
DISSERTATION

CONSTRAINED SPLINE REGRESSION AND HYPOTHESIS TESTS

IN THE PRESENCE OF CORRELATION

Submitted by

Huan Wang

Department of Statistics

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 2013

Doctoral Committee:

Advisor: Mary C. Meyer
Co-advisor: Jean D. Opsomer

F. Jay Breidt

Robin M. Reich



Copyright by Huan Wang 2013

All Rights Reserved



ABSTRACT

CONSTRAINED SPLINE REGRESSION AND HYPOTHESIS TESTS

IN THE PRESENCE OF CORRELATION

Extracting the trend from the pattern of observations is always difficult, especially when

the trend is obscured by correlated errors. Often, prior knowledge of the trend does not

include a parametric family, and instead the valid assumption are vague, such as “smooth”

or “monotone increasing,” Incorrectly specifying the trend as some simple parametric form

can lead to overestimation of the correlation, and conversely, misspecifying or ignoring the

correlation leads to erroneous inference for the trend. In this dissertation, we explore spline

regression with shape constraints, such as monotonicity or convexity, for estimation and

inference in the presence of stationary AR(p) errors. Standard criteria for selection of

penalty parameter, such as Akaike information criterion (AIC), cross-validation and gener-

alized cross-validation, have been shown to behave badly when the errors are correlated and

in the absence of shape constraints. In this dissertation, correlation structure and penalty

parameter are selected simultaneously using a correlation-adjusted AIC. The asymptotic

properties of unpenalized spline regression in the presence of correlation are investigated.

It is proved that even if the estimation of the correlation is inconsistent, the corresponding

projection estimation of the regression function can still be consistent and have the optimal

asymptotic rate, under appropriate conditions. The constrained spline fit attains the con-

vergence rate of unconstrained spline fit in the presence of AR(p) errors. Simulation results

show that the constrained estimator typically behaves better than the unconstrained version

if the true trend satisfies the constraints.

Traditional statistical tests for the significance of a trend rely on restrictive assumptions

on the functional form of the relationship, e.g. linearity. In this dissertation, we develop test-

ing procedures that incorporate shape restrictions on the trend and can account for correlated
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errors. These tests can be used in checking whether the trend is constant versus monotone,

linear versus convex/concave and any combinations such as, constant versus increase and

convex. The proposed likelihood ratio test statistics have an exact null distribution if the co-

variance matrix of errors is known. Theorems are developed for the asymptotic distributions

of test statistics if the covariance matrix is unknown but the test statistics use a consistent

estimator of correlation into their estimation. The comparisons of the proposed test with the

F-test with the unconstrained alternative fit and the one-sided t-test with simple regression

alternative fit are conducted through intensive simulations. Both test size and power of the

proposed test are favorable, smaller test size and greater power in general, comparing to the

F-test and t-test.
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CHAPTER 1

INTRODUCTION

1.1 Constrained Spline Regression

Regression splines are a popular nonparametric function estimation method, but they

are known to be sensitive to knot number and placement. However, if there is more in-

formation about the shape of the regression function, like monotonicity or convexity, the

shape-restricted splines are robust to knot choices. In this dissertation, we use shape re-

stricted inference for both regression spline estimation and hypothesis tests of the trend.

The shape restricted estimation can be transformed into a cone projection problem. Instead

of projections onto the linear space spanned by the columns of the design matrix in ordinary

least-squares estimation for linear model, constrained estimation involves the projection onto

a convex cone determined by shape restriction. Different types of shape restriction, such as

monotonicity and convexity, are written into different constraint matrix, based on which the

constrained cone is constructed. But the theories and algorithms for different types of shape

restriction are similar. Comparing to the unconstrained estimation, we need cone projec-

tion algorithm to identify which face of the cone projection falls on, therefore the projection

matrices are random.

Extracting the trend from the pattern of observations is always difficult, especially when

the trend is obscured by correlated errors. Often, prior knowledge of the trend does not

include a parametric family, and instead the valid assumption being vague, such as “smooth”

or “monotone increasing.” Incorrectly specifying the trend as some simple parametric form

can lead to overestimation of the correlation. In this dissertation, we derive the shape

restricted nonparametric methods for data with autocorrelated errors. A Cochrane-Orcutt

type iteration procedure is developed for estimation of both trend and correlation.
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Nonparametric regression estimators are often sensitive to the presence of correlation in

the errors. The selection of smoothing parameter for nonparametric methods is a challenging

problem, especially when the data are correlated. Most of the popular data-driven methods,

such as generalized cross-validation (GCV) and Akaike information criterion (AIC), have

been developed under the assumption of independent observations and will be broken down

if the correlation is not accounted for. They tend to select a small tuning parameter and the

fits become progressively more under-smoothed as the correlation increases. We generalized

the AIC to correlated data and develop a correlation-adjusted AIC to select smoothing

parameter and the order of autocorrelation, simultaneously.

In order to derive the consistency and convergence rate for the constrained spline regres-

sion estimator, several general theorems on the convergence rate of projection estimation

were developed for unconstrained and unpenalized regression in the presence of stationary

AR(p) errors at first. Then by using those results, the theorems on the convergence rate

for constrained unpenalized spline regression were presented. Let µ be the true mean of

data. We developed the consistency and convergence rate for three types of estimators: or-

dinary least-squares estimator µ̂I, weighted least-squares estimator µ̂R when correlation R

is known and weighted least-squares estimator µ̂S when correlation is unknown and there is

an n× n symmetric positive-definite matrix S, which can be used as a substitute of R. For

unconstrained spline regression, we proved that if S satisfies several conditions, the three

types of estimators have the same convergence rate. We also proved that the constrained

spline estimators attain the convergence rate of the corresponding unconstrained spline es-

timators. Through the simulations, we also demonstrated that by incorporating into the

correlation, estimation of the trend is substantially improved for moderate-sized samples for

the Cochrane-Orcutt type iterated estimator.
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1.2 Shape Restricted Hypothesis Tests

Researchers often want to check whether the shape of the trend f has some sort of pattern,

such as monotonicity or convexity. A test for trend in time series data uses constant for null

hypothesis; an alternative hypothesis must be chosen as a way to provide a valid alternate

scenario against which to perform a test. Usually, a linear regression model is chosen for

alternative. If a linear relation between y and x is reasonable, we can fit the data with simple

linear regression and test whether the coefficient is positive or not by the one-sided t-test.

But, often prior information of the relation between y and x does not include a parametric

form to model with, therefore we need to switch to nonparametric approach. Because of

the flexibility of the nonparametric approach, the fit rarely satisfies the shape constraint. In

this dissertation, we developed the tests with shape-restricted inference for correlated data.

These tests can be used in checking whether the trend is constant versus monotone, linear

versus convex/concave and any combinations such as, constant versus increase and convex.

The likelihood test statistics have exact distributions, a mixture of χ2 distributions for

known variance σ2 and a mixture of Beta distributions for unknown σ2, if the correlation

matrix is known. The mixing distribution can be determined by numerical computation

under H0 as precisely as desired. Theorems were developed for the asymptotic distributions

of test statistics if the covariance matrix is unknown but the test statistics use a consistent

estimator of correlation into their estimation. The comparisons of the proposed test with the

F-test with the unconstrained alternative fit and the one-sided t-test with simple regression

alternative fit were conducted through intensive simulations. Both test size and power of

the proposed test are favorable.

The rest of the dissertation is organized as follows. In Chapter 2, we propose a constrained

spline estimator for data with stationary AR(p) errors with unknown order and unknown

correlation parameters. Because of the popularity of the penalized splines, we include a

penalty into our estimator. A new correlation-adjusted AIC is given for the selection of

the penalty parameter and autoregressive parameters simultaneously. We prove the asymp-
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totic properties of the constrained unpenalized spline estimator in the presence of stationary

AR(p) errors. The proposed estimator and the method to select the order of correlation and

the penalty parameter are presented in Section 2.2. In Section 2.3, the convergence rate of

the estimator in the presence of correlation is derived in a general setting of both parametric

and nonparametric regression, and also the specific application of constrained spline regres-

sion. The comparison of the convergence rate of the constrained spline regression and the

unconstrained spline regression is also discussed in Section 2.3. Simulations evaluating the

selection method of the order of AR(p) process and comparing the proposed method with

the other two alternatives are conducted in Section 2.4. In Section 2.5, we analyze global

temperature data with the proposed method and compare with other methods. In Chapter

3, we propose several types of shape-restricted hypothesis tests using cone projection theo-

ries and algorithms. The observations are correlated and the correlation is restricted to a

stationary AR(p) process with unknown p and unknown correlation. The alternative fit of

the proposed tests is constrained nonparametric regression spline estimator. The proposed

tests making use of theories of cone projection for both independent data and correlated data

are derived in Section 3.2. In Section 3.3, the approximate distributions for the test statis-

tics with unknown p and unknown correlation are investigated. In Section 3.4, simulations

of comparing test size and power of the proposed test with the F-test with unconstrained

alternative fit and one-sided t-test with simple regression alternative fit are conducted. In

Section 3.5, we apply the proposed tests to test the monotonicity of Argentina rainfall data

and the convexity of price of liquefied U.S. natural gas exports data. Conclusions and future

work are included in Chapter 4.
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CHAPTER 2

CONSTRAINED SPLINE REGRESSION

IN THE PRESENCE OF CORRELATION

2.1 Literature Review

Regression splines are a popular nonparametric function estimator method, but they

are known to be sensitive to knot number and placement. However, if there is more in-

formation about the shape of the regression function, like monotonicity or convexity, the

shape-restricted splines are robust to knot choices.

For shape-restricted regression, Brunk (1955, 1958) proposed unsmoothed monotone re-

gression estimation and studied its asymptotic behavior. See Robertson et al. (1988) for

details about estimation inference. Ramsay (1998) proposed a device to estimate a smooth

strictly monotone function of arbitrary flexibility. Tantiyaswasdikul and Woodroofe (1994)

proposed the monotone smoothing splines with penalty on the integrated first derivative.

Mammen and Thomas-Agnan (1999) showed that the monotone smoothing splines have an

optimal n−p/(2p+1) convergence rate, where p = max{k, r}, k is the order of spline and r is the

order of derivative. Hall and Huang (2001) developed a biased-bootstrap method for mono-

tonizing general linear, kernel-typed estimators. Meyer (2008) proposed an algorithm for the

cubic monotone case, and also extended the method to convex constraints and variants such

as increasing-concave.

Penalized splines, introduced by Eilers and Marx (1996), use a large number of knots

compared to regression splines, but fewer than in smoothing splines, and hence are less

computationally cumbersome. The penalization shrinks the coefficients towards zero, con-

straining their influence and resulting in a less variable fit than regression splines. Penalized

splines are increasingly popular in handling a wide range of nonparametric and semipara-
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metric problems. Ruppert et al. (2003) provided details of this method. Hall and Opsomer

(2005) used a white-noise process representation of the penalized spline estimator to ob-

tain the mean squared error and consistency of the estimator. This representation treats

the data as being generated from a continuously varying set of basis functions, subject to

a penalty, so the complicating effect of the finite set of basis functions is removed. This

enabled them to explore the role of the penalty and its relationship with the sample size in

ways that are not possible in the discrete-data, finite-basis setting. Li and Ruppert (2008)

showed that penalized splines behave similarly to Nadaraya-Watson kernel estimators with

equivalent kernels. By this equivalent kernel representation, they developed an asymptotic

theory of penalized splines for the cases of piecewise-constant or linear splines, with a first-

or second-order difference penalty. Claeskens et al. (2009) developed a general theory of

the asymptotic properties of penalized spline estimators for any order of spline and general

penalty. They demonstrated that the theoretical properties of penalized spline estimators

are either similar to those of regression splines or to those of smoothing splines, with a clear

breakpoint distinguishing the cases. Kauermann et al. (2009) used a Bayesian viewpoint by

imposing a priori distribution on all parameters and coefficients, arguing that with the pos-

tulated rate at which the spine basis dimension increases with the sample size the posterior

distribution of the spline coefficients is approximately normal.

Nonparametric regression estimators are often sensitive to the presence of correlation in

the errors. Most of the data-driven smoothing parameter selection methods, such as cross-

validation, general cross-validation and AIC, will break down if the correlation is ignored.

Diggle and Hutchinson (1989) presented an extension of generalized cross-validation which

accommodates a known correlation matrix for the errors. Altman (1990) suggested two

methods, a direct method and an indirect method, for correcting the selection criteria when

the correlation function is known. Hart (1991) used a risk estimation procedure to select

the bandwidth in the kernel regression with correlated errors. Hart (1994) proposed time

series cross-validation to estimate the bandwidth and gave a time series model for the errors
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simultaneously. Wang (1998) extended the generalized maximum likelihood, generalized

cross-validation and unbiased risk methods to estimate the smoothing parameters and the

correlation parameters simultaneously, when the correlation matrix is assumed to depend

on a parsimonious set of parameters. Opsomer et al. (2001) gave a general review of the

literature in kernel regression, smoothing splines and wavelet regression under correlation.

Hall and Keilegom (2003) used difference-based methods to construct estimators of error

variance and autoregressive parameters in nonparametric regression with time series errors.

They proved that the difference-based estimators can be used to produce a simplified version

of time series cross-validation. Francisco-Fernandez and Opsomer (2005) proposed to adjust

the generalized cross-validation (GCV) criterion for the spatial correlation and showed that

it leads to improved smoothing parameter selection results even when the covariance model

is misspecified. Kim et al. (2009) investigated a bandwidth selector based on the use of a

bimodal kernel for nonparametric regression with fixed design and proved that the proposed

selector is quite effective when the errors are severely correlated.

In this article, we propose a constrained spline estimator for data with stationary AR(p)

errors with unknown order and unknown correlation parameters. Because of the popularity

of the penalized splines, we include a penalty into our estimator. A new correlation-adjusted

AIC is given for the selection of the penalty parameter and autoregressive parameters si-

multaneously. We prove the asymptotic properties of the constrained unpenalized spline

estimator in the presence of stationary AR(p) errors. The asymptotic properties of con-

strained penalized splines regression, due to the complexity of proofs for penalized splines,

are still being studied and not included in this paper.

The proposed estimator and the method to select the order of correlation and the penalty

parameter are presented in Section 2. In Section 3, the convergence rate of the estimator

in the presence of correlation is derived in a general setting of both parametric and non-

parametric regression, and also the specific application of constrained spline regression. The

comparison of the convergence rate of the constrained spline regression and the unconstrained

7



spline regression is also discussed in Section 3. Simulations evaluating the selection method

of the order of AR(p) process and comparing the proposed method with the other two al-

ternatives are conducted in Section 4. In Section 5, we analyze the global temperature data

with the proposed method and compare with other methods.

2.2 Model Setup and Proposed Estimator

Assume that the observed data {(xi, yi)}, for 1 ≤ i ≤ n, are generated by the model

yi = f(xi) + σεi,

where f is a smooth function. Suppose that xi ∈ [0, 1] and equally spaced. The errors

ε1, · · · , εn come from a segment of a mean zero autoregressive process with order p, i.e. an

AR(p) process. Specifically, for some integer p ≥ 1,

εi =

p∑
j=1

θjεi−j + ei,

where ei are independent standard normal random variables.

The function f is approximated by a linear combination of spline basis functions. Given

a set of knots 0 = t1 < · · · < tk = 1, a set of m = k + d− 1 basis functions b1(x), · · · , bm(x)

are defined, where d = 2 for quadratic splines and d = 3 for cubic splines. The standard

B-spline basis is used in this article, but another basis spanning the same space can be used

instead. Let b1, · · · ,bm be basis vectors, where bij = bj(xi), so that the basis functions span

the space of smooth piecewise polynomial regression functions with the given knots, and the

basis vectors span an m-dimensional subspace of Rn.

