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ABSTRACT 
 
 
 

GENOMIC AND PHENOMIC TOOLS TO AID IN THE UTILIZATION OF EASTERN EUROPEAN AND 

CENTRAL ASIAN WHEAT GERMPLASM IN U.S. HARD WINTER WHEAT BREEDING 

 
 

 There is a tremendous amount of genetic material available for use in plant breeding. 

The challenge is how to most effectively screen this material and incorporate it into the 

breeding program in order to create new genetic combinations that are higher yielding and 

better adapted to stresses in the target environment. Advances in high-throughput single 

nucleotide polymorphism (SNP) genotyping have enabled powerful genome-wide association 

studies (GWAS) in diverse collections of germplasm. This has enhanced the ability to identify 

causal mutations that underlie agronomically important traits. These same SNPs are also 

valuable for genomic prediction and genomic selection (GS) (Meuwissen et al. 2001) where the 

genomic estimated breeding value (GEBV) of individuals can be determined. These 

advancements allow for novel genetic material to be identified and used in a breeding program 

in order to enhance genetic gain. 

 Characterization of population structure and genetic relatedness among diverse wheat 

(Triticum aestivum L.) germplasm collections is critical for GWAS and training population 

development for GS. Cooperative regional and international nurseries are well suited for GWAS 

and GS studies due to the production of multi-environment phenotypic datasets. In this study I 

analyzed population structure and genetic diversity of 345 genotypes which included 272 

individuals from three years of the Facultative and Winter Wheat Observation Nursery 
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(FAWWON) and 73 individuals from two years of the U.S. Hard Winter Wheat Southern 

Regional Performance Nursery (SRPN). The collection was genotyped with SNP markers 

obtained through genotyping-by-sequencing (GBS). Four subpopulations were identified using a 

correlated allele frequencies model in the program STRUCTURE. Three subpopulations were 

characterized as having a high percentage of genotypes from the FAWWON while the fourth 

subpopulation had a high percentage of genotypes from the SRPN. Wright’s fixation index (FST) 

values ranged from 0.16 to 0.32 between subpopulations indicating that the subpopulations 

possess unique alleles. High yielding FAWWON genotypes identified in yield trials across six 

environments in Colorado represented eight of the 11 countries and breeding programs and 

were from all four subpopulations. The characterization of population structure within the 

FAWWON and SRPN will allow breeders to select and test germplasm that is genetically diverse 

from their own which will help foster the utilization and exchange of germplasm across diverse 

global winter wheat production regions. 

 In addition, I analyzed population structure and genetic diversity of 283 genotypes from 

seven years of the Winter Wheat Eastern European Regional Yield Trial (WWEERYT). The 

collection was also genotyped with SNP markers obtained via GBS. Seven subpopulations were 

identified using a correlated allele frequencies model in the program STRUCTURE. A genotype’s 

breeding program of origin, based on four major geographic regions, was closely related to 

subpopulation assignment. Genotypes of central and eastern European origin were assigned to 

six of the seven subpopulations, indicating extensive diversity among genotypes from this 

region. Genotypes from the United States (U.S.) (n=59) were assigned to only two of the seven 

subpopulations with 52.5% of the genotypes assigned to population F. The lowest value for 
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Wright’s fixation index (FST=0.20) was observed between a population of predominantly Turkey-

CIMMYT-ICARDA genotypes and genotypes from the U.S., indicating a close relationship 

between genotypes from these two regions. The characterization of population structure and 

genetic diversity within the WWEERYT nurseries will allow breeders to accurately select and 

test germplasm that is genetically diverse from their own by targeting germplasm from 

different subpopulations identified in this study. 

 One of the main challenges when trying to incorporate genetically diverse germplasm 

into a breeding program is the adaptation of such germplasm to the biotic and abiotic pressures 

present in the new environment. Low temperature tolerance is an important characteristic for 

autumn sown winter wheat in regions with cold winters. Vernalization and photoperiod genes 

influence adaptation of wheat by regulating the timing of the transition from vegetative to 

reproductive growth to protect the floral meristem from low temperature injury. I evaluated 

winter injury of 287 genotypes from the FAWWON in six field environments over three years 

(2014 to 2016) in Colorado. Entries (experimental lines and varieties) were genotyped with SNP 

markers obtained through GBS and at known vernalization (Vrn-A1, Vrn-B1, and Vrn-D1) and 

photoperiod (Ppd-B1 and Ppd-D1) loci using Kompetitive Allele Specific PCR (KASP) assays. 

Winter injury was observed in five of the six environments. Mean GS prediction accuracies 

across the five environments using GBS-based SNPs alone as random effects ranged from 0.26 ± 

0.01 to 0.74 ± 0.00. Incorporation of alleles at Vrn-A1, Vrn-B1, and Vrn-D1 loci as fixed effects in 

the GS models together with 23,269 GBS markers as random effects provided the highest 

prediction accuracy with mean GS prediction accuracies ranging from 0.34 ± 0.01 to 0.78 ± 0.00 

across the five environments. Genomic selection models incorporating photoperiod alleles as 
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fixed effects rarely improved GS prediction accuracy. Genomic selection models that 

incorporate both major and minor genetic factors that influence low temperature tolerance 

improved the model predictions of identifying genotypes that are best adapted to regions 

where cold winter temperatures are an important production constraint.  

 In these studies I was able to identify wheat lines from eastern Europe and central and 

western Asia that are genetically diverse from wheat lines currently being grown in the central 

and southern Great Plains in the U.S. Some of these lines showed high and stable grain yield in 

multiple environments in Colorado. The GS model that was developed in this study will allow 

for efficient screening of genotypes that would be best adapted to the harsh winter conditions 

in Colorado and potentially increase winter hardiness through the accumulation of minor alleles 

by evaluating individuals for their GEBV. It is my hope that the results from this study will assist 

plant breeders in the U.S. Great Plains, eastern Europe, and central and western Asia in 

identifying germplasm that is useful in their region and can be used in their breeding programs.  
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LITERATURE REVIEW 
 
 
 

Germplasm and Its Use in Wheat Breeding 

 A narrowing genetic base in wheat (Triticum aestivum L.) is a serious obstacle to 

sustaining and improving crop productivity. Reduced diversity results from limited genetic 

variability and uniform cultivars and increases the vulnerability of wheat to new biotic and 

abiotic stresses (McCouch et al., 2012). A loss of genetic diversity in wheat initially occurred as a 

small number of founder populations experienced intense selection for agronomically desirable 

traits (Tanksley and McCouch, 1997) and again as a limited number of landraces were used to 

develop today’s modern cultivars (Tanksley and McCouch, 1997; van de Wouw et al., 2010). 

Although intensive plant breeding has been shown to reduce genetic diversity (Fu et al., 2003; 

Roussel et al., 2004; Warburton et al., 2006), results indicate that this can be averted through 

the introgression of novel genetic material (Reif et al., 2005; Warburton et al., 2006; Fu et al., 

2007). Plant breeders need to be equipped with the right tools to be able to identify and use 

genetic variation that exists among cultivars, experimental lines, landraces, and wild relatives in 

order to develop new varieties that will be able to cope with ever changing climatic and 

management conditions (Frison et al., 2011). 

International Winter Wheat Germplasm Nurseries 

 Beginning in the 1950s and particularly in the 1960s, a looming global food crisis led to 

rapid advances to formalize international exchange of genetic materials to increase food 

production and food security in developing countries (Byerlee and Dubin, 2009). This work, 

originally led by the Rockefeller and Ford Foundations, resulted in the development of 
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international agricultural research centers such as the Centro Internacional de Mejoramiento 

de Maiz y Trigo (CIMMYT) and fostered the exchange of germplasm and knowledge of wheat 

improvement across developing countries (Byerlee and Dubin, 2009; Nelles, 2011). CIMMYT 

grew out of a pilot program sponsored by the Mexican government and the Rockefeller 

Foundation in the 1940s and 1950s and was formally launched as an international organization 

in 1966 (CIMMYT, 2016). CIMMYT became one of the first international research centers 

supported through the Consultative Group on International Agricultural Research (CGIAR), 

which is now made up of 15 independent, international agricultural research organizations 

(Nelles, 2011; CIMMYT, 2016). CGIAR research is dedicated to reducing rural poverty, increasing 

food security, improving human health and nutrition, and ensuring sustainable management of 

natural resources (CIMMYT, 2016). The CGIAR institutes use global genetic resources in inter-

country research experiments, known as international nurseries, and serves as an example of 

open-source collaboration for biological research through free exchange of germplasm and 

information (Byerlee and Dubin, 2009). 

 CIMMYT categorized the wheat-growing regions of the world into twelve mega-

environments (MEs) based on similarities of biotic and abiotic stresses, cropping systems, and 

consumer demands (Rajaram et al., 1993; Braun et al., 1996). International germplasm 

nurseries were established to target a particular set of MEs and have been disseminated by 

CIMMYT in a system that is known as the International Wheat Improvement Network (IWIN). In 

the late 1970s and early 1980s, CIMMYT recognized that winter wheat breeding for the 

developing world remained largely unaddressed. The target area for winter wheat was central 

and west Asia which covered 15-20 million ha of crop land in Turkey, Iran, central Asia, and the 
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Caucasus region (CIMMYT, 2012). Turkey was chosen as the location for the main breeding 

facility due to its diversity of environments and its importance as a major winter wheat 

producer in the region (CIMMYT, 2012). The CIMMYT winter wheat program in Turkey began 

cooperating with the International Center for Agricultural Research in the Dry Areas (ICARDA) in 

1991 and the Ministry of Agriculture and Rural Affairs of Turkey to form the International 

Winter Wheat Improvement Program (IWWIP) (Morgounov et al., 2005; CIMMYT, 2012). 

Although CIMMYT was already testing nurseries of spring wheat on a global scale, nothing was 

in place for international evaluation of winter wheats (Bedö and Láng, 2010). The United States 

Department in Agriculture (USDA) in Lincoln, Nebraska and the University of Nebraska 

organized the International Winter Wheat Performance Nursery (IWWPN) in 1968 and was 

widely endorsed by wheat breeders and agronomists throughout the winter wheat production 

regions of the world (Bedö and Láng, 2010). The IWWPN was soon grown cooperatively in 37 

countries (Bedö and Láng, 2010). In the 1980s, CIMMYT in Turkey began distribution of their 

own winter wheat nursery called the International Winter Wheat Screening Nursery (IWWSN) 

(CIMMYT, 2012). The IWWSN included germplasm from Turkish breeding programs, lines bred 

by the IWWIP, and lines introduced from programs in other production regions. In 1992, the 

nursery was transformed into the Facultative and Winter Wheat Observation Nursery 

(FAWWON) in order to accommodate facultative, or semi-winter growth type, germplasm from 

ICARDA (CIMMYT, 2012). The IWWIP distributes the FAWWON, comprised of high yielding and 

advanced breeding lines, to facilitate introduction and exchange of improved germplasm 

globally for irrigated and dryland production systems (Sharma et al., 2010, 2012). To expand the 

international exchange of winter wheat germplasm, CIMMYT and Oregon State University 



 
4 

 

initiated the Winter Wheat Eastern European Regional Yield Trial (WWEERYT) as a separate 

IWWIP project to evaluate elite lines and varieties from eastern Europe, IWWIP, the Caucus 

Region, and the United States (Sharma et al., 2014). The genetic diversity of lines in the 

FAWWON and WWEERYT is assumed to be broad as their pedigrees include not only CIMMYT 

germplasm parents but also a wide range of genetically unrelated winter wheats from Armenia, 

Azerbaijan, Bulgaria, Czech Republic, Georgia, Hungary, Iran, Kazakhstan, Kyrgyzstan, Moldova, 

Romania, Russia, Turkey, Ukraine, United States, Uzbekistan, and other countries. 

 Regional nursery collections also play an important role in facilitating germplasm 

exchange among breeding programs. The Great Plains of North America contains one of the 

world’s largest concentrations of wheat production (Graybosch and Peterson, 2012). Each year, 

public and private breeding programs in the central and southern Great Plains submit their 

highest performing experimental lines to be part of the Southern Regional Performance 

Nursery (SRPN) (Graybosch and Peterson, 2010, 2012). The SRPN facilitates evaluation of 

germplasm for important traits and helps to support the exchange of germplasm among public 

and private wheat breeding programs. The SRPN is a vital component of maintaining genetic 

diversity in the Great Plains region. Elite breeding lines tested in international and regional 

performance nurseries represent the most advanced materials from a collection of breeding 

programs and bring attention to a pool of genotypes for cultivar release or use as parents in 

future crosses (Peterson and Pfeiffer, 1989; Graybosch and Peterson, 2010, 2012; Sharma et al., 

2010, 2012, 2014). 
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Genetic Diversity 

 Understanding the levels and distribution of genetic diversity in germplasm collections 

allows for the development of strategies for genetic resource management and exploitation. 

The development of genome-wide association studies (GWAS) to identify quantitative trait loci 

(QTLs) underlying complex traits has resulted in renewed interest to characterize population 

structure in wheat collections (Yu et al., 2006). The existence of population structure with 

unequal allelic distribution within a GWAS panel can result in spurious associations and is the 

primary obstacle to successful GWAS (Buckler and Thornsberry, 2002; Zhao et al., 2007). 

 Genetic diversity and population structure have been evaluated in wheat collections 

using molecular markers, such as random amplified polymorphic DNA (RAPD; Joshi and Nguyen, 

1993), restriction fragment length polymorphism (RFLP; Siedler et al., 1994; Kim and Ward, 

2000), amplified fragment length polymorphism (AFLP; Barrett and Kidwell, 1998), simple 

sequence repeats (SSR; Röder et al., 2002; Balfourier et al., 2007; Zhang et al., 2010) and 

diversity arrays technology (DArT; White et al., 2008; Dreisigacker et al., 2012; Cabrera et al., 

2014). Single nucleotide polymorphism (SNP) markers have become the preferred marker for 

genetic studies due to their greater abundance in the genome and better amenability to high-

throughput, low cost genotyping (Varshney et al., 2006). 

 In population structure experiments, individuals that are genetically similar are grouped 

together by the identification of distinct clusters of related individuals. The clusters are then 

examined to determine how they relate to geographic origin or phenotypes of individuals 

within and between the population groupings. Distance-based methods, which rely on 

phylogenetic trees, are better suited to exploratory data analysis than to fine statistical 
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inference. This is because clusters or population groupings are inferred visually (Pritchard et al., 

2000). The software program STRUCTURE is a common tool for model-based population 

analysis and is widely used since it can use a variety of marker types (SSRs, RFLPs, and SNPs) 

(Pritchard et al., 2000). In the program STRUCTURE, populations are delineated based on 

individual’s genotypes at multiple loci using a Bayesian approach (Pritchard et al., 2000). Using 

the estimated allele frequencies, it is then possible to assign individuals, of unknown origin, to 

populations (Rannala and Mountain, 1997). The program TASSEL (Trait Analysis by aSSociation, 

Evaluation and Linkage; Bradbury et al., 2007) uses a combination of structured association 

implemented in STRUCTURE (Pritchard et al., 2000) and family relatedness within populations 

(Yu et al., 2006). 

 In wheat, several studies have examined genetic diversity by various methods including 

genetic distance, coefficient of parentage, principal component analysis (PCA), and model-

based approaches (Barrett and Kidwell, 1998; Kim and Ward, 2000; Chao et al., 2007; White et 

al., 2008; Prasad et al., 2009; Hao et al., 2011; Cabrera et al., 2014). Results from these studies 

have drawn conflicting conclusions. Some studies have shown that populations identified in 

wheat collections correspond to geographic regions (Kim and Ward, 2000; Balfourier et al., 

2007; Chao et al., 2007; Tommasini et al., 2007; Le Couviour et al., 2011; Beil et al., 2017). 

These results support the notion that genetic diversity existing among wheat germplasm is 

likely the result of natural and artificial selection regimes due to varying environmental 

conditions, selection based on different breeding objectives unique to a region, or the exchange 

of germplasm between programs in a region. Other studies have identified no population 

structure in wheat (Reif et al., 2011; Benson et al., 2012; Würschum et al., 2013), which can be 
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explained by the breeding history of wheat. Improved lines are often developed by constant 

exchange of germplasm between breeding programs thus resulting in a panmictic population. A 

lack of population structure can also be explained by the collection being comprised of limited 

geographic diversity. Analyses have also shown that not all accessions of wheat originating from 

the same geographic region clustered in the same population group (Huang et al., 2002; Prasad 

et al., 2009; Beil et al., 2017). 

Environmental and Genetic Factors Affecting Winter Wheat Adaptation 

Low Temperature Tolerance, Vernalization, and Photoperiod 

 Low-temperature (LT) tolerance is an important breeding objective in autumn sown 

wheat grown in regions with cold winters, such as the Great Plains of North America and the 

steppes of Russia and Ukraine (Fowler et al., 1999; Paulsen and Shroyer, 2008; Fowler, 2012). 

The ability of wheat to survive cold winter temperatures is attributed to morphological and 

physiological characteristics (Fowler et al., 1981; Gusta and Wisniewski, 2013) as well as 

genetically determined responses to temperature (VRN genes) and photoperiod (PPD genes) 

(Fowler et al., 1996; Limin and Fowler, 2006). Floral meristems are more sensitive to cold 

damage than vegetative meristems and, therefore, small differences in developmental timing 

can affect plant response to freezing temperatures (Galiba et al., 2009). 

 The allelic diversity of vernalization and photoperiod genes has been characterized in 

several worldwide (Iwaki et al., 2001; Kiss et al., 2014) and regional (Zhang et al., 2008; Grogan 

et al., 2016) wheat germplasm collections. These analyses have indicated that allelic variation at 

vernalization loci is closely associated with winter temperatures in the growing region (Iwaki et 

al., 2001) while allelic variation at photoperiod loci is closely correlated with the growing 
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regions' latitude (Worland et al., 1994; Grogan et al., 2016). Understanding the genetic factors 

that control LT tolerance at the molecular level, and identifying genotypes with higher LT 

tolerance is imperative for further enhancement of LT resistance in winter cereals. 

Vernalization 

 Ancestral wheats delayed their transition from vegetative to reproductive growth until 

they had been exposed to a period of low, non-freezing temperatures, in a process called 

vernalization (Distelfeld et al., 2009). Based on differences in their vernalization requirement, 

wheat cultivars may be classified as winter, facultative, and spring habit types. Spring wheat 

varieties do not have a vernalization requirement which allows them to flower without any low 

temperature exposure, and are thus generally sown at a time that minimizes risk of exposure to 

freezing temperatures (Distelfeld et al., 2009). Winter wheat varieties require exposure to cold 

temperatures to accelerate flowering and thus are sown in autumn (Distelfeld et al., 2009). This 

adaptive feature prevents the exposure of sensitive floral meristems to freezing winter 

temperatures (Distelfeld et al., 2009). Facultative wheats are intermediate to spring and winter 

wheats and are fall or winter planted in areas where the risk of cold damage is reduced due to 

milder winter temperatures. For winter wheat, vernalization occurs when temperatures are 

between 0 and 8 °C (Porter and Gawith, 1999). Gardner and Barnett (1990) reported that 

winter-type cultivars need a vernalization period of 6-8 weeks to complete spike primordial 

differentiation while facultative-type cultivars require 2-4 weeks (Rousset et al., 2011). 

 Vernalization requirements are controlled by at least three sets of genes in wheat 

(VRN1, VRN2, and VRN3) (Trevaskis et al., 2007; Distelfeld et al., 2009). The most common 

source of non-winter growth type is a dominant allele within the promoter or the first intron at 
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one or more Vrn-1 loci (Vrn-A1, Vrn-B1, and Vrn-D1), located on the long arm of the group 5 

chromosomes (Yan et al., 2004a; Fu et al., 2005; Santra et al., 2009; Trevaskis, 2010; Zhang et 

al., 2012). A dominant vernalization allele at any one of the three genomes is sufficient to 

confer a spring growth habit while recessive alleles at all three loci are required for winter 

growth habit (Zhang et al., 2012; Kamran et al., 2014). The dominant Vrn-A1a allele has the 

most dramatic effect in conferring spring growth habit, while dominant, spring alleles at Vrn-B1 

and Vrn-D1 only partially eliminate the need for cold treatment (Pugsley, 1971, 1972). Thus, 

genotypes with dominant, spring alleles at Vrn-B1 and Vrn-D1 show some slight response to 

vernalization (Santra et al., 2009). Eagles et al. (2010) showed that spring alleles at the Vrn-1 

loci differ in their effect of reducing heading date with spring alleles at Vrn-B1 having a lesser 

effect than spring alleles at Vrn-A1 and Vrn-D1. Pugsley (1983) suggested that facultative wheat 

would lack a spring allele at the Vrn-A1 locus, but could have a spring allele at Vrn-B1 or Vrn-D1. 

Eagles et al. (2009) found that the facultative wheat variety ‘Oxley’ had winter alleles at Vrn-A1, 

Vrn-B1, and Vrn-D1 suggesting that there are additional genes that influence facultative growth 

habit. 

 The VRN1 gene is a homolog of the Arabidopsis (Arabidopsis thaliana) meristem identity 

gene APETALA1, which determines the transition between the production of leaves and flowers 

at the shoot apical meristem (Danyluk et al., 2003; Trevaskis et al., 2003; Yan et al., 2003). The 

VRN1 gene encodes a MADS-box transcription factor that is up-regulated by low temperatures 

(Trevaskis et al., 2003; Yan et al., 2003). VRN1 transcripts are present at low basal levels but 

increase during prolonged cold treatment (Trevaskis et al., 2003; Yan et al., 2003). This 

response is quantitative, with longer cold treatments inducing higher transcript levels (Danyluk 
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et al., 2003; Yan et al., 2003). Several mutations have been identified in regulatory regions of 

the VRN1 promoter or first intron, which are associated with spring growth habit through the 

elimination or reduction of the vernalization requirement (Yan et al., 2003; Fu et al., 2005). 

Chen and Dubcovsky (2012) demonstrated that the key role of the VRN1 gene is to down-

regulate the expression of the floral repressor VRN2 gene in order to allow floral induction. 

 To date, eight Vrn-A1 alleles have been described (Yan et al., 2004a; Dubcovsky et al., 

2006). The most common is Vrn-A1a which has an insertion of a foldback repetitive element 

and a duplicated region in the promoter (Yan et al., 2004a). The Vrn-A1b allele, which is 

relatively rare, also shows several SNPs and a deletion in the promoter region (Yan et al., 2004a; 

Eagles et al., 2009). The Vrn-A1c allele has a large deletion in the first intron (Fu et al., 2005). 

Two winter alleles at Vrn-A1 (vrn-A1a, vrn-A1b) were described in winter wheat cultivars 

adapted to the Great Plains of the U.S. and showed differences in winter dormancy release 

(Chen et al., 2009). The vrn-A1a allele of ‘Jagger’ was shown to contribute to earlier dormancy 

release while the vrn-A1b allele was shown to contribute to later dormancy release (Chen et al., 

2009). In freezing tolerance studies, the vrn-A1b allele showed increased LT tolerance over the 

vrn-A1a allele (Chen et al., 2009). Chen et al. (2009) suggested labeling the alleles as vrn-A1v for 

the allele in ‘Jagger’ and vrn-A1w for the allele in ‘Wichita’. These two winter alleles have 

shown differences in dormancy release and freezing tolerance with the vrn-A1v allele having a 

reduced vernalization requirement compared to the vrn-A1w allele (Eagles et al., 2011; Zhu et 

al., 2014). Although these two alleles were distinguished by a single SNP (Chen et al., 2009), 

they are also linked to copy number variation with the vrn-A1v allele associated with two or 

fewer copies of the gene and the vrn-A1w allele associated with three or more copies (Zhu et 
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al., 2014). Increased copy number results in greater vernalization requirements and later 

flowering when the vernalization requirement is only partially fulfilled (Diaz et al., 2012). 

 Three dominant allelic variants (Vrn-B1a, Vrn-B1b, and Vrn-B1c) have been described at 

the Vrn-B1 locus (Santra et al., 2009; Milec et al., 2012). Similar to the Vrn-A1c spring allele, 

each of the dominant Vrn-B1 alleles for spring growth habit is characterized by large deletions 

in the first intron (Fu et al., 2005). The Vrn-B1b allele has the same deletion as the Vrn-B1a 

allele plus an additional small deletion (36 bp) identified the spring wheat ‘Alpowa’ (Santra et 

al., 2009). The Vrn-B1c allele also has a large deletion within the first intron but with different 

break points than the Vrn-B1a or Vrn-B1b alleles (Milec et al., 2012). The Vrn-B1c allele was 

found in germplasm from eastern Europe (Milec et al., 2012). 

 Three alleles have been described at the Vrn-D1 locus (Vrn-D1a, Vrn-D1b, and vrn-D1). 

The dominant spring-habit allele is designated as Vrn-D1a while the recessive allele, vrn-D1, is 

associated with winter growth habit. As with the Vrn-A1a and Vrn-B1a alleles, the dominant 

Vrn-D1a allele is characterized by a large deletion in the first intron (Fu et al., 2005). A relatively 

rare allele, Vrn-D1b, is associated with facultative growth habit (Zhang et al., 2012). The Vrn-

D1b allele has the same deletion in intron 1 as Vrn-D1a, and, in addition, possesses a SNP in the 

promoter region (Zhang et al., 2012). Rousset et al. (2011) identified facultative-types, also 

referred to as semi-winter or intermediate growth habit types, that had their vernalization 

requirement met with a 4-week vernalization treatment. This behavior was explained by 

differences at the Vrn-D1 locus which had spring alleles (Vrn-D1a and Vrn-D1b) that maintain a 

greater response to vernalization than spring alleles at Vrn-A1 and Vrn-B1 loci (Rousset et al., 

2011).  
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 The VRN2 gene encodes two linked zinc finger CCT domain genes (ZCCT1 and ZCCT2) 

that act as flowering repressors and are down-regulated in response to cold temperatures and 

short days (Yan et al., 2004b). VRN2 expression decreases when plants are vernalized, whereas 

expression of VRN1 increases in response to vernalization (Trevaskis et al., 2007). The VRN3 

gene is located on the short arm of chromosome 7B and is up-regulated by cold temperatures 

and long days to accelerate the development of the floral meristem (Yan et al., 2006). The VRN3 

gene has been identified as an orthologue of the FLOWERING LOCUS T (FT) gene in Arabidopsis 

(Yan et al, 2006; Cockram et al., 2007). FLOWERING LOCUS T acts as a long distance flowering 

signal that moves from leaves to apices and promotes flowering in a diversity of plant species 

by inducing meristem identity genes (Yan et al., 2006). The VRN3 gene promotes the 

transcription of Vrn-1 alleles, thereby overcoming the repression of VRN2 and accelerating 

flowering time in wheat (Yan et al., 2006). 

Photoperiod 

 Wheat genotypes are classified as photoperiod sensitive (require long days to flower) or 

photoperiod insensitive (day length neutral) with ancestral wheats being photoperiod sensitive. 

The response to photoperiod is controlled primarily by photoperiod genes (Ppd-A1, Ppd-B1, and 

Ppd-D1), located on the group 2 chromosomes in wheat (Welsh et al., 1973; Law et al., 1978), 

which are members of the pseudo-response regulator (PPR) gene family (Worland et al., 1998; 

Beales et al., 2007). Alleles at Ppd-D1 have a greater effect on controlling heading date than 

alleles at Ppd-B1 which have a greater effect on heading date than alleles at Ppd-A1 (Scarth and 

Law, 1984; Worland, 1996; Worland et al., 1998; Grogan et al., 2016). Dominant alleles at 

photoperiod loci (Ppd-A1a, Ppd-B1a, and Ppd-D1a) confer day length insensitivity and earlier 
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flowering, whereas wild type, recessive alleles (Ppd-A1b, Ppd-B1b, and Ppd-D1b) confer day 

length sensitivity and later flowering (Pugsley, 1966; Scarth and Law, 1984). A photoperiod 

insensitive genotype can transition to reproductive growth when temperature increases in the 

spring, whereas a photoperiod sensitive genotype remains in the vegetative phase until the day 

length increases to satisfy the photoperiod requirement. 

 Among European and Chinese cultivars the major allele for photoperiod insensitivity is 

the Ppd-D1a allele (Worland, 1996; Yang et al., 2009). The Ppd-D1a allele contains a 2,089 bp 

deletion in the promoter region which is associated with photoperiod insensitivity (Beales et al., 

2007). The ability of photoperiod insensitive genotypes to flower earlier is advantageous in 

warmer environments because plants can complete development and grain filling before the 

onset of high summer temperatures and associated water deficit (Beales et al., 2007). Worland 

(1996) reported that the Ppd-D1a allele had a positive effect on increasing spikelet fertility and 

thus higher grain set per spike. Langer et al. (2014) observed that the Ppd-D1a allele is rare in 

the United Kingdom, Denmark, Germany, Poland, and Czech Republic germplasm, but is 

common in French, eastern European, and Russian germplasm. The Ppd-B1a allele is 

characterized by a 308 bp insertion in the 5’-upstream region (Nishida et al., 2013). In wheat, 

the photoperiod insensitive Ppd-B1a allele is carried by the cultivar ‘Chinese Spring’ (Nishida et 

al., 2013). It has also been shown that copy number variation in Ppd-B1 alleles can alter 

flowering time in plants with a photoperiod sensitive phenotype (Díaz et al., 2012). Grogan et 

al. (2016) reported that the photoperiod insensitive alleles Ppd-D1a and Ppd-B1a were present 

at higher levels in germplasm from the southern plains than those from the central or northern 

plains in the U.S. 
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Additional Genes Influencing Low Temperature Tolerance 

 Any factor that lengthens the vegetative stage, such as an increased vernalization 

requirement or photoperiod sensitivity, also increases the duration and expression of LT 

tolerance (Fowler et al. 1996; Mahfoozi et al. 2000; Limin and Fowler 2006). Although the 

vernalization and photoperiod loci have been shown to influence LT tolerance, studies have 

associated at least 15 out of 21 different pairs of chromosomes with LT tolerance in wheat 

(Stushnoff et al., 1984; Sutka, 1994). Increased transcription levels of COR14b, WCS120, and 

CBF genes are observed in winter cereals when plants are exposed to low temperatures 

(Crosatti et al., 1995, Sarhan et al., 1997; Medina et al., 1999). The COR14b gene encodes a 

polypeptide that accumulated in the stroma fraction of the chloroplasts, and has been shown 

to be differentially expressed in cold-tolerant and cold-susceptible plants (Crosatti et al., 2003). 

The COR14b protein helps to protect the photosynthetic mechanisms from photodamage 

during light exposure following freezing temperatures (Rapacz et al., 2008). The accumulation 

of the WCS120 protein also shows a positive correlation with freezing tolerance (Sarhan et al., 

1997). WCS120 belongs to the dehydrin group of proteins which are associated with the 

protection of cells against desiccation of other stresses caused by low-temperature induced 

dehydration (Sarhan et al., 1997). The CBF genes, encode transcription factors that bind to 

many dehydration-responsive genes and stimulate their transcription (Stockinger et al., 1997). 

Many of these genes have loci that map to a region known as the FROST RESISTANCE 2 (Fr-A2) 

locus. Dhillon et al. (2010) and Limin and Fowler (2006) showed that allelic variation at Vrn-1 

loci is sufficient to determine differences in LT tolerance among wheat varieties irrespective of 

alleles at the Fr-A2 locus. 
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Genomic Selection 

 Genomic selection (GS) promises to accelerate the rate of genetic gain in plant breeding 

for genetically complex traits, including yield, by selecting individuals of high breeding value 

earlier in the breeding cycle (Crossa et al., 2010; Jannink et al., 2010; Heffner et al., 2011; 

Burgueño et al., 2012). The GS approach is novel in that individual marker effects are not 

estimated based on their level of significance, but rather GS simultaneously estimates all 

genome-wide marker effects to predict an individual’s genomic estimated breeding value 

(GEBV) (Meuwissen et al., 2001; Heffner et al., 2009). As the cost and efficiency of obtaining 

genomic information on wheat drops below the cost and efficiency of evaluating individuals 

over years and locations, genomic information can more affordably be leveraged to predict 

phenotypic performance (Bernardo, 2008; Cobb et al., 2013). This can facilitate a shortening of 

the breeding cycle and enable earlier selection and intercrossing of early-generation breeding 

material. Using rapid inbreeding methods such as single seed descent (SSD) or doubled haploids 

(DH), GS-based cycle time may be reduced to one or two years from the traditional five to 

seven years as selection of lines prior to field testing allows shortening of the generation 

interval typical with phenotypic selection (Heffner et al., 2010). 

 One of the greatest potential advantages of GS is its ability to identify individuals with 

higher breeding values without the requirement of collecting phenotypes pertaining to those 

individuals. It has been shown that selection of individuals based on GEBV can substantially 

increase the rate of genetic gain in plant breeding compared to traditional marker-assisted 

selection (MAS) or phenotypic selection (Bernardo and Yu, 2007; Heffner et al., 2011). 

Simulation and empirical GS studies have shown GEBV prediction accuracies high enough to 
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generate rapid gains in early selection cycles (Meuwissen et al., 2001; Lorenzana and Bernardo, 

2009; Jannink et al., 2010). 

Training Population 

 Genomic selection prediction models are developed using a training population 

consisting of individuals with both genome-wide marker genotypes and phenotypes of interest. 

These individuals are used to train a model by simultaneously estimating the contribution of 

marker effects to their phenotypic value. Genomic selection models utilize information 

gathered from the training population to estimate a breeding value and predict the 

performance of breeding lines without phenotypes (Cobb et al., 2013). 

 Dense marker coverage is needed in order to maximize the number of QTL in linkage 

disequilibrium (LD) with at least one marker, thereby maximizing the number of QTL effects 

captured by the molecular markers (Heffner et al., 2009; Spindel et al., 2013). The minimum 

number of markers to achieve this coverage depends on LD decay rates, the size of linkage 

blocks, population size and structure, recombination, and relatedness between individuals in 

the training and test populations (Flint-Garcia et al., 2003; De Roos et al., 2009; Hickey et al., 

2014). Crossa et al. (2010) were able to show that even with a modest number of molecular 

markers (n=1447), models for GS can attain relatively high prediction accuracies for traits of 

economic interest. Overall, increasing marker density has been shown to increase GS prediction 

accuracy while reducing the number of markers has been shown to result in a small but 

significant decrease in GS prediction accuracy (Lorenzana and Bernardo, 2009; Heffner et al., 

2011). With a large number of genetic markers (Lorenzana and Bernardo, 2009; Heffner et al., 

2011) there will often be more effects to be estimated than there are phenotypic data points 
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for which to estimate them (Heffner et al., 2009). This is known as the ‘large p, small n problem’ 

and is a concern for GS as it can cause over-fitting of the model which exaggerates minor 

fluctuations in the data (Nakaya and Isobe, 2012) and is due to collinearity between markers 

(Lorenz et al., 2011). This creates a model that is highly accurate when evaluating the training 

population but has poor predictive ability when applied to a different test population (Nakaya 

and Isobe, 2012). This effect can be resolved by scaling down the number of markers analyzed 

in proportion to the size of the training population. Research has shown that GS models have 

diminishing returns for additional markers once the populations have reached the point of 

‘marker saturation’ (Lorenzana and Bernardo, 2009; Jannink et al., 2010; Heffner et al., 2011). 

 One of the most important factors in developing a GS model is the composition of 

individuals included in the training population set. Prediction accuracies are maximized when 

the training population and the test population (selection candidates) are closely related 

(Heffner et al., 2009; Lorenz and Smith, 2015). More closely related individuals share a common 

ancestry fewer generations back, and, therefore, fewer opportunities for recombination 

between markers and QTL, thus preserving QTL-marker linkage phases (Lorenz and Smith, 

2015). Several studies have shown that training population size has a greater impact on GS 

prediction accuracy than marker number with a smaller training population size having a strong 

negative effect on GS prediction accuracy (Heffner et al., 2011; Lorenz et al., 2011). Studies 

have shown that combining genotypes from multiple populations in order to create a larger 

training population results in higher prediction accuracies than analysing individual populations 

with fewer genotypes in the training population (Hayes et al., 2009; Crossa et al., 2010; Asoro et 

al., 2011; Schulz-Streeck et al., 2012). Yet, Lorenz and Smith (2015) found that using the whole 
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training population was consistently less predictive than using a subset of the training 

population selected using only highly related individuals. 

Imputation 

 The development of molecular markers for wheat is a formidable challenge due to 

wheat’s large polyploid genomes. Reducing genome complexity with restriction enzymes 

coupled with multiplex next-generation-sequencing (NGS) for high-density SNP discovery and 

genotyping was originally demonstrated with restriction site associated DNA (RAD) tagging 

(Baird et al., 2008). A more recent development in genotyping technology is genotyping by 

sequencing (GBS), an adaptation of NGS protocols to simultaneously discover polymorphic 

markers in populations of interest. This sequence-based genotyping approach reduces 

ascertainment bias associated with marker discovery panels (Poland and Rife, 2012). 

Genotyping-by-sequencing was developed as a simple but robust approach for complexity 

reduction in large complex genomes (Elshire et al., 2011). Genotyping-by-sequencing holds the 

potential to close the genotyping gap between references of broad interest and mapping or 

breeding populations of local or specific interest (Spindel et al., 2013). For breeding 

applications, informative polymorphisms can be discovered as novel germplasm is introduced 

into the breeding population. The GBS approach targets the genomic sequence flanking 

restriction enzyme sites to produce a reduced representation of the genome. The original GBS 

approach used a single restriction enzyme (Elshire et al., 2011), but it has now been developed 

into a two-enzyme GBS approach (Poland et al., 2012b). DNA barcoded adapters are used to 

sequence multiple samples in parallel on a single run of NGS platforms (multiplexing). Multiplex 

sequencing is accomplished by tagging randomly sheared DNA fragments from different 
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samples with unique, short DNA barcode sequences and pooling samples into a single 

sequencing reaction. 

 Depending on the level of multiplexing, GBS in large populations typically results in low 

sequencing coverage and a large proportion of missing data (Deschamps et al., 2012; Poland et 

al., 2012a). Depending on the genome, the type of GBS libraries, and the overall size of the 

datasets, the imputation of missing data has been shown to help increase prediction accuracy 

(Poland et al., 2012a). The multivariate normal expectation maximization (MVN-EN) algorithm 

(Dempster et al., 1977) imputes based on the realized relationship matrix (averaged over all 

markers) and was shown to be more accurate than imputation based on mean allele calls in a 

population of individuals or giving missing genotypes heterozygous allele calls (Poland et al., 

2012a). 

Genomic Selection Models 

 The GS concept encompasses a broad range of methods. Their common feature is to 

estimate the breeding values of individuals for quantitative traits using whole genome 

genotypes through the simultaneous estimation of marker effects in a single step. With the 

increased popularity of GS in plant breeding, numerous models (ridge regression-best linear 

unbiased prediction, Bayesian regression, kernel regression, and machine learning) have been 

proposed. A ridge regression-best linear unbiased prediction (RR-BLUP) model makes the 

assumption that markers are random effects having nonzero effects with equal marker variance 

(Meuwissen et al., 2001). This assumption does not mean the effects of all markers are equal; 

rather they are all equally shrunk toward zero (Jannink et al., 2010). By shrinking all marker 

effects to the same degree and including all markers in the model, the use of RR-BLUP is best 
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suited for traits controlled by many loci with small effects (Meuwissen et al., 2001; Lorenz et al., 

2011). Bayesian models address the simple but likely unrealistic assumptions that all markers 

have nonzero effects and that markers have equal variance. Bayesian models relax these two 

assumptions and better model marker effects of differing sizes (Meuwissen et al., 2001). 

Bayesian models estimate a separate variance for each marker, and the variances are assumed 

to follow a specified prior distribution (Meuwissen et al., 2001). Meuwissen et al. (2001) 

proposed two types of prior distribution for marker variances: the first type (BayesA) allowed 

variance toward zero, but did not permit the value of zero itself, while the second type (BayesB) 

allowed markers to have a variance of zero. BayesC 𝜋 assumed common marker variance and 

allows for some markers to have no effect (Jannink, 2010; Heffner et al., 2011). Meuwissen et 

al. (2001) concluded that Bayesian methods outperformed RR-BLUP through better estimation 

of large-effect QTL by allowing for unequal variances. Heffner et al. (2011) compared the 

accuracy of four different GS models (RR-BLUP, BayesA, BayesB, and BayesC 𝜋) and observed 

only slight differences between their accuracies for 13 different agronomic traits and concluded 

that GS accuracy was not strongly influenced by model choice. One of the draw backs of the 

Bayesian approach is its computational complexity which results in long run times (Cobb et al., 

2013) which has led many researchers and breeders to rely on the RR-BLUP model. 

 The best approach for using molecular markers in GS largely depends on the genetic 

architecture of the trait (Bernardo, 2008). For a given number of markers (NM), RR-BLUP 

assumes that each marker accounts for (1/NM)th of the total genetic variation (VG). If one of the 

markers corresponds to a known major gene, the assumption of common variance for the 

known major gene leads to an underestimation of the estimated effects of the major gene 
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(Bernardo, 2014). An alternative to the modelling all genes as random effects with equal 

variance is to model known major genes or QTLs as fixed effects in a model with genome-wide 

markers as random effects. RR-BLUP models with fixed effects of major genes were shown to 

provide greater GS prediction accuracy when trait heritability was high and a large percentage 

of VG was explained by the major genes (Bernardo, 2014). It was also shown that as the number 

of training population individuals decreased, it became more advantageous to consider major 

genes as fixed effects rather than random effects (Bernardo, 2014). These results were 

consistent whether there was a single major gene or whether there were multiple major genes 

(Bernardo, 2014). Although treating a major gene as a fixed effect can increase GS prediction 

accuracy, using a major gene as a fixed effect puts a stronger selection pressure on the major 

gene which can lead to more drastic changes in gene frequency (Bernardo, 2014). 

 In this study I expect to identify FAWWON genotypes that are genetically diverse from 

SRPN genotypes. There will be a number of FAWWON lines that show high and stable yield 

across some of Colorado’s environments. These high yielding FAWWON lines will help to 

expand the genetic diversity of U.S. hard winter wheat lines currently being grown in the U.S. 

Great Plains. I expect to see allelic diversity at vernalization and photoperiod loci in FAWWON 

genotypes that can help to explain differences in low temperature tolerance. Due to the 

quantitative nature of low temperature tolerance in wheat, I will see that a model with major 

loci treated as fixed effects in combination with minor loci treated as random effects will result 

in a high level of GS prediction accuracy. 
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HIGH YIELDING FACULTATIVE AND WINTER WHEAT GENOTYPES FROM EASTERN EUROPE AND 

CENTRAL ASIA CAN INCREASE THE GENETIC DIVERSITY OF U.S. HARD WINTER WHEAT 

 
 

 International exchange of improved germplasm is important in addressing existing and 

emerging constraints to global wheat (Triticum aestivum L.) production. Elite breeding lines 

tested in international and regional performance nurseries represent the most advanced 

materials from a collection of breeding programs and bring attention to a pool of genotypes for 

cultivar release or use as parents in future crosses (Peterson and Pfeiffer, 1989; Graybosch and 

Peterson, 2010, 2012; Sharma et al., 2010, 2012, 2014). The International Winter Wheat 

Improvement Program (IWWIP) is a cooperative breeding program between the Ministry of 

Agriculture and Rural Affairs of Turkey, the International Maize and Wheat Improvement 

Center (CIMMYT), and the International Center of Agricultural Research in the Dry Areas 

(ICARDA) (Morgounov et al., 2005). The IWWIP distributes the Facultative and Winter Wheat 

Observation Nursery (FAWWON) comprised of high yielding, advanced breeding lines to 

facilitate introduction and exchange of improved germplasm globally for irrigated and dryland 

production systems (Sharma et al., 2010, 2012).  

Regional nursery collections also play an important part in facilitating germplasm 

exchange among breeding programs. The Great Plains of North America represents one of the 

world’s largest areas of winter wheat production (Graybosch and Peterson, 2012). Each year, 

public and private breeding programs in the central and southern Great Plains submit their 

highest performing experimental lines to be part of the Southern Regional Performance 

Nursery (SRPN) (Graybosch and Peterson, 2010, 2012). The SRPN supports the evaluation and 
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exchange of germplasm among public and private wheat breeding programs and is a vital 

component of maintaining genetic diversity in the Great Plains region. 

 Understanding the levels and distribution of genetic diversity in germplasm collections 

allows for the development of strategies for genetic resource management and exploitation. 

The development of genome-wide association studies (GWAS) to identify quantitative trait loci 

(QTLs) underlying complex traits in large collections has been constrained by population 

structure in plant genetics (Yu et al., 2006). The existence of subpopulation structure with an 

unequal allelic distribution within a GWAS panel can result in spurious associations and is the 

primary obstacle to successful GWAS (Buckler and Thornsberry, 2002; Zhao et al., 2007).  

Genomic selection (GS) is a technique that leverages genome-wide DNA markers with 

plant phenotypes to enable trait prediction earlier in the breeding cycle to potentially 

accelerate genetic gain for genetically complex traits (Meuwissen et al., 2001; Crossa et al., 

2010; Jannink et al., 2010; Burgueño et al., 2012). Genomic selection prediction accuracies may 

be maximized when the training population and the selection candidates are closely related 

(Lorenz and Smith, 2015). Using rapid inbreeding methods such as single seed descent (SSD) or 

doubled haploids (DH), GS-based cycle time in winter wheat may be reduced to one or two 

years from the traditional five to seven years (Heffner et al., 2010). Genetic gain in early 

selection cycles may be dramatically high, but rapid cycling using GS may ultimately increase 

the rate of loss of genetic diversity through a reduction of the effective population size and loss 

of rare alleles (Jannink, 2010; Heslot et al., 2015). Identification and introgression of new and 

favorable alleles will be needed to enhance genetic diversity and sustain long-term gains while 

implementing GS in wheat (Heslot et al., 2015). 
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 Genetic diversity and population structure have been evaluated in wheat collections 

using molecular markers, such as random amplified polymorphic DNA (RAPD; Joshi and Nguyen, 

1993), restriction fragment length polymorphism (RFLP; Siedler et al., 1994; Kim and Ward, 

2000), amplified fragment length polymorphism (AFLP; Barrett and Kidwell, 1998), simple 

sequence repeats (SSR; Röder et al., 2002; Balfourier et al., 2007; Zhang et al., 2010) and 

diversity arrays technology (DArT; White et al., 2008; Dreisigacker et al., 2012; Cabrera et al., 

2014). Single nucleotide polymorphism (SNP) markers have become the preferred marker for 

genetic studies due to their greater abundance in the genome and amenability to low cost high-

throughput genotyping (Varshney et al., 2006). 

 In wheat, several studies have examined genetic diversity by various methods including 

genetic distance, coefficient of parentage, principal component analysis (PCA), and model-

based approaches (Barrett and Kidwell, 1998; Kim and Ward, 2000; Chao et al., 2007; White et 

al., 2008; Prasad et al., 2009; Hao et al., 2011; Cabrera et al., 2014). Conclusions from these 

studies have been somewhat conflicting, with some studies reporting that population structure 

corresponds to geographic origin (Kim and Ward, 2000; Balfourier et al., 2007; Chao et al., 

2007; Tommasini et al., 2007; Le Couviour et al., 2011; Beil et al., 2017) and other studies 

reporting a lack of population structure (Rief et al., 2011; Benson et al., 2012; Würschum et al., 

2013). 

 Although intensive plant breeding is generally considered to be a practice that leads to 

reduced genetic diversity (Tanksley and McCouch, 1997; Fu et al., 2003; Roussel et al., 2004; 

Warburton et al., 2006), results have shown that increased genetic diversity within a breeding 

population can be achieved through introgression of diverse germplasm (Reif et al., 2005; 
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Warburton et al., 2006; Fu et al., 2007). Our objectives in this study were to use SNP markers 

obtained using genotyping-by-sequencing (GBS) to i) identify subpopulation structure among 

genotypes from the FAWWON and SRPN using a model-based approach, ii) compare 

subpopulation structure between each genotype’s nursery and country of origin, and iii) 

determine if the highest yielding FAWWON lines from three years of yield trials in Colorado 

would increase genetic diversity in the U.S. hard winter wheat gene pool. 

Materials and Methods 

Germplasm and field evaluation 

 I analysed 345 genotypes, including 272 genotypes from three years of the FAWWON 

(20th FAWWON, 21st FAWWON, and 22nd FAWWON) and 73 genotypes from two years of the 

SRPN (2014, 2015). The FAWWON genotypes originated from breeding programs in Bulgaria, 

Iran, Kazakhstan, Romania, Russia, Syria, Turkey, and The United States (U.S.), and genotypes 

resulting from collaborations between countries including Turkey-CIMMYT-ICARDA (TCI), 

Mexico-TCI, and U.S.-TCI. The SRPN included genotypes from public and private breeding 

programs in Colorado, Nebraska, Kansas, Oklahoma, and Texas. The SRPN was used to 

represent the level of genetic diversity currently present in the breeding programs in the 

central and southern Great Plains. 

 Yield of FAWWON lines was measured in six environments, which included field 

experiments at both Fort Collins (sprinkler irrigated) and Julesburg (non-irrigated), Colorado in 

the 2014 (112 genotypes), 2015 (200 genotypes), and 2016 (186 genotypes) growing seasons. 

Within years, the same genotypes were grown at both locations. All 112 genotypes from the 

20th FAWWON that were evaluated in 2014 were evaluated in 2015 with an additional 88 
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genotypes from the 21st FAWWON. Genotypes with high levels of winter injury at both 

locations in 2015 were not re-evaluated in 2016. Experiments in 2016 included 69 genotypes 

from the 20th FAWWON (third year of evaluation), 30 genotypes from the 21st FAWWON 

(second year of evaluation), and 87 genotypes from the 22nd FAWWON (first year of 

evaluation). In 2014, genotypes were arranged in an augmented row-column design with the 

local cultivar 'Byrd' (Haley et al., 2012) as a releated check . In 2015 and 2016, genotypes were 

arranged in a partially replicated row-column design with Byrd as a repeated check. 

Randomizations were prepared using the package DiGGer (Coombes, 2009) in R (R 

Development Core Team, 2014). All experiments were planted in six-row plots, 3.7 m long and 

1.8 m wide, with 0.3 m spacing between rows. 

 Grain yield was measured with an on-combine weighing system and yields were 

adjusted based on 12% grain moisture. Best linear unbiased predictors (BLUPs) of yield were 

calculated separately for each environment using ASReml-R (Gilmour et al., 2009; VSN 

International Ltd., Hemel Hempstead, UK). Data for each environment were analyzed with a 

series of spatial models that included genotype, row, and column coordinates as random 

effects, and several different residual error terms specified in the rcov argument within 

ASReml-R. The restricted maximum likelihood (REML) loglikelihood value was used to select the 

best model. The top 10 yielding FAWWON genotypes, based on BLUPs from each of the six field 

environments in Colorado, were identified as superior yielding genotypes. 

