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ABSTRACT

PREDICTIVE ENERGY MANAGEMENT STRATEGIES FOR HYBRID ELECTRIC

VEHICLES APPLIED DURING ACCELERATION EVENTS

The emergence and widespread adoption of vehicles with hybrid powertrains and onboard com-

puting capabilities have improved the feasibility of utilizing predictions of vehicle state to enable

optimal energy management strategies (EMS) to improve fuel economy. Real-world implemen-

tation of optimal EMS remains challenging in part because of limits on prediction accuracy and

computation speed. However, if a finite set of EMS can be pre-derived offline, instead of onboard

the vehicle in real time, fuel economy improvements may be possible using hardware that is com-

mon in current production vehicles. Acceleration events (AE) are attractive targets for this kind

of EMS application due to their high energy cost, probability of recurrence, and limited variabil-

ity. This research aims to understand how a finite set of EMS might be derived and applied to

AEs based on predictions of basic AE attributes to achieve reliable fuel economy improvements.

Models of the 2010 Toyota Prius are used to simulate fuel economy for a variety of control strate-

gies, including baseline control, optimal EMS control derived via dynamic programming, and

pre-derived control applied with approximate prediction to AEs. Statistical methods are used to

identify correlations between AE attributes, optimal powertrain control, and fuel economy results.

Then, key AE attributes are used to define AE categorization schemes of various resolutions, in

which one pre-derived EMS is applied to every AE in a category. Last, the control strategies are

simulated during a variety of drive cycles to predict real-world fuel economy results. By simulat-

ing fuel economy improvement for AEs both in isolation and in the context of drive cycles, it was

concluded that applying pre-derived EMS to AEs based on predictions of initial and final velocity

is likely to enable reliable fuel economy benefits in low-aggression driving.
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Chapter 1

Background

In 2016, the transportation sector was the greatest contributing sector to United States green-

house gas emissions, accounting for 28% of total emissions [1]. It was also responsible for over

55% of total nitrogen oxide emissions in the United States [2]. Greenhouse gas emissions are

a leading cause of climate change [3], and air pollution, including nitrogen oxide pollution, is

the world’s fourth leading cause of premature death [4]. Efforts are widespread and increasing

to mitigate the transportation sector’s harmful impacts on climate and health. Improving the fuel

economy (FE) of the vehicle fleet is one of the most widely researched methods for doing so [5].

One large body of research aims to improve FE by optimizing vehicle control, most promi-

nently via Eco-driving and optimal energy management strategies (Optimal EMS) [6]. Eco-driving

involves reducing overall vehicle energy output by optimizing vehicle speed and implementing

efficient driving behaviors. Rather than changing driving behavior, Optimal EMS improves the

efficiency with which a powertrain achieves a driver’s desired velocity trace, giving it a consumer

acceptance advantage over Eco-driving strategies [7].

Some forms of Optimal EMS are used in current vehicles. In general, since hybrid electric

vehicles (HEV) can draw power from multiple different sources at the same time, they benefit

from more powertrain degrees of freedom and are ideal targets for Optimal EMS. For example,

many HEV control strategies adjust engine torque and speed so that the engine always operates

at its highest efficiency for the requested engine power output, which is a form of instantaneous

Optimal EMS [8].

Whereas instantaneous Optimal EMS implements control in reaction to real-time changes in

vehicle operation, further improvements to FE are achievable if the EMS changes from reaction-

based to prediction-based. It has long been understood that knowledge of future power demands

enables more globally fuel efficient EMS [9]. Vehicles are increasingly equipped with "intelli-

gent" technologies that are beginning to enable this type of prediction. Location systems, cameras,
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and radar, and future technologies including vehicle to vehicle communication (V2V) and vehi-

cle to infrastructure communication (V2I), are expected to enable drastically improved prediction

capabilities [10].

Two main approaches are used in the literature to derive a globally optimal FE solution with

predictive Optimal EMS: dynamic programming (DP) [11] and Pontryagin’s minimization princi-

ple [12]. DP is more commonly implemented because it is straightforward to apply, robust, and

numerically computable [13, 14].

Most existing predictive Optimal EMS studies involve prediction of full drive cycles, which

is far beyond the capabilities of current vehicle technologies [6]. One study that does not involve

full cycle prediction implements a Predictive Optimal EMS in a real vehicle, but that study uses

stochastic dynamic programming, which does not achieve a globally optimal solution [15,16]. An-

other article studies prediction of traffic behavior over short time horizons to enable cooperative

cruise control to improve FE, which is an example of a specific application of drive prediction for

FE [17]. Even simpler predictions of driver behavior may be achievable using technologies that

exist in current production vehicles. For example, the ending speed when accelerating might be

accurately predictable using information gathered by camera or location systems. However, the

means and potential to implement FE-improving control algorithms using these types of informa-

tion are not well defined in literature.

Acceleration events (AEs) are of particular interest for FE improvement efforts because of their

high power demand relative to most segments of a typical drive cycle [18]. Key AE attributes,

such as ending speed or duration, are simpler to predict precisely than second-by-second speed

or power traces. In generalized driving, AEs with approximately identical attributes repeat, po-

tentially enabling individual predictive Optimal EMS to be derived once and applied many times.

FE improvements via Optimal EMS during AEs may thus be possible on current vehicles despite

hardware limitations on prediction fidelity and computation speed.

These considerations lead to a modified approach to Optimal EMS using dynamic program-

ming (DP). The Optimal EMS matrix containing the DP exact optimal control solution can be used
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as a lookup table to obtain near-optimal solutions even when used for a slightly different driving

segment than the one for which the matrix was derived. This enables a vehicle controller to im-

plement stored control matrices based on predictions of basic AE attributes, achieving a portion of

the FE improvements theoretically enabled by exact AE prediction.

1.1 Research Questions

To seek understanding of the FE improvement potential for pre-computed Optimal EMS, we

addressed a sequence of research questions:

1. How do differences between AEs correlate with differences between AE Optimal EMS?

2. What FE tradeoffs occur when prediction accuracy is reduced from exact velocity trace pre-

diction to prediction of basic AE attributes?

3. How can low-accuracy-prediction enabled EMS be applied to achieve consistent FE benefits

in real driving contexts?

1.2 Novel Contributions

1. Identify how key attributes of AEs influence AE Optimal EMS

2. Characterize the FE improvement potential of pre-computed Optimal EMS during AEs

3. Utilize categorization approach to apply EMS to AEs

4. Apply optimal control as a function of velocity to monotonic drive segments

1.3 Publications

Portions of the research in this thesis appear in publications that have been submitted, pub-

lished, or presented. I published and presented a preliminary study of pre-computed EMS applied

to AEs in drive cycles at SAE World Congress 2018 [19]. Also, material from Chapters 4 and 5 has

been submitted for journal publication, authored by Dr. Zachary Asher, my advisor Dr. Thomas

Bradley, and me.
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Chapter 2

Prepare Simulation Tools

In Chapters 3-5, modeling and simulation techniques are used to characterize and predict the

real-world performance of Predictive Optimal EMS during AEs. In this chapter, the vehicle model,

control strategies, and driving data used for these investigations are described.

2.1 Develop and Validate Vehicle Model

The Toyota Prius has consistently achieved the highest FE in its class [20], so it is an ideal

vehicle to model for investigations of new HEV FE improvement techniques. The 2010 model

was chosen for its commercial prevalence and publicly available parameter information. A model

of the 2010 Toyota Prius, derived using the Autonomie modeling software, has been shown to

correlate closely with real-world performance [21]. The referenced model is not publicly available,

so a model was developed and validated by modifying a 2004 Toyota Prius model included with

Autonomie with 2010 Prius parameters. Table 2.1 is a list of key parameters defining the model,

where m = vehicle mass; PICE,max = maximum engine power; mfuel is the fuel consumption model;

TICE = engine torque; ωICE = engine speed; ωtrac,max is the maximum traction motor speed; ωgen,max

is the maximum generator motor speed; Qbatt,0 is the initial battery capacity; Nsun and Nring are

the number of teeth on the sun and ring gears in the planetary gearset; Rint is the battery’s internal

resistance; Afront is the frontal area of the vehicle; Crr = coefficient of rolling resistance; rfd = final

drive ratio; rwheel = wheel radius; Cd = drag coefficient; and Voc = open circuit battery potential.

The Autonomie software produces high fidelity models that are useful for realistic modeling

of a variety of vehicle signals, including power split control in a HEV, but are computationally

expensive in simulation. Even if disregarding concerns about long computation times, it would

be infeasible to use the Autonomie model with DP to derive the Optimal EMS, because states

in Autonomie are dependent on preceding states, which is incompatible with the DP formulation

(described in Section 2.2.2). Instead, the Autonomie model was used only to simulate the Baseline
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Table 2.1: Significant parameters defining the 2010 Toyota Prius model

m 1380 kg Afront 2.6005 m2

PICE,max 73 kW Crr 0.008

mfuel f(TICE, ωICE) [22] rfd 3.27

ωtrac,max 10,000 rpm rwheel 0.317 m

ωgen,max 13,500 rpm Cd 0.250

Qbatt,0 6.5 Ah Voc 201.6 V

Nsun 30 Nring 78

Rint 0.373 Ω

EMS engine control strategy, which was used as an input to a lower fidelity "power split" vehicle

model for the remaining vehicle signal calculations. Details on the original development of the

power split model are in a previous publication from the author’s lab group [23] and reproduced

briefly here.