For the independent-error case, the penalized sum of squares of Eilers and Marx (1996)

is:

8



n∑
i=1

[yi −
m∑
j=1

αjbj(xi)]
2 + λ

m∑
j=q+1

(∆qαj)
2,

where ∆1αj = αj−αj−1 and ∆qαj = ∆q−1∆αj for q > 1. Let B be the n×m matrix with

the bj vectors as columns, let D be the qth order difference matrix and let α = (α1, · · · , αm)
′
.

The penalty parameter λ ≥ 0 controls the smoothness. Minimizing the penalized sum of

squares is equivalent to minimizing the vector expression:

ψ(α; y) = α
′
(B
′
B + λD

′
D)α− 2y

′
Bα.

For the monotone case, we use quadratic splines and define the k × m matrix T of

the slopes at the knots by Tij = b
′
j(ti). Then the linear combination

∑m
j=1 αjbj(x) is non-

decreasing if and only if the coefficient vector is in the set

C = {α : Tα ≥ 0} ⊆ Rm.

For the convex case, we use cubic splines and Tij = b
′′
j (ti); then the linear combination is

convex if and only if Tα ≥ 0.

It is straightforward to find the appropriate spline degree and a constraint matrix T

for constraint such as increasing and concave, or sigmoidal (convex or concave) with known

inflation point.

When errors are correlated, let cor(ε) = R, and first suppose R is known. Let R = LL
′

be the Cholesky decomposition, and use the weighted least-squares method to estimate the

coefficients. This is equivalent to transforming ỹ = L−1y, B̃ = L−1B, ε̃ = L−1ε, which has

correlation matrix I. The weighted least-squares criterion is

ψ(α; ỹ) = α
′
(B̃
′
B̃ + λD

′
D)α− 2ỹ

′
B̃α,

where α is again restricted to C.
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Let L̃L̃
′
= (B̃

′
B̃ + λD

′
D), then φ = L̃

′
α, z = L̃−1B̃

′
ỹ, then

ψ(α; ỹ) = ψ(φ; z) =‖ φ− z ‖2,

where φ is restricted to C̃ = {φ : Aφ ≥ 0} ⊆ Rm, a polyhedral cone, where the k ×m

A = T(L̃
′
)−1 is full row-rank. Referring to the setup in Meyer (2013), let ν1, · · · ,νm−k

span the null space V of A, and let Ã be the square, nonsingular matrix with the rows of

A as first k rows and ν vectors as the last rows. The first k columns of Ã−1 are the edges

δ1, · · · , δk of the cone, therefore the cone can be written as

C̃ =

{
φ : φ = ν +

k∑
j=1

βjδj, ν ∈ V , βj ≥ 0, j = 1, · · · , k

}
.

The minimizer φ̂ is the projection of z onto the cone C̃ and lands on a face of the cone.

The 2k faces, which partition C̃, are indexed by the collection of sets J ⊆ {1, . . . ,m}, and

are defined by

FJ =

{
φ : φ = ν +

∑
j∈J

βjδj, ν ∈ V , βj > 0, j ∈ J

}
.

The interior of the cone is a face with J = {1, . . . ,m}, and the origin is the face with

J = ∅. We use the hinge algorithm from Meyer (2013) to determine the face FJ on which

the projection falls, so that the estimate coincides with the ordinary least-squares projection

onto the linear space spanned by the edges of the chosen face. Let ∆J be the matrix

whose columns are those edges indexed by J , where J ⊆ {1, . . . ,m}. The projection is
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φ̂ = ∆J(∆
′
J∆J)−1∆

′
Jz, and the estimated coefficient vector is

α̂c = (L̃
′
)−1φ̂ = (L̃

′
)−1∆J(∆

′

J∆J)−1∆
′

J L̃
−1B̃

′
ỹ.

For µ ∈ Rn, where µi = f(xi), the constrained estimated mean with the known R is

µ̂cR = Bα̂c. The matrix

Pc
R = B(L̃

′
)−1∆J(∆

′

J∆J)−1∆
′

J L̃
−1B

′
R−1,

such that µ̂cR = Pc
Ry, is used to calculate effective degrees of freedom, i.e. edf = tr(Pc

R).

If J = {1, . . . ,m}, that is, all edges are used, then ∆J(∆
′
J∆J)−1∆

′
J = I, and the uncon-

strained spline satisfies the constraints and is identical to the constrained fit. The uncon-

strained estimated coefficient vector is

α̂u = (L̃
′
)−1(L̃)−1B̃

′
ỹ = (B

′
R−1B + λD

′
D)−1B

′
R−1y.

and the unconstrained estimated mean with known R is µ̂uR = Bα̂u. The trace of

Pu
R = B(B

′
R−1B + λD

′
D)−1B

′
R−1 is the unconstrained edf.

The edf for the constrained fit is a random quantity with m + 1 possible values, the

largest of which is that of the unconstrained version. Meyer (2012) discussed this for the

independent error case.

However, typically cor(ε) = R is unknown. Here, we assume AR(p) and use Cochrane-

Orcutt type iterations to estimate the matrix R. Altman (1992) introduces a similar iteration

procedure for kernel regression in the presence of correlation and also discuss the behaviors

of the procedure for different types of kernels.

For our method, given p and λ, the iteration procedure for either constrained or uncon-

strained trend estimation is

1. Pilot fit: ignoring the correlation, obtain µ̂cI and residuals ε̂i = yi − µ̂cIi.
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2. Use the Yule-Walker method in Chapter 8 of Brockwell and Davis (2009) and residual

vector ε̂ to estimate coefficients θ = (θ1, · · · , θp) and the error variance. If γ̂(0) and

γ̂p = (γ̂1, · · · , γ̂p)
′

are the estimates of correlation function values; then obtain σ̂2 =

γ̂(0)− θ̂
′

γ̂p;

3. Use Cholesky decompositon R̂ = Σ̂/γ̂(0) = LL
′
, to transform data and basis into

ỹ = L−1y, B̃ = L−1B. Using data ỹ and spline basis matrix B̃, obtain adjusted

estimators θ̂, σ̂2, µ̂c
R̂

.

4. Iterate (2)-(3) twice more, obtaining the final estimators θ̂, σ̂2, µ̂c
R̂

.

By the result obtained from the iteration procedure, we can compute the correlation-adjusted

Akaike information criterion (AIC)

AIC = n log(σ̂2) + 2(p+ edf). (1)

We use this criterion to choose p and λ simultaneously, that is, we compute fits for a grid of

p and λ values and choose the pair to minimize the AIC.

Most commonly used data-driven selection methods for tuning parameter such as gen-

eralized cross-validation (GCV) and AIC, have been developed under the assumption of

independent observations. When the regression is attempted in the presence of correlated

errors, those automated methods will break down if the correlation is ignored. They tend to

select a small tuning parameter and the fits become progressively more under-smoothed as

the correlation increases. Opsomer et al. (2001) gave an overview of these problems. We will

see that these problems are alleviated if the trend is constrained to be monotone or convex.
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2.3 Large Sample Theory

2.3.1 Rates of Convergence in the Presence of Correlation

We derive several general theorems on the convergence rate of projection estimation for

unconstrained and unpenalized regression in the presence of stationary AR(p) errors. By

using those results, the theorems on the convergence rate for constrained unpenalized spline

regression are presented.

Without loss of generality, assume σ = 1. We model the regression function f as being

a member of some linear function space H, which is a subspace of all square-integrable,

real-valued functions on [0, 1]. The least-squares estimation is a projection onto a finite-

dimensional approximating subspace Gn, which will be defined explicitly in Condition 2. If

H is finite-dimensional, then we can choose Gn = H, leading to classical linear regression.

Let µ̂I be the ordinary least-squares estimator of µ and µ̂R be the weighted least-squares

estimator of µ, when R is known. If R is unknown, suppose there is an n × n symmetric

positive-definite matrix S, which can be used as an estimator of R; let µ̂S be the weighted

least-squares estimator with the given matrix S.

It is well known that µ̂R is superior to µ̂I in that the variance of any linear contrast

λ
′
µ̂R is no larger than the variance of the corresponding linear contrast of λ

′
µ̂I. However,

the construction of µ̂R requires the knowledge of R and generally R is not known. In fact,

one may wish to estimate the mean function prior to investigating the covariance structure

of the errors. Therefore, the properties of the ordinary least-squares estimator µ̂I are of

interest. Furthermore, if the mean function is estimated with an arbitrary positive-definite

symmetric non-random matrix S, it is of interest to check whether this µ̂S can still attain

the same rate of convergence under some appropriate conditions.

Huang (1998) developed a general theory on rates of convergence for independent obser-

vations in a more general setting in which the predictor variable can be random or fixed. We

will extend Huang’s theory to correlated observations in the case of equally spaced xi.
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For µ ∈ Rn, define the norm as ‖µ‖2 = 1
n
〈µ,µ〉, where 〈a,b〉 =

∑n
i=1 aibi. Let P be the

orthogonal projection matrix onto Gn. Let µ̂ = Py and µ̃ = Pµ, which is called the best

approximation in Gn to µ. The total error can be decomposed as

µ̂− µ = (µ̂− µ̃) + (µ̃− µ).

We refer µ̂− µ̃ as the estimation error, and µ̃− µ as the approximation error.

By the triangle inequality,

‖µ̂− µ‖ ≤ ‖µ̂− µ̃‖+ ‖µ̃− µ‖.

Therefore, we can examine separately the contributions of the two parts in this decompo-

sition to the integrated squared error. The contribution to the integrated squared error from

the first part is bounded in probability by Nn/n, where Nn is the dimension of Gn, while

the contribution from the second part is governed by ρn, the approximation power of Gn.

The convergence rates for the two parts equal the corresponding rates for the independent

scenario under some conditions.

First we state the conditions for the main results. The first two conditions, following

Huang (1998), are on the approximating spaces. The first condition requires that the ap-

proximating space satisfies a stability constraint. This condition is satisfied by polynomials,

trigonometric polynomials and splines. The second condition says that the approximating

space must grow so that its distance from any function in H approaches zero.

For any function f on [0, 1], set ‖f‖∞ = maxx∈[0,1] |f(x)|.

Condition 2.1. There are positive constants An such that, ‖f‖∞ ≤ An‖f‖ for all f ∈ Gn

and limnA
2
nNn/n = 0.
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Condition 2.2. There are nonnegative numbers ρn = ρn(Gn) such that for µ ∈ H,

inf
g∈Gn

‖g − µ‖∞ ≤ ρn → 0 as n→∞.

and lim supnAnρn <∞.

If H is finite-dimensional, then we choose Gn = H, for all n. Condition 1 is automatically

satisfied with An independent of n, and Condition 2 is satisfied with ρn = 0.

For the third condition, we require short-term dependence of errors.

Condition 2.3. Let γ|i−j| = Eεiεj, then there is a positive constant M ∈ R1, such that∑∞
i=1 |γi| ≤M .

This condition implies that the row or column sum of correlation matrix R is bounded

by a constant.

Theorem 1. Let PI be the projection matrix of the ordinary least-squares estimation, then

µ̂I = PIy and µ̃I = PIµ. If Conditions 2.1, 2.2 and 2.3 hold, then

‖µ̂I − µ̃I‖2 = Op(Nn/n), ‖µ̃I − µ‖2 = O(ρ2n).

Consequently, ‖µ̂I − µ‖2 = Op(Nn/n+ ρ2n).

Huang (1998) derived the convergence rate of the least-squares estimate for independent

observations in this general setting of both classical regression and nonparametric regression.

Chapter 9 in Fuller (2009) derives the convergence rate for the least-squares estimate for

correlated observations in linear regression. We propose a proof for this general setting with

AR(p) errors.
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Proof. Let {ψj, 1 ≤ j ≤ Nn} be an orthonormal basis of Gn.

µ̂I − µ̃I =
∑
j

〈µ̂I − µ̃I,ψj〉ψj =
∑
j

〈y − µ,ψj〉ψj =
∑
j

〈ε,ψj〉ψj.

Then, ‖µ̂I − µ̃I‖2 = 1
n

∑
j〈ε,ψj〉2, and

E‖µ̂I − µ̃I‖2 =
1

n

Nn∑
j=1

E〈ε,ψj〉2

=
1

n

Nn∑
j=1

ψ
′

jRψj

=
1

n

Nn∑
j=1

n∑
l=1

n∑
k=1

Rlkψljψkj

=
1

n

Nn∑
j=1

[
n∑

l=1

Rllψ
2
lj + 2

n∑
l=1

∑
k>l

Rlkψljψkj

]

≤ 1

n

Nn∑
j=1

[
n∑

l=1

Rllψ
2
lj +

n∑
l=1

∑
k>l

Rlk(ψ2
lj + ψ2

kj)

]

=
1

n

Nn∑
j=1

(
n∑

l=1

∑
k=l

Rklψ
2
lj +

n∑
l=1

∑
k>l

Rlkψ
2
lj +

n∑
l=1

∑
k<l

Rlkψ
2
lj

)

=
1

n

Nn∑
j=1

n∑
l=1

(
n∑

k=1

Rkl

)
ψ2
lj

≤ 1

n

Nn∑
j=1

n∑
l=1

Mψ2
lj

=
Nn

n
M,

where Rij is the i, jth element of R, for i, j = 1, . . . , n. So, ‖µ̂I − µ̃I‖2 = Op(Nn/n). That

‖µ̃I − µ‖2 = O(ρ2n) is proved by Huang (1998). From Condition 2.2, we can find g ∈ Gn

such that ‖µ − g‖∞ ≤ 2ρn and hence ‖µ − g‖ ≤ 2ρn. Then we have that ‖µ̃I − g‖2 =
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‖P(µ− g)‖2 ≤ ‖µ− g‖2. Hence, by the triangle inequality,

‖µ̃I − µ‖2 ≤ 2‖µ̃I − g‖2 + 2‖µ− g‖2 ≤ 4‖µ− g‖ = O(ρ2n).

Then, we have ‖µ̂I − µ‖2 = Op(Nn/n+ ρ2n).

We need another condition to prove the next results.

Condition 2.4. The error vector ε comes from a stationary AR(p) process, for an integrer

p ≥ 1.

Theorem 2. Let PR be the projection matrix of the weighted least-squares estimation with

the known correlation matrix R, then µ̂R = PRy and µ̃R = PRµ. If Conditions 2.1, 2.2,

2.3 and 2.4 hold, then

‖µ̂R − µ̃R‖2 = Op(Nn/n), ‖µ̃R − µ‖2 = O(ρ2n).

Consequently, ‖µ̂R − µ‖2 = Op(Nn/n+ ρ2n).

Proof. Let L be the Cholesky decomposition of R, then R = LL
′
. Let y∗ = L−1y,µ∗ =

L−1µ, ε∗ = L−1ε, then the model can be transformed into y∗ = µ∗ + ε∗ and E(ε∗ε∗
′
) = I.

Let G∗n be the transformed approximating subspace, spanned by L−1Ψ, where the columns

of Ψ span Gn. Let µ̂∗ be the orthogonal projection of y∗ onto G∗n. Let µ̃∗ be the projection

of µ∗ onto G∗n. By Theorem 2.1 in Huang (1998), we have ‖µ̂∗ − µ̃∗‖2 = Op(Nn/n), and

‖µ̃∗ −µ∗‖2 = O(ρ2n). Then ‖µ̂∗ − µ̃∗‖2 = ‖L−1(µ̂R − µ̃R)‖2 = 1
n
(µ̂R − µ̃R)

′
R−1(µ̂R − µ̃R).

