, which subdivides all texts to coarse categories.

The sentences are then paired from these subcategories. The core task is to detect identical texts

between two sentences, which relates to the semantic textual similarity task in the NLP field. We

built a short text semantic textual similarity measuring module. It combined conventional NLP

techniques, including both semantic and syntactic features, with a Recurrent Convolutional Neural

Network to accomplish an ensemble model. We also conducted a set of empirical evaluations. The

results show that our system possesses a degree of generalization ability, and it performs well on

heterogeneous sources.

ii

DEDICATION

I would like to dedicate this thesis to my wife Cong Yin, my advisor Sangmi Lee Pallickara and

everyone who care about me.

iii

TABLE OF CONTENTS

ABSTRACT . ii
DEDICATION . iii
LIST OF TABLES . v
LIST OF FIGURES . vi

Chapter 1 Introduction . 1
1.1 Background . 1
1.2 Scientific Challenges . 2
1.3 Research Questions . 2
1.4 Approach Summary . 3

Chapter 2 Related Works . 5
2.1 Question Classification . 5
2.2 Semantic Textual Similarity . 6

Chapter 3 Methodology . 11
3.1 Question Classification . 11

3.1.1 Feature Construction . 11
3.1.2 Maximum Entropy Classifier . 17

3.2 Short-Text Semantic Textual Similarity 20
3.2.1 Conventional NLP Module . 21
3.2.2 Recurrent Convolutional Neural Network 27

Chapter 4 System Architecture and Evaluation . 38
4.1 Question Classification Module . 39

4.1.1 Experiment Setup . 39
4.1.2 Experiment Results . 41

4.2 Semantic Similarity Module . 45
4.2.1 Experiment Setup . 46
4.2.2 Experiment Evaluation . 47

Chapter 5 Conclusion and Future Work . 52

Bibliography . 54

iv

LIST OF TABLES

3.1 Kernel Functions . 23

4.1 Experimental Data Description . 40
4.2 Experimental Data for Question Classification Result 41
4.3 Overall Performance for ME Classifier on Quora Dataset (10 times) 42
4.4 Polar Questions Classification Result . 42
4.5 Latencies of WE classifiers (3000 pairs) . 43
4.6 Latencies of Triplet Extractor . 43
4.7 Classification Results for Quora Question Pairs Dataset 44
4.8 Feature Evaluation for Conventional NLP Module . 48
4.9 Performance Evaluation on SVM Classifier . 49
4.10 Performance Evaluation for Ensemble Model . 51

v

LIST OF FIGURES

3.1 Structure of Question Classification Module . 12
3.2 The difference between Klein and Manning’s and Huang’s head word definition 13
3.3 Revised question head word extraction algorithm . 14
3.4 Lesk Algorithm for head word sense disambiguation 16
3.5 Revised triplet extraction algorithm . 18
3.6 Structure of Semantic Textual Similarity . 21
3.7 The Structure of Recursive Neural Network . 29
3.8 Structure of Recurrent Neural Network . 31
3.9 The Structure of Convolutional Neural Network . 33
3.10 The Structure of Recurrent Convolutional Neural Network 36

4.1 Overall Structure of the System . 38
4.2 The Structure of Question Classification Module . 39
4.3 The Structure of Semantic Similarity Module . 45
4.4 Performance of RCNN & CNN . 50

vi

Chapter 1

Introduction

1.1 Background

Big Data and Machine Learning have provided advances in information technology that offer

substantial promise to public health and clinical research, and these techniques potentially play a

critical role in enhancing disease prevention. The goal of this paper is to use Big Data and Ma-

chine Learning techniques to support clinical and public health research areas. More specifically,

this study examines obesity, which is one of the most common, serious, and costly public health

issues and one of the major risk factors associated with many serious health conditions (e.g., heart

disease, type-2 diabetes). We collected public-access data and requested restricted data from the

two structured, widely used longitudinal data sources:

• NLSY97 dataset

NLSY97 consists of a nationally representative sample of approximately 9,000 US youths

who were 12 to 16 years old as of December 31, 1996. Round 1 of the survey took place

in 1997. Measures in employment, schooling, training, health, environment, and similar

indices of wellness are included.

• Add Health dataset

The Add Health cohort (started in 1994-95, grades 7-12) has followed US students into

young adulthood to complete four in-home interviews. The data include measures of so-

cial, economic, psychological, and physical well-being with contextual data on the family,

neighborhood, community, school, friendships, and peer groups, providing unique opportu-

nities to study how social environments and behaviors in adolescence are linked to health

and achievement outcomes in young adulthood.

1

The differences between the NLSY97 and Add Health datasets indicate that they would be

complementary information resources for the purposes of this study. The premise of this study is

that if we integrate the two datasets, the prediction results will improve. Therefore, the purpose

of this paper is to semantically integrate the two questionnaire datasets, and unifying two tables

requires identifying the common columns. Therefore, to semantically integrate two questionnaires,

the key is to find identical questions. This paper proposed a system for finding possible equivalent

questions across two questionnaire databases.

1.2 Scientific Challenges

The heterogeneity and large size of the questionnaire datasets introduce a set of scientific chal-

lenges:

• Efficiency: : Each questionnaire usually contains thousands of questions. If the system

has to do the element-wise comparison, the time complexity will be O(N2), which is time

consuming.

• Heterogeneity: Heterogeneous sources will introduce potential bias and noise when calcu-

lating the similarity between questions. Many NLP tasks have domain limitation because of

the domain specificity of the input data. We need to train and evaluate our model so that it

can have a degree of generality.

1.3 Research Questions

To integrate two questionnaires, there are two main problems that need to be addressed. Re-

search questions that are explored in this thesis include:

RQ-1 How can we integrate semantically similar questions from multiple questionnaires? The

system should be able to proceed with semantic comparisons at the coarse level to reduce the

processing time. This question is addressed and resolved in Section 3.1 and Section 4.1.

2

RQ-2 How can we contrast similarity for semantically and syntactically alike questions? The

system should also be able to calculate the semantic similarity between question pairs at the fine

level. This question is addressed and resolved in Section 3.2 and Section 4.2.

1.4 Approach Summary

Our Natural Language Process (NLP) system consists of two modules. One module is respon-

sible for Question Classification (QC), which is used to reduce running times. This module also

contains some minor techniques for data cleaning. The second module mainly finishes the Short

Text Semantic Textual Similarity job. The combination of these two modules makes it possible to

find potentially equivalent questions within a reasonable time.

The purpose of QC is to represent the semantic classes of answers that correspond to targeted

questions. Li & Roth [1] thought QC is a task that, given a question, maps it to one of the pre-

defined k classes, which provides a semantic constraint on the sought-after answer. Sundblad [2]

proposed that QC can loosely be defined as follows: given a question (represented by a set of

features), assign the question to a single category or a set of categories (answer types). Loni [3],

Laokulrat [4], and many other researchers have also offered definitions. Question classification is

a vital part of a Question Answering (QA) system, and it can also be useful in our system. The

scenario we faced involved thousands of questions, and highly similar or identical questions that

potentially can be integrated should be classified into similar categories, though we do not need

to search for their actual answers. Successfully extracting target questions will reduce the amount

of processing time so that we do not need to waste time calculating similarity scores between sen-

tences that are not similar to each other. Our first module applies question classification techniques,

classifying questions into predefined coarse and grained classes. And then for the polar questions,

we implement a triplet extractor to extract subject-predicate-object pairs to further determine the

key information.

The ST-STS module is the core module of our system. Measuring Semantic Textual Similarity

(STS) is the task of determining the similarity between two different text passages. Techniques for

3

detecting similarity between documents (long texts) have been researched in depth, and approaches

include but are not limited to analyzing shared words and extracting document topics. However,

such methods are effective only when dealing with long documents. In short texts, word co-

occurrence may be rare or even nonexistent. The system we implemented is based on computing

the similarity between short texts (mainly questions), and it employed both conventional NLP

techniques and Deep Learning techniques. The purpose of the conventional NLP module is to

extract NLP features using some traditional NLP techniques. We applied feature generation tools

including Bag-of-Word, Bag-of-Dependency, N-gram overlap, Syntactic Structure overlap, and

WordNet-Augmented overlap. All of the extracted features were input to several regression models

to train a classification model. The Deep Learning Module uses a training dataset to train a Neural

Network model. We built the sentence representations from the Word2Vec pretrained model and

input them to a Recurrent Convolutional Neural Network. The final similarity score is equal to the

average of the above two sub-modules scores.

4

Chapter 2

Related Works

There have been efforts to perform analytics over scientific data collections [5]. These efforts

typically incorporate support for an underlying storage framework [6–12] and job scheduling [13].

These have included efforts that drive analytics based on queries [14–17], end-to-end frameworks

[18], sketching algorithms [19], and ensemble methods [20,21]. The models thus constructed may

be deployed in settings as diverse as stream scheduling [22, 23]to virtualized environments [24].

2.1 Question Classification

There are many existing approaches to Question Target Classification, or Question Classifi-

cation. Traditionally, questions are categorized based on their intents. Li and Roth [1] proposed

a hierarchical classifier, which consists of a Coarse Classifier and a Fine Classifier. The Coarse

Classifier maps input to 6 coarse classes. Afterwards, each coarse class label is expanded to a

fixed set of fine classes. The Fine Classifier then classifies the input questions to different fine

classes. To train and test the module, Li and Roth represented each question as a list of primi-

tive features, including words, pos tags, named-entities, and so on. Subsequent work about QC

processes introduced question categories from the perspective of user-intent analysis, including

Navigational, Informational, Transactional [25], and Social Questions [26], or combined intents

with the contents, such as Solution, Reason, or Fact, which was introduced by Bu, Zhu, et al. [27]

Some researchers classify the questions into more vertical domains, such as Weather, Restaurants,

and Maps, the purpose of which is to achieve a better organized knowledge base and more accurate

answers [28].

This vertical taxonomy directs the QC problem toward a topic classification problem, which

is a basic task in text classification. The content of a given sentence (question) is fully exploited,

such as its lexical features (e.g., n-grams), syntactic features (e.g., parse trees), and semantic (e.g.,

WordNet-based) features. Therefore, based on these textual features, many models have been

5

developed and applied in QC. For example, specific lexical features are more important for de-

termining the topic, and these methods are independent with languages [29, 30]. Syntactic and

semantic features combined with machine learning models (e.g., support vector machines) are also

capable of classification [1, 31, 32].

Some scholars have focused on the customization of a classification taxonomy in restricted

domains, intending to improve the accuracy of QC through the analysis of domain characteristics.

However, Hao [1] found that taxonomies for restricted domains have not demonstrated obvious ac-

curacy advantages. Furthermore, this customization may lead to poorer universality and narrower

adaptability. Laokularat [4] summarized the significance of QTC as follows: (1) QTC reduces the

volume of candidate answers (2) helps review different question types and design corresponding

solutions, and (3) filters out irrelevant answers. In our system, the intention is to reduce the num-

ber of comparisons between sentence pairs instead of reducing the volume of the answer pool.

Generally speaking, the more categories in need of mapping, the lower the classification accuracy

obtained. Based on our unique requirements, we would like to balance this tradeoff when choosing

a suitable QC algorithm.