The power split model is based on equations describing vehicle dynamics, a modeling approach

that is well-defined in the literature [22,24–26]. The power required to propel the vehicle at velocity

v must be provided as a sum of engine power and electric propulsion system power:

Pprop = Fpropv = Pelec + PICE (2.1)

PICE is an input to the power split model, so the equation is rearranged to solve for Pelec:

Pelec = Fpropv − PICE (2.2)

Fprop effects vehicle acceleration and counteracts the forces opposing vehicle motion:

Fprop = mv̇ + Crrmg +
1

2
Cdρairv

2Afront (2.3)

where v̇ is the acceleration of the vehicle, calculated using a numerical derivative; g is acceleration

due to gravity
(

9.81 m
sec2

)

; and ρair is the density of air
(

1.1985 kg

m3

)

. For this research, grade angle

is assumed to be zero.
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Pelec is served by the battery, with an efficiency penalty modeled as a function of torque and

speed of the generator and traction motors:

ηelec = f(ωgen, Tgen, ωtrac, Ttrac) (2.4)

as defined by efficiency maps supplied with the Autonomie model. ηelec is enforced such that

energy is always lost due to inefficiencies in the electric system, whether charging or discharging:

Pbatt = ηelecPelec if Pelec ≤ 0 (2.5)

Pbatt =
1

ηelec

Pelec if Pelec > 0 (2.6)

where positive values of Pbatt represent discharging. At timestep i, battery SOC is calculated for

the next timestep i+ 1 using the following equation:

SOCi+1 = SOCi −
Voc −

√

V 2
oc − 4PbattRint

2RintQbatt,o

∆t (2.7)

To enable fast computation when solving the DP formulation, fuel consumption is modeled

using a cubic response surface [27] representation of a publicly available Brake Specific Fuel

Consumption (BSFC) map for the Generation III Prius [22]:

BSFC
( g

kWh

)

= A1 + A2ωICE + A3TICE + A4ωICETICE + A5ω
2

ICE+

A6T
2

ICE + A7ωICET
2

ICE + A8ω
2

ICETICE + A9T
3

ICE (2.8)

where all A values are fitted constants. This BSFC surface has an ideal operating line [28] that

represents the instantaneous optimal FE operating point (in terms of torque and speed) as a function

of engine power. The fuel consumption during a timestep ∆t is thus
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mfuel (grams) =

(

BSFC ×
1 hour

3600 sec

)

PICE∆t (2.9)

where PICE is in kW and ∆t is in seconds.

The angular speeds of powertrain components are constrained by a planetary gearset:

ωICE = ωgen

ρ

1 + ρ
+ ωring

1

1 + ρ
(2.10)

where ρ = Nsun

Nring
. Speeds are also constrained by limits on the electric motors, given in Table 2.1.

The ring gear speed is linearly related to vehicle speed:

ωring =
rfd

rwheel

v (2.11)

2.2 Define Control Strategies

The model’s powertrain is controlled by one of two different control strategies: a Baseline

EMS, meant to simulate stock vehicle performance, and an Optimal EMS, derived via DP to opti-

mize FE over a predicted driving schedule.

2.2.1 Baseline EMS

The Autonomie model is simulated over a drive cycle v(t), defining the Baseline EMS PICE(t),

which also implicitly defines Pelec(t) via Equation 2.2. The power split model is used to calculate

the remaining outputs, including mfuel, SOC, and FE. This is illustrated in Figure 2.1a.
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Figure 2.1: FE simulation method for (a) Baseline EMS and (b) Optimal EMS (exact schedule prediction)

To validate the Baseline EMS, the process in Figure 2.1a was used for three standard Envi-

ronmental Protection Agency (EPA) FE test schedules and the FE results, corrected for change

in SOC [29], were compared with experimental results for the 2010 Toyota Prius obtained by

Argonne National Laboratory (Table 2.2) [30].

Table 2.2: FE results demonstrating validation of Baseline EMS model for FE investigations

EPA Drive Cycle Simulated FE Measured FE % Difference

UDDS 76.4 mpg 75.6 mpg +1.1%

US06 45.0 mpg 45.3 mpg -0.6%

HWFET 69.1 mpg 69.9 mpg -1.1%

Since FE differs by less than ±1.2% for all drive cycles, the model could be considered suf-

ficiently validated in accordance with standard practices. However, for extra validation certainty,

another validation step is used. In addition to FE, Argonne National Laboratory provides time

traces of selected measurements from tests of the Generation III Prius. Simulated traces of battery
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state of charge (SOC) and engine speed are qualitatively compared to experimental traces (Figure

2.2).

With battery SOC (Figures 2.2a, 2.2c and 2.2e), the simulated trace for each cycle closely

follows the experimental trace for the first ∼150 seconds of the cycle. The values of SOC start

to diverge at later times during the cycle, but the shapes of the two curves generally resemble one

another throughout the cycle. Since AE typically have much shorter durations than 150 seconds,

SOC is expected to be accurately simulated for the full duration of individual AE.

Simulated and measured engine speed (Figures 2.2b, 2.2d and 2.2f) match closely for the US06

and HWFET cycles, except for a tendency for the simulated engine to shut off more frequently

than the physical engine. While the global match with the UDDS cycle is not as close, shorter time

windows demonstrate similarities in the two traces.

In similar studies, if validation is performed, researchers are often satisfied with just comparing

simulated and measured FE. After additionally comparing traces of battery SOC and engine speed,

this model is considered sufficiently validated for FE studies.
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(a) Battery SOC: UDDS Cycle (b) Engine speed: UDDS Cycle

(c) Battery SOC: US06 Cycle (d) Engine speed: US06 Cycle

(e) Battery SOC: HWFET Cycle (f) Engine speed: HWFET Cycle

Figure 2.2: Validation of adjusted model using trace comparison with EPA drive cycle battery SOC and

engine speed
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2.2.2 Optimal EMS

The Optimal EMS is derived using deterministic DP, which uses backwards recursion to avoid

solutions that are not optimal as defined by the Bellman Principle of Optimality [31, 32]. The DP

scheme used for this study was detailed and validated in a previous publication [23] and will be

described only briefly in this section.

In general, DP is used to compute optimal control as a function of system state by minimizing

a cost function, subject to system constraints. For this study, the optimal control variable is engine

power PICE, which also implicitly defines Pelec via Equation 2.2; the state variable is battery SOC;

and the cost function is fuel consumption mfuel. For the purposes of the DP scheme, vehicle

velocity trace v(t) is an exogenous input upon which the state variable, SOC, partially depends.

The state and cost are given by the following equations:

SOC(k + 1) = SOC(k) + f(SOC, PICE, v, k)∆t (2.12)

Cost =
N−1
∑

k=0

mfuel +W (SOCf − SOC(N))2 (2.13)

where W is a penalty weight arbitrarily set at 10,000, k is the timestep index, N is the number of

timesteps, and ∆t is the size of a timestep. Equation 2.12 incorporates Equations 2.3-2.7 and 2.10-

2.11, and Equation 2.13 incorporates Equations 2.8-2.9. The allowable state and control spaces

are

40 % ≤ SOC(k) ≤ 80 % (k = 0, ...N) (2.14)

0 kW ≤ PICE(k) ≤ 73 kW (k = 0, ...N − 1) (2.15)

To summarize, the DP scheme is used to calculate engine power (discretization ∆PICE = 0.1

kW) for every feasible battery SOC (discretization ∆SOC = 0.02%) for every timestep in a drive
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cycle (discretization ∆t = 0.4 sec) to minimize fuel consumption for a velocity trace v(t) and

desired SOCf . In future studies, other measurements (e.g. battery temperature) and cost variables

(e.g. battery life impacts) may also merit inclusion but were not included in this research.

The output of DP for a velocity trace can be visualized as a two-dimensional matrix of engine

power, where row indices represent values of SOC and column indices represent timesteps (see

Figure 2.3a). For any initial SOC (SOCi), the DP matrix can be used as a lookup table to generate

the optimal control solution PICE(t) achieving the driving schedule v(t) that results in a desired

SOCf .

Figure 2.3: a) Illustration of matrix generated by dynamic programming algorithm; b) Illustration of matrix

with conversion of time index to velocity index

Exact Drive Cycle Prediction

A DP formulation achieves an upper limit on FE improvement over the baseline strategy if

prediction error is zero, i.e., if v(t) is known exactly. This level of prediction fidelity may never

be achieved in reality, but the results of simulations with zero prediction error serve as useful

comparison points for the simulation results of more implementable EMS.

To calculate FE improvement with exact cycle prediction, the optimal control matrix is com-

puted using v(t) and SOCf from a Baseline EMS simulation. Ensuring that the baseline and
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optimal solutions achieve the same SOCf is essential for demonstrating improvement in FE; oth-

erwise, FE could be artificially improved by utilizing more battery energy than the Baseline EMS.

As illustrated in Figure 2.3a, the matrix is used as a lookup table with the time index of the drive

cycle to obtain PICE(t). Then, PICE is input to the power split model, which is used to calculate fuel

consumption, SOC, and FE, as shown in Figure 2.1b.

Exact AE Prediction

Whereas an upper limit on FE for a drive cycle v(t) is achieved by applying Optimal EMS

to the entire cycle, an upper limit on FE with only predictive control of AEs can be achieved by

simulating the Optimal EMS during AE (with exact AE prediction) and the Baseline EMS for the

remainder of the drive cycle.

For this research, AEs are defined as segments of the drive cycle in which 1) vehicle speed

increases monotonically, 2) the total increase in speed is greater than 9 mph, and 3) the time

duration of increasing speed is greater than 4 seconds.

To calculate FE improvement for a drive cycle with exact AE prediction, the DP matrix is

computed for each AE. The drive cycle is simulated where the Baseline EMS determines PICE for

all but AE segments, and Optimal EMS determines PICE during AEs. This composite engine power

trace PICE(t) is input to the power split model to calculate fuel consumption, SOC, and FE. This is

illustrated in Figure 2.4a.
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Figure 2.4: FE simulation method for (a) Optimal EMS (exact AE prediction) and (b) Pre-Computed EMS

(approximate AE prediction)

Pre-Computing Optimal EMS for Approximate AE Prediction

Since the matrix generated via DP is a discrete array of optimal PICE(k, SOC) for timesteps k =

0...N , it can be used as a lookup table for a different drive cycle with the same number of timesteps.

This can yield a near-optimal solution if the new drive cycle is similar to the one to which DP was

applied. However, the constraint of identical durations makes this method challenging to apply in

practice.

If optimal control is only applied to AEs, there is a way around the constraint of equal du-

ration. AEs are monotonically increasing segments of v(t), so they are able to be indexed using

velocity. This enables the DP matrix to be converted from a mapping with respect to time and SOC

(PICE(k, SOC)) to a mapping with respect to velocity and SOC (PICE(vk, SOC)), as shown in Figure

2.3b. With this conversion, it is possible to derive a DP matrix for one AE (the "expected AE") and

apply it to any other AE ("actual AE") with the same velocity range as the expected AE, regardless

of any difference in duration. Whereas drivers are not constrained to repeat AEs with equal du-
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rations, accelerator pedal traces, or other attributes, traffic laws encourage repetition of AEs with

equal velocity ranges (for example, 0-25 mph AEs on neighborhood streets). In Chapter 3, the

hypothesis that velocity range correlates with Optimal EMS attributes is investigated. In Chapter

4, different approaches to categorizing AEs to achieve similar velocity ranges are investigated.