GBS-based SNP genotyping 

 Genomic DNA was extracted from bulked leaves of 10 one-wk-old seedlings at the single 

leaf stage in a 96-well format using King Fisher 96 magnetic bead extraction kits on the King 
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Fisher Flex Purification System (ThermoFisher Scientific Inc., Waltham, MA, U.S.A.). Genotyping-

by-sequencing library construction was carried out using the restriction enzymes PstI and MspI 

using a protocol modified from Poland et al. (2012). A single blank was included in each plate at 

random locations for quality control to ensure library identity. Sequencing was performed at 

192-plex on an Illumina Hi-Seq 2000 at the DNA core facility at the University of Missouri in 

Columbia, MO. Single-nucleotide polymorphism calls were made using the TASSEL-GBSv1 

Pipeline (Glaubitz et al., 2014) which is a reference-based SNP calling procedure. The 

International Wheat Genome Sequencing Consortium (IWGSC) Chromosome Survey Sequence 

was used as the reference genome (IWGSC, 2014). A subset of SNPs shared between the SRPN 

and FAWWON genotypes were identified and only this shared subset was used in subsequent 

analyses. 

GBS marker filtering 

 A total of 21,484 SNP markers was obtained using GBS and shared between the 

FAWWON and SRPN individuals. A subset of 983 markers from the 21,484 markers was created 

by filtering out markers with more than 5% missing data. The polymorphism information 

content (PIC) value for each of the 983 markers was calculated as 1-∑ 𝑝𝑖
2𝑛

𝑖
, where pi is the 

proportion of the population carrying the ith allele (Anderson et al., 1993). For bi-allelic markers 

such as SNPs, the PIC values can range from 0 (fixation of one allele) to 0.5 (equal allele 

frequencies). The average PIC for this subset of markers was 0.35 and markers with a PIC value 

less than 0.25 across all genotypes were removed. This PIC value was used to reduce the GBS 

marker subset to the most discriminating SNP markers for population structure analysis. 

Markers that were that were immediately adjacent to each other and had the same PIC value 
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were reduced to a single marker in order to satisfy the no-linkage assumption for analysis in the 

software program STRUCTURE 2.3.4 (Pritchard et al., 2000). Chromosome positions were 

available for all markers retained. 

Model-based population structure analysis 

 The software program STRUCTURE 2.3.4 (Pritchard et al., 2000) was used to assign 

individuals to subpopulations based on their genotypes at multiple loci using a Bayesian 

approach and an admixture model with correlated allele frequencies. No external a priori 

information was used with the model for determining population structure. Five independent 

runs were performed for K (subpopulations) values of 2 to 12 for the model. A burn-in period of 

15,000 iterations and data collection of 50,000 Markov chain Monte Carlo (MCMC) iterations 

were determined to be adequate based on the convergence summary statistics. The best 

separator for the number of subpopulations was determined by selecting the K associated with 

the highest delta K value (Evanno et al., 2005) using the program STRUCTURE HARVESTER (Earl, 

2012). A series of 25 independent runs were then performed for the selected K for the model 

with a burn-in period of 25,000 iterations and data collection of 100,000 MCMC iterations. 

Outputs from STRUCTURE were integrated using the program CLUMPP (Jakobsson and 

Rosenberg, 2007) under the FullSearch algorithm to estimate an average membership 

coefficient (Q-matrix) for each genotype from the 25 independent runs for the optimized K 

value. 

 Genotypes with membership coefficients greater than or equal to 50% were assigned to 

a distinct subpopulation. Individuals with less than the minimum membership coefficient value 

required to be assigned to a single population were classified as “Mixed”. The genetic variation 
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between subpopulations, expressed as Wright’s fixation index (Fst), was measured using 

analysis of molecular variance (AMOVA) implemented in STRUCTURE. 

Principal component analysis 

 Principal component analysis was performed to visualize the dispersion of 

subpopulations, nursery of origin, and superior genotypes among the FAWWON and SRPN 

genotypes using SNPs. Eigenvector values for PCA were calculated using the base function 

‘eigen’ in R 3.2.2 (R Development Core Team, 2014) and plotted using the ggplot package 

(Wickham, 2009) in R. Missing marker data were imputed with the mean marker value using 

the A.mat function in the rrBLUP package (Endelman, 2011) in R. The markers used for PCA 

were the same subset used after GBS marker filtering with the addition of the imputed missing 

markers. 

Results and Discussion 

SNP markers 

 There were 491 SNP markers with less than 5% missing data, PIC values greater than 

0.25, and not immediately adjacent with each other. These 491 highly polymorphic SNP 

markers were spread across all seven chromosomes on all three genomes (Figure 2.1). Among 

the 491 SNPs, 219 were located on B genome chromosomes while 189 were on A genome 

chromosomes and 83 were on D genome chromosomes. This resulted in an average of 31 SNPs 

per chromosome for the B genome, 27 for the A genome, and 12 for the D genome. The 

greatest SNP coverage was on chromosome 5B with 73 SNPs while the lowest coverage was on 

chromosomes 3D and 4D with one SNP each (Figure 2.1). The distribution of SNP markers 
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across the three genomes in our study was in agreement with previous studies. Using RFLP 

markers in a collection of winter wheat genotypes, Siedler et al. (1994) showed that the 

greatest number of markers was across the B genome while the lowest number of markers was 

across the D genome. Similar results for hexaploid wheat were reported with SSR markers 

(Huang et al., 2002; Chao et al., 2007), DArT markers (Dreisigacker et al., 2012), and other GBS-

derived SNP markers (Poland et al., 2012). 

Subpopulation structure among FAWWON and SRPN genotypes 

 Clear evidence of population structure was evident among the 345 genotypes. Based on 

the highest delta K value (Evanno et al., 2005), four unique subpopulations were identified 

using a correlated allele frequencies model with admixture. Under this model, subpopulations 

were defined as having a high percentage of genotypes from either the FAWWON or the SRPN. 

Population A included 54 total genotypes with 96.3% from the FAWWON (Table 2.1), 

population B included 130 total genotypes with 99.2% from the FAWWON, population C 

included 32 genotypes exclusively from the FAWWON, and population D included 67 total 

genotypes with 83.6% from the SRPN and 16.4% from the FAWWON. These results indicate that 

there are genetic differences between U.S. hard winter wheat genotypes and genotypes found 

in the FAWWON, and that subpopulation classification agreed closely with the nursery of origin. 

With only a small amount of overlap between subpopulation assignments between FAWWON 

and SRPN genotypes, the U.S. hard winter wheat breeding programs in the central and 

southern Great Plains could increase their genetic diversity by incorporating FAWWON 

genotypes into their breeding programs. Likewise, the U.S. hard winter wheat gene pool could 
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serve as an additional source of new genetic diversity for breeding programs in eastern Europe 

and central and western Asia. 

 The model-based methods developed by Pritchard et al. (2000) allow for the inclusion of 

admixed individuals whose genetic composition is drawn from more than one of K 

subpopulations. This assumption fits well with international nursery collections as individuals 

are often assigned to one or more subpopulations due to a history of germplasm exchange and 

utilization between different breeding programs. With the potential for genotypes to have 

partial membership in four subpopulations, some individuals did not show the 50% 

membership threshold required to be assigned to a single population and thus were classified 

as Mixed. The Mixed genotypes included 62 individuals from both nurseries with 77.4% from 

the FAWWON and 22.6% from the SRPN (Table 2.1). The IWWIP makes crosses between the 

best performing U.S. genotypes and genotypes from eastern European and central and western 

Asian countries (Morgounov et al., 2012) which could explain the higher proportion of Mixed 

individuals in the FAWWON compared to the SRPN. 

 The FST value, calculated using STRUCTURE, is defined as the degree of correlation of 

gametes within subpopulations relative to gametes drawn at random from the entire 

population. The FST values ranged from 0.16 to 0.32 across the four subpopulations indicating 

subpopulation differentiation (Table 2.2). The highest FST value of 0.32 was between population 

A (n=54) and population C (n=32) despite each of these two subpopulations being almost 

exclusively FAWWON genotypes. This result was surprising but shows that U.S. hard winter 

wheats genotypes are not as genetically divergent from the FAWWON genotypes as the 

subpopulation classifications showed. The three highest FST values across all subpopulation 



 
50 

 

combinations were observed for subpopulation C. This may be in part due to its small sample 

size or possibly due to the uniqueness of the alleles in the germplasm of the subpopulation. 

Subpopulation C was the only subpopulation that did not have some genotypes from both the 

FAWWON and the SRPN (Table 2.1). The lowest FST value observed was 0.16 between 

subpopulations A and B which both consist of predominantly FAWWON genotypes, indicating 

that these two subpopulations are more genetically related. Using DArT marker genotyping, 

Dreisigacker et al. (2012) reported FST values of 0.11 to 0.73 across five subpopulations of 606 

spring wheat lines from 25 years of CIMMYT’s Elite Spring Wheat Yield Trial. Cabrera et al. 

(2014) reported FST values of 0.16 to 0.57 across five subpopulations of soft winter wheat lines 

from the eastern U.S. The FST values between subpopulation D, which included predominantly 

U.S. hard winter wheat genotypes, and the other subpopulations, which included 

predominantly FAWWON genotypes, indicate that genotypes from the FAWWON and those 

from the U.S. hard winter wheat region are unique enough to possess unique alleles. 

Subpopulation structure by country 

 Although genotypes from the FAWWON were assigned to all four subpopulations and 

the Mixed subpopulation, indicating extensive diversity in this collection, there were 

differences in subpopulation structure among countries and inter-country collaborations. A 

majority of genotypes from Kazakhstan and Romania were assigned to subpopulation A while a 

majority of genotypes from Iran, Mexico-TCI, Russia, TCI, and U.S.-TCI were assigned to 

subpopulation B (Table 2.3). No country had a majority of their genotypes assigned to 

population C despite eight of the 11 countries and collaborations having genotypes assigned to 

subpopulation C. Genotypes from the SRPN were exclusively from the U.S. (U.S.-SRPN) and 
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were predominantly assigned to subpopulation D which also included the largest percentage of 

genotypes from Turkey. The assignment of SRPN genotypes to population D is in contrast to the 

assignment of U.S.-TCI genotypes and U.S. genotypes that were part of the FAWWON (U.S.-

FAWWON). The U.S.-TCI genotypes were predominantly assigned to subpopulation B while U.S. 

genotypes in the FAWWON were predominantly Mixed (Table 2.3). Genotypes from U.S.-TCI, 

Mexico-TCI, and TCI would be expected to include Mixed individuals due to breeding 

collaborations between programs while FAWWON genotypes from Iran, Kazakhstan, and the 

U.S. also had a significant percentage of their genotypes classified as Mixed. 

 Belgium, Kazakhstan, Mexico-TCI, Romania, and Russia each included only genotypes 

that were assigned to subpopulations A, B, or C with none assigned to subpopulation D (Table 

2.3). These results support previous reports that subpopulation structure of wheat genotypes 

may be partially explained by geographic origin (Kim and Ward, 2000; Balfourier et al., 2007; 

Chao et al., 2007; Tommasini et al., 2007; Le Couviour et al., 2011) and support the notion that 

subpopulation structure within the FAWWON and the SRPN collections is the result of natural 

or artificial selection due to climatic variables, breeding objectives unique to a program or 

region, or exchange of germplasm among breeding programs in a region. However, not all 

genotypes originating from the FAWWON were assigned to only subpopulations A, B, and C. 

Iran, Syria, and TCI included genotypes assigned to subpopulation D but in very low numbers 

while Turkey included genotypes assigned to all four subpopulations with its highest number 

assigned to subpopulation D.  

 



 
52 

 

Superior FAWWON genotypes population structure 

 The top ten yielding FAWWON genotypes were identified in each of six Colorado 

environments. Due to partial replication of genotypes across years and full replication of 

genotypes across locations within years, some of the top ten yielding genotypes were the same 

across environments. This resulted in 46 different FAWWON genotypes being identified as 

superior for yield performance in Colorado (Table 2.4). These superior yielding genotypes 

represented each of the four subpopulations with 10 from subpopulation A, 12 from 

subpopulation B, nine from subpopulation C, five from subpopulation D, and 10 from the Mixed 

group. This result shows that even genotypes from the subpopulation that is the most 

genetically distant from the U.S. hard winter wheat lines (subpopulation C) were shown to 

perform well in Colorado environments. The incorporation of superior yielding FAWWON 

genotypes into breeding programs in the U.S. southern and central Great Plains can introduce 

unique and beneficial alleles and increase the genetic diversity in the region. The 46 superior 

genotypes also represented eight of the 11 countries and collaborations between countries, 

with genotypes from Kazakhstan, Syria, and Turkey not represented.  

  Some of the superior yielding FAWWON genotypes showed higher grain yield than 

locally adapted check varieties in the irrigated environments (Fort Collins) in all three years 

(Table 2.4). In Fort Collins 2014, eight of the ten superior yielding FAWWON genotypes 

outperformed the highest yielding check variety. In Fort Collins 2015 and 2016, two of the ten 

FAWWON genotypes outperformed the highest yielding check variety. However, the superior 

yielding FAWWON genotypes were less yield-competitive with the locally adapted check 

varieties in the non-irriagted environments (Julesburg). Although the highest yielding FAWWON 
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line was lower yielding than a check variety in each Julesburg environment, certain FAWWON 

lines had higher grain yield than some check varieties each year. The line 20FAWWON.SA.241 

was in the top ten for four of the six environments (two irrigated and two rainfed 

environments). Line 20FAWWON.IRR.95 was in the top ten for each of the three Julesburg 

environments and line 20FAWWON.SA.243 was in the top ten for three of the six environments 

representing both irrigated and non-irrigated environments. The divserty of high yielding 

entries identified here highlights the importance of participating in international and regional 

nurseries. By submitting lines and growing these nurseries, breeders can identify and provide 

superior genotypes that can be used in new regions and breeding programs. This will result in 

increasing the genetic diversity in their own program and the genetic diversity in others. 

Principal component analysis 

 Principal component analysis was used to visualize the relationships among the 345 

genotypes from the FAWWON and the SRPN. Principal component one (PC1) explained 7.1% of 

the variation in the data set while principal component two (PC2) explained 5.1% of the 

variation, together accounting for 12.2% of the total variation. (Figure 2.2) This is in agreement 

with other studies in common wheat where the first two principal components accounted for 

roughly 10% of the total variation present among the genotypes studied (Le Couviour et al., 

2011; Würschum et al., 2013; Cabrera et al., 2014). 

 Under the correlated allele frequencies model, the mean PC scores for FAWWON 

genotypes were separated from the mean PC scores of U.S. hard winter wheat genotypes 

across both PC1 and PC2. This is in agreement with the FAWWON and SRPN genotypes being 

grouped into separate subpopulations. The mean PC scores assigned to subpopulations A and B 



 
54 

 

were separated from the mean PC scores of subpopulations C and D according to PC1, while the 

mean PC scores for subpopulations B and C were separated from the mean PC scores of 

subpopulations A and D according to PC2 (Figure 2.3). The Mixed genotypes are centrally 

located and are predominantly located in the transition areas separating one subpopulation 

from another or where genotypes belonging to different subpopulations begin to overlap. 

 The 46 superior yielding FAWWON genotypes can be found on both sides of PC1 and 

PC2 (Figure 2.4 and 2.5). This is in agreement with the best performing genotypes being 

composed of individuals from all four subpopulations and the Mixed group and also from 

multiple countries and breeding programs. The PCA of superior yielding FAWWON genotypes 

also demonstrates that they are not concentrated around the SRPN genotypes. This indicates 

that the in spite of the genetic differences between the two groups (FAWWON and SRPN), 

FAWWON genotypes with high grain yield under irrigated and non-irrigated production systems 

in Colorado may be identified. The mean PC scores of the FAWWON genotypes that had 

superior grain yield exclusively in the irrigated environments (n=22 entries) is separated from 

the mean PC value of FAWWON genotypes that had superior yield exclusively in the non-

irriagted environments (n=18 entries) across PC2 (Figure 2.5). The average PC values for the 

FAWWON genotypes that performed best under irrigation and those that performed best 

under non-irriagted conditions indicate that there are different alleles or allelic combinations 

that allow them to be best adapted to these particular environments. FAWWON genotypes that 

performed best in both irrigated and non-irrigated environments (n=6 entries) have a mean PC 

value closer to the mean of those that performed best only in the irrigated environments and is 

also on the same side of PC1 as the mean value for SRPN genotypes. This may be due to SRPN 
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genotypes being tested and selected for adaptation to a wide range of environment conditions 

that include both high yielding and low yielding environments. Further analysis may be able to 

identify the genes and potential mechanisms that explain why some individuals in the 

FAWWON are better adapted to irrigated conditions while others are adapted to lower yielding 

environments.    
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Tables 
 
 
 
Table 2.1. Number and percentage of genotypes from the two nurseries within each 

subpopulation. 

Populations Number FAWWON† SRPN 

  
————————%————— 

A 54 96.3 3.7 

B 130 99.2 0.8 

C 32 100.0 0.0 

D 67 16.4 83.6 

MIXED 62 77.4 22.6 

 

† FAWWON, Facultative and Winter Wheat Observation Nursery; 
SRPN, Southern Regional Performance Nursery.  
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Table 2.2. Wright’s fixation index (FST) pairwise values among four subpopulations identified 

using the model-based approach in STRUCTURE. 

Sub-population B C D 

 ---------------------------- FST ---------------------------- 

A 0.16 0.32 0.23 
B — 0.24 0.17 
C — — 0.27 
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Table 2.3. Country of origin and subpopulation classification of 345 genotypes from the 

Facultative and Winter Wheat Observation Nursery (FAWWON) and Southern Regional 

Performance Nursery (SRPN). 

  Sub-Population 

Origin† Total Number A B C D MIXED 

Bulgaria 3 1 1 1 ‒ ‒ 
Iran 30 ‒ 23 2 1 4 
Kazakhstan 5 3 ‒ 1 ‒ 1 
Mexico-TCI 11 1 9 ‒ ‒ 1 
Romania 14 8 3 3 ‒ ‒ 
Russia 6 1 3 2 ‒ ‒ 

Syria 1 ‒ ‒ ‒ 1 ‒ 
TCI 165 37 76 18 6 28 
Turkey 7 1 1 2 3 ‒ 
U.S.-TCI 25 ‒ 13 3 2 7 
U.S.-FAWWON 5 

   
1 4 

U.S.-SRPN 73 2 1 0 56 14 
 

† TCI, Turkey-CIMMYT-ICARDA; U.S., United States; FAWWON, Facultative and Winter 

Wheat Observation Nursery; SRPN, Southern Regional Performance Nursery.  
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Table 2.4. Grain yield for the top ten yielding FAWWON genotypes and the check genotypes in 

each of the six tested environments and theit subpopulation assignment. 

   
    Environments†   

Nursery Entry Subpopulation FC 14 JB 14 FC 15 JB15 FC 16 JB 16 

   

--------------------------- kg ha -1 --------------------------- 

20 FAWWON IRR.106 A 
 

4667 
    20 FAWWON IRR.115 Mixed 

   
4008 

  20 FAWWON IRR.118 Mixed 
   

4990 
  20 FAWWON IRR.12 C 8588 4802 

    20 FAWWON IRR.143 Mixed 
 

4761 
   

5602 

20 FAWWON IRR.15 A 
     

5548 

20 FAWWON IRR.21 C 
  

6725 
   20 FAWWON IRR.22 B 

  
6786 

   20 FAWWON IRR.29 B 7983 
     20 FAWWON IRR.44 C 

  
6765 

   20 FAWWON IRR.45 Mixed 8245 
  

3995 
  20 FAWWON IRR.54 B 8010 

     20 FAWWON IRR.57 A 
 

5145 
 

4808 
  20 FAWWON IRR.59 C 8393 

     20 FAWWON IRR.88 B 
  

7014 
   20 FAWWON IRR.9 B 8252 

   
6813 

 20 FAWWON IRR.95 A 
 

4963 
 

4587 
 

5750 

20 FAWWON IRR.97 A 
 

4607 
    20 FAWWON SA.212 Mixed 

  
6705 

   20 FAWWON SA.222 A 
 

4748 
  

6564 
 20 FAWWON SA.224 C 

  
7425 

   20 FAWWON SA.227 C 
    

6557 
 20 FAWWON SA.231 B 

  
6907 

   20 FAWWON SA.235 B 8306 
     20 FAWWON SA.236 B 

  
6920 

   20 FAWWON SA.238 B 8104 
     20 FAWWON SA.241 Mixed 

 
4654 6927 4109 6584 

 20 FAWWON SA.243 Mixed 7949 4741 
  

6523 
 20 FAWWON SA.256 C 

 
4661 

    20 FAWWON SA.258 C 
   

3907 
  20 FAWWON SA.259 A 7841 

     21 FAWWON IRR.137 D 
   

4889 
 

5932 

21 FAWWON IRR.141 A 
     

5528 

21 FAWWON IRR.143 Mixed 
   

3887 
  21 FAWWON IRR.95 D 

     
5568 

21 FAWWON SA.210 Mixed 
    

6819 
 21 FAWWON SA.234 D 

  
7640 

   21 FAWWON SA.247 D 
   

3995 
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21 FAWWON SA.287 A 
     

5905 

21 FAWWON SA.292 C 
    

6550 
 22 FAWWON IRR.19 B 

    
6658 

 22 FAWWON IRR.32 B 
    

6537 
 22 FAWWON IRR.57 B 

     
4802 

22 FAWWON IRR.69 Mixed 
     

5595 

22 FAWWON IRR.98 D 
     

5710 

22 FAWWON SA.214 A 
    

6597 
 Check Byrd NA 7720 5098 5589 4795 6671 5750 

Check Denali NA 7694 5291 7196 4794 6441 6335 

Check Ripper NA 7963 4299 4324 3649 6557 5878 

Check Antero NA 7660 5219 6819 5017 6611 6436 

Check Snowmass NA 6598 4450 6032 4381 6260 5672 

FAWWON Mean 
 

7115 4122 5615 2992 5972 4923 

 

† FC 14, Fort Collins 2014 (irrigated); FC 15, Fort Collins 2015 (irrigated); FC 16, Fort Collins 2016 

(irrigated); JB 14, Julesburg 2014 (non-irrigated); JB 15, Julesburg 2015 (non-irrigated); JB 16, 

Julesburg 2016 (non-irrigated). 
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Table 2.5. Nursery origin, experimental number, genotype identifier, program origin, superior genotype classification, population 
assignment, and dendrogram abbreviated identifier of genotypes from the Facultative and Winter Wheat Observation Nursery 
(FAWWON) and the Southern Regional Performance Nursery (SRPN). 

Nursery Experimental # Name/CID Country State/Program Superior Correlated Dendrogram 

SRPN 2014, 2015 CO11D174 Avery U.S. CO No D S_1 

SRPN 2014, 2015 OK09125 Bentley U.S. OK No D S_2 

SRPN 2014 CO09W009 
 

U.S. CO No D S_3 

SRPN 2014 CO09W040-F1 
 

U.S. CO No D S_4 

SRPN 2015 CO11D1316W 
 

U.S. CO No D S_5 

SRPN 2015 CO11D1353 
 

U.S. CO No D S_6 

SRPN 2015 CO11D1397 
 

U.S. CO No D S_7 

SRPN 2015 CO11D1539 
 

U.S. CO No D S_8 

SRPN 2015 CO11D1767 
 

U.S. CO No D S_9 

SRPN 2014 CO11D346 
 

U.S. CO No D S_10 

SRPN 2014 KS061406-LN~37 Hot Rod U.S. KS No MIXED S_11 

SRPN 2014 HV9W09-0746 
 

U.S. WestBred No B S_12 

SRPN 2014 HV9W09-0918 
 

U.S. WestBred No MIXED S_13 

SRPN 2014, 2015 W98-362 Jagalene U.S. AgriPro No D S_14 

SRPN 2014 KS11HW39-5-4 Joe U.S. KS No D S_15 

SRPN 2014 KS030887K-6 KanMark U.S. KS No D S_16 

SRPN 2014, 2015 
 

Kharkof U.S. Introduction No D S_17 

SRPN 2014 KS050278M-1 
 

U.S. KS No MIXED S_18 

SRPN 2015 KS060084-M-4 
 

U.S. KS No D S_19 

SRPN 2015 KS060106-M-11 Zenda U.S. KS No D S_20 

SRPN 2015 KS060143-K-2 Larry U.S. KS No A S_21 

SRPN 2015 KS060371-M-3 
 

U.S. KS No D S_22 

SRPN 2015 KS060476-M-6 
 

U.S. KS No MIXED S_23 

SRPN 2014 KS061406-LN~15 
 

U.S. KS No MIXED S_24 

SRPN 2014 KS061406-LN~26 
 

U.S. KS No MIXED S_25 

SRPN 2014 KS10HW78-1-1 
 

U.S. KS No D S_26 

SRPN 2015 KS11HW15-4-1 
 

U.S. KS No D S_27 

SRPN 2015 KS11HW18-1-6 
 

U.S. KS No D S_28 
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SRPN 2015 KS11HW39-5-4 Joe U.S. KS No D S_29 

SRPN 2014 KS11HW39-6 
 

U.S. KS No D S_30 

SRPN 2015 KS11HW53-1-6 
 

U.S. KS No D S_31 

SRPN 2014, 2015 CO11D446 Langin U.S. CO No D S_32 

SRPN 2014 LCH09-06 
 

U.S. Limagrain No MIXED S_33 

SRPN 2014 LCH10-187 
 

U.S. Limagrain No D S_34 

SRPN 2014 LCH11-1064 
 

U.S. Limagrain No D S_35 

SRPN 2014 LCH11-109 
 

U.S. Limagrain No MIXED S_36 

SRPN 2015 LCH11-1117 
 

U.S. Limagrain No D S_37 

SRPN 2015 LCH12-012 
 

U.S. Limagrain No D S_38 

SRPN 2015 LCH13-092 
 

U.S. Limagrain No D S_39 

SRPN 2015 LCH13DH-3-31 
 

U.S. Limagrain No D S_40 

SRPN 2015 LCI13DH-14-53W 
 

U.S. Limagrain No D S_41 

SRPN 2015 LCH13DH-20-87 LCS Chrome U.S. Limagrain No MIXED S_42 

SRPN 2014 LCH11-1130 LCS Pistol U.S. Limagrain No D S_43 

SRPN 2014 N11MD2157W 
 

U.S. USDA-NE No D S_44 

SRPN 2014 N11MD2172 
 

U.S. USDA-NE No D S_45 

SRPN 2014 NE10478 
 

U.S. NE No D S_46 

SRPN 2014, 2015 NE10507 
 

U.S. NE No D S_47 

SRPN 2014 NE10589 Ruth U.S. NE No D S_48 

SRPN 2015 NE12429 
 

U.S. NE No D S_49 

SRPN 2015 NE12571 
 

U.S. NE No D S_50 

SRPN 2014 NH11489 
 

U.S. NE No D S_51 

SRPN 2015 NI13706 
 

U.S. NE No MIXED S_52 

SRPN 2014 OK09520 
 

U.S. OK No D S_53 

SRPN 2014, 2015 OK10126 
 

U.S. OK No D S_54 

SRPN 2014, 2015 OK1059060 
 

U.S. OK No MIXED S_55 

SRPN 2014 OK10728W Stardust U.S. OK No D S_56 

SRPN 2014 OK10805W 
 

U.S. OK No MIXED S_57 

SRPN 2014, 2015 
 

Scout 66 U.S. NE No D S_58 

SRPN 2014, 2015 TX80GH2875 TAM 107 U.S. TX No D S_59 

SRPN 2014 TX08A001249 
 

U.S. TX No D S_60 
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SRPN 2014 TX08V7313 
 

U.S. TX No D S_61 

SRPN 2014 TX09A001194 
 

U.S. TX No D S_62 

SRPN 2014 TX09D1172 
 

U.S. TX No D S_63 

SRPN 2015 TX09V7315 
 

U.S. TX No D S_64 

SRPN 2015 TX09V7352 
 

U.S. TX No D S_65 

SRPN 2015 TX09V7446 
 

U.S. TX No D S_66 

SRPN 2015 TX10A001099 
 

U.S. TX No D S_67 

SRPN 2015 TX11A001295 
 

U.S. TX No D S_68 

SRPN 2015 TX12M4004 
 

U.S. TX No MIXED S_69 

SRPN 2015 TX12M4063 
 

U.S. TX No MIXED S_70 

SRPN 2015 TX12M4065 
 

U.S. TX No D S_71 

SRPN 2015 WB4303 
 

U.S. WestBred No A S_72 

SRPN 2015 WB4462 
 

U.S. WestBred No D S_73 

20FAWWON IRR-10 TCI011657 TCI 
 

No B F_1 

20FAWWON IRR-100 06325G1-2 ROM 
 

No A F_2 

20FAWWON IRR-106 *06579G1-1 ROM 
 

Superior A F_3 

20FAWWON IRR-11 TCI-02-691 TCI 
 

No B F_4 

20FAWWON IRR-114 OR2071681 U.S. OR No MIXED F_5 

20FAWWON IRR-115 OR2080111H U.S. OR Superior MIXED F_6 

20FAWWON IRR-118 Appalachian White U.S. NC Superior MIXED F_7 

20FAWWON IRR-12 TCI022028 TCI 
 

Superior C F_8 

20FAWWON IRR-13 TCI022063 TCI 
 

No A F_9 

20FAWWON IRR-14 TCI022073 TCI 
 

No C F_10 

20FAWWON IRR-143 NACIBEY TCI 
 

Superior MIXED F_11 

20FAWWON IRR-15 TCI022086 TCI 
 

Superior A F_12 

20FAWWON IRR-16 TCI022086 TCI 
 

No A F_13 

20FAWWON IRR-17 TCI022086 TCI 
 

No C F_14 

20FAWWON IRR-18 TCI022216 TCI 
 

No MIXED F_15 

20FAWWON IRR-19 TC1021013 TCI 
 

No B F_16 

20FAWWON IRR-20 TC1021027 TCI 
 

No B F_17 

20FAWWON IRR-21 TC1021032 TCI 
 

Superior C F_18 

20FAWWON IRR-22 TC1021034 TCI 
 

Superior B F_19 
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20FAWWON IRR-23 TC1021034 TCI 
 

No C F_20 

20FAWWON IRR-24 TC1021068 TCI 
 

No B F_21 

20FAWWON IRR-25 TC1021152 TCI 
 

No B F_22 

20FAWWON IRR-26 TC1021152 TCI 
 

No C F_23 

20FAWWON IRR-27 TC1021162 TCI 
 

No B F_24 

20FAWWON IRR-28 TC1021164 TCI 
 

No B F_25 

20FAWWON IRR-29 TC1021187 TCI 
 

Superior B F_26 

20FAWWON IRR-30 TC1021198 TCI 
 

No B F_27 

20FAWWON IRR-31 TC1021243 TCI 
 

No C F_28 

20FAWWON IRR-32 TC1021414 TCI 
 

No C F_29 

20FAWWON IRR-33 TCI-02-45 TCI 
 

No B F_30 

20FAWWON IRR-35 TCI-02-175 TCI 
 

No B F_31 

20FAWWON IRR-36 OCW02S155T U.S.-TCI OK-TCI No MIXED F_32 

20FAWWON IRR-37 OCW02S155T U.S.-TCI OK-TCI No D F_33 

20FAWWON IRR-38 OCW02S155T U.S.-TCI OK-TCI No C F_34 

20FAWWON IRR-39 OCW02S369S U.S.-TCI OK-TCI No B F_35 

20FAWWON IRR-40 SONMEZ TUR 
 

No C F_36 

20FAWWON IRR-41 OCW02S471S U.S.-TCI OK No C F_37 

20FAWWON IRR-42 OCW02S471S U.S.-TCI OK No B F_38 

20FAWWON IRR-43 OCW02S484S U.S.-TCI OK No B F_39 

20FAWWON IRR-44 OCW02S567S U.S.-TCI OK Superior C F_40 

20FAWWON IRR-45 OCW02S567S U.S.-TCI OK Superior MIXED F_41 

20FAWWON IRR-46 OCW02S567S U.S.-TCI OK No B F_42 

20FAWWON IRR-47 OCW02S596S U.S.-TCI OK No B F_43 

20FAWWON IRR-48 OCW02S607S U.S.-TCI OK No B F_44 

20FAWWON IRR-49 OCW02S608S U.S.-TCI OK No B F_45 

20FAWWON IRR-50 CMSA01M00330S MEX-TCI 
 

No B F_46 

20FAWWON IRR-51 CMSA01M00370T MEX-TCI 
 

No B F_47 

20FAWWON IRR-52 CMSA01M00381T MEX-TCI 
 

No B F_48 

20FAWWON IRR-54 CMSW01WM00578S MEX-TCI 
 

Superior B F_49 

20FAWWON IRR-55 TCI012088 TCI 
 

No C F_50 

20FAWWON IRR-56 TCI-02-80 TCI 
 

No C F_51 
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20FAWWON IRR-57 02106G2-2 TCI 
 

Superior A F_52 

20FAWWON IRR-59 TURKOAZ BUL 
 

Superior C F_53 

20FAWWON IRR-60 TEKIRA2 BUL 
 

No B F_54 

20FAWWON IRR-69 IRW2000-01 - 246 IR 
 

No MIXED F_55 

20FAWWON IRR-7 TCI011031 TCI 
 

No B F_56 

20FAWWON IRR-70 1-C-17450 IR Karadj No B F_57 

20FAWWON IRR-71 1-C-17474 IR Karadj No B F_58 

20FAWWON IRR-72 1-C-17474 IR Karadj No C F_59 

20FAWWON IRR-74 1-C-17487 IR Karadj No B F_60 

20FAWWON IRR-75 1-C-17551 IR Miandoab No B F_61 

20FAWWON IRR-77 1-C-17560 IR Karadj No B F_62 

20FAWWON IRR-78 1-C-17603 IR Karadj No C F_63 

20FAWWON IRR-8 TCI011031 TCI 
 

No C F_64 

20FAWWON IRR-85 1-NS 1590 IR Karadj No B F_65 

20FAWWON IRR-86 1-C-17630 IR Ardebil No MIXED F_66 

20FAWWON IRR-87 1-C-17630 IR Ardebil No B F_67 

20FAWWON IRR-88 1-C-17480 IR Miandoab Superior B F_68 

20FAWWON IRR-89 1-C-17551 IR Miandoab No B F_69 

20FAWWON IRR-9 TCI011214 TCI 
 

Superior B F_70 

20FAWWON IRR-95 OTILIA ROM 
 

Superior A F_71 

20FAWWON IRR-97 06393GP1 ROM 
 

Superior A F_72 

20FAWWON IRR-98 05899G01-2 ROM 
 

No C F_73 

20FAWWON SA-202 KARAHAN TUR 
 

No C F_74 

20FAWWON SA-206 TC1021032 TCI 
 

No C F_75 

20FAWWON SA-207 TC1021068 TCI 
 

No B F_76 

20FAWWON SA-208 TC1021160 TCI 
 

No B F_77 

20FAWWON SA-209 TC1021180 TCI 
 

No C F_78 

20FAWWON SA-210 TC1021198 TCI 
 

No B F_79 

20FAWWON SA-212 TC1021243 TCI 
 

Superior MIXED F_80 

20FAWWON SA-213 TC1021266 TCI 
 

No B F_81 

20FAWWON SA-214 TC1021276 TCI 
 

No MIXED F_82 

20FAWWON SA-215 TC1021276 TCI 
 

No C F_83 
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20FAWWON SA-218 TC1021350 TCI 
 

No D F_84 

20FAWWON SA-221 TCI022086 TCI 
 

No A F_85 

20FAWWON SA-222 TCI022108 TCI 
 

Superior A F_86 

20FAWWON SA-223 TCI022191 TCI 
 

No MIXED F_87 

20FAWWON SA-224 TCI022200 TCI 
 

Superior C F_88 

20FAWWON SA-226 TCI022271 TCI 
 

No B F_89 

20FAWWON SA-227 TCI022271 TCI 
 

Superior C F_90 

20FAWWON SA-228 TCI-02-87 TCI 
 

No A F_91 

20FAWWON SA-230 TCI-02-111 TCI 
 

No B F_92 

20FAWWON SA-231 TCI-02-129 TCI 
 

Superior B F_93 

20FAWWON SA-232 TCI-02-142 TCI 
 

No MIXED F_94 

20FAWWON SA-233 TCI-02-26 TCI 
 

No C F_95 

20FAWWON SA-235 TCI-02-36 TCI 
 

Superior B F_96 

20FAWWON SA-236 TCI-02-913 TCI 
 

Superior B F_97 

20FAWWON SA-237 OCW02S262T U.S.-TCI OK-TCI No B F_98 

20FAWWON SA-238 OCW02S528S U.S.-TCI OK-TCI Superior B F_99 

20FAWWON SA-239 OCW02S567S U.S.-TCI OK-TCI No B F_100 

20FAWWON SA-241 OCW02S596S U.S.-TCI OK-TCI Superior MIXED F_101 

20FAWWON SA-243 IRW2000-01 - 246 IR 
 

Superior MIXED F_102 

20FAWWON SA-244 1-C-17459 IR Karadj No MIXED F_103 

20FAWWON SA-249 AK-B?BA? KAZ 
 

No A F_104 

20FAWWON SA-251 KARASAY KAZ 
 

No C F_105 

20FAWWON SA-252 ZHADYRA KAZ 
 

No A F_106 

20FAWWON SA-254 NIKIFOR ROM 
 

No C F_107 

20FAWWON SA-256 06659G4-1 ROM 
 

Superior C F_108 

20FAWWON SA-257 ELVIRA RUS SAR No C F_109 

20FAWWON SA-258 KALACH RUS SAR Superior C F_110 

20FAWWON SA-259 SVETOCH RUS SAM Superior A F_111 

20FAWWON SA-278 BDME 09 1/K  TUR 
 

No A F_112 

21FAWWON IRR-103 MUSTANG/ICIZCE TCI 
 

No B F_113 

21FAWWON IRR-11 SHARK/F4105W2.1 TCI 
 

No MIXED F_114 

21FAWWON IRR-113 TX71C8130R/TX81V66 TCI 
 

No B F_115 
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21FAWWON IRR-116 TX71C8130R/TX81V66 TCI 
 

No B F_116 

21FAWWON IRR-119 TX71A983.4/TX69D48 TCI 
 

No B F_117 

21FAWWON IRR-122 JI5418/MARAS//SHAR TCI 
 

No B F_118 

21FAWWON IRR-137 43-RWA-94N-74/ TCI 
 

Superior D F_119 

21FAWWON IRR-14 ALPU//VP5053  TCI 
 

No B F_120 

21FAWWON IRR-141 MINA/KRISTAL TCI 
 

Superior A F_121 

21FAWWON IRR-142 MINA/KRISTAL TCI 
 

No A F_122 

21FAWWON IRR-143 6/YUZHNAYA12 TCI 
 

Superior MIXED F_123 

21FAWWON IRR-144 SHAR6/YUZHNAYA12 TCI 
 

No B F_124 

21FAWWON IRR-146 CHATELET/GRU-45 TCI 
 

No A F_125 

21FAWWON IRR-148 CHATELET/GRU-45 TCI 
 

No B F_126 

21FAWWON IRR-150 DORADE-5/DUNAV TCI 
 

No D F_127 

21FAWWON IRR-152 1-68-188//1-60-3 TCI 
 

No B F_128 

21FAWWON IRR-157 ID2619/5/GRTPL 6121 TCI 
 

No B F_129 

21FAWWON IRR-16 TCI032348 TCI 
 

No B F_130 

21FAWWON IRR-161 PALANDOKEN97/LLA TCI 
 

No B F_131 

21FAWWON IRR-163 NGDA146/4/YMH/TO TCI 
 

No A F_132 

21FAWWON IRR-166 SHARK-6/YUZHNAYA1 TCI 
 

No MIXED F_133 

21FAWWON IRR-167 88ZHONG218//CTK/V TCI 
 

No B F_134 

21FAWWON IRR-17 OCW02S476S U.S.-TCI OK-TCI No MIXED F_135 

21FAWWON IRR-29 TCI031171 TCI 
 

No B F_136 

21FAWWON IRR-31 TCI-02-80 TCI 
 

No B F_137 

21FAWWON IRR-32 TCI 001409 TCI 
 

No B F_138 

21FAWWON IRR-35 TCI-01-117 TCI 
 

No B F_139 

21FAWWON IRR-36 TCI-02-475 TCI 
 

No B F_140 

21FAWWON IRR-43 OSTROV ROM 
 

No A F_141 

21FAWWON IRR-45 F06325G1- ROM 
 

No A F_142 

21FAWWON IRR-48 F06580G2-1 ROM 
 

No B F_143 

21FAWWON IRR-49 F06659G6-1 ROM 
 

No B F_144 

21FAWWON IRR-50 F06659G10-1 ROM 
 

No B F_145 

21FAWWON IRR-59 NOTA RUS 
 

No B F_146 

21FAWWON IRR-62 1-C-17677 IR Karadj No B F_147 
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21FAWWON IRR-64 1-C-17748 IR Karadj No B F_148 

21FAWWON IRR-66 1-C-17809 IR Karadj No B F_149 

21FAWWON IRR-68 1-C-17641 IR Miandoab No B F_150 

21FAWWON IRR-7 TCI032026 TCI 
 

No A F_151 

21FAWWON IRR-71 SHİ≠4414/CROW IR Dari No B F_152 

21FAWWON IRR-72 DMITRY RUS 
 

No B F_153 

21FAWWON IRR-75 PROTON RUS 
 

No B F_154 

21FAWWON IRR-76 KIPRA BUL 
 

No A F_155 

21FAWWON IRR-81 SWW1-135 KAZ 
 

No A F_156 

21FAWWON IRR-83 SWW1-97 KAZ 
 

No MIXED F_157 

21FAWWON IRR-9 TCI031361 TCI 
 

No MIXED F_158 

21FAWWON IRR-95 JUP/4/CLLF/3/II14-53 TCI 
 

Superior D F_159 

21FAWWON SA-201 GEREK79 TUR 
 

No B F_160 

21FAWWON SA-202 KARAHAN TUR 
 

No MIXED F_161 

21FAWWON SA-207 TCI031181 TCI 
 

No A F_162 

21FAWWON SA-208 TCI032095 TCI 
 

No B F_163 

21FAWWON SA-210 TCI032063 TCI 
 

Superior MIXED F_164 

21FAWWON SA-211 TCI031039 TCI 
 

No B F_165 

21FAWWON SA-214 TCI032348 TCI 
 

No B F_166 

21FAWWON SA-218 TCI031020 TCI 
 

No D F_167 

21FAWWON SA-223 TCI032235 TCI 
 

No MIXED F_168 

21FAWWON SA-226 TCI031396 TCI 
 

No B F_169 

21FAWWON SA-227 TCI032210 TCI 
 

No A F_170 

21FAWWON SA-228 TCI031171 TCI 
 

No MIXED F_171 

21FAWWON SA-231 TCI031286 TCI 
 

No B F_172 

21FAWWON SA-234 TCI031396 TCI 
 

Superior D F_173 

21FAWWON SA-243 OK07214 U.S. OK No MIXED F_174 

21FAWWON SA-247 OK09634 U.S. OK Superior D F_175 

21FAWWON SA-248 TCI011194-030 TCI 
 

No A F_176 

21FAWWON SA-250 1-C-17849 IR Miandoab No B F_177 

21FAWWON SA-252 PYN/BAU//BONITO IR Dari No B F_178 

21FAWWON SA-256 CMSW97WM00399S TCI 
 

No MIXED F_179 
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21FAWWON SA-258 TCI97AP-310 TCI 
 

No B F_180 

21FAWWON SA-261 TCI04-1 TCI 
 

No MIXED F_181 

21FAWWON SA-262 TCI04-324 TCI 
 

No B F_182 

21FAWWON SA-263 TCI02-679 TCI 
 

No MIXED F_183 

21FAWWON SA-265 TCI02-405 TCI 
 

No MIXED F_184 

21FAWWON SA-268 91-142 a 139 TCI 
 

No B F_185 

21FAWWON SA-269 TCI 001409 TCI 
 

No A F_186 

21FAWWON SA-270 TCI 002133 TCI 
 

No A F_187 

21FAWWON SA-271 TCI-01-117 TCI 
 

No MIXED F_188 

21FAWWON SA-275 TCI04-1 TCI 
 

No B F_189 

21FAWWON SA-276 TCI04-1 TCI 
 

No A F_190 

21FAWWON SA-281 TCI032527 TCI 
 

No B F_191 

21FAWWON SA-286 TC1021266 TCI 
 

No MIXED F_192 

21FAWWON SA-287 TCI022086 TCI 
 

Superior A F_193 

21FAWWON SA-288 TCI02-87 TCI 
 

No A F_194 

21FAWWON SA-289 TC1021068 TCI 
 

No B F_195 

21FAWWON SA-292 TCI 002115 TCI 
 

Superior C F_196 

21FAWWON SA-293 TCI031223 TCI 
 

No A F_197 

21FAWWON SA-297 TC1021243 TCI 
 

No B F_198 

21FAWWON SA-299 TC1021027 TCI 
 

No B F_199 

22FAWWON IRR-10 TCI041031 TCI 
 

No MIXED F_200 

22FAWWON IRR-103 SULTAN95 MEX-TCI 
 

No B F_201 

22FAWWON IRR-108 F06521GP3 ROM 
 

No A F_202 

22FAWWON IRR-111 F05906G1-101 ROM 
 

No A F_203 

22FAWWON IRR-14 TCI041060 TCI 
 

No A F_204 

22FAWWON IRR-18 TCI041237 TCI 
 

No A F_205 

22FAWWON IRR-19 TCI041261 TCI 
 

Superior B F_206 

22FAWWON IRR-21 TCI041286 TCI 
 

No MIXED F_207 

22FAWWON IRR-22 TCI041496 TCI 
 

No MIXED F_208 

22FAWWON IRR-26 TCI042153 TCI 
 

No B F_209 

22FAWWON IRR-27 TCI042167 TCI 
 

No A F_210 

22FAWWON IRR-31 TCI042366 TCI 
 

No MIXED F_211 
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22FAWWON IRR-32 TCI042619 TCI 
 

Superior B F_212 

22FAWWON IRR-33 TCI042632 TCI 
 

No B F_213 

22FAWWON IRR-34 TCI042638 TCI 
 

No A F_214 

22FAWWON IRR-35 TCI042638 TCI 
 

No A F_215 

22FAWWON IRR-41 TCI072152 TCI 
 

No B F_216 

22FAWWON IRR-42 OCW05S645S U.S.-TCI OK-TCI No MIXED F_217 

22FAWWON IRR-45 OR2052096 U.S.-TCI OR-TCI No MIXED F_218 

22FAWWON IRR-49 CMSA06WM00018T MEX-TCI 
 

No B F_219 

22FAWWON IRR-52 TCI071325 TCI 
 

No B F_220 

22FAWWON IRR-53 TCI072137 TCI 
 

No B F_221 

22FAWWON IRR-54 OCW05S626S U.S.-TCI OK No B F_222 

22FAWWON IRR-55 TCI071189 TCI 
 

No B F_223 

22FAWWON IRR-57 TCI071199 TCI 
 

Superior B F_224 

22FAWWON IRR-60 CGWS04WM00054S MEX-TCI 
 

No A F_225 

22FAWWON IRR-66 OCW05S626S U.S.-TCI OK-TCI No B F_226 

22FAWWON IRR-67 OCW04S037S U.S.-TCI OK-TCI No D F_227 

22FAWWON IRR-68 TCI052118 TCI 
 

No B F_228 

22FAWWON IRR-69 OCW05S594T U.S.-TCI OK-TCI Superior MIXED F_229 

22FAWWON IRR-7 TCI021034 TCI 
 

No B F_230 

22FAWWON IRR-73 TCI052022 TCI 
 

No B F_231 

22FAWWON IRR-79 RUMELI TUR 
 

No MIXED F_232 

22FAWWON IRR-8 TCI021034 TCI 
 

No B F_233 

22FAWWON IRR-81 CROC_1/AE.SQUARRO MEX-TCI 
 

No B F_234 

22FAWWON IRR-83 1-C-17967 IR Karadj No B F_235 

22FAWWON IRR-84 1-C-17967 IR Karadj No B F_236 

22FAWWON IRR-85 1-C-17969 IR Karadj No B F_237 

22FAWWON IRR-86 1-C-17969 IR Karadj No B F_238 

22FAWWON IRR-87 1-C-17971 IR Karadj No B F_239 

22FAWWON IRR-9 TCI02-913 TCI 
 

No B F_240 

22FAWWON IRR-92 DH-26-42 IR Karadj No B F_241 

22FAWWON IRR-93 1-C-17964 IR Miandoab No B F_242 

22FAWWON IRR-98 1-C-18144 IR Ardebil Superior D F_243 
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22FAWWON SA-202 KARAHAN TUR 
 

No MIXED F_244 

22FAWWON SA-211 TCI041084 TCI 
 

No A F_245 

22FAWWON SA-214 TCI041237 TCI 
 

Superior A F_246 

22FAWWON SA-217 TCI041347 TCI 
 

No MIXED F_247 

22FAWWON SA-218 TCI041374 TCI 
 

No MIXED F_248 

22FAWWON SA-221 TCI041505 TCI 
 

No A F_249 

22FAWWON SA-223 TCI041548 TCI 
 

No A F_250 

22FAWWON SA-225 TCI042304 TCI 
 

No A F_251 

22FAWWON SA-231 TCI042604 TCI 
 

No MIXED F_252 

22FAWWON SA-232 TCI042609 TCI 
 

No B F_253 

22FAWWON SA-235 TCI042673 TCI 
 

No A F_254 

22FAWWON SA-237 TCI042691 TCI 
 

No B F_255 

22FAWWON SA-248 TCI051373 TCI 
 

No MIXED F_256 

22FAWWON SA-249 TCI051404 TCI 
 

No B F_257 

22FAWWON SA-250 TCI051412 TCI 
 

No B F_258 

22FAWWON SA-253 TCI052037 TCI 
 

No B F_259 

22FAWWON SA-256 TCI052366 TCI 
 

No MIXED F_260 

22FAWWON SA-258 TCI052470 TCI 
 

No A F_261 

22FAWWON SA-259 TCI052479 TCI 
 

No A F_262 

22FAWWON SA-260 TCI051051 TCI 
 

No A F_263 

22FAWWON SA-262 TCI071116 TCI 
 

No A F_264 

22FAWWON SA-263 TCI071156 TCI 
 

No B F_265 

22FAWWON SA-265 TCI071310 TCI 
 

No B F_266 

22FAWWON SA-269 TCI072083 TCI 
 

No A F_267 

22FAWWON SA-273 CGWS04WM00048S MEX 
 

No B F_268 

22FAWWON SA-274 CGWS04WM00052S MEX 
 

No MIXED F_269 

22FAWWON SA-277 CMSW05WM00013T MEX 
 

No B F_270 

22FAWWON SA-281 OCW05S740S U.S.-TCI OK-TCI No B F_271 

22FAWWON SA-294 ICWH970148 SYR 
 

No D F_272 

 
† CID, CIMMYT identification for each entry available 
‡ Dendrogram ID, a shortened identification for each entry used in Figure 2.6
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Figures 

 
 

 
Figure 2.1. Distribution of 491 single nucleotide polymorphism markers across all seven 
chromosomes on all three genomes of common wheat. 
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Figure 2.2. Principal component analysis displaying the eigenvector values for PC1 and PC2 
using 491 single nucleotide polymorphism markers. Nursery origin is shown for each genotype. 
The smaller circles show each individual genotype’s nursery of origin while the larger circles 
show the average eigenvector values among all genotypes for a nursery collection. 
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Figure 2.3. Principal component analysis displaying the eigenvector values for PC1 and PC2 
using 491 single nucleotide polymorphism markers. Subpopulation assignment is shown for 
each FAWWON and U.S. hard winter wheat genotype under the correlated allele frequencies 
model. The smaller circles show each individual genotype and their subpopulation assignment 
while the larger circles show the average eigenvector values among all genotypes for a 
subpopulation. 
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Figure 2.4. Principal component analysis displaying the eigenvector values for PC1 and PC2 
using 491 single nucleotide polymorphism markers for the 46 superior performing FAWWON 
genotypes from six environments in Colorado. The smaller circles show each individual 
genotype while the larger circles shows the average eigenvector values among all superior 
genotypes from the FAWWON as well as the U.S. hard winter wheat genotypes (SRPN). 
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Figure 2.5. Principal component analysis displaying the eigenvector values for PC1 and PC2 
using 491 single nucleotide polymorphism markers for the 46 superior performing FAWWON 
genotypes under the environment (irrigated , non-irrigated, or irrigated and non-irrigated) that 
they performed best under. The smaller circles show each individual genotype while the larger 
circles shows the average eigenvector values among all superior genotypes from the FAWWON 
as well as the U.S. hard winter wheat genotypes (SRPN). 
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Figure 2.6. Hierarchical clustering based on Euclidean genetic distance between each genotype 

from the Facultative and Winter Wheat Observation Nursery (FAWWON) in black and each 

genotype from the Southern Regional Performance Nursery (SRPN) in red based on 491 SNP 

markers.   
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POPULATION STRUCTURE AND GENETIC DIVERSITY ANALYSIS OF GERMPLASM FROM THE 

WINTER WHEAT EASTERN EUROPEAN REGIONAL YIELD TRIAL (WWEERYT)1 

 
 

 International exchange of improved germplasm is important in addressing existing and 

emerging constraints to global wheat (Triticum aestivum L.) production. Elite breeding lines 

tested in international performance nurseries represent the most advanced materials from a 

collection of breeding programs and best showcase a pool of genotypes for cultivar release or 

use as parents in future crosses (Peterson and Pfeiffer, 1989; Sharma et al., 2010, 2012, 2014). 