2.2 Semantic Textual Similarity

In general, there is extensive literature on measuring the similarity between documents or long

texts; some ideas on measuring similarity between short texts or sentences are also derived from

those works. The problem lies in the fact that these approaches need adequate information to

perform well, and most likely we cannot find adequate information in single sentences or short

texts. For example, two long, similar texts are likely to have enough co-occurring words, but, at the

sentence level, two similar sentences might easily fail to share common words. Three main kinds

of approaches are popularly used to compute semantic similarity: word co-occurrence approaches,

corpus-based approaches and hybrid approaches.

Word co-occurrence approaches are most frequently used in applications such as information

retrieval(IR). The most widely used word co-occurrence methods are called "bag-of-words" mod-

6

els. Usually the IR systems have a pre-compiled word list with n words. This list generally consists

of millions of items in order to include all meaningful words in the language. Each document is

represented using these words as a vector in n-dimensional space. The relevant documents are then

retrieved based on the similarity between two document vectors.

Some research has focused on improving word co-occurrence approaches. One extension of

word co-occurrence approaches is the use of a lexical dictionary to compute the similarity of a pair

of words taken from two sentences. Sentence similarity is calculated from lexical relations between

the terms appearing in a sentence and those appearing in others [33]. Some pattern matching

methods that are commonly used in text mining are also applied [34]. The difference between

pattern matching methods and pure word co-occurrence methods is that pattern matching methods

incorporate local structural information. A meaning is conveyed in a limited set of patterns where

each is represented using a regular expression to provide generalization. The problem with these

approaches is that they require a complete pattern set for each meaning of a word. It asks for

manual pattern set compilation, and there seems no automated way to do it.

Corpus-based approaches use the statistical information of words in a corpus. One well-known

corpus-based approach is Latent Semantic Analysis (LSA). LSA uses a word by passage matrix

formed to reect the presence of words in each of the passages used. This matrix is decomposed

by singular value decomposition (SVD), and its dimensionality is reduced by removing small sin-

gular values. Finally, the sentences to be compared are represented in this reduced space as two

vectors containing the meaning of their words. The similarity score is calculated as the similarity

of these two vectors [35, 36]. Another well-known approach among corpus-based approaches is

Hyperspace Analogues to Language (HAL) [37]. This approach is closely related to LSA because

they both capture the meaning of a word by using lexical co-occurrence information. Unlike LSA,

which builds an information matrix of words by text units of paragraphs or documents, HAL builds

a word-by-word matrix based on word co-occurrence within a moving window. Subsequently a

sentence vector is formed by adding together the word vectors for all words in the sentence. Simi-

larity between two sentences is calculated using a metric such as Euclidean distance. However, the

7

authors experimental results showed that HAL was not as promising as LSA in the computation

of similarity for short texts. This limitation might due to the method of building the memory ma-

trix. Possibly, the word-by-word matrix does not capture sentence meaning well, and the sentence

vector becomes diluted as large numbers of words are added to it.

Although LSA and HAL do use word co-occurrence information, their key feature is the use of

corpora, which enables them to find similarity in sentences with no co-occurring words. The main

drawbacks of these approaches at the sentence level are the failure to use syntactic information

and the sparseness of the vector representation. Besides, these methods might ignore very similar

sentences if the sentences have no words in common, and vice-versa, they might regard unrelated

sentences as being similar just because they share common words. For example:

"How old are you?" and "What is your age?"

"My neighbour has a dog with four legs." and "My neighbour has four legs."

Some researchers indicated that negations and antonyms are not processed by these approaches.

For example, "He is a teacher." and "He is not a teacher." are considered very similar. For many

previous researches about calculating short text similarity, this is considered a flaw while it is not

too important in our scenario.

There are also hybrid approaches that use both corpus-based and knowledge-based techniques.

Li tried to overcome the limitations of both techniques by forming the word vector entirely based

on the words in the compared sentences, then computing the semantic similarity by combining

information drawn from a structured lexical database and from corpus statistics [38]. Mihalcea

proposed a combined unsupervised method that uses six WordNet-based measures and two corpus-

based measures and combines the results to show how these measures can be used to derive a

short-text similarity measure [39]. The major disadvantage of this method is that it computes the

similarity of words using eight different methods, which is not computationally efficient.

Olivia proposed a syntax-based measure for short-text semantic similarity, SyMSS. SyMSS

captures and combines syntactic and semantic information to compute the semantic similarity of

two sentences. Semantic information is obtained from WordNet, and syntactic information is

8

obtained through a deep parsing process that finds the phrases that make up the sentence as well

as the phrases syntactic functions [40]. Islam and Inkpen presented a method for measuring the

semantic similarity between short texts using a corpus-based measure of semantic word similarity

and normalized and modified versions of the Longest Common Subsequence(LCS) string matching

algorithm [41].

Another area related to our task is Paraphrase Identification (PI). This process is especially use-

ful for overcoming the challenge of high redundancy in Twitter and the sparsity inherent in Twitter

users short texts. Many researchers have investigated ways of automatically detecting paraphrases

on formal texts like newswire texts. Qiu proposed a supervised, two-phase framework that detects

dissimilarity between sentences and makes its paraphrase judgement based on the significance of

such dissimilarities [42]. Das and Smith introduced a probabilistic model, which makes use of

three quasi-synchronous grammar models as components. They then combined the model with a

complementary logistic regression model based on lexical overlap features [43]. Socher, Huang,

et al. introduced a method for paraphrase detection based on recursive autoencoders (RAE). The

RAE targets vector representations. These researchers built the unsupervised RAEs based on an

unfolding objective and learned feature vectors for phrases in syntactic trees. By combining the

RAEs and a dynamic pooling layer which computes a fixed-sized representation from the variable-

sized matrices, the pooled representation is used as input to the classifier [44]. Ji and Eisenstein

designed a new discriminative term-weighting metric TF-KLD which includes the term frequency

and the KL-divergence. They then combined the latent representation from matrix factorization

as features with fine-grained n-gram overlap features in a classification algorithm to achieve the

task [45]. There are many ideas and goals that Paraphrase Identification shares with our task. First,

PI usually focuses on short texts or sentence pairs. Second, PI normally cares more about whether

two sentences are semantically identical, the degree of similarity is not that important. Our system

uses some good ideas from these studies. However, we still applied similarity measurements in our

system because some cases that can be integrated are not paraphrases. Consider a test case in the

Microsoft Research Paraphrase Corpus (MSR): "A BMI of 25 or above is considered overweight;

9

30 or above is considered obese." and "A BMI between 18.5 and 24.9 is considered normal, over

25 is considered overweight, and 30 or greater is defined as obese." These two sentences are not

considered paraphrased because there is some information missing. However, they will have a high

similarity score, and they can be integrated into our scenario.

10

Chapter 3

Methodology

To integrate semantically similar questions from multiple questionnaires efficiently, we de-

signed and developed a question classification module to subdivide all questions to coarse cate-

gories. This avoids element-wise comparison for the whole dataset, which will reduce the process-

ing time significantly. Meanwhile, to answer the second research question, we built a short text

semantic textual similarity module to measure semantic similarity between comparable question

pairs. This module combined conventional NLP techniques including both semantics and syntactic

features, and a Recurrent Convolutional Neural Network to finish the task.

3.1 Question Classification

Figure 3.1 shows the basic structure of the question classification module. This module con-

tains three parts: a feature extractor integrated with the Stanford NLP parser, a maximum entropy

classifier, and a triplet extractor. The maximum entropy classifier is used to classify question types,

mainly SBARQ (clauses introduced by subordinating conjunction). The triplet extractor [46] is for

further information extraction for SQ (Yes/No questions and subconstituents of SBARQ without

wh-elements). The reason for both parts is that, unlike the most QC datasets, almost 80 percent

of the questions in our questionnaire dataset are polar questions. Regardless of whether question

categories are coarse or grained, our system does not further classify the questions. By taking

another step and extracting triplets, subject-predicate-object, we can further narrow the question

content, and reduce the number of comparisons.

3.1.1 Feature Construction

Each question is represented as a vector of features before being fed into the ME classifier. This

section introduces four binary feature sets that are used in the model: the question word feature,

the N-gram feature, the head word feature, and the WordNet semantic feature [29].

11

Figure 3.1: Structure of Question Classification Module

3.1.1.1 Question Word Feature

The question word feature is the question word that leads the question. For example, the

question word of the question What is the population of China? is what. Therefore, we have what,

which, when, who, how, why, be, and rest. Rest is the question type that does not belong to any

previous type. For example, the question Your weight? is a rest-type question.

3.1.1.2 N-grams Feature

A N-gram is a sub-sequence of N words from a given sentence. For example, unigram is

equivalent to the bag of words feature, and bigram forms the pairs of words feature, and so forth.

We adopted unigram, bigram, and trigram features in our system. The reason to use these features

is to provide word sense disambiguation for questions such as How long do you sleep everyday?

and How long is it from your home to work? because how long could either refer to duration or

distance. This feature can help us to clarify this ambiguity.

3.1.1.3 Head Word Feature

In linguistics, the head word of a phrase is the word that determines the syntactic category of

that phrase. For example, the head of the noun phrase boiling hot water is the noun water. To

obtain the head word feature, we need to apply a syntactic parser. A syntactic parser is a model

12

Figure 3.2: The difference between Klein and Manning’s and Huang’s head word definition

that outputs the grammatical structure of the given sentence. There are various state-of-art parsers

available such as the OpenNLP parser [47], the Stanford Parser [48] and the Berkeley Parser [49].

We used the Stanford Parser in our system to identify the head word because the Stanford NLP

library provides the most complete group of NLP tasks. For further analysis, we wanted to do

tokenization, pos-tagging, syntactic parsing, dependency parsing, and other parsing tasks using

only one query in order to reduce the cost of computation, so we chose the Stanford Parser.

There are various rules developed throughout the literature to guide semantic analysis [29, 50,

51]. In particular, the rules for finding the semantic head word of phrases including SBARQ, SQ,

VP, and SINV, have been redefined such that there is a preference for using a noun or noun phrase

rather than a verb or verb phrase for this task. The difference is shown inFigure 3.2. For example,

in the question "What year did the Titanic sink?" The head word finder rules proposed by Klein

and Manning [50] will extract the verb did as the head word. On the other hand, Huang’s [29]

13

revised rules will extract the noun year as the head word. We found that the latter algorithm fit our

situation better.

In the same paper, Huang also compiled a list of regular expressions to help question head word

identification [29]. We adopted the question head word extraction algorithm proposed by Huang

and revised it a bit to suit our requirements better.

Note that we only kept two regular patterns because the rest of Huangs papers appear frequently

in QA system research, but they are rarely seen in the questionnaire area. There is no head word

returned for when, where, or why-type questions, as these wh-words are informative enough. The

reason for doing both is to reduce potential noisy information.

Figure 3.3: Revised question head word extraction algorithm

14

3.1.1.4 WordNet Semantic Feature

WordNet [52] is a large English lexicon where meaningfully related words are connected via

cognitive synonyms. It is a useful tool for word semantic analysis and has been widely used

in question classification. One of the most widely used type of information that is provided by

WordNet is hypernyms: If A is a hypernym of B, then every A is a (kind of) B. In WordNet, words

are organized into hierarchies with hypernym relationships; this process provides a natural way to

augment hypernyms features from the original head word. For example, the question What bread

did you eat today? requires knowing that baked goods are the hypernym of bread, and food is

the hypernym of baked goods (bread→baked goods→food). We adopted Huang’s first approach,

which directly introduces hypernyms for the extracted head words.