As shown in Figure 2.4b, this strategy is simulated identically to the strategy with exact AE

prediction, except that PICE is calculated using a "stored" DP matrix derived for an expected, rather

than actual, AE.

2.3 Gather AE Dataset

Data used in simulations for this research come from a 384-drive-cycle dataset recorded at

10 Hz (∆t =0.1 second) from several Toyota Prius drivers. The average cycle duration is 1086

seconds, and the average speed is 28 mph. AEs in the drive cycles were identified using the logic

statement:

[(vj − vj−1) and (vj+1 − vj) and (vj+2 − vj+1) and (vj+3 − vj+2)] ≤ 0.05 mph (2.16)

where j is the timestep index within the drive cycle. If this inequality is true, i.e. if speed is

increasing by at least 0.05mph

0.1sec
= 0.5mph

sec
for the next 3 timesteps, the section containing vj is an

AE candidate. Of sections identified as AE candidates, those with a time duration greater than 4

seconds and a speed increase greater than 9 mph are included in the AE dataset. With this process,

7,708 AEs were extracted.

To simulate AEs in isolation, the speed trace of each AE was modifed to begin and end at

a steady speed. From experiments using both the Baseline and Optimal EMS, it was found that

prepending 8 seconds of steady speed at the initial AE velocity and appending 12 seconds of steady

speed at the final AE velocity are sufficient for the model to start and finish at a steady state. With
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this modification, the durations of AEs in the dataset range from 22 seconds to 76 seconds, and the

minimum and maximum speeds reached in the dataset are 0 mph and 50 mph.
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Chapter 3

Identify Key AE Attributes

As implied in the description of the pre-computed optimal EMS strategy (end of Section 2.2.2),

it is hypothesized that reliable FE improvements can be achieved if the expected AE and the actual

AE have similar ranges of velocity, or similar initial and final velocities (vi,expected ≈ vi,actual and

vf,expected ≈ vf,actual). This is based on the expectation that AEs with similar initial and final

velocities likely have similar velocity profiles, and therefore have similar optimal control profiles.

Thus, the control applied to the actual AE is similar to the optimal control profile, and the resulting

FE should be near-optimal.

If this hypothesis is true, then vi and vf must be significant attributes accounting for variance

in the optimal EMS. In this chapter, these and a variety of other attributes are gathered and investi-

gated in order to test the hypothesis underlying the proposed optimal control approach, as well as

to develop an understanding of how the optimal EMS varies across the AE dataset.

3.1 Define List of AE Attributes

The baseline and optimal EMS (exact prediction) are applied in simulation to every AE in the

AE dataset, and simulation outputs, including engine power, total vehicle power, fuel consumption,

and SOC, are saved for each AE. Attributes based on simulation inputs and outputs, defined in

addition to vi and vf , are computed as a post-processing step. These attributes are listed in Figure

3.1 and some are defined in Appendix B.
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Figure 3.1: List of attributes calculated for each AE

3.2 Characterize EMS Variations

During manual examination of AE optimal control traces PICE(t), two broad control "types"

were identified. For some AEs, PICE(t) is low or zero for an initial portion of acceleration, and

high for the remainder of the acceleration. In these cases, engine power can be described as being

"delayed" until partway through the AE, so this control type is named "Delayed" control. When

control is not Delayed, the engine provides power throughout the AE duration, often providing

more engine power than the Baseline EMS initially. This control type is named "Advanced" con-

trol. Examples are given in Figure 3.2.
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(a) Delayed
(b) Advanced

Figure 3.2: Example plots of AE with delayed control (left) and advanced control (right)

Since these two control types represent significant differences in optimal EMS, understanding

which AE attributes predict Delayed or Advanced control may yield an understanding of which

attributes account for the greatest variance in optimal EMS. Furthermore, the ability to predict

whether Delayed or Advanced control is appropriate for a given AE may enable a simplified opti-

mal EMS derivation technique (a path not pursued in this research).

The attributes listed in Figure 3.1 are used with filtering, PCA, and artificial neural network

(ANN) methods to classify AEs into Delayed and Advanced subsets, for which the process is

illustrated in Figure 3.3.
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Figure 3.3: Diagram of AE dataset analysis process

3.2.1 Filter Data and Manually Classify Subset

The dataset of Section 3.1 is filtered to remove AEs unlikely to represent either control type

based on the criteria in Table 3.1. If the results for an AE meet any of the criteria, the AE is

removed from the analysis.

Table 3.1: Attributes and criteria used to filter AE dataset

Signal Attribute Criterion

Accelerator Pedal Signal Modality > 1
Engine Power Modality > 1

Fuel Consumption Total: Optimal - Baseline ≥ 0
Battery SOC End: Optimal - Baseline 6= 0
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It was observed that AEs whose control type are not clearly Delayed or Advanced often have

multi-modal accelerator pedal signal and/or engine power. In these cases, the velocity curve is

often not smooth, and since the accelerator pedal is being depressed and released sequentially, the

AE may best be considered as multiple, immediately sequential AEs. These would complicate the

control type investigation, so they are filtered out. Figure 3.4 illustrates an example of an AE with

5 accelerator pedal signal modes.

Figure 3.4: Illustration of an AE with multi-modal accelerator pedal signal and multi-modal engine power

It was also observed that for a small fraction of the dataset, optimal control results in increased

fuel consumption and a mismatch in SOCf , a rare consequence of discretizing the problem. These

AEs are also filtered out.

Manually Classify Subset

Filtering reduces the dataset from 7725 AEs to 5591 AEs. Randomly selected AEs from the

filtered dataset were manually examined for control type based on plots of baseline and optimal

engine power. Figure 3.2a is a representative plot of Delayed control, and Figure 3.2b is a plot of

Advanced control). Each AE was placed into one of two categories: Delayed or Advanced.

Delayed control was identified as involving engine shutoff at the beginning of acceleration be-

fore reaching a high, short-duration peak. Advanced control was identified as involving relatively
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steady engine power for the full duration of the AE. Only AEs whose control type were obvious

were classified. After examining approximately 450 AE, 46 examples of Delayed control and 206

examples of Advanced control were obtained.

3.2.2 Reduce Variables and Identify Key Attributes Via PCA

As dozens of attributes are calculated for each AE, the dataset has dozens of dimensions and is

difficult to visualize. Principal Components Analysis (PCA) is a commonly used tool for reducing

the dimensionality of this type of dataset, with the added benefit of highlighting the attributes

that contribute most to variance among the samples. Prior to PCA, if attributes have significantly

different ranges (e.g. if SOC were given as a fraction and power were given in watts) the data

may be standardized, but for this data, ranges of attributes are all within an order of magnitude, so

standardization is not performed.

Each of the principal components (PCs) is a linear combination of 106 attributes calculated

from five signals (velocity, acceleration, optimal engine power, vehicle power, and battery SOC).

There are 106 PCs, but the first two PCs account for 85.9% of the variance in the dataset, whereas

the remainder account for a total of 14.1%, so PC1 and PC2 are analyzed. Each PC is described by

106 coefficients, one for each input attribute, where the magnitude of a coefficient is proportional to

the attribute’s contribution to a PC. The coefficients for the five most significant attributes defining

PC1 and PC2 are given in Table 3.2. Figure 3.5 is a biplot visualizing all of the coefficients making

up PC1 and PC2 3.2. From Table 3.2, all five of the highest contributors are velocity attributes.

Further, from Figure 3.5, the top 5 attributes have overwhelmingly greater magnitudes than the

remainder. This is striking, especially since the attributes are obviously interrelated (e.g. velocity

range is the difference between maximum and minimum velocity).
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PC1 PC2

Signal Attribute Coefficient Coefficient

Velocity Maximum 0.4641 0.1356

Velocity Minimum 0.4172 -0.5007

Velocity Range 0.0468 0.6363

Velocity Mean 0.4560 -0.0943

Velocity Median 0.4660 -0.0339

Total Variance Explained 66.4% 20.9%

Table 3.2: Top 5 coefficients for PC1 and PC2

Figure 3.5: Biplot of coefficients for PC1 and PC2

3.2.3 Train Neural Network to Classify Control Type

The manually classified AE subsets (section 3.2.1) are used to train an artificial neural network

for classification. The network is structured with two input units (for PC1 and PC2), two hidden

layers of 10 units each, and an output layer of one unit. The output is a number between 0 and 1

that indicates a confidence level that the AE for which PC1 and PC2 are input has an Advanced

optimal control profile. An output of 0 indicates high confidence classification as Delayed control,
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an output of 1 indicates high confidence classification of Advanced control, and an output of 0.5

indicates a low confidence classifying as either control type.

A common technique to avoid overfitting is to reserve a portion (here, 30%) of the dataset

for testing the neural network, so only 70% of the manually classified AEs are used to train the

network. The trained network accurately classified 100% of the training data, and misclassified

only 3 of the 75 AEs reserved for testing (96% testing accuracy).

As shown in Figure 3.6, most AEs are classified with high confidence by the ANN: over 70%

are classified with greater than 99% confidence (a classification value less than 0.01 (Delayed) or

0.99 (Advanced)). The small fraction of AEs (< 2%) that are weakly classified are removed: neural

network outputs between 0.25 and 0.75 are considered to be undefined classifications.

Figure 3.6: Exploration of cutoff confidence levels.

To verify the ANN classification results, AEs not in the training/testing set are randomly chosen

(examples in Figure 3.7), classified, and manually examined. After examining several AE near

each confidence level (100%, 75%, 25%, 0%) the ANN classification appears to agree with the

manual classification.
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(a) 2.4% probability of Advanced control. (b) 25.0% probability of Advanced control.

(c) 75.0% probability of Advanced control. (d) 100.0% probability of Advanced control.

Figure 3.7: Manual verification of ANN classification

3.2.4 Classification Results and Discussion

The ANN is applied to all 5591 AEs in the filtered dataset. Figure 3.8 is a plot of PC1 and PC2

for every AE, with classification indicated by color. There is a gap in the points where examples

of low-confidence classifications were removed.