Since R−1 is a Hermitian matrix, its eigenvalues are all real. By the Rayleigh-Ritz Theorem,

the Rayleigh-Ritz ratio is bounded by the largest and smallest eigenvalues of R−1,

λmin ≤
(µ̂R − µ̃R)

′
R−1(µ̂R − µ̃R)

(µ̂R − µ̃R)′(µ̂R − µ̃R)
≤ λmax,

where λmin and λmax are the smallest and largest eigenvalues of R−1. For R positive

definite, it is easy to prove that R−1 is also positive definite. So, there exist two constant
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sequences mn and Mn, where 0 < mn ≤ Mn < ∞, for each specific n, such that, mn ≤

λmin ≤ λmax ≤ Mn, for each n. By Proposition 4.5.3 in Brockwell and Davis (2009), for a

stationary AR(p) process, the eigenvalues of its covariance matrix are bounded away from

zero and∞ uniformly in n. Hence, for any n, there exist two constants M and m, such that

m ≤ λmin ≤ λmax ≤ M , for each n. Then 1
M
‖µ̂∗ − µ̃∗‖2 ≤ ‖µ̂R − µ̃R‖2 ≤ 1

m
‖µ̂∗ − µ̃∗‖2.

Therefore, ‖µ̂R − µ̃R‖2 = Op(Nn/n).

By the same method used in the proof of ‖µ̂R − µ̃R‖2 = Op(Nn/n), we can prove

1
M
‖µ̃∗ − µ∗‖2 ≤ ‖µ̃R − µ‖2 ≤ 1

m
‖µ̃∗ − µ∗‖2. Therefore, ‖µ̃R − µ‖2 = Op(ρ

2
n). So, we have

‖µ̂R − µ‖2 = Op(Nn/n+ ρ2n).

For the case that R is unknown, we show that the estimation of trend is consistent and

attains the same asymptotic rate as µ̂R for any suitable fixed n×n matrix S and argue that

therefore the trend is estimated consistently with an estimator of R based on data.

Theorem 3. If the correlation matrix R is unknown, and choose a sequence of matries S

satisfying the following conditions:

A1: S is symmetric and positive-definite;

A2: All the eigenvalues of S are bounded from zero and ∞, uniformly in n;

A3: Let LS be the Cholesky decomposition of S, then L−1S R(L−1S )
′

satisfies Condition

3, which means the sum of the absolute value of its first row is bounded by a constant;

Let PS be the projection matrix of the weighted least-squares estimation with the substitute

correlation matrix S, then µ̂S = PSy and µ̃S = PSµ. If conditions 2.1 and 2.2 hold, then

‖µ̂S − µ̃S‖2 = Op(Nn/n), ‖µ̃S − µ‖2 = O(ρ2n).

Consequently, ‖µ̂S − µ‖2 = Op(Nn/n+ ρ2n).
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Proof. Let y∗S = L−1S y,µ∗S = L−1S µ, ε
∗
S = L−1S ε, then the model can be transformed into y∗S =

µ∗S+ε∗S, E(ε∗Sε
∗′
S ) = L−1S R(L−1S )

′
. Let GS

n be the transformed approximating subspace. Let

µ̂∗S be the projection of y∗S onto GS
n. Let µ̃∗S be the projection of µ∗S onto GS

n. For L−1S R(L−1S )
′

satisfying the Condition A3, then we have ‖µ̂∗S−µ̃∗S‖2 = Op(Nn/n), and ‖µ̃∗S−µ∗S‖2 = O(ρ2n),

by Theorem 8. Therefore, ‖µ̂∗S − µ̃∗S‖2 = ‖L−1S (µ̂S − µ̃S)‖2 = 1
n
(µ̂S − µ̃S)

′
S−1n (µ̂S − µ̃S).

Then, by Rayleigh-Ritz Theorem, we have,

λSmin ≤
(µ̂S − µ̃S)

′
S−1n (µ̂S − µ̃S)

(µ̂S − µ̃S)′(µ̂S − µ̃S)
≤ λSmax,

where, λSmin and λSmax are the smallest and largest eigenvalues of S−1n . By the condition A2

that the eigenvalues of S are bounded away from zero and∞ uniformly in n, the eigenvalues

of S−1 are also bounded from zero and ∞, which means that there exist two constants m

and M , where 0 < m ≤ M < ∞, such that, m ≤ λSmin ≤ λSmax ≤ M , for each n. Then

1
M
‖µ̂∗S − µ̃∗S‖2 ≤ ‖µ̂S − µ̃S‖2 ≤ 1

m
‖µ̂∗S − µ̃∗S‖2. Therefore, ‖µ̂S − µ̃S‖2 = Op(Nn/n). As in

the proof of Theorem 3.6, we have 1
M
‖µ̃∗S − µ∗S‖2 ≤ ‖µ̃S − µ‖2 ≤ 1

m
‖µ̃∗S − µ∗S‖2. Thus, we

have ‖µ̃S − µ‖2 = Op(ρ
2
n), and ‖µ̂S − µ‖2 = Op(Nn/n+ ρ2n).

Remark 1. Theorems 8, 2 and 3 can readily be applied to classical linear regression. Let Gn

be the linear space spanned by the columns of X, where X is an n × p full row-rank matrix

with fixed values, so that Gn = H, Nn = p and ρn = 0. The three estimators of µ achieve

the same convergence rate of n−1/2.

The next theorem proves the consistency of the estimates of the correlation function.

Theorem 4. Let µ̂ be a consistent estimator of µ. Let ε̂ = y − µ̂, γ̂ε̂(h) = 1
n

∑n−h
i=1 ε̂iε̂i+h,

γ̂ε(h) = 1
n

∑n−h
i=1 εiεi+h, γ(h) = Eεiεi+h, where i = 1, . . . , n − h;h = 0, 1, . . . , n − 1. Let

19



γ ε̂ = (γε̂(1), . . . , γε̂(n− 1))
′

and γε = (γε(1), . . . , γε(n− 1))
′
, then

‖γ̂ ε̂ − γ̂ε‖2 = Op(‖µ− µ̂‖2), ‖γ̂ε − γ‖2 = Op(1/n).

Consequently, ‖γ̂ ε̂ − γ‖2 = Op

(
‖µ− µ̂‖2 + 1

n

)
.

Proof.

γ̂ ε̂(h)− γ̂ε(h) =
1

n

n−h∑
i=1

(ε̂iε̂i+h − εiεi+h)

=
1

n

n−h∑
i=1

[εi(µi+h − µ̂i+h) + εi+h(µi − µ̂i) + (µi − µ̂i)(µi+h − µ̂i+h)]

≤ (
1

n

n−h∑
i=1

ε2i )
1
2 [

1

n

n−h∑
i=1

(µi+h − µ̂i+h)2]
1
2 + (

1

n

n−h∑
i=1

ε2i+h)
1
2 [

1

n

n−h∑
i=1

(µi − µ̂i)2]
1
2 +

[
1

n

n−h∑
i=1

(µi+h − µ̂i+h)2]
1
2 [

1

n

n−h∑
i=1

(µi − µ̂i)2]
1
2

= Op(‖µ− µ̂‖+ ‖µ− µ̂‖2).

If µ̂ is consistent, ‖γ̂ ε̂ − γ̂ε‖2 = 1
n−1

∑n−1
h=1[γ̂ ε̂(h) − γ̂ε(h)]2 = Op(‖µ − µ̂‖2). By Theorem

7.2.1 in Brockwell and Davis (2009),
√
n(γ̂ε(h)) is asymptotic normally distributed, for

h = 0, 1, . . . , n − 1. Thus ‖γ̂ε − γ‖2 = Op(1/n). Therefore, we have ‖γ̂ ε̂ − γ‖2 = Op(‖µ −

µ̂‖2 + 1
n
).

In the proposed iteration procedure, the pilot fit is the estimation ignoring correlation.

By Theorem 3.8, the estimated correlation based on the pilot fit is consistent. Therefore it

satisfies Conditions A1, A2 and A3. By Theorem 3.7, the renewed estimation of trend based

on this consistent estimator of correlation is consistent and attains the optimal asymptotic

rate.

Remark 2. For classical linear regression, µ− µ̂ = Op(n
−1/2), by Theorem 9.3.1 in Fuller

(2009), γ̂ ε̂ − γ̂ε = Op(1/n).
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2.3.2 Fixed-Knot Unpenalized Unconstrained Spline Regression

Theorems 8, 2 and 3 can also be applied to fixed-knot spline estimates when the knot

positions are pre-specified but the number of knots is allowed to increase with the sample

size. In this section, we investigate the large sample theory for only unpenalized situation,

i.e. λ = 0. Suppose f is p − smooth for a specified positive number p, that is, f is [p]

times continuously differentiable on H, where [p] is the greatest integer less than p, and all

the [p]th − order mixed partial derivatives of f satisfy a Hölder condition with exponent

p − [p], referring to Huang (1998). Let Gn be the linear space of regression splines with

degree d ≥ p − 1. Suppose the knots have bounded mesh ratio, that is, the ratio of the

largest inter-knot interval to the smallest is bounded from zero and infinity, uniformly in n.

Let an denote the smallest distance between two consecutive knots. For the two sequences

of positive numbers a1n and a2n, let a1n � a2n mean that the ratio a1n/a2n is bounded away

form zero and ∞. Then we have Nn � 1/an and ρn � apn � N−pn . Hence, the convergence

rate for the three estimators, i.e. µ̂I, µ̂R and µ̂S, is Op(
an
n

+ a2pn ). In order to let the rate of

convergence be optimal, which means no estimate has a faster rate of convergence uniformly

over the class of p-smooth functions, referring to Stone (1982), choose an � n−1/(2p+1). This

balances the estimation error and the approximation error, that is, an
n
� a2pn . Applying

Theorems 8, 2 and 3 to this setting, we obtain the following results.
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Corollary 1. Suppose conditions 1, 2 and 3 hold and the knots have bounded mesh ratio. If

we choose an � n−1/(2p+1), then

‖µ̂I − µ̃I‖2 = Op(n
−2p/(2p+1)), ‖µ̃I − µ‖2 = O(n−2p/(2p+1));

‖µ̂R − µ̃I‖2 = Op(n
−2p/(2p+1)), ‖µ̃R − µ‖2 = O(n−2p/(2p+1));

‖µ̂S − µ̃I‖2 = Op(n
−2p/(2p+1)), ‖µ̃S − µ‖2 = O(n−2p/(2p+1)).

Consequently,

‖µ̂I − µ‖2 = Op(n
−2p/(2p+1));

‖µ̂R − µ‖2 = Op(n
−2p/(2p+1));

‖µ̂S − µ‖2 = Op(n
−2p/(2p+1)).

2.3.3 Fixed Knot Constrained Unpenalized Spline Regression

In Theorems 8, 2 and 3, we derived the convergence rate in a general setting for both

classical regression and nonparametric regression. The next theorem will compare the con-

vergence rate of constrained estimator and the corresponding unconstrained estimator in

spline regression in the presence of correlated errors. Let Gu
n = {µ : µ = Bb}, which is a

finite-dimensional approximating subspace to H spanned by spline basis. Assume f ∈ Hc,

a subset of all square-integrable, real-valued, constrained functions on X ; µ ∈ Rn, where

µi = f(xi). Let Gc
n = {µ : µ = Bb,Tb ≥ 0}, which is a finite-dimensional approximating

subset of Hc.

As before, we consider three kinds of estimators: ordinary least-squares, the weighted

least-squares with known R and the weighted least-squares using a given matrix S as an

substitute of correlation, for both constrained spline regression and unconstrained spline

regression, and compare their convergence rates. Let Pc
I be the projection matrix of the

ordinary least-squares estimator in the constrained spline regression. It is a random matrix
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and depends on J , the index of the face identified by cone projection algorithm for a specific

y. Let µ̂cI = Pc
Iy and µ̃cI = Pc

Iµ. Let Pu
I be the projection matrix of the ordinary least-

squares estimator in the unconstrained spline estimator. It is a fixed matrix, and corresponds

to Pc
I with J = {1, · · · ,m}. Let µ̂uI = Pu

Iy and µ̃uI = Pu
Iµ. Let Pc

R be the projection matrix

of the weighted least-squares estimator in the constrained spline regression with the known

R, then µ̂cR = Pc
Ry and µ̃cR = Pc

Rµ. Let Pu
R be the projection matrix of the weighted least-

squares estimator in the unconstrained spline estimator, then µ̂uR = Pu
Ry and µ̃uR = Pu

Rµ.

Let Pc
S be the projection matrix of the weighted least-squares estimator in the constrained

spline regression with the given matrix S as an estimator of the unknown R, then µ̂cS = Pc
Sy

and µ̃cS = Pc
Sµ. Let Pu

S be the projection matrix of the weighted least-squares estimator in

the unconstrained spline estimator with the given matrix S as an estimator of the unknown

R, then µ̂uS = Pu
Sy and µ̃uS = Pu

Sµ.

Assume that µ̃uI ∈ Gc
n, so that the shape restrictions hold; otherwise, µ̃uI cannot be con-

sistent for µ, which is assumed to follow the given shape restrictions. Under this assumption,

it is easy to prove that µ̃uI = µ̃cI. The same assumption and reasoning also apply to the other

two estimators, therefore µ̃uR = µ̃cR and µ̃uS = µ̃cS. In this context, we use µ̃I instead of µ̃uI

and µ̃cI. The same treatment is used for µ̃R and µ̃S. Therefore, the approximation error for

the constrained estimators and unconstrained estimators in the same setting are the same,

and the comparison of the total error is reduced to the comparison of the estimation error.

Theorem 5. Let the knots t1, . . . , tk have bounded mesh ratio, then

‖µ̂cI − µ‖2 ≤ ‖µ̂
u
I − µ‖2.

Hence the convergence rate of the ordinary least-squares estimator in constrained spline re-

gression attains that of the corresponding unconstrained spline regression, in the presence of

correlation.
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Proof. The decomposition of errors is µ̂cI − µ = (µ̂cI − µ̃I) + (µ̃I − µ) and µ̂uI − µ =

(µ̂uI − µ̃I) + (µ̃I − µ). So we only need to prove ‖µ̂cI − µ̃I‖2 ≤ ‖µ̂uI − µ̃I‖2. We have

‖µ̂uI − µ̃I‖2 = ‖µ̂cI − µ̃I‖2 + ‖µ̂uI − µ̂cI‖2 + 2(µ̂uI − µ̂cI)t(µ̂cI − µ̃I)

= ‖µ̂cI − µ̃I‖2 + ‖µ̂uI − µ̂cI‖2

−2(y − µ̂uI )t(µ̂cI − µ̃I) + 2(y − µ̂cI)t(µ̂cI − µ̃I).

The Karush-Kuhn-Tucker conditions (see Silvapulle and Sen (2004a) Appendix 1) imply,

〈y − µ̂cI, µ̂
c
I〉 = 0 and 〈y − µ̂cI, µ̃cI〉 ≤ 0. Therefore, ‖µ̂uI − µ̃I‖2 ≥ ‖µ̂cI − µ̃I‖2.

Theorem 6. Let the knots t1, . . . , tk have bounded mesh ratio. Then there exists a constant

C ∈ R1, bounded away from zero and ∞, such that,

‖µ̂cR − µ‖2 ≤ C‖µ̂uR − µ‖2.

