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Computationally Efficient Ray

Tracing of Parametric Surfaces

Anthony A. Maciejewski

Hitachi Central Research Laboratory
(Kokubunji-shi, Tokyo 185, Japan)

Algori thms for ray tracing parametric surfaces are in

general too computationally expensive to be widely applicable.

The algorithm presented here combines well-known graphics

procedures with a modified Newton iteration to provide a

computationally efficient means of including parametric surfaces

in a ray traced image. By allowing only planar surfaces to be

reflective and/or refractive the resulting high degree of ray

coherence is utilized to make the algorithm incremental and

results in an order of magnitude improvement in computation speed

over eXisting algorithms.
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1. Introduction

Ray tracing is unquestionably the most

powerful method to date for displaying

realistic images. Whitted's paper [1] is the

classic reference on the basic technique with

Rogers [2] providing an excellent overview of

the algorithm as well as discussions on

related issues. While the realism achievable

with the technique is unparallelled [3], the

computation time required precludes its use

for many applications. Thus the past five

years have seen a number of techniques

proposed in order to reduce the computational

expense incurred, the majority of which is

due to intersection calculations.

Bounding volumes (1], hierarchical

environment descriptions [4], space

subdivision [5,6], and adaptive tree depth

control [7] are all useful for reducing the

total number of intersection calculations.

However, in order to be effective they must

be combined with a computationally efficient

means of finding the actual ray-surface

intersection. Excluding a few exceptions

[8,9,10,11 ] most traditional ray tracing

programs are limited to polygonal or quadric

surfaces for which the ray surface

intersection calculations are particularly

simple. The direct calculation of the

intersection of a ray and a parametric

surface has proven to be extremely time

consuming [12]. An approach based on

interval techniques [13] represents a

significant decrease in computation time,

however, it is still prohibitive for many

applications.

The very generality which makes

parametric surfaces difficult to ray trace

also makes them attractive for a variety of

applications. CAD/CAM modelling in

particular makes wide use of parametric

surface descriptions [14]. However, since

rapid visual feedback is desirable in the

(2 )

design process, scan line display algorithms

[15,16] are typically employed.

Unfortunately, when objects are displayed

using only local illumination information,

some useful three-dimensional cues are not

present. Shadows and reflections from planar

surfaces can provide additional information

which the CAD/CAM designer can utilize in

evaluating a model. This application was the

original motivation for the algorithm

presented here.

II. Algorithm Overview

From the results of previous research it

appears that Newton iteration is the most

promising approach in obtaining a

computationally efficient intersection

algorithm for parametric surfaces.

Unfortunately, existing algorithms [13]

require a significant amount of computation

time in determining if the" iteration will

converge before it is even applied. It will

be shown that by using a modified iteration

procedure [17], one can avoid these time

consuming convergence tests as well as other

numerical difficulties. Furthermore, if

coherence is fully exploited as in the case

of scan line algorithms [15], then the

calculations can be made incremental with a

significant increase in speed. To this end,

it will be assumed that there exists a strong

degree of coherence among rays. In

particular, rays will be considered to be

travelling in parallel to compose beams much

in the same way as described by He c.k be r t; and

Hanrahan [18]. This assumption, by removing

the generality of the ray-surface

intersection calculation, will result in a

significant increase in speed at the expense

of excluding glossy and refractive patches.

Since the above assumption does not effect

the control flow of the standard ray tracing

algorithm, the following discussion will be



incremental which results in a significant

decrease in the amount of computation time

required. The required modification to the

iteration procedures will be discussed in the

following section.

where once again C(t) is a three dimensional

point with components X(t), Y(t), and Z(t)

with the parameter t in the interval [0 1].

Since the patch has been transformed into

beam coordinates, only the x and y components

I II. Implementation

This section considers some of the

details of the implementation of the above

algorithm. For the sake of illustration only

the specific example of a bicubic surface

will be considered, although this by no means

implies any restriction on the generality of

the method. A general bicubic surface can be

described by the equation

(1 )

(2 )

S(u,v)

C(t)

where S(u,v) is a three dimensional point

with components X(u,v), Y(u,v), and Z(u,v), M

is a matrix ~f constant coefficients, and the

parameters u and v are restricted to be

within the interval (0 1]. In the discussion

that follows it will be assumed that the

transformation to beam coordinates has been

applied to the patch description and that X,

Y, and Z are the patch coordinates with

respect to the beam coordinate system.