25



Figure 3.8: Classification of AE dataset, plotted by principal component

Figure 3.8 illustrates that a neural network is likely not the simplest way to successfully classify

AE control types. A linear cutoff on the basis of PC1 and PC2 would succeed as well, or even on

the basis of PC1 alone. For example, a precise criterion for Delayed control could be:

PC1 < 50 (3.1)

The PCs enable a precise classification, but recall that information about the Optimal EMS

was included in PCA. It is desirable to classify control type without computing the Optimal EMS

first, i.e. without using attributes associated with the Optimal EMS. Given that the overwhelming

majority of the information captured by PC1 and PC2 comes strictly from the velocity trace, it is

expected that velocity attributes alone could be utilized to make a successful classification model.
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From Figure 3.5, the five greatest constituents of PC1 and PC2 are maximum, minimum, mean,

median, and range of velocity. Pairs of long, perpendicular line segments in the biplot correspond

to pairs of attributes that account for significant portions of total variance in both PCs. Two nearly

perpendicular pairs are chosen to investigate: range and median of velocity, and maximum and

minimum velocity (or vf and vi). These pairs of attributes are plotted in Figures 3.9 and 3.10.

Figure 3.9: Classification of AE dataset, plotted by median and range of velocity

From Figure 3.9, control type might be classified using a linear criterion:

(vmedian < 15 kph) AND [(vf − vi) < 30 kph] (3.2)

where control type is Delayed if the criterion is satisfied, and control type is Advanced if not.
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Figure 3.10: Classification of AE dataset, plotted by vf and vi

From Figure 3.10, vf and vi appear to separate the control types nearly as well as PC1 and PC2.

A linear criterion based on both vf and vi would precisely define this separation, and even

vf < 25 kph (3.3)

would work.

3.3 Conclusions

The experiments in this chapter primarily address Research Question #1:

1. How do differences between AEs correlate with differences between AE Optimal EMS?
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Despite utilizing attributes associated with a variety of different signals, it was repeatedly found

that attributes of the velocity trace v(t) account for the majority of the variation in the dataset:

• The five PCA coefficients with the greatest magnitudes, and therefore explaining the most

variance in the data, were all found to be attributes computed from v(t).

• PC1 and PC2, which are primarily comprised of v(t) attributes, enable precise classifica-

tion (testing accuracy of 96%) between the two Optimal EMS control types observed in the

dataset.

• v(t) attributes, and in particular vf and vi, enable almost as precise classification as PC1 and

PC2.

The results in this chapter support the hypothesis that AEs with similar vf and vi have similar

Optimal EMS. This lays the foundation for experiments in the remaining chapters.
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Chapter 4

Investigate AE Categorization Approaches

In Section 2.2.2, the approach is introduced of computing the Optimal EMS for an "expected"

AE and applying it to an "actual" AE, enabling the Optimal EMS to be pre-computed and stored

onboard the vehicle and implemented in real time. In practice, this requires some method of

matching a predicted "actual" AE to a stored "expected" AE.

As concluded in Chapter 3, attributes of the velocity trace v(t) are well correlated with variation

of Optimal EMS attributes. In this chapter, the method of separating AEs into categories based on

attributes of v(t) is proposed and evaluated. In the main text, AEs are categorized in terms of

initial and final velocity vi and vf . Categorization methods utilizing duration tf − ti and average

acceleration rate
vf−vi

tf−ti
are also investigated (Appendix C).

4.1 Define Experimentation Process

To obtain measures of the magnitude and reliability of FE improvement enabled by different

categorization approaches, an experimentation process is defined and repeated. AEs are split into

categories; an expected AE is selected for each category and the optimal EMS for the expected AE

is applied to every AE in the category; and FE results are corrected for SOC error.

4.1.1 Categorize AEs

A two-dimensional categorization scheme is used, where the AE dataset is separated into cate-

gories based on two attributes. The range of each attribute is divided into bins, and each category

corresponds to some combination of bins. For example, one category might be defined as AEs

with 0 ≤ vi < 1 kph and 20 ≤ vf < 25 kph. The three categorization schemes investigated are

summarized in Table 4.1 (results for schemes 2 and 3 are in Appendix C).
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Table 4.1: Summary of category schemes examined

Attributes Used Initial Velocity Final Velocity

1 Number of Bins 13 14

Expected AE Selection Duration

Parameters Used Duration Final Velocity

2 Number of Bins 10 10

Expected AE Selection Final Velocity

Parameters Used Average Acceleration Final Velocity

3 Number of Bins 10 10

Expected AE Selection Initial Velocity

4.1.2 Select Expected AE

For each category, one "expected" AE is selected. The Optimal EMS computed for the expected

AE is the control strategy applied to all AEs in the category, so the expected AE should be a

characteristic representative of the category.

The expected AE is chosen as the AE with the median value of a third attribute, additional to the

two used to define the categories. For example, in a category defined as AEs with 0 ≤ vi < 1 kph

and 20 ≤ vf < 25 kph, there is one AE with a duration that is shorter than exactly half of the

AEs in the category, and longer than the other half. By applying the Optimal EMS for this AE to

the rest in the category, the average difference between expected and actual duration is minimized.

The attribute used to choose the expected AE for each categorization scheme is given in Table 4.1.

The expected Optimal EMS for each category is applied to every AE in the category, using the

method introduced in Section 2.2.2, and the results are saved.

4.1.3 Correct FE for SOC Error

When applying Optimal EMS with exact prediction, the change in battery SOC during the AE

is constrained to perfectly match the baseline change in SOC. When expected control is applied to

an actual AE, this is no longer the case, as illustrated in Figure 4.1.

31



Figure 4.1: Example of AE with SOCf mismatch

FE improvement relative to baseline must be adjusted to account for SOCf deficits or excesses

relative to baseline SOCf , since the battery is charged by burning fuel. A commonly used method

is to convert SOCf differences into equivalent amounts of fuel by assuming a nominal energy

conversion efficiency, but that would be insufficient here because the Optimal EMS inherently

takes advantage of the variability in engine efficiency. Instead, the fuel equivalency method is

applied individually to each category, based on the assumption that the engine’s average efficiency

within a category has less variability than it does in general.

In individual categories, a linear relationship between SOCf error and FE improvement is

observed. As shown in Figure 4.2, the slope of a linear fit of SOCf error and FE improvement can

be used to obtain the SOCf -corrected FE improvement for each AE.
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Figure 4.2: Illustration of FE correction method for SOCf

This FE correction method is described by the following equations:

∆FE =
FEoptimal − FEbaseline

FEbaseline

× 100% (4.1)

∆SOCf = SOCf,optimal − SOCf,baseline (4.2)

∆FEcorrected = ∆FE −m∆SOCf (4.3)

where m is the slope of the fit line, obtained via least squares linear regression, of ∆FE versus

∆SOC for the category. As an example, Figure 4.3 shows the lines of best fit calculated for all

categories in an example 5× 5 categorization scheme.
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Figure 4.3: FE correction fit lines for an example 5× 5 categorization scheme

Once corrected for errors in SOCf , the FE improvement results for applying Optimal EMS for

an expected AE to an actual AE can be used to identify areas of greatest and least benefit in a given

categorization scheme. In the next section, results for categorization schemes based on vf and vi

are evaluated.

4.2 Categorize Using Initial and Final Velocity

Table 4.2: Summary of velocity category scheme

Attributes Used Start Velocity End Velocity

Number of Bins 13 14

Expected AE Selection Duration

Categories are defined using initial velocity and final velocity (referred to here as the "velocity"

category scheme). Category bins are 5 kph wide, with the exception of a 0-1 kph initial velocity

bin representing AEs that begin at 0 kph, and a 0-15 kph final velocity bin because none of the AEs
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have a final velocity less than 10 kph. The scheme constrains initial velocity and final velocity to

60 and 80 kph, respectively. There are 13 bins of initial velocity and 14 bins of final velocity, for

a total of 13 × 14 = 182 categories. Since initial velocity is always less than final velocity, 64

of these categories are empty. As illustrated in Figure 4.4, the dataset overwhelmingly consists of

AEs that begin at zero speed.

Figure 4.4: Population of velocity categories
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Figure 4.5: FE improvement results by velocity category in order of decreasing mean FE improvement

FE improvement results are shown in Figure 4.5. Every point along the horizontal axis cor-

responds to a single category, sorted by decreasing mean FE improvement (points in (a) and (b)

correspond vertically between the two plots). The initial and final velocity defining each category

are given in Figure 4.5a. The 25th, 50th (mean), and 75th percentiles of FE improvement are given

in Figure 4.5b.

For some categories, the mean FE improvement is negative, with a greater likelihood for cat-

egories with greater initial and final velocities. For these categories, the differences between the

25th and 75th percentiles of FE improvement also tend to be greater than for the other categories,

indicating greater variability in FE improvement. As shown in Figure 4.4, the high-velocity cate-

gories are sparsely populated, which may account for the greater variability in these categories.
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Figure 4.6: Median FE improvement results organized by velocity category

Figure 4.6 is another visualization of FE improvement per category, showing the median FE

improvement for each category analogously to Figure 4.4. Matching what is apparent in Figure

4.5, the greatest FE improvements are achieved in lower-velocity, more populated categories.

4.2.1 Investigate Control Type Mismatch

In some instances where FE was reduced relative to the Baseline EMS, it was observed that

Delayed control was being applied to an AE for which the Optimal EMS is Advanced control, or

vice versa. The ANN classification of control type from Chapter 3 was used to investigate whether
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this explains FE loss in general. The control type of the expected AE for each category is shown

in Figure 4.7, and the control types of the actual AEs are shown in Figure 4.8.

Figure 4.7: Expected AE control type organized by velocity category
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Figure 4.8: Actual AE control types on grid corresponding to velocity categories
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Figure 4.9: Control type mismatch and FE improvement for velocity categories

Figure 4.9a replicates Figure 4.5b, additionally depicting maximum and minimum FE improve-

ment for each category. Again, horizontal axis points correspond vertically between the plots.

Figure 4.9b is a stacked bar graph showing the number of AEs in each category, with blue bar seg-

ments representing AEs whose optimal control type matches the applied control type, and yellow

segments representing AEs whose optimal control type does not match the type applied. The dot

above each bar indicates the applied control type for the category.

Since Delayed control is applied to low-velocity AEs, there is further evidence that the greatest

FE improvements are achieved for low-velocity AEs: all of the red dots are on the left end of the

plot. There is also more evidence that the worst-performing categories are the least populated: all

of the categories toward the right end of the plot contain fewer than 50 AEs, whereas all but two

of the 20 best-performing categories have more than 50 AEs. Since every case of control type
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mismatch cases occurs in one of the 23 best-performing categories, there is no evidence in Figure

4.9 to support the hypothesis that control type mismatch is a primary cause of FE reduction.

4.2.2 Investigate Prediction Error

Prediction error, or the difference between expected and actual v(t), is hypothesized to be the

primary cause of FE reduction. Prediction error in vf and vi are constrained by the categorization,

whereas error in AE duration is not, so in this section prediction error refers specifically to duration

prediction error. Figure 4.10 plots duration prediction error against FE improvement and SOCf

error.