The augment of hypernyms for given head word can be useful because it can introduce useful

additional information, but on the other side, it can also bring some degree of noise if the hy-

pernyms are not well identified. Three vital points should be taken into consideration during this

process:

1) which part of speech senses should be augmented?

2) which sense of the given word should be augmented?

3) how long of the hierarchies is required to strike a balance between the generality and the

specificity?

The first issue can be resolved by mapping the Penn Treebank pos tag of the given head word

to its WordNet pos tag. The second problem is actually a word sense disambiguation (WSD) [53]

problem. The Lesk algorithm [54] is a classical algorithm for resolving the WSD problem. It is

based on the assumption that words in a given context are more likely to share a common topic. A

basic implementation of this algorithm is described as follows:

a. Choosing pairs of ambiguous words within a context.

b. Checks their definitions in a dictionary, i.e. WordNet.

c. Chooses the senses so that to maximize the number of common terms in the definitions of

the chosen words.

15

Here, the context words are words in the question other than the head word, and the dictionary

is the gloss of a sense for a given word. The algorithm in Figure 3.4 shows the adapted Lesk

algorithm:

Figure 3.4: Lesk Algorithm for head word sense disambiguation

In detail, for each sense of given head word, this algorithm computes the maximum number

of common words between gloss of this sense and the gloss of any senses of the context words.

Among all head word senses, the sense that results in the maximum number of common words is

chosen as the optimal sense for augmenting hypernyms.

Finally, we addressed the third problem in a heuristic way based on the experiments. In the

experiments described in Chapter 4, we selected a subset of training data and ran the algorithm for

depth = 1, 2, 3, 4, 5, 6. Considering the tradeoff between accuracy and time cost, 3 was chosen for

the depth of the hierarchy length to detect common sense.

16

3.1.1.5 Triplet extraction for polar questions

For this study, the triplet was the [subject, predicate, object] set extracted from a sentence.

The reason we chose these three elements as the index of a sentence is that they deliver the core

information of a sentence, and our target dataset consists of questionnaires. A questionnaire dataset

contains more polar questions (Yes/No questions) than a QA dataset. The purpose of the Question

Classification module is to reduce the number of comparisons between two datasets, so we need

to extract information to further subdivide these questions if the majority of the dataset are polar

questions.

Rusu [46] presented an approach to extracting subject-predicate-object triplets from a given

sentence. He proposed an algorithm that is simply based on English grammar and syntactic struc-

ture. There are two reasons that this algorithm fits our needs:

1) The output subject-predicate-object triplet is informative enough for further deciding whether

two polar questions have the same meaning.

2) The algorithm just analyzes the structure of syntactic parse tree of the given sentence. It

does not need any training or learning process, which will substantially reduce time cost.

We applied a revised triplet-extraction algorithm based on the syntactic parse tree produced by

the Stanford NLP parser and revised it according to our specific needs as shown in Figure 3.5.

The modification we made is that we changed the polar questions to declarative sentences first.

Then, we considered that not every sentence has an object. For example, we cannot extract an

object from the question "Did you exercise everyday?" Therefore, instead of returning a failure,

we return an empty string for the object-extraction function.

3.1.2 Maximum Entropy Classifier

We decided to select Maximum entropy models, also known as log-linear and exponential

learning models, which provide a general-purpose machine learning technique for classification

and prediction. This technique has been applied successfully to natural language processing in-

cluding part-of-speech tagging and named entity recognition.

17

Figure 3.5: Revised triplet extraction algorithm

18

For this study, we adopted the NLTK implementation in our system, which can integrate fea-

tures from many heterogeneous information sources for classification. Each feature corresponds

to a constraint within a model. The following section introduces the principle of the ME classifier.

The principle of the maximum entropy classifier, which is the basis of the maximum entropy

model, states that the probability distribution which best represents the current state of knowledge

is the one with the largest entropy.

Suppose P (x) is the probability density function of discrete random variable x, then the entropy

of P (x) is:

H(x) = −

n
∑

i=1

pi log pi. (3.1)

Assuming that the classification model is a conditional probability distributionP (y|x), x ∈

X ⊆ Rn, represents the input, y ∈ Y represents the output, X, Y is the input set and output set,

respectively. The purpose of this model is to, for the given input x, output y according to the

conditional probability P (y|x).

For a given training dataset,

T = (x1, y1) , (x2, y2) , ..., (xN , yN) (3.2)

The purpose of training is to select the best classification model based on the maximum entropy

principle. For the given dataset, we can obtain the empirical distribution of joint distribution and

marginal distributions. We use the feature function fi(x, y) to describe a fact that occurs between

x and y:.

f(x, y) =

1, x and y satisfy some fact

0, otherwise
(3.3)

The expected value of feature function f(x, y) on the model P (y|x) and the empirical distribu-

tion P̃ (x, y), denoted as Ep̃(f).

19

Therefore, if x ∈ {x1, x2, ..., xn}, y ∈ {y1, y2, ..., ym} is discrete random variable, given X , the

conditional entropy of Y can be defined as:

H(y |x) =
n

∑

i=1

p(xi)H(y |x = xi) = −
n

∑

i=1

p(xi)
m
∑

j=1

p(yj |xi) log p(yj |xi). (3.4)

Based on knowing the above, the maximum entropy model is the model within model set C

that satisfies all constraints:

C ≡ {P ∈ P |Ep(fi) = Ep̄(fi), i = 1, 2, ..., n} . (3.5)

The model with the maximum conditional entropy H(P) is then called the maximum entropy

model.

3.2 Short-Text Semantic Textual Similarity

After we have done the question classification, we can pass the questions that share the same

category to the short-text semantic textual similarity module. Figure 3.6 shows the structure of this

module. It contains two sub-modules:

Conventional NLP Module extracts NLP features using some traditional NLP techniques. For

the features that are independent of each other, like the Bag-of-Words feature, we first represented

each sentence with these features and then adopted the kernel-based method to calculate the sim-

ilarity of a pair of sentences. On the other hand, features that are calculated from two sentences,

such as the N-gram overlap feature, can be simply calculated from directly. Both types of features

together are poured into regression algorithms to make predictions.

Deep Learning Module encodes input sentence pairs into distributed vector representations.

There are multiple widely used trained vectors like Word2Vec [55] and GloVe [56], which we used

to train the end-to-end Recurrent Convolutional Neural Networks to obtain similarity scores.

The final similarity score generated by this process is the average of the above two sub-modules

scores. In the next section, we will describe the system in detail.

20

Figure 3.6: Structure of Semantic Textual Similarity

3.2.1 Conventional NLP Module

3.2.1.1 Feature weighting

In the process of feature construction, prior research showed that reweighting the counts of

some distributional features will improve the paraphrase detection.

TF-IDF is a numerical statistic that is intended to reect how important a word is to a docu-

ment in a corpus. The TF-IDF value is the product of two statistics: term frequency and inverse

document frequency. This combination makes the TF-IDF value increase proportionally to the

number of times a word appears in the document, and it is offset by the frequency the word in the

21

corpus. There are various schemes for calculating these two statistics, noting that the document in

the dataset is a single question. Therefore, we used Boolean frequencies as the term frequency as

follows: tf(t, d) = 1 if t occurs in d, and idf(t,D) = log(1 + N
nt

), where N stands for the total

number of documents (questions) in the corpus, and nt stands for the number of documents where

the term t appears. At last, the TF-IDF value can be represented as:

TF -IDF (t, d,D) = tf(t, d) · idf(t,D). (3.6)

3.2.1.2 Corpus-based Features

The corpus-based features are the features that are related to the whole corpus. They are bag-

of-word features and bag-of-dependency features. After calculating these features, we will apply

several kernels to the sentence pair to reduce the dimensionality of the features.

Bag of Words

Each question is represented as the bag of its words, disregarding grammar and word order, but

keeping multiplicity. Also, we weighted each word by its TF-IDF value.

Bag of Dependency

For each sentence, we interpreted its dependency tree as a set of triples: [governor, dependency−

label, subordinate]. This feature is similar to the BOW feature in that we treat triples as words

and represent each sentence as a bag of dependency-triples.

Dimensionality Reduction

The dimensionality of the features constructed above from BOW and BOD is huge (approxi-

mately more than 70K features), and the high dimensionality suppresses the discriminating power

of other features. In the latter part of the paper, we will see that the dimensionality of features

constructed from a sentence pair (less than 100) and the deep learning network (less than 1K) is

much smaller in our system. In order to reduce the high dimensionality of corpus-based features,

22

Table 3.1: List of 10 kernel functions

Type Measures

Linear kernel Cosine distance, Manhattan distance, Euclidean distance, Chebyshev distance

Stat kernel Pearson coefficient, Spearman coefficient

Non-linear kernel polynomial, rbf, laplacian, sigmoid

we used 10 kernel functions to calculate sentence pair similarities. Table 3.1 lists all the kernel

functions we used in this module. In total, we collected 20 corpus-based features after dimension

deduction.

3.2.1.3 Pair Features

Three types of sentence pair matching features are designed to directly calculate the similarity

between two questions based on the N-gram overlap, syntactic structure overlap, and WordNet-

Augmented word overlap.

N-gram Overlap Features

Let S1 and S2 be the sets of consecutive N-grams in the first and the second questions respec-

tively. The N-gram overlap feature is defined as follows [57]:

ngo(S1, S2) = 2×

(

|S1|

|S1 ∩ S2|
+

|S2|

|S1 ∩ S2|

)−1

(3.7)

We obtained N-grams at the lemmatized word level. We applied n = [1, 2, 3] and collected 3

features.

WordNet-Augmented Word Overlap

The N-gram overlap feature will output a high similarity value only if exactly the same words (or

lemmas) appear in both questions. To allow for some lexical variation, we used WordNet to assign

partial scores to words that are not common to both questions. We used the definition provided by

Šarić [57]:

23

PWN(S1, S2) =
1

|S2|

∑

w1∈S1

score(w1, S2) (3.8)

score(w, S) =

1 if w ∈ S

max
w′∈S

sim (w,w′) otherwise

(3.9)

where sim(·, ·) represents the WordNet path length similarity. The overall feature is defined as

the harmonic mean of PWN (S1, S2) and PWN (S2, S1).

Syntactic Structure Overlap Features

N-gram, BOW, and other features discussed above are purely lexicon-based approaches, which

are often inadequate for performing more complex tasks involving the use of more varying syntac-

tic structures. In order to use more structural or syntactical information and capture higher order

dependencies between grammar rules, we adopted Wangs [58] syntactic tree matching algorithm,

which originated from Collinss [59] approach.

According to Zhangs [32] definition, the tree fragments of a syntactic tree are all of its sub-

trees that include at least one terminal word or one production rule, with the restriction that no

production rules can be broken into incomplete parts. Wang proposed the following weighting

schemes for the tree fragments:

Preliminary 1: The weighting factor δi denotes the importance of node i in the parsing tree.

