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Abstract

Towards a General Theory of Erdős-Ko-Rado Combinatorics

In 1961, Erdős, Ko, and Rado proved that for a universe of size n ≥ 2k, a family of

k-subsets whose members pairwise intersect cannot be larger than
(
n−1
k−1

)
. This fundamen-

tal result of extremal combinatorics is now known as the EKR theorem for intersecting set

families. Since then, there has been a proliferation of similar EKR theorems in extremal

combinatorics that characterize families of more sophisticated objects that are largest with

respect to a given intersection property. This line of research has given rise to many inter-

esting combinatorial and algebraic techniques, the latter being the focus of this thesis.

Algebraic methods for EKR results are attractive since they could potentially give rise to

a unified theory of EKR combinatorics, but the state-of-the-art has been shown only to apply

to sets, vector spaces, and permutation families. These categories lie on opposite ends of the

stability spectrum since the stabilizers of sets and vector spaces are large as possible whereas

the stabilizer of a permutation is small as possible. In this thesis, we investigate a category

that lies somewhere in between, namely, the perfect matchings of the complete graph. In

particular, we show that an algebraic method of Godsil’s can be lifted to the more general

algebraic framework of Gelfand pairs, giving the first algebraic proof of the EKR theorem

for intersecting families of perfect matchings as a consequence. There is strong evidence to

suggest that this framework can be used to approach the open problem of characterizing the

maximum t-intersecting families of perfect matchings, whose combinatorial proof remains

illusive. We conclude with obstacles and open directions for extending this framework to

encompass a broader spectrum of categories.
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CHAPTER 1

Introduction

Erdős-Ko-Rado or EKR-type combinatorics is a branch of extremal combinatorics that

focuses on how large a collection of finite objects can be subject to a given intersection

restriction. The quintessential example is the EKR theorem for intersecting set families, a

classic result of the field that gave it its namesake.

Theorem 1 ([1] Erdős, Ko, Rado 1961). Let F be a family of k-subsets of an n element

universe such that its members pairwise t-intersect. If n ≥ 2k, then

|F| ≤
(
n− 1

k − 1

)

Equality holds if and only if all the members of F have one element in common.

Theorem 1 is actually a special case of their more general result about t-intersecting set

families, that is, families of k-subsets such that |S ∩ T | ≥ t for all S, T ∈ F . This result is

known as the full EKR theorem for intersecting set families.

Theorem 2 ([1] Erdős, Ko, Rado 1961). Let F be a family of k-subsets of an n element

universe such that its members pairwise intersect. If n ≥ 2k, then

|F| ≤
(
n− t
k − t

)

Equality holds if and only if all the members of F have a fixed set of t elements in common.
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Over the years there has been a proliferation of EKR-type results that characterize fam-

ilies of other more sophisticated finite objects that are largest with respect to a given t-

intersection property.1 To get a better idea of what EKR combinatorics entails, we give a

list of a few full EKR theorems for different categories.

Theorem 3 ([2] Frankl, Wilson 1986). If F is an intersecting family of k-dimensional

subspaces of an n-dimensional vector space over the q-element field, i.e., dim(S ∩T ) ≥ 1 for

any S, T ∈ F , then

|F| ≤
[
n− t
k − t

]
subject to n ≥ 2k. Equality holds if and only if every subspace in F contains a common

nonzero vector except the case n = 2k.

Theorem 4 ([3] Frankl, Tokushige 1999). Let F be a t-intersecting family of length-n

sequences of integers from {1, 2, · · · , q}, i.e., xi = yi for t or more indices for any x, y ∈ F ,

then

|F| ≤ qn−1

subject to q ≥ t + 1. Equality holds if and only if every sequence in F contains a common

fixed subsequence of length t.

Theorem 5 ([4] Ellis, Friedgut, Pilpel 2011). Let F be a family of t-intersecting permu-

tations on n elements, i.e., π(i) = σ(i) for t or more symbols for any π, σ ∈ F , then

|F| ≤ (n− t)!

1There are other intersection properties that are often considered in EKR combinatorics (e.g. cross-
intersecting, partially t-intersecting, exact-t-intersecting). We shall only consider the t-intersection property.
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for sufficiently large n. Equality holds if and only if F is a t-coset of Sn.

In the theorems above, the families that meet the bound with equality are the so-called

trivially t-intersecting families. Intuitively, these families are the obvious candidates that

give a high lower bound on the size of a largest t-intersecting family. A central theme of EKR

combinatorics is showing that this lower bound is in fact an upper bound, more specifically,

that the trivially t-intersecting families are the only extremal families. Perhaps surprisingly,

proving this is the most involved part of (full) EKR results, so it is natural to strive towards

a general method for showing that the trivially t-intersecting families are the only largest

t-intersecting families.2

A well-studied special case of Theorem 5 that attracted a lot of attention is the EKR the-

orem for permutations, first proven by Cameron and Ku in [5] using combinatorial arguments

reminiscent of Erdős, Ko, and Rado’s proof of Theorem 1.