Hence the convergence rate of the weighted least-squares estimator with known correlation in

constrained spline regression attains that of the corresponding unconstrained spline regres-

sion.

Proof. Let L be the Cholesky decomposition of R, then R = LL
′
. Let y∗ = L−1y,µ∗ =

L−1µ, and ε∗ = L−1ε, then the model can be transformed into y∗ = µ∗+ε∗ and E(ε∗ε∗
′
) = I.

Using the result in Theorem 5, we have ‖µ̂∗c − µ̃∗‖2 ≤ ‖µ̂
∗
u − µ̃∗‖2, and when transformed

back, we get ‖L−1µ̂cR − L−1µ̃R‖2 ≤ ‖L−1µ̂uR − L−1µ̃R‖2, that is (µ̂cR − µ̃)
′
R−1(µ̂cR − µ̃) ≤

(µ̂uR − µ̃)
′
R−1(µ̂uR − µ̃). Since R−1 is Hermitian matrix, its eigenvalues are all real. By

the Rayleigh-Ritz Theorem, the Rayleigh-Ritz ratio is bounded by the largest and smallest
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eigenvalues of R−1. Then we have,

(µ̂cR − µ̃)
′
R−1(µ̂cR − µ̃)

(µ̂cR − µ̃)′(µ̂cR − µ̃)
≥ λmin and

(µ̂uR − µ̃)
′
R−1(µ̂uR − µ̃)

(µ̂uR − µ̃)′(µ̂uR − µ̃)
≤ λmax;

where, λmin and λmax are the smallest and largest eigenvalues of R−1. There exist two

constant sequences mn and Mn, where 0 < mn ≤ Mn < ∞, for each specific n, such that,

mn ≤ λmin ≤ λmax ≤ Mn, for each n.As in the proof of Theorem 2 for any n, there exist

two constants M and n, such that ‖µ̂cR − µ̃‖2 ≤ M
m
‖µ̂uR − µ̃‖2. So, there exist a constant

C ∈ R1, bounded away from zero and ∞, such that, ‖µ̂cR − µ‖2 ≤ C‖µ̂uR − µ‖2.

Theorem 7. Let the knots t1, . . . , tk have “bounded mesh ratio”. The correlation matrix R

is unknown, so choose any matrix S satisfying the conditions A1, A2 and A3. Then there

exists a constant C ∈ R1, bounded away from zero and ∞, such that,

‖µ̂cS − µ‖2 ≤ C‖µ̂uS − µ‖2,with probability approaching one.

Hence the convergence rate of the weighted least-squares estimator with the given matrix as

an substitue of correlation in constrained spline regression attains that in the corresponding

unconstrained spline regression.

Using Theorems 5 and 6, the proof is entirely analogous to that of Theorem 3, and is

omitted here.

2.4 Simulation

2.4.1 Data Scenarios

Simulations were carried out to examine the performance of the constrained penalized

spline estimator, and to compare it with the unconstrained penalized spline estimator and

the classical linear regression estimator. Data with different scenarios of trend and noise

were generated. For the trend, linear, sigmoid and truncated cubic are used. For the noise,
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a series of AR(p) errors, where p = 1, 2, 3, 4, with gradually increasing correlation were

generated, then yi = f(i/n) + εi. For the mean function f(x), we used

1. linear: f(x) = x

2. sigmoid: f(x) = e10x−5

1+e10x−5

3. truncated cubic: f(x) = 4(x− 1/2)3Ix>1/2.

Two series of noise were used in simulations:

• εi = θεi−1 + zi, θ = 0.1, 0.3, 0.5, 0.7

• εi = 0.3εi−p + zi, p = 1, 2, 3, 4

where z
′
is are independent and identically normally distributed with mean zero and standard

deviation 0.2. The sample size for the simulation is 250 and the number of replications is

1000.

2.4.2 The selection of order p and penalty parameter by AIC

Many authors have studied the effects of correlation on the selection of the smoothing

parameter and derived correlation-adjusted selection methods, see Diggle and Hutchinson

(1989), Altman (1990) and Wang (1998). None of these selects the order of correlation and

the smoothing parameter simultaneously for penalized spline regression. In this article, we

use a correlation-adjusted AIC (1) criterion to select the penalty parameter and the order p

simultaneously.

For each simulated data set, we compute 60 AIC values using p = (0, 1, 2, 3, 4, 5) and

ten values of λ as candidates. The effective degrees of freedom for both constrained and

unconstrained estimators with unknown correlation are random. We choose the candidate λ

by letting the corresponding effective degrees of freedom for unconstrained penalized spline

estimator for independent data be (4, 5, 6, 8, 10, 12, 16, 20, 25, 30). We choose p and λ as the
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Table 2.1: The proportion of datasets for which the correlation-adjusted AIC criterion
selects the true p, for the proposed estimator, the unconstrained penalized estimator and

the classical linear regression estimator. The simulated data are generated by three
different mean functions, linear, truncated cubic and sigmoid, with AR(1) errors, where

θ = 0, 0.1, 0.3, 0.5, 0.7 and AR(p) errors, where εi = 0.3εi−p + zi, p = 0, 2, 3, 4.

AR(1) AR(p)
f θ constrained unconstrained linear p constrained unconstrained linear

linear 0 0.617 0.619 0.717 0 0.617 0.619 0.717
0.3 0.617 0.581 0.740 2 0.631 0.599 0.756
0.5 0.663 0.632 0.760 3 0.645 0.599 0.799
0.7 0.677 0.620 0.761 4 0.695 0.613 0.834

cubic 0 0.673 0.592 0.078 0 0.673 0.592 0.078
0.3 0.686 0.601 0.541 2 0.709 0.561 0.595
0.5 0.697 0.587 0.700 3 0.748 0.562 0.691
0.7 0.704 0.595 0.750 4 0.785 0.593 0.797

sigmoid 0 0.575 0.532 0.019 0 0.575 0.532 0.019
0.3 0.605 0.546 0.426 2 0.625 0.549 0.521
0.5 0.658 0.611 0.669 3 0.627 0.520 0.649
0.7 0.663 0.599 0.727 4 0.720 0.582 0.744

joint minimizer of AICp,λ. We repeat this procedure for N = 1000 times, and calculate the

fraction of times that AIC chooses the true p.

In Table 1, for truncated cubic data and sigmoid data, the values in first and third columns

are always greater than the values in the corresponding second and fourth columns, which

is just as we expected when the assumptions on the shape are correct. Linear regression

behaves poorly for truncated cubic data and sigmoid data when the correlation is zero or

small because it is more likely to choose a larger p. When the data are generated by a linear

trend, the linear regression does the best job but the behavior of the proposed estimator

is still acceptable. We also conducted the simulations with larger p and higher degree of

correlated errors, such as, AR(4) with θ = (0.4, 0.3, 0.15, 0.1). If the correlation is large

enough, it can cause the failure of the AIC to select the true p for all three methods.
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2.4.3 Three Performance Measures

To compare the performance of the proposed estimator with the unconstrained penalized

spline estimator and classical linear regression estimator, the following three measures are

constructed. The first and the second measures are used to compare the estimations of the

correlation. The third one is used to compare the estimations of the trend.

∆θ =
1

N

N∑
i=1

√√√√ K∑
k=1

(θ̂ip̂k − θk)2; ∆γ =
1

N

N∑
i=1

√√√√ 20∑
h=1

(γ̂ip̂h − γh)2;

and

∆f =
1

N

N∑
i=1

√∑n
l=1(f̂p̂i(xl)− f(xl))

2

n
.

Here, K is the largest length of θ, θ = (θ1, ..., θK), f̂p̂i(xl) is the estimated mean at a

specific value xl under selected order p̂ in ith repetition, and γ̂ip̂h is the estimator of γh with

p̂ in ith repetition.

In Tables 2 and 3, the values in the first, third and fifth columns are all positive, except

for the linear trend with independent error for measure 2. These results show that the con-

strained penalized spline estimator behaves better than the unconstrained penalized spline

estimator in the estimation of both the trend and correlation. For linear data, comparing

with unconstrained spline estimator, the proposed estimator still improves around 5%−10%

for measure 1, 3%− 19% for measure 2, and 1%− 13% for measure 3. For both cubic data

and sigmoid data, the superiority of the proposed estimator in the estimation of both the

trend and correlation is quite evident, where the improvement is around 26%−57% for cubic

data and 11% − 31% for sigmoid data. The improvements have an increasing trend with

the increase of the correlation, because the constrained estimator is less sensitive than the

unconstrained estimator to the increase of correlation.
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Table 2.2: The simulated percentage of the proposed estimator’s relative improvement in
the three measures, comparing with the unconstrained spline estimator and the classical

linear regression estimator. Each value is calculated as a ratio. The numerator is the
difference of measures, i.e. measure of constrained estimator minus that of the

unconstrained estimator or the linear estimator. The denominator is the corresponding
measure of the constrained estimator. The datasets are generated by three different kinds

of true mean functions, linear, truncated cubic and sigmoid, with AR(1) errors, where
θ = 0, 0.3, 0.5, 0.7.

∆θ ∆γ ∆f

f θ uncon linear uncon linear uncon linear

linear 0 5.2 -41.4 -0.41 -26.5 1.0 -40.8
0.3 8.8 -26.2 8.06 -34.5 5.0 -40.3
0.5 5.8 -26.2 9.18 -34.0 5.9 -40.8
0.7 13.3 -25.5 19.34 -33.8 13.8 -36.8

cubic 0 60.6 284.6 25.5 192.1 25.5 224.0
0.3 29.1 37.4 34.7 82.7 30.1 145.0
0.5 29.7 1.5 46.6 24.9 30.2 89.1
0.7 35.9 -15.5 57.2 -12.7 35.4 37.4

sigmoid 0 27.8 204.4 10.5 143.8 15.0 195.1
0.3 15.8 30.0 19.9 91.3 13.2 115.4
0.5 14.9 -4.7 21.1 20.2 15.4 71.0
0.7 18.1 -21.3 29.9 -20.6 18.9 25.1
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Table 2.3: The simulated percentage of the proposed estimator’s relative improvement in
the three measures, comparing with the unconstrained spline estimator and the classical

linear regression estimator. Each value is calculated as a ratio. The numerator is the
difference of measures, i.e. measure of constrained estimator minus that of the

unconstrained estimator or the linear estimator. The denominator is the corresponding
measure of the constrained estimator. The datasets are generated by three different kinds

of true mean functions, linear, truncated cubic and sigmoid, with AR(p) errors, where
εi = 0.3εi−p + zi, p = 0, 1, 2, 3, 4.

∆θ ∆γ ∆f

f p uncon linear uncon linear uncon linear

linear 0 5.2 -41.4 -0.4 -26.5 1.0 -40.8
1 8.8 -26.2 8.1 -34.5 5.0 -40.3
2 7.8 -6.1 3.7 -28.2 4.9 -43.2
3 10.2 -31.6 3.9 -30.0 8.2 -46.0
4 16.2 -34.0 6.6 -24.8 12.2 -46.6

cubic 0 60.6 284.6 25.5 192.1 25.5 224.0
1 29.1 37.4 34.7 82.7 30.1 145.0
2 38.6 21.6 37.4 63.7 36.2 141.5
3 46.2 16.8 34.4 71.8 42.9 151.6
4 58.8 8.5 32.2 60.4 46.1 145.7

sigmoid 0 27.8 204.4 10.5 143.8 15.0 195.1
1 15.8 30.0 19.9 91.2 13.2 115.4
2 17.1 12.8 14.2 67.3 16.1 118.1
3 24.6 0.8 16.1 66.2 18.1 111.4
4 30.9 -5.8 13.6 67.5 20.9 113.5
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Table 2.4: The simulated percentage of increase in measure 3 by ignoring the correlation,
comparing with the estimation by proposed iteration. Each value is calculated as a ratio.
The numerator is the difference of measures, i.e. measure of fit ignoring correlation minus

the measure of fit obtaining from proposed iteration. The denominator is the
corresponding measure of the proposed iteration estimator. The datasets are generated by

three different kinds of true mean functions, linear, truncated cubic and sigmoid, with
AR(1) errors, where θ = 0.3, 0.5, 0.7. Sample size is 500.

f θ constrained unconstrained linear

linear 0.3 30.23 37.24 -2.54
0.5 33.59 56.92 -0.12
0.7 29.67 65.60 4.45

cubic 0.3 4.00 20.78 0.05
0.5 11.38 38.06 0.02
0.7 11.27 43.19 -0.40

sigmoid 0.3 8.11 13.94 -0.01
0.5 12.21 23.94 -0.08
0.7 14.70 37.25 -1.12

For the linear data, all the values in the first, third and fifth columns in both Tables 2

and 3 are negative. We cannot expect a nonparametric method to perform better than the

correct parametric method. For cubic data and sigmoid data, the improvement of proposed

method is noteworthy for small amount of correlation. But for the estimation of θ, the

proposed method performs about as well as the linear model for large correlation. There are

some extreme large positive values for cubic and sigmoid data with independent observations

in the first, third and fifth columns in both Tables 2 and 3. These values demonstrate that

incorrectly assuming a parametric form would cost a great deviation when there is no prior

information of the parametric family of the trend. The deviation is evident when there is no

correlation, and would be obscured when the correlation is increasing.

Finally, we investigate whether incorporating the correlation actually improves the es-

timation of the mean function, relative to the simpler estimator that completely ignores

the correlation. Incorporating the correlation into the estimation procedure improves the

estimation of trend, for both constrained spline regression and unconstrained spline regres-
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sion. Table 4 shows the differences of effects whether estimating the correlation by the

proposed iteration or ignoring the correlation for those three regression models. The in-

crease of constrained estimator is smaller than that of the unconstrained estimator. Because

of incorporation of qualitative knowledge of trend, the estimation of trend is more robust to

the estimation of correlation. The increment of simple linear regression is almost zero and

sometimes even negative.

2.5 Global Temperature Data

There has been much interest in the research of the global temperature change. Hansen

et al. (2006) have a discussion on the pattern of global warming. In this article, we use

the “Global Annual Mean Surface Air Temperature Change Data” from 1882 to 2008 to

demonstrate the behavior of the proposed estimator. The data set comes from http://

data.giss.nasa.gov/gistemp/graphs_v3/Fig.A2.txt. Assume that the global annual

temperature is a stationary auto-regressive process with a monotone increasing tendency

during the 1882 to 2008. We fit the data with the monotone constrained penalized spline

regression and compare the performance with the unconstrained penalized spline estimator

and the classical linear regression estimator. The correlated-adjusted AIC in this paper

would be used to select the penalty parameter and the order p. We fit this data with 20

knots and 35 knots for a comparison. The results are in Figures 3.1 and 3.2.

For the situation of 20 knots, p̂ = 2 and θ̂ = (0.278,−0.138) for constrained penalized

spline estimator. This looks more reasonable than the results of the unconstrained penal-

ized estimator, where p̂ = 5 and θ̂ = (0.251,−0.160,−0.133, 0.114,−0.224). The penalty

parameters for both the constrained and unconstrained regression are 0.024, so that the

corresponding effective degree of freedom of constrained estimator is 8 and that of the un-

constrained estimator is 14. Unconstrained spline regression tends to select the smallest value

by AIC among all the candidate λ, which easily leads to overfitting and generates a wiggly

curve. The linear regression is inclined to overestimate the correlation as expected, selecting
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p̂ = 4 and θ̂ = (0.507, 0.003, 0.050, 0.222). Woodward and Gray (1993) point out that statis-

tical tests based on simple linear model have little or no ability to distinguish the realizations

from the ARMA model with high correlation and those from the linear model. If the number

of knots is increased to 35, the constrained penalized spline estimator still estimate p̂ = 2,

and θ̂ = (0.256,−0.158), which is quite similar to the case with 20 knots. But the behav-

ior of the unconstrained penalized spline estimator becomes very unstable with p̂ = 9 and

θ̂ = (0.0247,−0.334,−0.333,−0.116,−0.364,−0.176,−0.154,−0.111,−0.186). From Figure

3.2, the unconstrained fit becomes more wiggly, but the constrained fit has little change.