Its value differs for different types of nodes:

• δi = 1.2, where node i is either the POS tag VB or NN.

• δi = 1.1, where node i is either the POS tag VP or NP.

• δi = 1, for all other types of nodes.

This preliminary came from the intuition that nouns and verbs are considered to be more important

than other types of terms.

24

Preliminary 2: The weighting coefficient θk for tree fragment k conveys the importance of the

tree fragment, whose value is the production of all weighting factors of node i that belong to the

tree fragment k, i.e. θk =
∏

i∈fragment k δi

This preliminary means that the more important nodes a tree fragment contains, the more im-

portant this tree fragment is.

The next two preliminaries define the size of sub-tree Si and its weighting factor λ, together

with the depth of the sub-tree Di and its weighting factor µ as follows:

Preliminary 3: The size of the tree fragment Si is defined by the number of nodes that it

contains. The size of the weighting factor λ is a tuning parameter indicating the importance of the

size factor.

Preliminary 4: The depth of the tree fragment Di is defined as the level of the tree fragment

root in the entire syntactic parsing tree, with Droot. The depth weighting factor µ is a tuning

parameter indicating the importance of the depth factor.

Given the parameters listed above, Wang gave the following weighting scheme for the tree

fragment:

Definition 1: The weight of a tree fragment wi is defined as θiλSiµDi, where θi is its weighting

coefficient, Si is the size of the sub-tree, λ is the size weighting factor, Di is the depth of the

sub-tree, and µ is the depth weighting factor.

Based on the weighting scheme of tree fragments above, Wang proposed an algorithm to cal-

culate the weight of matching tree fragments along with similarity metrics.

Preliminary 5: If two tree fragments TF1 and TF2 are identical, the weight of their resulting

matching tree fragment TF is defined to be:

w(TF) = w(TF1)w(TF2) (3.10)

From here, we can calculate the overall matching score between two nodes r1 and r2 to be the

multiplication of the weights of all matched tree fragments under the roots of r1 and r2:

25

M(r1, r2) =

0 if r1 ̸= r2

∏η
i=1 w (TFi(r1, r2)) otherwise

(3.11)

where r1 ̸= r2 stands for the fact that either labels or production rules for r1 and r2 are different.

TFi(r1, r2) is the i-th matching tree fragment under r1 and r2, and η is the total number of tree

fragments.

After calculating the node matching score between two nodes, we are able to find the simi-

larity score between the two syntactic parsing trees T1 and T2. By traversing the parsing trees in

post-order and calculating the pair-wise node matching scores, we can get a |T1| × |T2| matrix

of M(r1, r2). The summation of all scores is used to represent the similarity score between two

parsing trees as follows:

sim(T1, T2) =
∑

r1∈T1

∑

r2∈T2

M(r1, r2) (3.12)

and the normalized similarity score would be

sim2(T1, T2) =
sim(T1, T2)

√

sim(T1, T1)sim(T2, T2)
(3.13)

By applying a dynamic programming technique, we can calculate the final similarity score

between two parsing trees in polynomial time.

3.2.1.4 Regression Models

The modules above generated 14 features altogether. Next, we explore four learning algorithms

for regression: Random Forests (RF), Support Vector Machine (SVM), Gradient Boosting (GB),

and XGBoost (XGB). The first three algorithms are available in the Scikit-Learn [60] library and

XGB [61] is open source and accessible on Github.

26

3.2.2 Recurrent Convolutional Neural Network

The conventional approach to measuring similarity between texts as described above is lim-

ited because some of processes lose the order information and some of them ignore the context.

Consider, for example, the following sentence:

A sunset stroll along the South Bank affords an array of stunning vantage points.

To analyze the word Bank in the sentence, we cannot identify its correct meaning if we isolate

this word. A bank can be either a financial institution or sloping land. Therefore, we need to

include more context to achieve disambiguation. If we see one word ahead and get the South Bank

bi-gram, we can see that both words are capitalized. People who are unfamiliar with London may

think this is the name of a bank. However, by analyzing enough contextstrolling along the South

Bankwe can ensure that it means the name of a location, and it has nothing to do with the bank.

Recently, pretrained word vector and deep learning models have introduced new approaches

to NLP tasks. Socher [44, 62, 63] proposed a process for building Recursive Neural Networks.

This approach has proved to be effective for semantic construction at the sentence level. However,

building a recursive neural network requires a tree structure to process semantic construction, and

the quality of the network depends strongly on the accuracy of the tree. Moreover, to construct the

textual tree requires at leastO(n2) time complexity, where n stands for the length of the sentence.

Finally, when representing documents, the relationship between two sentences does not always

form a tree structure, which makes semantic construction difficult.

A Recurrent Neural Network (RNN) can finish semantic construction in O(n) time. This model

processes the whole document word by word, and it saves all context information to a fix-sized

hidden layer. The advantage of an RNN is that it can capture the context information and process

on the long-distance context better than conventional approaches. However, for a forwarding RNN,

for instance, the posterior words will have more importance than the anterior ones. Therefore, the

RNN will consider more of the information from the latter part when building semantics for the

whole document. However, because not all documents will emphasize the latter part, the algorithm

of the RNN may affect the accuracy of semantic representation.

27

To deal with the problem encountered by RNNs„ Collobert [64] proposed a Convolutional

Neural Network (CNN) to build the semantic representation. By using a max-pooling technique,

a CNN can find the most useful textual section, and the time complexity is also O(n). Therefore,

a CNN usually performs better on semantic representation. However, the current CNN model

usually applies a relatively simple convolutional kernel, like a fixed input window [64, 65]. When

using these models, the method of determining the window size is crucial. When the window is

too narrow, the context information may be insufficient. While when the window size is too large,

it will lead to the increase of the parameters, which increases the difficulty of model optimization.

To resolve the defects above, Lai [66] proposed a Recurrent Convolutional Neural Network

(RCNN). This approach first applies a bi-directional recurrent structure, which may introduce con-

siderably less noise compared to a traditional window-based neural network, to capture the contex-

tual information to the greatest extent possible when learning word representations of texts. The

next step employs a max-pooling layer that automatically decides which features play key roles

in text classification to capture the key component in the texts. By combining these two features,

an RCNN has the advantages of both an RNN and a CNN, so an RCNN depicts context informa-

tion better and provides an unbiased representation of the whole document. Moreover, the RCNN

model shows a time complexity of O(n), which is linearly correlated with the length of the text

length.

3.2.2.1 Background: Deep Learning Models

Recursive Neural Network

The structure of the Recursive Neural Network model is shown inFigure 3.7.The concept follows

a tree structure, summarizing the word semantic representation to phrases and finally achieving the

whole sentences semantic representation.

The Recursive Neural Network usually uses a binomial tree, in some cases (like the dependency

parse tree [67]) a multinomial tree is used. Now we would like to introduce the Recursive Neural

28

Figure 3.7: The Structure of Recursive Neural Network

Network by demonstrating the methods for constructing the tree structure and the composition

function y = f(a, b) from the child node to the parent node.

There are two common ways to build the tree: 1) Use a parser to build a syntax tree [44, 63]or

2) use a greedy algorithm to rebuild the neighbor child subtree that has the smallest error [62].

Using a semantic parser will ensure that the tree structure is a syntax tree. Each leaf in the tree will

respond to a word in the sentence. The node after composition will also represent the phrases in

the sentence. The second approach, which is also unsupervised, can automatically find the pattern

in the data, but it cannot ensure that each node in the tree has an actual syntactic meaning.

There are generally three types of composition function y = f(a, b) from child node to parent

node:

a. Syntax-based

Child node is represented as vector a, b, and parent node can be calculated thusly:

y = φ(H[a; b]) (3.14)

29

where φ stands for non-linear activation function, and weighting matrix H can either be fixed

[68], or varied based on the different syntax structure. This method is often used in syntax

analysis.

b. Matrix-based

In vector-based method, each node is represented by two parts: a matrix and a vector. For [A, a]

and [B, b] child nodes, the composition function is as follows:

y = φ(H[Ba,Ab]) (3.15)

Y = WM

A

B

(3.16)

where WM ∈ R|a|×2|a|, which ensures that the semantic transformation matrix corresponding to

the parent node Y ∈ R|a|×|a| has the same dimensionality as the matrix A, B. Each word has

a semantic transformation matrix in this method. For the words that affect other parts of the

sentence, like the negation words, the normal syntax-based method cannot accurately depict the

relations. The matrix-based method can resolve this problem.

Recurrent Neural Network

The Recurrent Neural Network (RNN) model was first proposed by Elman in 1990 [69]. The

idea is to recurrently input each word in the document while building a hidden layer that keeps all

of the context information.

The RNN model is a special case of a Recursive Neural Network. It can be seen as a tree where

the left child of each non-leaf node is a leaf node. This special structure produces two important

characteristics. First, since the network structure is fixed, the model only needs O(n) time to

build the semantics, which is much more efficient than the Recursive Neural Network. Second,

the RNN structure is very deep. The depth of the network is equivalent to the number of words

30

in the sentence. Therefore, the traditional training method does not work on RNN because of

the vanishing or exploding gradient problem, which needs to be resolved by special optimization

techniques.

(a) Recurrent Structure (b) Expanded Recurrent Structure

Figure 3.8: Structure of Recurrent Neural Network

The semantic construction process of the RNN model is similar to that of the Recursive Neural

Network model. Each word and all of the hidden layers representing its left-side context together

form the new hidden layer (structure is shown in Figure 3.8, and equation is shown in Eq.3.17).

The process moves from the first word of the sentence to the last, and the hidden layer of the last

word represents the whole text semantics.

h(i) = φ (H[e(wi);h(i− 1)]) (3.17)

Regarding optimization techniques, there are differences between the RNN and other neural

networks. For normal neural networks, a back-propagation algorithm can be implemented easily

with the help of the chain rules of derivatives. However, in the RNN, the weighing matrix H is

reused, so directly differentiating the matrix is difficult. One naïve method is Back-propagation

Though Time (BPTT). In this method, we first expand the network to the format as shown in Fig-

ure 3.8(b). For each level, the model uses the normal BP technique to update each hidden layer and

31

repeatedly update the weighing matrix H . There are several ways to deal with the vanishing gradi-

ent problem. The most straightforward method is that when using BPTT to optimize the network,

only propagate for a fixed-sized length (5 levels, for example). Hochreither and Schmidhuber[43]

proposed the Long Short-Term Memory (LSTM) model in 1997. This model introduces a memory

cell, which can save long distance information, and it is a widely-used optimization scheme.

However, regardless of how the model is optimized, the semantics in the RNN are more likely

to lean to the latter part. Therefore, the RNN model is rarely applied to represent the whole

documents semantics. Because it can effectively represent the context information, this model is

more commonly seen in the sequence labeling task.

Convolutional Neural Network

The Convolutional Neural Network (CNN) approach was first proposed by Fukushima in 1982

[70]. Then, LeCun added an important improvement in 1998 [71]. The CNN model is widely

used in natural language processing. Collobert first applied it to a semantic labeling task [64].].

Kalchbrenner and Kim presented work using a CNN for text classification [72, 73].