Figure 4.10: Duration prediction error, FE improvement, and SOCf error for velocity categories

Here, the prediction error is defined as the actual duration minus the expected duration, so, for

example, a duration error of -5 seconds means the actual AE is 5 seconds shorter than the expected

AE, or, the AE duration was overestimated by 5 seconds. FE reductions occur more commonly as

prediction error increases in the negative direction, whereas positive duration errors do not seem
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to cause significant FE reductions. Negative prediction error also associates with greater SOC

errors. Overall, there is evidence to suggest that overestimating the actual AE duration has a more

detrimental effect than underestimating actual AE duration.

4.2.3 Adjust Category Sizes

Since AEs in well-populated categories tend to have greater FE improvement on average, cat-

egorizing more coarsely to increase average category population could improve FE results. How-

ever, prediction error, in terms of duration and in terms of vf and vi, increases with coarser catego-

rizations, which may be detrimental to FE results. In this section, the FE improvement results for

coarser and finer categorizations are obtained and analyzed, as summarized in Table 4.3.

Table 4.3: Finer and coarser categorizations by velocity

Attributes Used Initial Velocity Final Velocity

Number of Bins 1-200 1-200

Expected AE Selection Duration

Figure 4.11 is a representation of the different schemes that were simulated. Figure 4.11a shows

the bin counts for vf and vi that define each scheme, Figure 4.11b shows the mean, 25th, and 75th

percentiles of FE improvement for each scheme (inclusive of all categories), and Figure 4.11c

shows the frequency of matching and mismatched control type. Schemes are sorted by decreasing

final velocity bin counts from left to right.

42



Figure 4.11: FE results for finer and coarser velocity categorizations

With more categories, mean FE improvement is greater, likely because finer categorization res-

olutions admit smaller prediction errors. But, with extremely fine categorization schemes such as

the 200 × 200 categorization, categories are so sparsely populated that many are occupied by one

or fewer AEs. Categories with just one AE have one expected AE and zero actual AEs, so FE

improvement results cannot be obtained. This is why the total number of AEs in the fine catego-

rizations, as shown in Figure 4.11c, is significantly less than the size of the dataset (7725 AEs).

This suggests that the results are limited by the AE dataset: with an infinite AE dataset, an infinitely

fine categorization would be expected to approach the FE achievable with exact prediction.

Bin counts for initial velocity and final velocity do not have symmetric effects. For example,

with 1 vi bin and 200 vf bins, the mean FE improvement is approximately 2% with a tight confi-

dence interval on the mean, and the range between the 25th and 75th percentile is about 4%. In
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the opposite scheme, with 200 vi bins and 1 vf bin, the mean FE improvement is negative with an

extremely wide confidence interval, and the range between the 25th and 75th percentiles is nearly

10%. This trend holds with different categorizations, suggesting that constraining error in vf is

more important than constraining error in vi for achieving reliable FE improvement.

In application, the size of the AE dataset and the number of expected AEs that can be stored

onboard a vehicle are limited. The results in Figure 4.11 suggest that FE improvement is nearly

equivalent for any scheme with 10 or more vf bins, such as the 13 × 12 categorization scheme

investigated earlier in the section.

4.3 Categorize Using Other Attributes

As discussed in the previous section, the primary goal of a categorization scheme is to con-

strain prediction error in order to match the expected and actual v(t) as closely as possible. It is

possible that constraining error in attributes other than vi may enable greater or more reliable FE

improvements. To investigate this, two other categorization schemes, utilizing duration tf − ti and

average acceleration rate
vf−vi

tf−ti
in combination with vf , are studied (details in Appendix C).

The major conclusions of Section 4.2 are supported by the results in Appendix C. The most

reliable FE improvements are achieved in categories containing AEs with low speeds, long dura-

tions, and low acceleration rates, irrespective of control type mismatch (Figures C.6 and C.14).

Averaged over all categories, the FE improvement for the best categorization schemes is between 1

and 2% regardless of the categorization attributes. Categorizing based on duration enables slightly

greater FE improvements on average (Figure C.8), but categorizing based on acceleration rate en-

ables a slightly smaller range of FE improvements (Figure C.16. An upper limit on average FE

improvement appears to be achieved for 10 × 10 (or even slightly coarser) schemes, regardless of

categorization attributes.
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4.4 Conclusions

In this chapter, the FE results of applying Optimal EMS control via a variety of categorization

methods were analyzed. This chapter primarily addresses Research Question #2:

2. What FE tradeoffs occur when prediction accuracy is reduced from exact velocity trace

prediction to prediction of basic AE attributes?

Prediction accuracy was varied by adjusting the attributes and resolutions with which categories

are defined, and the FE results were compared with baseline FE results. Key conclusions are listed

below.

4.4.1 AE Factors Influencing FE Results

• The greatest and most reliable FE improvements are achieved for low speed, long duration,

and low acceleration rate AEs, regardless of category scheme. FE reductions tend to occur

during high-aggression AEs, which are characterized by high speeds, short durations, and

high acceleration rates.

• FE improvements are more reliably achieved when the actual AE duration is equal to or

longer than the expected AE duration.

• On average, categories for which the Expected AE Optimal EMS is of the Delayed control

type achieve greater FE improvements than those with Advanced control type, regardless of

category scheme.

• Mismatch of control type between the expected and actual AE does not correlate with losses

to FE.

4.4.2 Categorization Factors Influencing FE Results

• Prediction error of final velocity must be constrained via categorization to achieve consistent

FE improvements.
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• Constraints on initial velocity error, duration, and average acceleration are less impactful

than constraints on final velocity error, but constraining one in addition to final velocity

error can improve FE results.

• Average FE improvement increases with increasing categorization resolution, but reaches a

reasonable upper limit when each attribute is divided into 10 bins.

• The poorest average FE improvement occurs in sparsely populated categories.

The results in this chapter suggest that a 13 × 14 categorization scheme based on vf and vi

approaches a reasonable upper limit on average FE improvement. In the next chapter, Expected

AE Optimal EMS utilizing this categorization scheme is applied to drive cycles.
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Chapter 5

Implement Optimal EMS in Drive Cycles

In Chapter 4, Optimal EMS were applied to AEs in isolation. In this chapter, the categorization

method of Chapter 4 is applied to AEs in the context of drive cycles.

The four control strategies introduced in Chapter 2 are applied to seven drive cycles of various

types, as shown in Tables 5.1a and b. The Baseline EMS achieves the FE upon which FE improve-

ment is defined, utilizing no prediction. The Approximate AE Optimal EMS applies an expected

Optimal EMS from the corresponding category based on simulated predictions of vf and vi. (The

Approximate AE Optimal EMS is also referred to as the Disturbed AE Optimal EMS, referring

to prediction error as a "disturbance" to the system.) The Optimal AE and Optimal Cycle control

strategies utilize the exact velocity trace v(t) to derive and implement Optimal EMS during AEs

and throughout the drive cycle, respectively.

Table 5.1: Drive cycles and control strategies investigated in Chapter 5
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The overall FE results for all seven cycles are shown in Table 5.2. Results for one cycle of each

driving type (city, highway, and aggressive) is analyzed in detail in the main text, and results for

the remaining cycles are in Appendix D.

Table 5.2: Results for all drive cycles and control strategies

5.1 Evaluate Individual AEs in Cycles

As a measure of the effect an individual AE’s control has on a drive cycle’s overall FE, dFC,

the net fuel consumption increase or reduction caused by the disturbed EMS is calculated:

dFC = (FCf,Disturbed − FCf,Baseline)− (FCi,Disturbed − FCi,Baseline) (5.1)

Just as in Chapter 4, Disturbed EMS may result in a different SOCf than Baseline EMS. To

correct for this, the dFC metric is adjusted using a linear fit (Figure 5.1) on dFC versus dSOC for

all cycle AE (Figure 5.1), where dSOC is defined as:

dSOC = (SOCf,Disturbed − SOCf,Baseline)− (SOCi,Disturbed − SOCi,Baseline) (5.2)
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Then,

dFCcorrected = dFC −m dSOC (5.3)

where m is the slope of the fitline (3.406 mL
%SOC

). Finally, dFC is converted to fuel consumption

per distance traveled during the AE (L/100km). (Calculating dFC−1 and converting units would

theoretically result in a measure of FE, but in practice results in extremely large numbers due to

rounding error and near-zero division.)

dFCnormalized =
dFCcorrected

distance
(5.4)
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Figure 5.1: Linear fit of dFC and dSOC for all cycle AEs

5.2 Individual Cycle Results

5.2.1 City Driving Cycle: NYCC

In simulations of city driving, FE improvement potential is high for both Optimal Cycle and

Optimal AE control, and Approximate AE FE is nearly as high as Optimal AE FE. Most likely as a
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result of the low-aggression driving common to these cycles, effective fuel consumption reduction

is achieved in the vast majority of AEs, leading to high FE gains.

The New York City Cycle (NYCC) is a standard EPA test schedule meant to simulate low

speed urban driving. It includes many low-aggression AEs, frequent stops, and almost no cruising.

With an average speed of 11.4 kph, it is more than twice as slow as the next-slowest cycle stud-

ied. In previous sections, it was found that significant and reliable FE improvements are achieved

for low-aggression AEs, which is true here: the greatest Approximate AE and Optimal AE FE

improvements of all the cycles are achieved for the NYCC.

A variety of characteristics and results for the NYCC are listed in Table 5.3; the simulated FE

results are plotted in Figure 5.2; selected simulation outputs are plotted in Figure 5.3; and results

for individual AEs are given in Table 5.4.

Table 5.3: Characteristics of the NYCC cycle
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(a) NYCC cycle FE results
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(b) NYCC cycle FE improvement results

Figure 5.2: FE results for NYCC cycle
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Figure 5.3: Simulation outputs for the NYCC cycle
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Table 5.4: Characteristics of AEs in the NYCC cycle

The Disturbed Optimal EMS achieves a significant portion (77%) of the FE improvement

achieved by Optimal AE control and 35% of the FE improvement achieved by Optimal Cycle

control. With the exception of some instances of high engine power for SOC correction, the Dis-

turbed engine power trace appears to follow the Optimal AE engine power trace closely, indicating

that the categorization scheme sufficiently limits prediction error to provide a close match between

the Expected and Actual Optimal EMS.