The International Winter Wheat Improvement Program (IWWIP) is a cooperative breeding 

program between the Ministry of Agriculture and Rural Affairs of Turkey, the International 

Maize and Wheat Improvement Center (CIMMYT), and the International Center of Agricultural 

Research in the Dry Areas (ICARDA) (Morgounov et al., 2005). The IWWIP distributes 

observation nurseries and yield trials comprising high yielding, advanced breeding lines to 

facilitate introduction and exchange of improved germplasm in developing countries for 

irrigated and dryland production systems (Sharma et al., 2010, 2012). To expand the 

international exchange of winter wheat germplasm, CIMMYT and Oregon State University 

initiated the Winter Wheat Eastern European Regional Yield Trial (WWEERYT) as a separate 

IWWIP project to evaluate elite lines and varieties from eastern Europe, IWWIP, the Caucus 

Region, and the United States (Sharma et al., 2014). Sharma et al. (2014) identified high yielding  

1 A modified version of this chapter has been published as follows: 
Beil, C. T., H. K. Manmathan, V. A. Anderson, A. Morgounov, and S. D. Haley. 2017.Population 
structure and genetic diversity analysis of germplasm from the Winter Wheat Eastern European 
Regional Yield Trial (WWEERYT). Crop Sci. 57: 812-820. doi:10.2135/cropsci2016.08.0639 
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and stable genotypes in the WWEERYT, using genotype and genotype x environment (GGE) 

biplot analysis (Yan et al., 2000), that performed well in  test locations in central and western 

Asia (CWA), central and eastern Europe (CEE), and the United States (USA). 

 The development of genome-wide association studies (GWAS) to identify quantitative 

trait loci (QTLs) underlying complex traits has resulted in renewed interest to characterize 

population structure in wheat collections (Yu et al., 2006). The existence of subpopulation 

structure with an unequal allelic distribution within a GWAS panel can result in spurious 

associations and is the primary obstacle to successful GWAS (Buckler and Thornsberry, 2002; 

Zhao et al., 2007). Genomic selection (GS) is a technique that leverages genome-wide DNA 

markers with plant phenotypes to enable trait prediction earlier in the breeding cycle to 

potentially accelerate genetic gain for genetically complex traits (Meuwissen et al., 2001; 

Crossa et al., 2010; Jannink et al., 2010; Burgueño et al., 2012). Genomic selection prediction 

accuracies have been shown to be maximized when the training population and the selection 

candidates are closely related (Lorenz and Smith, 2015). Using rapid inbreeding methods such 

as single seed descent (SSD) or doubled haploids (DH), GS-based cycle time may be reduced to 

one or two years from the traditional five to seven years (Heffner et al., 2010). Genetic gain in 

early selection cycles may be dramatically high, but rapid cycling using GS may ultimately 

increase the rate of loss of genetic diversity through a reduction of the effective population size 

and loss of rare alleles (Jannink, 2010; Heslot et al., 2015). Identification and introgression of 

new and favorable alleles will be needed to enhance genetic diversity and sustain long-term 

gains while implementing GS in wheat (Heslot et al., 2015). 
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 Genetic diversity and population structure have been evaluated in wheat collections 

level using molecular markers, such as random amplified polymorphic DNA (RAPD; Joshi and 

Nguyen, 1993), restriction fragment length polymorphism (RFLP; Siedler et al., 1994; Kim and 

Ward, 2000), amplified fragment length polymorphism (AFLP; Barrett and Kidwell, 1998), 

simple sequence repeats (SSR; Röder et al., 2002; Balfourier et al., 2007; Zhang et al., 2010) and 

diversity arrays technology (DArT; White et al., 2008; Dreisigacker et al., 2012; Cabrera et al., 

2014). Single nucleotide polymorphism (SNP) markers have become the preferred marker for 

genetic studies due to their greater abundance in the genome and better amenability to high-

throughput genotyping (Varshney et al., 2006). 

 In wheat, several studies have examined genetic diversity by various methods including 

genetic distance, coefficient of parentage, principal component analysis (PCA), and model-

based approaches (Barrett and Kidwell, 1998; Kim and Ward, 2000; Chao et al., 2007; White et 

al., 2008; Prasad et al., 2009; Hao et al., 2011; Cabrera et al., 2014). Results from these studies 

have drawn conflicting conclusions with some studies showing that populations identified in 

wheat collections often correspond to geographic regions (Kim and Ward 2000; Balfourier et 

al., 2007; Chao et al., 2007; Tommasini et al., 2007; Le Couviour et al., 2011) while other studies 

have claimed no population structure in wheat (Reif et al., 2011; Benson et al., 2012; 

Würschum et al., 2013). 

 Although intensive plant breeding is generally considered to be a practice that leads to 

reduced genetic diversity (Tanksley and McCouch, 1997), results have shown that plant 

breeders can avert a narrowing germplasm base and subsequently increase genetic diversity 

within their breeding population through introgression of diverse germplasm (Reif et al., 2005). 
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International exchange of elite germplasm is important in addressing existing and emerging 

constraints to global wheat production by responding positively to changing climates, pests, 

diseases, and consumer preferences. Our objectives were to use SNP markers obtained using 

genotyping-by-sequencing (GBS) to i) identify subpopulation structure among genotypes from 

seven years of the WWEERYT using a model-based approach, ii) compare subpopulation 

structure between regions, countries, and states, and iii) characterize subpopulation structure 

and genetic relatedness among previously-identified superior-performing genotypes from the 

WWEERYT. 

Materials and Methods 

WWEERYT Germplasm 

 I analysed 283 winter wheat genotypes from seven years of the WWEERYT nursery in 

our study. Genotypes included released cultivars and elite experimental lines from four major 

winter wheat regions and 16 countries. One hundred thirty-eight genotypes were from central 

and eastern Europe (CEE), 48 were from central and western Asia (CWA), 38 were from Turkey-

CIMMYT-ICARDA (TCI), and 59 were from the USA. 

 Superior genotypes from the WWEERYT collections were previously identified based on 

high and stable yield performance, resistance to leaf rust (Puccinia triticina Erikss.), stripe rust 

(Puccinia striiformis Westend. F. sp. tritici Eriks.), and stem rust (Puccinia graminis Pers. F. sp. 

tritici Eriks. & E. Henn.), and several agronomic traits (Sharma et al., 2014). Sharma et al. (2014) 

identified 56 superior genotypes from eight years of the WWEERYT, but a seed sample was 

available for only 35 of the 56 superior genotypes. These 35 genotypes were further analyzed in 
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this study to determine if their superior performance was associated with their subpopulation 

classification or program of origin. 

SNP Genotyping 

 Genomic DNA was extracted from bulked leaves of 10 one-wk-old seedlings at the single 

leaf stage using a 96-well format (King Fisher 96 magnetic bead extraction kit) on the King 

Fisher Flex Purification System (Thermo Fisher Scientific Inc., Waltham, MA USA). Genotyping-

by-sequencing library construction was carried out using the restriction enzymes PstI-MspI and 

a protocol modified from Poland et al. (2012). A single blank was included in each plate at 

random locations for quality control to ensure that libraries were not switched during 

preparation and sequencing. All libraries were 192-plexed. The sequencing was performed on 

an Illumina Hi-Seq 2000 at the DNA core facility at the University of Missouri in Columbia, MO. 

Single-nucleotide polymorphism calls were made using the TASSEL-Pipeline (Bradbury et al., 

2007) which uses a reference SNP calling procedure. An Ensembl Plant assembly for wheat was 

used as the reference (Kersey et al., 2013). 

GBS Marker Filtering 

 A total of 75,254 SNP markers were obtained using GBS. A subset of 1,724 markers was 

created by filtering out markers with more than 10% missing data. The average polymorphism 

information content (PIC) for this subset of markers was 0.25. The PIC was calculated as 1-

∑ 𝑝𝑖
2𝑛

𝑖
, where pi is the proportion of the population carrying the ith allele (Anderson et al., 

1993). For bi-allelic markers such as SNPs, the PIC values can range from 0 (fixation of one 

allele) to 0.5 (equal allele frequencies). Markers with a PIC value less than 0.35 across all 
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genotypes were removed. This high PIC value was used to further reduce the GBS marker 

subset to the most discriminating SNP markers for population structure analysis. Markers that 

were immediately adjacent to each other and had the same PIC value were reduced to a single 

marker in order to satisfy the no-linkage assumption for analysis in the software program 

STRUCTURE 2.3.4 (Pritchard et al., 2000). Chromosome positions were available for all markers 

retained. 

Model-Based Population Structure Analysis 

 The software program STRUCTURE 2.3.4 was used to assign individuals to 

subpopulations based on their genotypes at multiple loci using a Bayesian approach. Two 

models with different allele frequency assumptions were used: Model 1 was an admixture 

model with correlated allele frequencies and Model 2 was an admixture model with 

independent allele frequencies (Pritchard et al., 2000). No external a priori information was 

used with either model for determining population structure. 

 Five independent runs were performed for K (subpopulations) values of 1 to 12 for both 

models. A burn-in period of 10,000 iterations and data collection of 50,000 Markov chain 

Monte Carlo (MCMC) iterations were determined to be adequate based on the convergence 

summary statistics. The best separator for the number of subpopulations was determined by 

selecting the K associated with the highest delta K value (Evanno et al., 2005) using the program 

STRUCTURE HARVESTER (Earl, 2012). A series of 25 independent runs were then performed for 

the selected K for each model with a burn-in period of 25,000 iterations and data collection of 

100,000 MCMC iterations. Outputs from STRUCTURE were integrated using the program 

CLUMPP (Jakobsson and Rosenberg, 2007) under the FullSearch algorithm to estimate an 
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average membership coefficient (Q-matrix) for each genotype from the 25 independent runs 

for the optimized K value. 

 Genotypes with membership coefficients greater than or equal to 50% were assigned to 

a distinct subpopulation. Under Model 1, individuals with less than the minimum membership 

coefficient value required to be assigned to a single population were classified as “Mixed”. The 

genetic variation between subpopulations, expressed as Wright’s fixation index (Fst), was tested 

using analysis of molecular variance (AMOVA) implemented in STRUCTURE to measure genetic 

diversity between the subpopulation gene pools. 

Principal Component Analysis 

 Principal component analysis was performed to visualize the dispersion of 

subpopulations, program of origin, and superior genotypes among the 283 WWEERYT 

genotypes using SNPs. Eigenvector values for PCA were calculated using the base function 

‘eigen’ in R 3.2.2 (R Development Core Team, 2014) and plotted using the ggplot package 

(Wickham, 2009) in R. Missing marker data were imputed using the multivariate normal 

expectation maximization (MVN-EM) method (Dempster et al., 1977) using the A.mat function 

in the rrBLUP package (Endelman, 2011) in R. The markers used for PCA were the same subset 

used after GBS marker filtering. 

Results and Discussion 

SNP Markers 

 There were 548 GBS SNP markers with less than 10% missing data, with PIC values 

greater than 0.35, and not in linkage disequilibrium with each other. These 548 highly 
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polymorphic SNP markers were spread across all seven chromosomes on all three genomes 

(Figure 3.1). The B genome had the greatest number of SNPs with 280 followed by the A 

genome with 189 and the D genome with 79. This resulted in an average of 40 SNPs per 

chromosome for the B genome, 27 for the A genome, and 11 for the D genome. Chromosome 

5B had the highest coverage with 70 SNPs and chromosome 4D had the lowest coverage with 

two SNPs (Figure 3.1). The distribution of GBS-derived SNP markers in our study was in 

agreement with previous studies. Using RFLP markers in a collection of winter wheat 

genotypes, Siedler et al. (1994) showed that the B genome had the greatest number of 

polymorphic loci and the D genome had the lowest number of markers. Similar results with 

hexaploid wheat were reported with SSR markers (Huang et al., 2002; Chao et al., 2007), DArT 

markers (Dreisigacker et al., 2012), and other GBS-derived SNP markers (Poland et al., 2012). 

Population Structure Present by Region 

 Clear evidence of population structure in the WWEERYT collections of genotypes was 

observed. Based on the highest delta K values (Evanno et al., 2005), seven unique 

subpopulations were identified with Model 1 and two unique subpopulations were identified 

with Model 2. Under Model 1, subpopulations tended to be defined by a high percentage of 

genotypes from one of the four geographic regions. Populations D and G included genotypes 

exclusively from CEE (Table 3.1). Although populations C and F included genotypes from three 

of the four geographic regions, 85.7% of the genotypes in populations C were from TCI and 

77.5% of the genotypes in population F were from the USA (Table 3.1). Under Model 1, 

population E was the only subpopulation composed of genotypes from each of the four 

geographic regions with 53.6% from CEE, 35.7% from USA, 7.1% from CWA, and 3.6% from TCI 
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(Table 3.1). The model-based methods developed by Pritchard et al. (2000) allowed for the 

inclusion of admixed individuals whose genetic composition is drawn from more than one of K 

subpopulations. This assumption fits well with international nursery collections such as the 

WWEERYT, as individuals are often assigned to one or more subpopulations due to germplasm 

exchange and crosses being made with genotypes from different breeding programs. With the 

potential for genotypes to have partial membership in up to seven subpopulations, many 

individuals did not have the 50% membership threshold to be assigned to a single population 

and thus were classified as Mixed. Under Model 1, Mixed individuals (n=109) included 

genotypes from all four regions with 45.0% from CEE, 21.1% from CWA, 17.4% from TCI, and 

16.5% from USA (Table 3.1). Regions with a higher percentage of genotypes classified as Mixed 

would potentially have a wider germplasm base as their material is composed of germplasm 

from multiple subpopulations rather than from a single population. 

 The FST was calculated using STRUCTURE and varied across subpopulations. FST is defined 

as the correlation of gametes within subpopulations relative to gametes drawn at random from 

the entire population. I observed FST values greater than zero between subpopulations for 

Model 1, which suggested subpopulation differentiation. The FST values for Model 1 ranged 

from 0.20 to 0.56 (Table 3.2). Under Model 1, the highest FST value of 0.56 was between 

population A (n=3) and population D (n=10), possibly due to their smaller sample sizes. The FST 

value of 0.20 under Model 1 was between a population of predominantly TCI genotypes and a 

population of predominantly USA genotypes indicating that these two subpopulations are more 

genetically related. Using DArT marker genotyping, Dreisigacker et al. (2012) reported FST values 

of 0.11 to 0.73 across five subpopulations of 606 spring wheat lines from 25 years of CIMMYT’s 
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Elite Spring Wheat Yield Trial. Cabrera et al. (2014) reported FST values of 0.16 to 0.57 across 

five subpopulations of soft winter wheat lines from the eastern USA. 

Population Structure Further Evident by Country and State Within a Region 

 Genotypes of CEE origin included 138 genotypes from seven different countries (Table 

3.3.). While genotypes of CEE origin were assigned to six of the seven subpopulations under 

Model 1, indicating extensive diversity present among genotypes from this region, there were 

clear differences in population structure within and among countries from this region. 

Genotypes from the Czech Republic were found in only two subpopulations with the majority in 

population E. Genotypes from Hungary that were not classified as Mixed were found 

predominantly in population G while 86.4% of Romanian genotypes were also found in 

population G (Table 3.3). This is in contrast to Russian genotypes found in population B and the 

majority of Ukrainian genotypes found in populations B and D (Table 3.3). Genotypes of CWA 

origin were composed of 48 genotypes from seven different countries (Table 3.3). While 

genotypes of CWA origin were found in four of the seven populations, only a small percentage 

of genotypes exclusively from Kazakhstan were found in population C and a small percentage of 

genotypes from Kazakhstan and Uzbekistan were found in population E (Table 3.3). Genotypes 

from CWA were predominantly found in population B or had high percentages of Mixed 

genotypes. Genotypes of USA origin were present in only two of the seven subpopulations. 

Under Model 1, genotypes of USA origin showed the narrowest diversity with 52.5% of the 

genotypes being assigned to a single subpopulation (population F) while also having the lowest 

percentage of Mixed individuals among the four regions. This trend is even more defined when 

examining germplasm by state origin. Genotypes from Colorado and Nebraska were found 
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exclusively in population F and without any genotypes classified as Mixed. Genotypes from 

Texas, Kansas, and Oklahoma were also found exclusively in population F but with some 

genotypes classified as Mixed. Genotypes from Oregon were the only USA genotypes found in 

population E showing separation from the genotypes from the Great Plains wheat region in the 

USA. Genotypes of TCI origin were not included in Figure 3 or explored any further since they 

could not be further separated into country or state of origin. 

 These results support previous reports that subpopulation structure of wheat genotypes 

correspond to geographic regions (Kim and Ward 2000; Balfourier et al., 2007; Chao et al., 

2007; Tommasini et al., 2007; Le Couviour et al., 2011) and support the notion that 

subpopulation structure within the WWEERYT collections is the result of natural or artificial 

selection due to climatic variables, breeding objectives unique to a region, or exchange of 

germplasm between breeding programs in a region. Under Model 1, genotypes from a 

particular geographic region were assigned at a higher frequency to specific subpopulations. 

However, not all genotypes originating from the same geographic region were appropriated to 

the same population or limited to a single population, in agreement with previous reports 

(Huang et al., 2002; Prasad et al., 2009). 

Superior Genotypes Show Less Population Structure 

 Of the 35 superior genotypes described by Sharma et al. (2014), under Model 1 eight 

were assigned to population B, four to population D, five to population E, four to population F, 

six to population G, and eight as Mixed (Table 3.4). None of the superior genotypes were 

assigned to populations A and C. The lack of superior genotypes from population A may be due 

to its small population size (n=3). The 35 superior genotypes were from all four major regions 
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with 26 from CEE, one from CWA, four from TCI, and four from USA. These 35 superior 

genotypes represented all seven countries from CEE, Kazakhstan from CWA, and Kansas, 

Nebraska, Oregon, and Texas from the USA. The combined results from the Sharma et al. (2014) 

paper and this study show that genotypes that have high and stable yield across a range of 

growing environments can be found from different geographic regions and from different 

subpopulations. This highlights the importance of screening international nurseries in order to 

identify superior genotypes that can be used in new regions and breeding programs since 

geographic origin and subpopulation classification do not provide a clear means for efficiently 

identifying the best subset of genotypes for wide adaptation. 

Principal Component Analysis Displays Relatedness but Does not Define Subpopulations 

 Principal component analysis was used to visualize the relationships among the 283 

WWEERYT genotypes. Principal component one (PC1) explained 9.4% of the variation in the 

data set while principal component two (PC2) explained 4.7% of the variation, together 

accounting for 14.1% of the total variation. This is in agreement with other studies in common 

wheat where the first two principal components accounted for roughly 10% of the total 

variation present among the genotypes studied (Le Couviour et al., 2011; Würschum et al., 

2013; Cabrera et al., 2014). 

 Under Model 1, the mean PC scores assigned to populations A, C, E, and F were 

separated from the mean PC scores of populations B, D, and G according to PC1 (Figure 3.2). 

The subpopulation assignment based on Model 1 was not as readily inferred based on PC1 or 

PC2 position using PCA and was due to the overlap of several subpopulations determined in 

STRUCTURE. Thus, subpopulation assignment based solely on PCA is not recommended for 
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assignment of individuals using the correlated allele frequencies model. In common wheat, 

model-based and PCA approaches have produced similar results when assessing genetic 

diversity (Chao et al., 2010; Zhang et al., 2010; Le Couviour et al., 2011; Cabrera et al., 2014). 

 The mean PC scores of genotypes from CEE and CWA were on one side of the PC1 axis 

while the mean PC scores of genotypes from TCI and USA were on the other side of the PC1 axis 

(Figure 3.3). Each region of origin included some outlier genotypes that could be found on the 

opposing side of the PC1 axis with TCI and USA genotypes having fewer outliers than genotypes 

of CEE and CWA origin. These PCA results agree closely with the percentages of genotypes 

found in each subpopulation for each geographic region for Model 1. The superior performing 

genotypes as identified by Sharma et al. (2014) can be found on both sides of PC1 (Figure 3.4). 

This is in agreement with the best performing genotypes being composed of genotypes from all 

four geographic regions. 

Conclusions 

 The recent expansion of GWAS studies in crop plants to identify QTL underlying complex 

traits requires increased knowledge of population structure in germplasm sets. Information 

gathered from model-based and PCA approaches can also help to identify individuals for 

genomic selection training population development. In summary, this study shows that there is 

reasonable genetic diversity in international winter wheat gene pools with some regions having 

greater diversity than others, and that SNP markers obtained via GBS are effective for 

assessment of genetic diversity and population structure analyses in wheat. Characterization 

and screening of international nurseries shows promise to facilitate introduction of beneficial 

alleles from other countries into gene pools with the potential to broaden wheat genetic 
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diversity within a breeding program or across a region. The population structure and genetic 

diversity analysis provided here will help foster the development of strategies for genetic 

resource management and exploitation across multiple winter wheat growing regions. 
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Tables 
 
 
 
Table 3.1. Number and percentage of genotypes from four geographic regions within each 
subpopulation for the correlated allele frequencies (Model 1). 

Model 1 Populations n CEE† CWA‡ TCI§ USA¶ 

  ----------------- percent (%) ----------------- 

A 3 0.0 66.7 33.3 0.0 
B 51 60.8 39.2 0.0 0.0 
C 14 7.1 7.1 85.7 0.0 
D 10 100.0 0.0 0.0 0.0 

E 28 53.6 7.1 3.6 35.7 
F 40 10.0 0.0 12.5 77.5 
G 28 100.0 0.0 0.0 0.0 

Mixed 109 45.0 21.1 17.4 16.5 
 

† central and eastern Europe 
‡ central and western Asia 
§ Turkey-CIMMYT-ICARDA 
¶ United States 
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Table 3.2. Wright’s fixation index (Fst) pairwise values among seven subpopulations determined 
in the model-based approach in STRUCTURE under the model assumptions of correlated allele 
frequencies (Model 1). 

  B C D E F G 

A 0.50 0.47 0.56 0.48 0.49 0.54 

B - 0.27 0.23 0.28 0.33 0.22 
C 

 
- 0.33 0.20 0.20 0.31 

D 
  

- 0.33 0.34 0.32 
E 

   
- 0.24 0.32 

F 
    

- 0.31 
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Table 3.3. Percentage distribution of each country/state for three of the four geographic 
regions across subpopulations for Model 1. 
 
Region Country/State† n A B C D E F G Mixed 

CEE BUL 30 ‒ 33.3 ‒ 3.3 10.0 ‒ 3.3 50.0 

CEE CZE 10 ‒ ‒ ‒ ‒ 70.0 10.0 ‒ 20.0 
CEE HUN 26 ‒ 3.8 ‒ ‒ 7.7 3.8 30.8 53.8 
CEE MOL 9 ‒ 22.2 11.1 11.1 ‒ 11.1 ‒ 44.4 
CEE ROM 22 ‒ 4.5 ‒ ‒ 4.5 ‒ 86.4 4.5 
CEE RUS 12 ‒ 66.7 ‒ ‒ ‒ ‒ ‒ 33.3 
CEE UKR 29 ‒ 31.0 ‒ 27.6 6.9 3.4 ‒ 31.0 

CWA ARM 3 ‒ 33.3 ‒ ‒ ‒ ‒ ‒ 66.7 

CWA AZB 4 25.0 25.0 ‒ ‒ ‒ ‒ ‒ 50.0 
CWA GEO 1 ‒ ‒ ‒ ‒ ‒ ‒ ‒ 100.0 
CWA KAZ 15 ‒ 66.7 6.7 ‒ 6.7 ‒ ‒ 20.0 
CWA KYR 10 ‒ 20.0 ‒ ‒ ‒ ‒ ‒ 80.0 
CWA TUR 5 ‒ 20.0 ‒ ‒ ‒ ‒ ‒ 80.0 

CWA UZB 10 10.0 50.0 ‒ ‒ 10.0 ‒ ‒ 30.0 
USA CO 5 ‒ ‒ ‒ ‒ ‒ 100.0 ‒ ‒ 

USA KS 10 ‒ ‒ ‒ ‒ ‒ 60.0 ‒ 40.0 
USA NE 5 ‒ ‒ ‒ ‒ ‒ 100.0 ‒ ‒ 
USA OK 12 ‒ ‒ ‒ ‒ ‒ 33.3 ‒ 66.7 
USA OR 14 ‒ ‒ ‒ ‒ 71.4 ‒ ‒ 28.6 
USA TX 13 ‒ ‒ ‒ ‒ ‒ 84.6 ‒ 15.4 

 
† BUL=Bulgaria, CZE=Czech Republic, HUN=Hungary, MOL=Republic of Moldova, 
ROM=Romania, RUS=Russia, UKR=Ukraine, ARM=Armenia, AZB=Azerbaijan, 
GEO=Georgia, KAZ=Kazakhstan, KYR=Kyrgyzstan, TUR=Turkey, UZB=Uzbekistan, 
CO=Colorado, KS=Kansas, NE=Nebraska, OK=Oklahoma, OR=Oregon, TX=Texas 
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Table 3.4. Total number and percentage of genotypes assigned for each subpopulation for 
Model 1 by percentage of superior genotypes from each of the four geographic regions.   

Model 1 Populations n CEE† CWA‡ TCI§ USA¶ 

  ----------------- percent (%) ----------------- 

A 0 0.0 0.0 0.0 0.0 
B 8 87.5 12.5 0.0 0.0 
C 0 0.0 0.0 0.0 0.0 
D 4 100.0 0.0 0.0 0.0 
E 5 80.0 0.0 0.0 20.0 
F 4 0.0 0.0 25.0 75.0 
G 6 100.0 0.0 0.0 0.0 

MIXED 8 62.5 0.0 37.5 0.0 

Total (n) 
 

26 1 4 4 
 

† central and eastern Europe 
‡ central and western Asia 
§ Turkey-CIMMYT-ICARDA 
¶ United States 

  



 
104 

 

Figures 
 
 
 

 

Figure 3.1. Distribution of 548 single nucleotide polymorphism markers across all seven 
chromosomes on all three genomes of common wheat. 
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Figure 3.2. Principal component analysis displaying the eigenvector values for PC1 and PC2 
using 548 single nucleotide polymorphism markers. Population assignment is shown for each 
WWEERYT genotype under the correlated allele frequencies model with membership 
coefficients greater than or equal to 50% (Model 1). The smaller circles show each individual 
genotype and their subpopulation assignment while the larger circles show the average 
eigenvector values among all genotypes for a subpopulation. 
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Figure 3.3. Principal component analysis displaying the eigenvector values for PC1 and PC2 
using 548 single nucleotide polymorphism markers. Geographic region of origin with each 
genotype color-coded based on passport data assigning it to one of four geographic regions. 
The smaller circles show each individual genotype while the larger circles show the average 
eigenvector values among all genotypes for a region. 
  



 
107 

 

 

Figure 3.4. Principal component analysis displaying the eigenvector values for PC1 and PC2 
using 548 single nucleotide polymorphism markers. Thirty-five of the best performing 
genotypes from seven years of WWEERYT trials are identified. The smaller circles show each 
individual genotype while the larger circles show the average eigenvector values among all 
genotypes for the best performing individuals and the other individuals. 
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GENOMIC SELECTION FOR WINTER INJURY AMONG A DIVERSE COLLECTION OF FACULTATIVE 

AND WINTER WHEAT GENOTYPES 

 
 

 Winter injury is an important abiotic constraint for hard winter wheat (Triticum 

aestivum L.) in the Great Plains of North America (Paulsen and Shroyer, 2008; Fowler, 2012). 

Cold tolerant plants are able to survive the freezing winter temperatures and prevent damage 

to plant tissues that can negatively impact yield potential (Galiba et al., 2009). Vernalization, 

the process of prolonged exposure to low temperature to accelerate flowering, is vital for 

winter wheat as it protects sensitive floral organs from exposure to freeze damage during 

winter and early spring (Fowler et al., 1996; Distelfeld et al., 2009; Galiba et al., 2009). Based on 

differences in the vernalization requirement, wheat cultivars may be classified as winter, 

facultative, and spring habit types. Winter-types require a vernalization period of 6-8 weeks at 4 

°C to complete spike primordia differentiation (Gardner and Barnett, 1990), facultative-types 

need only 2-4 weeks (Rousset el al., 2011), and spring-types complete spike primordia 

differentiation without any low temperature exposure. 

 The cause of spring growth type is a mutation within the promoter or the first intron at 

one or more Vrn-1 loci (Vrn-A1, Vrn-B1, and Vrn-D1), located on the long arm of the group 5 

chromosomes (Yan et al., 2004; Fu et al., 2005; Santra et al., 2009; Trevaskis, 2010; Zhang et al., 

2012). A dominant Vrn-A1 allele is sufficient to cause spring growth habit while recessive alleles 

at all three loci are required for winter growth habit (Zhang et al., 2012; Kamran et al., 2014). 

The dominant Vrn-A1a allele has the most dramatic effect on the development of spring growth 

habit, while dominant alleles at the Vrn-B1 and Vrn-D1 loci only partially reduce the need for 
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cold treatment (Pugsley, 1971, 1972). Thus, genotypes with the dominant alleles at Vrn-B1 and 

Vrn-D1 show some slight response to vernalization (Santra et al., 2009). 

 In addition to the vernalization requirement, the transition from vegetative to 

reproductive development may be influenced by response to day length. Photoperiod response 

is controlled primarily by alleles at two photoperiod loci (Ppd-B1 and Ppd-D1) located on the 

short arm of the group 2 chromosomes in wheat (Law et al., 1978; Scarth and Law, 1984; 

Worland et al., 1998; Cockram et al., 2007). Dominant alleles at photoperiod loci confer day 

length insensitivity (or ‘day-length neutral’) and earlier flowering while recessive alleles confer 

day length sensitivity and later flowering (Pugsley, 1966; Scarth and Law, 1984). Any factor that 

maintains the plant in the vegetative stage, such as a vernalization requirement or photoperiod 

sensitivity, increases low temperature tolerance by maintaining low temperature tolerance 

genes in an up-regulated state (Fowler et al., 1996; Mahfoozi et al., 2000; Limin and Fowler, 

2006). Although alleles at vernalization and photoperiod loci exert a major effect on low 

temperature response through the timing of the transition from vegetative to reproductive 

development, at least 15 of hexaploid wheat's 21 chromosomes have been associated with low 

temperature tolerance (Stushnoff et al., 1984; Sutka, 1994). Additionally, multiple 

morphological and physiological characteristics have been shown to influence low temperature 

response (Fowler et al., 1981; Gusta and Wisniewski, 2013).  

 The International Winter Wheat Improvement Program (IWWIP) is a cooperative 

breeding program between the Ministry of Agriculture and Rural Affairs of Turkey, the 

International Maize and Wheat Improvement Center (CIMMYT), and the International Center of 

Agricultural Research in the Dry Areas (ICARDA) (Morgounov et al., 2005). The IWWIP 
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distributes the Facultative and Winter Wheat Observation Nursery (FAWWON) to breeding 

programs around the world (Rajaram et al., 1993; Morgounov et al., 2012). Elite breeding lines 

distributed through international performance nurseries facilitate the introduction and 

exchange of improved germplasm between developing and developed countries (Peterson and 

Pfeiffer, 1989; Sharma et al., 2014). As the cost of obtaining genetic markers drops below the 

cost of evaluating individuals over years and locations, genomic information can more 

affordably be leveraged to predict phenotypic performance (Bernardo, 2008; Cobb et al., 2013). 

This will assist in identifying individuals that are best adapted to regions where severe winter 

conditions are an important production constraint. 

 Genomic selection (GS) is a technique that leverages genome-wide DNA markers with 

plant phenotypes to enable trait prediction earlier in the breeding cycle and potentially 

accelerate genetic gain for genetically complex traits (Heffner et al., 2009; Crossa et al., 2010; 

Jannink et al., 2010; Burgueño et al., 2012). Genomic selection involves the estimation of an 

individual's breeding value based on genome-wide marker effects using a training population 

consisting of individuals with both marker genotypes and trait phenotypes (Meuwissen et al., 

2001). A GS prediction model would be particularly useful for low temperature tolerance since 

this phenotype may not be available for evaluation in all environments or growing seasons. 

Ridge regression best linear unbiased prediction (RR-BLUP) is a common method used for GS 

(Whittaker et al., 2000; Endelman, 2011). The best way of using molecular markers in GS largely 

depends on the genetic architecture of the trait (Bernardo, 2008). For a given number of 

markers (NM), RR-BLUP assumes that each marker accounts for (1/NM)th of genetic variation 

(VG). If one of the markers corresponds to a known major gene, the assumption of common 
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variance for the known major gene leads to an underestimation of the estimated effects of the 

major gene (Bernardo, 2014). An alternative to the RR-BLUP model is to model any known 

major quantitative trait loci (QTL) as having fixed effects while keeping the unknown minor QTL 

as random effects. Several studies have shown an improvement in GS prediction accuracy when 

trait-associated or functional markers are included as fixed effects in a GS model (Bernardo, 

2014; Daetwyler, 2014; Moore et al., 2017). 

 In this study I examined the effectiveness of GS prediction of low temperature tolerance 

in a collection of individuals from the FAWWON using winter injury as the phenotype of 

interest. The objectives of this study were to i) compare GS prediction accuracy with 

vernalization and photoperiod alleles as fixed effects to a GS approach where only genome 

wide single nucleotide polymorphism (SNP) markers were treated as random effects and ii) 

identify the vernalization and photoperiod loci that provide the greatest increase in GS 

prediction of winter injury when used as fixed effects in a mixed effects GS model. 

Materials and Methods 

Germplasm, experimental layout, and phenotypic evaluation 

 Genotypes from three years of the FAWWON were included in these experiments 

(n=287 individuals), including individuals from the 20th FAWWON, 21st FAWWON, and 22nd 

FAWWON. All accessions included in this study are elite genotypes representing released 

cultivars and experimental lines. The FAWWON genotypes represented breeding programs 

from Turkey-CIMMYT-ICARDA (TCI), United States (U.S.), Iran, Romania, Kazakhstan, Russia, 

Bulgaria, Turkey, and Syria. Six total environments were used, which included field experiments 

at both Fort Collins (sprinkler irrigated) and Julesburg (non-irrigated) Colorado in the 2014 (112 
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genotypes), 2015 (200 genotypes), and 2016 (186 genotypes) growing seasons. Within years, 

the same genotypes were grown at both locations. All 112 genotypes from the 20th FAWWON 

that were evaluated in 2014 were evaluated in 2015 with an additional 88 genotypes from the 

21st FAWWON. Genotypes with high levels of winter injury at both locations in 2015 were not 

re-evaluated in 2016. Experiments in 2016 included 69 genotypes from the 20th FAWWON 

(third year of evaluation), 30 genotypes from the 21st FAWWON (second year of evaluation), 

and 87 genotypes from the 22nd FAWWON (first year of evaluation). In 2014, genotypes were 

arranged in an augmented row-column design with the local cultivar 'Byrd' (Haley et al., 2012) 

as a repeated check. In 2015 and 2016, genotypes were arranged in a partially replicated row-

column design with Byrd as a repeated check. Randomizations were prepared using the 

package DiGGer (Coombes, 2009) in R (R Development Core Team, 2014). All experiments were 

planted in six-row plots, 3.7 m long and 1.8 m wide, with 0.3 m spacing between rows. The 

planting dates for the six environments were: October 3, 2013 for Fort Collins 2014; September 

25, 2013 for Julesburg 2014; September 24, 2014 for Fort Collins 2015; September 17, 2014 for 

Julesburg 2015; September 25, 2015 for Fort Collins 2016; and September 15, 2015 for 

Julesburg 2016. 

 Plant emergence in the field experiments was visually assessed approximately two 

months after planting (Zadoks stage 15; Zadoks et al., 1974) to ensure that subsequent winter 

injury ratings were not misclassified due to poor germination or non-uniform emergence. 

Uniform germination and excellent fall plant stands were observed at all locations. Winter 

injury was visually assessed in early spring (Zadoks stage 25) on a 0 percent (no injury) to 100 

percent (all dead plants) scale. 
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GBS-based SNP genotyping 

 Genomic DNA was extracted from bulked leaves of 10 one-wk-old seedlings at the single 

leaf stage in a 96-well format using King Fisher 96 magnetic bead extraction kits on the King 

Fisher Flex Purification System (ThermoFisher Scientific Inc., Waltham, MA, U.S.A.). Genotyping-

by-sequencing library construction was carried out using the restriction enzymes PstI and MspI 

using a protocol modified from Poland et al. (2012). A single blank was included at random 

positions in each plate for quality control to ensure library identity. Sequencing was performed 

at 192-plex on an Illumina Hi-Seq 2000 at the DNA core facility at the University of Missouri in 

Columbia, MO. Single-nucleotide polymorphism (SNP) calls were made using the TASSEL-GBSv1 

Pipeline (Glaubitz et al., 2014), which is a reference-based SNP calling procedure. The 

International Wheat Genome Sequencing Consortium (IWGSC) Chromosome Survey Sequence 

was used as the reference genome (IWGSC, 2014). Missing marker data were imputed using the 

multi-variate normal expectation maximization (MVN-EM) method (Dempster et al., 1977) 

within the A.mat function in the rrBLUP package (Endelman, 2011) in R. The GS analysis used 

23,269 SNPs based on markers having less than 30% missing data across the set of FAWWON 

genotypes. 

KASP marker analysis 

 Genotypes at three vernalization loci and two photoperiod loci were obtained from 

Kompetitive Allele Specific PCR (KASP) assays done using the same DNA samples used for GBS 

library preparation. Polymorphisms were identified using LGC Genomics 

(http://www.lgcgroup.com) KASP system fluorescent assays. Polymerase chain reaction (PCR) 

was run on Bio-Rad C1000 thermal cyclers (Bio Rad, Hercules, CA, U.S.A.) using a reaction 
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volume of 8.0 μl, consisting of 4 μl KASP V4.0 2x master mix with 0.11 μl KASP assay mix, and 4 

μl of template DNA (20 ng μl-1). Thermal cycling conditions included a hot-start activation and 

initial denaturation at 94 °C for 15 min followed by 10 cycles of step-down amplification 

involving 20 s of denaturation at 94 °C, 60 s of annealing, and extension at 65 °C (decreasing 0.6 

°C per cycle). This was followed by 26 cycles of amplification involving 20 s of denaturation at 

94 °C and 60 s of annealing/extension at 57 °C. This protocol included 3 recycles, each 

consisting of 3 cycles of a 20 s denaturation at 94 °C and a 60 s annealing/extension at 57 °C. 

Fluorescence was read on a Bio-Rad CFX96 Touch Real-Time Detection System and genotypes 

were assigned using Bio-Rad CFX Manager 2.1 (Bio Rad, Hercules, CA, U.S.A.). 

 Kompetitive Allele Specific PCR assays were acquired from published sequences to 

distinguish alleles at the Vrn-A1, Vrn-B1, Vrn-D1, Ppd-B1, and Ppd-D1 loci. A single KASP assay 

was used to distinguish between two winter alleles at Vrn-A1 (Chen et al., 2009), designated as 

vrn-A1w and vrn-A1v by Eagles et al. (2011), that show differences in dormancy release and low 

temperature tolerance. Three different KASP assays were used to distinguish three known 

spring alleles (Vrn-B1a, Vrn-B1b, and Vrn-B1c) from the winter allele (vrn-B1) at Vrn-B1 (Santra 

et al., 2009). The spring (Vrn-D1) and winter (vrn-D1) alleles at Vrn-D1 were distinguished using 

a single KASP assay (Fu et al., 2005). Spring alleles at Vrn-A1 were not assayed since the 

dominant Vrn-A1a allele has the most dramatic effect on the development of spring growth 

habit (Pugsley, 1971, 1972; Santra et al., 2009; Eagles et al., 2010), and true spring wheat types 

were not part of the FAWWON collection. 

 The photoperiod sensitive allele (Ppd-B1b) at Ppd-B1 was determined using an assay 

that detects the ‘Chinese Spring’ photoperiod insensitive (Ppd-B1a) allele (Beales et al., 2007). 
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The photoperiod insensitive (Ppd-D1a) and sensitive (Ppd-D1b) alleles at Ppd-D1 were 

distinguished using a KASP assay that detects a deletion upstream of the coding region 

responsible for the photoperiod insensitive or ‘Ciano 67’-type allele (Beales et al., 2007).  

Statistical analysis 

 Best linear unbiased predictors (BLUPs) of winter injury were calculated separately for 

each environment using ASReml-R (VSN International Ltd., Hemel Hempstead, UK). Data for 

each environment were analyzed with a series of spatial models that included genotype, row, 

and column coordinates as random effects, and several different residual error terms specified 

in the rcov argument within ASReml-R (Gilmour et al., 2009). The restricted maximum likelihood 

(REML) loglikelihood value was used to select the best model. 

In order to obtain BLUPs of each genotype for a combined analysis across all 

environments, winter injury data from the FAWWON trials were analyzed with ASReml-R using 

a two-stage procedure (Piepho et al., 2008). In the first stage, data from individual 

environments were analyzed with a series of spatial models as described above. The restricted 

maximum likelihood (REML) loglikelihood value was used to select the best model as done 

previously. Best linear unbiased estimates (BLUEs) from the first stage of the analysis were then 

subject to a combined analysis over environments with environments and genotypes as random 

effects. Environment specific error variance weights were calculated for each environment and 

utilized with the weights argument within the ASReml call. The weightings were calculated as 

(Reps/Trial EMS)/Average EMS, where Reps is the number of replications for each trial, Trial 

EMS is the error mean square for each trial, and the Average EMS is the average of the error 

mean squares over the five trials where winter injury was observed.  
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 Genomic selection prediction accuracies of three different models were compared: the 

Fixed effects model used only KASP assay allele calls at the three vernalization and two 

photoperiod loci as fixed effects; the Random effects model used the 23,269 GBS SNP markers 

as random effects; and the Mixed effects model used both KASP markers as fixed effects and 

GBS SNP markers as random effects. Genomic estimated breeding values (GEBVs) were 

calculated using rrBLUP (Endelman, 2011) in R using the following model: 

𝑦 = 𝑋𝛽 + 𝑍𝜇 + 𝜀 

 where 𝑋 is the design matrix (n x p) allocating fixed effect values to individuals and 𝛽 as 

a vector (p x 1) of fixed effects, 𝑍 is a design matrix (n x p) for random effects allocating marker 

values to individuals, 𝜇 is a vector of random effects, and 𝜀 is a vector of errors with a variance 

𝜎𝜀
2. 

 Five-fold cross validation was used to assess model accuracy by assigning genotypes to 

one of five folds and using four of the folds to train the model and predict the GEBVs for the 

fifth fold for validation. The GS accuracy was calculated as the correlation between the GEBVs 

and phenotype BLUPs for individuals in the validation set. To compute model accuracy, 300 

cycles of cross validation were performed and the average correlation was determined. The 

standard error of the mean prediction accuracy was calculated as the standard deviation 

divided by the square root of the number of cross validation cycles. 

Results and Discussion 

Winter injury variation across environments 

 Relatively little winter injury was observed in 2014 with none recorded at Fort Collins 

and an average of 15.2% at Julesburg (maximum of 98.9%) (Figure 4.1). In 2015, significant 
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winter injury was observed at both locations with average winter injury of 45.7% (maximum of 

99.7%) at Fort Collins and 84.4% (maximum of 100%) at Julesburg. In 2016, observed winter 

injury was more similar to that observed in 2014, with average winter injury of 2.6% (maximum 

of 89.4%) at Fort Collins and 9.2% (maximum 71.9%) at Julesburg. The degree and consistency 

of winter injury observed across the six environments indicate that the FAWWON includes 

individuals with different levels of sensitivity to freezing temperatures. This may be due to the 

nursery including both facultative and winter habit wheats and their respective differences in 

vernalization requirements. Screening methods that do not require field evaluations would help 

to identify individuals that are not low temperature tolerant and thus not adapted to a 

particular growing region without the need for a costly season-long field evaluation that may 

not provide differential winter injury (as observed for Fort Collins 2014). 

Allelic diversity at vernalization and photoperiod loci 

 The 287 FAWWON individuals were genotyped for alleles at three vernalization loci and 

two photoperiod loci (Table 4.1). The Vrn-A1 KASP assay identified 73 individuals as 

homozygous for the vrn-A1v allele and 214 individuals as homozygous for the vrn-A1w allele. 

These two winter alleles are responsible for differences in dormancy release and freezing 

tolerance with the vrn-A1v allele showing reduced vernalization requirement compared to the 

vrn-A1w allele (Eagles et al., 2011; Zhu et al., 2014). These alleles are also associated with copy 

number variation with the vrn-A1v allele having two or fewer copies of the gene and the vrn-

A1w allele having three or more copies (Zhu et al., 2014). Increased copy number results in a 

greater vernalization requirement and later flowering when the vernalization requirement is 

only partially met (Diaz et al., 2012). The Vrn-B1a KASP assay identified 102 individuals 
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homozygous for the Vrn-B1a spring allele, 146 individuals homozygous for the vrn-B1 winter 

allele, and 39 individuals as heterozygous. The Vrn-B1b KASP assay identified nine individuals 

homozygous for the Vrn-B1b spring allele, 276 genotypes homozygous for the vrn-B1 winter 

allele, and two individuals as heterozygous. None of the individuals evaluated had the Vrn-B1c 

allele. The Vrn-D1 KASP assay identified 70 individuals as homozygous for the Vrn-D1 spring 

allele and 217 individuals homozygous for the vrn-D1 winter allele. 

 Allelic diversity of vernalization genes has been characterized in several worldwide 

(Iwaki et al., 2001; Kiss et al., 2014) and regional collections (Zhang et al., 2008; Grogan et al., 

2016) of wheat. These analyses have indicated that allelic variation at vernalization loci is 

closely associated with winter temperatures in the growing region (Iwaki et al., 2001). Grogan 

et al. (2016) did not detect any spring-habit alleles at Vrn-A1, Vrn-B1, or Vrn-D1 loci in a 

collection of contemporary and historic winter wheat individuals from the U.S. Great Plains. 

This suggests that strict selection pressure has been placed on true winter wheat types with a 

long vernalization requirement, but also demonstrates a high degree of genetic uniformity for 

vernalization alleles present in U.S. hard winter wheat germplasm. International nursery 

collections such as the FAWWON could be used to introduce vernalization alleles with slight 

differences in vernalization requirements that may allow for adaptation to different growing 

conditions in the U.S. Great Plains. 

 The Ppd-B1 KASP assay identified four individuals homozygous for the photoperiod 

insensitive Ppd-B1a allele and 283 individuals homozygous for the photoperiod sensitive Ppd-

B1b allele. The Ppd-D1 KASP assay identified 217 individuals homozygous for the Ppd-D1a 

photoperiod insensitive allele, 68 individuals homozygous for the photoperiod sensitive Ppd-
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D1b allele, and two as heterozygous. Studies in the U.S. northern Great Plains found that 

photoperiod insensitive lines were earlier to head and shorter in stature than their photoperiod 

sensitive counterparts (Busch et al., 1984; Marshall et al., 1989). In a collection of 

contemporary and historic winter wheat genotypes grown in the U.S. Great Plains, 57% carried 

the sensitive Ppd-B1b allele and 43% carried the insensitive Ppd-B1a allele, while 71% carried 

the photoperiod sensitive allele Ppd-D1b and 29% carried the insensitive Ppd-D1a allele 

(Grogan et al., 2016). The ratios of photoperiod sensitive to insensitive alleles between the 

FAWWON individuals in this study and the individuals from the U.S. Great Plains in the study by 

Grogan et al. (2016) are significantly different for both Ppd-B1 and Ppd-D1. This could influence 

adaptation of FAWWON individuals in the U.S. Great Plains. Understanding the genetic factors 

that control low temperature tolerance at the molecular level is imperative for early screening 

to help foster the utilization and exchange of FAWWON germplasm across diverse global winter 

wheat production regions. 