The structure of CNN is shown in Figure 3.9. The core concept is local connection and weight

sharing. In a normal feedforward neural network, each node in the hidden layer has full connection

with all of the nodes in the input layer. While in the CNN, each node in the hidden layer only has

connections to a fixed-sized area in the hidden layer. The size is denoted as wind (stands for

window). For instance, the structure in the figure has wind = 3. It can be formulated as follows:

xi =
[

e(wi−⌊wind/2⌋; · · · ; e(wi); · · · ; e(wi+⌊wind/2⌋)
]

(3.18)

h
(1)
i = tanh(Wxi + b) (3.19)

After building several hidden layers, the CNN usually applies a pooling technique to compress

the hidden layers with various sizes to a fixed-size hidden layer. Commonly used techniques are

average-pooling and max-pooling. The max-pooling formula is

32

Figure 3.9: The Structure of Convolutional Neural Network

h(2) =
n

max
i=1

h
(i)
i (3.20)

By using a convolutional kernel, a CNN can model different parts of a sentence and achieve

the full semantics from all local nodes with the help of the pooling layer. Also, the overall time

complexity is only O(n).

3.2.2.2 Applying Recurrent Convolutional Neural Network

There are some attempts to combine the Recurrent Neural Network and the Convolutional

Neural Network called the Recurrent Convolutional Neural Network. This model can have the dual

advantages of the RNNs ability to consider long enough context and the CNN models unbiased

nature and easy training. Siwei Lai [66] proposed an RCNN model to build document semantics.

The figure below shows the network structure he proposed. The input of the network is document

D, which consists of a word sequence w1, w2, · · · , wn. The number of the output node is 2, which

33

corresponds to whether two questions are identical or not. We use P (I|Qa, Qb, θ) to represent

whether question a and question b are identical, and θ is the parameters of the network.

Lai combined the word and its context to represent the word itself. The context can help with

disambiguation to achieve more accurate semantics. This process uses a bi-directional recurrent

structure. We modified it for the purpose of calculating sentence pair similarity.

We define that cl(wl) is the left-side context semantic representation for the word wi, cr(wi) is

the right-side context representation for the word wi. Both cl(wi) and cr(wi) are dense real vectors.

The dimensionality is |c|. The formula for cl(wi) is shown below:

cl(wi) = φ
(

W (l)cl(wi−1) +W (sl)e(wi−1))
)

(3.21)

Here e(wi−1) is the word vector for the word wi−1.The word vector is also a real vector with low

dimensionality |e|. All left-side context cl(w1) for the first word w1 is shared between sentences.

W (l) is a matrix that transforms the hidden layer from the previous words left-side context into the

current one. W (sl) is a matrix that is used to combine the previous word vector with the current

word vector. φ is a non-linear activation function. The formula for right-side context representation

is similar:

cr(wi) = φ
(

W (r)cr(wi+1) +W (sr)e(w(i+1))
)

(3.22)

The left-side and right-side context vectors, respectively, can capture the semantic information.

After getting the context information for the word wi. We can define the word representation xi to

be the concatenation of the word s left-side context vector cl(wi), the word wis word vector e(wi),

and the word wis right-side context vector cr(wi):

xi = [cl(wi); e(wi); cr(wi)] (3.23)

The recurrent structure helps us to acquire all left-side context representations cl with only one

forward scanning. Similarly, with one backward scanning, we can acquire all right-side context

34

representations cr. Therefore, the time complexity of the whole process is O(n). Meanwhile, this

recurrent structure will perform better than a CNN because it contains more context information

than the fixed-size window approach used in CNN.

After acquiring xi for the word wi, Lai applied a linear transformation but instead of the tanh

activation function, we applied ReLU (Rectified Linear Units) as our activation function:

yi = ReLU
(

W (2)xi + b(2)
)

(3.24)

ReLU(x) =

x if x > 0

0 if x < 0

(3.25)

where yi is a latent semantic vector, in which each semantic vector will be analyzed to de-

termine the most important factor for representing the text by the convolutional neural network.

When all of the representations of words are calculated, a max-pooling layer is applied:

y(2) =
n

max
i=1

yi (3.26)

The max function is an element-size function, which means the k-th element of y(2) is the

maximum in the k-th elements of . The reason to adopt a max-pooling layer is that we thought

for the textual information retrieval, the key information usually relies on a few words or phrases

and their combination. The max-pooling layer attempts to find the most important latent semantic

factors in the document. Moreover, the time complexity of the pooling layer is also O(n), which

makes the overall model have the time complexity O(n).

Figure 3.10 shows the structure of the network. The input to the network is a pair consisting

of sentences a and b. After being processed by the convolutional layer and max-pooling layer, two

sentences with varying lengths are converted into fixed-length vectors. With the pooling layer, we

can make a comparison between sentence pairs:

35

Figure 3.10: The Structure of Recurrent Convolutional Neural Network

y(3) = |y(2)a − y
(2)
b | (3.27)

The last part of our model is an output layer. Similar to traditional neural networks, it is defined

as follows:

y(4) = W (4)y(3) + b(4) (3.28)

At last, we applied the softmax function to y(4), which converts the output numbers into proba-

bilities:

P (I|Qa, Qb, θ) =
exp

(

y
(4)
i

)

∑n
k=1 exp

(

y
(4)
k

) (3.29)

36

3.2.2.3 Model Training

The training target is to maximize the following likelihood, where Q is the training questions

pairs set, and stands for whether the questions are identical or not:

θ 7→
∑

Q∈Q

logP (I|Q, θ) (3.30)

The model applies the stochastic gradient descent method [74] to optimize the training process

above. For each iteration, the model randomly select a sample (Q, I), process a gradient iteration

according to formula below, where α is the learning rate.

θ 7→ θ + α
∂ logP (I|Q, θ))

∂θ
(3.31)

Additionally, we use a trick proposed by Plaut and Hinton [75] that is widely used when train-

ing neural networks. The model will initialize all of the parameters in the neural network from a

uniform distribution. The magnitude of the maximum or minimum equals the square root of the

node number from the previous layer.

37

Chapter 4

System Architecture and Evaluation

The overall structure of the whole system is shown in Figure 4.1. We used a Python wrapper

for Stanford CoreNLP, py-corenlp [76] to communicate with the Stanford CoreNLP Server. For

each sentence, the Stanford CoreNLP Server returns the lemmatized and tokenized texts as well

as the syntax parse tree and dependency parse tree. The Question Classification Module classifies

wh-questions into different question types and polar questions into different triplet sets. We used

PySpark, a python implementation of Spark, to send questions in the same group to the same node.

Then within each node, we combined question pairs, sent those pairs to the semantic similarity

module, and calculated the final predicted similarity score. At last, we used 10 machines to build

the Spark cluster. Each machine has 8×2.6G CPU and 32GB memory.

Figure 4.1: Overall Structure of the System

The main problem is that our task is a real-world challenge and there is no golden answer for

the identification result. To resolve this problem, we decided to use existing datasets from other

sources to train and evaluate the system, and then apply the NLSY and Add Health dataset to it

to see the outcome. No matter how the second experiment performs, the first one will, to some

extent, show the quality of the system.

38

4.1 Question Classification Module

We put the structure of the question classification module again here just for reference. The

following two sections show how we setup the experiment and the evaluation results.

Figure 4.2: The Structure of Question Classification Module

4.1.1 Experiment Setup

4.1.1.1 Preprocessing

All input from the corpus is preprocessed via py-corenlp with Stanford CoreNLP 3.8.0. Each

question is lemmatized and tokenized. We also return the syntactic parse tree and dependency

parse tree for the use of the Semantic Similarity Module. Each entry contains the preprocessed

sentences and their syntactic or dependency trees. The system will first calculate the corpus-

related features: N-gram dictionary, Dependency-triplet dictionary, and TF-IDF value dictionary.

These values are maintained with the processed-texts and related parse tree and then passed to the

Semantic Similarity module.

39

4.1.1.2 Training

For the ME classifier in the question classification module, we adopted Experimental Data for

Question Classification [77] proposed by Li [1]. It contains about 15,000 questions with predefined

classes. The distribution of the dataset is shown in the Table 4.1.

Table 4.1: Experimental Data Description

Class # Class # Class # Class #
ABBREV. 241 letter 30 description 774 NUMERIC 2480

abb 46 other 2089 manner 766 code 22
exp 195 plant 38 reason 543 count 985

ENTITY 3682 product 130 HUMAN 3424 date 650
animal 365 religion 9 group 529 distance 86
body 54 sport 165 individual 2691 money 183
color 119 substance 124 title 67 order 15

creative 595 symbol 31 description 137 other 154
currency 6 technique 111 LOCATION 2376 period 197
dis.med. 291 term 271 city 376 percent 82

event 173 vehicle 68 country 425 speed 36
food 266 word 71 mountain 67 temp 15

instrument 37 DESCRIPTION 3304 other 1307 size 275
lang 45 definition 1221 state 201 weight 23

4.1.1.3 Testing

The triplet extractor is syntax-based, and it is processed independently of the actual dataset.

Once the ME classifier was trained, we applied another dataset from the Quora Question Pairs

Datasets [78] for testing the QC module. The dataset consists of over 400,000 lines of potential

question duplicate pairs. For the testing purpose, we randomly sampled 3,000 pairs of the question

pairs that are already marked duplicated. This empirical evaluation measured how many question

pairs were successfully categorized into the same group using the ME classifier.

40

Table 4.2: Experimental Data for Question Classification Result

Type #Quest
wh + head word + unigram + wordnet

6 classes 50 classes 6 classes 50 classes 6 classes 50 classes
what 1322 86.4 84.2 87.1 85.3 88.9 86.2

which 102.6 90.3 89.9 92.3 92.1 95.4 94.2
when 392.2 100 93.1 100 94.3 100 95.6
where 356.6 94.3 92.6 95.2 93.5 96.3 93.1
who 233.8 91.1 90.2 94.2 92.3 94.2 92.3
how 488.3 95.3 83.7 96.7 85.1 96.7 89.8
why 94.2 100 100 100 100 100 100
rest 10.3 77.1 43.2 78.7 43.2 78.7 43.2
total 3000 91.46 87.3 92.42 88.51 93.45 89.87

4.1.2 Experiment Results

Huang [29] measured the contribution of individual feature types. His results showed that the

wh-word and word features are highly related to the model accuracy. Also, unigram performed

much better than bigram and trigram. The WordNet Direct hypernym performed better than the

indirect hypernym.

Based on our literature summary, we selected wh-word and head word features as the baseline

and incrementally added the unigram feature and WordNet direct hypernym feature. Table 4.2

shows the question classification accuracy of the ME classifier. We repeated the process 10 times

and averaged the measures. The baseline using the wh-word and head word provided 91.46%

accuracy for the coarse classes and 87.3% for the fine classes. Adding unigram and WordNet

features increases accuracy 0.96% and 1.03%, respectively, for the coarse classes and 1.21% and

1.36%, respectively, for the fine classes. The best accuracy achieved for 6 classes was 93.45%, and

for 50 classes it was 89.87%. We made conclusions similar to Huang, in that our results indicated

that these features all positively contribute to the model prediction.

Table 4.3 shows the results of the experiment evaluated on the Quora Question Pairs Dataset.