Therefore, the next step is the computation

of the ray-boundary curve intersections.

The four boundary curves of the patch

are obtained by substituting u=O, u=1, v=O,

and v=1 into the patch description given by

eq. 1. All of the resulting curves are

univariate and can be expressed in the form

limited to the beam-surface intersection

calculation portion of the algorithm. It

should be noted that many of the techniques

for reducing the computation time of a ray

traced image which were discussed previously

are still applicable with bounding volumes

and adaptive tree depth being particularly

useful.

The procedure for the beam-surface

intersection calculation will now be

outlined. The patch is first transformed so

that the direction of the beam is parallel

with the z axis. The view of a patch along

the beam direction now appears as a qrid with

the rays being located at grid intersections.

Thus the rays can be identified by their x

and y coordinates in the beam coordinate

system. Using a modified univariate Newton

iteration, the rays which pass closest to the

boundary curves are then computed and stored

on a stack along with the corresponding patch

parameters. After all of the ~oundary curves

have been completed, the algorithm begins

processing the stack. Until the stack is

empty, the following procedure is performed.

First, a ray-patch intersection is popPed

from the stack and checked against the beam z

buffer to see if it is the closest

intersection. Next, the modified bivariate

Newton iteration is used to compute the

intersection of the patch with the current

rays four nearest neighbors. If these ray

patch intersections have not already been

processed then they are placed on the stack.

The main portion of the algorithm

amounts to a variant of the seed fill

algorithm [2] using the boundary curve ray

intersections as seeds. A check on the patch

parameters gives a simple test for

determining whether the intersection is

inside or outside of the patch. By

exploiting the coherence of adjacent rays,

the intersection calculation is made

(3)



of the curve need to be considered. The

the physical significance of the variables

curve computing the rays which pass closest
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The rate of change of the x and y components

setting t=o and determining ~xd and AYd which
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with respect to t, denoted by x ' and yl are

easily computed by differentiating eq. 2 to

obtain

(3 )

Univariate Newton iteration is used to

determine the t parameter satisfying the

desired x and y positions, xd and Yd' which

represent the curves intersection with the

xo

mea

Ln t.

ray grid La.ne s , The minimum change in t is

chosen at each iteration to insure that no

Fig. 1. Flowchart of the modified univariate

Newton iteration procedure used to find which

rays pass closest to the patch boundary.

[8, ~ grid intersections are missed. A maximum

proc

surJ

change in t, ~tmax is included in the

iteration scheme to avoid any difficulty when

inte both X' and y' go to zero, i.e. the boundary

s i m] curve is proceeding parallel to the z axis.

inte The procedure continues to output all of the

surf

cons

inte

sign.

rays which pass nearest the curve until t

exceeds 1 at which time it halts. Additional

seed values may be placed on the stack by

including u and v parameter seed values in X(t)
,

C(t)

howe'

appL:

paran

also

the patch description and then iterating to

find the closest ray intersection.

This completes the stack initialization

and the program now begins processing the

information on the stack. As ray-patch

(g,~)

appli intersections are popped from the stack, they

parti are first checked against the beam z buffer

surra:

rapid

to determine if they are visible. The beam z

buffer is of conventional design being

Fig. 2. Physical significance of the

variables used in the modified univariate

Newton iteration procedure.

composed of a two dimensional array where the

(4)



address is given by the x and y coordinates

of the ray in question. The minimum contents
= u Cs t ac k count)
= v(:stack:count)

of the buffer are the u and v parameters of

the ray patch intersection since position and

surface normal information can be easily

Xd Xneighbor
Yd' Yneighbor

~Xd Xd - X(U,v)

~Yd Yd - Y(u,v)

d 2 = (~xd)2 + (aYd)2

YES

)---~EXIT

)----......,;;~£XI!

HO

YES

>------->~8

o < U < 1
and

o < v < 1 ?