We also compared the proposed estimation with constrained spline estimation with ig-

noring the correlation on the Global Temperature Data. But the two curves are almost

identical to each other. The difference of the fits is quite small if we use the constrained

method.

In conclusion, this example illustrates the robustness to knot choice of the constrained

spline regression, and the ability of the proposed AIC criterion to select suitable values for

the penalty and the order of the correlation automatically. Meyer (2012) has previously

found the robustness of constrained spline regression to penalty choice for independent data,

so this confirms these good practical properties for situations with correlated data.

2.6 Conclusion

The asymptotic rate for constrained spline estimators with estimation of correlation and

ignoring the correlation have been proved to be the same. Even if we have an inconsistent

estimator of correlation, as long as it satisfies appropriate conditions, the estimation of

trend based on this estimator is still consistent and attains the optimal rate. However, as

illustrated in Table 4, estimation of the trend is substantially improved for moderate-sized

samples under proposed iteration method. Further, the asymptotic variances of the three

estimators are different. In on-going research, we are studying the hypothesis tests of the

33



1880 1900 1920 1940 1960 1980 2000

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

Global Land-Ocean Temperature

20 knots
year

A
nn

ua
l M

ea
n

constrained
unconstrained
linear

Figure 2.1: Estimated global temperature trends, using constrained penalized spline
estimators and unconstrained penalized spline estimator both with 20 knots and penalty

and correlation order selected with AIC, and linear regression fit.
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Figure 2.2: Estimated global temperature trends, using constrained penalized spline
estimators and unconstrained penalized spline estimator both with 35 knots and penalty

and correlation order selected with AIC, and linear regression fit.
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trend, such as, constant vs. monotone, in the presence of AR(p) errors. The asymptotic

distribution of the test statistic depends on consistent estimation of the correlation.
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CHAPTER 3

SHAPE RESTRICTED HYPOTHESIS TESTS

IN THE PRESENCE OF CORRELATION

3.1 Literature Review

A test for trend in time series data uses the constant function for the null hypothesis;

an alternative hypothesis must be chosen to reflect the context of the problem and provide

good power. Often, a linear function is chosen for alternative. Woodward and Gray (1993)

perform a test of the existence of a increasing linear trend in global warming data with

autoregressive moving average errors.

Raubertas et al. (1986) study the likelihood ratio tests for a set of normal means when

the homogeneous linear inequality constraints are imposed on the means for alternative hy-

potheses using the properties of polyhedral cones. The exact distribution of the likelihood

ratio statistic is shown to be the chi-bar-square form. Chapter 2 of Robertson et al. (1988)

develops a method for testing whether a regression function is constant or monotone for

independent normal data. The alternative estimator is the ordinary unsmoothed isotonic re-

gression. They generate a likelihood ratio test statistic with its exact null distribution that of

a mixture of chi-square random variables when the variance is known and a mixture of beta

distribution when the variance is unknown, where the mixing distribution is just derived for

small sample size. Cohen et al. (1993) offer sufficient conditions for a normal order restricted

hypothesis test to be unbiased. The tests include testing homogeneity versus simple order

and testing whether the means lie on a line against a convex curve. Cohen et al. (1995)

offer sufficient conditions for the tests with order-restricted alternative to be complete and

the unbiasedness of tests. The conditions are expressed in terms of cone order monotonicity.

They also give a method to construct unbiased and complete hypothesis tests. Meyer (2003)
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extends the Robertson et al. (1988)’s test for linear versus unsmoothed convex regression

function for independent normal data and show that the mixing distribution determined by

the convex shape restriction can be calculated from relative volumes of polyhedral cones.

Meyer (2008) develops the tests of constant versus increasing and linear versus convex func-

tion with smoothed spline regression alternative for independent normal data, which have

higher power than the standard version using ordinary shape-restricted regression.

A test for monotone trend with stationary autocorrelated error series is given by Brillinger

(1989). The statistic is the ratio of a linear combination of the time series values to an

estimate of the standard error of the linear combination. The statistic is shown to have

asymptotic power 1 for a broad class of monotonic alternatives. Wu et al. (2001) proposes a

test for monotonic trend in short range dependent sequences based on unsmoothed isotonic

regression and used this test for changepoint problems. The test is shown to be more powerful

than Brillinger (1989)’s test.

For smoothed shape-restricted regression, Ramsay (1998) develop a method to estimate

smooth strictly monotone function of arbitrary flexibility. Mukerjee (1988) combines isotonic

regression and nonparametric smoothing and generates a hybrid procedure by “isotonizing”

the raw data and then smoothing the resulting isotonic regression function by a appropri-

ate kernel. Tantiyaswasdikul and Woodroofe (1994) generalize the isotonic estimate into a

piecewise linear isotonic smoothing spline for the estimation of a smooth regression function.

Mammen and Thomas-Agnan (1999) prove that the monotone smoothing splines have a op-

timal convergence rate as n−p/(2p+1), where p is the maximum of the order of spline and the

order of derivative. Hall and Huang (2001) develop a method based on maximizing fidelity to

the conventional empirical approach subject to monotonicity for monotonizing general linear

kernel-typed estimators. Dette et al. (2006) propose a inversion-based method to estimate

the monotone regression function. This approach does not require constrained optimiza-

tion. Dette and Scheder (2006) propose a monotone nonparametric estimate for a regression

function of two or more variables. They apply successively one-dimensional isotonization
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procedures on an initial unconstrained nonparametric regression estimate. Birke and Dette

(2006) develop a nonparametric estimate of a convex regression function. The method starts

with an unconstrained estimate of the first derivative of the regression function, which is

then isotonized and integrated. Meyer (2008) gives details about shape-restricted spline re-

gression and hypothesis tests. The author also proposes an algorithm for the cubic monotone

case, and extends the method to convex constraints and variants such as increasing-concave.

Wang and Shen (2010) study two monotone univariate regression estimators: a grouped

Brunk estimator and a penalized monotone estimator. These estimators are showed to be

consistent at the boundary and their mean square errors have optimal convergence rates un-

der some suitable conditions. Wang et al. (2013) propose the constrained spline regression

estimator for data with stationary AR(p) errors. The convergence rate for the proposed

estimator attains that of the corresponding unconstrained spline regression estimator. This

constrained spline regression is used as the alternative fit in this paper.

In this article, we propose several types of hypothesis tests using cone projection theories

and algorithms. The observations are serially correlated, having a stationary AR(p) process

with unknown p and unknown correlation parameters. The true trend is assumed to be

smooth and to have a shape such as monotone or convex. The proposed tests making use

of theories of cone projection for both independent data and correlated data are derived

in Section 2. In Section 3, the approximate null distributions for the test statistics with

unknown p and unknown correlation are investigated. In Section 4, simulations of comparing

test size and power of the proposed test with the F-test with unconstrained alternative fit and

one-sided t-test with simple regression alternative fit are conducted. In Section 5, we apply

the proposed tests to test the monotonicity of Argentina rainfall data and the convexity of

price of liquefied U.S. natural gas exports data.
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3.2 The Proposed Tests

We assume that the observed data (xi, yi), for i = 1, · · · , n, are generated by a smooth

trend f with some correlated noise. Let

yi = f(xi) + σεi, (2)

where xi ∈ [0, 1], equally spaced. The error term ε comes from an AR(p) process with zero

mean, that is, for some integer p ≥ 1,

εi =

p∑
j=1

ηjεi−j + zi,

where zi, for i = 1, · · · , n are independent standard normal variables.

Researchers usually want to check if the trend f is constant or has some sort of pattern,

such as monotonicity or convexity. A simple and widely used approach to deal with the test

of constant versus monotone is the one-sided t-test. If a linear relation between y and x

is reasonable, we can fit the data with simple linear regression and fit the errors with time

series models, such as autoregressive models. Then test whether the coefficient is positive

or not by the one-sided t-test. But, often prior information of the relation between y and

x does not include a parametric form to model with, instead that a vague assumption is

more appropriate, such as “smooth”, “monotone” and/or “convex”. We need to switch to

nonparametric approach. But because of the flexibility of the nonparametric approach, the fit

rarely satisfies the shape constraint. In this article, we apply the cone projection theory into

the regression spline to generate the constrained spline estimate as the alternative fit of the

proposed tests. The constraint types includes monotone, convex/concave and combinations

of them, such as, increase and convex, etc.
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3.2.1 Review of Independent Normal Errors Case

Instead of projections onto the linear space spanned by the columns of design matrix in

ordinary least-squares estimation for linear model, constrained estimation involves projec-

tions onto the convex cone determined by the shape restriction. Regression splines are used

to estimate f(x) in (2). Specify a set of knots 0 = t1 < · · · < tk = 1. A set of m = k+ d− 1

basis functions b1(x), · · · , bm(x) are defined, where d is degree of polynomial spline with

d = 2 for quadratic splines and d = 3 for cubic splines. We choose the standard B-spline

basis, but other bases spanning the same space can be used instead. Let b1, · · · ,bm ∈ Rn be

the basis vectors, where bij = bj(xi). The basis functions span the space of smooth piecewise

polynomial regression functions with the given knots, and a m-dimensional subspace of Rn

is spanned by the basis vectors.

First, assume E(εε
′
) = I, the identity matrix. Let B be the n × m matrix with bj as

columns and let α = (α1, · · · , αm)
′

be the coefficient vector of spline bases. So, Bα is the

best approximation of the true mean vector θ = (θ1, · · · , θn)
′
, where θi = f(xi) in the space

spanned by the spline bases. The vector expression of sum of squared errors is equals to

ψ(α; y) = α
′
(B
′
B)α− 2y

′
Bα. (3)

For monotone constraint, quadratic splines are used. We define the k ×m matrix T as

the slopes at each knot by Tij = ∂bj(t)/∂t|t=ti , for i = 1, · · · , k; j = 1, · · · ,m;m = k + 1.

The linear combination
∑m

j=1 αjbj(x) is non-decreasing if and only if its first-order derivative

is non-negative. Therefore, the vector of coefficients must satisfy the following constraint:

Cα = {α : Tα ≥ 0} ⊆ Rm. (4)

The first derivatives of the quadratic spline functions are still piecewise linear between every

two consecutive knots, therefore, the constraint on each knot is sufficient to constrain the fit

everywhere.
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For convex or concave constraints, we use cubic splines and define Tij = ∂2bj(t)/∂t
2|t=ti ,

for i = 1, · · · , k; j = 1, · · · ,m;m = k + 2. Then the linear combination
∑m

j=1 αjbj(x) is

convex if and only if its second order derivative is non-negative, that is Tα ≥ 0.

For combinations of monotone and convex/concave, cubic splines are used. Both the

first-order and second-order derivatives are needed. We define T matrix for each different

types of combinations, so that the linear combination
∑m

j=1 αjbj(x) satisfies each constraint

if and only if the coefficients vector satisfies the linear inequality (4) with corresponding

definition of T:

• increasing and convex: Tij =
∂2bj(t)

∂t2
|t=ti , i = 1, · · · , k; j = 1, · · · ,m;m = k + 2 and

Tij =
∂bj(t)

∂t
|t=t1 , i = k + 1; j = 1, · · · ,m;m = k + 2;

• increasing and concave: Tij = −∂2bj(t)

∂t2
|t=ti , i = 1, · · · , k; j = 1, · · · ,m;m = k + 2 and

Tij =
∂bj(t)

∂t
|t=tk , i = k + 1; j = 1, · · · ,m;m = k + 2;

• decreasing and convex: Tij =
∂2bj(t)

∂t2
|t=ti , i = 1, · · · , k; j = 1, · · · ,m;m = k + 2 and

Tij = −∂bj(t)

∂t
|t=tk , i = k + 1; j = 1, · · · ,m;m = k + 2;

• decreasing and concave: Tij = −∂2bj(t)

∂t2
|t=ti , i = 1, · · · , k; j = 1, · · · ,m;m = k + 2 and

Tij = −∂bj(t)

∂t
|t=t1 , i = k + 1; j = 1, · · · ,m;m = k + 2.

Apply the Cholesky decomposition to B
′
B, where LL

′
= B

′
B. Define φ = L

′
α, z =

L−1B
′
y, then the expression (3) is transformed into

ψ(φ; z) =‖ φ− z ‖2, (5)

and the new constraint set is

Cφ = {φ : Aφ ≥ 0} ⊆ Rm, (6)

which is a polyhedral cone defined by the constraint matrix A = T(L
′
)−1.
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Now the problem has been expressed as a cone projection problem: minimize Equation

(5) over the cone (6). The definitions of constraint cone, polar cone, faces of the cone, and

sectors need to be reviewed, see Meyer (2013) and Silvapulle and Sen (2004b).

The constraint matrix is a k∗ × m, full row-rank matrix with k∗ = k,m = k + 1 for

monotone case, k∗ = k,m = k + 2 for convex/concave case and k∗ = k + 1,m = k + 2 for

the four types of combination. Let ν1, · · · ,νm−k∗ span the null space V of A. Let A+ be

the square, nonsingular matrix with the rows of A as first k∗ rows and ν vectors as the rest

rows. The first k∗ columns δ1, · · · , δk∗ of A−1+ are the generators of the cone, therefore the

constraint set (6) can be written as

Cφ =

{
φ : φ =

m−k∗∑
i=1

βiνi +
k∗∑
j=1

βjδj, νi ∈ V , βj ≥ 0, j = 1, · · · , k∗
}
.

Let Ω = Cφ ∩ V⊥, then Ω is a polyhedral convex cone that does not contain any linear

space. It is the set of nonnegative linear combinations of the δ vectors. Therefore, Ω can be

expressed as,

Ω =

{
φ : φ =

m∑
j=1

βjδj, βj ≥ 0, j = 1, · · · ,m

}
.

The polar cone is defined as all vectors in the linear space spanned by spline basis making

obtuse angles with all vectors in constraint set Cφ:

Ω0 = {ρ : 〈ρ,φ〉 ≤ 0, for all φ ∈ Cφ} . (7)

Let γ1, · · · ,γm are the rows of the matrix [−(∆
′
∆)−1∆

′
], where the columns of ∆ are the

δj. Then by the Proposition 3 in Meyer (2008), the vectors γj are the generators of Ω0, that
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is,

Ω0 =

{
ρ : ρ =

m∑
j=1

βjγj, βj ≥ 0; j = 1, · · · ,m

}
. (8)

We could express the proposed tests into a cone projection problem:

H0 : φ ∈ V vs. H1 : φ ∈ Cφ.

Let φ̂
0

be the null fit, where φ̂
0

= Π(z|V), the projection of z onto V . For convex/concave

case, the null fit is the simple linear regression estimate. Denote the alternative fit as φ̂
1
,

where φ̂
1

= Π(z|Cφ), the projection of z onto Cφ. The estimator φ̂
1

lands on a face of the

cone. The faces of the cone are indexed by the collection of sets J ⊆ {1, . . . ,m}, and defined

as

FJ =

{
φ : φ =

m−k∗∑
i=1

βiνi +
∑
j∈J

βjδj, νi ∈ V , βj > 0, j ∈ J

}
.