Theorem 6. Let F be a family of intersecting permutations on n elements, i.e., π(i) =

σ(i) for some i ∈ {1, · · · , n} for any π, σ ∈ F , then

|F| ≤ (n− 1)!

. Equality holds if and only if F is the coset of the stabilizer of a point.

There are many clever proofs of this theorem [5–7], but most do not seem general enough

to apply to other categories of finite objects. One notable exception is a proof by Godsil

and Meagher given in [8] where they use a proof technique known henceforth as the module

method [9]. Below is an outline of their approach, the details of which will be discussed later.

2With a “for sufficiently large n” grain of salt in some cases.
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(1) Define a non-intersection graph Γ over a collection of objects.

(2) Show that a maximum independent set S of this graph meets the clique/co-clique

bound or the ratio bound with equality.

(3) Show vS lives in the direct sum of the trivial and “standard” module where vS is

the characteristic vector of a maximum independent set S of Γ.

(4) Show that vS = vij where vij is the 0/1 characteristic vector of some trivially

intersecting family.

This method seems promising since it has been shown to apply to a wide variety of

categories of finite objects such as sets [10], vector spaces [10], and permutations [8]. In [8],

Godsil and Meagher leave the viability of the module method over perfect matchings of K2n

as an open question.

Our main result is an affirmative answer to this question, giving the first algebraic proof

of the EKR theorem for perfect matchings. En route, we give a synthesis of terminology

and results in a variety of different subjects, namely, the Theory of Association Schemes,

Finite Gelfand Pairs, and Symmetric Function Theory. Many of these connections have

been observed before, but they are scattered throughout the literature and their relevance

to extremal combinatorics is understated. We give a cohesive account of these connections

as they apply to our result.

To put this work in perspective, it is helpful to view a permutation on n symbols as a

perfect matching of the complete bipartite graph Kn,n, and so EKR results for permutations

correspond to the EKR results for perfect matchings of Kn,n.3 Our work can be seen as

a “non-bipartification” of [8] and another testament to the graph-theoretical adage that

non-bipartite matching is more complicated but just as tractable as bipartite matching.

3The correspondence is easily observed after writing a permutation in array notation.
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Many of the “bipartite” objects that arise in algebraic proofs of Theorem 6 are well-

studied or have since been recognized as interesting, so it is reasonable to assume that our

“non-bipartite” objects may also be of independent interest. For example, the notion of a

matching derangement is central to the proof of our main result; however, matching derange-

ments have received hardly any attention in combinatorics, unlike their bipartite counterpart

(the permutation derangements). Also, the matching derangement graph appears to be analo-

gous to the permutation derangement graph, a central object of several permutation-theoretic

EKR results that has recently enjoyed some attention outside its EKR milieu [11–13]. We

put forth a few conjectures regarding the spectrum of the matching derangement graph

that are analogues of known results on the permutation derangement graph. Finally, the

non-bipartite analogue of the Birkhoff polytope arises in our work, but to our knowledge, it

has not been studied whatsoever. We hope this work serves as a proper exhibition of these

“non-bipartite” objects.

We conclude with speculation on the more general open question of whether the module

method can be used to obtain EKR theorems for 1-factors of complete r-uniform hypergraphs

Krn
r on rn vertices. Evidence suggests that the module method could be amenable, but will

require a significantly more involved (non-commutative) algebraic component. Finally, it is

still open whether the module method can be used to prove full EKR theorems; however,

the representation theory of perfect matchings is well-studied to the extent that one may

be able to give a harmonic analytic proof similar to [4] of the full EKR theorem for perfect

matchings, whose combinatorial proof remains elusive.
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CHAPTER 2

Preliminaries

2.1. Perfect Matchings

A matching of a graph is a subgraph such that each vertex has degree at most one. A

matching is perfect if each vertex has degree exactly one. Since all matchings considered

in this work are perfect matchings, we refer to a perfect matching simply as a matching.

A matching of K2n, the complete graph on 2n vertices, can be identified as a partition of

[2n] := {1, 2, · · · , 2n} where each member of the partition has size two. We shall refer to the

matching e = 1 2|3 4| · · · |2n− 1 2n as the identity matching. Let Hn := {σ ∈ S2n : σe = e}

be the subgroup of Sn that stabilizes the identity matching. It is well-known that Hn is the

wreath product S2 o Sn which is isomorphic to the hyperoctahedral group of order 2nn!, the

group of symmetries of the n-hypercube. Since matchings are in one-to-one correspondence

with cosets of the quotient M2n := S2n/Hn, it follows that the number of matchings of K2n

is 2n!
2nn!