 Among the 287 FAWWON individuals, 17 unique haplotypes were observed when 

considering the vernalization KASP assay results (Table 4.2). The most common haplotypes 

were Vrn-A1, w/Vrn-B1b, winter/Vrn-B1b, winter/Vrn-B1c, winter/Vrn-D1, winter (79 entries, 

27.5%) which represents true winter habit types with all winter alleles; Vrn-A1, w/Vrn-B1a, 

spring/Vrn-B1b, winter/Vrn-B1c, winter/Vrn-D1, winter (56 entries, 19.5%) which represents a 

non-winter wheat growth type with a single spring allele at the Vrn-B1 locus; and Vrn-A1, 

v/Vrn-B1a, winter/Vrn-B1b, winter/Vrn-B1c, winter/Vrn-D1, winter (36 entries, 12.5%) which 

represents a reduced vernalization winter type. There was a reduced vernalization or spring 

allele in a homozygous state at one or more vernalization loci in 187 (65%) of the FAWWON 
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individuals. Multiple reduced vernalization or spring alleles in a homozygous state were found 

in 54 (18.8%) of the FAWWON individuals (Table 4.2). The transition from vegetative to 

reproductive growth is a critical development switch and key adaptive trait. Any factor that 

maintains the plant in the vegetative stage, such as increased vernalization requirement or 

photoperiod sensitivity, also increases the duration and expression of low temperature 

tolerance (Fowler et al., 1996; Mahfoozi et al., 2000; Limin and Fowler, 2006). Allelic differences 

at these vernalization and photoperiod loci may help identify FAWWON individuals that are 

more susceptible to low temperatures found in the U.S. Great Plains. 

Genomic selection prediction accuracies 

 Genomic selection could only be done using data from five of the six environments due 

to the lack of winter injury at Fort Collins 2014. Prediction accuracies for the Fixed effects 

model, where only genotypes at vernalization and photoperiod loci were used as fixed effects, 

ranged from 0.26 ± 0.01 to 0.57 ± 0.01 across the five environments and the combined data set 

(Figure 4.2). Prediction accuracies for the Random effects model, where the 23,269 SNP 

markers were treated as random effects, ranged from 0.26 ± 0.01 to 0.74 ± 0.01 across the five 

environments and the combined data set (Figure 4.2). The GS prediction accuracies observed in 

this study were comparable to Zhao et al. (2013) who reported a GS prediction accuracy of 0.58 

for frost tolerance in wheat. 

 Prediction accuracies for the Random effects model were greater than the Fixed effects 

model in 2014, 2015, and the combined data set (Figure 4.2a, b, & d). In 2016, prediction 

accuracies for winter injury with the Random and Fixed effects models were not different 

(Figure 4.2c). These results indicate that even with a few known major QTL controlling low 
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temperature tolerance, modeling genome wide marker effects helps to explain a greater 

portion of the phenotypic variance for the trait than only modeling known major genes. The 

results for 2014, 2015, and the combined data set support the hypothesis that low temperature 

tolerance is controlled by more genes than just the major vernalization and photoperiod loci 

evaluated in this study. 

Single factor fixed effect models 

 Each vernalization and photoperiod locus was individually treated as a fixed effect, while 

also modeling the 23,269 SNP markers as random effects, to determine the effect of each locus 

on GS prediction accuracy of winter injury in the Mixed effects model. When the alleles at Vrn-

A1 were treated as fixed effects, an increase in GS prediction accuracy above the Random 

effects model was observed for Julesburg 2014 (Figure 4.2a), Fort Collins 2015 and Julesburg 

2015 (Figure 4.2b), and the combined data set (Figure 4.2d). Modeling the alleles at Vrn-A1 as 

fixed effects in the Mixed effects model resulted in reduced GS prediction accuracy compared 

to the Random effects model for Fort Collins 2016 and Julesburg 2016 (Figure 4.2c). Using 

alleles at Vrn-A1 as a fixed effect, the greatest increase in prediction accuracy above the 

Random effects model was from 0.61 ± 0.00 to 0.68 ± 0.00 (11.5%) for Julesburg 2014 (Figure 

4.2a). 

 A Mixed effects model with alleles at Vrn-B1 treated as fixed effects showed slightly 

reduced prediction accuracy compared to the Random effects model for Julesburg 2014 (Figure 

4.2a), Fort Collins 2015 (Figure 4.2b), and Fort Collins 2016 (Figure 4.2c). Eagles et al. (2010) 

reported that spring alleles at the Vrn-1 loci do not reduce heading date equally with Vrn-B1 

having a smaller effect than Vrn-A1 and Vrn-D1. These results agree with this our study, as 
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when treated as a fixed effect Vrn-B1 was not consistently or highly effective in increasing GS 

prediction accuracy above the Random effects model prediction accuracy. 

 A Mixed effects model with alleles at Vrn-D1 treated as fixed effects showed increased 

prediction accuracy compared to the Random effects model in the combined data set (Figure 

4.2d) and each environment except Julesburg 2015, where no difference in prediction accuracy 

was observed (Figure 4.2a, b, & c). The greatest increase in prediction accuracy was observed 

for Julesburg 2016 where accuracy increased 36% from 0.36 ± 0.01 to 0.49 ± 0.01 (Figure 4.2c). 

The results presented here highlight the importance of genotyping individuals at Vrn-D1 when 

screening for low temperature tolerance as it was shown to be the most consistent 

vernalization locus for increasing GS prediction accuracy and the locus with the single greatest 

effect in increasing prediction accuracy. Zhang et al. (2012) also reported that facultative 

wheats show sequence variation at the Vrn-D1 locus. 

 No improvement in GS prediction accuracy was observed in the combined data or in the 

individual environments when either photoperiod allele was used as a fixed effect (Figure 4.2). 

For Fort Collins 2016, the Mixed effects models with alleles at Ppd-B1 or Ppd-D1 as fixed effects 

decreased GS prediction accuracy (Figure 4.2c). Although, photoperiod genes influence the 

timing of the transition from vegetative to reproductive growth (Cockram et al., 2007) they did 

not appear to be associated with variation in winter injury among individuals from the 

FAWWON. 

Multi-factor fixed effects models 

 A Mixed effects model with alleles at all three vernalization loci as fixed effects and 

23,269 GBS SNPs as random effects was evaluated to determine their combined effect on GS 
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prediction accuracy compared to the Random effects model and the best single locus Fixed 

effects model. Using all three loci as fixed effects resulted in a greater GS prediction accuracy 

above the Random effects model in all five environments and the combined data set (Figure 

4.3a, b, c & d). The greatest increase in prediction accuracy (38.9%) observed was from 0.36 ± 

0.01 to 0.50 ± 0.01 for Julesburg 2016 (Figure 4.3c). This model outperformed or performed the 

same as the best single locus Fixed effects model for each environment and the combined data 

set (Figure 4.3). 

 A Mixed effects model with alleles at both photoperiod loci as fixed effects and the GBS 

SNP markers as random effects showed similar prediction accuracy as the Random effects 

model for each environment and the combined data set (Figure 4.3), in agreement with that 

observed for the Mixed effects model with individual photoperiod loci as fixed effects. While 

the Mixed effects model with all vernalization and photoperiod loci as fixed effects and SNP 

markers as random effects showed higher prediction accuracy than the Random effects model 

in some environments, it showed no higher prediction accuracy than the Mixed effects model 

with vernalization loci together as fixed effects (Figure 4.3).  

 Mixed effects models were shown to be effective in accounting for major and minor 

genetics effects and provided the most accurate estimates of GEBV for low temperature 

tolerance in this collection of FAWWON lines. Identifying genotypes with high GEBV for winter 

hardiness could help identify individuals best adapted to regions with severe cold where only 

spring wheat types can be grown. A shift to over wintering wheat types with higher cold 

tolerance in these areas would help to increase wheat yields as winter wheat types generally 
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have greater yield potential than spring wheat due to an extended growing season (Randhawa 

et al., 2013).  

Conclusions 

 This collection of genotypes from the FAWWON include both facultative and winter 

wheat types with considerable variation for both low temperature sensitivity and allelic 

diversity at the major vernalization loci. While field winter survival ability is considered the 

ultimate test of a cultivar’s winter hardiness, obtaining such data from field trials is costly and 

often hampered by the lack of differential winter injury in a particular growing environment. 

Because of this limitation, GS can be an effective method for prediction of low temperature 

tolerance among germplasm collections. An understanding of the underlying genetic controls, 

and how to optimize GS models for predicting low temperature tolerance, is important for plant 

breeders to target germplasm to different production regions with variable environmental 

conditions.  

 The mixed effects model approach to GS allows for known vernalization loci with large 

effects to be included in a model with genome wide SNP markers for unknown smaller effect 

QTLs. Genomic selection using all three vernalization loci as fixed effects in combination with 

genome wide SNP markers appears to be the most effective method for predicting low 

temperature tolerance in this collection.  
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Tables 
 
 
 
Table 4.1. Description of the vernalization (Vrn) and photoperiod (Ppd) alleles and their 
predicted phenotypes. 

Locus Allele Phenotype 

Vrn-A1 vrn-A1w winter growth habit, higher freezing tolerance, Wichita-type 

 
vrn-A1v winter growth habit, reduced freezing tolerance, Veery-type 

Vrn-B1 Vrn-B1a spring growth habit 

 
Vrn-B1b spring growth habit 

 
Vrn-B1c spring growth habit 

 
vrn-B1 winter growth habit 

Vrn-D1 Vrn-D1 spring growth habit 

 
vrn-D1 winter growth habit 

Ppd-B1 Ppd-B1a photoperiod insensitive 

 
Ppd-B1b photoperiod sensitive 

Ppd-D1 Ppd-D1a photoperiod insensitive 

 
Ppd-D1b photoperiod sensitive 
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Table 4.2. Summary of haplotypes of 287 individuals from the Facultative and Winter Wheat 
Observation Nursery (FAWWON) based on Kompetitive Allele Specific PCR assays at the 
vernalization loci.  

n Vrn-A1† Vrn-B1a Vrn-B1b Vrn-B1c Vrn-D1 

79 w Winter Winter Winter Winter 

27 w Winter Winter Winter Spring 

56 w Spring Winter Winter Winter 

16 w Spring Winter Winter Spring 

4 w Spring Spring Winter Winter 

1 w Spring Het Winter Winter 

20 w Het Winter Winter Winter 

9 w Het Winter Winter Spring 

1 w Het Het Winter Winter 

1 w Het Spring Winter Winter 

36 v Winter Winter Winter Winter 

4 v Winter Winter Winter Spring 

12 v Spring Winter Winter Winter 

9 v Spring Winter Winter Spring 

4 v Spring Spring Winter Winter 

5 v Het Winter Winter Spring 

3 v Het Winter Winter Winter 
 

† The Vrn-A1 KASP assay results are designated as ‘v’ for reduced vernalization and ‘w’ 

for regular vernalization winter alleles. The Vrn-B1a, Vrn-B1b, Vrn-B1c, and Vrn-D1 KASP 

assay results are designated as Spring (no vernalization requirement) and Winter 

(vernalization requirement). Heterozygous allele calls are designated with ‘Het’. 
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Table 4.3. Description of Kompetitive Allele Specific PCR (KASP) assays used to genotype 287 individuals from the Facultative and Winter Wheat 
Observation Nursery (FAWWON) for alleles at major vernalization and photoperiod loci.   
     

Locus Allele(s) assayed Primer name Label Primer Sequence Control Genotypes 

Vrn-A1 vrn-A1v Vrn-A1_AL1 FAM CAACTCCTTGAGATTCAAAGATTCAAG Jagger 

 
vrn-A1w Vrn-A1_AL2 HEX GCAACTCCTTGAGATTCAAAGATTCAAA Above, 2174 

    Vrn-A1_C1   CATCCTGCATCTGCAGGCATCTC   

Vrn-B1 vrn-B1 Vrn-B1_D_A2 FAM GGCAGCTAATGTGGGGTAGTCT Jagger, Above 

  
Vrn-B1_D_C1s 

 
ATTCGTATTGCTAGCTCCGGCCAT 

 

 
Vrn-B1a Vrn-B1_I_ALG HEX CAACCTCCACGGTTTCAAAAAGTAG Exchange 

    Vrn-B1_I_C1   ATATTTACTAAGCAGCGGTCATTCCGAT   

Vrn-B1 vrn-B1 Vrn-B1_B_AL1 FAM GCGCAAGCGGGAGCTACATG Jagger, Above 

 
Vrn-B1b Vrn-B1_B_AL2 HEX GCGCAAGCGGGAGCTACATC Alpowa 

    Vrn-B1_B_C1   GCCATGAACAACAAAGGGGGTGGT   

Vrn-B1 vrn-B1 Vrn-B1_C_AL1 FAM CCTAAACAGGGGCAGAACACTG Jagger, Above 

 
Vrn-B1c Vrn-B1_C_AL2 HEX CCTAAACAGGGGCAGAACACTA Lutescens 62  

    Vrn-B1_C_C1   GACCCCAGGGCCTATGAATGTAATT   

Vrn-D1 vrn-D1 Vrn-D1_AL1 FAM ATCATTCGAATTGCTAGCTCCGG Jagger, Above 

 
Vrn-D1a Vrn-D1_AL2 HEX ATCATTCGAATTGCTAGCTCCGC Norin 61, Chinese Spring 

    Vrn-D1_C   GCCTGAACGCCTAGCCTGTGTA   

Ppd-B1 Ppd-B1a Ppd-B1_A_AL1 FAM GACGTTATGAACGCTTGGCA  Chinese Spring 

 
Ppd-B1b Ppd-B1_A_AL2 HEX CCGTTTTCGCGGCCTT  Chihoku Komugi 

    Ppd-B1_A_C   GGGTTCGTCGGGAGCTGT   

Ppd-D1 Ppd-D1a Ppd-D1_A_AL1 FAM CAAGGAAGTATGAGCAGCGGTT  Ciano67 

 
Ppd-D1b Ppd-D1_A_AL2 HEX AAGAGGAAACATGTTGGGGTCC  Chinese Spring 

    Ppd-D1_A_C   GCCTCCCACTACACTGGGC    
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Table 4.4. Genotypes of 287 individuals from the Facultative and Winter Wheat Observation Nursery (FAWWON) at vernalization and 

photoperiod loci based on Kompetitive Allele Specific PCR (KASP) assays. FAWWON ID represents the nursery code (20th, 21st, 22nd FAWWON), 

the type of nursery (IRR for irrigated, SA for semi-arid), and the nursery entry number. The OTHER ID represents the individual's CIMMYT ID, 

cultivar name, or cross. 

FAWWON ID OTHER ID VRN-A1 VRN-B1a VRN-B1b VRN-B1c VRN-D1 PPD-B1 PPD-D1 

20FAWWON.IRR.7 TCI011031 w Spring Winter Winter Winter b a 

20FAWWON.IRR.8 TCI011031 w Spring Winter Winter Winter b a 

20FAWWON.IRR.9 TCI011214 w Winter Winter Winter Winter b a 

20FAWWON.IRR.10 TCI011657 v Winter Winter Winter Winter b a 

20FAWWON.IRR.11 TCI-02-691 w Winter Winter Winter Winter b a 

20FAWWON.IRR.12 TCI022028 w Winter Winter Winter Winter b a 

20FAWWON.IRR.13 TCI022063 w Winter Winter Winter Spring b a 

20FAWWON.IRR.14 TCI022073 v Winter Winter Winter Winter b a 

20FAWWON.IRR.15 TCI022086 w Winter Winter Winter Spring b a 

20FAWWON.IRR.16 TCI022086 w Winter Winter Winter Spring b a 

20FAWWON.IRR.17 TCI022086 w Winter Winter Winter Spring b a 

20FAWWON.IRR.18 TCI022216 w Winter Winter Winter Winter b a 

20FAWWON.IRR.19 TC1021013 w Winter Winter Winter Winter b a 

20FAWWON.IRR.20 TC1021027 w Winter Winter Winter Winter b a 

20FAWWON.IRR.21 TC1021032 w Winter Winter Winter Winter b b 

20FAWWON.IRR.22 TC1021034 w Spring Winter Winter Winter b a 

20FAWWON.IRR.23 TC1021034 w Winter Winter Winter Winter b a 

20FAWWON.IRR.24 TC1021068 w Spring Winter Winter Winter b a 

20FAWWON.IRR.25 TC1021152 w Spring Winter Winter Winter b a 

20FAWWON.IRR.26 TC1021152 w Het Winter Winter Winter b a 

20FAWWON.IRR.27 TC1021162 w Spring Winter Winter Winter b a 

20FAWWON.IRR.28 TC1021164 w Spring Winter Winter Winter b b 

20FAWWON.IRR.29 TC1021187 w Spring Winter Winter Winter a a 

20FAWWON.IRR.30 TC1021198 w Spring Winter Winter Winter b a 

20FAWWON.IRR.31 TC1021243 v Winter Winter Winter Winter b b 
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20FAWWON.IRR.32 TC1021414 w Winter Winter Winter Spring b a 

20FAWWON.IRR.33 TCI-02-45 v Winter Winter Winter Winter b a 

20FAWWON.IRR.35 TCI-02-175 w Spring Winter Winter Winter b a 

20FAWWON.IRR.36 OCW02S155T w Winter Winter Winter Winter b a 

20FAWWON.IRR.37 OCW02S155T w Winter Winter Winter Winter b a 

20FAWWON.IRR.38 OCW02S155T v Winter Winter Winter Winter b a 

20FAWWON.IRR.39 OCW02S369S w Het Winter Winter Winter b a 

20FAWWON.IRR.40 SONMEZ v Winter Winter Winter Winter b a 

20FAWWON.IRR.41 OCW02S471S w Het Winter Winter Winter b a 

20FAWWON.IRR.42 OCW02S471S v Winter Winter Winter Winter b a 

20FAWWON.IRR.43 OCW02S484S w Winter Winter Winter Spring b b 

20FAWWON.IRR.44 OCW02S567S v Het Winter Winter Spring b a 

20FAWWON.IRR.45 OCW02S567S v Winter Winter Winter Winter b a 

20FAWWON.IRR.46 OCW02S567S v Winter Winter Winter Winter b a 

20FAWWON.IRR.47 OCW02S596S v Spring Winter Winter Winter b a 

20FAWWON.IRR.48 OCW02S607S w Spring Winter Winter Winter b a 

20FAWWON.IRR.49 OCW02S608S v Spring Winter Winter Spring b b 

20FAWWON.IRR.50 CMSA01M00330S v Spring Winter Winter Spring b a 

20FAWWON.IRR.51 CMSA01M00370T v Het Winter Winter Spring b a 

20FAWWON.IRR.52 CMSA01M00381T v Spring Winter Winter Spring b a 

20FAWWON.IRR.54 CMSW01WM00578S v Winter Winter Winter Spring b b 

20FAWWON.IRR.55 TCI012088 w Winter Winter Winter Winter b a 

20FAWWON.IRR.56 TCI-02-80 w Spring Winter Winter Winter b b 

20FAWWON.IRR.57 02106G2-2 w Winter Winter Winter Winter b a 

20FAWWON.IRR.59 TURKOAZ w Winter Winter Winter Winter b a 

20FAWWON.IRR.60 TEKIRA2 v Spring Winter Winter Spring b a 

20FAWWON.IRR.69 IRW2000-01 - 246 w Spring Winter Winter Spring b a 

20FAWWON.IRR.70 1-C-17450 v Het Winter Winter Spring b a 

20FAWWON.IRR.71 1-C-17474 w Spring Winter Winter Winter b a 

20FAWWON.IRR.72 1-C-17474 w Het Winter Winter Spring b a 

20FAWWON.IRR.74 1-C-17487 w Winter Winter Winter Winter b a 
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20FAWWON.IRR.75 1-C-17551 w Spring Winter Winter Spring b a 

20FAWWON.IRR.77 1-C-17560 w Het Winter Winter Spring b a 

20FAWWON.IRR.78 1-C-17603 w Het Winter Winter Winter b a 

20FAWWON.IRR.85 1-NS 1590 v Het Winter Winter Spring b a 

20FAWWON.IRR.86 1-C-17630 w Winter Winter Winter Winter b b 

20FAWWON.IRR.87 1-C-17630 w Winter Winter Winter Winter b b 

20FAWWON.IRR.88 1-C-17480 w Winter Winter Winter Winter b a 

20FAWWON.IRR.89 1-C-17551 w Het Winter Winter Spring b a 

20FAWWON.IRR.95 OTILIA w Winter Winter Winter Winter b a 

20FAWWON.IRR.97 06393GP1 w Winter Winter Winter Winter b a 

20FAWWON.IRR.98 05899G01-2 w Winter Winter Winter Winter b a 

20FAWWON.IRR.100 06325G1-2 w Winter Winter Winter Winter b a 

20FAWWON.IRR.106 06579G1-1 w Winter Winter Winter Winter b a 

20FAWWON.IRR.114 OR2071681 v Winter Winter Winter Winter b b 

20FAWWON.IRR.115 OR2080111H w Winter Winter Winter Winter b b 

20FAWWON.IRR.118 Appalachian White w Winter Winter Winter Winter b b 

20FAWWON.IRR.143 NACIBEY v Winter Winter Winter Winter b b 

20FAWWON.SA.202 KARAHAN v Spring Spring Winter Winter b b 

20FAWWON.SA.206 TC1021032 w Winter Winter Winter Winter b b 

20FAWWON.SA.207 TC1021068 w Spring Winter Winter Spring b a 

20FAWWON.SA.208 TC1021160 v Winter Winter Winter Winter b b 

20FAWWON.SA.209 TC1021180 v Winter Winter Winter Winter b b 

20FAWWON.SA.210 TC1021198 w Spring Winter Winter Spring b b 

20FAWWON.SA.212 TC1021243 w Winter Winter Winter Spring b b 

20FAWWON.SA.213 TC1021266 w Spring Winter Winter Winter b a 

20FAWWON.SA.214 TC1021276 v Winter Winter Winter Winter b a 

20FAWWON.SA.215 TC1021276 v Winter Winter Winter Winter b a 

20FAWWON.SA.218 TC1021350 v Winter Winter Winter Winter b a 

20FAWWON.SA.221 TCI022086 w Winter Winter Winter Spring b a 

20FAWWON.SA.222 TCI022108 w Winter Winter Winter Winter b a 

20FAWWON.SA.223 TCI022191 w Spring Winter Winter Spring b a 



 
138 

 

20FAWWON.SA.224 TCI022200 v Winter Winter Winter Winter b a 

20FAWWON.SA.226 TCI022271 w Winter Winter Winter Winter b a 

20FAWWON.SA.227 TCI022271 w Het Winter Winter Winter b a 

20FAWWON.SA.228 TCI-02-87 v Winter Winter Winter Winter b a 

20FAWWON.SA.230 TCI-02-111 w Spring Winter Winter Winter b a 

20FAWWON.SA.231 TCI-02-129 w Spring Spring Winter Winter b b 

20FAWWON.SA.232 TCI-02-142 w Winter Winter Winter Winter b a 

20FAWWON.SA.233 TCI-02-26 w Spring Winter Winter Winter b a 

20FAWWON.SA.235 TCI-02-36 w Spring Winter Winter Winter b b 

20FAWWON.SA.236 TCI-02-913 w Winter Winter Winter Winter b b 

20FAWWON.SA.237 OCW02S262T w Winter Winter Winter Winter b a 

20FAWWON.SA.238 OCW02S528S w Spring Winter Winter Winter b a 

20FAWWON.SA.239 OCW02S567S v Spring Winter Winter Winter b a 

20FAWWON.SA.241 OCW02S596S w Winter Winter Winter Winter b b 

20FAWWON.SA.243 IRW2000-01 - 246 w Winter Winter Winter Winter b b 

20FAWWON.SA.244 1-C-17459 w Het Winter Winter Winter b a 

20FAWWON.SA.249 AK-B?BA? w Winter Winter Winter Winter b a 

20FAWWON.SA.251 KARASAY w Het Winter Winter Winter b b 

20FAWWON.SA.252 ZHADYRA w Winter Winter Winter Winter b a 

20FAWWON.SA.254 NIKIFOR w Winter Winter Winter Winter b a 

20FAWWON.SA.256 06659G4-1 w Winter Winter Winter Winter b a 

20FAWWON.SA.257 ELVIRA w Winter Winter Winter Winter b a 

20FAWWON.SA.258 KALACH w Winter Winter Winter Winter b a 

20FAWWON.SA.259 SVETOCH w Winter Winter Winter Winter b Het 

20FAWWON.SA.278 BDME 09 1/K  w Winter Winter Winter Spring b a 

21FAWWON.IRR.7 TCI032026 w Winter Winter Winter Spring b a 

21FAWWON.IRR.9 TCI031361 w Het Winter Winter Winter b b 

21FAWWON.IRR.11 SHARK/F4105W2.1//CHARA/3/MERCAN-1 v Spring Winter Winter Winter b b 

21FAWWON.IRR.14 ALPU//VP5053 (WA#FM/201/23*2/GS50A) w Spring Winter Winter Spring b a 

21FAWWON.IRR.16 TCI032348 w Spring Winter Winter Spring b a 

21FAWWON.IRR.17 OCW02S476S w Spring Winter Winter Winter b a 
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21FAWWON.IRR.29 TCI031171 w Het Spring Winter Winter b a 

21FAWWON.IRR.31 TCI-02-80 w Spring Winter Winter Spring b a 

21FAWWON.IRR.32 TCI 001409 v Winter Winter Winter Spring b a 

21FAWWON.IRR.35 TCI-01-117 v Spring Winter Winter Winter b a 

21FAWWON.IRR.36 TCI-02-475 w Spring Winter Winter Winter b a 

21FAWWON.IRR.43 OSTROV w Winter Winter Winter Spring b a 

21FAWWON.IRR.45 F06325G1- v Winter Winter Winter Winter b a 

21FAWWON.IRR.48 F06580G2-1 w Spring Winter Winter Spring b a 

21FAWWON.IRR.49 F06659G6-1 w Spring Winter Winter Winter b a 

21FAWWON.IRR.50 F06659G10-1 w Spring Winter Winter Winter b a 

21FAWWON.IRR.52 F07270G2 w Spring Winter Winter Winter b a 

21FAWWON.IRR.59 NOTA w Spring Winter Winter Winter b a 

21FAWWON.IRR.62 1-C-17677 w Winter Winter Winter Spring b a 

21FAWWON.IRR.64 1-C-17748 v Spring Winter Winter Winter b a 

21FAWWON.IRR.66 1-C-17809 w Spring Winter Winter Spring b a 

21FAWWON.IRR.68 1-C-17641 w Winter Winter Winter Spring b a 

21FAWWON.IRR.71 SH??4414/CROW//ATT?LA w Spring Het Winter Winter b a 

21FAWWON.IRR.72 DMITRY v Spring Winter Winter Spring b a 

21FAWWON.IRR.75 PROTON w Spring Winter Winter Winter b a 

21FAWWON.IRR.76 KIPRA w Winter Winter Winter Spring b a 

21FAWWON.IRR.81 SWW1-135 v Winter Winter Winter Winter b a 

21FAWWON.IRR.83 SWW1-97 w Spring Winter Winter Winter b a 

21FAWWON.IRR.95 JUP/4/CLLF/3/II14-53/ODIN//CI134431/ … w Winter Winter Winter Winter b a 

21FAWWON.IRR.103 MUSTANG/ICIZCE w Spring Winter Winter Winter b b 

21FAWWON.IRR.113 TX71C8130R/TX81V6610/3/RL6010/… v Winter Winter Winter Winter b a 

21FAWWON.IRR.116 TX71C8130R/TX81V6610/3/RL6010/… v Winter Winter Winter Spring b a 

21FAWWON.IRR.119 TX71A983.4/TX69D4812//PYN/3/VPM/… v Spring Winter Winter Spring b a 

21FAWWON.IRR.122 JI5418/MARAS//SHARK/F4105W2.1 w Spring Winter Winter Winter b a 

21FAWWON.IRR.137 43-RWA-94N-74/F6038W12.1 w Winter Winter Winter Winter b b 

21FAWWON.IRR.141 MINA/KRISTAL v Spring Winter Winter Winter b b 

21FAWWON.IRR.142 MINA/KRISTAL w Winter Winter Winter Spring b b 
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21FAWWON.IRR.143 SHARK-6/YUZHNAYA12/7/ID2619… w Winter Winter Winter Winter b b 

21FAWWON.IRR.144 SHARK-6/YUZHNAYA12/7/ID2619… w Winter Winter Winter Winter b b 

21FAWWON.IRR.146 CHATELET/GRU-45 w Spring Winter Winter Winter b a 

21FAWWON.IRR.148 CHATELET/GRU-45 w Spring Winter Winter Winter b a 

21FAWWON.IRR.150 DORADE-5/DUNAV v Winter Winter Winter Winter b a 

21FAWWON.IRR.152 1-68-188//1-60-3/Tonichi 81… w Spring Winter Winter Winter b a 

21FAWWON.IRR.157 ID2619/5/GRTPL 6121… w Het Winter Winter Winter b a 

21FAWWON.IRR.161 PALANDOKEN97/ATTILLA w Spring Winter Winter Spring b a 

21FAWWON.IRR.163 NGDA146/4/YMH/TOB//MCD/3/LIRA… w Winter Winter Winter Winter b a 

21FAWWON.IRR.166 SHARK-6/YUZHNAYA12/7/ID2619… v Winter Winter Winter Winter b a 

21FAWWON.IRR.167 88ZHONG218//CTK/VEE/3/KVZ/GV//PR… v Spring Winter Winter Winter b a 

21FAWWON.SA.201 GEREK79 v Het Winter Winter Winter b a 

21FAWWON.SA.202 KARAHAN v Spring Spring Winter Winter b b 

21FAWWON.SA.207 TCI031181 w Winter Winter Winter Spring b b 

21FAWWON.SA.208 TCI032095 w Winter Winter Winter Spring b a 

21FAWWON.SA.210 TCI032063 w Winter Winter Winter Winter b a 

21FAWWON.SA.211 TCI031039 w Winter Winter Winter Winter b b 

21FAWWON.SA.214 TCI032348 w Het Winter Winter Spring b a 

21FAWWON.SA.218 TCI031020 w Spring Winter Winter Winter b a 

21FAWWON.SA.223 TCI032235 v Spring Winter Winter Winter b b 

21FAWWON.SA.226 TCI031396 w Spring Winter Winter Winter b b 

21FAWWON.SA.227 TCI032210 w Spring Winter Winter Winter b a 

21FAWWON.SA.228 TCI031171 w Winter Winter Winter Winter b a 

21FAWWON.SA.231 TCI031286 v Spring Winter Winter Winter b a 

21FAWWON.SA.234 TCI031396 w Spring Winter Winter Winter b b 

21FAWWON.SA.243 OK07214 w Het Winter Winter Spring b a 

21FAWWON.SA.247 OK09634 v Winter Winter Winter Winter b b 

21FAWWON.SA.248 TCI011194-030 w Winter Winter Winter Spring b a 

21FAWWON.SA.250 1-C-17849 v Winter Winter Winter Winter b a 

21FAWWON.SA.252 PYN/BAU//BONITO w Spring Winter Winter Winter b a 

21FAWWON.SA.256 CMSW97WM00399S v Winter Winter Winter Winter b a 
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21FAWWON.SA.258 TCI97AP-310 w Spring Winter Winter Winter b a 

21FAWWON.SA.261 TCI04-1 v Spring Winter Winter Winter b b 

21FAWWON.SA.262 TCI04-324 w Spring Winter Winter Spring b a 

21FAWWON.SA.263 TCI02-679 w Spring Winter Winter Winter b a 

21FAWWON.SA.265 TCI02-405 w Spring Winter Winter Winter b a 

21FAWWON.SA.268 91-142 a 139 v Spring Winter Winter Winter b a 

21FAWWON.SA.269 TCI 001409 w Winter Winter Winter Spring b a 

21FAWWON.SA.270 TCI 002133 w Spring Winter Winter Winter b a 

21FAWWON.SA.271 TCI-01-117 w Spring Spring Winter Winter b a 

21FAWWON.SA.275 TCI04-1 w Winter Winter Winter Spring b a 

21FAWWON.SA.276 TCI04-1 w Winter Winter Winter Spring b a 

21FAWWON.SA.281 TCI032527 v Winter Winter Winter Winter b a 

21FAWWON.SA.286 TC1021266 w Het Winter Winter Winter b b 

21FAWWON.SA.287 TCI022086 w Winter Winter Winter Spring b a 

21FAWWON.SA.288 TCI02-87 v Winter Winter Winter Winter b a 

21FAWWON.SA.289 TC1021068 w Spring Winter Winter Winter b a 

21FAWWON.SA.292 TCI 002115 w Winter Winter Winter Winter b b 

21FAWWON.SA.293 TCI031223 w Winter Winter Winter Spring b a 

21FAWWON.SA.297 TC1021243 w Spring Winter Winter Winter b a 

21FAWWON.SA.299 TC1021027 v Winter Winter Winter Winter b a 

22FAWWON.IRR.7 TCI021034 w Winter Winter Winter Winter b a 

22FAWWON.IRR.8 TCI021034 w Winter Winter Winter Winter b a 

22FAWWON.IRR.9 TCI02-913 w Winter Winter Winter Winter b b 

22FAWWON.IRR.10 TCI041031 w Winter Winter Winter Winter b a 

22FAWWON.IRR.14 TCI041060 w Winter Winter Winter Winter b a 

22FAWWON.IRR.18 TCI041237 w Winter Winter Winter Winter b b 

22FAWWON.IRR.19 TCI041261 v Winter Winter Winter Winter b a 

22FAWWON.IRR.20 TCI041261 v Winter Winter Winter Winter b a 

22FAWWON.IRR.21 TCI041286 w Winter Winter Winter Winter b a 

22FAWWON.IRR.22 TCI041496 v Spring Spring Winter Winter b a 

22FAWWON.IRR.23 TCI041505 w Spring Winter Winter Winter b a 
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22FAWWON.IRR.25 TCI042153 w Winter Winter Winter Winter b a 

22FAWWON.IRR.26 TCI042153 w Winter Winter Winter Winter b a 

22FAWWON.IRR.27 TCI042167 w Het Winter Winter Winter b a 

22FAWWON.IRR.31 TCI042366 w Winter Winter Winter Winter b a 

22FAWWON.IRR.32 TCI042619 w Winter Winter Winter Winter b b 

22FAWWON.IRR.33 TCI042632 v Winter Winter Winter Winter b b 

22FAWWON.IRR.34 TCI042638 w Spring Winter Winter Winter b a 

22FAWWON.IRR.35 TCI042638 w Spring Winter Winter Winter b a 

22FAWWON.IRR.41 TCI072152 w Spring Spring Winter Winter b a 

22FAWWON.IRR.42 OCW05S645S v Het Winter Winter Winter b a 

22FAWWON.IRR.45 OR2052096 w Winter Winter Winter Winter b b 

22FAWWON.IRR.48 TCI051145 w Winter Winter Winter Winter b a 

22FAWWON.IRR.49 CMSA06WM00018T v Het Winter Winter Winter b a 

22FAWWON.IRR.51 TCI071259 w Winter Winter Winter Winter a a 

22FAWWON.IRR.52 TCI071325 v Winter Winter Winter Spring b a 

22FAWWON.IRR.53 TCI072137 w Spring Winter Winter Winter b b 

22FAWWON.IRR.54 OCW05S626S w Het Winter Winter Winter b a 

22FAWWON.IRR.55 TCI071189 v Winter Winter Winter Winter b a 

22FAWWON.IRR.57 TCI071199 w Winter Winter Winter Winter b a 

22FAWWON.IRR.60 CGWS04WM00054S v Winter Winter Winter Winter b a 

22FAWWON.IRR.66 OCW05S626S w Het Winter Winter Winter b a 

22FAWWON.IRR.67 OCW04S037S w Winter Winter Winter Spring b a 

22FAWWON.IRR.68 TCI052118 w Spring Winter Winter Winter b a 

22FAWWON.IRR.69 OCW05S594T w Winter Winter Winter Winter b b 

22FAWWON.IRR.70 OCW05S626S w Het Winter Winter Winter b a 

22FAWWON.IRR.71 TCI071078 w Winter Winter Winter Winter b b 

22FAWWON.IRR.73 TCI052022 w Spring Winter Winter Winter b a 

22FAWWON.IRR.79 RUMELI w Winter Winter Winter Winter b a 

22FAWWON.IRR.81 CROC_1/AE.SQUARROSA(224)//OPATA w Het Winter Winter Spring b Het 

22FAWWON.IRR.83 1-C-17967 v Spring Winter Winter Spring a a 

22FAWWON.IRR.84 1-C-17967 v Spring Winter Winter Spring a a 
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22FAWWON.IRR.85 1-C-17969 w Spring Winter Winter Spring b a 

22FAWWON.IRR.86 1-C-17969 w Spring Winter Winter Winter b a 

22FAWWON.IRR.87 1-C-17971 w Spring Winter Winter Winter b a 

22FAWWON.IRR.89 1-C-18034 v Spring Winter Winter Winter b a 

22FAWWON.IRR.92 DH-26-42 v Spring Winter Winter Spring b a 

22FAWWON.IRR.93 1-C-17964 w Spring Winter Winter Spring b a 

22FAWWON.IRR.95 1-C-18077 v Het Winter Winter Spring b a 

22FAWWON.IRR.98 1-C-18144 w Winter Winter Winter Winter b b 

22FAWWON.IRR.103 SULTAN95 w Spring Winter Winter Winter b b 

22FAWWON.IRR.108 F06521GP3 w Winter Winter Winter Winter b a 

22FAWWON.IRR.111 F05906G1-101 w Winter Winter Winter Winter b a 

22FAWWON.SA.202 KARAHAN v Spring Spring Winter Winter b b 

22FAWWON.SA.211 TCI041084 w Het Winter Winter Winter b a 

22FAWWON.SA.214 TCI041237 w Winter Winter Winter Winter b b 

22FAWWON.SA.217 TCI041347 w Het Winter Winter Winter b a 

22FAWWON.SA.218 TCI041374 w Het Winter Winter Winter b a 

22FAWWON.SA.221 TCI041505 w Spring Winter Winter Winter b a 

22FAWWON.SA.223 TCI041548 w Spring Spring Winter Winter b b 

22FAWWON.SA.225 TCI042304 w Het Het Winter Winter b a 

22FAWWON.SA.230 TCI042565 w Spring Winter Winter Winter b a 

22FAWWON.SA.231 TCI042604 w Winter Winter Winter Spring b b 

22FAWWON.SA.232 TCI042609 w Spring Winter Winter Winter b b 

22FAWWON.SA.235 TCI042673 w Het Winter Winter Winter b b 

22FAWWON.SA.237 TCI042691 w Winter Winter Winter Winter b b 

22FAWWON.SA.239 TCI051038 w Winter Winter Winter Winter b a 

22FAWWON.SA.243 TCI051257 v Winter Winter Winter Winter b b 

22FAWWON.SA.248 TCI051373 w Winter Winter Winter Winter b a 

22FAWWON.SA.249 TCI051404 v Winter Winter Winter Winter b a 

22FAWWON.SA.250 TCI051412 w Winter Winter Winter Spring b b 

22FAWWON.SA.253 TCI052037 w Winter Winter Winter Winter b a 

22FAWWON.SA.256 TCI052366 w Het Winter Winter Spring b b 
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22FAWWON.SA.258 TCI052470 w Spring Winter Winter Spring b a 

22FAWWON.SA.259 TCI052479 w Spring Winter Winter Winter b a 

22FAWWON.SA.260 TCI051051 w Winter Winter Winter Spring b b 

22FAWWON.SA.262 TCI071116 w Winter Winter Winter Winter b a 

22FAWWON.SA.263 TCI071156 w Winter Winter Winter Winter b a 

22FAWWON.SA.265 TCI071310 w Het Winter Winter Spring b b 

22FAWWON.SA.269 TCI072083 w Het Winter Winter Spring b b 

22FAWWON.SA.270 CGSW05B00011T w Spring Winter Winter Spring b a 

22FAWWON.SA.273 CGWS04WM00048S w Het Winter Winter Winter b a 

22FAWWON.SA.274 CGWS04WM00052S w Het Winter Winter Winter b a 

22FAWWON.SA.277 CMSW05WM00013T w Winter Winter Winter Winter b b 

22FAWWON.SA.281 OCW05S740S w Winter Winter Winter Winter b a 

22FAWWON.SA.282 WSX0400302 w Spring Winter Winter Winter b a 

22FAWWON.SA.294 ICWH970148 w Winter Winter Winter Winter b b 
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Figures 

 
 

 

Figure 4.1. Distribution of best linear unbiased predictors (BLUPs) for winter injury observed for 
individuals from the Facultative and Winter Wheat Observation Nursery (FAWWON) for each of 
the six field environments. 
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Figure 4.2. Genomic selection prediction accuracies using three vernalization and two 
photoperiod loci in a fixed-only model, genotyping-by-sequencing (GBS) derived SNP markers in 
a random-only model, and GBS markers together with single vernalization (Vrn-A1, Vrn-B1, and 
Vrn-D1) and single photoperiod (Ppd-B1 and Ppd-D1) loci as fixed effects in a mixed effects 
model for a) Julesburg 2014, b) Fort Collins and Julesburg 2015, c) Fort Collins and Julesburg 
2016, and d) combined over all environments. 
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Figure 4.3. Genomic selection prediction accuracies using three vernalization and two 
photoperiod loci in a fixed-only model, genotyping-by-sequencing (GBS) derived SNP markers in 
a random-only model, and GBS markers together with all three vernalization (VRN), two 
photoperiod (PPD) loci, and vernalization and photoperiod loci (VRN+PPD) as fixed effects in a 
mixed effects model for a) Julesburg 2014, b) Fort Collins and Julesburg 2015, c) Fort Collins and 
Julesburg 2016, and d) combined over all environments.   
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APPENDICES 
 
 
 

Supplemental Text 

Supplemental Text S5.1 

 

GENOMIC SELECTION PREDICTION ACCURACY FOR GRAIN YIELD IN WHEAT IS IMPROVED WITH 

NORMALIZED DIFFERENCE VEGETATION INDEX AND HEADING DATE 

 
 

 Genomic selection (GS) promises to accelerate the rate of genetic gain in wheat 

(Triticum aestivum L.) for genetically complex traits, including grain yield (Araus et al., 2002; 

Jannink et al., 2010; Heffner et al., 2011). Genomic selection prediction models are developed 

using a training population of individuals with both trait phenotypes and marker genotypes to 

estimate genome-wide marker effects (Meuwissen et al., 2001; Lorenz et al., 2011). The GS 

model then uses the marker effects to calculate a genomic estimated breeding value (GEBV) for 

selection candidates that are genotyped but not phenotyped (Lorenz et al., 2011; Cobb et al., 

2013). This technique allows for indirect selection of individuals for quantitative traits prior to 

phenotyping allowing for earlier selection and thus enhanced selection gains per unit of time 

and cost (Bernardo and Yu, 2007; Heffner et al., 2010). As the cost and efficiency of obtaining 

genomic information on wheat drops below the cost and efficiency of phenotyping individuals 

over years and locations, genomic information can more affordably be leveraged to predict 

phenotypic performance (Bernardo, 2008; Cobb et al., 2013). This can facilitate a shortening of 
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the breeding cycle and enable earlier selection and intercrossing of early-generation breeding 

material. 

 In order to utilize genomic information for GS applications it needs to be carefully and 

comprehensively linked to phenotypes observed in representative environments (Furbank and 

Tester, 2011). Current genomic prediction models typically use a single phenotypic trait even 

though new varieties of crops are evaluated for their performance across multiple traits. In 

plant breeding, indirect selection for the primary trait using a correlated secondary trait is often 

used when the primary trait is difficult or expensive to measure. Examples from wheat breeding 

include selection for reduced plant height to improve harvest index and lodging resistance and 

selection for higher protein concentration to improve quality. Selection using secondary traits is 

advantageous when the secondary trait is highly heritable, has a high genetic correlation with 

the target trait, and is inexpensive to measure relative to the target trait. 

 High throughput phenotyping techniques that measure spectral radiation reflectance 

from crop canopies show promise for differentiating and selecting superior genotypes (Aparicio 

et al., 2000; Raun et al., 2001; Royo et al., 2003). Measurements of spectral radiation reflected 

by crop canopies at specific wavelengths in the visible (VIS, 400-700 nm) and near-infrared (NIR, 

750-1300 nm) regions of the electromagnetic spectrum provide a reflectance signature for each 

genotype due to absorption contrasts between spectral radiation regions (Reynolds et al., 

1999). These spectral reflectance signatures can estimate simultaneously, and in a rapid 

nondestructive manner, a variety of morphological and physiological traits (Pask et al., 2012; 

Reynolds et al., 2012).  
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 Spectral reflectance indices (SRI) were developed on the basis of ratios or differences 

between reflectances observed at different wavelengths (Araus, 1996; Araus et al., 2001). 

Among the most commonly used vegetation indices is the normalized difference vegetation 

index (NDVI; Araus, 1996; Araus et al., 2001). The NDVI indices are associated with component 

traits of grain yield and have yielded estimates of chlorophyll content (Baber et al., 2006), green 

biomass (Babar et al., 2006; Marti et al., 2007), percent ground cover (Mullan and Reynolds, 

2010), nitrogen status (Wright Jr et al., 2005), green leaf duration (Lopes and Reynolds, 2012), 

and grain yield (Aparicio et al., 2000; Araus, 1996; Raun et al., 2001; Royo et al., 2003). Large 

NDVI values are associated with greater biomass accumulation and more rapid growth when 

measured during the vegetative phase and longer grain filling duration and delayed leaf 

senescence when measured during the grain filling phase (Barber et al., 2006). 

 Strong correlations between NDVI measurements and grain yield have been shown at 

heading (Babar et al., 2006), anthesis (Aparicio et al., 2000), and grain filling in wheat (Babar et 

al., 2006a, 2006b; Royo et al., 2003). Passioura et al. (1993) suggested that the overriding factor 

determining grain yield in wheat in a Mediterranean environment is the development of leaf 

area through time. Rather than using NDVI at a single time point or growth stage, multiple NDVI 

measurements taken over the course of a growing season would allow seasonal profiles of 

genotypes to be developed that show crop emergence, maturation, and senescence 

(Bartholome, 1988; Prasad and Carver, 2007). Researchers have found that NDVI 

measurements averaged across multiple growth stages of wheat provide a higher correlation 

with grain yield than any individual growth stage measurement (Labus et al., 2002; Babar et al., 

2006; Prasad et al., 2007; Gutierrez et al., 2010). Although mean measurement values have 
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become standard practice, Pinter Jr. et al. (1981) and Rudorff et al. (1990) plotted the trajectory 

of NDVI throughout the growing season and verified that the area under the spectral curve was 

closely related to final grain yield. Prasad et al. (2007) and Babar et al. (2006) showed that 

mean index values averaged over several growth stages could provide a higher correlation with 

grain yield compared with any individual growth stage.   

The prospect of future genetic improvements through the use of SRI to identify and 

track physiological traits provides plant breeding programs with new opportunities to examine 

genetic diversity, improve crop stress response, and increase yield potential. Incorporating 

secondary traits into a multivariate GS model has been shown to produce higher prediction 

accuracies than a univariate model using yield data alone (Calus et al., 2011; Jia et al., 2012; 

Pszczola et al., 2013; Rutkoski et al., 2016). Using NDVI as a secondary trait has been shown to 

increase GS prediction accuracies (Rutkoski et al., 2016). Although including NDVI as a 

secondary trait is not new, a direct comparison of using mean NDVI measurements to area 

under the NDVI curve in a multivariate genomic selection model has not been done. The main 

objectives of this study were i) to compare the GS prediction accuracies for yield using single-

trait genomic selection to multi-trait genomic selection models with different secondary trait 

phenotypes and ii) to determine the best cumulative NDVI phenotype for summarizing multiple 

NDVI time point measurements for increasing GS prediction of yield in different environments. 

Materials and Methods 

Germplasm and experimental layout 

 Genotypes from three years of the Facultative and Winter Wheat Observation Nursery 

(FAWWON) were included in these experiments (n=287 individuals), including individuals from 
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the 20th FAWWON, 21st FAWWON, and 22nd FAWWON. All individuals included in this study 

are elite genotypes representing released cultivars and experimental lines. The FAWWON 

individuals represented breeding programs from Turkey-CIMMYT-ICARDA (TCI), United States 

(U.S.), Iran, Romania, Kazakhstan, Russia, Bulgaria, Turkey, and Syria. Six total environments 

were used, which included field experiments at both Fort Collins (sprinkler irrigated) and 

Julesburg (rainfed) Colorado in the 2014 (112 genotypes), 2015 (200 genotypes), and 2016 (186 

genotypes). Within years, the same genotypes were grown at both locations. All 112 genotypes 

from the 20th FAWWON that were evaluated in 2014 were evaluated in 2015 with an 

additional 88 genotypes from the 21st FAWWON. Genotypes with high levels of winter injury at 

both locations in 2015 were not re-evaluated in 2016. Experiments in 2016 included 69 

genotypes from the 20th FAWWON (third year of evaluation), 30 genotypes from the 21st 

FAWWON (second year of evaluation), and 87 genotypes from the 22nd FAWWON (first year of 

evaluation). Due to winter injury observed in several of the environments, each environment 

had a different number of FAWWON individuals with NDVI and yield data. In 2014, genotypes 

were arranged in an augmented row-column design with the local cultivar 'Byrd' (Haley et al., 

2012) as a repeated check. In Fort Collins 2014, 112 individuals were used for GS analysis while 

in Julesburg 2014 only 99 individuals were used for GS analysis. In 2015 and 2016, genotypes 

were arranged in a partially replicated row-column design with repeated checks. 

Randomizations were prepared using the package DiGGer (Coombes, 2009) in R (R 

Development Core Team, 2014). In Fort Collins 2015, 170 individuals were used for GS analysis 

while in Julesburg 2015 only 67 individuals were used for GS analysis. In Fort Collins 2016, 181 

individuals were used for GS analysis while in Julesburg 2016 172 individuals were used for GS 
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analysis. All experiments were planted in six-row plots, 3.7 m long and 1.8 m wide, with 0.3 m 

spacing between rows.  

Phenotypic measurements 

 Grain yield was measured with an on-combine weighing system and yields were 

adjusted based on 12% grain moisture. Plant height was measured from the ground to the top 

of the spikes (excluding awns) at physiological maturity and was the average measurement 

from three locations within each plot. Heading date was recorded as the number of calendar 

days from January 1 until 50% of the spikes had fully extended from the leaf sheath.   