There are 2m faces partitioning Cφ. The interior of the cone is the face with J = {1, . . . ,m},

and the origin is the face with J = ∅. Algorithms on cone projections can be used to

determine the face FJ on which the projection falls. Fraser and Massam (1989) propose

the mixed primal-dual bases algorithm for cone projections and use it for concave non-

parametric regression. Chapter 23 of Lawson and Hanson (1995) states the non-negative

least-squares algorithm to solve the quadratic problems with linear inequality constraints.

Meyer (2013) develops the Hinge Algorithm for quadratic programming and states its appli-

cations in statistics. Then the null fit of the data for the independent case is ŷ0
I = B(L

′
)−1φ̂

0

and the alternative fit is ŷ1
I = B(L

′
)−1φ̂

1
.

Let the corresponding sum of squared errors under null hypothesis and alternative hy-

pothesis be SSE0
I = ‖y − ŷ0

I‖2 and SSE1
I = ‖y − ŷ1

I‖. By Meyer (2008), a likelihood ratio
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test statistic for known σ2 is

χ2
I =

1

σ2
(SSE0

I − SSE1
I ).

If the σ2 is unknown, the test statistic is

BI =
χ2
I

χ2
I + SSE1

I /σ
2

=
SSE0

I − SSE1
I

SSE0
I

.

To derive the null distribution of χ2
I , we need the definition of sectors CJ. A similar

definition is developed by Meyer (2008). For all J ⊆ {1, · · · ,m}, we have

CJ = {z : z = ν +
∑
j∈J

βjδj +
∑
j /∈J

βjγj}, (9)

where ν ∈ V ; βj > 0 for j ∈ J, βj ≥ 0 for j /∈ J. The 2m sectors are disjoint and cover Rm,

and

P(χ2
I ≤ a) =

∑
subsetsJ

P(χ2
I ≤ a|z ∈ CJ)P(z ∈ CJ).

Meyer (2003, 2008) discuss this and showed that under H0, P(χ2
I ≤ a|z ∈ CJ) =

P(χ2(d) ≤ a), where χ2
I(k) is a χ2 random variable with k degrees of freedom and d is

the number of indices in J. Therefore, given the number of chosen edges of the convex cone,

test statistic χ2
I has a χ2-distribution. Since the number of chosen edges of the cone is a ran-

dom quantity, the null distribution of the test statistic χ2
I has a mixture of χ2-distribution.

Let D be random variable indicating the size of J, the number of generators corresponding

to the sector in which z falls.
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P(χ2
I ≤ a) =

m∑
d=0

P(χ2(d) ≤ a)P(D = d).

Since χ2
I and SSE1

I are independent, we have

P(B2
I ≤ a) =

m∑
d=0

P

[
Beta

(
d

2
,
n− d− r

2

)
≤ a

]
P(D = d),

where χ2(0) ≡ 0, and Beta(α, β) is a Beta random variable with parameters α and β. Let

Beta(0, β) ≡ 0 and Beta(α, 0) ≡ 1. The mixing probabilities P(D = d) can be determined

by numerical computation under H0 as precisely as desired. So, the distribution of the test

statistic is exact, when errors are independent.

3.2.2 Stationary AR(p) Errors: Known Correlation

If the real data do not behave independently, there is the need to develop an hypothesis

test for correlated data. In this article, the correlation is restricted to be stationary AR(p).

Let cor(ε) = R, and first suppose R is known. Let R = WRW
′
R, where WR is the

Cholesky decomposition of R. Applying the weighted least-squares method, so that yR =

W−1
R y,BR = W−1

R B, and εR = W−1
R ε, which has correlation matrix I. The expression to

be minimized becomes

ψ(α; yR) = α
′
(B
′

RBR)α− 2y
′

RBRα. (10)

Let LR be the Cholesky decomposition of B
′
RBR, then LRL

′
R = B

′
RBR. Define φR =

L
′
Rα, zR = L−1R B

′
RyR, then the expression (10) equals to

ψ(φR; zR) =‖ φR − zR ‖2,

where φR is restricted to CRφ = {φR : ARφR ≥ 0} ⊆ Rm, and AR = T(L
′
R)−1. With the

transformation of the data and basis, the constraint matrix is also transformed into AR,

therefore the polyhedral cone is also transformed. The construction of transformed cone is
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similar to the Section (3.2.1). Let νR1 , · · · ,νRm−k∗ span the null space VR of AR, and let AR
+

be the square, nonsingular matrix with the rows of AR as first k∗ rows and νR vectors as the

last rows. The first k∗ columns of (AR
+)−1 are the edges δR1 , · · · , δRk∗ of the cone, therefore

the transformed constrained set can be written as

CRφ =

{
φ : φ = νR +

k∗∑
j=1

βjδ
R
j , ν ∈ VR, βj ≥ 0, j = 1, · · · , k∗

}
.

The transformed cone ΩR = CRφ ∩ (VR)⊥, and is expressed as,

ΩR =

{
φ : φ =

m∑
j=1

βjδ
R
j , βj ≥ 0, j = 1, · · · ,m

}
.

The transformed polar cone is constructed as the independent case, and expressed as

ΩR
0 =

{
ρ : ρ =

m∑
j=1

βjγ
R
j , βj ≥ 0; j = 1, · · · ,m

}
. (11)

The minimizer φ̂
1

R is the projection of zR onto the transformed cone CRφ and lands on a

face of the transformed cone. The 2m faces are defined by

FRJ =

{
φ : φ = νR +

∑
j∈J

βjδ
R
j , ν ∈ VR, βj > 0, j ∈ J

}
.

Wang et al. (2013) give the details about the projection of the transformed data onto the

transformed cone when the correlation is known.

Let the minimizer of sum of squared errors under null and alternative hypothesis be α̂0
R

and α̂1
R for known correlation R, where α̂0

R = (L
′
R)−1φ̂

0

R and α̂1
R = (L

′
R)−1φ̂

1

R. Therefore the

null fit and alternative fit are ŷ0
R = Bα̂0

R and ŷ1
R = Bα̂1

R. Let θ̂
0

R = BRα̂
0
R and θ̂

1

R = BRα̂
1
R.

Then SSE0
R = ‖yR − θ̂

0

R‖2 and SSE1
R = ‖yR − θ̂

1

R‖2. The likelihood ratio test statistic for

known σ2 is,
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χ2
R =

1

σ2

(
SSE0

R − SSE1
R

)
Define the transformed sector CR

J for all J ⊆ {1, · · · ,m} as

CR
J = {zR : zR = νR +

∑
j∈J

βjδ
R
j +

∑
j /∈J

βjγ
R
j },

It is easy to prove that χ2
R still has an exact distribution as a mixture of χ2 random

variables, that is,

P(χ2
R ≤ a) =

∑
subsetsJ

P(χ2
R ≤ a|zR ∈ CR

J )P(zR ∈ CR
J ) =

m∑
d=0

P(χ2(d) ≤ a)P(D̃ = d).

The likelihood ratio test statistic, if σ2 is unknown, is

BR =
χ2
R

χ2
R + SSE1

R/σ
2

=
SSE0

R − SSE1
R

SSE0
R

;

and

P(BR ≤ a) =
m∑
d=0

P

[
Beta

(
d

2
,
n− d− r

2

)
≤ a

]
P(D̃ = d).

where, D̃ is a random variable, indicating the number of edges of the transformed cone that

the projection algorithm identifies.

3.2.3 Test Statistics with Unknown Correlation

Often the correlation parameters are unknown and we need make inference based on

the estimate of the correlation. Let R̂ be an estimator of R, and WR̂W
′

R̂
is the Cholesky

decomposition of R̂.

47



Transforming the data and basis with R̂, we have yR̂ = W−1
R̂

y,BR̂ = W−1
R̂

B, εR̂ =

W−1
R̂
ε, where E(εR̂ε

′

R̂
) = W−1

R̂
R̂(W−1

R̂
)
′
. The transformed sum of squared errors is

ψ(α; yR̂) = α
′
(B
′

R̂
BR̂)α− 2y

′

R̂
BR̂α. (12)

Let LR̂ be the Cholesky decomposition of B
′

R̂
BR̂, where LR̂L

′

R̂
= B

′

R̂
BR̂. Define φR̂ =

L
′

R̂
α, zR̂ = L−1

R̂
B
′

R̂
yR̂. We have

ψ(α; yR̂) = ψ(φR̂; zR̂) =‖ φR̂ − zR̂ ‖
2,

where φR̂ is restricted to CR̂φ = {φR̂ : AR̂φR̂ ≥ 0} ⊆ Rm, and AR̂ = T(L
′

R̂
)−1.

Let ν̃R̂1 , · · · , ν̃R̂m−k∗ span the null space ṼR̂ of the constraint matrix AR̂. Let A+

R̂
be the

square, nonsingular matrix with rows of AR̂ as first k∗ rows and νR̂ vectors as the last rows.

The first k∗ columns of (A+

R̂
)−1 are the edges δR̂1 , · · · , δR̂k∗ of the cone.

Let α̂0
R̂

and α̂1
R̂

be the minimizer of equation (12) under null and alternative hypothesis

weighted by the estimator R̂. Therefore the null fit and alternative fit of data are ŷ0
R̂

= Bα̂0
R̂

and ŷ1
R̂

= Bα̂1
R̂

. We use the iteration procedure introduced by Wang et al. (2013) to estimate

the alternative fit, where the order p is selected by a correlation-adjusted AIC.

Let ε̂ be the residual vector of alternative fit, where ε̂i = yi − ŷ1R̂i. Let γh = Eεiεi+h and

γ̂h = 1
n

∑n−h
i=1 ε̂iε̂i+h, where i = 1, . . . , n − h, and h = 0, 1, . . . , n − 1. Since the errors are

assumed to come from a segment of AR(p) process, the correlation matrix R has elements

Rij = γ|i−j|+1/γ0. Let R̂ be an estimator of R with each element R̂ij = γ̂|i−j|+1/γ̂0. So, both

R and R̂ are symmetric and positive definite.
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Let θ̂
0

R̂ = BR̂α̂
0 and θ̂

1

R̂ = BR̂α̂
1. Then we have SSE0

R̂
= ‖yR̂ − θ̂

0

R̂‖2 and SSE1
R̂

=

‖yR̂ − θ̂
1

R̂‖2. The likelihood ratio test statistic for known σ2 can be expressed as

χ2
R̂

=
1

σ2
(SSE0

R̂
− SSE1

R̂
). (13)

The likelihood ratio test statistic for unknown σ2 is

BR̂ =
χ2
R̂

χ2
R̂

+ SSE1
R̂
/σ2

=
SSE0

R̂
− SSE1

R̂

SSE0
R̂

. (14)

In the next section, we derive the limiting distribution of the test statistics when correlation

is unknown.

3.3 Approximate Null Distributions of Test Statistics with Un-

known Correlation

In this context, we use ‖M‖ ≡ max{
√
λ : λ is an eigenvalue of M

′
M}, for any arbitrary

n×m matrix M with Mij as its element, where i = 1, · · · , n; j = 1, · · · ,m.

Lemma 1. If ‖R̂−R‖ p→ 0, then ‖WR̂ −WR‖
p→ 0, as n→∞.

Since both R and R̂ are symmetric and positive definite, they have the unique Cholesky

decomposition with positive diagonal entries, respectively. Each element of matrix WR̂ and

WR is uniquely determined by the corresponding elements of R̂ and R. It is easy to derive

that ‖WR̂ −WR‖
p→ 0, as n→∞.

Lemma 2. If ‖R̂−R‖ p→ 0, then ‖W−1
R̂
−W−1

R ‖
p→ 0, as n→∞.

Proof. First, we prove ‖W−1
R ‖ and ‖W−1

R̂
‖ are bounded. By Siddiqui (1958), for AR(p)

process, both R−1 and R̂−1 are banded matrices. Let R−1ij and R̂−1ij be the element of ith
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row and jth column of R−1 and R̂−1, correspondingly. Then

R−1ij = 0 and R̂−1ij = 0, for p < |i− j| < n.

Since R−1 = (W−1
R )

′
W−1

R and R̂−1 = (W−1
R̂

)
′
W−1

R̂
, then by Theorem 4.3.1 in Golub and

Van Loan (1996), W−1
R and W−1

R̂
have the same lower bandwidth as R−1 and R̂−1. Then

we have

Wij = 0 and Ŵij = 0, for i− j < 0 and i− j > p.

We have R−1ij =
∑j+p

k=iWkiWkj and R̂−1ij =
∑j+p

k=i ŴkiŴkj. By Siddiqui (1958), for AR(p)

process, R−1ij and R̂−1ij are both finite summations of polynomials of ηj and η̂j correspondingly,

therefore both R−1ij and R̂−1ij are bounded. Then both wij and Ŵij are bounded for 0 ≤ i−j ≤

p. Let M be an arbitrary n×n matrix. Define ‖M‖1 = max1≤j≤n
∑n

i=1 |Mij|, the maximum

absolute column sum of the matrix. Define ‖M‖∞ = max1≤i≤n
∑n

j=1 |Mij|, the maximum

absolute row sum of the matrix. Then ‖W−1
R̂
‖1, ‖W−1

R̂
‖∞, ‖W−1

R ‖1, and ‖W−1
R ‖∞ are all

bounded, since W−1
R̂

and W−1
R are both banded matrix and each elements are bounded. By

Chapter 5 in Horn and Johnson (1990), ‖M‖ ≤
√
‖M‖1‖M‖∞. Hence ‖W−1

R̂
‖ and ‖W−1

R ‖

are bounded. Applying Lemma (1), we have

‖W−1
R̂
−W−1

R ‖ = ‖W−1
R̂

(WR −WR̂)W−1
R ‖ ≤ ‖W

−1
R̂
‖‖WR −WR̂‖‖W

−1
R ‖

p→ 0, asn→∞.

Lemma 3. Assume ‖R̂ − R‖ p→ 0, as n → ∞. Let e = (e1, · · · , en)
′

be a multivariate

normal random vector with mean zero and covariance matrix Σ. Then (W−1
R̂
−W−1

R̂
)e

p→ 0,

component-wise, as n→∞.
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Proof. Let DW = W−1
R̂
−W−1

R . By the proof of Lemma (2), we have

dij = Wij − Ŵij = 0 for i− j < 0 and i− j > p,

where dij is the element of DW , for i, j = 1, · · · , n. Then, for i = 1, · · · , n,

(W−1
R̂
−W−1

R )e = (
n∑
j=1

d1jej, · · · ,
n∑
j=1

dnjej)
′
= (

∑
1≤j≤1+p

d1jej, · · · ,
∑

n≤j≤n+p

dnjej).

From Lemma 1, we have dij
p→ 0, as n→∞, for i, j = 1, · · · , n. By Slutsky’s theorem from

Slutsky (1925), dijej
p→ 0, as n→∞, for any i, j = 1, · · · , n. So,

∑
i≤j≤i+p

dijej
p→ 0, as n→∞, for i = 1, · · · , n.

Therefore, we have (W−1
R̂
−W−1

R )e
p→ 0, component-wise, as n→∞.

Lemma 4. If ‖R̂−R‖ p→ 0, then ‖W−1
R̂

R(W−1
R̂

)
′− I‖ p→ 0, as n→∞, where I is the n×n

identity matrix.