= (2n− 1)!! = 1× 3× 5× · · · × 2n− 3× 2n− 1.

1 2

3

4

56

7

8

1 2

3

4

56

7

8

Figure 2.1. On the left, an illustration of K2n and the identity matching e.
On the right, the graph e∪σe ∼= Γ(n−1,1) where σ ∈ {(248), (248)(56), (18234),
(18234)(56), (134)(287), (134)(287)(56), (127834),(127834)(56), (173), (173)(56)}
for n = 4.
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1 2

3

4

56

7

8

1 2

3

4

56

7

8

Figure 2.2. The matching m = 2 3|4 5|6 7|1 8 on the left has cycle type
(n) ` n whereas the matching m′ = 1 2|3 8|4 7|5 6 on the right has cycle type
(2, 1n−2) ` n where n = 4.

For any two matchings m,m′ ∈M2n, let Γ(m,m′) be the multigraph on [2n] whose edge

multiset is the multiset union m ∪ m′. Clearly Γ(m,m′) = Γ(m′,m) and by a theorem of

Berge [14], this graph is composed of disjoint cycles of even parity. Let k denote the number

of disjoint cycles and let 2λi denote the length of an even cycle. If we order the cycles from

longest to shortest and divide each of their lengths by two, we see that each graph corresponds

to an integer partition λ = (λ1, λ2, · · · , λk) ` n. For any λ ` n, if there are k parts that all

have the same size λi, we use λki to denote the multiplicity. Let d(m,m′) : M×M 7→ Part(n)

denote this map where Part(n) is the set of all integer partitions of n. We shall refer to

d(m,m′) as the cycle type of m′ with respect to m (or vice versa since d(m,m′) = d(m′,m)).

If one of the arguments is the identity matching, then we say d(e,m) is the cycle type of

m. Since Γ(x, y) ∼= Γ(x′, y′) if and only if d(x, y) = d(x′, y′), let the graph Γλ be a distinct

representative from the isomorphism class λ ` n. Illustrations of the graphs Γ(n) and Γ(2,1n−2)

are provided in Figure 2.1 where n = 4.

Any permutation σ ∈ S2n acts naturally on a matching m ∈M2n as follows:

σm = σ(m1) σ(m2)|σ(m3) σ(m4)| · · · |σ(m2n−1) σ(m2n)

7



Recall that the action of any permutation σ ∈ Sn on Sn is both regular and faithful.

Figure 2.1 illustrates that this is no longer the case when S2n acts on M2n. The action is not

regular since there may exist two distinct permutations σ, ρ ∈ S2n such that σm = ρm. The

action is not faithful since any union of transpositions of the form (2i+ 1, 2i+ 2) sends the

identity matching to itself. The action is however transitive, since for any two matchings

m,m′ ∈M there exists a σ ∈ S2n such that σm = m′. In fact, we have the stronger condition

that σm = m′ and σm′ = m hold simultaneously for some σ ∈ S2n, so this is a generously

transitive action [15]. For any m,m′ ∈ M2n, it is easy to obtain such a permutation by

considering the cycles of Γ(m,m′) and picking any permutation σ ∈ S2n that cyclically

permutes each cycle, since clearly σ(σm) = m.

Periodically we will make use of a natural bijection between matchings of Kn,n and

permutations of Sn that is easily observed after writing an arbitrary permutation, say,

(1 2 3 · · · n − 1 n), in array notation: a =
(

1 2 3 ··· n−1 n
2 3 4 ··· n 1

)
. Each row corresponds to a

partition class of Kn,n and the columns correspond to edges of a matching. Recall that

a derangement of a permutation σ ∈ Sn is a permutation σ′ ∈ Sn that disagrees with σ

everywhere, that is, σ(i) 6= σ′(i) ∀i ∈ [n]. Equivalently, σπ = σ′ is a derangement of σ if

and only if π has no 1-cycle. The set of permutations that have no fixed points are known

as the derangements of Sn and their size (the subfactorial numbers) can be computed using

the following recurrence: !n := Dn = (n − 1)(Dn−1 + Dn−2) where D0 = 1 and D1 = 0.

Under the aforementioned bijection, these numbers also count the number of matchings of

Kn,n that do not share an edge with an arbitrary matching of Kn,n.

There is an analogous notion of derangement for matchings that has received hardly any

attention in both the combinatorial and algebraic literature. A (matching) derangement of

8



1 2

3

4

56

7

8

Figure 2.3. Three matchings m1 = e, m2 = 1 4|3 6|5 8|2 7, and m3 =
1 7|2 8|3 5|4 6 each of which are derangements of one another. Note that their
cycle types d(m1,m2) = d(m2,m3) = (n) and d(m1,m3) = (n

2
, n

2
) have no

1-cycles.

m ∈ M2n is a matching m′ such that m and m′ disagree everywhere, that is, m ∩m′ = ∅.