Has th1.s intersect1.on
been proce.s.sed?

NO

length of the desired displacement is then

the initialization and the procedure is now

stored in order to measure the progress of

ready to start the actual iteration.

from the' curre~t position. The squared

nearest neighbor. The desired x and y

and y positions, denoted xd and Yd' are then

set to the coordinates of the popped rays

the Newton iteration scheme. This completes

After checking and possibly updating the

were popped from the stack. The desired x

The procedure begins by setting the u

The rate of change of the patch

parameters u and v is related to the rate of

bivariate Newton iteration procedure is given

the boundary of the beam. If they do then

intersection. A flowchart of the modified

in fig. 3.

intersection to find the neighboring

iteration starts from the current

position, denoted AXd and AYd' are then

obtained by subtracting the desired position

memory storage.

displacements from the current patch

and v parameters of the pa tch to those tha t

simply compute the neighbor rays x and y

need to be calculated. The first step is to

coordinates and determine if they lie within

z buffer, the patch intersections of this

rays four nearest neighbors, if any exist,

depth check at the expense of additional

computed. The z value of the intersection

may also be stored in order to speed up the

change in x and y through the equation

J [:] (4 )

Fig. 3. Flowchart of the modified bivariate
Newton iteration procedure used to compute
the neighboring ray-patch intersections.
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being a scale factor. This is clearly

illustrated by substituting eq. (7) into eq.

(6) to obtain

where J denotes the Jacobian matrix given by

[ax/au ax/av]
J (5 )

aY/au aY/av

If it is assumed that a linear approximation

is valid, then the required change in the

[::] [

a Y/ dv ~xd - aY/au AYd]
(1 /det.)

aX/au ~Yd - ax/av AXd

(10)

patch parameters which will result in the

neighboring ray intersection is given by

Thus the direction of the vector [AU Av]T is

specified by the elements of the Jacobian and

[::] (6 )

the desired x and y displacements. The only

effect of the determinant is to appropriately

scale the vector specifying direction. Since

the procedure is iterating toward a solution,

Since the Jacobian is only a 2 x 2 matrix,

its inverse is easily computed using

it is concerned with always improving its

position and not necessarily getting there in

[

aY/av

-aX/av

-aY/ au] / (det. )
a x/ au

(7 )

one step. This is particularly true when the

exact solution of eq. (6) results in a

solution which represents a large change

since this generally means that the linear

provided that J is of full rank (i.e. the

determinant is not equal to zero). The

required partial derivatives are easily

obtained by differentiating eq. (1) with

respect to u and v. This results in

approximation was a poor one. Therefore, the

algo~ithm puts a threshold on the value of

the determinant to limit the maximum change

in the patch parameters u and v.

Once the vector [AU AV]T is computed,

the patch parameters are updated and checked

as/au

est e»

[3u2 2u 1 0] M [v3 v 2 v 1]

[u 3 u 2 u 1] M [3v2 2v 0]

(8 )

(9 )

to see if they still lie within the patch

boundary. If they do then the x and y

coordinates of the current patch position,

The difficulties usually cited when

discussing Newton iteration arise when J is

ill-conditioned. This occurs when J is

approaching a singularity and is associated

with the determinant approaching zero.

Physically this will occur in the

neighborhood of a silhouette edge which is

analagous to the boundary curve proceeding

parallel to the z axis in the univariate case

discussed earlier. The method of dealing

with this case is also similar to that used

earlier. One can consider the solution for

the vector [~U AV]T to be composed of two

Parts, one which specifies a direction

(although not a unit vector) and the other

( 6 )

X(u,v) and Y(u,v), are computed along with an

updated version of the required changes in x

and y to arrive at the ray intersection. At

this point an error term is computed and

compared to the previous error term. If

there is not an improvement towards the

desired solution then the procedure assumes

that no solution exists and it terminates.

This easily handles the case where one ray

just intersects a silhouette edge but its

neighbor misses. The error is then checked

against a maximum threshold to determine if

another iteration is necessary. If the

solution is sufficiently close then the new

ray patch intersection is checked to see if



it has been previously processed. If not

then it is pushed on the stack and the

procedure terminates. At this point the

algorithm moves to the rays next nearest

neighbor. If all neighbors have been

processed then the next ray-patch

intersection is popped from the stack.