Proof. Let W−1
R̂

= W−1
R̂
−W−1

R + W−1
R , then

‖W−1

R̂
R(W−1

R̂
)
′
− I‖ = ‖(W−1

R̂
−W−1

R )R(W−1

R̂
−W−1

R )
′
+ (W−1

R̂
−W−1

R )WR + W
′

R(W−1

R̂
−W−1

R )
′
‖

≤ ‖W−1

R̂
−W−1

R ‖‖R‖‖(W
−1

R̂
−W−1

R )
′
‖+

‖W−1

R̂
−W−1

R ‖‖WR‖+ ‖W
′

R‖‖(W−1

R̂
−W−1

R )
′
‖.

By Section 4.2.3 in Golub and Van Loan (1996), ‖WR‖ and ‖WR̂‖ are both bounded.

Applying Lemma (2), ‖W−1
R̂

R(W−1
R )

′ − I‖ p→ 0, as n→∞.

Theorem 8. If ‖R̂ −R‖ p→ 0 as n → ∞, then for each k, the limiting distribution of test

statistic (13) is

P
(
χ2
R̂
≤ a
) D−→

m∑
d=0

P(χ2(d) ≤ a)P(D̃ = d), as n→∞.
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Proof. First, we prove that given z ∈ CJ and card(J) = d, then SSE0
R̂
− SSE1

R̂
|D̃ = d

D−→

χ2(d). It is enough to prove

(SSE0
R̂
− SSE1

R̂
)− (SSE0

R − SSE1
R)

SSE0
R − SSE1

R

P−→ 0, as n→∞.

Under H0:

SSE0
R̂
− SSE1

R̂
= ‖yR̂ − θ̂

1

R̂‖2 − ‖yR̂ − θ̂
1

R̂‖2

= ‖θ̂
1

R̂ − θ̂
0

R̂‖2

= ‖BR̂(L
′

R̂
)−1φ̂

1

R̂ −BR̂(L
′

R̂
)−1φ̂

0

R̂‖2

= ‖φ̂
1

R̂ − φ̂
0

R̂‖2

= ‖π(zR̂|C
R̂
φ )− π(zR̂|V

R̂)‖2

= ‖π(zR̂ − φR̂ + φR̂|C
R̂
φ )− π(zR̂ − φR̂ + φR̂|V

R̂)‖2

= ‖π(zR̂ − φR̂|C
R̂
φ )− π(zR̂ − φR̂|V

R̂)‖2

= ‖π(zR̂ − φR̂|Ω
R̂)‖2.

Let eR̂ = zR̂ − φR̂ and fR̂ = Ŵ−1
R̂

f , then

eR̂ = L−1
R̂

B
′

R̂
yR̂ − L

′

R̂
α

= L−1
R̂

B
′

R̂
(fR̂ −BR̂α+ BR̂α+ εR̂)L

′

R̂
α

= L−1
R̂

B
′

R̂
(fR̂ −BR̂α) + L−1

R̂
B
′

R̂
εR̂.

Under H0 that f is constant, fR̂ −BR̂α = 0. Let {UR̂
j }dj=1 be a set of orthonormal bases of

convex cone ΩR̂, then

‖π(zR̂ − φR̂|Ω
R̂)‖2 =

d∑
j=1

UR̂′

j eR̂e
′

R̂
UR̂
j
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=
d∑
j=1

(UR̂′

j L−1
R̂

B
′

R̂
εR̂)2.

Therefore,

(SSE0
R̂
− SSE1

R̂
)− (SSE0

R − SSE1
R)

SSE0
R − SSE1

R

=

∑d
j=1

[
(UR̂′

j eR̂)2 − (UR′

j eR)2
]

SSE0
R − SSE1

R

=

∑d
j=1

[
(UR̂′

j eR̂ −UR′

j eR)2 − 2UR′

j eR(UR̂′

j eR̂ −UR′

j eR)
]

SSE0
R − SSE1

R

.

Given J and card(J) = d, SSE0
R − SSE1

R|D̃=d

H0∼ χ2, and UR′
j eR|D̃=d

H0∼ N(0, 1). Therefore,

it is enough to prove

UR̂′

j eR̂ −UR′

j eR = UR̂′

j L−1
R̂

B
′

R̂
εR̂ −UR′

j L−1R B
′

RεR
P−→ 0.

The proof of (3.3) is divided into two steps: in step 1, we prove that the difference of

each piece that weighted by R̂ and that weighted by the true R will convergent to zero; in

step 2, we will prove the convergency of the multiplication of those four pieces.

1. Proof of ‖BR̂ −BR‖
P−→ 0, as n→∞.

Applying Lemma 2, we have

‖BR̂ −BR‖ = ‖(W−1
R̂
−W−1

R )B‖ ≤ ‖W−1
R̂
−W−1

R ‖‖B‖
P−→ 0, as n→∞,

since ‖B‖ is bounded.
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2. Proof of ‖LR̂ − LR‖
P−→ 0, as n→∞.

First, we prove,

‖LR̂L
′

R̂
− LRL

′

R‖ = ‖B′(R̂−1 −R−1)B‖ ≤ ‖B′‖‖R̂−1 −R−1‖‖B‖ P−→ 0, as n→∞.

Since ‖R−1‖ and ‖R̂−1‖ are bounded by Siddiqui (1958), we have

‖R̂−1 −R−1‖ = ‖R̂−1(R− R̂)R−1‖ ≤ ‖R̂−1‖‖R− R̂‖‖R−1‖ p→ 0, asn→∞.

Therefore ‖LR̂−LR‖
P−→ 0, as n→∞. Applying Lemma 1, we derive ‖LR̂−LR‖

P−→ 0,

as n→∞.

3. Proof of ‖UR̂
j −UR

j ‖
P−→ 0, as n→∞, for j = 1, · · · , d. Let ∆R and ∆R̂ be the matrix

with δRj and δR̂j as the columns, respectively. Since the edges δRj of the transformed

cone ΩR are generated as the first k columns of the A+
R and the edges δRj of the

transformed cone ΩR̂ are generated as the first k columns of the A+

R̂
, then we have

T(L
′
R)−1∆R = Ik×k and T(L

′

R̂
)−1∆R̂ = Ik×k. Therefore, for any type of constraint

matrix T, we have

T
[
(L
′

R̂
)−1∆R̂ − (L

′

R)−1∆R

]
= 0.

Then (L
′
R)−1(∆R −∆R̂) + (L−1R − L−1

R̂
)∆R̂ = 0. So,

‖∆R −∆R̂‖ = ‖L′R(L−1R − L−1
R̂

)∆R̂‖ ≤ ‖L
′

R‖‖L−1R − L−1
R̂
‖‖∆R̂‖

By Lemma 2, we derive that ‖∆R −∆R̂‖
P−→ 0, as n→∞, since {UR̂

j }dj=1 is a linear

combination of {δR̂j }dj=1, therefore, ‖UR̂
j −UR

j ‖
P−→ 0, as n→∞, for j = 1, · · · , d.

4. Proof of ‖εR̂ − εR‖
P−→ 0, as n→∞.

By Lemma 3, we prove εR̂ − εR = (W−1
R̂
−W−1

R )ε
P−→ 0, as n→∞.
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Then we have

UR̂′

j L−1

R̂
B

′

R̂
εR̂ −UR′

j L−1
R′ B

′

R′εR′ =
[
UR′

j + (UR̂′

j −UR′

j )
] [

L−1
R + (L−1

R̂
− L−1

R )
] [

B
′

R + (B
′

R̂
−B

′

R)
]
×[

εR + (εR̂ − εR)
]
−UR′

j L−1
R′ B

′

R′εR′ .

When we write this multiplication into a summation of 24 parts, the first part equals to

UR′
j L−1R′B

′

R′εR′ . In every other part, ‖UR′
j ‖, ‖L−1R ‖, ‖B

′
R‖ and ‖εR‖ are all bounded in

probability. Applying the above 4 proofs, it is straightforward to prove

‖UR̂′

j L−1
R̂

B
′

R̂
εR̂ −UR′

j L−1R B
′

RεR‖
P−→ 0, asn→∞.

Therefore, given y ∈ CJ and card(J) = d, we have

(SSE0
R̂
− SSE1

R̂
)− (SSE0

R − SSE1
R)

SSE0
R − SSE1

R

P−→ 0, as n→∞.

Then, SSE0
R̂
− SSE1

R̂
|D̃ = d

D−→ χ2(d). So, for each k, we have

P
(
χ2
R̂
≤ a
) D−→

m∑
d=0

P(χ2(d) ≤ a)P(D̃ = d), as n→∞.

Theorem 9. If ‖R̂−R‖ p→ 0, as n→∞, then for each k, the limiting distribution of test

statistic (14) is

P
(
BR̂ ≤ a

) D−→
m∑
d=0

P

[
Beta

(
d

2
,
n− d− r

2

)
≤ a

]
P(D̃ = d), as n→∞.
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Proof. First, we need to prove that given y ∈ CJ , and card(J) = d,

SSE0
R̂
− SSE1

R̂

SSE0
R̂

∣∣∣∣∣
D̃=d

D−→ Beta

(
d

2
,
n− d− r

2

)
, as n→∞.

Since

SSE0
R − SSE1

R

SSE0
R

∣∣∣∣
D̃=d

H0∼ Beta

(
d

2
,
n− d− r

2

)
,

it is enough to prove that under H0, given y ∈ CJ , and card(J) = d, BR̂−BR
P−→ 0, asn→

∞. That is,

SSE0
R̂
− SSE1

R̂

SSE0
R̂

− SSE0
R − SSE1

R

SSE0
R

=

(SSE0
R − SSE0

R̂
)(SSE0

R − SSE1
R) + SSE0

R

[
(SSE0

R̂
− SSE1

R̂
)− (SSE0

R − SSE1
R)
]

(SSE0
R̂
− SSE0

R)SSE0
R + (SSE0

R)2

Applying Theorem 1, we have

(SSE0
R̂
− SSE1

R̂
)− (SSE0

R − SSE1
R)

P−→ 0, asn→∞.

So, it is enough to prove
SSE0

R̂
− SSE0

R

SSE0
R

P−→ 0, asn→∞.

That is,

SSE0
R̂
− SSE0

R

SSE0
R

=
‖yR̂ − θ̂

0

R̂‖2 − ‖yR − θ̂
0

R‖2

‖yR − θ̂
0

R‖2
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=
(‖yR̂ − θ̂

0

R̂‖+ ‖yR − θ̂
0

R‖)(‖yR̂ − θ̂
0

R̂‖ − ‖yR − θ̂
0

R‖)

‖yR − θ̂
0

R‖2
.

It is enough to prove ‖yR̂ − θ̂
0

R̂‖ − ‖yR − θ̂
0

R‖
P−→ 0, asn→∞, where

‖yR̂ − θ̂
0

R̂‖ − ‖yR − θ̂
0

R‖ ≤ ‖yR̂ − θ̂
0

R̂ − yR + θ̂
0

R‖

≤ ‖yR̂ − yR‖+ ‖θ̂
0

R − θ̂
0

R̂‖

≤ ‖fR̂ − fR‖+ ‖εR̂ − εR‖+ ‖W−1
R (Bα̂0

R −Bα̂0
R̂

)‖

+‖(W−1
R̂
−W−1

R )Bα̂0
R̂
‖

1. Proof of ‖fR̂ − fR‖
P−→ 0, asn→∞.

Applying Lemma 2, ‖fR̂ − fR‖ ≤ ‖(W−1
R̂
−W−1

R )‖‖f‖ P−→ 0, asn→∞.

2. Proof of ‖W−1
R (Bα̂0

R −Bα̂0
R̂

)‖ P−→ 0, asn→∞.

In the setup of this paper, under H0, Bα̂0
R and Bα̂0

R̂
are parametric regression estima-

tors, specifically, weighted least-squares estimators of simple linear regression model.

Applying Theorem 2 and 3 in Wang et al. (2013) to simple linear regression model, we

have ‖Bα̂0
R − f‖ = Op(n

−1/2) and ‖Bα̂0
R̂
− f‖ = Op(n

−1/2). Therefore,

‖W−1
R (Bα̂0

R −Bα̂0
R̂

)‖ ≤ ‖W−1
R ‖‖(Bα̂

0
R − f) + (f −Bα̂0

R̂
)‖

≤ ‖W−1
R ‖

[
‖(Bα̂0

R − f)‖+ ‖(f −Bα̂0
R̂

)‖
] P−→ 0, asn→∞.

3. Proof of ‖(W−1
R̂
−W−1

R )Bα̂0
R̂
‖ P−→ 0, asn→∞.

Applying Lemma 2 and Theorem 3 in Wang et al. (2013), we have

‖(W−1
R̂
−W−1

R )Bα̂0
R̂
‖ ≤ ‖W−1

R̂
−W−1

R ‖
[
‖Bα̂0

R̂
− f‖+ ‖f‖

] P−→ 0, asn→∞.
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We have proved that ‖εR̂−εR‖
P−→ 0, asn→∞, in the proof of Theorem 1. Then we derive

that

‖yR̂ − θ̂
0

R̂‖ − ‖yR − θ̂
0

R‖
P−→ 0, asn→∞.

Under H0, both yR̂− θ̂
0

R̂ and yR− θ̂
0

R are the residuals of simple linear regression, therefore

their norm are well bounded in probability. So, under H0, given y ∈ CJ , and card(J) = d,

we have
SSE0

R̂
− SSE0

R

SSE0
R

P−→ 0, asn→∞.

It is sufficient to derive that

SSE0
R̂
− SSE1

R̂

SSE0
R̂

− SSE0
R − SSE1

R

SSE0
R

P−→ 0, asn→∞.

So, we have

P
(
BR̂ ≤ a

) D−→
m∑
d=0

P

[
Beta

(
d

2
,
n− d− r

2

)
≤ a

]
P(D̃ = d), as n→∞.

3.4 Simulation

The performance of the proposed test is demonstrated through a series of simulations.

The test size and power of the proposed test are compared with those of the F-test with

unconstrained regression spline estimator as its alternative fit and those of the one-sided

t-test with simple regression estimator as its alternative. The test size used in this section

is the simulated proportion of the times the null hypothesis is rejected when the data are

generated from the null distributions, constant zero mean or linear mean with AR(p) errors.

The power of the test is the simulated proportion of times rejecting the null hypothesis when

data are generated by the alternative distribution, any monotone trend or convex/concave

trend with AR(p) errors. The sample sizes are 250 and 500. In each setup, 10000 datasets
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are generated to calculated the proportion of rejection. Two scenarios of assumptions are

used: one assumes known p and unknown correlation R, and the other assumes unknown p

and unknown R.

3.4.1 Test Size

In order to demonstrate the superiority in test size of the proposed test, we simulate

datasets with AR(1) errors and also AR(p) errors with p > 1. The performance of the

proposed test is favorable if the correlation is not quite large. Some of the simulation results

are presented in Table 1. Two series of errors are used in the simulations of Table 1. One

series are AR(1) errors with increasing correlation: εi = ηεi−1 + zi, η = 0, 0.2, 0.4, 0.6; the

other are three AR(2) sequences: εi = η1εi−1 + η2εi−2 + zi, η = (0, 0.3); η = (0.2, 0.2); η =

(0.3, 0.3). If the correlation is known, the test size is exactly equal to 0.05. If the correlation

is unknown, the test sizes are inflated by the estimated correlation and increasing with the

expansion of the correlation. But if the correlation is ignored in the inference, the test size

will be totally blown up. For AR(1) errors, if the correlation is ignored, the test size is

0.172 with η = 0.3 and 0.301 for η = 0.5. These highly inflated test sizes illustrate that the

correlation must be taken into account. From Table 1, for AR(1) errors with η = 0.2, 0.4, 0.6,

the sizes grow from 0.05 to around 0.080 for n = 250 and around 0.065 for n = 500 for the

proposed test. But for the F-test, the test sizes are enlarged much more than the proposed

test. For the simulations with n = 250 and unknown p and R, the test sizes for F-test are

generally greater than 0.1. This is what we expected because the constrained fit uses more

information of the data than the corresponding unconstrained fit. The one-sided t-test has

favorable test size when the correlation is comparatively small, such as, AR(1) errors with

η = 0, 0.2. But the test sizes are exaggerated speedily as the increase of the correlation.