Equivalently, σm = m′ is a derangement of m if d(m,σm) has no part of size one (1-cycle).

A routine inclusion-exclusion argument shows that the number of derangements DM
n of an

arbitrary m ∈M2n can be computed recursively as follows:

!!n := DM
n = 2(n− 1)(DM

n−1 +DM
n−2)

where DM
0 = 1 and DM

1 = 0.1 Notice that because S2n/Hn is not a group, there is no

well-defined set of derangements for M2n like there is for the symmetric group. Below are

the first thirteen values of DM
n .

1, 0, 2, 8, 60, 544, 6040, 79008, 1190672, 20314880, 387099936, 8148296320, 187778717632, · · ·

Let Krn
r denote the hypergraph on rn vertices such that every subset of r vertices forms

a hyperedge. A 1-factor of Krn
r is a partition of the vertices into subsets of size r. A

1To our knowledge, the unary prefix operator (!!) has not been used to express the matching derangement
(“double subfactorial”) numbers. We feel our choice of notation is natural.
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3

4

56

7

8

1

Figure 2.4. An illustration of a 1-factorization F of K2n such that m∪m′ ∼=
Γ(n) ∀m,m′ ∈ F where n = 4.

1-factorization F of Krn
r is a partition of the hyperedges such that each partition is a 1-

factor [16]. The following theorem is due to Baranyai [17].

Theorem 7. Every Krn
r admits a 1-factorization.

An edge coloring of a graph is a coloring of the edges such that no two edges of the same

color are incident to the same vertex. Note that a 1-factorization for r = 2 is simply an edge

coloring of K2n such that the graph induced by each edge color class is a matching. Moreover,

by a theorem of Lucas, every complete graph on 2n vertices admits a 1-factorization F such

that ∀m,m′ ∈ F , d(m,m′) = (n) as follows [18]. Let 2n − 1 of the vertices be the points

of a regular (2n− 1)-gon centered at the origin and place the remaining point at the origin.

For each color class, include one edge from the origin to one of the points, and all of the

perpendicular edges connecting pairs of polygon points (see Figure 2.4 for an illustration).

Finally, we shall prefer a design-theoretic language for hypergraph matchings and 1-

factorizations when r > 2. Let
(
X
r

)
denote the complete design, that is, the collection of

all r-subsets of a ground set X. A parallelism of
(
X
r

)
is partition Π = π1, π2, · · · πk of

(
X
r

)
such that each class πi is a partition of X [19]. It is clear that Baranyai’s theorem can be

10



abc adg aei ceg acd aeh agb dgh ade agi ahc ehi aeg ahb
def beh dhc fha egf cgi eid fia ghf dhb gbe fba hif eic
ghi cfi gbf ibd hib dfb hcf bce ibc efc idf cdg bcd gfd

aid gib agh aic abe hbc ahi abd acg icd aib ace adh ide
hcg fca ibf gdb idh fda bcf hce bei fea cdf idg cgb fga
bef deh cde hfe cgf egi deg ifg dhf ghb egh bfh eif hbc

Figure 2.5. A parallelism of the complete design
(
X
3

)
found by Walecki (1896)

where X = {a, b, c, d, e, f, g, h, i}. Each column is a 1-factor of K9
3 .

interpreted as necessary and sufficient conditions for the existence of a parallelism of
(
X
r

)
.

Figure 2.5 gives an example of a parallelism for r = 3.

2.2. Polyhedral Combinatorics

We give a rough overview of basic definitions and elementary properties of convex poly-

topes. Proofs of the general results below can be found in [20]. We refer the reader to [21]

for a better treatment of convex polytopes and their relationship to algebraic graph theory.

Let P ⊂ Rd be a convex polytope defined by a set of linear inequalities defined over Rd.

Any element of p ∈ Rd that satisfies the system of linear equalities is a point of P . If a point

p ∈ P satisfies the system of linear inequalities with equality, then it is an extreme point or

vertex of P . The dimension of P , denoted dimP , is the dimension of the smallest affine

subspace of Rd containing P . A face F ⊆ P is an intersection of P with a hyperplane such

that none of the interior points of P lie on the boundary of the halfspace. Each face itself is

a polytope. Below is a list of the names of some popular faces of convex polytopes.

• vertices ↔ 0-dimensional faces of P .

• edges ↔ 1-dimensional faces of P .

• ridges ↔ (dimP − 2)-dimensional faces of P .

• facets ↔ (dimP − 1)-dimensional faces of P .