IV. Results

The resulting images for various

surfaces computed using the above algorithm

are presented in figures 4 thru 8 with

timing data given in table 1. All

computations were done on a Hitachi M200H

computer equipped with a Ramtek display. All

images are computed to a resolution of 1024 x

1024 using the illumination model presented

in [1 l. Due to insufficient color resolution

(256 colors) dithering is used to improve the

effective number of gray scales. Fig. 4 is a

single patch similar to one presented in [13]

which was generated to provide a timing

comparision. After normalization of image

resolution and CPU speed, the current

algorithm represents an order of magnitude

decrease in computation time. Fig. 5 is an

example of a patch with a rather complex

silhouette edge which was generated to

illustrate the robustness of the algorithm

when dealing with regions where a standard

Newton iteration scheme would be unstable.

Fig. 6 illustrates the importance of

transparency and shadows in determing the

three-dimensional characteristics of a

surface from an otherwise ambiguous image

(the vertical ridges are an artifact of the

dithering process). Fig. 7 consists of 43

bicubic patches including one reflective

planar patch. A comparison of the

computation time for fig. 7 with that of the

single patch images illustrates an important

advantage of the algorithm. The computation

time for an image is not proportional to the

(7 )

number of obj ects in the scene as wi th many

ray tracing algorithms, but is a function of

the cross-sectional area of the actual beam-

patch intersection. Fig. 8, which is

composed of only 11 bicubic patches, was

generated to illustrate the flexibility of

modelling with parametric surfaces as well as

to provide further evidence for the preceding

statement (compare the computation times for

fig. 6 with fig. 8).

Fig. 4. A simple patch used for timing
comparisons.

Fig. 5. A patch with a complex silhouette
edge.



Fig. 6. A transparent patch over a
checkerboard.

Fig. 7. A safe landing on a frozen lake in
front of plastic hills.

Fig. 8. still life.

(8)

Table 1. CPU Time Requirements

Figure Number CPU Time
Number of Patches (sec.)

4 1 187
5 1 184
6 2 1326
7 43 1231
8 11 313

v. Discussion

This section discusses some of the

capabilities and restrictions inherent to the

algorithm presented above. First, the

algorithm is useful because it is a general

algorithm which can be used for a variety of

parametric surfaces. Since there is no

approximation involved with modelling the

surface, one can obtain a precise image of

the object. In addition, the algorithm is

comparatively simple, thus making it easy to

implement and accessible to a variety. of

users.

A second advantage of the algorithm is

that, unlike most ray tracing procedures, it

is incremental. In this respect it is much

like Blinn's scan line algorithm for

displaying curved surfaces [15]. However,

unlike scan line algorithms, the algorithm

presented here is capable of utilizing a

global illumination model for more realistic

images. In addition, there is no need for

edge tracking (silhouette or otherwi~e) or

heuristic procedures. The modified iteration

scheme presented here smoothly handles all

cases, including those that are singular or

ill-conditioned.

An additional advantage of the algorithm

presented here is that, again unlike most ray

tracing procedures, it has excellent

information for implementing antialiasing.

Some of this information stems from the fact

that three-dimensional beams are being traced

instead of one-dimensional rays as discussed



in [18]. Furthermore, due to the modified

iteration procedure, when a silhouette edge

lies in between two ray, at the point where

the procedure exists due to no improvement in

the iteration, it contains information on

exactly how close the pa tch was to the ray in

question.

On the negative side, the algorithm

requires a much larger amount of memory

storage capability than other algorithms.

Since an array of rays is being traced at one

time, all of the related data must be stored.

For beams with a large cross-sectional area

this can present a problem. In particular,

for the initial viewpoint beam there are 1024

x 1024 rays and the related data structures

which must maintain the patch id and u and v

parameters of the surface intersections.

Thus in the current implementation, beam

areas are restricted to an area of 10,000

rays with larger beams being subdivided.

Using this scheme the current program uses a

maximum of 4 M bytes of memory.
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