The results for this cycle illustrate how apparent increases to fuel consumption, like in AEs #5

and #8, can result in increases to SOC that allow significant fuel consumption reductions later in

the cycle. From Table 5.4, four AEs have positive dFC, which might seem to apply that prediction

error is causing a reduction to cycle FE during those AEs. However, only one (AE #8) has a positive

SOC-corrected dFC, so the net result of Disturbed Optimal EMS is a significant improvement to

cycle FE.

5.2.2 Other City Driving Cycles

Two other cycles with city driving are simulated. The Denver Downtown and Fort Collins

Downtown drive cycles were measured from real-world driving. The simulation results are in
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Appendix D. Although FE improvements achieved by Disturbed EMS along the other city driving

cycles are smaller than for the NYCC cycle, they are the next two greatest among all cycles studied.

5.2.3 Highway Driving Cycle: HWFET

FE improvement potential via AE Optimal EMS in highway driving is typically much lower

than in city driving, since AEs reach higher speeds and are less frequent, with cruising dominating

the cycle. Despite the low improvement potential, positive FE improvement is achieved in all

highway cycles.

The HWFET (Highway Fuel Economy Test) cycle is the standard EPA highway test schedule.

It is mostly high-speed cruising and involves only 4 AEs which account for only 10% of driving

time. Room for FE improvement is therefore small when EMS are confined to AE windows, but

a significant portion of the potential FE improvement is still achieved via Disturbed EMS control.

A variety of characteristics of the HWFET cycle are listed in Table 5.5; the simulated FE results

are plotted in Figure 5.4; selected simulation outputs are plotted in Figure 5.5; and results for

individual AEs are given in Table 5.6.

Table 5.5: Characteristics of the HWFET cycle
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Figure 5.4: FE results for HWFET cycle
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Figure 5.5: Simulation outputs for the HWFET cycle

Table 5.6: Characteristics of AEs in the HWFET cycle

The Disturbed EMS achieves 60% of the FE improvement achieved by Optimal AE control

and 10% of the FE improvement achieved by Optimal Cycle control. The Disturbed EMS engine
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power trace deviates visibly from the Optimal EMS engine power trace, running at higher power

earlier in each AE than any other control strategy.

5.2.4 Other Highway Driving Cycles

Two other cycles with highway driving are simulated. The Denver Highway and Fort Collins

Highway drive cycles were measured from real-world driving. The simulation results are in Ap-

pendix D. The results for the Fort Collins Highway cycle are similar to the results for the HWFET

cycle, where the AE Optimal EMS achieves a small FE improvement (less than 1%), of which

the Disturbed EMS achieves a portion. The Denver Highway cycle has greater FE improvement

potential than the other highway cycles because it includes both highway and city driving.

5.2.5 Aggressive Driving Cycle: US06

The US06 cycle is the aggressive EPA test schedule, characterized by high-speed driving, fast

accelerations, and an extended high-speed cruising period in the middle. More than half of the

AEs have final velocities greater than the highest-speed vf category, so the expected AE is often of

significantly lower speed than the actual cycle AE. With so much driving beyond the boundaries of

the dataset and a great deal of cruising, the US06 cycle has the least room for improvement of any

cycle, during AEs or otherwise, and is the only cycle for which FE improvement is not achieved

with Disturbed Optimal EMS control. A variety of characteristics of the US06 cycle are listed in

Table 5.7; the simulated FE results are given in Figure 5.6; selected simulation outputs are plotted

in Figure 5.7; and results for individual AEs are given in Table 5.8.

Table 5.7: Characteristics of the US06 cycle
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Figure 5.6: FE results for US06 cycle
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Figure 5.7: Simulation outputs for the US06 cycle

Table 5.8: Characteristics of AEs in the US06 cycle
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Disturbed EMS control achieves a lower FE than the Baseline EMS. dFC improvement is

achieved in only 2 of 12 AE, indicating that the Disturbed EMS is poorly equipped to control AE

this aggressive.

AE #4 is the most unsuccessful application of Disturbed EMS control for any AE in any cycle

simulated. Simulation outputs for this AE are given in Figure 5.8. The Disturbed EMS underesti-

mates the required engine power and discharges the battery during the first half of the AE, likely

because it "expects" the AE to end soon and at a speed lower than 80 kph. Since the second half

of the AE is a gradual acceleration at high speed, the AE effectively lasts about 10 seconds longer

than the Disturbed EMS expects it to, and since it must make up for the large SOC deficit from the

first half, it runs the engine at maximum power for 3 full seconds. As a result, a significant amount

of fuel is consumed at low engine efficiency and is clearly a worst-case example for Disturbed

control.
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Figure 5.8: AE #4 from the US06 cycle, the worst-performing AE of any cycle

Since AEs in the US06 cycle are faster than the fastest AEs in the dataset, the US06 cycle is

a poor example for Disturbed Optimal EMS application. In practice, the Disturbed Optimal EMS

may be turned off by default during high-speed and high-aggression driving. To simulate this, both
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the cruising section and the outlier AEs were removed from the US06 cycle and the simulation was

repeated. The FE results are shown in Figure 5.9 and outputs of the simulation are plotted in Figure

5.10. With this truncation, the Disturbed EMS achieves 72% of Optimal AE FE improvement and

61% of Optimal Cycle FE improvement.
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(a) Truncated US06 cycle FE results
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(b) Truncated US06 cycle FE improvement results

Figure 5.9: FE results for truncated US06 cycle
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Figure 5.10: Simulation outputs for the truncated US06 cycle

5.3 General Results

The FE results for all seven cycles, sorted in order of increasing Disturbed EMS FE improve-

ment are given in Figure 5.11. The cycle on which the Disturbed EMS is least successful is US06,

the aggressive cycle; the next three are the highway cycles; and the cycles with the greatest Dis-

turbed EMS performance are the city cycles. This is one indication that Disturbed EMS control is

most successful in city driving and less successful with increasing aggressiveness.
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Figure 5.11: FE results for all seven cycles
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5.3.1 AE Factors Influencing FE Results

To understand how AE attributes correlate with FE results, initial and final velocity (Figure

5.12) and speed increase and average acceleration (Figure 5.13) are plotted against normalized

dFC.
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(a) Initial velocity versus dFC for all cycle AEs
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(b) Final velocity versus dFC for all cycle AEs

Figure 5.12: vi and vf versus dFC for all cycle AEs
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The plots in Figure 5.12 reinforce that disturbed control is not well suited to AEs with high vf .

The greatest increases to normalized dFC all occur when vi is near zero and vf is greater than 80

kph, while the greatest and most frequent reductions to dFC occur when vi and vf are both low.

dFC is never negative above a starting speed of 90 kph or an ending speed of 100 kph.

High aggression driving implies high speeds as well as fast accelerations. To understand how

this affects FE, increase in velocity vf − vi and average acceleration
vf−vi

tf−ti
are plotted against

normalized dFC (Figure 5.13).
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(a) Velocity increase versus dFC for all cycle AEs
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(b) Average acceleration versus dFC for all cycle AEs

Figure 5.13: Velocity increase and average acceleration versus dFC for all cycle AEs

Smaller velocity increases enable the greatest reductions to FC, while the greatest increases to

FC occur for AEs during which velocity increases by the greatest amounts. This trend can also be

seen when duration is taken into account: FC is never reduced when acceleration rate is greater

than 5 kph/s, and almost never increased when acceleration rate is less than 2 kph/s.
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As concluded in Chapter 4, FE performance is often poor for sparsely populated categories. In

Figure 5.14 the number of AE in the category is plotted against dFC. As shown, the greatest FC

reductions occur for the most populated categories, but increases to dFC occur for sparsely and

densely populated categories alike.
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Figure 5.14: Category population versus dFC for all cycle AEs

In agreement with the conclusions of Chapter 4, FE improvements occur in cycles and locally

among AE when the driving style is low-aggression. This may be explained in part because poten-

tial FE benefits are smaller for higher-aggression drive cycles. For the NYCC, the maximum FE

improvement that can be achieved via AE control (i.e., by the Optimal AE EMS) is 5.06%, whereas

for the US06 cycle it is 0.54%. This may also be because the AE dataset is not representative of

the highest-aggression AEs seen in the drive cycles. A greater portion of the potential FE benefits

may be achievable using a dataset that represents a wider variety of driving styles.

Control Type Mismatch

Chapter 3 introduced the hypothesis that applying the wrong control type (Delayed or Ad-

vanced) to AEs via Disturbed Optimal EMS causes reductions to FE. This misapplication is termed
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"mismatch." In Chapter 4, it was found that none of the cases of mismatch occurred in any of the

worst-performing categories.

To understand the effect of mismatch in cycles, every AE in every cycle was examined man-

ually to identify the control types applied by the Optimal AE EMS and Disturbed AE EMS. Of

315 AEs, there were 67 occurrences of positive dFC (i.e., FE reduction) and 54 occurrences of

mismatch, but only 7 occurrences of both, which may suggest that mismatch is not correlated with

FE loss. The results of the mismatch characterization are shown in Table 5.9.

Table 5.9: Contingency table relating AE FC results to mismatch condition

Using the data in Table 5.9, Fisher’s exact test of independence was performed. The null

hypothesis for this test is that there are no nonrandom associations between the two categories

(negative dFC and mismatch), so the null hypothesis must be rejected (p-value < 0.05) to be able

to claim a significant association between mismatch and FE. The test results in a p-value of 0.1425,

meaning the null hypothesis cannot be rejected. Therefore, control type mismatch is not signifi-

cantly correlated with positive or negative FE effects.
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5.4 Conclusions

In this chapter, the FE results of applying Disturbed Optimal EMS control to AEs in cycles

were obtained and analyzed. The results of this chapter primarily concern Research Questions #2

and #3.

5.4.1 Research Question #2

2. What FE tradeoffs occur when prediction accuracy is reduced from exact velocity trace

prediction to prediction of basic AE attributes?

The results in this chapter support conclusions from Chapter 4:

• (From Chapter 4): The greatest and most reliable FE improvements are achieved for low

speed, long duration, and low acceleration rate AEs, regardless of category scheme. FE re-

ductions tend to occur during high-aggression AEs, which are characterized by high speeds,

short durations, and high acceleration rates.

– The greatest cycle FE improvements are achieved for the city cycles, which are char-

acterized by low-aggression driving.

– As shown in Figures 5.12-5.13, with increasing final velocity, velocity increase, and

average acceleration, the magnitude of FE loss increases.