11



A graded poset is a partially ordered set (P,�) with a unique minimal element 0̂ and a

unique maximal element 1̂. A graded lattice L is a graded poset (P,�) in which every pair

of elements p, p′ ∈ P has a unique maximal lower bound, called the meet p∧p′, and a unique

minimal upper bound, called the join p∧ p′. The minimal elements of L \ {0̂} are the atoms

of L and the maximal elements of L\{1̂} are the coatoms of L. A graded lattice L is atomic

if every element is a join of a set of atoms, and it is coatomic if every element is a meet of a

set of coatoms. Let L(P ) be the set of all faces of P partially ordered by inclusion.

Theorem 8. L(P ) is a finite, graded, atomic, and coatomic lattice. The meet operation

F ∧ G is given by intersection, while the join F ∨ G is the intersection of all facets that

contain both F and G.

Due to the above result, we refer to L(P ) as the face lattice of P. The face lattice of the

pyramid is given in Figure 2.6. Theorem 8 tells us that characterizing the facet-inducing

inequalities of P (those inequalities that uniquely define facets) allows one to completely

understand the faces of P . We say that two polytopes P and Q are combinatorially equivalent

if L(P ) ∼= L(Q). Our study of polytopes in this work will be up to combinatorial equivalence.

It is well-known that any face of a polytope P can be expressed as the intersection of P

with a hyperplane H. In particular, if we let h ∈ Rn, then for each a ∈ R, the sets

Ha = {x ∈ Rn : hTx = a}

are hyperplanes that partition Rn. If P is a polytope, then there is some a ∈ R such that

P ∩ Ha 6= ∅. It follows that by finding the maximum and minimum values of a such that

P ∩Ha 6= ∅, we find parallel faces of P .

12



Figure 2.6. The pyramid face lattice (courtesy of David Eppstein).

Lemma 1. Let P be the convex hull of the rows of a matrix U , then Uh = z and

Fmin = {x ∈ P : hTx = zmin}

Fmax = {x ∈ P : hTx = zmax}

are parallel faces of P . Moreover, if z is a 0/1 vector, then Fmin and Fmax partition the

vertices of P .

We conclude with a description of two convex polytopes that arise in the EKR theorem

for permutations and perfect matchings of K2n. These results can be found in [22] and [23].

An n × n matrix A is doubly stochastic if its entries are non-negative real numbers and

its rows and columns each sum to 1. The Birkhoff polytope is the convex polytope in Rn2

whose points are the doubly stochastic matrices. Below is a set of linear inequalities that

defines the polytope.

aij ≥ 0;
n∑
i=1

aij = 1;
n∑
j=1

aij = 1; ∀1 ≤ i, j ≤ n.

13



Birkhoff showed that there are n! vertices of this polytope are they are precisely the n × n

permutation matrices. It is clear that the vertices of this polytope correspond to the perfect

matchings of Kn,n, so we shall refer to this polytope M(Kn,n) as the perfect matching polytope

of Kn,n.

Since the rows and columns of any doubly stochastic matrix A must sum to 1, one can

deduce the entries anj, ain ∀1 ≤ i, j ≤ n once the entries aij ∀1 ≤ i, j ≤ n − 1 have been

determined, hence the dimension of M(Kn,n) is (n − 1)2. Within the space R(n−1)2 , the

remaining n2 non-negativity constraints of the form aij ≥ 0 define the polytope. Birkhoff

showed that each of these inequalities induces a unique facet, thus there are n2 facets of

M(Kn,n).

It is well-known that the edges of M(Kn,n) correspond to pairs of permutations (π, σ)

such that π−1σ is n-cycle, hence the 1-skeleton (graph) of M(Kn,n) is the normal Cayley

graph Γ(Sn, Cn) where Cn ⊆ Sn is the conjugacy class of all n-cycles on n symbols. The

correspondence between 1-skeletons of convex polytopes (whose vertices correspond to a

complete collection of finite objects) and normal Cayley graphs will be revisited in the final

chapter of this work.

We turn our attention to the more general perfect matching polytope of G which we

denote as M(G). Let xm be the characteristic vector of a perfect matching m of G, that is,

xm(e) = 1 if e ∈ m; otherwise, xm(e) = 0. It is well-known that the vertex set of M(G) is

the convex hull of the set {xm ∈ R|E| : m is a perfect matching of G} and that if G = K2n,

then M(K2n) has (2n−1)!! vertices. For any S ⊆ V (G), let δ(S) denote the set of edges with

exactly one endpoint incident to S. An odd cut C of a graph G is a set of edges of the form

δ(S) where ∅ ⊂ S ⊂ V (G). If |V \S| > 1 and |S| > 1, then we say that C is a non-trivial odd
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cut. Let C be the set of all non-trivial odd cuts of a graph. If G is a connected graph such

that every edge belongs to some perfect matching, then x ∈ M(G) if and only if it satisfies

the set of linear inequalities below.

x(e) ≥ 0 ∀e ∈ E; x(δ({v})) = 1 ∀v ∈ V ; x(C) ≥ 1 ∀C ∈ C

Theorem 9 (Edmonds, Pulleyblank, Lovász 1982). Let G = (V,E) be a connected graph

such that every edge belongs to some perfect matching. Then the dimension of the perfect

matching polytope of M(G) is |E| − |V |+ 1− β where β is the number of bricks in the brick

decomposition of G.