We sampled 3,000 question pairs which were only wh-questions, in order to test the ME classifiers

accuracy. We observed that the ME classifier performed better predicting 5 classes than 30 classes,

which is natural because the chance to be classified in different classes will be lower with a smaller

41

Table 4.3: Overall Performance for ME Classifier on Quora Dataset (10 times)

#Total Pairs
5 Classes 30 classes

Correct Pairs Accuracy Correct Pairs Accuracy
3000 1420 94.67% 1249 83.27%

Table 4.4: Polar Questions Classification Result

of Pairs subject subject+predicate subject+predicate+object

1,000

Set Number 64 Set Number 227 Set Number 493
Max Set Size 42 Max Set Size 10 Max Set Size 7
Mean Set Size 15.63 Mean Set Size 4.41 Mean Set Size 2.03
Min Set Size 3 Min Set Size 1 Min Set Size 1
Correct Pairs 916 Correct Pairs 747 Correct Pairs 311

Accuracy 91.60% Accuracy 74.70% Accuracy 31.10%

number of classes. The accuracy for 5 classes was 94.67%, and it was 83.27% for 30 classes. The

unsuccessful categorizations are mainly due to the following issues: 1) There is inherent ambiguity

in classifying a question; 2) there is inconsistent labeling in the training data and test data; and 3)

the parser can produce an incorrect parse tree, which would result in wrong head word extraction.

We also sampled 1,000 duplicate polar questions from the Quora Question Pairs Dataset to test

the practicability of the triplet extractor. The result is shown in Table 4.4. Our classification module

performed differently based on the level of information that was used for triplet indexing. We can

find the details of different classification performances using the triplet as the key. If we only

categorize the questions by subject, 124 different sets are grouped, and the rate for successfully

categorizing two questions to the same set is 91.60%. If we use [subject, predicate] as the key, on

the other hand, the set number increases by 103, but the correct pairs classified decreases by 169.

Moreover, if we further include object, the set number increases by 266, but the accuracy decreases

from 74.7% to 31.1%. Therefore, as we increase the amount of information that has been used for

indexing, our model showed more bias.

Apart from the accuracy for these two parts, we would like to calculate the time difference

before and after we applied the system. The table below shows that the comparison times after

the coarse classes classification are only 21.66% of the number of comparison times without clas-

42

Table 4.5: Latencies of WE classifiers (3000 pairs)

without classification 5 classes 30 classes

times times cost percent times cost percent
9000000 1949230 21.66% 407552 4.53%

Table 4.6: Latencies of Triplet Extractor

w/o classification subject subject+predicate subject+predicate+object

times times cost percent times cost percent times cost percent
1000000 112896 11.29% 22700 2.27% 24157 2.42%

sification, and the number of comparison times for the fine classes classification is just 4.53% of

comparison times without classification.

For polar questions, note that the sets grouped by different keys are not evenly distributed.

Usually there are several sets that contain many more questions than others. For example, if we

only use subject as the group key, then the words I, You, and It will have more candidates than

others. To calculate the approximate comparison times, we just use the max set size as the set size.

This will guarantee the upper bound of the time cost. The calculation result is shown in Table 4.6.

These results show that, even when we treat each set as the maximum size, the time saved using

the triplet is large. They also suggest that it may be preferable to just use subject as the group key

because it already saves enough time and including predicate and object will lower the accuracy.

The classification results for the Quora Question Pairs Dataset are shown in Table 4.7.

43

Table 4.7: Classification Results for Quora Question Pairs Dataset

Class # Correct # Percentage Class # Correct # Percentage
ABBREV. 124 60 96.77% ENTITY 921 438 95.11%

abb 55 20 72.73% animal 27 11 81.48%
exp 69 20 57.97% body 23 9 78.26%

DESCRIPTION 782 385 98.47% color 28 13 92.86%
definition 234 110 94.02% creative 10 2 40.00%

description 289 130 89.97% currency 21 10 95.24%
manner 199 92 92.46% dis.med. 35 16 91.43%
reason 60 30 100.00% event 113 43 76.11%

HUMAN 349 153 87.68% food 64 30 93.75%
group 100 42 84.00% instrument 37 12 64.86%

individual 129 48 74.42% lang 28 13 92.86%
title 67 20 59.70% letter 10 3 60.00%

description 53 21 79.25% other 282 120 85.11%
LOCATION 492 234 95.12% plant 11 2 36.36%

city 174 74 85.06% product 42 13 61.90%
country 123 57 92.68% religion 19 6 63.16%

mountain 67 22 65.67% sport 53 25 94.34%
other 107 40 74.77% substance 37 15 81.08%
state 21 7 66.67% symbol 3 0 0.00%

NUMERIC 332 150 90.36% technique 23 11 95.65%
code 23 10 86.96% term 34 16 94.12%
count 10 3 60.00% vehicle 14 6 85.71%
date 17 7 82.35% word 7 2 57.14%

distance 49 20 81.63%
money 43 20 93.02%
order 15 3 40.00%
other 58 22 75.86%

period 20 9 90.00%
percent 43 20 93.02%
speed 12 6 100.00%
temp 13 5 76.92%
size 12 5 83.33%

weight 17 8 94.12%

44

4.2 Semantic Similarity Module

We performed experiments to calculate the Semantic Similarity of question pairs. Instead of

using the question pairs from the evaluation of the QC module, which is aligned with the actual

data pipeline, we evaluated the model on unrelated multiple question/sentence pair datasets. The

structure of the module is illustrated in Figure 4.3 for convenience.

Figure 4.3: The Structure of Semantic Similarity Module

45

4.2.1 Experiment Setup

4.2.1.1 Datasets

To train and evaluate the Semantic Similarity module, we adopted datasets from multiple

sources. In addition to the Quora Question Pairs dataset, we used the Microsoft Research Para-

phrase Corpus [79], and the Sentences Involving Compositional Knowledge (SICK) dataset [80].

The Microsoft Research Paraphrase Corpus contains 5,801 pairs of sentences with 4,076 pairs

for training and the remaining 1,725 pairs for testing. The training set contains 2,753 true para-

phrase pairs and 1,323 false paraphrase pairs; the test set contains 1,147 true and 578 false para-

phrase pairs.

The SICK dataset consists of 9,927 sentence pairs with 4,500 for training, 500 as a development

set, and the remaining 4,927 in the test set. The sentences are drawn from image video descriptions.

Each sentence pair is annotated with a relatedness score ∈ [1, 5], with higher scores indicating that

the two sentences are more closely-related.

4.2.1.2 Preprocessing

For the whole system, there is no need for preprocessing because the texts have already been

preprocessed in the QC module. However, because both the QC module and the Semantic Similar-

ity module are trained and tested separately, we have the similar preprocessing steps here. Before

passing the data to the system, we use the Stanford CoreNLP Library to do lemmatization, tok-

enization, syntax parse, and dependency parse. Also, we use NLTK to calculate TF-IDF value for

each word in advance.

4.2.1.3 Recurrent Convolutional Neural Network Setup

For the RCNN model, word vector, as a distributional word representation, is more appropriate

as the input to the neural network. There are several pretrained word vectors. Word2Vec [55],

GloVe [56] and Paragram [81]. Here we selected the most popular, Word2Vec, as the initial word

vector in our model.

46

The hyperparameter of the neural network should be tuned based on different datasets and

scenarios. We chose the most commonly used parameters. Specifically, we set learning rate,

α = 0.01, number of hidden layers H = 100, the dimensionality of word vector, |e| = 300, and

the dimensionality of context vector, |c| = 50.

4.2.2 Experiment Evaluation

4.2.2.1 Conventional NLP Module

Table 4.8 shows the features evaluation for the conventional NLP module. The model trained

with BoW features shows reasonable accuracy, just over 76%. Overall, the model trained with

BoD and syntactic features shows relatively low accuracy. We thought the reason is that BoD

and syntactic features are more helpful when combined with word-based features such as BoW,

N-gram, and similar features, and using these features alone does not provide important semantic

information. However, adding these features improved the performance. As shown in Table 4.8,

adding the BoD feature to the BoW feature increased the model accuracy by 1.18% on the Quora

dataset with RF classifier. Adding N-grams and syntactic features to WordNet Word Overlap

features increased the accuracy by 5.15%. Our experiment showed that using all features including

BoW, BoD, N-gram, syntactic, and WordNet-augmented features had the best performance. This

was the case because our features were designed to reect distinctive aspects of the data that were

highly related to the similarity. N-gram and BoD features focused on the context information, and

the syntactic structure overlap feature targeted POS tag information.

We also found that the SVM classifier did not provide high accuracy in our context. This result

might be because the SVM classifier is more sensitive to noise during data collection, and the

Quora dataset is labeled by customers, so there is no guarantee that the duplicate labels are always

correct. That the SVM classifier performed worse over the Quora dataset than over the MSR and

SICK datasets supports this argument. Moreover, we did an experiment on the performance of the

SVM classifier. The results shown in Table 4.9 indicate that the model without the SVM classifier

can achieve higher accuracy. Therefore, we did not apply the SVM classifier in our system.

47

Table 4.8: Feature Evaluation for Conventional NLP Module

Quora MSR

RF SVM GB XGB RF SVM GB XGB

Single
features

BoW features 0.7618 0.5663 0.7398 0.7823 0.7297 0.5608 0.6579 0.6731
BoD features 0.6204 0.4275 0.5726 0.558 0.5646 0.4309 0.5972 0.5446

N-gram
Overlap Features

0.6679 0.5302 0.716 0.7613 0.6831 0.4449 0.6318 0.6654

Syntactic Structure
Overlap Features

0.5045 0.3924 0.559 0.6069 0.5265 0.4157 0.5263 0.5791

WordNet-Augmented
Word Overlap Features

0.743 0.386 0.7353 0.6494 0.6444 0.3952 0.6415 0.718

Corpus based
features

BoW + BoD 0.7736 0.5051 0.7584 0.7884 0.7429 0.5892 0.7001 0.7239

Pair based
features

N-gram + Syntactic + WordNet 0.7945 0.5959 0.8109 0.7263 0.7196 0.6079 0.7518 0.8066

All features 0.8046 0.5991 0.7497 0.775 0.7519 0.6132 0.8246 0.7813
SICK Quora+MSR+SICK

RF SVM GB XGB RF SVM GB XGB

Single
features

BoW features 0.7064 0.6565 0.7846 0.7207 0.7689 0.6417 0.7855 0.7195
BoD features 0.5224 0.4152 0.5219 0.4433 0.511 0.4107 0.518 0.5293

N-gram
Overlap Features

0.6906 0.5697 0.6807 0.6608 0.799 0.6177 0.7133 0.7334

Syntactic Structure
Overlap Features

0.5551 0.4213 0.552 0.5026 0.5656 0.4492 0.5267 0.5419

WordNet-Augmented
Word Overlap Features

0.732 0.3543 0.6222 0.7513 0.7194 0.3781 0.699 0.69

Corpus based
features

BoW + BoD 0.7657 0.5786 0.8031 0.7482 0.786 0.5861 0.7877 0.7465

Pair based
features

N-gram + Syntactic + WordNet 0.7102 0.5844 0.7078 0.7355 0.6585 0.5459 0.6799 0.7603

All features 0.8498 0.7305 0.7763 0.8247 0.774 0.6325 0.7816 0.808

48

Table 4.9: Performance Evaluation on SVM Classifier

Accuracy (w/o SVM) Accuracy (w/ SVM)

Single features

BoW features 0.7358 0.7035
BoD features 0.542 0.5117

N-gram
Overlap Features

0.7003 0.6603

Syntactic Structure
Overlap Features

0.5455 0.5141

WordNet-Augmented
Word Overlap Features

0.6955 0.6162

Corpus based features BoW + BoD 0.762 0.7127
Pair based features N-gram + Syntactic + WordNet 0.7385 0.6997

All features 0.7968 0.7586

To evaluate the applicability of our approach, we completed the experiment both on a single

dataset and on integrated datasets. We found that the overall accuracy is not decreased even if we

mixed up three datasets. This means that our model is able to process more general corpus instead

of specific domains, which gives us confidence that it would perform well on the NLSY and Add

Health datasets as well.