When η = 0.6, the test sizes are greater than 0.1 for both n = 250 and n = 500.
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Table 3.1: Simulated proportions of rejecting the null hypothesis. Data are generated from
AR(1) sequences with η = 0, 0.2; 0.4; 0.6 and AR(2), with η = (0, 0.3); (0.2, 0.2); (0.3, 0.3).

The columns with title “p, R̂” are test sizes with known p and unknown R. The columns
with title “p̂, R̂” contains test sizes with unknown p and R, where p̂ is chosen by AIC.

Columns from 2 to 5 are test sizes of the proposed test with constrained spline estimators
as their alternative fits. Columns from 6 to 9 are test sizes of the F-test with unconstrained

spine estimators as their alternative fits. Columns from 10 to 13 are test sizes of the
one-sided t-test with simple linear regression estimators as their alternative fits.

constrained unconstrained linear
n=250 n=500 n=250 n=500 n=250 n=500

p, R̂ p̂, R̂ p, R̂ p̂, R̂ p, R̂ p̂, R̂ p, R̂ p̂, R̂ p, R̂ p̂, R̂ p, R̂ p̂, R̂
η = 0 0.054 0.056 0.051 0.059 0.074 0.093 0.063 0.074 0.055 0.054 0.051 0.051
η = 0.2 0.060 0.067 0.057 0.054 0.080 0.122 0.070 0.097 0.061 0.066 0.055 0.057
η = 0.4 0.063 0.079 0.056 0.065 0.106 0.148 0.084 0.115 0.070 0.076 0.071 0.071
η = 0.6 0.077 0.087 0.067 0.061 0.158 0.196 0.122 0.151 0.103 0.112 0.096 0.105
η = (0, 0.3) 0.070 0.071 0.065 0.069 0.140 0.178 0.110 0.138 0.067 0.068 0.064 0.065
η = (0.2, 0.2) 0.069 0.081 0.064 0.067 0.151 0.182 0.110 0.133 0.070 0.072 0.065 0.068
η = (0.3, 0.3) 0.089 0.093 0.076 0.079 0.222 0.263 0.171 0.191 0.093 0.100 0.092 0.089

3.4.2 Power Study

Data are generated with sigmoid, truncated cubic and linear trend:

1. linear: f(x) = ψix, i = 1, 2, 3;

2. sigmoid: f(x) = ψi
e10x−5

1+e10x−5 , i = 1, 2, 3;

3. truncated cubic: f(x) = ψi4(x− 1/2)3Ix>1/2, i = 1, 2, 3.

The errors are generated from AR(1) series with η = 0, 0.2, 0.4, 0.6. For each kind of trend,

we select slopes ψ1, ψ2 and ψ3, by which the powers of the corresponding one-sided t-tests for

independent normal errors are 0.25, 0.5 and 0.75. Sample size is 250 for each dataset. For

each setup, 10000 datasets are generated independently. For each dataset, the proportions of

times rejecting the null hypothesis are calculated for the proposed test with constrained spline

estimator as its alternative fit, F-test with unconstrained spline estimator as its alternative

fit and one-sided t-test with simple linear regression estimator as its alternative fit. The

collection of simulation output are in Table 2.
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When η = 0; 0.2; 0.4, the powers of the proposed test with constrained alternative are

greater than F-test uniformly for all three kinds of trends with different slopes. This is also we

we expected, because the proposed test uses the information of the shape of trend, therefore

has higher power than the F-test with unconstrained alternative. But when η = 0.6, the

power of F-test is no less than that of the proposed test. However, from Table 1, the test size

of the F-test is highly inflated when η = 0.6, hence the F-test is still ineffective even if the

power is favorable. Even for linear data where one-sided t-test does the best among those

three tests as expected, the proposed test still behaves better than the F-test. One-sided

t-test is competitive in power for linear trend and some non-linear trends closed to linear,

such as sigmoid with f(x) = (e10x−5)/(1+e10x−5), for η = 0, 0.2, 0.4. But for other non-linear

trend, such as truncated cubic with f(x) = ψi4(x− 1/2)3Ix>1/2, the superiority in power of

the proposed test is obvious for η = 0, 0.2, 0.4. Because simple linear regression alternative

of the t-test fail to catch the curvature of the true trend. When η = 0.6, just like F-test,

from Table 1 we know that the test sizes for one-sided t-test are highly inflated and greater

than 0.1. Therefore the t-test is undesirable when the correlation grows greater.

3.5 Real Data

3.5.1 Argentina Rainfall Data

Data of yearly rainfall in Argentina from 1884 to 1996 are used in Wu et al. (2001).

They propose an hypothesis test for monotonic trends in short range dependent data. The

alternative fit is a piece-wise linear isotonic regression estimator. They also use this test

as one perspective for changepoint problems. We use the proposed hypothesis test with

the constrained spline regression estimator as its alternative fit and one-sided t-test with

simple linear regression estimator as its alternative fit to test whether the yearly rainfall in

Argentina from 1884 to 1996 is constant or monotone increasing. We also use F-test with

unconstrained spline regression estimator as its alternative fit to test whether the yearly

rainfall data is constant or not. The three fits on Argentina rainfall data are in Figure 3.1.
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Figure 3.1: Three kinds of alternative fits on Argentina rainfall data: blue solid curve is the
constrained regression spline fit, the alternative fit of our proposed test; the red dashed
curve is the unconstrained regression spline fit, the alternative fit of F-test; the green

dotted line is the simple linear regression fit, the alternative fit of the one-sided t-test. For
both constrained spline regression and unconstrained spline regression, 6 knots are used.
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Figure 3.2: Sample autocorrelation function of residuals from constrained spline fit of
Argentina rainfall data.
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Figure 3.3: Sample autocorrelation function of residuals from unconstrained spline fit of
Argentina rainfall data.
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Figure 3.4: Sample autocorrelation function of residuals from linear fit of Argentina rainfall
data.
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Figure 3.5: Plot of Standard residuals from constrained spline fit of Argentina rainfall data.
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Figure 3.6: Plot of Standard residuals from unconstrained spline fit of Argentina rainfall
data.
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Figure 3.7: Plot of Standard residuals from linear fit of Argentina rainfall data.

65



Table 3.2: The power of the proposed test is compared with the F-test with unconstrained
regression spline estimator as its alternative fit and one-sided t-test with simple regression

estimator as its alternative. Data are generated by sigmoid, truncated cubic and linear
trend with AR(1) errors, where η = 0, 0.2, 0.4, 0.6. For each kind of trend, three slopes are

selected, by which the powers of the corresponding one-sided t-tests for independent
normal errors are 0.25, 0.5 and 0.75. Sample size is 250.

sigmoid cubic linear
0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

constrained η = 0 0.225 0.428 0.688 0.316 0.637 0.869 0.243 0.474 0.696
η = 0.2 0.225 0.357 0.548 0.253 0.500 0.731 0.198 0.374 0.559
η = 0.4 0.173 0.277 0.414 0.200 0.357 0.541 0.168 0.298 0.397
η = 0.6 0.134 0.177 0.287 0.164 0.248 0.357 0.142 0.212 0.283

unconstrained η = 0 0.146 0.269 0.450 0.192 0.417 0.677 0.145 0.262 0.419
η = 0.2 0.165 0.242 0.375 0.200 0.346 0.554 0.164 0.235 0.355
η = 0.4 0.170 0.204 0.290 0.191 0.276 0.404 0.167 0.217 0.278
η = 0.6 0.202 0.232 0.265 0.217 0.259 0.327 0.205 0.224 0.264

linear η = 0 0.271 0.499 0.760 0.265 0.507 0.744 0.263 0.514 0.751
η = 0.2 0.223 0.406 0.620 0.225 0.404 0.595 0.224 0.405 0.608
η = 0.4 0.192 0.321 0.472 0.195 0.328 0.464 0.188 0.321 0.487
η = 0.6 0.199 0.290 0.379 0.204 0.281 0.382 0.192 0.283 0.372

The estimated order p̂ = 0 for the constrained spline regression estimation. From 3.2,

the plot of sample ACF of residuals from constrained spline fit also demonstrates that the

residuals are independent. The p-value of kpss.test function in R is greater than 0.1 for the

residuals. So we fail to reject that the residuals are stationary. The p-value of the proposed

test is 0.001. The estimated order p̂ = 2 and η̂ = (0.150, 0.134). The p-value of one-sided

t-test is 0.039. The estimated order p̂ = 12 and η = (−0.021, 0.016,−0.193,−0.085, 0.207,

− 0.270,−0.112, 0.098,−0.191,−0.161,−0.113,−0.198). The p-value of F-test is almost 0.

Without the constraint, spline regression quite follow the data too much. The curve of fit

is wiggly and the estimation of the correlation among the data is hard to explain. For both

t-test and F-test, the p-values of kpss.test function in R, referring to Kwiatkowski et al.

(1992), are both greater than 0.1 for the residuals. So we fail to reject that the residuals are

stationary.
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3.5.2 Price of Liquefied U.S. Natural Gas Exports Data
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Figure 3.8: Price of Liquefied U.S. Natural Gas Exports (Dollars per Thousand Cubic
Feet) Data: log transformed of monthly price from Jan, 1997 to Sep, 2007. The blue solid
curve is the regression spline fit constrained to be increasing and convex, the alternative fit
of the proposed test. The red dashed curve is the generalized linear model with a quadratic

term. We use F-test to test whether the quadratic term is significant or not, for a
comparison to our test.

Canada and Mexico are two main countries where U.S. exports its liquefied natural

gas. The log transformed monthly data of price of the liquefied U.S. natural gas from

January, 1997 to September, 2007 are in Figure 3.8. The original data are available on

http://tonto.eia.gov/dnav/ng/hist/n9133us3m.htm. The price is increasing with the

date significantly if we test whether the trend is constant or monotone increasing. Beside

the monotone trend, we also want to known whether the price increase faster with the date.

The proposed test of increasing convexity is used on this data to test whether the trend is

linear or increasing and convex. The estimated order p̂ = 1 and η̂ = 0.52. The p-value is

0.005, significant as we expect. We also conduct a F-test to test whether the trend is linear or

quadratic in date. Usually, if lack of information about the form of the data and incorrectly

specifying a parametric form, hypothesis test with the parametric alternative fit could fail
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Figure 3.9: Sample autocorrelation function of residuals from constrained spline fit of price
of liquefied U.S. natural gas exports data.
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Figure 3.10: Sample autocorrelation function of residuals from unconstrained spline fit of
price of liquefied U.S. natural gas exports data.
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Figure 3.11: Plot of Standard residuals from constrained spline fit of price of liquefied U.S.
natural gas exports data.
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Figure 3.12: Plot of Standard residuals from unconstrained spline fit of price of liquefied
U.S. natural gas exports data.
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to detect the trend or give a larger p-value than the more powerful test with nonparametric

alternative fit. But in this case, p-value for F-test is 0.0004, smaller than the p-value given

by the proposed test. For both tests, we use kpss.test function in R to check the stationarity

of the residuals. Both of p-values are greater than 0.1, so we fail to reject that the residuals

are stationary. But whether the assumption that the log transformed price of liquefied U.S.

natural gas export has quadratic form increasing trend on date from Jan, 1997 to Sep, 2007

is appropriate or not still need additional hypothesis test to determine.
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CHAPTER 4

CONCLUSION AND FUTURE WORK

4.1 Conclusion

In this dissertation, we developed the constrained spline regression model and shape re-

stricted hypothesis tests for data with stationary AR(p) errors. In Chapter 2, we proposed

the estimation method and asymptotic properties of the estimator. The asymptotic rate

for constrained spline estimators with estimation of correlation and ignoring the correlation

have been proved to be the same. Even if we have an inconsistent estimator of correlation,

as long as it satisfies appropriate conditions, the estimation of trend based on this estimator

is still consistent and attains the optimal rate. However, estimation of the trend is sub-

stantially improved for moderate-sized samples under proposed iteration method. Further,

the asymptotic variances of the three estimators are different. In Chapter 3, we studied the

hypothesis tests of the trend, such as, constant vs. monotone, and linear vs. convex, in the

presence of AR(p) errors. The asymptotic distributions of the test statistics depends on con-

sistent estimation of the correlation. If correlation is unknown and the estimated correlation

is consistent, the likelihood test statistics weighted by this consistent estimated correlation

have their approximating distributions as a mixture of χ2 distributions if variance is known

or a mixture of Beta distributions if variance is unknown. If the correlation is existing and

ignored, the test size will be greatly inflated.
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4.2 Future Work

4.2.1 Tests of the Monotonicity and Convexity in the presence of correlation

Methods for testing the shape of a function, such as monotonicity and convexity, are

useful in many applications, especially for time series data. We propose a set of hypothesis

tests using regression splines and shape restricted inference in the presence of stationary

AR(p) errors. The null hypothesis H1 is that the function is constrained to be monotone

or convex, and H2 is that the function is unconstrained. The tests of H1 versus H2 use

an estimate of the distribution of the minimum slope or second derivative of the spline

estimator under the null hypothesis and proved to behave nicely both for small sample size

and asymptotically. The test that H1: the function is decreasing and convex, versus H2:

the function is unconstrained, is applied to intensity data from small angle X-ray scattering

(SAXS) experiments. The proposed method serves as a useful pre-test in this context,

because under H1, a classical regression-based procedure for estimating a molecule’s radius

of gyration can be applied. Assume that the observed data {(xi, yi)}, for 1 ≤ i ≤ n, are

generated by the model

yi = f(xi) + σεi,

where f is a smooth function. Suppose that xi ∈ [0, 1] and equally spaced.

εi =

p∑
j=1

θjεi−j + zi,

where zi are standard normal variables. We want to test:

H1 : f is constrained vs. H2 : f is unconstrained.

This setup can be used to test: monotone v.s. unconstrained, convex/concave v.s. uncon-

strained, and any combinations, such as, monotone and convex v.s. unconstrained. We

apply shape restricted inference with cone projection theories into the tests of constrained
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v.s. unconstrained of the trend. Nonparametric regression splines are used to estimate the

null fit and alternative fit. The null fit is constrained spline regression estimator and the

alternative fit is regular spline regression estimator. Both of them are estimated for data

with stationary AR(p) errors. Following the setup in Chapter 3, it is equivalent to test: H1:

Tb ≥ 0 vs. H2: Tb 6= 0. The test procedures are:

1. Obtain the unconstrained estimator b̂u and determine the minimum of the slops at the

knots, that is, calculate tmin = min(Tb̂u);

2. If tmin is non-negative, then do not reject H1;

3. Otherwise, estimate distribution of tmin under H1, using b̂c for β, and estimating the

model variance using b̂u;

4. If tmin is smaller than estimated α-level percentile, reject H1 in favor of H2.

We conduct the simulations to study the test size and power of this procedures with data

generated from different null distributions. Also the asymptotic properties will be investi-

gated.
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