• (From Chapter 4): Mismatch of control type between the expected and actual AE does not

correlate with losses to FE.

– This is further evidenced by the results of the Fisher test on the cycle AE set (Section

5.3.1)

• (From Chapter 4): The poorest average FE improvement occurs in sparsely populated cate-

gories.

– As shown in Figure 5.14, the greatest FE losses occur during AEs in sparsely populated

categories.
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5.4.2 Research Question #3

3. How can low-accuracy-prediction enabled EMS be applied to achieve consistent FE benefits

in real driving contexts?

• The methods introduced in Chapter 3 are used in this chapter to apply Disturbed AE EMS

in cycles and evaluate the results. By accounting for the effects of over- and under-charging

the battery on fuel consumption, it was shown that FE improvement can be achieved via

Disturbed AE EMS despite local increases to FC during an AE.

• Following from the conclusions addressing RQ#2, Disturbed AE EMS are best applied to

low-aggression AEs, which are common in city driving.

• Overall cycle FE improvement potential is limited in highway driving, since AEs are rare

and, if they occur, are of high speed.

• The dataset containing expected AEs can limit the FE improvement potential of Disturbed

AE Optimal EMS, as evidenced by the poor performance on the US06 cycle. Choosing not to

apply the Disturbed AE Optimal EMS to AEs that are poorly represented by the dataset may

be one way to enable robust FE improvements, as shown by the application to the truncated

US06 cycle.
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Chapter 6

Summary

This thesis presents an approach for applying Optimal EMS during AEs to improve FE that

is implementable using hardware common on current production vehicles. Simulation methods

were used to characterize the FE improvement potential with the approach and evaluate a variety

of methods of EMS application.

In Chapter 2, the simulation tools required to investigate AE Optimal EMS, including a vehicle

model and four Optimal EMS application methods, were defined.

In Chapter 3, attributes of AE velocity traces and corresponding Optimal EMS were analyzed

via PCA and neural network classification. A variety of evidence was presented to support the

hypothesis that initial and final velocity are significant attributes accounting for variation in the

Optimal EMS. This improved confidence that AE prediction on the basis of initial and final velocity

could enable near-optimal EMS.

In Chapter 4, a categorization approach for selecting EMS based on predictions of AE attributes

was presented and evaluated. FE improvements averaging between 1 and 2% were demonstrated

to be achievable for categorization schemes that include final AE velocity as one of the defining

attributes and 10 or more bins of each defining attribute. The greatest FE improvements were

demonstrated to occur during AEs with low speeds and accelerations, whereas FE reductions were

more likely to occur during AEs with high speeds and accelerations.

In Chapter 5, EMS were applied to AEs in seven drive cycles via a categorization scheme from

Chapter 4 based on initial and final AE velocity. FE improvement was achieved for all but the most

aggressive drive cycle, with the greatest FE improvements being achieved in city driving. If the

categorization method of application is applied only during low-aggression AEs, FE improvement

is predicted to be significant and robust.

Efforts are well underway to implement this Optimal EMS approach in a physical HEV to

demonstrate real-world FE improvements during AEs. This has involved design and fabrication of
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a test HEV platform, and will require developing methods for predicting AE attributes, translating

the simulated control strategies into actual HEV control software, and a whole lot of testing.

73



Bibliography

[1] U.S. Environmental Protection Agency. Fast facts on transporta-

tion greenhouse gas emissions. https://www.epa.gov/greenvehicles/

fast-facts-transportation-greenhouse-gas-emissions, 2016. Accessed: 2019-1-23.

[2] U.S. Environmental Protection Agency. Smog, soot, and other air pollution from transporta-

tion. https://www.epa.gov/air-pollution-transportation/smog-soot-and-local-air-pollution,

September 2015. Accessed: 2017-10-16.

[3] CO2 emissions from fuel combustion highlights 2016. Technical report, International Energy

Agency, 2016.

[4] World health statistics 2016: Monitoring health for the SDGs. Technical report, World Health

Organization, 2016.

[5] A E Atabani, Irfan Anjum Badruddin, S Mekhilef, and A S Silitonga. A review on global

fuel economy standards, labels and technologies in the transportation sector. Renewable

Sustainable Energy Rev., 15(9):4586–4610, December 2011.

[6] Zachary D. Asher, David A. Trinko, and Thomas H. Bradley. Increasing the Fuel Economy

of Connected and Autonomous Lithium-Ion Electrified Vehicles, pages 129–151. Springer

International Publishing, Cham, 2018.

[7] Zachary D. Asher, Van Wifvat, Anthony Navarro, Scott Samuelsen, and Thomas Bradley.

The importance of HEV fuel economy and two research gaps preventing real world imple-

mentation of optimal energy management. In SAE Technical Paper. SAE International, 01

2017.

[8] Koichiro Muta, Makoto Yamazaki, and Junji Tokieda. Development of new-generation hy-

brid system ths ii - drastic improvement of power performance and fuel economy. In SAE

Technical Paper. SAE International, 03 2004.

74



[9] Chan-Chiao Lin, Huei Peng, Jessy W. Grizzle, Jason Liu, and Matt Busdiecker. Control

system development for an advanced-technology medium-duty hybrid electric truck. In SAE

Technical Paper. SAE International, 11 2003.

[10] Daniel J. Fagnant and Kara Kockelman. Preparing a nation for autonomous vehicles: oppor-

tunities, barriers and policy recommendations. Transportation Research Part A: Policy and

Practice, 77(C):167–181, 2015.

[11] Chan-Chiao Lin, Jun-Mo Kang, J W Grizzle, and Huei Peng. Energy management strategy

for a parallel hybrid electric truck. In Proceedings of the 2001 American Control Conference,

volume 4, pages 2878–2883 vol.4, 2001.

[12] N Kim, S Cha, and H Peng. Optimal control of hybrid electric vehicles based on pontryagin’s

minimum principle. IEEE Trans. Control Syst. Technol., 19(5):1279–1287, 2011.

[13] Pei Zhang, Fuwu Yan, and Changqing Du. A comprehensive analysis of energy management

strategies for hybrid electric vehicles based on bibliometrics. Renewable Sustainable Energy

Rev., 48(Supplement C):88–104, August 2015.

[14] X Y Zhou. Maximum principle, dynamic programming, and their connection in deterministic

control. J. Optim. Theory Appl., 65(2):363–373, May 1990.

[15] Jinming Liu, Jonathan Hagena, Huei Peng, and Zoran S Filipi. Engine-in-the-loop study of

the stochastic dynamic programming optimal control design for a hybrid electric HMMWV.

Int. J. Heavy Veh. Syst., 15(2-4):309–326, January 2008.

[16] Daniel F Opila, Xiaoyong Wang, Ryan McGee, and J W Grizzle. Real-Time implementation

and hardware testing of a hybrid vehicle energy management controller based on stochastic

dynamic programming. J. Dyn. Syst. Meas. Control, 135(2):021002, March 2013.

[17] Dominik Lang, Roman Schmied, and Luigi Del Re. Prediction of preceding driver behavior

for fuel efficient cooperative adaptive cruise control. SAE Int. J. Engines, 7:14–20, 04 2014.

75



[18] Rahmi Akçelik and Mark Besley. Acceleration and deceleration models. 23rd Conference of

Australian Institutes of Transport Research, January 2001.

[19] David A. Trinko, Zachary D. Asher, and Thomas H. Bradley. Application of pre-computed

acceleration event control to improve fuel economy in hybrid electric vehicles. In WCX World

Congress Experience. SAE International, Apr 2018.

[20] U.S. Environmental Protection Agency. 2017 best and worst fuel economy vehicles. https:

//www.fueleconomy.gov/feg/best-worst.shtml. Accessed: 2017-10-16.

[21] Namwook Kim, Aymeric Rousseau, and Eric Rask. Autonomie model validation with test

data for 2010 toyota prius. In SAE Technical Paper. SAE International, 04 2012.

[22] Nobuki Kawamoto, Kiyoshi Naiki, Toshihiro Kawai, Takasuke Shikida, and Mamoru Tomat-

suri. Development of new 1.8-liter engine for hybrid vehicles. In SAE Technical Paper. SAE

International, 04 2009.

[23] Z D Asher, D A Baker, and T H Bradley. Prediction error applied to hybrid electric vehicle

optimal fuel economy. IEEE Trans. Control Syst. Technol., PP(99):1–14, 2017.

[24] Rajesh Rajamani. Vehicle Dynamics and Control. Springer Science & Business Media,

December 2011.

[25] John Paul Arata, III. Simulation and control strategy development of power-split hybrid-

electric vehicles. PhD thesis, Georgia Institute of Technology, 2011.

[26] Timothy A Burress, Steven L Campbell, Chester Coomer, Curtis William Ayers, Andrew A

Wereszczak, Joseph Philip Cunningham, Laura D Marlino, Larry Eugene Seiber, and Hua-

Tay Lin. Evaluation of the 2010 toyota prius hybrid synergy drive system.

[27] Richard F Gunst. Response surface methodology: Process and product optimization using

designed experiments. Technometrics, 38(3):284–286, 1996.

76



[28] Andrew A Frank. Control method and apparatus for internal combustion engine electric

hybrid vehicles, April 2000. US Patent 6054844.

[29] Recommended practice for measuring the exhaust emissions and fuel economy of Hybrid-

Electric vehicles. Technical Report J1711, SAE International, 2002.

[30] Downloadable dynamometer database | argonne national laboratory. https://www.anl.gov/

energy-systems/group/downloadable-dynamometer-database. Accessed: 2017-10-16.

[31] Dimitri P Bertsekas. Dynamic Programming and Optimal Control, volume I. Athena Scien-

tific, 1995.

[32] R Bellman. Dynamic programming and lagrange multipliers. National Acad Sciences,

42(10):767–769, 1956.

77



Appendix A

List of Acronyms

Table A.1: Acronyms used in this document

Acronym Meaning

AE Acceleration Event

ANN Artificial Neural Network

BSFC Brake Specific Fuel Consumption

DP Dynamic Programming

EPA Environmental Protection Agency

FC Fuel Consumption

FE Fuel Economy

HEV Hybrid Electric Vehicle

ICE Internal Combustion Engine

PCA Principal Components Analysis

SOC State of Charge
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Appendix B

AE Attribute Terminology

"During Acceleration"

Many of the attributes are calculated "during acceleration," meaning only during timesteps of

changing vehicle velocity. This is often different from the time during which the variable itself is

changing in value, because steady speed does not necessitate steady engine state. An example of

this is shown in Figure B.1.