4.2.2.2 Recurrent Convolutional Neural Network

Our RCNN module takes the sentence pair [S1, S2] as the input. Each sentence consists of a

word sequence w1, w2, · · · , wn. The wi is the pretrained word vector. We select Word2Vec as our

initial word vector. The output of the network is the binary classification on whether two sentences

are semantically identical.

The difference between the RCNN and CNN models is how they represent the context. The

CNN model uses a fixed-size window to represent the context information, whereas the RCNN

model uses a recurrent structure to build context information with any length of distance. The

performance of the CNN model is inuenced by the window size. If the window is too narrow,

then it will lose the long-distance information, and if the window is too wide, then the data will be

sparse and the number of parameters will increase, making the training process more difficult.

Figure 4.4 depicts F1 scores genereated by the CNN with various window sizes, and the dashed

line represents the performance of the RCNN model, which was unrelated to the window size and

49

1 2 3 4 5 6 7 8 9 10 11 12

78

80

82

84

86

88

Window Size

F
1

S
co

re
CNN

RCNN

Figure 4.4: Performance of RCNN & CNN

was plotted for comparison. From the figure, we found that as the window size increased, the

performance of the CNN first increased. When the window size was 9, the CNN achieved the

best performance, with an F1 score of 83.3. However, as the window size kept increasing, the

performance of the CNN started to decrease. We thought it was because of the data sparsity

and potential overfitting. In comparison, the RCNN model performed steadily because it did not

depend on the window size. The F1 score of the RCNN model is 84.3. In our context, the RCNN

model demonstrated a higher F1 score compared to the highest F1 score with the CNN. This result

indicates that the RCNN allows the model to cope with longer texts, and it introduces less noise

than the CNN when it uses the longer window size.

4.2.2.3 Ensemble Module

In this section, we evaluate the ensemble module. Based on the experiments performed in

Section 4.2.2.1 and Section 4.2.2.2, we used all features and the XGB classifier for a conventional

NLP module. For the RCNN module, we set α = 0.01, H = 100, |e| = 300, and |c| = 50. We

performed an experiment on the both individual and mixed datasets: Quora, SICK and MSR. The

evaluation result is shown in the Table 4.10. We found that the ensemble model performed better

than individual ones. The overall accuracy for the ensemble module is 0.8481, which is the best

50

Table 4.10: Performance Evaluation for Ensemble Model

Quora SICK MSR Quora+SICK+MSR
Conventional NLP Module

+
XGB

0.775 0.7813 0.8247 0.8084

RCNN 0.8413 0.8279 0.8372 0.843
Ensemble 0.8422 0.841 0.843 0.8481

performance. It shows that the combination not only improves the performance but also increases

the robustness for modeling similarity of heterogeneous sources.

51

Chapter 5

Conclusion and Future Work

In this paper, we presented an integrated system that enables efficient semantic integration on

heterogeneous sources. The system is designed to cope with domain-independent input.

RQ-1 To integrate semantically similar questions from multiple questionnaires, our system is

equipped with a Question Classification module that can quickly subdivide the questions to coarse

categories. Without element-wise comparison, it can significantly reduce the latencies required to

find semantically and syntactically alike questions.

RQ-2 To calculate a similarity score for semantically and syntactically alike questions, our sys-

tem built a hybrid system by combining conventional NLP techniques and the Recurrent Convolu-

tional Neural Network model. The overall accuracy was as high as 0.8481. The extensive experi-

mental results show that the combination not only improves the performance but also increases the

robustness for modeling the similarity of heterogeneous sources.

While the proposed system is good enough to process multiple questionnaires integration, there

is room for improvements to the system. This involves addressing the following possible aspects:

1. Few questions in a questionnaire dataset may contain specific "questionnaire-characteristics."

For example, "Since [date of last interview] what months have you lived with your [mother

(figure)/father (figure)]?" (NLSY-R4024144). The question may contain fill-in fields which

will introduce a degree of error. Either a deep data cleaning process or more detailed feature

engineering may resolve the issue.

2. To further integrate multiple questionnaire databases, we need to analyze the candidate an-

swers as well. For example, answers to the question "How tall are you?" may have different

units in different datasets. One may use inches and another may use centimeters. Fur-

52

thermore, the system should be able to convert one measurement index to another for easy

integration.

3. The system should also be integrated with an error-trace module. When there are misclas-

sified question-pairs, the system should be able to trace back to point out which step most

likely causes this error. Since the QC module and STSTS module are evaluated indepen-

dently, we did not build such a module and would like to leave it to future work.

53

Bibliography

[1] Xin Li and Dan Roth. Learning question classifiers. In Proceedings of the 19th international

conference on Computational linguistics-Volume 1, pages 1–7. Association for Computa-

tional Linguistics.

[2] Håkan Sundblad. Question classification in question answering systems. Thesis, 2007.

[3] Babak Loni. A survey of state-of-the-art methods on question classification. 2011.

[4] Natsuda Laokulrat. A survey on question classification techniques for question answering.

, 2(1), 2016.

[5] Sangmi Lee Pallickara, Shrideep Pallickara, Milija Zupanski, and Stephen Sullivan. Effi-

cient metadata generation to enable interactive data discovery over large-scale scientific data

collections. In Cloud Computing Technology and Science (CloudCom), 2010 IEEE Second

International Conference on, pages 573–580. IEEE, 2010.

[6] Matthew Malensek, Sangmi Lee Pallickara, and Shrideep Pallickara. Galileo: A framework

for distributed storage of high-throughput data streams. In Utility and Cloud Computing

(UCC), 2011 Fourth IEEE International Conference on, pages 17–24. IEEE, 2011.

[7] Cameron Tolooee, Sangmi Lee Pallickara, and Asa Ben-Hur. Mendel: A distributed storage

framework for similarity searching over sequencing data. In 2016 IEEE International Parallel

and Distributed Processing Symposium (IPDPS), pages 790–799. IEEE, 2016.

[8] Dennis Gannon, Beth Plale, Marcus Christie, Yi Huang, Scott Jensen, Ning Liu, Suresh

Marru, Sangmi Lee Pallickara, Srinath Perera, Satoshi Shirasuna, et al. Building grid portals

for e-science: A service oriented architecture. High Performance Computing and Grids in

Action, 2007.

54

[9] Yogesh L Simmhan, Sangmi Lee Pallickara, Nithya N Vijayakumar, and Beth Plale. Data

management in dynamic environment-driven computational science. In Grid-based problem

solving environments, pages 317–333. Springer, 2007.

[10] Sangmi Lee Pallickara, Shrideep Pallickara, and Marlon Pierce. Scientific data management

in the cloud: A survey of technologies, approaches and challenges. In Handbook of Cloud

Computing, pages 517–533. Springer, 2010.

[11] Sangmi Lee Pallickara, Shrideep Pallickara, and Milija Zupanski. Towards efficient data

search and subsetting of large-scale atmospheric datasets. Future Generation Computer Sys-

tems, 28(1):112–118, 2012.

[12] Scott Jensen, Beth Plale, Sangmi Lee Pallickara, and Yiming Sun. A hybrid xml-relational

grid metadata catalog. In Parallel Processing Workshops, 2006. ICPP 2006 Workshops. 2006

International Conference on, pages 8–pp. IEEE, 2006.

[13] Sangmi Lee Pallickara and Marlon Pierce. Swarm: Scheduling large-scale jobs over the

loosely-coupled hpc clusters. In SWARM: Scheduling Large-Scale Jobs over the Loosely-

Coupled HPC Clusters, pages 285–292. IEEE, 2008.

[14] Matthew Malensek, Sangmi Pallickara, and Shrideep Pallickara. Analytic queries over

geospatial time-series data using distributed hash tables. IEEE Transactions on Knowledge

and Data Engineering, 28(6):1408–1422, 2016.

[15] Matthew Malensek, Sangmi Pallickara, and Shrideep Pallickara. Fast, ad hoc query evalu-

ations over multidimensional geospatial datasets. IEEE Transactions on Cloud Computing,

5(1):28–42, 2017.

[16] Matthew Malensek, Sangmi Pallickara, and Shrideep Pallickara. Polygon-based query

evaluation over geospatial data using distributed hash tables. In Proceedings of the 2013

IEEE/ACM 6th International Conference on Utility and Cloud Computing, pages 219–226.

IEEE Computer Society, 2013.

55

[17] Matthew Malensek, Sangmi Pallickara, and Shrideep Pallickara. Evaluating geospatial ge-

ometry and proximity queries using distributed hash tables. Computing in Science & Engi-

neering, 16(4):53–61, 2014.

[18] Matthew Malensek, Walid Budgaga, Ryan Stern, Shrideep Pallickara, and Sangmi Pallickara.

Trident: Distributed storage, analysis, and exploration of multidimensional phenomena. IEEE

Transactions on Big Data, 2018.

[19] Thilina Buddhika, Matthew Malensek, Sangmi Lee Pallickara, and Shrideep Pallickara. Syn-

opsis: A distributed sketch over voluminous spatiotemporal observational streams. IEEE

Transactions on Knowledge and Data Engineering, 29(11):2552–2566, 2017.

[20] Walid Budgaga, Matthew Malensek, Sangmi Pallickara, Neil Harvey, F Jay Breidt, and

Shrideep Pallickara. Predictive analytics using statistical, learning, and ensemble methods

to support real-time exploration of discrete event simulations. Future Generation Computer

Systems, 56:360–374, 2016.

[21] Walid Budgaga, Matthew Malensek, Sangmi Lee Pallickara, and Shrideep Pallickara.

A framework for scalable real-time anomaly detection over voluminous, geospatial data

streams. Concurrency and Computation: Practice and Experience, 29(12):e4106, 2017.

[22] Thilina Buddhika and Shrideep Pallickara. Neptune: Real time stream processing for internet

of things and sensing environments. In 2016 IEEE International Parallel and Distributed

Processing Symposium (IPDPS), pages 1143–1152. IEEE, 2016.

[23] Thilina Buddhika, Ryan Stern, Kira Lindburg, Kathleen Ericson, and Shrideep Pallickara.

Online scheduling and interference alleviation for low-latency, high-throughput processing

of data streams. IEEE Transactions on Parallel and Distributed Systems, 28(12):3553–3569,

2017.

[24] Wes Lloyd, Shrideep Pallickara, Olaf David, Jim Lyon, Mazdak Arabi, and Ken Rojas.