Since the size of the brick decomposition of a non-trivial clique on an even number of

vertices is 1 [23], we have the following as a simple corollary.

Corollary 1. dimM(K2n) =
(

2n
2

)
− 2n.

Using highly non-trivial graph theory, the facet-inducing inequalities of M(G) are also

characterized in [23]. Their characterization of the facet-inducing inequalities is much too

involved to be stated in full, so we refer the interested reader to Theorem 6.2 of [23] for the

full graph-theoretical characterization of the facets of M(G). Fortunately, in the special case

where G is a non-trivial clique on an even number of vertices, the situation is drastically

simplified, leading to the following straightforward corollary of Theorem 6.2 of [23].

Corollary 2. There are
(

2n
2

)
facets of M(K2n) each of which corresponds to a facet-

inducing inequality of the form x(e) ≥ 0 where e ∈ E.

Corollaries 1 and 2 will come into play for the final part of the proof of our main result.
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2.3. Finite Group Representation Theory

We refer the reader to [24] for a more thorough exposition of representation theory.

A representation of a groupG on a vector space V over a fieldK is a group homomorphism

ρ : G → GL(V ) such that ρ(gh) = ρ(g)ρ(h) where GL(V ) is the group of n × n invertible

matrices over K. All representations will be defined over the field K = C of complex numbers

unless stated otherwise. A linear subspace W ⊂ V is G-invariant if ρ(g)w ∈ W for all g ∈ G

and w ∈ W . The restriction of ρ to a G-invariant subspace is a subrepresentation of ρ. A

representation ρ is an irreducible representation (irreducible) or irrep for short) if and only

if ρ admits no subrepresentations other than V and {0}.

The character of a representation ρ is the function χρ : G→ K where g 7→ Tr(ρ(g)). We

shall assume that all characters in this work irreducible unless stated otherwise. Characters

are class functions, that is, they each take a constant value on a given group conjugacy class.

More precisely, the set of irreducible characters of G into K form a basis of the K-vector

space of all class functions G→ K.

Let G be a group of order n and let C[G] denote the vector space over C with natural

basis {g1,g2, · · · ,gn} whose elements are formal linear combinations of the form
∑n

i=1 cigi.

This space can be endowed with the following product:

(∑
g∈G

bgg

)(∑
g∈G

cgg

)
=
∑
g,h∈G

bgchgh

=
∑
g∈G

∑
h∈G

bhch−1gg

When C[G] is endowed with this product, it is often referred to as the group algebra of

G over C. If G acts naturally on C[G], that is hg 7→ hg, then we obtain the left regular
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or permutation representation of G over C, π : G → GL(C[G]). We shall assume that all

representations are over C henceforth.

The permutation representation in general is a reducible representation, which means

that it can be decomposed as a direct sum of irreps that are pairwise orthogonal. Moreover,

the decomposition of the permutation representation is unique and includes every irrep of

G. More formally, we have the following.

Theorem 10. Let π be the permutation representation of a group G. Then π is orthog-

onally equivalent to the following

π ∼=
k⊕
i=1

dim(Vi)Vi

It will be enlightening to view the group algebra C[G] as L2(C[G]), the vector space of

complex-valued functions over G. Indeed any formal sum of C[G] corresponds to a vector

v ∈ Cn, where v corresponds to a complex-valued function f such that vi = f(gi). A natural

basis for this space is obtained by letting 1gi be the characteristic vector of gi and extending

by linearity. In this new setting, we obtain the group algebra again by observing that the

product defined above is simply convolution:

(f ∗ g)(x) =
∑
yz=x

f(y)g(z)

where f, g ∈ C[G] and x, y, z ∈ G. There is a natural action of G on L2(C[G]) given by

(xf)(y) = f(x−1y) which again gives rise to the permutation representation of G.
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2.4. Representation Theory of the Symmetric Group

A few basic representation theoretical results particular to the symmetric group will be

needed. We refer the reader to [25, 26] for a more thorough exposition.

Recall that two permutations σ, ρ ∈ Sn belong to the same conjugacy class if and only

if they have the same cycle type. The cycle type of any permutation can be expressed as

an integer partition λ = (λ1, λ2, · · · , λk) ` n, where λ1 ≥ λ2 ≥ · · · ≥ λk and
∑
λi = n;

therefore, conjugacy classes of Sn can be labeled by their integer partition. Any integer

partition λ ` n can be represented as a Young tableau Tλ of shape λ ` n that is composed of

n cells (see Figure 2.7). Since shapes and Young tableaux are in one-to-one correspondence,

we will often refer to a Young tableau Tλ simply by its shape λ. We use the following

conventions for describing the anatomy of Young tableaux. Let c = (i, j) be the cell at row

i column j of a Young tableau Tλ.