 Spectral reflectance measurements were collected using a CropCircle ACS-470 handheld 

optical sensor (Holland scientific, Inc.) mounted to a handheld boom. The CropCircle was set to 

record 10 values per sec (10 Hz) and measurements were taken by centering the sensor 1 m 

above the canopy and walking the length of the plot. An average of 30-40 measurement 

readings were collected per plot. This resulted in a data point being collected every 10.5 cm 

along the length of plot. The spectral characteristics of the Crop Circle ACS-470 are user 

configurable and allowed the use of three different 12.5 mm diameter interference filters 

(550nm, 670nm, 760nm). Normalized difference vegetation index based on the difference 

between NIR (760nm) and red reflectance (670nm) resulted in a red-NDVI (RNDVI) 

measurement while the difference between NIR (760nm) and green reflectance (550nm) 

resulted in a green-NDVI (GNDVI) measurement. The reflectance measurements were taken 

between 1030 and 1400 h under sunny, dry conditions. Two measurement readings were taken 

on each collection date at a minimum of 1 h apart and were averaged to give a single 

reflectance reading per plot per collection day. 
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Cumulative NDVI phenotypes 

 Only NDVI measurement dates after January 1 were used for analyses as this best 

represented the greenup and growth of the genotypes following vernalization and 

overwintering. In 2014, there were eight NDVI measurement time points in Fort Collins and 

Julesburg (Table 1). In 2015, there were 10 NDVI measurement time points in Fort Collins and 

nine NDVI measurement time points in Julesburg. In 2016, there were eight NDVI measurement 

time points in both Fort Collins and in Julesburg. The data from NDVI measurements were 

grouped into vegetative (VEG) and grain filling (GF) growth stages based on the collection date. 

Collection dates before the average heading date at each location were classified as a "VEG" 

phenotype and NDVI collection dates after the heading date were classified as a "GF" 

phenotype. There were four to five NDVI measurements per VEG or GF growth stage within 

each environment.  

 To evaluate the best use of the NDVI data across a growing season, two different 

methods were used to summarize multiple NDVI time points. The first was to use the mean of 

the NDVI measurements for the VEG, GF, and full season (FULL). The RNDVI and GNDVI 

phenotypes under this method were renamed as MEAN-RNDVI-VEG, MEAN-RNDVI-GF, MEAN-

RNDVI-FULL MEAN-GNDVI-VEG, MEAN-GNDVI-GF, and MEAN-GNDVI-FULL according to the 

data summary method, NDVI phenotype used, and growth stage classification. Phenotypes for 

NDVI were also evaluated by calculating the area under the curve (AUC). The AUC was 

calculated as: 

Ak = ∑
(𝑦𝑖1 + 𝑦𝑖2)

2
(𝑡𝑖2 − 𝑡𝑖1)

𝑁𝑖−1

𝑖=1
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where  𝑦𝑖1 is the NDVI value for first collection date, 𝑦𝑖2 is the NDVI value for the second 

collection date, 𝑡𝑖1 is the date in Julian days of the first collection sample and 𝑡𝑖2 is the date in 

Julian days of the second collection sample. The AUC between adjacent collection time points 

was calculated independently and then summed based on the duration of interest. The AUC 

was calculated for each genotype for the entire growing season (FULL). The RNDVI and GNDVI 

phenotypes under this method were renamed as AUC-RNDVI-VEG, AUC-RNDVI-GF, AUC-RNDVI-

FULL, AUC-GNDVI-VEG, AUC-GNDVI-GF, and AUC-GNDVI-FULL according to the data summary 

method, NDVI phenotype used, and growth stage classification.  

GBS-Based SNP genotyping 

 Genomic DNA was extracted from bulked leaves of 10 one-wk-old seedlings at the single 

leaf stage in a 96-well format using King Fisher 96 magnetic bead extraction kits on the King 

Fisher Flex Purification System (ThermoFisher Scientific Inc., Waltham, MA, U.S.A.). Genotyping-

by-sequencing library construction was carried out using the restriction enzymes PstI and MspI 

using a protocol modified from Poland et al. (2012). A single blank was included at random 

positions in each plate for quality control to ensure library identity. Sequencing was performed 

at 192-plex on an Illumina Hi-Seq 2000 at the DNA core facility at the University of Missouri in 

Columbia, MO. Single-nucleotide polymorphism (SNP) calls were made using the TASSEL-GBSv1 

Pipeline (Glaubitz et al. 2014) which is a reference-based SNP calling procedure. The 

International Wheat Genome Sequencing Consortium (IWGSC) Chromosome Survey Sequence 

was used as the reference genome (IWGSC, 2014). Missing marker data were imputed using the 

multi-variate normal expectation maximization (MVN-EM) method (Dempster et al., 1977) 

within the A.mat function in the rrBLUP package (Endelman, 2011) in R. Due to different 
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numbers of individuals being present in each of the six environments, different missing marker 

values were used in order to provide roughly 42,000 to 44,000 of GBS SNP markers for GS 

analysis (Table S2). 

Statistical analysis of field data 

 Best linear unbiased predictors (BLUPs) of each phenotype were calculated separately 

for each environment using the ASReml-R package (VSN International Ltd., Hemel Hempstead, 

UK) in R. Data for each environment were analyzed with a series of spatial models that included 

genotype, row, and column coordinates as random effects, and several different residual error 

terms specified in the rcov argument within ASReml-R (Gilmour et al., 2009). The restricted 

maximum likelihood (REML) loglikelihood value was used to select the best model. 

Model choice-variance 

 The genomic estimated breeding values (GEBVs) were calculated for the univariate 

model using RR-BLUP (Meuwissen et al. 2001; Endelman 2011) with the following model: 

𝑦 = WG𝜇 + 𝜀 

 where 𝑦 is a vector of phenotypic values (BLUPs) for individuals; 𝑊 is a design matrix 

relating genotypes to phenotypes (𝑦); 𝐺 is the genotype matrix for bi-allelic SNPs under an 

additive model; 𝜇 is a vector of marker effects, and 𝜀 is a vector of errors with a variance 𝜎𝜀
2. 

 Accuracies for the multivariate model used grain yield only on the training set and the 

secondary trait on both the training and test sets. The multivariate GS model was run in 

ASReml-R and was done by fitting the phenotypic observations of multiple traits simultaneously 

in a multivariate mixed linear model: 
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[
𝑦1

𝑦2
] = [

𝑋1 0
0 𝑋2

] [
𝜇1

𝜇2
] + [

𝑍1 0
0 𝑍2

] [
𝑎1

𝑎2
] + [

𝜀1

𝜀2
] 

where 𝑦1is a vector of BLUPs for grain yield and 𝑦2is a vector of BLUPS for the secondary trait of 

interest; 𝑋 is the fixed effects design matrix, 𝜇1is a vector of fixed effects for grain yield and 𝜇2is 

a vector of fixed effects for the secondary trait of interest, Z is the random effects design 

matrix, which is the same for each trait, 𝑎1is a vector of additive genetic effects for grain yield 

and 𝑎2is a vector of additive genetic effects for the secondary trait of interest, and 𝜀1is a vector 

of residuals for grain yield and 𝜀2is a vector of residuals for the secondary trait. The genomic 

relationship matrix was estimated according to equation 15 in Endelman and Jannink (2012) 

using the A.mat function in rrBLUP (Endelman, 2011). 

 Five-fold cross validation was used to assess model accuracy by assigning genotypes to 

one of five folds and using four of the folds to train the model and predict the GEBVs for the 

fifth fold for validation. The GS accuracy was calculated as the correlation between the GEBVs 

and phenotype BLUPs for individuals in the validation set. To compute model accuracy, 300 

cycles of cross validation were performed and the average correlation was determined. The 

standard error of the mean prediction accuracy was calculated as the standard deviation 

divided by the square root of the number of cross validation cycles.  

The model statement in ASreml-R was written as: 

Model <- asreml(fixed=cbind(Yield1,Trait2)~trait, random=~giv(genotype,var=T),              

ginverse=list(genotype=Ainv), data=Data2, rcov=~units:us(trait))  
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Results and Discussion 

Prediction accuracies of yield 

 The GS prediction accuracies for yield in a univariate GS model were consistently higher 

in Julesburg (non-irrigated) than in Fort Collins (irrigated) within years and between years 

(Table S3). Crossa et al. (2010) observed that the estimates of marker effects in GS models were 

different across environments, indicating that genotype x environment (GxE) interaction is an 

important component in GS prediction models. González-Camacho et al. (2012) were able to 

obtain moderately high accuracies in well-watered and high yielding environments and lower 

predictive accuracies under drought stress and low-yield environments. I observed a difference 

in prediction accuracies across environments, but with the rainfed environments (Julesburg) 

providing higher GS prediction accuracies than in the irrigated environment (Fort Collins) across 

all three years. This is particularly surprising since the Julesburg environments consistently had 

fewer genotypes for GS analysis due to differential winter injury that was observed at this 

location. Results from previous studies have consistently shown that increasing the number of 

individuals in a training population should lead to higher GS prediction accuracies. Our results 

support Crossa et al. (2010) who reported that GxE is an important consideration in developing 

GS models. This emphasizes the need to better understand environmental factors and which 

environments should be included in the training population for GS model predictions. Our 

results contradict those from González-Camacho et al. (2012). It appears that the higher 

yielding environment (Fort Collins) has the most to gain from using a multivariate GS model 

approach with secondary traits as a univariate model only using yield data provided lower 

prediction accuracies than the lower yielding, rainfed environment (Julesburg).    
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Heading date as a secondary trait 

 Heading date was positively correlated with yield in Fort Collins across all three years. 

The phenotypic correlation between heading date and yield was 0.46 for Fort Collins 2014, 0.41 

in 2015, and 0.12 in 2016. In Fort Collins 2014, incorporating heading date as a secondary trait 

into the multivariate GS model on both the training and test populations increased the 

prediction accuracy of yield from 0.14 to 0.42 (200%) (Table S3). In Fort Collins 2015, 

incorporating heading date as a secondary trait increased the prediction accuracy of yield from 

0.37 to 0.41 (10.8%). In Fort Collins 2016, heading date reduced the prediction accuracy of yield 

from 0.33 to 0.12 (-63.6%). These results highlight the importance of using only a secondary 

trait in a multi-trait GS model when the secondary trait has a moderate correlation to the trait 

of interest. 

 Heading date was negatively correlated with yield In Julesburg across all three years. 

The phenotypic correlation between heading date and yield was -0.21 in 2014, -0.45 in 2015, 

and -0.16 in 2015. The negative correlation between yield and heading date resulted in 

negative prediction accuracies for yield when used in the multi-trait GS model (Table S3). 

Inverting the heading dates provided heading dates that were positively correlated yield but did 

not increase the GS prediction accuracies above the prediction accuracies of yield in the 

univariate model. Using the inverted heading dates in Julesburg 2016, the model was never 

able to converge and provide a GS prediction accuracy for this environment. At this time I am 

not sure how to best use a highly negatively correlated trait in a multi-trait GS model.  

 Optimizing the heading date of lines so that they do not coincide with a period of water 

deficit or extreme heat or early spring freeze has been shown to be an effective strategy in 
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improving yield under low water conditions (Araus et al., 2002). In this study I found that 

incorporating the heading date into a multivariate GS model was more effective in an irrigated 

environment than in a non-irrigated environment (Julesburg). With the positive correlations 

between heading date and yield in Fort Collins, the multivariate model was able to use the 

additional information of heading date timing and increase the prediction accuracy of yield. 

This is promising that a simple phenotype, heading date, which is typically collected on lines in a 

breeding program, can be used to increase GS predictions of yield in certain environments. In 

the non-irrigated environments heading date was negatively correlated with yield indicating 

that genotypes that matured earlier were able to avoid the late season heat and stress. 

Heading date as a secondary trait was not effective in these environments.  

Plant Height as a secondary trait 

 Plant height was positively correlated with yield in Fort Collins across all three years. The 

phenotypic correlation between plant height and yield was 0.17 for Fort Collins 2014, 0.49 in 

2015, and 0.05 in 2016. In Fort Collins 2014 using plant height as a secondary trait increased the 

GS prediction accuracy of yield from 0.14 to 0.20 (42%), in Fort Collins 2015 it was increased 

from 0.37 to 0.47 (27%), but in Fort Collins 2016 it decreased from 0.33 to 0.08 (-75.8%) (Table 

S3). The phenotypic correlation between plant height and yield was 0.01 for Julesburg 2014, -

0.03 in 2015, and -0.27 in 2016. In Julesburg 2014, plant height used as a secondary trait 

decreased the GS prediction accuracies of yield from 0.58 to 0.01, and in Julesburg 2015 

decreased the GS prediction accuracy of yield from 0.56 to 0.01. In Julesburg 2016, the 

prediction accuracy was decreased from 0.46 to -0.20.   
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 Again, these data show that using a secondary trait with a low correlation with the 

primary trait can negatively impact the GS prediction accuracy in a multi-trait GS model. With a 

correlation of near zero between the primary and secondary trait a multi-trait GS model will 

provide a prediction accuracy of near zero for the trait of interest. Plant height does not appear 

to be as reliable of a secondary trait for multi-trait GS analysis in the FAWWON germplasm. This 

may be due to the diversity of genotypes in the collection where both tall and short varieties 

can be either high yielding or low yielding. Plant height may be an appropriate secondary trait 

in a breeding program that has a population more targeted to the region where small 

differences in plant height may be more correlated to differences in yield. These results 

highlight the need to examine the data before using it in a multi-trait GS model and the need to 

find cheap, reliable phenotypes that provide a consistently high, positive correlation with the 

primary trait.  

 

Mean Cumulative NDVI phenotypes as secondary traits  

 I feel that a method that accounts for the seasonal variability in leaf area using spectral 

reflectance values over most of the growing season is a better and more robust phenotype than 

a single date or single growth stage and would better assist in GS predictions for grain yield in 

wheat. Two methods were compared to determine the best cumulative NDVI phenotype for 

summarizing multiple NDVI time point measurements for increasing the GS prediction of yield. 

Rutkoski et al. (2016) observed increases in GS prediction accuracy by as much as 70% when 

mean NDVI phenotypes were incorporated into a multivariate GS model on the training and 

test populations. Rutkoski et al. (2016) found that the correlation between the secondary traits 

and yield as well as the heritability of the secondary traits were the primary drivers for 
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increasing prediction accuracy. But, they concluded that the expected gain in accuracy due to a 

set of secondary traits is difficult to predict.  

 The MEAN-VEG, MEAN-GF, and MEAN-FULL phenotypes for both RNDVI and GNDVI 

helped to increase the GS prediction accuracies of yield in Fort Collins 2014 (Table S4). The FULL 

mean RNDVI and GNDVI phenotypes increased GS prediction accuracy of yield in Fort Collins 

2015. The FULL mean RNDVI phenotypes increased GS prediction accuracy of yield in Fort 

Collins 2016. In Fort Collins the RNDVI phenotypes averaged across the entire growing season 

was the most consistent secondary NDVI phenotype in increasing the GS prediction accuracy of 

yield when used in a multivariate GS model. This highlights that there are important changes in 

the plant canopy structure that are occurring during the entire growing season that must be 

accounted for in order to create the best multi trait GS model when using NDVI as a secondary 

trait for yield. The mean RNDVI phenotypes for the full growing season increased prediction 

accuracies from 0.14 to 0.25 (78.6%) in Fort Collins 2014, 0.37 to 0.44 (18.9%) in Fort Collins 

2015, and from 0.33 to 0.35 (6.1%) in Fort Collins 2016.  

The MEAN-VEG-RNDVI and MEAN-VEG-GNDVI phenotypes increased the GS prediction 

accuracies of yield in Julesburg 2014 (Table S4). The MEAN-VEG-RNDVI and MEAN-FULL-RNDVI 

phenotypes increased GS prediction accuracy of yield in Julesburg 2015. The MEAN-VEG-GNDVI 

and MEAN-FULL-GNDVI phenotypes increased GS prediction accuracy of yield in Julesburg 

2016. In Julesburg, the NDVI phenotype most consistent across the three years was the MEAN-

VEG-RNDVI or the MEAN-VEG-GNDVI as both increased the prediction accuracy of yield in two 

of three growing seasons. There was no single mean NDVI phenotype that increased the GS 

prediction accuracy of yield all three years. These data show that in Julesburg (non-irrigated) 



 
172 

 

NDVI phenotypes are only needed from early spring growth to heading in order to provide a 

mean NDVI phenotype that can help increase the prediction accuracy of yield. While the 

literature suggests that in wheat, the later developmental stages appear to be the most 

appropriate time to utilize SRI to discriminate for crop productivity (Aparicio et al., 2000; Babar 

et al., 2006; Naser, 2012) the results showed that multiple early season measurements 

provided the greatest increase in GS prediction accuracy of grain yield. Our results indicate that 

determining key growth stages for SRI measurements may not need to be identified as a mean 

NDVI value provides a similar correlation to grain yield as the best single time point estimate 

(data not shown). This provides the technician or researcher with a tremendous amount of 

flexibility in terms of collection times as key physiological stages do not have to be directly 

measured for NDVI to be a valuable secondary phenotype. 

The AUC NDVI phenotypes were not as effective in increasing the GS prediction 

accuracies of yield in Fort Collins. There was no single phenotype that was consistent across all 

three growing seasons in Fort Collins. In 2014 only the AUC-GF-RNDVI and AUC-GF-GNDVI 

phenotypes increased the prediction accuracies of yield above the level for the univariate 

model (Table S5). In Fort Collins 2015, none of the AUC phenotypes increased the prediction 

accuracy of yield. In Fort Collins 2016, the AUC-FULL-RNDVI and AUC-FULL-RNDVI phenotypes 

increased the prediction accuracy of yield.  

The AUC NDVI phenotypes were very effective in increasing the GS prediction accuracies 

of yield in Julesburg (non-irrigated). This is in agreement with Rutkoski et al. (2016) who 

observed that the multivariate GS model with secondary traits lead to the greatest percent 

increase in accuracy in the drought environment.  
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 Measuring spectral reflectance appears to be a practical means of adopting 

physiological trait selection for crop improvement within a breeding program. The use of field 

portable spectroradiometers capable of collecting multiple indices allowed for a quick and easy 

comparison of these indices under the same experimental conditions in terms of their 

correlation to yield. The development and examination of reliable screening techniques is 

necessary in order to make indirection selection more efficient. Rutkoski et al. (2016) and 

Pszczola et al. (2013) observed no improvement in prediction accuracy when secondary traits 

were only recorded and modeled on the training set. Based on simulation, including secondary 

traits only on the training set can improve accuracy when the heritability of the trait of interest 

is low and heritability of the secondary traits are high (Jia et al., 2012). Because breeding lines 

have to be grown in the field for seed increase, there would only be a marginal additional cost 

of high-throughput phenotyping of lines already present in the field. 

 

Conclusion 
 

Genomic selection’s ability to predict the breeding value of an individual based on the 

composition of its marker set is emerging as an important procedure for improving complex 

quantitative traits in plants. This paper shows that a relatively small number of diverse 

genotypes with NDVI and traditional plant breeding phenotypes can help increase the GS 

prediction accuracy of yield across environments. Plant height, heading date, RNDVI, and 

GNDVI could be excellent secondary traits for multi-trait GS in wheat because of their high 

heritabilities, genetic correlations with yield, and their relative ease in being measured on lines 

prior to harvest. 

  



 
174 

 

References 

Aparicio, N., D. Villegas, J. Casadesus, J.L. Araus, and C. Royo. 2000. Spectral vegetation indices 

as nondestructive tools for determining durum wheat yield. Agron. J. 92: 83-91. 

Araus, J. 1996. Integrative physiological criteria associated with yield potential. Increasing yield 

potential in wheat: Breaking the barriers. CIMMYT, Mexico, DF: 150-167. 

Araus, J., J. Casadesus, and J. Bort. 2001. Recent tools for the screening of physiological traits 

determining yield. Application of Physiology in Wheat Breeding Mexico, DF: CIMMYT 59-

77. 

Araus, J., G. Slafer, M. Reynolds and C. Royo. 2002. Plant breeding and drought in C3 cereals: 

what should we breed for? Ann. Bot. 89: 925-940. 

Babar, M., M. Reynolds, M. Van Ginkel, A. Klatt, W. Raun and M. Stone. 2006. Spectral 

reflectance indices as a potential indirect selection criteria for wheat yield under 

irrigation. Crop Sci. 46: 578-588. 

Babar, M., M. Reynolds, M. Van Ginkel, A. Klatt, W. Raun and M. Stone. 2006. Spectral 

reflectance to estimate genetic variation for in-season biomass, leaf chlorophyll, and 

canopy temperature in wheat. Crop Sci. 46: 1046-1057. 

Bartholome, E. 1988. Radiometric measurements and crop yield forecasting Some observations 

over millet and sorghum experimental plots in Mali. Intl. J. Remote Sens. 9: 1539-1552. 

Bernardo, R. 2008. Molecular markers and selection for complex traits in plants: learning from 

the last 20 years. Crop Sci. 48: 1649-1664. 

Bernardo, R. and J. Yu. 2007. Prospects for genomewide selection for quantitative traits in 

maize. Crop Sci. 47: 1082-1090. 



 
175 

 

Calus, M.P. and R.F. Veerkamp. 2011. Accuracy of multi-trait genomic selection using different 

methods. Genet. Sel. Evol 43: 26. 

Cobb, J.N., G. DeClerck, A. Greenberg, R. Clark and S. McCouch. 2013. Next-generation 

phenotyping: requirements and strategies for enhancing our understanding of 

genotype–phenotype relationships and its relevance to crop improvement. Theor. Appl. 

Genet. 126:867-887. 

Coombes, N. 2009. DiGGer, a spatial design program. Biometric bulletin, NSW Department of 

Primary Industries. http://www.austatgen.org/software/. (accessed 1 August 2014). 

Crossa, J., G. de Los Campos, P. Pérez, D. Gianola, J. Burgueño, J.L. Araus, D. Makumbi, R.P. 

Singh, S. Dreisigacker and J. Yan. 2010. Prediction of genetic values of quantitative traits 

in plant breeding using pedigree and molecular markers. Genetics 186: 713-724. 

Dempster, A.P., N.M. Laird, and D.B. Rubin. 1977. Maximum likelihood from incomplete data 

via the EM algorithm. J. R. Stat. Soc. Series B (Methodol) 39: 1-38.  

Endelman, J.B. 2011. Ridge regression and other kernels for genomic selection with R package 

rrBLUP. Plant Genome 4: 250-255. 

Furbank, R.T. and M. Tester. 2011. Phenomics–technologies to relieve the phenotyping 

bottleneck. Trends Plant Sci. 16: 635-644. 

Gilmour, A.R., B. Gogel, B. Cullis and R. Thompson. 2009. ASReml user guide release 3.0. VSN 

International Ltd, Hemel Hempstead, UK. (accessed 14 April 2014). 

Gutierrez, M., M.P. Reynolds, W.R. Raun, M.L. Stone and A.R. Klatt. 2010. Spectral water indices 

for assessing yield in elite bread wheat genotypes under well-irrigated, water-stressed, 

and high-temperature conditions. Crop Sci. 50: 197-214. 

http://www.austatgen.org/software/


 
176 

 

González-Camacho, J., G. de Los Campos, P. Pérez, D. Gianola, J. Cairns, G. Mahuku, R. Babu and 

J. Crossa. 2012. Genome-enabled prediction of genetic values using radial basis function 

neural networks. Theor. Appl. Genet. 125: 759-771. 

Haley, S.D., J.J. Johnson, F.B. Peairs, J.A. Stromberger, E.E. Hudson, S.A. Seifert, R.A. Kottke, V.A. 

Valdez, J.B. Rudolph, G. Bai, X. Chen, R.L. Bowden, Y. Jin, J.A. Kolmer, M.-S. Chen, and 

B.W. Seabourn. 2012. Registration of 'Byrd' wheat. J. Plant Reg. 6:302-305.   

Heffner, E.L., J.-L. Jannink, and M.E. Sorrells. 2011. Genomic selection accuracy using 

multifamily prediction models in a wheat breeding program. Plant Genome 4: 65-75. 

Heffner, E.L., A.J. Lorenz, J.-L. Jannink and M.E. Sorrells. 2010. Plant breeding with genomic 

selection: gain per unit time and cost. Crop Sci. 50: 1681-1690. 

International Wheat Genome Sequencing Consortium (IWGSC). 2014. A chromosome-based 

draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 

345:1251788. 

Jannink, J.-L., A.J. Lorenz, and H. Iwata. 2010. Genomic selection in plant breeding: from theory 

to practice. Brief. Funct. Genomics 9: 166-177. 

Jia, Y. and J.-L. Jannink. 2012. Multiple-trait genomic selection methods increase genetic value 

prediction accuracy. Genetics 192: 1513-1522. 

Labus, M., G. Nielsen, R. Lawrence, R. Engel and D. Long. 2002. Wheat yield estimates using 

multi-temporal NDVI satellite imagery. Intl. J. Remote Sens. 23: 4169-4180. 

Lopes, M.S. and M.P. Reynolds. 2012. Stay-green in spring wheat can be determined by spectral 

reflectance measurements (normalized difference vegetation index) independently from 

phenology. J. Exp. Bot. 63: 3789-3798. 



 
177 

 

Lorenz, A.J., S. Chao, F.G. Asoro, E.L. Heffner, T. Hayashi, H. Iwata, K.P. Smith, M.E. Sorrells, and 

J.-L. Jannink. 2011. Genomic selection in plant breeding: knowledge and prospects. Adv. 

Agron. 110: 77-123. 

Marti, J., J. Bort, G. Slafer and J. Araus. 2007. Can wheat yield be assessed by early 

measurements of normalized difference vegetation index? Ann. Appl. Bio. 150: 253-257. 

Meuwissen, T., B. Hayes, and M. Goddard. 2001. Prediction of total genetic value using 

genome-wide dense marker maps. Genetics 157: 1819-1829. 

Mullan, D.J. and M.P. Reynolds. 2010. Quantifying genetic effects of ground cover on soil water 

evaporation using digital imaging. Funct. Plant Bio. 37: 703-712. 

Naser, M.A. 2012. Active sensing: An innovative tool for evaluating grain yield and nitrogen use 

efficiency of multiple wheat genotypes. M.S. Thesis, Colorado State University. 

Pask, A., J. Pietragalla, D. Mullan and M. Reynolds. 2012. Physiological breeding II: A field guide 

to wheat phenotyping. CIMMYT: 32-26. 

Passioura, J., A. Condon and R. Richards. 1993. Water deficits, the development of leaf area and 

crop productivity. Water deficits plant responses from cell to community. BIOS Scientific 

Publishers Limited, Oxford. p. 253-264. 

Pinter Jr., P., R. Jackson, S. Idso and R. Reginato. 1981. Multidate spectral reflectance as 

predictors of yield in water stressed wheat and barley. Intl. J. Remote Sens. 2: 43-48. 

Poland, J.A., P.J. Brown, M.E. Sorrells and J.-L. Jannink. 2012. Development of high-density 

genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing 

approach. PloS one 7: e32253. 



 
178 

 

Prasad, B., B. Carver, M. Stone, M. Babar, W. Raun and A. Klatt. 2007. Potential use of spectral 

reflectance indices as a selection tool for grain yield in winter wheat under Great Plains 

conditions. Crop Sci. 47: 1426-1440. 

Prasad, B., B.F. Carver, M.L. Stone, M. Babar, W.R. Raun and A.R. Klatt. 2007. Genetic analysis of 

indirect selection for winter wheat grain yield using spectral reflectance indices. Crop 

Sci. 47: 1416-1425. 

Pszczola, M., R. Veerkamp, Y. De Haas, E. Wall, T. Strabel and M. Calus. 2013. Effect of predictor 

traits on accuracy of genomic breeding values for feed intake based on a limited cow 

reference population. Animal 7: 1759-1768. 

R Development Core Team 2014 R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. 

(accessed 1 June 2016). 

Raun, W.R., J.B. Solie, G.V. Johnson, M.L. Stone, E.V. Lukina, W.E. Thomason and J.S. Schepers. 

2001. In-season prediction of potential grain yield in winter wheat using canopy 

reflectance. Agron. J. 93: 131-138. 

Reynolds, M., A. Pask and D. Mullan. 2012. Physiological breeding I: Interdisciplinary 

approaches to improve crop adaptation. CIMMYT: 69-80. 

Reynolds, M., S. Rajaram and K. Sayre. 1999. Physiological and genetic changes of irrigated 

wheat in the post–green revolution period and approaches for meeting projected global 

demand. Crop Sci. 39: 1611-1621. 

http://www.r-project.org/


 
179 

 

Royo, C., N. Aparicio, D. Villegas, J. Casadesus, P. Monneveux and J. Araus. 2003. Usefulness of 

spectral reflectance indices as durum wheat yield predictors under contrasting 

Mediterranean conditions. Intl. J. Remote Sens. 24: 4403-4419. 

Rudorff, B. and G. Batista. 1990. Spectral response of wheat and its relationship to agronomic 

variables in the tropical region. Remote Sens. Environ. 31: 53-63. 

Rutkoski, J., J. Poland, S. Mondal, E. Autrique, L.G. Pérez, J. Crossa, M. Reynolds and R. Singh. 

2016. Canopy temperature and vegetation indices from high-throughput phenotyping 

improve accuracy of pedigree and genomic selection for grain yield in wheat. G3: 

Genes| Genomes| Genetics 6: 2799-2808. 

Wright Jr., D.L., V.P. Rasmussen Jr. and R.D. Ramsey. 2005. Comparing the use of remote 

sensing with traditional techniques to detect nitrogen stress in wheat. Geocarto Intl. 20: 

63-68 

  



 
180 

 

Supplemental Tables 

Supplemental Table S5.1. Red normalized difference vegetation index (RNDVI) and green 
normalized difference vegetation index (GNDVI) collection dates into growth stages across the 
six measured environments. 

 
Fort Collins 2014   

 
Julesburg 2014   

Collection Day Date Julian Day Growth   Date Julian Day Growth 

1 19-Apr 109 VEG 
 

20-Apr 110 VEG 

2 14-May 134 VEG 
 

15-May 135 VEG 

3 28-May 148 VEG 
 

27-May 147 VEG 

4 1-Jun 152 VEG 
 

2-Jun 153 VEG 

5 7-Jun 158 GF 
 

6-Jun 157 GF 

6 18-Jun 169 GF 
 

17-Jun 168 GF 

7 28-Jun 179 GF 
 

27-Jun 178 GF 

8 11-Jul 192 GF 
 

10-Jul 191 GF 

        

 
Fort Collins 2015   

 
Julesburg 2015   

Collection Day Date Julian Day Growth   Date Julian Day Growth 

1 6-Nov NA - 
 

8-Nov NA - 

2 13-Feb 44 VEG 
 

16-Feb 47 VEG 

3 27-Mar 86 VEG 
 

29-Mar 88 VEG 

4 22-Apr 112 VEG 
 

- - 
 5 12-May 132 VEG 

 
28-Apr 118 VEG 

6 31-May 151 VEG 
 

14-May 134 VEG 

7 4-Jun 155 GF 
 

29-May 149 VEG 

8 17-Jun 168 GF 
 

5-Jun 156 GF 

9 23-Jun 174 GF 
 

14-Jun 165 GF 

10 1-Jul 182 GF 
 

24-Jun 175 GF 

11 20-Jul 207 GF 
 

2-Jul 183 GF 

        

 
Fort Collins 2016   

 
Julesburg 2016   

Collection Day Date Julian Day Growth   Date Julian Day Growth 

1 14-Nov NA - 
 

15-Nov NA - 

2 11-Mar 71 VEG 
 

10-Mar 70 VEG 

3 8-Apr 99 VEG 
 

9-Apr 100 VEG 

4 6-May 127 VEG 
 

5-May 126 VEG 

5 20-May 141 VEG 
 

22-May 143 VEG 

6 2-Jun 154 GF 
 

3-Jun 155 GF 

7 14-Jun 166 GF 
 

15-Jun 167 GF 

8 25-Jun 177 GF 
 

24-Jun 176 GF 

9 6-Jul 188 GF 
 

8-Jul 190 GF 
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Supplemental Table S5.2. Number of single nucleotide polymorphism (SNP) markers used for 

genomic selection analysis in each of the 6 environments and the missing marker percentage 

threshold used to obtain that number of SNP markers. 

Location Year Missing Marker % # of SNPs 

Fort Collins 2014 30 42,055 

Julesburg 2014 30 44,365 

Fort Collins 2015 35 43,992 

Julesburg 2015 25 44,890 

Fort Collins 2016 50 42,451 

Julesburg 2016 50 44,041 
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Supplemental Table S5.3. Genomic selection (GS) model prediction accuracies for yield. The 

‘Yield’ column is when only yield was used in a univariate GS model. The phenotypes listed in 

the table give the prediction accuracies for grain yield when they were used as secondary traits 

in a multi-trait GS prediction model. 

Environment   Yield Height  Heading Date 

Fort Collins 2014 MTGS 0.14 0.20 0.42 

 
S.E. 0.01 0.01 0.01 

Julesburg 2014 MTGS 0.58 0.01 -0.14 

 
S.E. 0.01 0.01 0.01 

Fort Collins 2015 MTGS 0.37 0.47 0.41 

 
S.E. 0.01 0.01 0.01 

Julesburg 2015 MTGS 0.56 0.01 -0.42 

 
S.E. 0.01 0.02 0.01 

Fort Collins 2016 MTGS 0.33 0.08 0.12 

 
S.E. 0.01 0.01 0.01 

Julesburg 2016 MTGS 0.46 -0.20 -0.14 

 
S.E. 0.01 0.01 0.01 
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Supplemental Table S5.4. Genomic selection (GS) model prediction accuracies for yield. The ‘Yield’ column is when only yield was used 
in a univariate GS model. The phenotypes listed in the table are normalized difference vegetation indicies (NDVI) using mean values 
to give the prediction accuracies for grain yield when they were used as secondary traits in a multi-trait GS prediction model. 
 

   
    MEAN NDVI       

Environment   Yield VEG-R.NDVI GF-R.NDVI FULL-R.NDVI VEG-G.NDVI GF-G.NVDI FULL-G.NDVI 

Fort Collins 2014 MTGS 0.14 0.15 0.34 0.25 0.21 0.31 0.26 

 
S.E. 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Julesburg 2014 MTGS 0.58 0.69 0.08 0.25 0.62 0.08 0.54 

 
S.E. 0.01 0.01 0.02 0.02 0.01 0.01 0.01 

Fort Collins 2015 MTGS 0.37 0.29 0.36 0.44 0.36 0.31 0.38 

 
S.E. 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Julesburg 2015 MTGS 0.56 0.71 -0.01 0.59 -0.21 0.45 -0.11 

 
S.E. 0.01 0.02 0.02 0.02 0.00 0.02 0.02 

Fort Collins 2016 MTGS 0.33 0.30 0.28 0.35 0.33 0.07 0.26 

 
S.E. 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Julesburg 2016 MTGS 0.46 0.20 0.39 0.44 0.52 0.43 0.52 

 
S.E. 0.01 0.02 0.01 0.01 0.02 0.01 0.02 
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Supplemental Table S5.5. Genomic selection (GS) model prediction accuracies for yield. The ‘Yield’ column is when only yield was 
used in a univariate GS model. The phenotypes listed in the table are normalized difference vegetation indicies (NDVI) using area 
under the curve (AUC) to give the prediction accuracies for grain yield when they were used as secondary traits in a multi-trait GS 
prediction model. 
 

   
    AUC NDVI       

Environment         Yield VEG-R.NDVI GF-R.NDVI FULL-R.NDVI VEG-G.NDVI GF-G.NDVI FULL-G.NDVI 

Fort Collins 2014 MTGS 0.14 -0.07 0.23 -0.02 -0.05 0.19 -0.03 

 
S.E. 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Julesburg 2014 MTGS 0.58 0.65 0.15 0.69 0.66 0.17 0.70 

 
S.E. 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Fort Collins 2015 MTGS 0.37 0.20 0.16 0.27 0.05 -0.05 0.21 

 
S.E. 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Julesburg 2015 MTGS 0.56 0.80 0.59 0.81 0.79 0.48 0.23 

 
S.E. 0.01 0.01 0.01 0.00 0.01 0.01 0.03 

Fort Collins 2016 MTGS 0.33 0.29 0.30 0.34 0.32 0.22 0.36 

 
S.E. 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Julesburg 2016 MTGS 0.46 0.46 0.22 0.48 0.48 0.38 0.58 

 
S.E. 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
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Supplemental Table S5.6. Grain yield and normalized difference vegetation indice (NDVI) values for area under the curve (AUC) for 

Fort Collins 2014. 

  
    AUC       

ID Yield VEGR.NDVI GF-R.NDVI FULL-R.NDVI VEG-G.NDVI GF-G.NDVI FULL-G.NDVI 

X20FAWWON.IRR.7 97.39 21.52 17.87 43.62 23.31 17.72 44.79 

X20FAWWON.IRR.8 103.44 20.78 18.42 43.09 22.84 17.97 44.39 

X20FAWWON.IRR.9 122.67 21.35 17.12 43.05 23.31 17.56 44.83 

X20FAWWON.IRR.10 90.14 21.46 19.42 44.97 23.24 18.59 46.11 

X20FAWWON.IRR.11 98.93 20.81 17.54 42.93 22.74 17.42 43.79 

X20FAWWON.IRR.12 127.71 22.10 19.27 45.72 23.45 18.48 45.36 

X20FAWWON.IRR.13 104.06 20.48 17.30 41.54 22.85 17.72 43.64 

X20FAWWON.IRR.14 109.35 20.86 18.99 43.41 22.84 18.23 44.38 

X20FAWWON.IRR.15 108.01 20.53 18.38 43.05 22.83 18.05 44.52 

X20FAWWON.IRR.16 109.32 21.44 18.93 44.96 23.18 18.00 45.41 

X20FAWWON.IRR.17 107.86 21.36 18.78 44.52 23.40 18.50 45.93 

X20FAWWON.IRR.18 105.16 21.24 19.20 44.83 23.03 18.44 45.24 

X20FAWWON.IRR.19 103.00 21.31 18.37 44.14 23.10 17.95 44.75 

X20FAWWON.IRR.20 107.44 21.75 18.75 45.10 23.25 18.37 45.31 

X20FAWWON.IRR.21 94.93 21.64 18.09 44.12 23.20 17.60 44.76 

X20FAWWON.IRR.22 103.89 21.63 17.97 44.32 23.38 17.72 45.27 

X20FAWWON.IRR.23 114.38 22.31 18.98 46.06 23.84 18.51 46.73 

X20FAWWON.IRR.24 102.19 21.33 17.06 43.02 22.98 16.92 43.20 

X20FAWWON.IRR.25 101.87 20.69 18.69 43.36 22.71 18.03 44.17 

X20FAWWON.IRR.26 91.49 21.96 17.81 44.73 23.45 17.61 45.10 

X20FAWWON.IRR.27 114.34 21.46 19.39 45.18 23.22 18.71 45.62 

X20FAWWON.IRR.28 110.48 21.81 18.19 44.74 23.48 18.12 45.49 

X20FAWWON.IRR.29 118.66 22.70 19.96 47.45 23.93 19.18 47.17 

X20FAWWON.IRR.30 107.29 22.21 18.81 45.61 23.56 18.29 45.67 

X20FAWWON.IRR.31 107.33 20.91 18.98 43.88 22.94 18.77 45.42 

X20FAWWON.IRR.32 99.95 21.84 18.45 44.85 23.33 17.46 44.60 
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X20FAWWON.IRR.33 105.15 20.44 18.21 42.68 22.76 18.22 43.97 

X20FAWWON.IRR.35 111.84 21.00 18.94 44.11 22.95 18.06 44.65 

X20FAWWON.IRR.36 108.54 21.63 19.46 45.56 23.34 19.09 45.95 

X20FAWWON.IRR.37 96.06 21.97 19.72 46.59 23.38 18.47 46.02 

X20FAWWON.IRR.38 102.78 20.47 17.70 42.20 22.68 18.34 44.15 

X20FAWWON.IRR.39 96.37 21.39 19.27 44.72 22.99 18.22 45.06 

X20FAWWON.IRR.40 103.30 21.37 18.73 44.09 23.24 18.21 45.05 

X20FAWWON.IRR.41 110.67 21.70 19.65 45.67 23.31 18.78 45.88 

X20FAWWON.IRR.42 112.86 22.18 19.36 46.09 23.68 19.01 46.85 

X20FAWWON.IRR.43 96.78 20.77 17.07 41.97 22.61 16.90 42.91 

X20FAWWON.IRR.44 113.01 21.70 19.43 45.64 23.40 18.50 46.25 

X20FAWWON.IRR.45 122.64 21.65 18.77 44.84 23.34 18.00 44.91 

X20FAWWON.IRR.46 96.72 19.93 17.64 41.51 22.21 17.39 42.45 

X20FAWWON.IRR.47 107.27 20.82 18.36 43.23 23.06 18.03 44.52 

X20FAWWON.IRR.48 103.02 21.53 18.36 44.47 23.25 18.23 45.62 

X20FAWWON.IRR.49 108.28 21.28 19.84 44.97 23.27 19.34 46.52 

X20FAWWON.IRR.50 107.27 21.16 19.03 44.22 22.96 18.42 44.51 

X20FAWWON.IRR.51 93.19 21.31 19.04 44.65 23.11 18.86 45.67 

X20FAWWON.IRR.52 99.76 19.88 17.56 41.65 22.33 17.58 42.74 

X20FAWWON.IRR.54 119.11 20.50 19.03 43.55 22.94 18.80 45.75 

X20FAWWON.IRR.55 99.75 21.51 19.46 45.27 23.27 18.73 45.89 

X20FAWWON.IRR.56 111.78 22.17 19.10 45.94 23.72 18.61 46.25 

X20FAWWON.IRR.57 109.76 19.53 18.14 40.83 22.28 18.44 43.20 

X20FAWWON.IRR.59 124.83 21.54 19.43 45.09 23.34 19.16 45.92 

X20FAWWON.IRR.60 97.10 21.52 18.26 44.48 23.23 17.99 44.98 

X20FAWWON.IRR.69 114.50 20.83 18.20 43.38 22.91 17.73 44.22 

X20FAWWON.IRR.70 104.56 19.88 17.08 40.87 22.43 17.57 43.31 

X20FAWWON.IRR.71 97.54 21.05 18.25 43.18 22.93 17.65 44.19 

X20FAWWON.IRR.72 103.69 21.27 18.87 44.65 23.19 18.52 45.49 

X20FAWWON.IRR.74 103.05 21.48 18.72 44.69 23.17 17.85 44.55 

X20FAWWON.IRR.75 110.47 20.06 18.26 42.23 22.47 18.15 43.97 
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X20FAWWON.IRR.77 81.84 22.05 18.16 45.14 23.59 18.29 45.81 

X20FAWWON.IRR.78 112.35 21.49 19.33 45.45 23.27 18.68 46.05 

X20FAWWON.IRR.85 96.84 21.46 18.29 44.18 23.18 18.11 45.20 

X20FAWWON.IRR.86 112.77 21.92 18.37 44.96 23.61 17.98 46.10 

X20FAWWON.IRR.87 109.65 21.39 18.28 44.34 23.23 18.00 44.85 

X20FAWWON.IRR.88 102.49 20.93 18.58 43.51 23.04 18.12 44.53 

X20FAWWON.IRR.89 111.93 21.56 19.17 44.90 23.22 18.66 45.18 

X20FAWWON.IRR.95 115.72 19.48 18.88 41.53 22.10 18.62 43.48 

X20FAWWON.IRR.97 109.81 20.80 18.51 43.55 23.11 18.52 45.38 

X20FAWWON.IRR.98 95.09 20.42 18.44 42.45 22.67 18.40 44.31 

X20FAWWON.IRR.100 87.58 21.51 19.83 45.59 23.16 18.94 46.31 

X20FAWWON.IRR.106 108.11 20.78 19.95 44.40 22.90 19.43 45.46 

X20FAWWON.IRR.114 104.97 21.14 20.29 45.28 23.13 19.43 46.20 

X20FAWWON.IRR.115 110.16 21.57 18.92 44.82 23.39 18.55 45.84 

X20FAWWON.IRR.118 89.89 20.41 17.63 42.26 22.80 17.66 44.14 

X20FAWWON.IRR.143 84.03 22.16 18.25 45.32 23.54 17.86 45.15 

X20FAWWON.SA.202 103.51 21.58 19.21 44.89 23.32 18.16 45.36 

X20FAWWON.SA.206 98.22 21.68 17.75 44.26 23.33 17.50 44.69 

X20FAWWON.SA.207 101.11 21.08 17.52 42.84 23.01 17.31 43.76 

X20FAWWON.SA.208 98.52 21.09 18.89 44.06 23.12 18.59 45.23 

X20FAWWON.SA.209 102.66 20.49 18.74 42.89 22.61 18.08 43.87 

X20FAWWON.SA.210 112.13 20.14 16.84 40.90 22.56 17.19 43.07 

X20FAWWON.SA.212 99.81 21.35 18.09 43.96 23.38 18.67 45.93 

X20FAWWON.SA.213 110.38 19.78 18.70 42.13 22.33 18.34 43.78 

X20FAWWON.SA.214 116.42 20.68 20.01 44.40 22.81 18.87 45.19 

X20FAWWON.SA.215 115.75 20.99 19.80 44.60 22.94 18.80 45.11 

X20FAWWON.SA.218 98.10 21.71 18.37 44.42 23.23 17.75 44.79 

X20FAWWON.SA.221 109.08 20.87 19.05 44.03 22.91 18.61 44.95 

X20FAWWON.SA.222 112.76 20.59 18.57 43.06 22.84 18.18 44.52 

X20FAWWON.SA.223 102.55 20.87 17.93 42.98 22.94 17.71 44.24 

X20FAWWON.SA.224 105.61 22.26 17.96 45.21 23.63 17.40 45.16 
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X20FAWWON.SA.226 106.33 20.17 17.01 41.10 22.61 17.29 43.09 

X20FAWWON.SA.227 109.96 21.76 18.54 44.99 23.46 18.08 46.21 

X20FAWWON.SA.228 111.39 22.22 19.73 46.13 23.67 18.73 46.44 

X20FAWWON.SA.230 94.29 20.92 18.78 44.08 22.99 17.99 44.86 

X20FAWWON.SA.231 109.77 20.65 19.03 43.42 22.88 18.43 45.09 

X20FAWWON.SA.232 109.61 22.28 18.63 45.60 23.59 17.91 45.62 

X20FAWWON.SA.233 112.12 21.24 18.73 43.80 23.11 18.23 44.89 

X20FAWWON.SA.235 123.51 20.97 19.17 43.95 22.84 18.05 44.49 

X20FAWWON.SA.236 99.40 22.82 19.38 47.16 23.94 18.46 46.80 

X20FAWWON.SA.237 112.68 22.95 20.39 48.31 24.10 19.02 48.00 

X20FAWWON.SA.238 120.55 20.84 18.66 43.67 22.77 17.90 44.09 

X20FAWWON.SA.239 102.80 20.35 17.97 42.26 22.67 17.93 43.78 

X20FAWWON.SA.241 112.77 21.00 19.90 44.95 22.96 19.13 45.81 

X20FAWWON.SA.243 118.15 21.69 19.76 45.59 23.48 19.21 46.29 

X20FAWWON.SA.244 96.86 20.91 18.38 43.69 23.06 18.54 45.12 

X20FAWWON.SA.249 101.68 21.37 19.42 44.91 23.09 19.02 45.41 

X20FAWWON.SA.251 97.54 22.47 19.28 46.64 23.95 19.29 47.94 

X20FAWWON.SA.252 104.08 21.85 19.90 46.00 23.40 19.65 46.69 

X20FAWWON.SA.254 103.85 20.55 18.10 42.81 22.89 18.13 44.58 

X20FAWWON.SA.256 108.45 20.82 17.90 43.16 22.94 18.24 44.83 

X20FAWWON.SA.257 100.06 21.05 18.33 43.62 22.88 17.46 43.94 

X20FAWWON.SA.258 95.84 22.87 18.29 46.31 24.17 18.19 47.29 

X20FAWWON.SA.259 116.59 21.84 19.97 46.01 23.49 18.98 46.40 

X20FAWWON.SA.278 109.73 20.67 18.20 43.12 22.95 18.36 44.37 

Byrd 114.81 21.81 19.69 45.64 23.42 18.78 45.66 

Denali 114.36 19.92 19.75 43.23 22.48 18.91 44.45 

Ripper 118.42 22.21 19.56 46.32 23.69 18.86 46.52 

Snowmass 98.11 20.01 18.62 42.23 22.37 17.79 43.32 

Antero 113.90 21.46 19.36 45.08 23.32 18.76 45.83 
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Supplemental Table S5.7. Mean normalized difference vegetation indice (NDVI) values for Fort Collins 2014. 