Performance modeling to support multi-tier application deployment to infrastructure-as-a-

56

service clouds. In Proceedings of the 2012 IEEE/ACM Fifth International Conference on

Utility and Cloud Computing, pages 73–80. IEEE Computer Society, 2012.

[25] Yuanjie Liu, Shasha Li, Yunbo Cao, Chin-Yew Lin, Dingyi Han, and Yong Yu. Understanding

and summarizing answers in community-based question answering services. In Proceedings

of the 22nd International Conference on Computational Linguistics-Volume 1, pages 497–

504. Association for Computational Linguistics.

[26] Long Chen, Dell Zhang, and Levene Mark. Understanding user intent in community question

answering. In Proceedings of the 21st International Conference on World Wide Web, pages

823–828. ACM.

[27] Fan Bu, Xingwei Zhu, Yu Hao, and Xiaoyan Zhu. Function-based question classification for

general qa. In Proceedings of the 2010 conference on empirical methods in natural language

processing, pages 1119–1128. Association for Computational Linguistics.

[28] Guangyu Feng, Kun Xiong, Yang Tang, Anqi Cui, Jing Bai, Hang Li, Qiang Yang, and

Ming Li. Question classification by approximating semantics. In Proceedings of the 24th

International Conference on World Wide Web, pages 407–417. ACM.

[29] Zhiheng Huang, Marcus Thint, and Zengchang Qin. Question classification using head words

and their hypernyms. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing, pages 927–936. Association for Computational Linguistics.

[30] Thamar Solorio, Manuel Pérez-Coutino, Manuel Montes-y Gémez, Luis Villasenor-Pineda,

and Aurelio López-López. A language independent method for question classification. In

Proceedings of the 20th international conference on Computational Linguistics, page 1374.

Association for Computational Linguistics.

[31] Minh Le Nguyen, Nguyen Thanh Tri, and Akira Shimazu. Subtree mining for question

classification problem. In IJCAI, pages 1695–1700.

57

[32] Dell Zhang and Wee Sun Lee. Question classification using support vector machines. In

Proceedings of the 26th annual international ACM SIGIR conference on Research and devel-

opment in informaion retrieval, pages 26–32. ACM.

[33] Naoaki Okazaki, Yutaka Matsuo, Naohiro Matsumura, and Mitsuru Ishizuka. Sentence ex-

traction by spreading activation through sentence similarity. IEICE TRANSACTIONS on In-

formation and Systems, 86(9):1686–1694, 2003.

[34] Jung-Hsien Chiang and Hsu-Chun Yu. Literature extraction of protein functions using sen-

tence pattern mining. IEEE Transactions on Knowledge and Data Engineering, 17(8):1088–

1098, 2005.

[35] Thomas K Landauer, Peter W Foltz, and Darrell Laham. An introduction to latent semantic

analysis. Discourse processes, 25(2-3):259–284, 1998.

[36] Peter W Foltz, Walter Kintsch, and Thomas K Landauer. The measurement of textual coher-

ence with latent semantic analysis. Discourse processes, 25(2-3):285–307, 1998.

[37] Curt Burgess, Kay Livesay, and Kevin Lund. Explorations in context space: Words, sen-

tences, discourse. Discourse Processes, 25(2-3):211–257, 1998.

[38] Yuhua Li, David McLean, Zuhair A Bandar, James D O’shea, and Keeley Crockett. Sentence

similarity based on semantic nets and corpus statistics. IEEE transactions on knowledge and

data engineering, 18(8):1138–1150, 2006.

[39] Rada Mihalcea, Courtney Corley, and Carlo Strapparava. Corpus-based and knowledge-based

measures of text semantic similarity. In AAAI, volume 6, pages 775–780.

[40] Jesús Oliva, José Ignacio Serrano, María Dolores del Castillo, and Ángel Iglesias. Symss:

A syntax-based measure for short-text semantic similarity. Data & Knowledge Engineering,

70(4):390–405, 2011.

58

[41] Aminul Islam and Diana Inkpen. Semantic similarity of short texts. Recent Advances in

Natural Language Processing V, 309:227–236, 2009.

[42] Long Qiu, Min-Yen Kan, and Tat-Seng Chua. Paraphrase recognition via dissimilarity sig-

nificance classification. In Proceedings of the 2006 Conference on Empirical Methods in

Natural Language Processing, pages 18–26. Association for Computational Linguistics.

[43] Dipanjan Das and Noah A Smith. Paraphrase identification as probabilistic quasi-

synchronous recognition. In Proceedings of the Joint Conference of the 47th Annual Meeting

of the ACL and the 4th International Joint Conference on Natural Language Processing of

the AFNLP: Volume 1-Volume 1, pages 468–476. Association for Computational Linguistics.

[44] Richard Socher, Eric H Huang, Jeffrey Pennin, Christopher D Manning, and Andrew Y Ng.

Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In Advances

in neural information processing systems, pages 801–809.

[45] Yangfeng Ji and Jacob Eisenstein. Discriminative improvements to distributional sentence

similarity. In Proceedings of the 2013 Conference on Empirical Methods in Natural Lan-

guage Processing, pages 891–896.

[46] Delia Rusu, Lorand Dali, Blaz Fortuna, Marko Grobelnik, and Dunja Mladenic. Triplet

extraction from sentences. In Proceedings of the 10th International Multiconference" Infor-

mation Society-IS, pages 8–12.

[47] Apache opennlp. http://opennlp.apache.org/. (Accessed on 05/19/2018).

[48] The stanford natural language processing group. https://nlp.stanford.edu/software/lex-parser.

shtml. (Accessed on 05/19/2018).

[49] Berkeley parser. https://github.com/slavpetrov/berkeleyparser. (Accessed on 05/19/2018).

[50] Dan Klein and Christopher D Manning. Accurate unlexicalized parsing. In Proceedings of

the 41st annual meeting of the association for computational linguistics.

59

[51] Michael Collins. Head-driven statistical models for natural language parsing. Computational

linguistics, 29(4):589–637, 2003.

[52] George A Miller. Wordnet: a lexical database for english. Communications of the ACM,

38(11):39–41, 1995.

[53] Mark Stevenson and Yorick Wilks. Word sense disambiguation. The Oxford Handbook of

Comp. Linguistics, pages 249–265, 2003.

[54] Michael Lesk. Automatic sense disambiguation using machine readable dictionaries: how

to tell a pine cone from an ice cream cone. In Proceedings of the 5th annual international

conference on Systems documentation, pages 24–26. ACM, 1986.

[55] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[56] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for

word representation. In Proceedings of the 2014 conference on empirical methods in natural

language processing (EMNLP), pages 1532–1543.

[57] Frane ari, Goran Glava, Mladen Karan, Jan najder, and Bojana Dalbelo Bai. Takelab: Sys-

tems for measuring semantic text similarity. In Proceedings of the First Joint Conference on

Lexical and Computational Semantics-Volume 1: Proceedings of the main conference and

the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic

Evaluation, pages 441–448. Association for Computational Linguistics.

[58] Kai Wang, Zhaoyan Ming, and Tat-Seng Chua. A syntactic tree matching approach to finding

similar questions in community-based qa services. In Proceedings of the 32nd international

ACM SIGIR conference on Research and development in information retrieval, pages 187–

194. ACM.

[59] Michael Collins and Nigel Duffy. Convolution kernels for natural language. In Advances in

neural information processing systems, pages 625–632.

60

[60] scikit-learn: machine learning in python scikit-learn 0.19.1 documentation. http://

scikit-learn.org/stable/. (Accessed on 05/23/2018).

[61] dmlc/xgboost: Scalable, portable and distributed gradient boosting (gbdt, gbrt or gbm) li-

brary, for python, r, java, scala, c++ and more. runs on single machine, hadoop, spark, flink

and dataflow. https://github.com/dmlc/xgboost. (Accessed on 05/23/2018).

[62] Richard Socher, Jeffrey Pennington, Eric H Huang, Andrew Y Ng, and Christopher D Man-

ning. Semi-supervised recursive autoencoders for predicting sentiment distributions. In Pro-

ceedings of the conference on empirical methods in natural language processing, pages 151–

161. Association for Computational Linguistics.

[63] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew

Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a

sentiment treebank. In Proceedings of the 2013 conference on empirical methods in natural

language processing, pages 1631–1642.

[64] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and

Pavel Kuksa. Natural language processing (almost) from scratch. Journal of Machine Learn-

ing Research, 12(Aug):2493–2537, 2011.

[65] Nal Kalchbrenner and Phil Blunsom. Recurrent convolutional neural networks for discourse

compositionality. arXiv preprint arXiv:1306.3584, 2013.

[66] Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. Recurrent convolutional neural networks for

text classification. In AAAI, volume 333, pages 2267–2273.

[67] Richard Socher, Andrej Karpathy, Quoc V Le, Christopher D Manning, and Andrew Y Ng.

Grounded compositional semantics for finding and describing images with sentences. Trans-

actions of the Association of Computational Linguistics, 2(1):207–218, 2014.

61

[68] Richard Socher, Cliff C Lin, Chris Manning, and Andrew Y Ng. Parsing natural scenes and

natural language with recursive neural networks. In Proceedings of the 28th international

conference on machine learning (ICML-11), pages 129–136.

[69] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

[70] Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural network model

for a mechanism of visual pattern recognition, pages 267–285. Springer, 1982.

[71] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[72] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural network

for modelling sentences. arXiv preprint arXiv:1404.2188, 2014.

[73] Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint

arXiv:1408.5882, 2014.

[74] Léon Bottou. Stochastic gradient learning in neural networks. Proceedings of Neuro-Nmes,

91(8):0, 1991.

[75] David C Plaut and Geoffrey E Hinton. Learning sets of filters using back-propagation. Com-

puter Speech & Language, 2(1):35–61, 1987.

[76] smilli/py-corenlp: Python wrapper for stanford corenlp. https://github.com/smilli/py-corenlp.

(Accessed on 05/23/2018).

[77] Learning question classifiers. http://cogcomp.org/Data/QA/QC/. (Accessed on 05/23/2018).

[78] First quora dataset release: Question pairs - data @ quora - quora. https://data.quora.com/

First-Quora-Dataset-Release-Question-Pairs. (Accessed on 05/23/2018).

[79] Download microsoft research paraphrase corpus from official microsoft download cen-

ter. https://www.microsoft.com/en-us/download/details.aspx?id=52398. (Accessed on

05/24/2018).

62

[80] Sick. http://clic.cimec.unitn.it/composes/sick.html. (Accessed on 05/24/2018).

[81] John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. Towards universal para-

phrastic sentence embeddings. arXiv preprint arXiv:1511.08198, 2015.

63

	Abstract
	Dedication
	List of Tables
	List of Figures
	Introduction
	Background
	Scientific Challenges
	Research Questions
	Approach Summary

	Related Works
	Question Classification
	Semantic Textual Similarity

	Methodology
	Question Classification
	Feature Construction
	Maximum Entropy Classifier

	Short-Text Semantic Textual Similarity
	Conventional NLP Module
	Recurrent Convolutional Neural Network

	System Architecture and Evaluation
	Question Classification Module
	Experiment Setup
	Experiment Results

	Semantic Similarity Module
	Experiment Setup
	Experiment Evaluation

	Conclusion and Future Work
	Bibliography