• The size of Tλ is the # of cells and its height H(λ) is the # of rows.

• The leg length of c, ll(c), is the # of cells below c in column j.

• The arm length of c, al(c), is the # of cells to the right of c in row i.

• Let h(c) = al(c) + ll(c) be the hook length of c.

• Tλ covers a shape µ if Tµ is a Young subtableau of Tλ.

• A rim hook of Tλ is a Young subtableau Tµ that does not cover (2, 2) and whose

removal from Tλ results in a valid Young tableau Tλ\µ.

Let λ′ be the transpose shape of λ that one obtains a by reflecting the Tλ along its main

diagonal. A standard Young tableau of shape λ ` n is a Young tableau of shape λ whose

cells are labeled from 1 · · ·n such that the columns and rows are strictly increasing (see

Figure 2.7). It is well-known the number of distinct irreps of any group equals the number
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Figure 2.7. On the left, the Young tableau of shape λ = (5, 4, 1). On the
right, one of 288 standard Young tableaux of shape λ = (5, 4, 1).

of its conjugacy classes, which implies that the irreps of Sn are in one-to-one correspondence

with Young tableaux. Furthermore, the dimension of the irrep of shape λ corresponds to

the number of standard Young tableaux of shape λ, which can be obtained using the hook

length formula.

Theorem 11 (Hook Length Formula). The number of standard Young tableau of shape

λ is given by the following:

h(λ) :=
n!∏

c∈Tλ h(c)

where the product ranges over all cells of Tλ.

Let χλ be the irrep of shape λ. In this work we will be concerned with computing

the character values of χλ(π) of where π ∈ Sn. Since characters are class functions, we have

χλ(π) = χλ(µ) for all π, µ ∈ Sn of the same cycle type. In light of this, we define χαλ := χλ(π)

where π is an arbitrary permutation of cycle type α.

The Schur functions sλ famously have an interpretation as exponential generating func-

tions for the irreducible characters χλ of Sn. Let π have cycle type µ = (µ1, µ2, · · ·µm).

sλ =
1

n!

∑
π∈Sn

χλ(π)pπ

where pπ = pµ = pµ1pµ2 · · · pµm are the power symmetric functions. Fortunately, there is a

simple combinatorial algorithm for computing the coefficients of this generating function.
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Theorem 12 (Murnaghan-Nakayama). Let λ ` n and α be a cycle type:

χαλ =
∑
ζ

(−1)H(ζ)χ
α\α1

λ\ζ

where the sum runs over all rim hooks ζ of λ of size α1.

Corollary 3. Let λ ` n. If Tλ is not a rim hook, χ
(n)
λ = 0; otherwise, χ

(n)
λ = −1H(Tλ).

2.5. Algebraic Graph Theory and Erdős-Ko-Rado Combinatorics

In this section we overview algebraic graph theory as it applies to EKR combinatorics.

We refer the reader to [27] for a more thorough exposition of basic algebraic graph theory

and [28] for a better treatment of Cayley graphs and their spectra. We begin by describing

a well-known graph-theoretical framework for doing EKR combinatorics.

Let X be a ground set of a finite objects and let ∼ be an intersection relation defined

with respect to X. Let the non-intersection graph be a simple undirected graph Γ(X, 6∼)

defined over X such that x, x′ ∈ X are connected if and only if x 6∼ x′. Each maximum

clique of Γ(X, 6∼) corresponds to a largest family of objects F ⊆ X such that x 6∼ x′ for all

x, x′ ∈ X. Each maximum independent set of Γ(X, 6∼) corresponds to a largest family of

objects F ⊆ X such that x ∼ x′ for all x, x′ ∈ X. Some of the most obvious examples arise

when X is the collection of all k-element subsets of [n].

Example 1. Let X be the collection of all k-element subsets of [n] and define x ∼

y ⇔ |x ∩ y| 6= 0. The non-intersection graph Γ(X, 6∼) ∼= KG(n, k) is known as the Kneser

graph. Its maximum independent sets correspond to largest families of k-subsets such that

its members are all pairwise intersecting.
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Example 2. Let X be the collection of all k-element subsets of [n] and define x ∼ y ⇔

|x ∩ y| 6= k − 1. The non-intersection graph Γ(X, 6∼) ∼= J(n, k) is known as the Johnson

graph. Its maximum independent sets are the largest families of k-subsets such that the

pairwise intersections of its members all have size k − 1.