 
    MEAN       

ID VEG-R.NDVI GF-R.NDVI FULL-R.NDVI VEG-G.NDVI GF-G.NDVI FULL-G.NDVI 

X20FAWWON.IRR.7 0.53 0.51 0.52 0.56 0.52 0.54 

X20FAWWON.IRR.8 0.52 0.53 0.52 0.55 0.53 0.54 

X20FAWWON.IRR.9 0.52 0.48 0.51 0.56 0.51 0.54 

X20FAWWON.IRR.10 0.53 0.55 0.54 0.57 0.54 0.56 

X20FAWWON.IRR.11 0.52 0.51 0.52 0.56 0.51 0.53 

X20FAWWON.IRR.12 0.55 0.55 0.55 0.57 0.53 0.55 

X20FAWWON.IRR.13 0.50 0.49 0.49 0.55 0.51 0.53 

X20FAWWON.IRR.14 0.54 0.55 0.54 0.57 0.54 0.55 

X20FAWWON.IRR.15 0.51 0.52 0.51 0.56 0.52 0.54 

X20FAWWON.IRR.16 0.53 0.54 0.53 0.57 0.53 0.55 

X20FAWWON.IRR.17 0.53 0.53 0.53 0.57 0.53 0.55 

X20FAWWON.IRR.18 0.53 0.54 0.54 0.56 0.54 0.55 

X20FAWWON.IRR.19 0.53 0.52 0.53 0.57 0.52 0.54 

X20FAWWON.IRR.20 0.55 0.53 0.55 0.57 0.53 0.55 

X20FAWWON.IRR.21 0.54 0.52 0.54 0.57 0.52 0.55 

X20FAWWON.IRR.22 0.54 0.52 0.53 0.57 0.52 0.55 

X20FAWWON.IRR.23 0.56 0.54 0.56 0.59 0.54 0.57 

X20FAWWON.IRR.24 0.53 0.49 0.51 0.55 0.50 0.52 

X20FAWWON.IRR.25 0.52 0.54 0.53 0.55 0.53 0.54 

X20FAWWON.IRR.26 0.54 0.50 0.53 0.57 0.51 0.54 

X20FAWWON.IRR.27 0.54 0.55 0.54 0.57 0.53 0.55 

X20FAWWON.IRR.28 0.55 0.52 0.54 0.58 0.53 0.56 

X20FAWWON.IRR.29 0.56 0.57 0.56 0.58 0.55 0.57 

X20FAWWON.IRR.30 0.56 0.53 0.55 0.58 0.53 0.56 

X20FAWWON.IRR.31 0.53 0.54 0.53 0.56 0.54 0.56 

X20FAWWON.IRR.32 0.54 0.53 0.54 0.56 0.52 0.54 

X20FAWWON.IRR.33 0.51 0.51 0.50 0.55 0.52 0.52 
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X20FAWWON.IRR.35 0.52 0.55 0.53 0.56 0.52 0.54 

X20FAWWON.IRR.36 0.54 0.55 0.55 0.57 0.55 0.56 

X20FAWWON.IRR.37 0.55 0.55 0.55 0.57 0.53 0.55 

X20FAWWON.IRR.38 0.51 0.50 0.50 0.56 0.53 0.54 

X20FAWWON.IRR.39 0.54 0.56 0.54 0.56 0.54 0.55 

X20FAWWON.IRR.40 0.53 0.54 0.53 0.56 0.53 0.55 

X20FAWWON.IRR.41 0.55 0.55 0.55 0.57 0.54 0.56 

X20FAWWON.IRR.42 0.55 0.55 0.55 0.58 0.55 0.57 

X20FAWWON.IRR.43 0.52 0.50 0.51 0.55 0.51 0.53 

X20FAWWON.IRR.44 0.53 0.55 0.54 0.57 0.55 0.56 

X20FAWWON.IRR.45 0.54 0.53 0.54 0.56 0.52 0.54 

X20FAWWON.IRR.46 0.50 0.50 0.49 0.53 0.50 0.51 

X20FAWWON.IRR.47 0.51 0.52 0.51 0.55 0.52 0.54 

X20FAWWON.IRR.48 0.54 0.53 0.54 0.57 0.54 0.56 

X20FAWWON.IRR.49 0.53 0.56 0.54 0.56 0.56 0.56 

X20FAWWON.IRR.50 0.53 0.54 0.53 0.55 0.53 0.54 

X20FAWWON.IRR.51 0.54 0.55 0.54 0.57 0.54 0.56 

X20FAWWON.IRR.52 0.49 0.50 0.49 0.54 0.51 0.52 

X20FAWWON.IRR.54 0.51 0.54 0.52 0.56 0.54 0.55 

X20FAWWON.IRR.55 0.54 0.55 0.54 0.56 0.54 0.56 

X20FAWWON.IRR.56 0.55 0.54 0.55 0.58 0.54 0.56 

X20FAWWON.IRR.57 0.49 0.51 0.49 0.54 0.51 0.52 

X20FAWWON.IRR.59 0.54 0.55 0.55 0.57 0.55 0.56 

X20FAWWON.IRR.60 0.54 0.52 0.54 0.57 0.51 0.54 

X20FAWWON.IRR.69 0.52 0.52 0.52 0.56 0.52 0.54 

X20FAWWON.IRR.70 0.51 0.48 0.49 0.55 0.51 0.53 

X20FAWWON.IRR.71 0.53 0.51 0.52 0.56 0.51 0.54 

X20FAWWON.IRR.72 0.53 0.54 0.54 0.57 0.54 0.55 

X20FAWWON.IRR.74 0.53 0.53 0.53 0.57 0.51 0.54 

X20FAWWON.IRR.75 0.51 0.52 0.51 0.55 0.53 0.54 

X20FAWWON.IRR.77 0.55 0.51 0.54 0.58 0.52 0.55 
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X20FAWWON.IRR.78 0.54 0.55 0.55 0.57 0.55 0.56 

X20FAWWON.IRR.85 0.54 0.52 0.53 0.57 0.53 0.55 

X20FAWWON.IRR.86 0.54 0.53 0.54 0.58 0.53 0.56 

X20FAWWON.IRR.87 0.53 0.52 0.53 0.57 0.52 0.54 

X20FAWWON.IRR.88 0.52 0.53 0.52 0.55 0.52 0.53 

X20FAWWON.IRR.89 0.54 0.55 0.54 0.57 0.54 0.55 

X20FAWWON.IRR.95 0.51 0.54 0.52 0.55 0.55 0.54 

X20FAWWON.IRR.97 0.52 0.53 0.53 0.56 0.54 0.55 

X20FAWWON.IRR.98 0.53 0.53 0.53 0.57 0.54 0.56 

X20FAWWON.IRR.100 0.54 0.57 0.55 0.57 0.56 0.57 

X20FAWWON.IRR.106 0.53 0.57 0.55 0.56 0.56 0.56 

X20FAWWON.IRR.114 0.53 0.58 0.55 0.57 0.55 0.56 

X20FAWWON.IRR.115 0.53 0.54 0.53 0.57 0.53 0.55 

X20FAWWON.IRR.118 0.50 0.50 0.50 0.56 0.52 0.53 

X20FAWWON.IRR.143 0.54 0.52 0.53 0.57 0.51 0.54 

X20FAWWON.SA.202 0.54 0.55 0.55 0.56 0.53 0.55 

X20FAWWON.SA.206 0.54 0.51 0.53 0.57 0.51 0.54 

X20FAWWON.SA.207 0.53 0.50 0.52 0.56 0.51 0.53 

X20FAWWON.SA.208 0.52 0.54 0.53 0.57 0.53 0.55 

X20FAWWON.SA.209 0.52 0.54 0.53 0.55 0.53 0.54 

X20FAWWON.SA.210 0.50 0.47 0.48 0.55 0.50 0.52 

X20FAWWON.SA.212 0.52 0.52 0.51 0.56 0.54 0.55 

X20FAWWON.SA.213 0.50 0.53 0.51 0.54 0.53 0.53 

X20FAWWON.SA.214 0.53 0.57 0.55 0.56 0.54 0.55 

X20FAWWON.SA.215 0.54 0.56 0.55 0.57 0.54 0.55 

X20FAWWON.SA.218 0.55 0.53 0.54 0.56 0.52 0.55 

X20FAWWON.SA.221 0.52 0.54 0.53 0.55 0.54 0.54 

X20FAWWON.SA.222 0.52 0.53 0.52 0.56 0.52 0.54 

X20FAWWON.SA.223 0.53 0.51 0.52 0.56 0.52 0.54 

X20FAWWON.SA.224 0.55 0.51 0.54 0.57 0.50 0.54 

X20FAWWON.SA.226 0.51 0.49 0.50 0.55 0.50 0.53 
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X20FAWWON.SA.227 0.54 0.53 0.54 0.58 0.53 0.56 

X20FAWWON.SA.228 0.56 0.56 0.57 0.58 0.55 0.57 

X20FAWWON.SA.230 0.51 0.53 0.52 0.55 0.53 0.54 

X20FAWWON.SA.231 0.52 0.55 0.53 0.56 0.54 0.55 

X20FAWWON.SA.232 0.55 0.53 0.55 0.58 0.52 0.55 

X20FAWWON.SA.233 0.53 0.53 0.53 0.56 0.52 0.54 

X20FAWWON.SA.235 0.54 0.55 0.54 0.56 0.53 0.55 

X20FAWWON.SA.236 0.57 0.55 0.57 0.59 0.53 0.57 

X20FAWWON.SA.237 0.57 0.58 0.58 0.60 0.55 0.58 

X20FAWWON.SA.238 0.52 0.54 0.53 0.55 0.52 0.53 

X20FAWWON.SA.239 0.51 0.51 0.51 0.55 0.51 0.53 

X20FAWWON.SA.241 0.53 0.56 0.55 0.56 0.55 0.56 

X20FAWWON.SA.243 0.54 0.56 0.55 0.57 0.55 0.56 

X20FAWWON.SA.244 0.52 0.52 0.52 0.56 0.53 0.55 

X20FAWWON.SA.249 0.53 0.56 0.54 0.55 0.55 0.55 

X20FAWWON.SA.251 0.57 0.55 0.57 0.59 0.56 0.58 

X20FAWWON.SA.252 0.54 0.56 0.55 0.57 0.56 0.56 

X20FAWWON.SA.254 0.51 0.52 0.51 0.56 0.53 0.54 

X20FAWWON.SA.256 0.52 0.51 0.52 0.56 0.53 0.54 

X20FAWWON.SA.257 0.53 0.53 0.53 0.56 0.51 0.54 

X20FAWWON.SA.258 0.56 0.53 0.55 0.58 0.54 0.57 

X20FAWWON.SA.259 0.54 0.57 0.56 0.56 0.54 0.56 

X20FAWWON.SA.278 0.51 0.52 0.51 0.56 0.53 0.54 

Byrd 0.54 0.55 0.54 0.56 0.53 0.55 

Denali 0.50 0.56 0.52 0.54 0.55 0.54 

Ripper 0.54 0.55 0.55 0.57 0.54 0.56 

Snowmass 0.50 0.52 0.50 0.54 0.51 0.52 

Antero 0.54 0.55 0.54 0.57 0.53 0.55 

Byrd4 0.54 0.55 0.55 0.57 0.54 0.55 
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Supplemental Table S5.8. Grain yield and normalized difference vegetation indice (NDVI) values for area under the curve (AUC) for 

Julesburg 2014. 

  
    AUC       

ID Yield VEG-R.NDVI GF-R.NDVI FULL-R.NDVI VEG-G.NDVI GF-G.NDVI FULL-G.NDVI 

X20FAWWON.IRR.7 60.47 16.43 13.22 31.14 20.04 15.45 37.78 

X20FAWWON.IRR.8 48.41 16.07 11.56 27.74 19.98 14.46 36.32 

X20FAWWON.IRR.9 68.46 21.54 13.32 35.34 22.44 15.54 40.16 

X20FAWWON.IRR.10 67.95 9.45 12.81 24.75 16.45 15.39 34.81 

X20FAWWON.IRR.11 55.22 15.18 13.53 30.64 19.13 15.56 37.28 

X20FAWWON.IRR.12 71.40 19.93 12.88 33.72 21.84 15.13 38.83 

X20FAWWON.IRR.13 63.24 18.76 12.19 31.48 21.35 14.91 38.40 

X20FAWWON.IRR.14 49.09 10.89 13.00 25.42 17.14 15.41 35.17 

X20FAWWON.IRR.15 65.70 18.68 13.00 32.64 21.32 15.37 38.84 

X20FAWWON.IRR.16 63.14 16.99 13.31 31.98 20.38 15.59 38.35 

X20FAWWON.IRR.17 62.88 15.77 12.93 30.22 20.05 15.46 37.91 

X20FAWWON.IRR.18 66.33 21.54 13.17 35.62 22.89 15.53 40.44 

X20FAWWON.IRR.19 64.16 19.30 12.11 32.22 21.63 14.77 38.37 

X20FAWWON.IRR.20 60.01 17.21 12.48 30.76 20.11 14.86 37.07 

X20FAWWON.IRR.21 54.18 19.72 12.28 31.55 21.28 14.76 37.68 

X20FAWWON.IRR.22 57.76 14.64 13.66 30.91 19.39 15.72 37.90 

X20FAWWON.IRR.23 58.54 17.23 12.75 30.83 20.49 15.15 37.82 

X20FAWWON.IRR.24 57.32 16.58 12.49 30.11 20.02 14.90 37.05 

X20FAWWON.IRR.25 60.39 17.16 13.09 31.73 20.42 15.35 38.05 

X20FAWWON.IRR.26 59.94 19.00 12.96 32.78 21.01 15.24 38.59 

X20FAWWON.IRR.27 53.41 13.04 13.60 29.37 18.44 15.81 37.13 

X20FAWWON.IRR.29 61.67 16.03 13.19 31.62 20.36 15.50 38.32 

X20FAWWON.IRR.30 53.38 16.86 12.33 30.02 20.28 14.92 37.40 

X20FAWWON.IRR.31 57.27 15.13 13.50 30.40 19.08 15.85 37.87 

X20FAWWON.IRR.32 52.34 12.89 13.23 27.98 18.12 15.50 36.20 

X20FAWWON.IRR.33 58.45 11.07 13.42 27.11 17.46 15.91 36.51 
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X20FAWWON.IRR.35 61.17 14.16 13.58 29.93 18.88 15.72 37.32 

X20FAWWON.IRR.36 60.30 21.34 12.60 34.41 22.73 15.27 39.81 

X20FAWWON.IRR.37 62.47 22.13 12.92 35.51 23.02 15.65 40.73 

X20FAWWON.IRR.38 64.82 21.19 12.97 34.66 22.63 15.65 40.29 

X20FAWWON.IRR.39 55.56 16.44 13.20 31.28 19.96 15.41 37.83 

X20FAWWON.IRR.40 60.97 17.49 12.76 31.60 20.83 15.12 38.00 

X20FAWWON.IRR.41 62.21 18.62 13.36 34.01 21.27 15.63 39.39 

X20FAWWON.IRR.42 64.57 22.59 13.05 35.61 22.73 15.57 40.46 

X20FAWWON.IRR.43 54.00 11.98 12.72 26.53 17.72 15.16 35.55 

X20FAWWON.IRR.44 60.98 18.69 12.44 31.47 21.24 14.95 37.99 

X20FAWWON.IRR.45 62.70 19.11 12.65 32.40 21.09 15.06 38.41 

X20FAWWON.IRR.46 64.85 20.16 13.11 34.41 21.72 15.23 39.07 

X20FAWWON.IRR.47 58.50 11.66 13.18 27.19 17.60 15.67 36.27 

X20FAWWON.IRR.48 59.18 15.70 13.19 30.81 20.14 15.65 38.30 

X20FAWWON.IRR.49 54.64 12.63 12.77 27.54 18.58 15.48 36.56 

X20FAWWON.IRR.55 61.31 16.58 12.02 28.57 20.23 14.72 36.69 

X20FAWWON.IRR.56 55.73 15.54 13.65 31.42 19.62 15.90 38.37 

X20FAWWON.IRR.57 76.48 20.32 12.92 34.16 22.40 15.30 39.71 

X20FAWWON.IRR.59 64.52 18.38 12.22 31.53 21.35 14.93 38.52 

X20FAWWON.IRR.69 53.93 15.95 12.57 28.90 19.61 14.96 36.48 

X20FAWWON.IRR.71 51.51 9.30 12.70 24.17 16.50 15.29 34.56 

X20FAWWON.IRR.74 58.87 18.87 12.39 32.15 21.70 14.97 38.60 

X20FAWWON.IRR.78 45.92 9.56 13.76 25.75 16.37 15.90 35.11 

X20FAWWON.IRR.85 47.62 14.21 12.50 27.65 18.50 15.12 36.27 

X20FAWWON.IRR.86 67.31 19.69 12.89 33.70 21.86 15.36 39.46 

X20FAWWON.IRR.87 59.83 18.32 12.66 31.54 21.14 15.32 38.48 

X20FAWWON.IRR.88 59.03 16.22 13.68 31.23 19.78 15.67 37.84 

X20FAWWON.IRR.95 73.79 21.75 13.94 36.48 22.54 15.97 40.80 

X20FAWWON.IRR.97 68.51 18.12 12.99 32.31 21.17 15.41 38.86 

X20FAWWON.IRR.98 63.86 19.54 12.37 32.16 21.76 14.97 38.58 

X20FAWWON.IRR.100 62.29 19.21 12.40 31.59 21.52 14.83 38.01 
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X20FAWWON.IRR.106 69.41 18.90 13.05 32.88 21.76 15.59 39.45 

X20FAWWON.IRR.114 65.02 16.14 14.13 32.80 19.95 16.17 39.11 

X20FAWWON.IRR.115 63.22 19.79 12.57 33.26 22.09 15.02 38.93 

X20FAWWON.IRR.118 61.76 23.54 12.63 35.78 23.71 15.16 40.58 

X20FAWWON.IRR.143 70.77 25.65 13.58 39.86 24.51 15.69 42.17 

X20FAWWON.SA.202 60.45 17.43 13.69 33.02 20.61 15.82 38.98 

X20FAWWON.SA.206 53.69 20.52 12.08 32.69 22.13 14.78 38.57 

X20FAWWON.SA.207 60.64 16.29 11.67 28.48 19.89 14.51 36.47 

X20FAWWON.SA.208 51.87 13.50 13.05 27.56 18.09 15.44 36.13 

X20FAWWON.SA.209 66.32 18.16 13.20 32.83 21.04 15.49 38.92 

X20FAWWON.SA.210 60.61 15.49 13.35 30.48 18.97 15.55 37.38 

X20FAWWON.SA.212 56.96 17.51 14.06 33.99 20.81 16.01 39.47 

X20FAWWON.SA.213 61.76 17.06 13.11 31.74 20.58 15.38 38.31 

X20FAWWON.SA.214 62.49 16.96 13.13 31.64 20.31 15.34 37.92 

X20FAWWON.SA.215 65.15 18.22 13.54 33.12 21.02 15.69 38.93 

X20FAWWON.SA.218 64.47 22.07 14.37 38.09 22.64 16.21 41.24 

X20FAWWON.SA.221 63.83 17.75 12.37 30.49 20.90 15.11 37.95 

X20FAWWON.SA.222 70.59 22.14 12.54 34.84 23.06 14.95 39.69 

X20FAWWON.SA.223 56.85 14.65 12.83 29.01 18.86 15.22 36.68 

X20FAWWON.SA.224 63.02 22.85 13.16 37.21 23.07 15.34 40.63 

X20FAWWON.SA.226 55.79 15.34 12.55 28.89 19.54 15.27 37.13 

X20FAWWON.SA.227 57.01 16.53 11.92 28.19 19.92 14.77 36.58 

X20FAWWON.SA.228 68.16 19.02 13.83 34.42 21.09 15.94 39.64 

X20FAWWON.SA.230 62.91 19.04 12.47 31.96 21.65 15.10 38.61 

X20FAWWON.SA.231 63.55 16.81 13.18 32.24 20.67 15.40 38.61 

X20FAWWON.SA.232 54.92 16.02 12.75 29.90 19.78 15.03 36.85 

X20FAWWON.SA.235 60.69 18.47 12.45 31.28 20.89 14.89 37.90 

X20FAWWON.SA.236 59.27 19.77 13.30 34.75 21.71 15.56 39.75 

X20FAWWON.SA.237 63.93 22.16 13.69 36.23 22.50 15.57 40.10 

X20FAWWON.SA.238 57.47 14.84 12.28 28.67 19.41 14.93 36.78 

X20FAWWON.SA.241 69.16 21.71 13.48 35.67 22.88 15.66 40.41 
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X20FAWWON.SA.243 70.48 22.71 13.57 37.19 23.42 15.76 41.18 

X20FAWWON.SA.244 58.77 16.22 13.38 31.92 20.39 15.65 38.62 

X20FAWWON.SA.249 63.64 23.20 12.89 35.97 23.27 15.59 40.80 

X20FAWWON.SA.251 67.17 25.65 14.31 40.63 24.67 16.59 43.57 

X20FAWWON.SA.252 66.74 23.03 14.20 38.25 23.23 16.28 41.68 

X20FAWWON.SA.254 66.56 19.80 12.86 33.72 21.89 15.31 39.47 

X20FAWWON.SA.256 69.32 19.90 12.52 32.83 21.84 15.02 38.84 

X20FAWWON.SA.257 61.43 21.72 11.42 32.20 22.52 14.59 38.79 

X20FAWWON.SA.258 64.99 22.52 12.40 34.84 23.19 15.01 40.02 

X20FAWWON.SA.259 60.85 20.85 12.29 32.55 22.32 14.90 38.83 

X20FAWWON.SA.278 66.45 19.08 13.27 32.82 21.22 15.51 38.89 

Byrd 75.84 23.72 13.20 37.74 23.64 15.38 41.19 

Denali 78.67 22.94 13.31 37.01 23.40 15.59 41.23 

Ripper 63.94 20.09 10.81 30.73 21.84 14.15 37.78 

Snowmass 66.17 22.25 13.23 36.25 22.53 15.19 39.97 

Antero 77.59 24.72 12.93 38.53 24.06 15.35 41.57 
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Supplemental Table S5.9. Mean normalized difference vegetation indice (NDVI) values for Julesburg 2014. 

 
    MEAN       

ID VEG-R.NDVI GF-R.NDVI FULL-R.NDVI VEG-G.NDVI GF-G.NDVI FULL-G.NDVI 

X20FAWWON.IRR.7 0.44 0.39 0.41 0.52 0.46 0.49 

X20FAWWON.IRR.8 0.38 0.36 0.37 0.47 0.44 0.46 

X20FAWWON.IRR.9 0.44 0.39 0.40 0.53 0.46 0.49 

X20FAWWON.IRR.10 0.28 0.39 0.37 0.44 0.46 0.47 

X20FAWWON.IRR.11 0.38 0.40 0.39 0.46 0.45 0.46 

X20FAWWON.IRR.12 0.47 0.38 0.42 0.54 0.46 0.49 

X20FAWWON.IRR.13 0.40 0.36 0.38 0.51 0.45 0.48 

X20FAWWON.IRR.14 0.34 0.38 0.39 0.48 0.46 0.48 

X20FAWWON.IRR.15 0.45 0.38 0.41 0.52 0.46 0.50 

X20FAWWON.IRR.16 0.43 0.40 0.41 0.51 0.46 0.48 

X20FAWWON.IRR.17 0.38 0.39 0.39 0.48 0.45 0.47 

X20FAWWON.IRR.18 0.51 0.39 0.44 0.55 0.46 0.50 

X20FAWWON.IRR.19 0.49 0.37 0.43 0.55 0.45 0.50 

X20FAWWON.IRR.20 0.39 0.36 0.38 0.47 0.45 0.46 

X20FAWWON.IRR.21 0.48 0.35 0.42 0.53 0.45 0.49 

X20FAWWON.IRR.22 0.35 0.40 0.39 0.48 0.46 0.48 

X20FAWWON.IRR.23 0.45 0.38 0.41 0.53 0.46 0.49 

X20FAWWON.IRR.24 0.41 0.37 0.40 0.51 0.45 0.48 

X20FAWWON.IRR.25 0.38 0.39 0.38 0.49 0.45 0.47 

X20FAWWON.IRR.26 0.42 0.39 0.40 0.51 0.45 0.48 

X20FAWWON.IRR.27 0.36 0.41 0.40 0.49 0.47 0.49 

X20FAWWON.IRR.29 0.41 0.39 0.40 0.51 0.46 0.49 

X20FAWWON.IRR.30 0.40 0.37 0.39 0.50 0.45 0.48 

X20FAWWON.IRR.31 0.35 0.40 0.38 0.49 0.46 0.48 

X20FAWWON.IRR.32 0.36 0.39 0.39 0.47 0.46 0.48 

X20FAWWON.IRR.33 0.32 0.39 0.37 0.47 0.46 0.47 

X20FAWWON.IRR.35 0.35 0.40 0.38 0.45 0.45 0.46 
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X20FAWWON.IRR.36 0.53 0.38 0.44 0.56 0.46 0.50 

X20FAWWON.IRR.37 0.50 0.39 0.43 0.56 0.46 0.51 

X20FAWWON.IRR.38 0.45 0.39 0.41 0.53 0.46 0.49 

X20FAWWON.IRR.39 0.39 0.39 0.40 0.49 0.46 0.48 

X20FAWWON.IRR.40 0.43 0.38 0.41 0.51 0.46 0.48 

X20FAWWON.IRR.41 0.46 0.39 0.42 0.53 0.46 0.50 

X20FAWWON.IRR.42 0.51 0.40 0.44 0.56 0.46 0.51 

X20FAWWON.IRR.43 0.31 0.37 0.36 0.45 0.46 0.46 

X20FAWWON.IRR.44 0.44 0.37 0.41 0.52 0.46 0.49 

X20FAWWON.IRR.45 0.46 0.39 0.42 0.54 0.46 0.50 

X20FAWWON.IRR.46 0.46 0.40 0.42 0.53 0.46 0.49 

X20FAWWON.IRR.47 0.30 0.40 0.36 0.46 0.45 0.47 

X20FAWWON.IRR.48 0.40 0.39 0.40 0.51 0.46 0.49 

X20FAWWON.IRR.49 0.32 0.37 0.36 0.46 0.46 0.47 

X20FAWWON.IRR.55 0.36 0.35 0.37 0.48 0.45 0.46 

X20FAWWON.IRR.56 0.41 0.40 0.42 0.51 0.47 0.50 

X20FAWWON.IRR.57 0.47 0.39 0.42 0.54 0.46 0.50 

X20FAWWON.IRR.59 0.45 0.36 0.41 0.54 0.45 0.49 

X20FAWWON.IRR.69 0.43 0.38 0.41 0.51 0.45 0.48 

X20FAWWON.IRR.71 0.27 0.39 0.35 0.43 0.45 0.46 

X20FAWWON.IRR.74 0.44 0.37 0.40 0.52 0.45 0.49 

X20FAWWON.IRR.78 0.30 0.40 0.38 0.45 0.47 0.47 

X20FAWWON.IRR.85 0.33 0.38 0.37 0.47 0.46 0.47 

X20FAWWON.IRR.86 0.44 0.37 0.41 0.52 0.46 0.49 

X20FAWWON.IRR.87 0.39 0.37 0.38 0.51 0.45 0.48 

X20FAWWON.IRR.88 0.42 0.40 0.42 0.51 0.47 0.49 

X20FAWWON.IRR.95 0.47 0.42 0.43 0.52 0.45 0.48 

X20FAWWON.IRR.97 0.43 0.38 0.41 0.53 0.46 0.49 

X20FAWWON.IRR.98 0.44 0.38 0.40 0.52 0.45 0.49 

X20FAWWON.IRR.100 0.47 0.38 0.41 0.53 0.45 0.49 

X20FAWWON.IRR.106 0.48 0.39 0.43 0.54 0.46 0.50 
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X20FAWWON.IRR.114 0.42 0.41 0.42 0.52 0.47 0.50 

X20FAWWON.IRR.115 0.49 0.37 0.42 0.54 0.46 0.50 

X20FAWWON.IRR.118 0.51 0.37 0.43 0.56 0.46 0.50 

X20FAWWON.IRR.143 0.53 0.41 0.44 0.56 0.46 0.50 

X20FAWWON.SA.202 0.43 0.41 0.42 0.52 0.46 0.49 

X20FAWWON.SA.206 0.44 0.37 0.40 0.52 0.45 0.48 

X20FAWWON.SA.207 0.36 0.35 0.37 0.48 0.45 0.47 

X20FAWWON.SA.208 0.37 0.38 0.40 0.49 0.46 0.48 

X20FAWWON.SA.209 0.39 0.39 0.39 0.50 0.45 0.48 

X20FAWWON.SA.210 0.37 0.40 0.39 0.49 0.46 0.48 

X20FAWWON.SA.212 0.43 0.42 0.42 0.52 0.46 0.49 

X20FAWWON.SA.213 0.41 0.39 0.40 0.51 0.46 0.49 

X20FAWWON.SA.214 0.43 0.39 0.41 0.52 0.46 0.49 

X20FAWWON.SA.215 0.48 0.40 0.44 0.54 0.47 0.51 

X20FAWWON.SA.218 0.46 0.42 0.42 0.53 0.46 0.50 

X20FAWWON.SA.221 0.41 0.38 0.39 0.52 0.45 0.49 

X20FAWWON.SA.222 0.51 0.37 0.43 0.56 0.45 0.50 

X20FAWWON.SA.223 0.38 0.38 0.39 0.49 0.45 0.48 

X20FAWWON.SA.224 0.47 0.39 0.42 0.54 0.46 0.49 

X20FAWWON.SA.226 0.39 0.38 0.39 0.50 0.46 0.48 

X20FAWWON.SA.227 0.38 0.35 0.37 0.49 0.44 0.47 

X20FAWWON.SA.228 0.49 0.42 0.45 0.55 0.47 0.51 

X20FAWWON.SA.230 0.39 0.36 0.38 0.51 0.45 0.48 

X20FAWWON.SA.231 0.42 0.38 0.40 0.52 0.46 0.49 

X20FAWWON.SA.232 0.42 0.37 0.40 0.50 0.46 0.48 

X20FAWWON.SA.235 0.43 0.38 0.40 0.52 0.45 0.49 

X20FAWWON.SA.236 0.47 0.40 0.43 0.54 0.46 0.50 

X20FAWWON.SA.237 0.50 0.39 0.44 0.56 0.46 0.51 

X20FAWWON.SA.238 0.38 0.36 0.38 0.49 0.45 0.48 

X20FAWWON.SA.241 0.50 0.39 0.44 0.56 0.46 0.51 

X20FAWWON.SA.243 0.51 0.39 0.44 0.56 0.46 0.51 



 
200 

 

X20FAWWON.SA.244 0.42 0.39 0.41 0.52 0.46 0.49 

X20FAWWON.SA.249 0.53 0.39 0.44 0.57 0.46 0.52 

X20FAWWON.SA.251 0.53 0.44 0.45 0.57 0.47 0.52 

X20FAWWON.SA.252 0.51 0.40 0.45 0.56 0.47 0.51 

X20FAWWON.SA.254 0.47 0.38 0.42 0.54 0.46 0.50 

X20FAWWON.SA.256 0.43 0.37 0.40 0.50 0.45 0.47 

X20FAWWON.SA.257 0.49 0.36 0.42 0.55 0.45 0.50 

X20FAWWON.SA.258 0.47 0.36 0.41 0.54 0.46 0.49 

X20FAWWON.SA.259 0.46 0.36 0.41 0.51 0.45 0.48 

X20FAWWON.SA.278 0.42 0.39 0.40 0.51 0.45 0.48 

Byrd 0.51 0.39 0.44 0.55 0.45 0.50 

Denali 0.52 0.39 0.46 0.57 0.47 0.52 

Ripper 0.46 0.33 0.40 0.52 0.44 0.48 

Snowmass 0.48 0.39 0.42 0.53 0.45 0.49 

Antero 0.53 0.39 0.44 0.57 0.45 0.51 

Byrd4 0.53 0.39 0.45 0.56 0.45 0.51 
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Supplemental Table S5.10. Grain yield and normalized difference vegetation indice (NDVI) values for area under the curve (AUC) for 

Fort Collins 2015. 

  
    AUC       

ID Yield VEG-R.NDVI GF-R.NDVI FULL-R.NDVI VEG-G.NDVI GF-G.NDVI FULL-G.NDVI 

X21FAWWON.SA.288 75.78 50.24 20.65 73.07 55.91 23.86 82.42 

X20FAWWON.SA.227 84.93 48.68 21.10 72.47 55.24 24.14 81.94 

X20FAWWON.IRR.42 93.62 51.28 20.96 74.89 57.05 24.66 84.26 

X20FAWWON.SA.215 98.14 49.73 21.74 74.48 55.51 24.30 82.34 

X21FAWWON.IRR.157 80.70 45.79 21.22 70.10 52.81 23.75 79.43 

X20FAWWON.SA.223 90.51 43.17 19.80 65.50 51.57 22.89 77.41 

X20FAWWON.IRR.12 92.05 48.73 20.76 72.17 54.92 23.64 81.09 

X21FAWWON.IRR.81 58.38 47.57 20.93 71.74 55.05 24.57 82.18 

X21FAWWON.SA.258 72.57 42.91 20.46 65.93 51.28 23.28 76.99 

X20FAWWON.SA.231 102.69 46.94 22.32 72.69 54.26 24.92 81.87 

X20FAWWON.IRR.100 73.90 47.64 20.51 70.72 54.20 23.94 80.91 

X21FAWWON.SA.207 84.44 53.34 21.02 77.05 58.35 23.46 84.69 

X21FAWWON.IRR.142 76.80 48.86 20.23 71.33 55.09 23.33 80.95 

X21FAWWON.IRR.59 86.23 39.43 23.02 66.04 49.52 24.94 77.23 

X21FAWWON.IRR.152 71.98 45.46 20.58 68.72 53.10 23.95 79.47 

X20FAWWON.SA.230 65.64 44.03 20.38 67.30 51.82 23.88 78.61 

X20FAWWON.SA.243 91.10 50.21 21.26 74.13 55.98 24.66 83.04 

X20FAWWON.IRR.95 75.62 49.57 20.32 72.03 56.22 23.81 82.44 

X21FAWWON.SA.275 54.76 45.20 19.42 66.98 52.74 23.60 78.73 

X21FAWWON.IRR.9 89.94 45.36 22.30 71.25 53.19 24.54 80.11 

X21FAWWON.SA.250 80.87 43.67 22.39 70.17 52.14 24.61 79.64 

X20FAWWON.IRR.55 78.22 47.10 20.78 70.35 53.99 23.81 80.45 

X21FAWWON.SA.297 62.35 47.24 21.36 71.29 53.63 24.67 80.50 

X21FAWWON.SA.261 81.57 48.61 19.65 70.58 54.77 23.45 80.56 

X20FAWWON.IRR.46 87.30 51.27 21.19 74.91 56.46 24.16 82.85 

X21FAWWON.IRR.116 79.34 41.34 21.01 65.69 50.18 24.15 76.81 
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X21FAWWON.IRR.36 62.41 40.04 22.56 66.49 49.60 25.39 77.70 

X21FAWWON.IRR.7 80.59 49.16 20.81 72.51 55.43 23.96 81.92 

X21FAWWON.IRR.122 73.68 43.91 19.13 65.35 52.09 22.90 77.64 

X21FAWWON.SA.201 76.07 53.77 21.49 77.78 57.81 25.81 86.00 

X21FAWWON.SA.292 85.87 41.29 20.35 64.57 50.21 23.45 76.51 

X20FAWWON.IRR.36 77.13 54.21 22.58 79.69 58.57 25.37 86.52 

X21FAWWON.IRR.141 90.22 49.61 20.74 73.35 55.80 24.70 83.18 

X20FAWWON.IRR.115 89.56 51.81 20.60 74.98 57.31 23.03 83.27 

X20FAWWON.SA.278 83.96 46.12 21.24 70.28 53.48 25.07 80.96 

X21FAWWON.SA.228 98.42 46.08 20.77 69.87 53.42 23.46 79.65 

X21FAWWON.IRR.29 77.81 48.41 21.36 72.59 54.99 25.11 82.49 

X20FAWWON.SA.241 102.95 51.91 21.46 76.26 57.48 24.48 84.63 

X21FAWWON.SA.234 113.56 52.38 19.90 74.69 57.44 23.10 82.95 

X21FAWWON.SA.243 79.66 52.71 21.93 77.42 58.50 25.48 86.08 

X20FAWWON.IRR.25 72.31 44.62 20.25 67.98 52.88 23.90 79.64 

X20FAWWON.IRR.18 85.58 50.91 21.03 74.42 56.43 24.33 83.23 

X21FAWWON.IRR.166 80.88 48.74 20.40 71.41 54.74 23.70 80.75 

X21FAWWON.SA.252 86.33 43.23 19.31 64.91 51.23 22.64 76.69 

X20FAWWON.IRR.23 99.08 51.22 21.13 75.13 57.03 23.51 83.66 

X21FAWWON.SA.263 73.82 41.16 21.27 65.85 50.47 24.40 77.56 

X20FAWWON.IRR.19 90.73 49.06 21.33 73.02 55.43 24.19 82.39 

X20FAWWON.IRR.97 86.35 48.92 20.00 71.17 55.67 23.69 82.05 

X20FAWWON.SA.206 79.91 45.58 21.66 70.58 52.98 24.02 79.96 

X20FAWWON.SA.207 78.37 40.72 20.03 64.02 49.75 23.05 75.91 

X20FAWWON.IRR.114 89.93 52.66 22.83 78.97 58.09 25.17 85.99 

X20FAWWON.IRR.37 85.23 48.27 23.15 74.69 54.95 27.40 84.35 

X21FAWWON.IRR.76 61.38 44.91 22.18 70.03 52.77 25.04 80.44 

X21FAWWON.IRR.71 86.21 48.00 19.46 69.95 54.87 23.73 80.97 

X20FAWWON.SA.209 76.50 42.27 22.03 67.77 50.95 24.97 78.62 

X21FAWWON.IRR.148 81.36 49.08 20.34 71.91 55.25 23.73 81.54 

X20FAWWON.IRR.118 70.97 52.12 20.03 74.52 58.01 24.32 84.68 



 
203 

 

X20FAWWON.SA.252 85.80 53.45 20.44 76.26 58.09 24.26 84.96 

X21FAWWON.SA.270 77.58 43.37 21.27 67.60 51.55 24.19 78.60 

X20FAWWON.IRR.33 81.58 43.57 22.44 69.66 51.97 25.28 80.20 

X20FAWWON.IRR.43 71.37 42.05 19.36 64.06 50.58 23.10 76.10 

X20FAWWON.IRR.7 90.62 45.41 21.15 69.37 52.75 24.11 79.58 

X20FAWWON.SA.244 70.07 44.33 21.52 68.68 52.09 24.89 79.28 

X21FAWWON.IRR.146 80.66 42.58 20.38 65.94 51.17 23.87 77.72 

X20FAWWON.IRR.28 85.18 38.98 22.42 65.08 48.58 25.01 76.39 

X20FAWWON.IRR.57 83.91 49.41 21.43 73.80 56.07 25.00 83.51 

X21FAWWON.SA.202 79.50 49.05 21.31 73.17 55.04 24.03 81.85 

X20FAWWON.SA.210 86.47 42.66 19.93 65.55 50.83 23.23 76.80 

X21FAWWON.SA.248 78.20 52.10 21.27 76.19 57.64 24.04 84.39 

X20FAWWON.IRR.86 92.86 55.58 21.56 79.68 59.48 24.19 86.29 

X21FAWWON.SA.247 80.87 52.69 21.60 76.97 57.80 24.41 84.92 

X21FAWWON.SA.223 79.95 44.57 19.97 67.24 51.91 22.81 77.18 

X21FAWWON.IRR.49 70.93 45.30 19.49 67.14 52.34 23.10 78.39 

X20FAWWON.IRR.41 81.61 50.69 21.61 75.02 55.93 24.68 83.10 

X21FAWWON.SA.256 63.36 47.53 19.16 68.65 53.94 22.43 79.23 

X21FAWWON.SA.271 69.84 40.07 20.14 63.21 49.23 22.80 75.21 

X20FAWWON.IRR.22 100.93 41.09 21.61 66.37 50.53 24.72 77.77 

X21FAWWON.SA.287 75.85 50.64 21.84 75.38 56.69 25.31 84.42 

X21FAWWON.SA.231 86.04 46.71 21.56 71.29 53.85 24.11 80.67 

X20FAWWON.IRR.24 81.22 39.42 20.10 62.53 48.82 23.02 74.72 

X21FAWWON.IRR.137 91.88 54.39 21.26 77.86 59.16 24.14 85.85 

X21FAWWON.SA.265 73.94 38.98 21.21 63.75 48.52 24.14 75.91 

X20FAWWON.SA.237 99.31 53.39 22.05 78.60 58.95 23.86 85.62 

X21FAWWON.IRR.143 90.26 52.64 20.04 74.99 57.57 22.80 83.06 

X21FAWWON.IRR.163 82.50 48.99 20.16 71.73 55.12 23.47 81.27 

X21FAWWON.SA.269 73.85 44.86 21.18 69.11 52.57 24.79 80.00 

X20FAWWON.SA.221 66.03 47.67 20.54 70.75 54.54 24.43 81.16 

X20FAWWON.IRR.32 90.31 43.30 21.24 67.74 51.46 24.05 78.40 
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X20FAWWON.SA.259 89.91 51.44 20.84 74.78 57.29 23.71 83.78 

X21FAWWON.IRR.144 84.70 46.19 20.91 69.72 53.19 24.59 80.36 

X20FAWWON.IRR.40 87.67 46.97 21.63 71.60 53.57 24.02 80.46 

X20FAWWON.IRR.56 98.92 44.07 21.43 68.65 52.28 24.04 79.19 

X20FAWWON.IRR.15 83.04 48.79 21.36 72.69 54.92 24.56 82.00 

X20FAWWON.IRR.27 84.73 41.00 22.64 67.75 50.48 25.16 78.53 

X20FAWWON.SA.226 90.21 47.00 20.68 70.29 53.75 23.52 80.30 

X21FAWWON.IRR.43 77.52 51.67 22.53 77.03 57.34 25.12 84.89 

X21FAWWON.IRR.48 86.36 37.74 21.26 62.93 47.78 24.08 75.16 

X21FAWWON.SA.226 84.89 46.55 20.51 69.97 53.58 22.90 79.41 

X21FAWWON.IRR.103 95.44 46.25 21.58 71.02 53.51 24.20 80.63 

X21FAWWON.IRR.52 80.88 47.28 19.35 68.80 54.12 22.91 79.54 

X20FAWWON.SA.235 78.30 43.27 19.32 65.30 50.87 21.85 76.14 

X20FAWWON.SA.228 77.48 53.24 22.95 79.01 58.18 25.46 86.22 

X20FAWWON.SA.249 82.73 50.71 21.19 74.48 56.15 24.46 83.10 

X20FAWWON.IRR.49 88.70 43.23 22.15 69.00 51.93 26.00 80.28 

X20FAWWON.SA.251 86.33 52.66 21.25 76.53 57.74 24.67 85.14 

X20FAWWON.IRR.48 85.47 41.13 21.36 65.85 50.06 24.13 77.23 

X20FAWWON.SA.202 82.45 47.34 20.43 70.63 53.87 23.81 80.07 

X21FAWWON.SA.286 87.75 49.20 20.53 72.25 55.70 24.33 82.62 

X20FAWWON.IRR.106 87.19 50.96 20.41 74.13 57.03 24.31 83.90 

X20FAWWON.IRR.85 56.84 40.98 19.52 62.96 49.64 23.34 75.55 

X21FAWWON.IRR.17 82.16 48.63 20.57 72.27 55.39 24.28 82.50 

X20FAWWON.IRR.69 75.28 39.28 20.34 63.46 48.83 23.58 75.52 

X20FAWWON.IRR.98 83.11 52.62 20.76 75.98 57.70 23.72 84.34 

X21FAWWON.IRR.14 90.67 37.12 21.82 63.15 47.38 23.93 74.67 

X20FAWWON.IRR.10 83.31 42.93 20.86 66.88 51.46 23.84 78.08 

X20FAWWON.SA.218 83.21 49.84 22.18 75.29 55.82 24.54 83.28 

X21FAWWON.IRR.150 75.17 48.08 21.02 71.54 54.33 25.07 81.46 

X21FAWWON.SA.211 88.75 49.98 20.40 72.74 56.06 23.51 82.02 

X21FAWWON.SA.293 80.93 48.23 20.14 70.71 54.67 23.17 80.66 
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X20FAWWON.SA.222 89.66 53.73 21.52 77.73 58.58 24.00 85.03 

X20FAWWON.SA.232 87.66 48.20 19.87 70.55 54.53 22.40 79.59 

X21FAWWON.IRR.75 87.80 41.79 21.16 66.16 50.49 23.93 77.42 

X20FAWWON.IRR.59 89.15 47.99 20.56 71.13 54.49 23.98 80.67 

X21FAWWON.SA.299 79.07 44.40 20.60 67.97 52.17 23.87 78.52 

X20FAWWON.IRR.21 100.04 48.57 20.52 71.74 54.60 23.38 80.48 

X21FAWWON.IRR.83 74.58 52.75 20.36 75.08 57.74 24.31 84.27 

X21FAWWON.SA.218 74.91 48.07 20.48 70.85 54.43 23.58 80.67 

X20FAWWON.IRR.38 83.90 48.26 21.12 72.21 55.00 25.06 82.62 

X20FAWWON.IRR.143 72.71 53.49 20.66 76.79 58.50 23.92 84.96 

X20FAWWON.IRR.44 100.60 49.86 19.95 72.36 55.55 22.66 81.08 

X20FAWWON.SA.236 102.94 48.51 22.51 74.44 55.11 24.79 82.45 

X20FAWWON.IRR.17 73.71 47.80 21.78 72.63 54.49 24.45 81.94 

X21FAWWON.IRR.95 95.18 53.00 22.12 78.06 58.55 25.03 86.27 

X20FAWWON.IRR.20 69.57 48.92 20.20 71.73 55.29 23.74 81.59 

X20FAWWON.IRR.26 80.01 44.18 21.00 68.15 52.07 24.39 79.00 

X20FAWWON.SA.214 90.89 44.91 22.28 70.63 52.79 24.65 80.37 

X21FAWWON.IRR.62 90.30 40.27 21.61 65.25 50.08 24.27 77.20 

X20FAWWON.IRR.35 83.70 36.37 23.03 63.59 46.45 24.98 74.50 

X21FAWWON.SA.210 94.15 48.12 20.70 71.57 55.03 24.14 81.52 

X21FAWWON.IRR.31 84.23 43.82 21.85 69.39 52.03 24.79 79.52 

X20FAWWON.IRR.88 104.26 54.32 21.78 78.83 59.05 24.57 86.13 

X21FAWWON.SA.208 67.24 41.66 20.41 65.18 50.81 23.15 76.93 

X20FAWWON.SA.213 94.52 44.18 20.66 67.65 51.83 23.61 78.40 

X21FAWWON.IRR.16 79.69 44.31 21.82 69.33 52.56 24.21 79.55 

X20FAWWON.IRR.16 77.31 46.14 21.37 70.79 53.40 24.89 80.80 

X20FAWWON.SA.224 110.44 48.42 21.06 72.28 54.85 23.58 80.95 

X20FAWWON.SA.254 72.96 50.35 20.29 72.90 56.47 23.70 82.94 

X20FAWWON.IRR.87 96.84 52.18 21.61 76.56 57.54 24.13 84.31 

X20FAWWON.IRR.11 89.18 45.31 20.98 69.37 52.71 23.83 79.43 

X20FAWWON.SA.208 79.96 45.58 21.52 70.03 53.15 24.60 80.34 
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X21FAWWON.IRR.50 88.39 47.59 20.52 70.88 54.45 23.29 80.85 

X21FAWWON.SA.281 92.38 35.86 22.70 62.53 47.27 24.50 74.52 

X20FAWWON.IRR.31 92.51 39.37 22.67 65.99 49.46 24.71 77.10 

X20FAWWON.SA.212 99.73 48.10 19.81 70.20 54.63 23.19 80.55 

X20FAWWON.IRR.29 96.39 47.01 20.32 69.77 54.15 23.55 80.34 

X21FAWWON.SA.276 74.41 45.27 21.70 69.90 52.70 24.63 79.72 

X20FAWWON.IRR.14 81.04 44.02 20.80 67.86 52.61 23.35 78.66 

X20FAWWON.IRR.39 98.62 46.94 21.41 71.72 54.10 23.95 81.06 

X20FAWWON.IRR.30 82.52 47.05 20.91 70.86 53.81 23.96 80.52 

X20FAWWON.IRR.13 85.16 47.21 21.07 70.87 54.41 24.60 81.52 

X20FAWWON.IRR.74 91.44 47.40 20.89 71.03 54.31 23.45 80.61 

X20FAWWON.IRR.9 98.58 52.17 21.62 76.53 57.21 24.33 84.08 

X20FAWWON.IRR.8 84.43 48.14 20.41 71.21 54.38 23.29 80.60 

X20FAWWON.IRR.45 89.91 49.85 20.66 72.96 55.56 23.36 81.67 

X21FAWWON.SA.227 87.88 43.45 21.00 67.69 52.12 24.24 79.26 

X20FAWWON.SA.238 85.26 45.56 21.53 70.22 52.47 23.94 79.18 

X20FAWWON.SA.256 73.95 51.70 19.97 73.48 57.26 24.03 83.40 

X21FAWWON.SA.289 71.69 40.30 20.31 63.58 49.25 23.45 75.52 

X20FAWWON.SA.258 77.75 51.81 20.12 74.03 57.56 24.15 83.84 

X21FAWWON.IRR.68 82.17 38.12 20.90 62.37 47.90 24.21 74.90 

X20FAWWON.SA.257 83.02 52.62 19.71 74.24 57.48 22.89 82.87 
Snowmass 89.69 52.08 19.75 74.63 56.90 22.85 82.49 
Ripper 64.29 53.98 20.69 77.31 58.72 24.58 85.95 
Antero 101.40 54.60 21.58 79.00 59.29 24.31 86.34 
Denali 107.01 56.03 21.82 80.74 60.69 24.69 88.21 
Byrd 83.13 55.85 21.39 80.38 60.01 24.28 87.06 
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Supplemental Table S5.11. Mean normalized difference vegetation indice (NDVI) values for Fort Collins 2015. 