Figure B.1: Example of engine state changing outside of "acceleration"

Modality

Accelerator pedal signal, engine power, and total vehicle power often display multiple modes,

or peaks. "Modality" is expressed as the number of modes. One mode has occurred when the

signal exceeds and drops below its mean "during acceleration" value. An engine power signal with

two modes is shown in Figure B.2.
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Figure B.2: Example engine power trace with a modality of 2

Ramp-Up / Ramp-Down / Stabilization

All of the signals are at a steady state value for several timesteps at the beginning and end of

each AE. Ramp-up is the time at which the signal first begins to change from its initial steady state

value, whereas ramp-down or stabilization are the time at which the signal first reaches its final

steady state value. Stabilization applies to the velocity trace, since velocity never decreases during

an AE, while ramp-down applies to all other traces, whose magnitudes begin and end at low values

relative to their values during acceleration. These are illustrated in Figure B.3.
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Figure B.3: Illustration of ramp-up, ramp-down, and stabilization

Ramp-Up Rate

Ramp-up rate R is the average rate of change of a signal between the time of ramp-up and the

time the variable reaches its maximum:

R =
Xmax −Xss

tmax − tramp−up

(B.1)

where Xmax is the signal’s maximum value, Xss−init is the signal’s initial steady state value, tmax

is the time at which the signal assumes its maximum value, and tramp−up is the time at which

ramp-up begins for the signal. This is illustrated for an engine power trace in Figure B.4.
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Figure B.4: Illustration of ramp-up rate

Dip

Engine power and battery SOC sometimes drop below their steady-state values for a short time

before increasing during acceleration. "Dip" is the difference between the initial steady-state value

of the signal and the minimum value of the signal during acceleration. This is illustrated in Figure

B.5 for an engine power trace.
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Figure B.5: Illustration of dip.

Note on Accelerator Pedal Signal

Accelerator pedal signal is obtained from the drive cycle dataset from which the AE velocity

traces were originally obtained. AE are analyzed as occurring at steady state, where the vehicle

is simulated as moving at constant velocity before and after acceleration. Thus, accelerator pedal

signal is unavailable before and after acceleration, so its value during those times cannot be used

in AE classification. However, its modality during acceleration is a useful statistic for filtering AE

for control type analysis (discussed in the next section), so post-processing statistics on accelerator

pedal signal are still calculated.
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Appendix C

Additional Categorization Investigations

C.1 Categorize Using Final Velocity and Duration

The analysis applied in Section 4.2 is applied to a category scheme based on final velocity

and AE duration (referred to here as the "duration" category scheme), as shown in Table C.1. All

figures are analogous to the figures in Section 4.2.

Attributes Used Duration Final Velocity

Number of Bins 10 10

Expected AE Selection Initial Velocity

Table C.1: Summary of duration category scheme

Duration category bins are approximately 3 seconds wide and velocity category bins are ap-

proximately 7 kph wide. AEs are constrained to a duration range of 0-30 seconds and an end

velocity range of 0-80 kph. Of the 10 × 10 = 100 categories, 86 are occupied by AEs. The

numbers of AEs in each category are illustrated in Figure C.1.
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Figure C.1: Population of duration categories
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Figure C.2: FE improvement results by duration category in order of decreasing mean FE improvement
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Figure C.3: Median FE improvement results organized by duration category
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C.1.1 Investigate Control Type Mismatch

Figure C.4: Expected AE control type organized by duration category
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Figure C.5: Actual AE control types on grid corresponding to duration categories
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Figure C.6: Control type mismatch and FE improvement for duration categories

C.1.2 Investigate Prediction Error

For this scheme, prediction error is expressed as the difference between actual and expected

initial velocity. Figure C.7 compares prediction error to FE improvement and SOCf error.
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Figure C.7: Prediction error, FE improvement, and SOC error for duration categories

C.1.3 Adjust Category Sizes

Attributes Used Duration Final Velocity

Number of Bins 1-10 1-10

Expected AE Selection Initial Velocity

Table C.2: Finer and coarser categorizations by duration
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Figure C.8: FE results for finer and coarser duration categorizations

C.2 Categorize Using Average Acceleration and Final Velocity

The analysis applied in Sections 4.2 and C.1 is applied to a category scheme based on final ve-

locity and average acceleration (referred to here as the "acceleration" category scheme), as shown

in Table C.1. All figures are analogous to the figures in Section 4.2. Average acceleration is defined

as

aavg =
vf − vi

tf − ti
(C.1)
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Attributes Used Acceleration Magnitude Final Velocity

Number of Bins 10 10

Expected AE Selection Initial Velocity

Table C.3: Summary of acceleration category scheme

Acceleration category bins are approximately 0.6 kph/s wide, with maximum acceleration con-

strained to 6 kph/s. Final velocity category bins are approximately 7 kph wide. Of a total of

10 × 10 = 100 categories, 95 are occupied. The numbers of AEs in each category are illustrated

in Figure C.9.
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Figure C.9: Population of acceleration categories
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Figure C.10: FE improvement results by acceleration category
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Figure C.11: Median FE improvement results organized by acceleration category
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C.2.1 Investigate Control Type Mismatch

Figure C.12: Expected AE control type organized by acceleration category
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Figure C.13: Actual AE control types on grid corresponding to acceleration categories
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Figure C.14: Control type mismatch and FE improvement for acceleration categories

C.2.2 Investigate Prediction Error

For this scheme, prediction errors in duration and initial velocity are more or less uncon-

strained, but since average acceleration is linearly related to duration, initial velocity, and final

velocity, duration and initial velocity errors are approximately proportional to each other. Predic-

tion error is chosen as error in duration.

99



Figure C.15: Prediction error, FE improvement, and SOC error for acceleration categories

C.2.3 Adjust Category Sizes

Attributes Used Accel Mag Final Velocity

Number of Bins 1-10 1-10

Expected AE Selection Initial Velocity

Table C.4: Finer and coarser categorizations by duration

Figure C.16a, b, and c are all sorted by decreasing total number of categories left to right.
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Figure C.16: FE results for finer and coarser acceleration categorizations
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Appendix D

Additional Drive Cycle Investigations

D.1 City Driving Cycle 2: Denver Downtown

The Denver Downtown cycle is a real world, urban cycle. It has a higher top speed, a much

longer distance and duration, more AEs, and a higher baseline FE than the NYCC. A variety of

characteristics of the Denver Downtown cycle are listed in Table D.1, and the simulated FE results

are given in Figure D.1.

Table D.1: Characteristics of the Denver Downtown cycle
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(b) Denver Downtown cycle FE improvement results

Figure D.1: FE results for Denver Downtown cycle

Disturbed control achieves 68% of the FE improvement achieved by Optimal AE control and

16% of the FE improvement achieved by Optimal Cycle control. Again, the disturbed dFC trace

follows closely behind the Optimal AE trace. The length of the cycle gives the Optimal Cycle

strategy plenty of room to maneuver, so it stores battery energy early in the cycle to permit almost

full-EV operation from approximately t = 800 seconds to t = 1200 seconds when power demands

are low. This results in huge FE improvement over baseline, which disturbed control does not

approach.

This cycle also illustrates the need for SOC correction of dFC. From Table D.2, of the 9

AE with positive dFC, only two remain positive after SOC correction, but two with negative
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uncorrected dFC have positive dFC after correction. Regardless, the losses to FE are again easily

recouped by the contributions of the other cycle AE.
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Figure D.2: Simulation outputs for the Denver Downtown cycle
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Table D.2: Characteristics of AEs in the Denver Downtown cycle

D.2 City Driving Cycle 3: Fort Collins Downtown

The Fort Collins Downtown cycle is another real world city cycle, with many similar charac-

teristics to the Denver Downtown cycle but a shorter duration, which leads to lower Optimal Cycle

FE improvement potential. A variety of characteristics of the Fort Collins Downtown cycle are

listed in Table D.3, and the simulated FE results are given in Figure D.3.

Table D.3: Characteristics of the Fort Collins Downtown cycle
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Figure D.3: FE results for Fort Collins Downtown cycle

Disturbed control achieves 67% of the FE improvement achieved by Optimal AE control and

31% of the FE improvement achieved by Optimal Cycle control. Though it lacks the low-speed

driving section in the middle of the Denver Downtown cycle, the Optimal AE FE is approached

just as closely.
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Figure D.4: Simulation outputs for the Fort Collins Downtown cycle
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Table D.4: Characteristics of AEs in the Fort Collins Downtown cycle

D.3 Highway Driving Cycle 2: Denver Highway

The Denver Highway cycle is a real-world cycle characterized by high-speed highway driving

in the first third, high-traffic highway driving in the middle third, and urban driving in the final

third. Since much of the cycle is not high-speed cruising, the room for FE improvement is greater

than for the other highway cycles. A variety of characteristics of the Denver Highway cycle are

listed in Table D.5, and the simulated FE results are given in Figure D.5.

Table D.5: Characteristics of the Denver Highway cycle
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Figure D.5: FE results for Denver Highway cycle

Disturbed control achieves 87% of the FE improvement achieved by Optimal AE control and

25% of the FE improvement achieved by Optimal Cycle control. In all but the second AE, which

is the only AE during which FE is lost, disturbed engine power matches the optimal engine power

traces closely.
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Figure D.6: Simulation outputs for the Denver Highway cycle
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Table D.6: Characteristics of AEs in the Denver Highway cycle

D.4 Highway Driving Cycle 3: Fort Collins Highway

The Fort Collins Highway cycle is a real-world cycle characterized by high-speed urban driving

in the first half and high-speed highway driving in the second half. Since most of the cycle involves

cruising, the room for FE improvement during AE is smaller than for the other highway cycles.

A variety of characteristics of the Fort Collins Highway cycle are listed in Table D.7, and the

simulated FE results are given in Figure D.7.

Table D.7: Characteristics of the Fort Collins Highway cycle
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Figure D.7: FE results for Fort Collins Highway cycle

Disturbed control achieves 35% of the FE improvement achieved by Optimal AE control and

4% of the FE improvement achieved by Optimal Cycle control, which is the worst performance

relative to the Optimal control strategies for any cycle other than US06. Since Optimal Cycle

control can operate during cruising, its FE improvement is high. To achieve significant FE benefits

in this type of drive cycle, expanding the control window beyond AE may be necessary.
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Figure D.8: Simulation outputs for the Fort Collins Highway cycle

Table D.8: Characteristics of AEs in the Fort Collins Highway cycle
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