 
    MEAN       

ID VEG-R.NDVI GF-R.NDVI FULL-R.NDVI VEG-G.NDVI GF-G.NDVI FULL-G.NDVI 

X21FAWWON.SA.288 0.48 0.48 0.48 0.54 0.53 0.54 

X20FAWWON.SA.227 0.47 0.48 0.48 0.54 0.54 0.54 

X20FAWWON.IRR.42 0.47 0.48 0.47 0.53 0.54 0.54 

X20FAWWON.SA.215 0.46 0.48 0.47 0.53 0.53 0.53 

X21FAWWON.IRR.157 0.44 0.49 0.47 0.51 0.53 0.53 

X20FAWWON.SA.223 0.43 0.47 0.45 0.52 0.52 0.52 

X20FAWWON.IRR.12 0.46 0.48 0.47 0.52 0.53 0.53 

X21FAWWON.IRR.81 0.46 0.47 0.47 0.52 0.53 0.53 

X21FAWWON.SA.258 0.41 0.47 0.45 0.50 0.52 0.52 

X20FAWWON.SA.231 0.44 0.49 0.47 0.51 0.54 0.53 

X20FAWWON.IRR.100 0.44 0.47 0.46 0.52 0.52 0.53 

X21FAWWON.SA.207 0.52 0.48 0.49 0.56 0.53 0.54 

X21FAWWON.IRR.142 0.44 0.45 0.44 0.51 0.52 0.51 

X21FAWWON.IRR.59 0.40 0.52 0.47 0.50 0.55 0.53 

X21FAWWON.IRR.152 0.48 0.49 0.48 0.54 0.53 0.54 

X20FAWWON.SA.230 0.42 0.49 0.46 0.51 0.53 0.53 

X20FAWWON.SA.243 0.46 0.48 0.47 0.53 0.54 0.53 

X20FAWWON.IRR.95 0.47 0.46 0.46 0.53 0.53 0.53 

X21FAWWON.SA.275 0.42 0.47 0.45 0.51 0.53 0.52 

X21FAWWON.IRR.9 0.44 0.49 0.47 0.52 0.54 0.52 

X21FAWWON.SA.250 0.43 0.49 0.46 0.50 0.54 0.52 

X20FAWWON.IRR.55 0.44 0.46 0.45 0.52 0.53 0.52 

X21FAWWON.SA.297 0.45 0.48 0.47 0.52 0.53 0.53 

X21FAWWON.SA.261 0.43 0.45 0.44 0.52 0.52 0.52 

X20FAWWON.IRR.46 0.48 0.48 0.47 0.54 0.53 0.53 

X21FAWWON.IRR.116 0.41 0.48 0.46 0.50 0.53 0.52 

X21FAWWON.IRR.36 0.40 0.51 0.47 0.49 0.55 0.53 
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X21FAWWON.IRR.7 0.46 0.48 0.47 0.53 0.53 0.53 

X21FAWWON.IRR.122 0.42 0.45 0.44 0.51 0.51 0.52 

X21FAWWON.SA.201 0.49 0.48 0.48 0.55 0.55 0.54 

X21FAWWON.SA.292 0.38 0.46 0.43 0.48 0.52 0.51 

X20FAWWON.IRR.36 0.50 0.49 0.49 0.54 0.55 0.54 

X21FAWWON.IRR.141 0.45 0.47 0.46 0.52 0.54 0.53 

X20FAWWON.IRR.115 0.48 0.48 0.47 0.54 0.52 0.53 

X20FAWWON.SA.278 0.42 0.47 0.45 0.51 0.54 0.53 

X21FAWWON.SA.228 0.46 0.49 0.48 0.53 0.53 0.53 

X21FAWWON.IRR.29 0.48 0.49 0.48 0.54 0.54 0.54 

X20FAWWON.SA.241 0.51 0.49 0.50 0.56 0.54 0.55 

X21FAWWON.SA.234 0.49 0.47 0.48 0.54 0.52 0.53 

X21FAWWON.SA.243 0.49 0.49 0.49 0.55 0.55 0.54 

X20FAWWON.IRR.25 0.43 0.48 0.46 0.51 0.53 0.53 

X20FAWWON.IRR.18 0.48 0.47 0.47 0.54 0.54 0.53 

X21FAWWON.IRR.166 0.44 0.46 0.45 0.52 0.52 0.52 

X21FAWWON.SA.252 0.42 0.47 0.44 0.50 0.52 0.52 

X20FAWWON.IRR.23 0.53 0.49 0.50 0.56 0.54 0.54 

X21FAWWON.SA.263 0.40 0.48 0.45 0.49 0.53 0.52 

X20FAWWON.IRR.19 0.47 0.48 0.48 0.54 0.54 0.54 

X20FAWWON.IRR.97 0.47 0.47 0.47 0.54 0.53 0.54 

X20FAWWON.SA.206 0.43 0.48 0.46 0.51 0.54 0.52 

X20FAWWON.SA.207 0.42 0.48 0.46 0.51 0.52 0.52 

X20FAWWON.IRR.114 0.51 0.51 0.51 0.56 0.55 0.55 

X20FAWWON.IRR.37 0.47 0.51 0.49 0.54 0.57 0.56 

X21FAWWON.IRR.76 0.42 0.49 0.46 0.51 0.54 0.53 

X21FAWWON.IRR.71 0.45 0.47 0.46 0.52 0.52 0.53 

X20FAWWON.SA.209 0.47 0.50 0.48 0.52 0.55 0.53 

X21FAWWON.IRR.148 0.49 0.48 0.48 0.55 0.53 0.54 

X20FAWWON.IRR.118 0.50 0.47 0.48 0.56 0.53 0.55 

X20FAWWON.SA.252 0.50 0.48 0.48 0.55 0.54 0.54 
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X21FAWWON.SA.270 0.45 0.50 0.48 0.52 0.54 0.54 

X20FAWWON.IRR.33 0.43 0.49 0.47 0.51 0.56 0.53 

X20FAWWON.IRR.43 0.41 0.45 0.44 0.51 0.52 0.51 

X20FAWWON.IRR.7 0.45 0.48 0.46 0.52 0.54 0.53 

X20FAWWON.SA.244 0.43 0.48 0.46 0.52 0.54 0.53 

X21FAWWON.IRR.146 0.40 0.47 0.44 0.50 0.54 0.52 

X20FAWWON.IRR.28 0.41 0.50 0.46 0.50 0.55 0.52 

X20FAWWON.IRR.57 0.49 0.48 0.48 0.55 0.54 0.55 

X21FAWWON.SA.202 0.45 0.48 0.46 0.52 0.53 0.53 

X20FAWWON.SA.210 0.42 0.48 0.45 0.50 0.52 0.52 

X21FAWWON.SA.248 0.50 0.49 0.49 0.55 0.53 0.54 

X20FAWWON.IRR.86 0.50 0.48 0.49 0.55 0.54 0.54 

X21FAWWON.SA.247 0.47 0.50 0.48 0.54 0.54 0.54 

X21FAWWON.SA.223 0.42 0.47 0.45 0.50 0.51 0.51 

X21FAWWON.IRR.49 0.42 0.46 0.44 0.51 0.53 0.52 

X20FAWWON.IRR.41 0.48 0.49 0.48 0.53 0.54 0.54 

X21FAWWON.SA.256 0.44 0.46 0.46 0.52 0.52 0.52 

X21FAWWON.SA.271 0.41 0.48 0.45 0.50 0.53 0.52 

X20FAWWON.IRR.22 0.46 0.49 0.48 0.53 0.54 0.54 

X21FAWWON.SA.287 0.48 0.48 0.47 0.55 0.55 0.54 

X21FAWWON.SA.231 0.44 0.47 0.46 0.52 0.54 0.52 

X20FAWWON.IRR.24 0.41 0.47 0.44 0.50 0.52 0.51 

X21FAWWON.IRR.137 0.50 0.48 0.49 0.55 0.54 0.55 

X21FAWWON.SA.265 0.42 0.49 0.46 0.51 0.54 0.53 

X20FAWWON.SA.237 0.53 0.50 0.51 0.56 0.54 0.55 

X21FAWWON.IRR.143 0.47 0.47 0.47 0.54 0.52 0.53 

X21FAWWON.IRR.163 0.44 0.48 0.46 0.52 0.53 0.53 

X21FAWWON.IRR.11 
      X21FAWWON.SA.269 0.42 0.48 0.46 0.51 0.55 0.53 

X20FAWWON.SA.221 0.43 0.46 0.45 0.51 0.53 0.52 

X20FAWWON.IRR.32 0.42 0.47 0.45 0.50 0.54 0.52 
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X20FAWWON.SA.259 0.48 0.48 0.48 0.55 0.53 0.54 

X21FAWWON.IRR.144 0.46 0.49 0.47 0.54 0.55 0.54 

X20FAWWON.IRR.40 0.44 0.49 0.47 0.51 0.54 0.53 

X20FAWWON.IRR.56 0.43 0.49 0.46 0.51 0.54 0.52 

X20FAWWON.IRR.15 0.44 0.48 0.46 0.52 0.54 0.53 

X20FAWWON.IRR.27 0.41 0.50 0.46 0.50 0.55 0.53 

X20FAWWON.SA.226 0.44 0.48 0.47 0.52 0.54 0.53 

X21FAWWON.IRR.43 0.52 0.51 0.51 0.56 0.55 0.56 

X21FAWWON.IRR.48 0.39 0.49 0.45 0.49 0.55 0.52 

X21FAWWON.SA.226 0.44 0.47 0.45 0.51 0.52 0.51 

X21FAWWON.IRR.103 0.46 0.50 0.48 0.53 0.54 0.54 

X21FAWWON.IRR.52 0.48 0.46 0.46 0.53 0.52 0.52 

X20FAWWON.SA.235 0.44 0.46 0.45 0.51 0.52 0.52 

X20FAWWON.SA.228 0.49 0.49 0.48 0.54 0.55 0.54 

X20FAWWON.SA.249 0.47 0.49 0.48 0.53 0.53 0.54 

X20FAWWON.IRR.49 0.44 0.50 0.47 0.52 0.55 0.54 

X20FAWWON.SA.251 0.49 0.49 0.49 0.55 0.54 0.55 

X20FAWWON.IRR.48 0.40 0.49 0.46 0.50 0.54 0.53 

X20FAWWON.SA.202 0.43 0.47 0.45 0.51 0.53 0.52 

X21FAWWON.SA.286 0.46 0.47 0.47 0.54 0.54 0.54 

X20FAWWON.IRR.106 0.47 0.47 0.47 0.54 0.53 0.54 

X20FAWWON.IRR.85 0.40 0.48 0.45 0.50 0.52 0.52 

X21FAWWON.IRR.17 0.45 0.47 0.46 0.53 0.54 0.53 

X20FAWWON.IRR.69 0.39 0.49 0.45 0.50 0.53 0.52 

X20FAWWON.IRR.98 0.49 0.48 0.47 0.53 0.53 0.53 

X21FAWWON.IRR.14 0.40 0.50 0.46 0.49 0.54 0.52 

X20FAWWON.IRR.10 0.43 0.47 0.45 0.51 0.53 0.52 

X20FAWWON.SA.218 0.45 0.48 0.47 0.52 0.54 0.53 

X21FAWWON.IRR.150 0.46 0.48 0.47 0.52 0.54 0.53 

X21FAWWON.SA.211 0.45 0.46 0.45 0.53 0.52 0.52 

X21FAWWON.SA.293 0.45 0.46 0.45 0.52 0.53 0.52 
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X20FAWWON.SA.222 0.50 0.48 0.49 0.55 0.53 0.54 

X20FAWWON.SA.232 0.46 0.47 0.46 0.52 0.51 0.52 

X21FAWWON.IRR.75 0.41 0.49 0.46 0.50 0.53 0.52 

X20FAWWON.IRR.59 0.45 0.47 0.46 0.52 0.53 0.52 

X21FAWWON.SA.299 0.43 0.48 0.46 0.51 0.53 0.52 

X20FAWWON.IRR.21 0.48 0.47 0.47 0.53 0.52 0.53 

X21FAWWON.IRR.83 0.49 0.49 0.48 0.55 0.54 0.55 

X21FAWWON.SA.218 0.47 0.48 0.47 0.54 0.53 0.54 

X20FAWWON.IRR.38 0.44 0.48 0.47 0.52 0.54 0.54 

X20FAWWON.IRR.143 0.52 0.47 0.49 0.55 0.53 0.53 

X20FAWWON.IRR.44 0.47 0.47 0.47 0.54 0.52 0.53 

X20FAWWON.SA.236 0.52 0.50 0.50 0.54 0.54 0.53 

X20FAWWON.IRR.17 0.48 0.50 0.49 0.54 0.54 0.54 

X21FAWWON.IRR.95 0.51 0.50 0.49 0.56 0.54 0.55 

X20FAWWON.IRR.20 0.47 0.46 0.47 0.53 0.52 0.53 

X20FAWWON.IRR.26 0.42 0.48 0.45 0.50 0.53 0.52 

X20FAWWON.SA.214 0.46 0.51 0.49 0.52 0.55 0.54 

X21FAWWON.IRR.62 0.43 0.49 0.46 0.52 0.54 0.53 

X20FAWWON.IRR.35 0.38 0.52 0.46 0.48 0.55 0.52 

X21FAWWON.SA.210 0.44 0.47 0.46 0.52 0.52 0.53 

X21FAWWON.IRR.31 0.42 0.49 0.46 0.51 0.54 0.52 

X20FAWWON.IRR.88 0.52 0.50 0.50 0.56 0.54 0.55 

X21FAWWON.SA.208 0.41 0.48 0.45 0.50 0.53 0.52 

X20FAWWON.SA.213 0.44 0.48 0.46 0.52 0.54 0.53 

X21FAWWON.IRR.16 0.41 0.48 0.45 0.51 0.54 0.52 

X20FAWWON.IRR.16 0.43 0.48 0.46 0.52 0.54 0.53 

X20FAWWON.SA.224 0.50 0.49 0.49 0.55 0.53 0.54 

X20FAWWON.SA.254 0.46 0.46 0.46 0.53 0.53 0.53 

X20FAWWON.IRR.87 0.51 0.50 0.50 0.56 0.54 0.55 

X20FAWWON.IRR.11 0.46 0.49 0.48 0.52 0.54 0.53 

X20FAWWON.SA.208 0.43 0.47 0.46 0.52 0.54 0.53 
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X21FAWWON.IRR.50 0.46 0.48 0.47 0.52 0.53 0.53 

X21FAWWON.SA.281 0.38 0.50 0.45 0.49 0.54 0.52 

X20FAWWON.IRR.31 0.45 0.51 0.48 0.53 0.55 0.54 

X20FAWWON.SA.212 0.44 0.46 0.45 0.53 0.53 0.52 

X20FAWWON.IRR.29 0.47 0.48 0.48 0.54 0.53 0.54 

X21FAWWON.SA.276 0.44 0.48 0.47 0.52 0.54 0.53 

X20FAWWON.IRR.14 0.43 0.48 0.46 0.52 0.52 0.53 

X20FAWWON.IRR.39 0.46 0.50 0.48 0.53 0.54 0.54 

X20FAWWON.IRR.30 0.48 0.49 0.49 0.54 0.54 0.54 

X20FAWWON.IRR.13 0.44 0.47 0.46 0.53 0.54 0.53 

X20FAWWON.IRR.74 0.47 0.48 0.48 0.53 0.53 0.53 

X20FAWWON.IRR.9 0.50 0.49 0.49 0.54 0.54 0.54 

X20FAWWON.IRR.8 0.47 0.48 0.47 0.53 0.53 0.53 

X20FAWWON.IRR.45 0.46 0.46 0.46 0.53 0.53 0.52 

X21FAWWON.SA.227 0.41 0.48 0.46 0.51 0.54 0.53 

X20FAWWON.SA.238 0.43 0.48 0.46 0.51 0.53 0.52 

X20FAWWON.SA.256 0.50 0.47 0.47 0.56 0.53 0.54 

X21FAWWON.SA.289 0.39 0.47 0.44 0.48 0.52 0.51 

X20FAWWON.SA.258 0.49 0.48 0.48 0.55 0.53 0.54 

X21FAWWON.IRR.68 0.37 0.48 0.44 0.48 0.53 0.52 

X20FAWWON.SA.257 0.50 0.47 0.47 0.54 0.52 0.53 
Snowmass 0.49 0.47 0.47 0.54 0.52 0.52 
Ripper 0.51 0.48 0.49 0.56 0.55 0.55 
Antero 0.51 0.48 0.49 0.56 0.54 0.55 
Denali 0.52 0.48 0.50 0.57 0.55 0.55 
Byrd 0.55 0.50 0.52 0.57 0.54 0.56 
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Supplemental Table S5.12. Grain yield and normalized difference vegetation indice (NDVI) values for area under the curve (AUC) for 

Julesburg 2015. 

  
    AUC       

ID Yield VEG-R.NDVI GF-R.NDVI FULL-R.NDVI VEG-G.NDVI GF-G.NDVI FULL-G.NDVI 

X20FAWWON.SA.227 24.09 28.06 8.78 39.62 42.13 20.23 65.18 

X20FAWWON.IRR.42 30.72 28.83 10.15 41.50 43.09 21.11 66.99 

X20FAWWON.IRR.100 53.19 37.24 10.34 51.08 46.65 20.81 70.58 

X21FAWWON.SA.207 53.46 37.54 11.30 54.20 46.73 21.27 70.83 

X20FAWWON.SA.243 56.44 41.25 11.58 56.90 49.06 21.09 73.53 

X20FAWWON.IRR.95 68.21 39.65 11.65 55.33 48.34 21.19 72.98 

X20FAWWON.IRR.55 31.66 29.26 9.02 41.21 42.59 19.90 65.45 

X21FAWWON.SA.261 33.60 30.84 9.75 43.57 43.01 20.75 66.41 

X20FAWWON.IRR.46 43.87 34.73 10.99 50.22 44.76 20.70 68.68 

X21FAWWON.IRR.7 33.94 28.64 9.61 41.45 42.36 20.69 66.04 

X21FAWWON.SA.292 30.60 27.47 8.78 39.41 42.50 20.00 65.41 

X20FAWWON.IRR.36 56.64 37.33 11.19 52.11 46.07 21.60 70.79 

X21FAWWON.IRR.141 36.38 31.81 8.95 44.10 44.31 20.33 67.76 

X20FAWWON.IRR.115 59.57 39.25 10.98 54.78 47.81 21.44 72.06 

X21FAWWON.SA.228 41.23 26.10 10.77 40.32 41.38 20.16 64.35 

X20FAWWON.SA.241 61.07 38.49 11.82 54.76 47.92 21.90 73.01 

X21FAWWON.SA.234 33.29 28.01 10.41 41.93 41.60 20.23 65.16 

X21FAWWON.SA.243 47.69 36.23 10.35 48.86 46.40 20.90 70.60 

X20FAWWON.IRR.18 49.03 40.01 11.59 55.40 48.50 21.77 73.27 

X20FAWWON.IRR.19 34.11 33.06 9.21 45.44 44.16 19.84 67.18 

X20FAWWON.IRR.97 49.29 32.75 10.61 46.84 44.28 21.56 68.60 

X20FAWWON.SA.206 33.15 30.28 9.89 42.37 41.91 20.67 65.28 

X20FAWWON.IRR.37 47.56 32.13 10.63 46.38 44.82 21.80 69.81 

X20FAWWON.SA.209 40.85 32.58 10.07 45.70 44.04 20.43 67.79 

X20FAWWON.IRR.118 74.19 46.82 12.26 64.05 51.95 21.98 77.76 

X20FAWWON.SA.252 49.88 43.90 11.94 59.48 49.75 22.74 76.10 
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X20FAWWON.SA.244 31.14 30.96 8.80 45.60 43.41 19.95 66.19 

X20FAWWON.IRR.57 71.51 37.97 9.77 51.87 47.63 20.35 71.51 

X21FAWWON.SA.202 27.88 28.86 10.22 42.51 42.35 20.68 66.26 

X20FAWWON.IRR.86 47.04 33.89 10.76 49.18 45.67 20.68 69.80 

X21FAWWON.SA.247 59.39 37.73 11.12 53.01 48.22 21.39 73.03 

X20FAWWON.IRR.41 40.38 36.40 10.59 52.63 46.22 21.46 70.77 

X21FAWWON.SA.287 27.43 24.31 9.03 35.82 39.64 20.09 62.28 

X21FAWWON.IRR.137 72.79 45.35 10.60 59.42 50.40 20.51 74.41 

X20FAWWON.SA.237 47.17 34.54 12.50 50.40 45.03 21.54 70.04 

X21FAWWON.IRR.143 57.83 38.57 10.98 53.89 47.48 20.74 71.32 

X21FAWWON.IRR.163 37.67 27.86 9.88 41.29 43.05 20.61 66.52 

X20FAWWON.SA.259 50.53 42.43 10.83 57.69 48.86 20.62 73.29 

X21FAWWON.IRR.144 33.96 23.82 10.18 36.43 40.08 20.95 63.75 

X20FAWWON.IRR.15 37.28 30.18 9.79 43.73 43.21 20.89 66.44 

X20FAWWON.SA.226 22.97 29.21 9.39 40.80 41.84 20.60 64.92 

X21FAWWON.IRR.43 22.69 24.77 9.25 37.11 41.64 20.64 64.66 

X20FAWWON.SA.249 54.29 41.90 12.76 59.58 48.96 23.35 75.79 

X20FAWWON.SA.251 52.58 46.73 11.76 63.00 51.01 23.12 77.74 

X20FAWWON.IRR.106 40.49 35.04 9.91 48.15 45.67 20.54 69.30 

X20FAWWON.IRR.98 49.12 37.13 10.37 51.00 46.19 20.90 70.26 

X21FAWWON.IRR.150 36.69 25.03 9.25 37.36 41.64 21.14 65.56 

X20FAWWON.SA.222 43.17 31.09 9.53 43.64 43.94 20.16 66.74 

X20FAWWON.IRR.59 33.76 30.56 9.68 43.30 43.62 19.96 66.53 

X20FAWWON.IRR.21 39.39 29.24 10.82 44.12 42.93 21.00 66.97 

X21FAWWON.IRR.83 47.03 32.95 9.89 46.29 44.90 20.67 69.28 

X20FAWWON.IRR.38 37.31 31.51 9.00 42.84 43.76 21.38 68.13 

X20FAWWON.IRR.143 35.69 32.68 10.17 46.88 44.46 20.57 67.90 

X20FAWWON.IRR.44 49.44 30.83 10.62 45.25 43.06 20.77 66.79 

X21FAWWON.IRR.95 53.72 42.40 10.73 57.47 49.89 21.21 74.20 

X21FAWWON.SA.210 57.13 36.90 11.72 53.79 46.41 21.09 70.90 

X20FAWWON.SA.213 39.54 31.17 9.93 44.06 43.53 20.19 67.67 
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X20FAWWON.SA.224 25.08 31.43 10.12 44.75 42.89 20.52 66.14 

X20FAWWON.SA.254 49.73 35.62 10.82 49.95 45.69 21.44 70.12 

X20FAWWON.IRR.87 31.98 31.29 11.41 45.81 44.04 21.95 69.02 

X20FAWWON.IRR.13 39.49 33.24 9.49 45.17 44.52 19.96 67.96 

X20FAWWON.IRR.74 28.69 33.71 11.51 48.45 44.73 20.77 69.17 

X20FAWWON.IRR.9 47.62 29.21 10.51 42.52 42.26 20.79 66.41 

X20FAWWON.IRR.45 59.43 36.08 12.09 52.97 46.15 21.82 70.83 

X20FAWWON.SA.256 55.04 38.65 10.33 52.05 47.52 20.79 71.63 

X20FAWWON.SA.258 58.13 44.94 11.18 60.23 50.60 21.42 75.52 

X20FAWWON.SA.257 53.98 44.73 9.95 59.58 50.76 21.11 74.73 
Snowmass 65.14 44.44 9.78 58.23 49.94 19.91 73.11 
Ripper 54.26 44.26 9.01 57.53 50.17 20.22 74.00 
Antero 74.61 46.56 11.97 62.46 51.81 21.17 76.29 
Denali 71.30 44.69 10.79 59.63 50.80 21.18 75.57 
Byrd 71.28 44.78 10.25 59.35 50.53 20.33 74.12 
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Supplemental Table S5.13. Mean normalized difference vegetation indice (NDVI) values for Julesburg 2015. 

 
    MEAN       

ID VEG-R.NDVI GF-R.NDVI FULL-R.NDVI VEG-G.NDVI GFG.NDVI FULL-G.NDVI 

X20FAWWON.SA.227 0.33 0.35 0.32 0.44 0.47 0.45 

X20FAWWON.IRR.42 0.36 0.38 0.37 0.47 0.49 0.48 

X20FAWWON.IRR.100 0.42 0.35 0.41 0.48 0.49 0.49 

X21FAWWON.SA.207 0.42 0.39 0.42 0.48 0.49 0.49 

X20FAWWON.SA.243 0.48 0.40 0.46 0.52 0.50 0.52 

X20FAWWON.IRR.95 0.43 0.40 0.43 0.49 0.50 0.50 

X20FAWWON.IRR.55 0.35 0.32 0.35 0.45 0.47 0.45 

X21FAWWON.SA.261 0.36 0.36 0.36 0.46 0.48 0.47 

X20FAWWON.IRR.46 0.43 0.39 0.42 0.48 0.48 0.48 

X21FAWWON.IRR.7 0.33 0.35 0.34 0.44 0.47 0.45 

X21FAWWON.SA.292 0.33 0.33 0.33 0.45 0.47 0.45 

X20FAWWON.IRR.36 0.43 0.41 0.41 0.48 0.50 0.49 

X21FAWWON.IRR.141 0.37 0.33 0.36 0.46 0.48 0.47 

X20FAWWON.IRR.115 0.45 0.41 0.43 0.50 0.49 0.50 

X21FAWWON.SA.228 0.30 0.40 0.33 0.43 0.46 0.44 

X20FAWWON.SA.241 0.45 0.42 0.44 0.51 0.51 0.51 

X21FAWWON.SA.234 0.35 0.36 0.36 0.45 0.48 0.46 

X21FAWWON.SA.243 0.41 0.36 0.39 0.48 0.49 0.49 

X20FAWWON.IRR.18 0.46 0.43 0.44 0.51 0.50 0.51 

X20FAWWON.IRR.19 0.40 0.35 0.38 0.47 0.48 0.48 

X20FAWWON.IRR.97 0.38 0.38 0.38 0.47 0.50 0.48 

X20FAWWON.SA.206 0.36 0.36 0.36 0.45 0.48 0.46 

X20FAWWON.IRR.37 0.37 0.37 0.37 0.46 0.50 0.48 

X20FAWWON.SA.209 0.38 0.36 0.37 0.46 0.48 0.47 

X20FAWWON.IRR.118 0.52 0.44 0.48 0.53 0.50 0.52 

X20FAWWON.SA.252 0.51 0.44 0.47 0.53 0.51 0.52 

X20FAWWON.SA.244 0.37 0.33 0.35 0.45 0.46 0.44 
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X20FAWWON.IRR.57 0.43 0.34 0.40 0.49 0.48 0.49 

X21FAWWON.SA.202 0.34 0.37 0.36 0.45 0.49 0.47 

X20FAWWON.IRR.86 0.41 0.38 0.40 0.48 0.48 0.48 

X21FAWWON.SA.247 0.41 0.40 0.41 0.50 0.50 0.50 

X20FAWWON.IRR.41 0.42 0.37 0.41 0.48 0.49 0.49 

X21FAWWON.SA.287 0.29 0.33 0.30 0.41 0.45 0.42 

X21FAWWON.IRR.137 0.48 0.39 0.44 0.51 0.48 0.50 

X20FAWWON.SA.237 0.41 0.43 0.43 0.48 0.50 0.49 

X21FAWWON.IRR.143 0.45 0.40 0.42 0.50 0.48 0.49 

X21FAWWON.IRR.163 0.36 0.37 0.35 0.46 0.48 0.47 

X20FAWWON.SA.259 0.49 0.39 0.45 0.51 0.47 0.49 

X21FAWWON.IRR.144 0.29 0.38 0.32 0.43 0.48 0.45 

X20FAWWON.IRR.15 0.34 0.37 0.35 0.45 0.48 0.46 

X20FAWWON.SA.226 0.34 0.36 0.34 0.44 0.47 0.45 

X21FAWWON.IRR.43 0.31 0.34 0.32 0.44 0.47 0.45 

X20FAWWON.SA.249 0.46 0.44 0.46 0.50 0.51 0.51 

X20FAWWON.SA.251 0.50 0.44 0.47 0.52 0.51 0.52 

X20FAWWON.IRR.106 0.41 0.36 0.39 0.48 0.48 0.48 

X20FAWWON.IRR.98 0.46 0.37 0.43 0.50 0.49 0.50 

X21FAWWON.IRR.150 0.32 0.35 0.32 0.45 0.48 0.46 

X20FAWWON.SA.222 0.35 0.35 0.35 0.45 0.47 0.46 

X20FAWWON.IRR.59 0.37 0.35 0.36 0.47 0.47 0.47 

X20FAWWON.IRR.21 0.36 0.41 0.37 0.46 0.48 0.47 

X21FAWWON.IRR.83 0.37 0.35 0.36 0.47 0.48 0.47 

X20FAWWON.IRR.38 0.35 0.35 0.33 0.45 0.48 0.47 

X20FAWWON.IRR.143 0.39 0.37 0.38 0.47 0.48 0.47 

X20FAWWON.IRR.44 0.38 0.38 0.39 0.47 0.49 0.48 

X21FAWWON.IRR.95 0.46 0.38 0.43 0.51 0.49 0.50 

X21FAWWON.SA.210 0.43 0.41 0.43 0.48 0.49 0.49 

X20FAWWON.SA.213 0.35 0.36 0.36 0.45 0.48 0.47 

X20FAWWON.SA.224 0.37 0.35 0.38 0.45 0.48 0.47 
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X20FAWWON.SA.254 0.41 0.39 0.40 0.48 0.50 0.49 

X20FAWWON.IRR.87 0.38 0.42 0.40 0.47 0.50 0.49 

X20FAWWON.IRR.13 0.38 0.35 0.37 0.47 0.48 0.48 

X20FAWWON.IRR.74 0.40 0.41 0.41 0.47 0.49 0.48 

X20FAWWON.IRR.9 0.35 0.39 0.36 0.45 0.48 0.46 

X20FAWWON.IRR.45 0.42 0.43 0.43 0.49 0.51 0.50 

X20FAWWON.SA.256 0.43 0.38 0.41 0.50 0.49 0.50 

X20FAWWON.SA.258 0.49 0.40 0.46 0.52 0.50 0.51 

X20FAWWON.SA.257 0.49 0.37 0.44 0.52 0.48 0.50 
Snowmass 0.49 0.36 0.44 0.52 0.48 0.50 
Ripper 0.48 0.34 0.42 0.51 0.47 0.49 
Antero 0.50 0.42 0.47 0.53 0.50 0.52 
Denali 0.50 0.40 0.45 0.53 0.49 0.51 
Byrd 0.50 0.38 0.45 0.52 0.48 0.50 
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Supplemental Table S5.14. Grain yield and normalized difference vegetation indice (NDVI) values for area under the curve (AUC) for 

Fort Collins 2016. 

  
    AUC       

ID Yield VEG-R.NDVI GF-R.NDVI FULL-R.NDVI VEG-G.NDVI GF-G.NDVI FULL-G.NDVI 

X22FAWWON.IRR.85 76.68 34.46 13.48 55.33 38.59 18.18 64.87 

X22FAWWON.IRR.53 77.54 35.55 14.14 57.82 39.62 18.49 66.66 

X22FAWWON.IRR.87 82.04 41.39 15.00 65.15 42.29 19.08 70.05 

X22FAWWON.IRR.71 94.59 40.61 15.68 65.41 42.20 19.36 70.48 

X22FAWWON.IRR.48 88.96 37.75 16.20 63.03 40.69 19.31 68.74 

X22FAWWON.IRR.10 86.47 38.90 16.68 64.73 40.94 19.14 68.74 

X22FAWWON.SA.221 91.98 39.33 15.00 62.89 41.76 18.21 68.60 

X22FAWWON.IRR.9 87.10 41.19 18.47 69.08 42.30 20.27 71.20 

X22FAWWON.IRR.68 86.58 39.09 15.93 64.11 41.55 19.59 69.93 

X22FAWWON.IRR.95 89.54 36.56 13.39 57.89 40.27 18.33 67.05 

X22FAWWON.IRR.26 95.24 43.24 18.90 72.09 43.26 20.23 72.42 

X22FAWWON.IRR.18 92.38 42.30 17.79 69.82 42.80 19.61 71.41 

X22FAWWON.IRR.32 97.20 40.95 16.26 66.49 42.29 19.09 70.13 

X22FAWWON.IRR.54 82.68 34.60 15.06 57.64 38.27 18.71 65.11 

X22FAWWON.SA.232 81.52 37.52 16.75 62.39 40.53 18.71 67.59 

X22FAWWON.SA.249 91.04 39.71 17.39 66.18 41.85 20.40 70.96 

X22FAWWON.SA.235 81.02 39.54 15.25 63.32 41.68 18.30 68.61 

X22FAWWON.IRR.103 83.69 34.70 14.77 57.18 39.23 18.89 66.48 

X22FAWWON.IRR.81 77.77 38.02 14.56 61.09 40.58 19.39 68.55 

X22FAWWON.SA.281 84.89 42.47 17.59 69.92 42.62 19.47 71.00 

X22FAWWON.IRR.93 86.22 38.29 15.31 62.07 40.24 18.81 67.48 

X22FAWWON.SA.214 98.11 40.39 18.18 67.98 41.94 19.89 70.51 

X22FAWWON.SA.243 78.07 37.18 15.29 60.81 40.42 18.71 67.52 

X22FAWWON.SA.260 84.54 40.60 16.11 66.18 42.23 19.43 70.74 

X22FAWWON.IRR.21 85.13 38.21 16.22 63.84 40.76 19.47 69.13 

X22FAWWON.SA.225 82.66 39.13 16.54 64.70 41.07 18.75 68.30 
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X22FAWWON.IRR.86 89.77 41.39 14.80 64.90 42.60 19.25 70.58 

X20FAWWON.SA.231 87.80 39.75 15.23 64.21 41.59 18.86 69.31 

X21FAWWON.IRR.137 89.85 39.59 14.41 63.39 41.86 18.40 69.29 

X22FAWWON.SA.294 85.45 39.51 15.60 64.04 41.41 18.57 68.69 

X22FAWWON.SA.263 88.08 37.98 17.20 63.84 40.69 19.93 68.93 

X22FAWWON.IRR.98 89.77 42.03 15.53 67.37 42.95 18.87 71.01 

X22FAWWON.SA.262 92.74 39.84 15.76 64.14 41.85 18.52 68.95 

X22FAWWON.IRR.66 86.25 39.36 15.40 64.00 40.65 18.85 68.15 

X22FAWWON.IRR.31 92.29 44.10 17.28 71.39 44.13 19.41 72.60 

X22FAWWON.IRR.111 83.23 43.11 16.18 69.03 43.24 19.78 71.93 

X22FAWWON.IRR.57 86.47 41.86 15.21 66.67 42.69 19.32 71.09 

X22FAWWON.IRR.49 89.91 42.54 17.29 70.12 42.73 19.91 71.89 

X22FAWWON.IRR.79 87.94 36.64 14.63 59.87 40.28 19.21 68.23 

X22FAWWON.IRR.60 80.38 43.00 15.89 68.48 42.92 18.82 70.68 

X22FAWWON.IRR.55 87.32 39.54 16.30 64.87 41.57 19.65 69.98 

X22FAWWON.IRR.19 99.02 42.20 15.68 66.68 42.78 18.52 69.91 

X22FAWWON.IRR.70 86.72 36.50 14.48 58.89 39.60 18.26 66.08 

X22FAWWON.SA.239 85.52 36.29 16.14 60.52 39.87 18.57 66.74 

X22FAWWON.SA.248 86.52 37.97 15.77 62.38 40.41 18.36 67.29 

X22FAWWON.SA.202 86.42 37.99 15.22 61.87 40.71 18.60 67.99 

X22FAWWON.IRR.108 86.26 35.35 15.31 58.66 39.62 20.06 68.15 

X22FAWWON.IRR.35 83.59 39.29 14.53 61.71 41.47 18.51 68.37 

X22FAWWON.IRR.22 84.43 35.72 13.15 56.24 39.38 17.35 64.77 

X22FAWWON.SA.218 82.80 35.64 14.89 59.18 38.99 18.18 65.67 

X22FAWWON.SA.282 90.39 38.78 14.81 62.15 41.41 18.06 68.16 

X22FAWWON.IRR.41 86.02 36.30 14.34 58.79 39.40 18.29 66.05 

X22FAWWON.SA.230 91.05 37.49 15.97 62.16 40.51 18.62 67.73 

X22FAWWON.IRR.23 83.23 38.06 13.77 60.39 41.00 17.87 67.52 

X22FAWWON.IRR.20 95.89 40.74 15.46 65.40 42.20 18.63 69.61 

X22FAWWON.SA.223 84.16 39.84 17.52 67.19 40.91 18.41 68.03 

X22FAWWON.IRR.14 88.16 38.43 15.28 62.47 40.88 18.82 68.24 
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X22FAWWON.SA.253 88.67 42.46 16.99 69.36 42.95 19.00 71.08 

X22FAWWON.IRR.8 88.22 41.19 16.05 66.67 42.16 19.08 70.26 

X22FAWWON.IRR.83 90.15 37.97 14.65 61.31 40.17 17.88 66.64 

X22FAWWON.SA.237 85.70 40.96 16.27 66.55 42.02 18.77 69.46 

X22FAWWON.SA.258 84.63 34.36 14.88 57.57 38.41 17.61 64.29 

X22FAWWON.IRR.42 87.98 40.34 16.88 66.93 41.21 19.16 69.24 

X22FAWWON.IRR.25 89.32 39.98 16.65 66.20 41.34 19.62 69.72 

X22FAWWON.IRR.34 83.72 39.87 15.31 63.80 42.00 18.67 69.37 

X22FAWWON.IRR.27 87.22 42.43 16.14 68.29 42.83 18.87 70.67 

X22FAWWON.SA.259 89.94 40.11 15.75 64.64 41.53 18.88 68.97 

X22FAWWON.IRR.45 95.44 37.85 16.04 62.61 40.72 19.21 68.62 

X22FAWWON.SA.231 80.60 38.22 15.56 62.22 40.42 18.35 67.17 

X22FAWWON.IRR.73 87.21 37.31 14.91 60.84 40.41 18.43 67.50 

X22FAWWON.SA.256 81.38 37.75 14.63 61.06 40.14 18.33 66.96 

X22FAWWON.SA.274 88.49 39.19 16.00 64.39 41.06 18.81 68.56 

X22FAWWON.IRR.51 97.44 40.05 17.09 65.71 42.08 20.02 70.66 

X22FAWWON.SA.277 79.07 40.65 15.79 65.10 41.77 18.90 69.16 

X22FAWWON.IRR.67 84.84 36.69 12.94 57.42 39.59 17.37 65.21 

X22FAWWON.SA.265 87.03 36.12 15.18 59.22 39.66 18.44 66.43 

X22FAWWON.SA.269 86.56 38.50 14.79 61.79 40.27 17.68 66.29 

X22FAWWON.IRR.69 92.31 40.73 15.63 66.06 42.42 19.28 70.88 

X22FAWWON.SA.250 83.20 38.11 16.63 63.06 40.39 18.93 67.52 

X22FAWWON.IRR.52 81.56 35.61 14.10 57.83 39.48 18.41 66.26 

X22FAWWON.SA.270 89.01 36.17 14.79 59.19 39.80 19.01 67.00 

X22FAWWON.SA.211 89.56 38.49 16.88 64.44 40.66 19.29 68.50 

X22FAWWON.IRR.33 93.81 39.87 14.38 62.58 41.53 17.72 67.75 

X22FAWWON.IRR.7 91.36 42.71 16.24 68.14 43.12 19.01 71.15 

X22FAWWON.SA.217 85.88 39.11 16.43 64.77 41.38 18.82 69.12 

X22FAWWON.SA.273 88.39 36.30 15.74 60.57 39.32 18.82 66.45 

X20FAWWON.IRR.100 91.64 40.45 14.85 64.13 42.20 19.05 69.91 

X20FAWWON.IRR.106 90.53 37.78 17.00 63.80 40.88 20.26 69.80 
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X20FAWWON.IRR.11 91.33 39.19 16.12 64.36 40.68 18.87 68.21 

X20FAWWON.IRR.114 80.87 40.06 15.04 64.02 41.98 18.88 69.72 

X20FAWWON.IRR.115 88.59 38.55 15.36 62.74 41.11 18.90 68.83 

X20FAWWON.IRR.118 85.62 38.96 15.62 63.75 41.85 19.00 69.87 

X20FAWWON.IRR.12 91.34 35.04 16.86 59.98 38.99 19.13 66.31 

X20FAWWON.IRR.13 92.27 38.71 14.36 61.27 41.31 18.37 68.16 

X20FAWWON.IRR.143 90.93 41.25 15.88 66.88 42.10 18.55 69.73 

X20FAWWON.IRR.15 92.64 36.68 15.33 60.33 39.81 19.42 67.71 

X20FAWWON.IRR.18 85.93 38.14 15.77 62.67 40.92 19.21 68.82 

X20FAWWON.IRR.19 93.87 39.58 15.63 64.18 41.66 18.74 69.23 

X20FAWWON.IRR.21 91.24 40.47 15.93 65.54 41.81 18.42 68.95 

X20FAWWON.IRR.22 93.19 40.95 16.04 66.24 42.19 19.11 70.16 

X20FAWWON.IRR.23 94.15 41.06 16.40 66.56 42.40 19.25 70.60 

X20FAWWON.IRR.29 96.04 42.45 16.70 68.81 43.04 19.60 71.69 

X20FAWWON.IRR.31 89.41 35.40 15.28 59.09 39.18 18.62 66.37 

X20FAWWON.IRR.32 87.48 39.68 15.11 64.02 40.84 18.56 68.09 

X20FAWWON.IRR.36 89.76 40.02 15.68 65.11 41.71 19.76 70.39 

X20FAWWON.IRR.37 84.26 36.56 14.18 59.09 40.08 19.51 68.20 

X20FAWWON.IRR.38 91.35 38.71 14.42 61.34 41.56 19.61 69.67 

X20FAWWON.IRR.39 90.77 41.72 16.39 67.77 42.25 18.98 70.17 

X20FAWWON.IRR.40 92.96 39.80 15.08 63.64 41.34 18.31 68.23 

X20FAWWON.IRR.41 89.00 41.91 16.87 68.81 42.38 19.59 71.04 

X20FAWWON.IRR.42 95.63 41.07 16.08 66.65 42.51 19.74 71.25 

X20FAWWON.IRR.44 95.25 39.57 14.90 62.87 41.60 18.13 68.20 

X20FAWWON.IRR.45 90.39 39.10 15.57 63.24 41.26 18.58 68.54 

X20FAWWON.IRR.46 92.79 39.65 15.12 63.34 41.61 18.34 68.43 

X20FAWWON.IRR.49 87.11 36.09 16.34 61.23 39.23 20.44 68.28 

X20FAWWON.IRR.55 84.16 36.79 14.75 59.44 40.11 18.57 67.06 

X20FAWWON.IRR.56 94.54 37.07 15.99 61.72 40.10 18.89 67.66 

X20FAWWON.IRR.57 93.43 36.73 15.36 60.65 40.55 19.49 68.72 

X20FAWWON.IRR.59 87.82 35.59 15.93 60.61 39.40 19.10 67.17 
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X20FAWWON.IRR.7 84.76 36.35 14.41 59.20 39.89 18.34 66.83 

X20FAWWON.IRR.74 92.09 38.22 17.75 65.12 41.14 19.37 69.19 

X20FAWWON.IRR.86 86.25 40.05 14.71 63.57 41.77 18.54 69.08 

X20FAWWON.IRR.87 84.48 37.53 14.33 60.37 40.48 18.31 67.45 

X20FAWWON.IRR.88 86.89 40.82 15.60 65.48 42.07 18.80 69.62 

X20FAWWON.IRR.9 101.31 38.95 16.90 64.84 40.92 19.65 69.32 

X20FAWWON.IRR.95 86.53 36.75 16.37 61.82 40.25 19.64 68.63 

X20FAWWON.IRR.97 81.30 34.71 15.50 58.16 39.24 19.79 67.41 

X20FAWWON.IRR.98 90.52 40.99 16.67 67.40 42.29 19.66 70.85 

X20FAWWON.SA.206 82.31 41.60 15.22 66.23 42.10 18.41 69.36 

X20FAWWON.SA.209 93.83 36.89 16.03 61.29 40.02 19.12 67.66 

X20FAWWON.SA.210 94.96 36.76 14.95 60.66 39.58 18.36 66.58 

X20FAWWON.SA.212 91.39 38.36 16.15 63.38 40.67 18.90 68.20 

X20FAWWON.SA.213 90.37 31.95 16.12 55.23 37.62 19.20 64.96 

X20FAWWON.SA.214 93.00 38.98 17.91 66.05 41.42 19.65 69.87 

X20FAWWON.SA.215 91.94 38.13 16.52 63.23 40.63 19.25 68.41 

X20FAWWON.SA.222 97.61 37.89 15.50 61.96 40.76 18.80 68.24 

X20FAWWON.SA.223 88.43 41.06 14.26 63.80 42.49 18.50 69.56 

X20FAWWON.SA.224 90.75 41.20 16.60 67.23 41.88 18.58 69.07 

X20FAWWON.SA.226 86.58 40.07 14.67 63.44 41.83 18.65 69.02 

X20FAWWON.SA.227 97.52 39.19 16.48 65.02 41.23 19.06 68.98 

X20FAWWON.SA.232 95.32 42.29 15.89 67.43 42.55 18.18 69.49 

X20FAWWON.SA.236 90.20 41.16 18.30 69.30 42.13 19.93 70.94 

X20FAWWON.SA.237 93.47 44.80 18.35 73.35 44.49 19.86 73.69 

X20FAWWON.SA.241 97.92 38.23 16.30 63.57 40.91 19.58 69.20 

X20FAWWON.SA.243 96.96 40.13 17.04 66.63 42.19 19.90 71.00 

X20FAWWON.SA.244 88.75 38.33 15.49 62.90 40.83 18.96 68.65 

X20FAWWON.SA.249 90.66 40.92 18.38 68.68 41.92 20.36 70.78 

X20FAWWON.SA.251 80.35 40.91 16.79 67.15 42.06 19.99 70.74 

X20FAWWON.SA.252 83.59 38.99 17.20 65.18 41.02 19.89 69.47 

X20FAWWON.SA.254 86.25 36.85 15.76 61.08 40.23 19.26 68.13 
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X20FAWWON.SA.256 90.12 38.46 15.09 62.07 41.03 19.16 68.77 

X20FAWWON.SA.257 90.10 37.18 16.66 63.26 40.05 19.02 67.72 

X20FAWWON.SA.258 86.69 39.12 16.00 64.55 41.21 19.39 69.62 

X20FAWWON.SA.259 87.10 39.60 16.67 65.76 41.37 18.92 68.97 

X21FAWWON.IRR.103 85.18 29.90 15.28 52.73 36.32 19.04 63.57 

X21FAWWON.IRR.14 80.11 33.50 15.34 57.19 37.54 18.33 64.08 

X21FAWWON.IRR.141 87.39 41.01 15.70 66.22 42.50 19.66 71.30 

X21FAWWON.IRR.143 92.44 40.96 16.57 66.60 42.40 19.02 70.44 

X21FAWWON.IRR.144 85.03 33.74 15.82 57.22 38.60 18.77 65.65 

X21FAWWON.IRR.150 89.25 39.54 13.69 61.22 41.98 19.21 69.66 

X21FAWWON.IRR.163 91.33 35.59 16.15 60.68 39.71 19.20 67.64 

X21FAWWON.IRR.43 91.53 40.20 15.77 65.13 41.62 18.97 69.25 

X21FAWWON.IRR.50 94.00 36.11 13.63 57.73 40.00 18.24 66.67 

X21FAWWON.IRR.62 85.05 38.29 14.88 62.13 40.12 18.56 67.27 

X21FAWWON.IRR.7 90.69 38.05 14.22 60.49 40.76 18.61 67.85 

X21FAWWON.IRR.75 91.15 40.44 15.03 64.32 41.88 18.86 69.51 

X21FAWWON.IRR.83 94.79 38.27 16.03 62.92 41.32 19.82 69.91 

X21FAWWON.IRR.9 83.88 39.49 15.17 63.26 41.26 18.72 68.57 

X21FAWWON.IRR.95 95.05 41.88 15.81 67.41 42.90 19.39 71.52 

X21FAWWON.SA.202 84.02 38.50 15.45 62.64 41.01 18.76 68.49 

X21FAWWON.SA.207 93.23 43.67 15.77 69.23 43.32 18.68 70.84 

X21FAWWON.SA.210 101.45 38.53 16.39 63.61 41.33 18.84 68.76 

X21FAWWON.SA.211 89.60 38.78 15.60 62.73 41.49 18.50 68.62 

X21FAWWON.SA.227 77.45 33.85 14.05 55.75 38.48 18.20 64.97 

X21FAWWON.SA.228 91.33 39.51 17.72 65.62 41.77 19.61 70.05 

X21FAWWON.SA.234 95.25 38.47 15.48 62.73 40.63 18.48 67.52 

X21FAWWON.SA.243 89.27 40.15 15.52 64.63 41.86 19.28 70.03 

X21FAWWON.SA.247 92.17 40.54 14.91 64.98 42.40 19.11 70.77 

X21FAWWON.SA.261 93.71 37.21 15.66 60.93 40.65 19.02 68.04 

X21FAWWON.SA.281 86.43 39.90 15.70 64.72 40.99 18.64 68.33 

X21FAWWON.SA.286 87.39 38.40 14.98 61.88 41.36 19.46 69.29 
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X21FAWWON.SA.287 92.12 36.95 15.83 61.21 39.96 19.30 67.74 

X21FAWWON.SA.292 97.44 39.00 15.15 63.08 41.30 18.91 69.17 

Snowmass 93.09 40.00 15.23 64.52 41.23 17.98 67.92 

Ripper 97.53 43.46 15.02 68.21 43.58 18.63 71.30 

Antero 98.34 41.74 15.70 66.88 43.05 19.00 71.15 

Denali 95.78 41.06 15.83 66.34 42.80 19.46 71.41 

Byrd 99.21 40.55 15.60 65.56 42.17 18.49 69.58 
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Supplemental Table S5.15. Mean normalized difference vegetation indice (NDVI) values for Fort Collins 2016. 

 
    MEAN       

ID VEG-R.NDVI GF-R.NDVI FULL-R.NDVI VEG-G.NDVI GF-G.NDVI FULL-G.NDVI 

X22FAWWON.IRR.85 0.51 0.38 0.44 0.56 0.42 0.54 

X22FAWWON.IRR.53 0.52 0.42 0.47 0.58 0.44 0.56 

X22FAWWON.IRR.87 0.59 0.43 0.51 0.61 0.45 0.59 

X22FAWWON.IRR.71 0.59 0.44 0.51 0.61 0.45 0.58 

X22FAWWON.IRR.48 0.55 0.46 0.51 0.59 0.46 0.58 

X22FAWWON.IRR.10 0.58 0.48 0.53 0.60 0.45 0.58 

X22FAWWON.SA.221 0.60 0.42 0.51 0.62 0.43 0.58 

X22FAWWON.IRR.9 0.61 0.55 0.58 0.61 0.48 0.60 

X22FAWWON.IRR.68 0.57 0.45 0.51 0.61 0.46 0.59 

X22FAWWON.IRR.95 0.54 0.41 0.47 0.59 0.43 0.56 

X22FAWWON.IRR.26 0.64 0.53 0.58 0.63 0.47 0.61 

X22FAWWON.IRR.18 0.62 0.49 0.56 0.61 0.45 0.59 

X22FAWWON.IRR.32 0.61 0.48 0.54 0.62 0.45 0.59 

X22FAWWON.IRR.54 0.54 0.44 0.49 0.57 0.45 0.56 

X22FAWWON.SA.232 0.55 0.46 0.51 0.58 0.43 0.56 

X22FAWWON.SA.249 0.58 0.50 0.54 0.61 0.48 0.60 

X22FAWWON.SA.235 0.56 0.43 0.50 0.60 0.43 0.57 

X22FAWWON.IRR.103 0.51 0.44 0.47 0.57 0.45 0.56 

X22FAWWON.IRR.81 0.55 0.40 0.48 0.58 0.45 0.57 

X22FAWWON.SA.281 0.62 0.50 0.56 0.62 0.45 0.59 

X22FAWWON.IRR.93 0.56 0.42 0.49 0.58 0.43 0.56 

X22FAWWON.SA.214 0.60 0.52 0.56 0.61 0.47 0.60 

X22FAWWON.SA.243 0.54 0.43 0.49 0.58 0.44 0.56 

X22FAWWON.SA.260 0.59 0.45 0.52 0.61 0.45 0.59 

X22FAWWON.IRR.21 0.56 0.47 0.52 0.59 0.46 0.58 

X22FAWWON.SA.225 0.58 0.49 0.53 0.60 0.45 0.58 

X22FAWWON.IRR.86 0.59 0.41 0.50 0.61 0.45 0.59 
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X20FAWWON.SA.231 0.59 0.44 0.52 0.61 0.44 0.58 

X21FAWWON.IRR.137 0.58 0.42 0.51 0.61 0.44 0.58 

X22FAWWON.SA.294 0.59 0.44 0.52 0.61 0.44 0.58 

X22FAWWON.SA.263 0.56 0.50 0.53 0.59 0.47 0.59 

X22FAWWON.IRR.98 0.63 0.47 0.55 0.63 0.45 0.60 

X22FAWWON.SA.262 0.58 0.43 0.50 0.60 0.43 0.57 

X22FAWWON.IRR.66 0.58 0.45 0.52 0.59 0.45 0.57 

X22FAWWON.IRR.31 0.63 0.48 0.56 0.63 0.45 0.60 

X22FAWWON.IRR.111 0.61 0.45 0.54 0.62 0.46 0.59 

X22FAWWON.IRR.57 0.61 0.44 0.53 0.62 0.45 0.59 

X22FAWWON.IRR.49 0.61 0.47 0.54 0.61 0.46 0.59 

X22FAWWON.IRR.79 0.53 0.43 0.47 0.58 0.45 0.57 

X22FAWWON.IRR.60 0.62 0.45 0.54 0.61 0.44 0.59 

X22FAWWON.IRR.55 0.58 0.46 0.52 0.61 0.46 0.59 

X22FAWWON.IRR.19 0.62 0.44 0.53 0.62 0.44 0.59 

X22FAWWON.IRR.70 0.54 0.42 0.48 0.58 0.43 0.56 

X22FAWWON.SA.239 0.55 0.46 0.50 0.59 0.43 0.57 

X22FAWWON.SA.248 0.56 0.46 0.51 0.59 0.44 0.57 

X22FAWWON.SA.202 0.55 0.43 0.49 0.59 0.44 0.57 

X22FAWWON.IRR.108 0.51 0.43 0.47 0.57 0.47 0.58 

X22FAWWON.IRR.35 0.55 0.42 0.49 0.59 0.44 0.57 

X22FAWWON.IRR.22 0.53 0.37 0.45 0.58 0.41 0.55 

X22FAWWON.SA.218 0.52 0.41 0.46 0.56 0.42 0.55 

X22FAWWON.SA.282 0.57 0.42 0.49 0.60 0.42 0.57 

X22FAWWON.IRR.41 0.54 0.42 0.48 0.58 0.43 0.56 

X22FAWWON.SA.230 0.55 0.44 0.50 0.59 0.44 0.57 

X22FAWWON.IRR.23 0.54 0.40 0.47 0.59 0.42 0.56 

X22FAWWON.IRR.20 0.60 0.45 0.52 0.62 0.44 0.58 

X22FAWWON.SA.223 0.59 0.49 0.54 0.59 0.43 0.57 

X22FAWWON.IRR.14 0.56 0.42 0.49 0.59 0.44 0.57 

X22FAWWON.SA.253 0.61 0.46 0.54 0.61 0.43 0.58 
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X22FAWWON.IRR.8 0.59 0.46 0.53 0.61 0.45 0.58 

X22FAWWON.IRR.83 0.55 0.41 0.48 0.58 0.42 0.55 

X22FAWWON.SA.237 0.58 0.46 0.52 0.60 0.44 0.58 

X22FAWWON.SA.258 0.52 0.43 0.47 0.57 0.41 0.54 

X22FAWWON.IRR.42 0.59 0.48 0.53 0.60 0.45 0.58 

X22FAWWON.IRR.25 0.60 0.49 0.55 0.61 0.46 0.59 

X22FAWWON.IRR.34 0.59 0.44 0.51 0.61 0.44 0.58 

X22FAWWON.IRR.27 0.62 0.49 0.56 0.62 0.45 0.59 

X22FAWWON.SA.259 0.58 0.44 0.51 0.59 0.44 0.57 

X22FAWWON.IRR.45 0.55 0.45 0.50 0.59 0.45 0.58 

X22FAWWON.SA.231 0.54 0.43 0.49 0.58 0.43 0.56 

X22FAWWON.IRR.73 0.54 0.42 0.48 0.58 0.43 0.56 

X22FAWWON.SA.256 0.54 0.42 0.48 0.58 0.43 0.56 

X22FAWWON.SA.274 0.59 0.45 0.52 0.60 0.44 0.58 

X22FAWWON.IRR.51 0.58 0.48 0.53 0.61 0.47 0.59 

X22FAWWON.SA.277 0.59 0.44 0.52 0.60 0.44 0.58 

X22FAWWON.IRR.67 0.52 0.37 0.44 0.57 0.41 0.54 

X22FAWWON.SA.265 0.51 0.42 0.47 0.57 0.43 0.55 

X22FAWWON.SA.269 0.55 0.40 0.47 0.58 0.41 0.55 

X22FAWWON.IRR.69 0.60 0.45 0.53 0.62 0.45 0.59 

X22FAWWON.SA.250 0.57 0.47 0.52 0.59 0.44 0.57 

X22FAWWON.IRR.52 0.52 0.40 0.46 0.57 0.43 0.56 

X22FAWWON.SA.270 0.54 0.43 0.49 0.59 0.45 0.57 

X22FAWWON.SA.211 0.57 0.48 0.53 0.59 0.45 0.58 

X22FAWWON.IRR.33 0.57 0.41 0.49 0.59 0.41 0.56 

X22FAWWON.IRR.7 0.61 0.45 0.53 0.62 0.44 0.59 

X22FAWWON.SA.217 0.58 0.47 0.52 0.61 0.44 0.58 

X22FAWWON.SA.273 0.53 0.43 0.48 0.56 0.43 0.55 

X20FAWWON.IRR.100 0.58 0.42 0.50 0.61 0.45 0.58 

X20FAWWON.IRR.106 0.56 0.47 0.51 0.60 0.47 0.59 

X20FAWWON.IRR.11 0.56 0.45 0.51 0.59 0.44 0.57 
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X20FAWWON.IRR.114 0.57 0.44 0.50 0.60 0.45 0.58 

X20FAWWON.IRR.115 0.57 0.45 0.51 0.60 0.45 0.58 

X20FAWWON.IRR.118 0.57 0.43 0.50 0.60 0.44 0.58 

X20FAWWON.IRR.12 0.49 0.48 0.48 0.55 0.44 0.55 

X20FAWWON.IRR.13 0.58 0.41 0.49 0.61 0.43 0.57 

X20FAWWON.IRR.143 0.61 0.45 0.53 0.61 0.43 0.58 

X20FAWWON.IRR.15 0.53 0.43 0.48 0.58 0.45 0.57 

X20FAWWON.IRR.18 0.57 0.46 0.52 0.60 0.45 0.58 

X20FAWWON.IRR.19 0.58 0.45 0.52 0.61 0.45 0.58 

X20FAWWON.IRR.21 0.60 0.46 0.53 0.61 0.44 0.58 

X20FAWWON.IRR.22 0.60 0.46 0.53 0.61 0.45 0.59 

X20FAWWON.IRR.23 0.61 0.47 0.54 0.62 0.45 0.59 

X20FAWWON.IRR.29 0.62 0.48 0.55 0.62 0.46 0.60 

X20FAWWON.IRR.31 0.54 0.44 0.49 0.58 0.44 0.56 

X20FAWWON.IRR.32 0.57 0.42 0.50 0.59 0.43 0.57 

X20FAWWON.IRR.36 0.59 0.46 0.52 0.61 0.47 0.60 

X20FAWWON.IRR.37 0.54 0.42 0.48 0.58 0.46 0.58 

X20FAWWON.IRR.38 0.57 0.42 0.50 0.60 0.46 0.59 

X20FAWWON.IRR.39 0.60 0.48 0.54 0.61 0.45 0.58 

X20FAWWON.IRR.40 0.58 0.43 0.51 0.60 0.43 0.57 

X20FAWWON.IRR.41 0.60 0.47 0.54 0.61 0.46 0.59 

X20FAWWON.IRR.42 0.61 0.46 0.54 0.62 0.47 0.60 

X20FAWWON.IRR.44 0.58 0.42 0.50 0.60 0.42 0.57 

X20FAWWON.IRR.45 0.56 0.44 0.50 0.59 0.44 0.57 

X20FAWWON.IRR.46 0.58 0.44 0.51 0.60 0.43 0.57 

X20FAWWON.IRR.49 0.52 0.45 0.49 0.57 0.48 0.58 

X20FAWWON.IRR.55 0.53 0.42 0.47 0.57 0.43 0.56 

X20FAWWON.IRR.56 0.56 0.45 0.50 0.59 0.43 0.57 

X20FAWWON.IRR.57 0.56 0.43 0.49 0.60 0.46 0.58 

X20FAWWON.IRR.59 0.53 0.45 0.49 0.58 0.45 0.57 

X20FAWWON.IRR.7 0.54 0.43 0.48 0.58 0.44 0.56 
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X20FAWWON.IRR.74 0.57 0.49 0.53 0.60 0.45 0.58 

X20FAWWON.IRR.86 0.58 0.41 0.50 0.61 0.43 0.57 

X20FAWWON.IRR.87 0.55 0.42 0.49 0.59 0.43 0.57 

X20FAWWON.IRR.88 0.59 0.43 0.51 0.61 0.44 0.58 

X20FAWWON.IRR.9 0.56 0.46 0.51 0.59 0.46 0.58 

X20FAWWON.IRR.95 0.53 0.46 0.49 0.58 0.46 0.58 

X20FAWWON.IRR.97 0.51 0.45 0.48 0.57 0.46 0.57 

X20FAWWON.IRR.98 0.62 0.47 0.55 0.62 0.46 0.60 

X20FAWWON.SA.206 0.61 0.44 0.53 0.61 0.43 0.58 

X20FAWWON.SA.209 0.55 0.46 0.50 0.59 0.44 0.57 

X20FAWWON.SA.210 0.54 0.43 0.49 0.58 0.43 0.56 

X20FAWWON.SA.212 0.57 0.45 0.51 0.59 0.44 0.57 

X20FAWWON.SA.213 0.48 0.45 0.47 0.56 0.45 0.56 

X20FAWWON.SA.214 0.57 0.50 0.53 0.60 0.46 0.59 

X20FAWWON.SA.215 0.54 0.47 0.50 0.58 0.45 0.57 

X20FAWWON.SA.222 0.53 0.43 0.48 0.58 0.44 0.57 

X20FAWWON.SA.223 0.59 0.41 0.50 0.61 0.43 0.58 

X20FAWWON.SA.224 0.60 0.47 0.54 0.60 0.44 0.58 

X20FAWWON.SA.226 0.58 0.43 0.51 0.60 0.44 0.58 

X20FAWWON.SA.227 0.58 0.47 0.53 0.60 0.45 0.58 

X20FAWWON.SA.232 0.62 0.46 0.54 0.62 0.43 0.58 

X20FAWWON.SA.236 0.61 0.52 0.57 0.61 0.47 0.60 

X20FAWWON.SA.237 0.64 0.51 0.58 0.64 0.46 0.61 

X20FAWWON.SA.241 0.56 0.47 0.51 0.60 0.46 0.58 

X20FAWWON.SA.243 0.59 0.49 0.54 0.61 0.47 0.60 

X20FAWWON.SA.244 0.56 0.43 0.50 0.60 0.44 0.58 

X20FAWWON.SA.249 0.61 0.53 0.57 0.61 0.48 0.60 

X20FAWWON.SA.251 0.61 0.47 0.54 0.61 0.47 0.60 

X20FAWWON.SA.252 0.57 0.49 0.53 0.60 0.47 0.59 

X20FAWWON.SA.254 0.54 0.44 0.49 0.59 0.45 0.58 

X20FAWWON.SA.256 0.57 0.42 0.50 0.60 0.44 0.57 
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X20FAWWON.SA.257 0.56 0.46 0.51 0.59 0.44 0.57 

X20FAWWON.SA.258 0.58 0.46 0.52 0.60 0.45 0.58 

X20FAWWON.SA.259 0.58 0.49 0.53 0.60 0.45 0.58 

X21FAWWON.IRR.103 0.45 0.42 0.43 0.54 0.44 0.54 

X21FAWWON.IRR.14 0.50 0.43 0.46 0.55 0.43 0.54 

X21FAWWON.IRR.141 0.59 0.44 0.52 0.61 0.46 0.59 

X21FAWWON.IRR.143 0.59 0.48 0.53 0.61 0.45 0.59 

X21FAWWON.IRR.144 0.49 0.45 0.47 0.56 0.44 0.56 

X21FAWWON.IRR.150 0.55 0.40 0.47 0.60 0.45 0.58 

X21FAWWON.IRR.163 0.53 0.46 0.49 0.58 0.45 0.57 

X21FAWWON.IRR.43 0.58 0.46 0.52 0.60 0.45 0.58 

X21FAWWON.IRR.50 0.54 0.37 0.45 0.58 0.42 0.56 

X21FAWWON.IRR.62 0.56 0.42 0.49 0.58 0.43 0.56 

X21FAWWON.IRR.7 0.55 0.41 0.48 0.59 0.44 0.57 

X21FAWWON.IRR.75 0.59 0.42 0.50 0.60 0.44 0.57 

X21FAWWON.IRR.83 0.56 0.45 0.51 0.60 0.46 0.59 

X21FAWWON.IRR.9 0.57 0.43 0.50 0.60 0.44 0.58 

X21FAWWON.IRR.95 0.61 0.46 0.54 0.62 0.46 0.60 

X21FAWWON.SA.202 0.56 0.44 0.50 0.59 0.44 0.57 

X21FAWWON.SA.207 0.63 0.46 0.55 0.62 0.44 0.59 

X21FAWWON.SA.210 0.55 0.44 0.50 0.59 0.43 0.57 

X21FAWWON.SA.211 0.56 0.43 0.50 0.60 0.43 0.57 

X21FAWWON.SA.227 0.51 0.40 0.45 0.57 0.42 0.55 

X21FAWWON.SA.228 0.57 0.48 0.53 0.61 0.45 0.59 

X21FAWWON.SA.234 0.57 0.45 0.51 0.60 0.43 0.57 

X21FAWWON.SA.243 0.59 0.43 0.51 0.61 0.45 0.58 

X21FAWWON.SA.247 0.59 0.41 0.50 0.61 0.44 0.58 

X21FAWWON.SA.261 0.56 0.46 0.51 0.60 0.45 0.58 

X21FAWWON.SA.281 0.58 0.46 0.52 0.59 0.44 0.57 

X21FAWWON.SA.286 0.57 0.45 0.51 0.60 0.47 0.59 

X21FAWWON.SA.287 0.53 0.45 0.49 0.58 0.45 0.57 
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X21FAWWON.SA.292 0.56 0.43 0.49 0.59 0.44 0.58 

Snowmass 0.59 0.43 0.51 0.60 0.42 0.57 

Ripper 0.62 0.43 0.52 0.62 0.44 0.58 

Antero 0.60 0.44 0.52 0.62 0.44 0.59 

Denali 0.60 0.46 0.53 0.62 0.46 0.60 

Byrd 0.60 0.45 0.53 0.62 0.43 0.58 
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Supplemental Table S5.16. Grain yield and normalized difference vegetation indice (NDVI) values for area under the curve (AUC) in 

Julesburg 2016. 

  
    AUC       

ID Yield VEG-R.NDVI GF-R.NDVI FULL-R.NDVI VEG-G.NDVI GF-G.NDVI FULL-G.NDVI 

22 FAWWON-IRR-85 53.71 42.21 13.50 63.10 50.11 17.81 74.88 

22 FAWWON-IRR-53 74.08 53.30 13.88 75.22 55.09 17.93 80.83 

22 FAWWON-IRR-87 63.91 50.24 14.75 73.31 53.52 18.72 79.33 

22 FAWWON-IRR-71 72.10 48.70 14.80 71.77 53.04 18.17 78.86 

22 FAWWON-IRR-48 73.50 49.29 14.58 71.92 53.29 18.10 78.48 

22 FAWWON-IRR-10 82.14 54.62 14.90 78.24 55.85 17.79 81.25 

22 FAWWON-SA-221 64.74 48.82 13.96 70.28 53.55 17.30 78.67 

22 FAWWON-IRR-9 75.59 56.86 15.90 83.15 57.41 17.96 83.98 

22 FAWWON-IRR-68 67.45 48.77 14.07 70.86 53.08 17.76 78.16 

22 FAWWON-IRR-95 68.80 46.34 13.65 67.11 52.19 17.93 77.24 

22 FAWWON-IRR-26 76.49 54.63 15.56 79.04 55.87 17.71 81.58 

22 FAWWON-IRR-18 73.32 54.15 14.89 77.63 56.25 18.32 81.94 

22 FAWWON-IRR-32 76.22 53.53 15.14 76.87 55.25 18.02 80.72 

22 FAWWON-SA-232 71.27 51.85 14.50 75.06 54.95 17.53 80.20 

22 FAWWON-SA-249 74.48 52.26 15.23 76.43 54.97 18.44 81.54 

22 FAWWON-SA-235 66.33 47.86 14.73 70.93 52.72 18.41 78.17 

22 FAWWON-IRR-103 68.33 51.29 14.34 73.42 54.17 17.89 79.46 

22 FAWWON-SA-281 69.59 50.67 15.25 74.41 53.58 17.96 78.93 

22 FAWWON-IRR-93 69.40 48.62 14.18 70.68 52.61 17.44 77.52 

22 FAWWON-SA-214 77.74 54.07 15.85 79.39 56.27 18.57 82.78 

22 FAWWON-SA-243 65.40 49.19 15.33 73.36 53.54 17.74 79.23 

22 FAWWON-SA-260 70.77 51.34 14.48 74.55 54.76 18.66 80.62 

22 FAWWON-IRR-21 69.31 47.79 15.05 72.07 53.36 18.62 79.69 

22 FAWWON-SA-225 59.89 51.42 14.99 75.36 54.33 17.70 79.59 

22 FAWWON-IRR-86 66.51 49.00 13.40 70.35 53.53 18.01 78.81 

20FAWWON-SA-231 71.09 49.48 14.14 71.81 53.29 17.88 78.60 
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21FAWWON-IRR-137 88.15 54.55 14.44 78.02 56.36 17.84 82.28 

22 FAWWON-SA-294 60.81 51.66 15.33 76.26 54.08 18.51 80.24 

22 FAWWON-SA-263 66.80 51.36 15.29 75.43 54.32 18.21 79.95 

22 FAWWON-IRR-98 84.89 53.47 14.53 76.40 55.27 18.26 80.99 

22 FAWWON-SA-262 78.42 51.93 14.61 74.39 54.62 18.02 79.89 

22 FAWWON-IRR-66 61.55 49.64 14.65 72.61 53.32 17.90 78.45 

22 FAWWON-IRR-31 64.25 52.21 14.34 74.56 54.65 17.81 79.67 

22 FAWWON-IRR-111 71.40 53.10 15.11 77.57 55.91 18.74 82.34 

22 FAWWON-IRR-57 86.61 56.77 15.13 81.10 57.01 18.56 83.25 

22 FAWWON-IRR-49 81.92 58.08 15.40 82.96 57.63 18.72 84.16 

22 FAWWON-IRR-79 80.19 51.65 14.86 74.98 54.79 18.72 80.98 

22 FAWWON-IRR-60 69.06 52.54 14.13 75.03 54.40 17.34 79.22 

22 FAWWON-IRR-55 71.36 46.60 15.30 70.70 52.11 18.40 78.26 

22 FAWWON-IRR-19 79.99 54.46 14.45 76.39 55.28 17.58 79.79 

22 FAWWON-IRR-70 66.91 48.80 15.01 72.82 52.91 18.31 78.75 

22 FAWWON-SA-239 72.61 52.52 15.77 78.25 55.46 18.74 81.95 

22 FAWWON-SA-248 69.38 49.37 14.83 73.17 53.46 18.13 78.84 

22 FAWWON-SA-202 69.76 51.03 14.21 73.14 54.32 18.02 79.44 

22 FAWWON-IRR-108 71.94 48.98 14.58 71.73 54.07 18.29 80.35 

22 FAWWON-IRR-35 69.18 51.49 14.40 74.08 54.70 18.28 80.10 

22 FAWWON-IRR-22 60.08 46.92 14.34 69.00 51.82 17.33 76.19 

22 FAWWON-SA-282 64.90 49.05 14.23 71.29 53.91 17.51 79.23 

22 FAWWON-IRR-41 68.99 46.53 14.56 69.21 51.49 17.39 76.43 

22 FAWWON-SA-230 59.49 48.92 13.83 69.97 52.73 17.77 77.19 

22 FAWWON-IRR-23 60.91 50.82 14.48 73.43 54.34 17.80 79.53 

22 FAWWON-IRR-20 78.60 55.02 14.12 77.49 56.28 17.58 81.50 

22 FAWWON-SA-223 56.87 52.67 15.07 76.37 54.68 18.33 79.74 

22 FAWWON-IRR-14 75.27 49.72 14.48 72.67 54.12 17.92 79.72 

22 FAWWON-SA-253 75.34 51.47 14.72 75.24 54.69 18.19 80.59 

22 FAWWON-IRR-8 77.88 53.39 14.61 76.17 55.12 18.05 80.37 

22 FAWWON-SA-237 74.02 53.60 15.52 78.67 55.86 18.29 81.85 
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22 FAWWON-IRR-42 76.54 52.82 15.35 77.72 54.35 18.25 80.35 

22 FAWWON-IRR-25 74.18 52.07 15.05 76.01 54.43 18.25 79.84 

22 FAWWON-IRR-34 66.75 49.14 14.72 72.20 53.47 17.78 78.85 

22 FAWWON-IRR-27 78.17 53.87 15.27 78.16 55.44 17.93 80.86 

22 FAWWON-SA-259 70.75 49.65 14.66 73.12 53.41 18.20 79.38 

22 FAWWON-IRR-45 76.49 49.11 14.48 71.71 53.56 17.95 79.21 

22 FAWWON-SA-231 66.24 50.37 14.98 74.31 53.62 17.53 79.06 

22 FAWWON-SA-274 67.99 50.60 14.12 72.24 53.29 17.58 77.86 

22 FAWWON-IRR-51 81.07 52.60 15.79 77.38 55.42 19.37 82.39 

22 FAWWON-SA-277 60.39 49.15 14.21 70.80 53.08 17.36 77.94 

22 FAWWON-IRR-84 59.48 43.49 14.38 65.86 50.19 17.79 75.33 

22 FAWWON-SA-265 70.36 51.08 15.17 74.96 54.20 17.89 79.67 

22 FAWWON-SA-269 75.88 46.51 14.50 69.60 51.49 17.81 76.54 

22 FAWWON-IRR-69 83.17 58.28 15.09 82.84 58.66 18.99 85.83 

22 FAWWON-SA-250 60.97 48.20 14.62 71.31 52.77 17.93 77.96 

22 FAWWON-IRR-52 79.25 50.34 14.76 73.55 54.26 18.31 80.39 

22 FAWWON-SA-270 68.10 51.29 15.06 75.36 54.20 19.05 80.70 

22 FAWWON-SA-211 66.74 53.59 14.92 77.27 55.34 17.90 80.58 

22 FAWWON-IRR-33 81.40 55.62 14.61 78.29 55.79 17.72 80.73 

22 FAWWON-IRR-7 81.08 55.86 15.15 80.03 56.74 18.38 82.62 

22 FAWWON-SA-217 63.21 49.24 14.80 72.00 53.62 17.58 78.36 

22 FAWWON-SA-273 63.85 49.17 14.38 72.30 52.90 17.77 78.03 

20FAWWON-IRR-100 79.11 52.16 14.07 74.50 55.07 18.02 80.56 

20FAWWON-IRR-106 75.86 54.12 15.45 78.86 56.11 18.73 83.00 

20FAWWON-IRR-11 72.54 53.40 14.33 76.24 54.93 18.14 80.42 

20FAWWON-IRR-114 77.32 52.86 15.81 78.30 55.86 18.91 82.86 

20FAWWON-IRR-115 81.93 52.56 14.56 75.59 55.36 18.10 81.18 

20FAWWON-IRR-118 77.84 56.90 14.76 80.75 58.03 18.62 84.42 

20FAWWON-IRR-12 74.25 51.07 14.34 74.24 54.38 17.90 79.97 

20FAWWON-IRR-13 74.21 51.16 14.05 73.33 54.15 17.94 79.67 

20FAWWON-IRR-143 83.32 50.26 15.17 74.04 53.94 17.93 79.62 
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20FAWWON-IRR-15 82.53 48.16 14.35 70.71 52.64 18.83 78.64 

20FAWWON-IRR-18 79.23 51.12 15.04 74.95 54.67 18.13 80.83 

20FAWWON-IRR-19 78.15 49.40 14.38 71.48 53.67 17.88 78.81 

20FAWWON-IRR-21 66.07 49.20 14.25 71.70 53.03 17.71 77.93 

20FAWWON-IRR-22 77.24 51.32 15.08 75.14 54.11 18.27 79.88 

20FAWWON-IRR-23 81.53 53.50 15.06 78.13 55.87 18.00 81.93 

20FAWWON-IRR-29 68.30 51.06 14.85 74.56 54.36 18.32 80.19 

20FAWWON-IRR-31 77.84 47.59 14.76 70.90 52.46 18.66 78.38 

20FAWWON-IRR-36 78.94 57.96 15.06 81.87 57.45 19.05 83.99 

20FAWWON-IRR-37 81.75 54.13 15.42 78.87 56.22 19.61 84.00 

20FAWWON-IRR-38 78.40 53.84 14.44 76.11 55.81 18.71 82.31 

20FAWWON-IRR-39 81.06 52.73 15.61 77.25 54.98 18.48 81.15 

20FAWWON-IRR-40 80.34 52.01 14.56 74.50 54.39 17.92 79.09 

20FAWWON-IRR-41 69.93 51.90 15.25 76.06 54.62 18.56 80.81 

20FAWWON-IRR-42 75.30 49.67 14.46 72.04 53.36 18.40 79.13 

20FAWWON-IRR-44 81.06 55.03 14.92 79.02 56.90 18.68 83.18 

20FAWWON-IRR-45 75.26 49.56 14.25 71.91 53.63 17.81 78.92 

20FAWWON-IRR-46 74.79 50.72 14.65 73.94 54.64 17.73 79.77 

20FAWWON-IRR-49 66.74 46.74 15.06 70.06 51.96 19.27 78.47 

20FAWWON-IRR-55 69.77 51.54 14.36 74.06 54.59 17.93 79.99 

20FAWWON-IRR-56 79.51 50.83 14.87 74.40 54.50 18.64 80.59 

20FAWWON-IRR-57 79.19 50.64 14.17 72.82 54.98 18.42 80.62 

20FAWWON-IRR-59 72.44 49.78 14.68 73.17 54.03 18.08 79.60 

20FAWWON-IRR-7 74.39 49.49 14.34 71.86 53.29 17.83 78.45 

20FAWWON-IRR-74 69.79 54.60 15.87 79.10 56.04 18.10 81.60 

20FAWWON-IRR-86 78.24 53.83 14.52 76.61 55.66 17.87 81.01 

20FAWWON-IRR-87 70.77 48.92 14.24 71.39 53.45 17.83 78.77 

20FAWWON-IRR-88 71.82 54.31 14.68 77.77 55.39 18.30 81.23 

20FAWWON-IRR-9 78.93 48.68 15.20 72.33 52.61 18.48 78.78 

20FAWWON-IRR-95 85.45 51.97 14.88 75.85 55.23 18.09 81.48 

20FAWWON-IRR-97 80.41 47.44 14.93 70.88 53.32 18.96 80.01 
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20FAWWON-IRR-98 76.51 51.54 15.50 76.33 54.76 18.41 81.38 

20FAWWON-SA-206 74.01 53.51 14.29 75.94 55.20 17.59 80.37 

20FAWWON-SA-209 73.27 51.90 14.95 75.87 54.84 18.25 80.92 

20FAWWON-SA-210 75.45 45.69 14.94 69.42 51.07 18.40 76.62 

20FAWWON-SA-212 67.96 50.03 14.36 73.58 53.61 17.95 78.94 

20FAWWON-SA-213 57.18 45.18 14.05 66.64 50.56 17.47 75.01 

20FAWWON-SA-214 79.00 54.25 15.47 78.59 56.01 18.43 81.96 

20FAWWON-SA-215 73.16 55.91 14.98 80.65 56.94 17.99 83.00 

20FAWWON-SA-222 78.92 53.12 14.36 75.12 55.19 17.92 80.49 

20FAWWON-SA-223 65.70 52.15 13.50 73.40 54.65 18.07 79.42 

20FAWWON-SA-224 65.94 52.49 13.86 74.48 54.11 17.17 78.26 

20FAWWON-SA-226 72.33 53.82 13.98 76.05 55.62 17.97 80.82 

20FAWWON-SA-227 75.69 53.93 14.18 76.40 55.45 18.22 80.46 

20FAWWON-SA-232 75.18 54.74 14.69 77.36 55.15 17.06 79.45 

20FAWWON-SA-236 75.11 55.31 16.09 80.91 55.99 18.12 81.93 

20FAWWON-SA-237 72.29 55.83 15.67 80.45 56.68 18.06 82.23 

20FAWWON-SA-241 81.41 52.69 15.25 77.31 55.99 18.51 82.64 

20FAWWON-SA-243 77.89 50.42 14.34 73.00 54.32 18.06 80.10 

20FAWWON-SA-244 68.54 48.28 14.25 71.30 52.81 18.16 78.43 

20FAWWON-SA-249 68.00 49.97 15.49 74.49 53.51 18.69 79.79 

20FAWWON-SA-251 68.22 54.17 15.80 79.43 56.38 19.40 83.12 

20FAWWON-SA-252 79.41 53.65 16.00 78.97 55.62 19.18 82.27 

20FAWWON-SA-254 75.07 50.10 14.52 73.04 54.39 18.41 80.37 

20FAWWON-SA-256 75.00 47.44 14.85 70.19 52.97 18.42 78.84 

20FAWWON-SA-257 65.44 50.29 14.15 72.88 54.13 17.60 79.14 

20FAWWON-SA-258 76.29 50.05 15.03 73.82 53.64 18.47 79.51 

20FAWWON-SA-259 70.48 51.65 15.42 75.73 54.65 17.69 79.79 

21FAWWON-IRR-103 72.14 51.77 14.46 74.83 54.43 18.11 80.03 

21FAWWON-IRR-14 61.80 46.17 15.18 70.43 51.21 18.32 76.83 

21FAWWON-IRR-141 82.18 57.35 14.08 79.42 57.26 18.39 83.35 

21FAWWON-IRR-143 81.39 53.61 14.31 75.87 55.62 17.92 80.67 
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21FAWWON-IRR-144 70.00 50.17 13.51 71.13 53.92 17.25 78.42 

21FAWWON-IRR-150 77.64 54.07 14.51 76.45 56.41 19.34 83.39 

21FAWWON-IRR-163 73.89 52.45 14.97 76.21 55.52 17.83 81.40 

21FAWWON-IRR-43 67.41 49.89 14.09 71.79 53.63 17.83 78.93 

21FAWWON-IRR-50 71.82 47.16 14.42 69.62 52.50 17.95 78.05 

21FAWWON-IRR-7 70.63 48.04 13.56 69.30 52.75 17.35 78.06 

21FAWWON-IRR-75 74.22 52.04 14.10 73.59 54.68 18.18 79.91 

21FAWWON-IRR-83 81.39 51.69 14.19 73.58 54.62 18.40 80.25 

21FAWWON-IRR-9 80.08 48.52 15.91 73.26 53.09 18.49 79.19 

21FAWWON-IRR-95 82.84 57.21 15.21 81.52 58.04 18.98 84.98 

21FAWWON-SA-202 69.18 54.48 15.12 78.20 56.00 18.24 81.81 

21FAWWON-SA-207 76.94 53.79 14.94 77.56 55.13 18.04 80.77 

21FAWWON-SA-210 75.40 48.81 14.95 72.75 53.56 17.75 79.12 

21FAWWON-SA-211 72.41 49.54 14.07 71.09 53.39 17.16 77.94 

21FAWWON-SA-227 71.05 43.45 14.54 65.86 50.71 18.27 76.42 

21FAWWON-SA-228 70.83 53.15 15.33 77.72 55.34 17.64 80.47 

21FAWWON-SA-234 68.53 49.02 14.47 71.47 53.05 17.76 77.92 

21FAWWON-SA-243 76.25 53.24 13.60 74.64 55.54 18.16 81.11 

21FAWWON-SA-247 81.46 53.97 14.07 76.48 56.19 18.16 82.20 

21FAWWON-SA-261 81.19 48.07 14.08 69.85 52.94 17.37 78.22 

21FAWWON-SA-281 67.83 45.27 14.99 69.32 51.27 18.31 77.15 

21FAWWON-SA-286 74.61 44.95 14.76 67.97 51.54 18.87 77.82 

21FAWWON-SA-287 87.80 45.68 15.15 70.11 51.98 19.33 79.12 

21FAWWON-SA-292 77.40 47.51 14.00 69.63 52.66 18.34 78.36 

Snowmass 84.35 54.77 13.85 76.73 55.64 17.21 80.29 

Ripper 87.44 53.68 13.57 75.58 55.85 18.34 81.63 

Antero 95.69 59.44 14.68 83.08 59.15 18.37 85.45 

Denali 94.23 58.52 15.45 82.93 59.19 19.37 86.31 

Byrd 85.51 56.14 14.41 79.20 56.85 17.98 82.46 
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Supplemental Table S5.17. Mean normalized difference vegetation indice (NDVI) values for Julesburg 2016. 

 
    MEAN       

ID VEG-R.NDVI GF-R.NDVI FULL-R.NDVI VEG-G.NDVI GF-G.NDVI FULL-G.NDVI 

22 FAWWON-IRR-85 0.53 0.39 0.47 0.55 0.51 0.53 

22 FAWWON-IRR-53 0.58 0.41 0.50 0.58 0.51 0.54 

22 FAWWON-IRR-87 0.57 0.43 0.50 0.58 0.53 0.55 

22 FAWWON-IRR-71 0.55 0.43 0.49 0.56 0.52 0.54 

22 FAWWON-IRR-48 0.56 0.42 0.49 0.57 0.52 0.55 

22 FAWWON-IRR-10 0.59 0.43 0.51 0.59 0.51 0.55 

22 FAWWON-SA-221 0.55 0.41 0.48 0.57 0.49 0.53 

22 FAWWON-IRR-9 0.60 0.46 0.52 0.59 0.51 0.55 

22 FAWWON-IRR-68 0.55 0.41 0.48 0.56 0.51 0.53 

22 FAWWON-IRR-95 0.52 0.40 0.46 0.55 0.51 0.53 

22 FAWWON-IRR-26 0.58 0.45 0.51 0.58 0.50 0.54 

22 FAWWON-IRR-18 0.58 0.43 0.50 0.58 0.52 0.55 

22 FAWWON-IRR-32 0.59 0.44 0.51 0.58 0.51 0.55 

22 FAWWON-SA-232 0.57 0.42 0.49 0.57 0.50 0.53 

22 FAWWON-SA-249 0.59 0.44 0.51 0.59 0.53 0.56 

22 FAWWON-SA-235 0.57 0.42 0.50 0.57 0.52 0.55 

22 FAWWON-IRR-103 0.56 0.42 0.49 0.57 0.51 0.54 

22 FAWWON-SA-281 0.56 0.44 0.49 0.56 0.51 0.53 

22 FAWWON-IRR-93 0.55 0.41 0.47 0.55 0.50 0.52 

22 FAWWON-SA-214 0.59 0.46 0.52 0.59 0.53 0.56 

22 FAWWON-SA-243 0.57 0.44 0.50 0.57 0.51 0.54 

22 FAWWON-SA-260 0.57 0.42 0.50 0.58 0.53 0.56 

22 FAWWON-IRR-21 0.57 0.43 0.50 0.58 0.53 0.55 

22 FAWWON-SA-225 0.58 0.43 0.51 0.58 0.50 0.54 

22 FAWWON-IRR-86 0.56 0.39 0.48 0.57 0.51 0.54 

20FAWWON-SA-231 0.57 0.41 0.50 0.58 0.51 0.54 

21FAWWON-IRR-137 0.59 0.42 0.51 0.59 0.51 0.55 
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22 FAWWON-SA-294 0.59 0.44 0.52 0.58 0.53 0.55 

22 FAWWON-SA-263 0.59 0.45 0.52 0.58 0.52 0.55 

22 FAWWON-IRR-98 0.59 0.42 0.51 0.59 0.52 0.55 

22 FAWWON-SA-262 0.56 0.42 0.49 0.57 0.51 0.54 

22 FAWWON-IRR-66 0.56 0.42 0.49 0.56 0.51 0.54 

22 FAWWON-IRR-31 0.58 0.42 0.50 0.57 0.51 0.54 

22 FAWWON-IRR-111 0.60 0.44 0.52 0.60 0.53 0.57 

22 FAWWON-IRR-57 0.59 0.44 0.52 0.59 0.53 0.56 

22 FAWWON-IRR-49 0.59 0.45 0.52 0.59 0.53 0.56 

22 FAWWON-IRR-79 0.57 0.43 0.50 0.58 0.53 0.56 

22 FAWWON-IRR-60 0.57 0.41 0.49 0.57 0.50 0.53 

22 FAWWON-IRR-55 0.55 0.44 0.49 0.56 0.52 0.54 

22 FAWWON-IRR-19 0.60 0.42 0.51 0.59 0.50 0.54 

22 FAWWON-IRR-70 0.58 0.44 0.51 0.58 0.52 0.55 

22 FAWWON-SA-239 0.60 0.45 0.52 0.60 0.53 0.57 

22 FAWWON-SA-248 0.55 0.43 0.49 0.57 0.52 0.54 

22 FAWWON-SA-202 0.56 0.41 0.49 0.57 0.51 0.54 

22 FAWWON-IRR-108 0.57 0.42 0.49 0.58 0.52 0.55 

22 FAWWON-IRR-35 0.55 0.42 0.49 0.57 0.52 0.54 

22 FAWWON-IRR-22 0.56 0.42 0.49 0.56 0.49 0.53 

22 FAWWON-SA-282 0.56 0.41 0.48 0.57 0.50 0.53 

22 FAWWON-IRR-41 0.54 0.42 0.48 0.55 0.50 0.52 

22 FAWWON-SA-230 0.55 0.40 0.47 0.56 0.51 0.53 

22 FAWWON-IRR-23 0.58 0.42 0.50 0.58 0.51 0.54 

22 FAWWON-IRR-20 0.59 0.41 0.50 0.59 0.50 0.54 

22 FAWWON-SA-223 0.58 0.43 0.51 0.58 0.52 0.56 

22 FAWWON-IRR-14 0.57 0.42 0.49 0.58 0.51 0.54 

22 FAWWON-SA-253 0.57 0.42 0.50 0.58 0.52 0.55 

22 FAWWON-IRR-8 0.58 0.42 0.51 0.58 0.52 0.55 

22 FAWWON-SA-237 0.61 0.44 0.52 0.60 0.52 0.56 

22 FAWWON-IRR-42 0.58 0.44 0.51 0.57 0.52 0.54 
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22 FAWWON-IRR-25 0.59 0.43 0.51 0.58 0.52 0.55 

22 FAWWON-IRR-34 0.57 0.43 0.50 0.57 0.51 0.54 

22 FAWWON-IRR-27 0.61 0.44 0.53 0.59 0.51 0.55 

22 FAWWON-SA-259 0.57 0.42 0.50 0.57 0.52 0.54 

22 FAWWON-IRR-45 0.57 0.42 0.50 0.58 0.51 0.55 

22 FAWWON-SA-231 0.56 0.43 0.49 0.56 0.50 0.53 

22 FAWWON-SA-274 0.56 0.41 0.48 0.55 0.50 0.52 

22 FAWWON-IRR-51 0.58 0.46 0.52 0.59 0.55 0.57 

22 FAWWON-SA-277 0.56 0.41 0.48 0.56 0.49 0.52 

22 FAWWON-IRR-84 0.54 0.41 0.48 0.55 0.51 0.52 

22 FAWWON-SA-265 0.56 0.44 0.50 0.57 0.51 0.54 

22 FAWWON-SA-269 0.56 0.42 0.49 0.56 0.51 0.53 

22 FAWWON-IRR-69 0.63 0.43 0.53 0.62 0.54 0.58 

22 FAWWON-SA-250 0.56 0.42 0.49 0.56 0.51 0.54 

22 FAWWON-IRR-52 0.55 0.43 0.49 0.57 0.52 0.55 

22 FAWWON-SA-270 0.58 0.43 0.51 0.58 0.54 0.56 

22 FAWWON-SA-211 0.60 0.43 0.52 0.58 0.51 0.55 

22 FAWWON-IRR-33 0.59 0.42 0.51 0.59 0.51 0.55 

22 FAWWON-IRR-7 0.61 0.43 0.52 0.60 0.52 0.56 

22 FAWWON-SA-217 0.56 0.42 0.49 0.57 0.50 0.53 

22 FAWWON-SA-273 0.56 0.42 0.49 0.56 0.51 0.53 

20FAWWON-IRR-100 0.58 0.41 0.50 0.58 0.51 0.55 

20FAWWON-IRR-106 0.60 0.45 0.52 0.60 0.53 0.57 

20FAWWON-IRR-11 0.58 0.42 0.50 0.57 0.52 0.54 

20FAWWON-IRR-114 0.59 0.46 0.52 0.59 0.54 0.57 

20FAWWON-IRR-115 0.58 0.42 0.50 0.59 0.52 0.55 

20FAWWON-IRR-118 0.61 0.43 0.52 0.61 0.53 0.58 

20FAWWON-IRR-12 0.57 0.41 0.49 0.58 0.51 0.54 

20FAWWON-IRR-13 0.59 0.41 0.50 0.58 0.51 0.54 

20FAWWON-IRR-143 0.58 0.44 0.51 0.58 0.51 0.54 

20FAWWON-IRR-15 0.56 0.41 0.49 0.57 0.54 0.55 
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20FAWWON-IRR-18 0.56 0.43 0.50 0.57 0.52 0.54 

20FAWWON-IRR-19 0.57 0.42 0.49 0.57 0.51 0.54 

20FAWWON-IRR-21 0.56 0.41 0.49 0.57 0.51 0.54 

20FAWWON-IRR-22 0.58 0.44 0.51 0.58 0.52 0.55 

20FAWWON-IRR-23 0.58 0.44 0.51 0.58 0.51 0.55 

20FAWWON-IRR-29 0.58 0.43 0.50 0.58 0.52 0.55 

20FAWWON-IRR-31 0.55 0.43 0.50 0.57 0.53 0.55 

20FAWWON-IRR-36 0.62 0.44 0.53 0.60 0.54 0.58 

20FAWWON-IRR-37 0.58 0.45 0.52 0.59 0.56 0.58 

20FAWWON-IRR-38 0.58 0.42 0.50 0.58 0.53 0.56 

20FAWWON-IRR-39 0.58 0.45 0.52 0.58 0.53 0.56 

20FAWWON-IRR-40 0.58 0.42 0.50 0.58 0.51 0.55 

20FAWWON-IRR-41 0.59 0.44 0.52 0.58 0.53 0.56 

20FAWWON-IRR-42 0.56 0.42 0.49 0.57 0.52 0.55 

20FAWWON-IRR-44 0.60 0.43 0.52 0.60 0.53 0.57 

20FAWWON-IRR-45 0.56 0.41 0.48 0.57 0.51 0.54 

20FAWWON-IRR-46 0.57 0.42 0.50 0.58 0.50 0.54 

20FAWWON-IRR-49 0.55 0.44 0.50 0.56 0.55 0.56 

20FAWWON-IRR-55 0.58 0.42 0.49 0.58 0.51 0.55 

20FAWWON-IRR-56 0.58 0.43 0.51 0.58 0.53 0.55 

20FAWWON-IRR-57 0.56 0.41 0.49 0.58 0.52 0.55 

20FAWWON-IRR-59 0.57 0.42 0.50 0.58 0.51 0.55 

20FAWWON-IRR-7 0.55 0.42 0.48 0.56 0.51 0.53 

20FAWWON-IRR-74 0.59 0.46 0.52 0.59 0.52 0.55 

20FAWWON-IRR-86 0.58 0.42 0.50 0.58 0.51 0.55 

20FAWWON-IRR-87 0.55 0.41 0.48 0.56 0.51 0.54 

20FAWWON-IRR-88 0.59 0.42 0.51 0.58 0.52 0.55 

20FAWWON-IRR-9 0.57 0.44 0.50 0.57 0.53 0.55 

20FAWWON-IRR-95 0.58 0.43 0.50 0.58 0.51 0.54 

20FAWWON-IRR-97 0.55 0.43 0.49 0.58 0.54 0.56 

20FAWWON-IRR-98 0.57 0.45 0.51 0.58 0.53 0.55 
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20FAWWON-SA-206 0.57 0.42 0.50 0.57 0.50 0.54 

20FAWWON-SA-209 0.59 0.44 0.51 0.59 0.52 0.55 

20FAWWON-SA-210 0.54 0.43 0.48 0.55 0.52 0.54 

20FAWWON-SA-212 0.57 0.42 0.49 0.57 0.51 0.54 

20FAWWON-SA-213 0.53 0.41 0.47 0.54 0.50 0.52 

20FAWWON-SA-214 0.60 0.45 0.52 0.59 0.53 0.56 

20FAWWON-SA-215 0.60 0.43 0.52 0.59 0.51 0.55 

20FAWWON-SA-222 0.58 0.42 0.50 0.58 0.51 0.55 

20FAWWON-SA-223 0.57 0.39 0.49 0.58 0.51 0.55 

20FAWWON-SA-224 0.59 0.40 0.50 0.57 0.49 0.53 

20FAWWON-SA-226 0.60 0.41 0.51 0.59 0.51 0.55 

20FAWWON-SA-227 0.59 0.41 0.51 0.59 0.52 0.55 

20FAWWON-SA-232 0.58 0.43 0.50 0.57 0.49 0.52 

20FAWWON-SA-236 0.61 0.46 0.53 0.59 0.52 0.55 

20FAWWON-SA-237 0.60 0.45 0.52 0.59 0.51 0.55 

20FAWWON-SA-241 0.60 0.44 0.52 0.60 0.53 0.56 

20FAWWON-SA-243 0.56 0.42 0.49 0.57 0.51 0.54 

20FAWWON-SA-244 0.56 0.41 0.49 0.57 0.52 0.54 

20FAWWON-SA-249 0.57 0.45 0.51 0.57 0.53 0.55 

20FAWWON-SA-251 0.60 0.46 0.53 0.60 0.55 0.58 

20FAWWON-SA-252 0.58 0.46 0.52 0.58 0.55 0.56 

20FAWWON-SA-254 0.57 0.42 0.50 0.58 0.52 0.55 

20FAWWON-SA-256 0.54 0.43 0.48 0.57 0.53 0.55 

20FAWWON-SA-257 0.57 0.41 0.49 0.58 0.50 0.54 

20FAWWON-SA-258 0.58 0.44 0.51 0.58 0.53 0.55 

20FAWWON-SA-259 0.56 0.45 0.50 0.57 0.50 0.53 

21FAWWON-IRR-103 0.59 0.42 0.51 0.59 0.52 0.55 

21FAWWON-IRR-14 0.56 0.43 0.50 0.56 0.52 0.54 

21FAWWON-IRR-141 0.61 0.41 0.51 0.60 0.52 0.56 

21FAWWON-IRR-143 0.58 0.41 0.50 0.59 0.51 0.55 

21FAWWON-IRR-144 0.56 0.39 0.48 0.57 0.49 0.53 
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21FAWWON-IRR-150 0.58 0.42 0.50 0.59 0.55 0.57 

21FAWWON-IRR-163 0.58 0.43 0.50 0.58 0.51 0.54 

21FAWWON-IRR-43 0.55 0.41 0.47 0.56 0.51 0.54 

21FAWWON-IRR-50 0.55 0.42 0.48 0.57 0.51 0.54 

21FAWWON-IRR-7 0.54 0.40 0.46 0.56 0.49 0.53 

21FAWWON-IRR-75 0.57 0.41 0.49 0.57 0.52 0.55 

21FAWWON-IRR-83 0.57 0.41 0.49 0.58 0.53 0.55 

21FAWWON-IRR-9 0.55 0.45 0.50 0.57 0.53 0.54 

21FAWWON-IRR-95 0.61 0.44 0.53 0.61 0.54 0.58 

21FAWWON-SA-202 0.61 0.43 0.52 0.60 0.52 0.56 

21FAWWON-SA-207 0.59 0.43 0.51 0.58 0.51 0.54 

21FAWWON-SA-210 0.57 0.43 0.50 0.58 0.51 0.54 

21FAWWON-SA-211 0.54 0.41 0.47 0.55 0.49 0.52 

21FAWWON-SA-227 0.54 0.42 0.48 0.56 0.52 0.54 

21FAWWON-SA-228 0.58 0.44 0.51 0.58 0.50 0.54 

21FAWWON-SA-234 0.54 0.42 0.48 0.55 0.50 0.53 

21FAWWON-SA-243 0.59 0.39 0.49 0.59 0.52 0.55 

21FAWWON-SA-247 0.60 0.41 0.51 0.60 0.52 0.56 

21FAWWON-SA-261 0.55 0.40 0.47 0.56 0.49 0.53 

21FAWWON-SA-281 0.54 0.43 0.49 0.55 0.52 0.54 

21FAWWON-SA-286 0.53 0.43 0.48 0.56 0.54 0.55 

21FAWWON-SA-287 0.54 0.44 0.49 0.57 0.55 0.56 

21FAWWON-SA-292 0.56 0.41 0.49 0.57 0.52 0.55 

Snowmass 0.60 0.40 0.50 0.58 0.49 0.54 

Ripper 0.58 0.40 0.49 0.58 0.53 0.55 

Antero 0.64 0.43 0.53 0.62 0.53 0.57 

Denali 0.62 0.45 0.54 0.62 0.55 0.59 

Byrd 0.61 0.42 0.51 0.60 0.51 0.55 

 