In light of the connection between independent sets and intersecting families, the following

bound due to Delsarte and Hoffman has proven to be quite effective. The characteristic vector

of a set S ⊆ V is a 0/1 vector x of size |V | such that x(i) = 1 if i ∈ S; otherwise, x(i) = 0.

Theorem 13 ([29] Ratio Bound). For any weighted k-regular graph Γ on n vertices:

α(Γ) ≤ n
−ηmin

k − ηmin

where ηmin is the minimum eigenvalue of Γ and α(Γ) is the size of a maximum independent set

in Γ. Furthermore, if equality holds then the characteristic vector of a maximum independent

set is a linear combination of 1 and a ηmin-eigenvector.

The difficulty in applying the ratio bound lies in characterizing the minimum eigenvalue,

which is difficult to do for most graphs. Fortunately, the spectra of the Kneser and the

Johnson graphs are well-understood [10] and since there exist independent sets of these

graphs that meet the ratio bound with equality, it provides elegant proofs of several set-

theoretic EKR results. At present, the necessary and sufficient conditions for graphs meeting

the ratio bound with equality is very much a mystery. It just so happens that non-intersection

graphs arising from EKR combinatorics often meet this bound with equality.
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Figure 2.8. The directed Cayley graph Γ(D8, {a, b})

When dealing with ground sets that are more sophisticated than sets (e.g. permutations,

partitions, graphs), it becomes exceeding difficult to characterize the spectrum of the cor-

responding non-intersection graph; however, if the ground set X = G is a finite group and

∼ is natural, then Γ(X, 6∼) is often isomorphic to a normal Cayley graph of a group G. In

this situation, information about the group can shed light on combinatorial and algebraic

properties of Γ(X, 6∼).

Let S ⊆ G be a subset of a group G. A Cayley graph is a directed graph Γ(G,S) defined

over the elements of the group such that two elements g, h are connected if and only if

g−1h ∈ S. Every Cayley graph is vertex-transitive, that is, its automorphism group acts

transitively upon its vertices. A Cayley graph Γ(G,S) is normal if the generating set S is a

union of conjugacy classes of G. Figure 2.8 gives an illustration of the Cayley graph over D8

generated by a rotation and a flip and Figure 2.9 shows that the normal Cayley graph over

S3 generated by transpositions is isomorphic to K3,3. Note that any normal Cayley graph

defined over the symmetric group is undirected since π ∈ K ⇔ π−1 ∈ K for any conjugacy

class K of Sn.
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1 2 3

4 5 6

Figure 2.9. The normal Cayley graph Γ(S3, K(2,1)).

One of the most well-studied normal Cayley graphs in EKR combinatorics naturally

arises when X = Sn. We say that two permutations σ, π ∈ Sn agree on a symbol i ∈ [n] if

σ(i) = π(i). A family of permutations F ⊆ Sn is t-intersecting if each pair of its members

agree on t or more symbols.

Example 3. Let X = Sn and define σ ∼ π ⇔ σ and π agree on t− 1 or fewer symbols.

The non-intersection graph Γ(Sn, 6∼) ∼= Γ(Sn, D
t
n) is known as the t-derangement graph. It

is a normal undirected Cayley graph whose maximum independent sets correspond to largest

families of t-intersecting permutations.

The t-derangement graph has been central to many permutation-theoretic EKR-type

results. When t = 1, Γ(Sn, D
1
n) is simply referred to as the (permutation) derangement

graph. Recently, there has been significant effort towards understanding the spectrum of the

derangement graph [11–13]. Below we describe a representation-theoretical approach that

has been used for understanding spectra of normal Cayley graphs.

Recall that the group algebra C[G] can be decomposed into orthogonal subspaces each of

which corresponds to an irreducible module. In light of this decomposition, operators that

act on this space can be understood in terms of invariant subspaces. In particular, for any

adjacency matrix A of a Cayley graph Γ(G,S) we have agh = 1 if and only if g−1h ∈ S,

hence A =
∑

s∈S φ(s) where φ is the permutation representation of G. Since each φ(s) can
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be decomposed into irreducibles, we have

A =
∑
s∈S

φ(s) ∼=
∑
s∈S

d1π1(s)
⊕

d2π2(s)
⊕
· · ·
⊕

dkπk(s)

where di = dim(πi) is the multiplicity of the irreducible representation πi. This decomposi-

tion allows us to analyze the spectrum of A using representation theoretical tools.

Theorem 14. Let Γ(G,S) be a normal Cayley graph. Then the eigenvalue of Γ(G,S)

corresponding to the irrep χλ is

ηλ =
1

χλ(1)

∑
C∈S

|C|χcλ

where C is a conjugacy class of S and c ∈ C is an arbitrary conjugacy class representative.

Furthermore, each eigenvalue ηλ occurs with multiplicity χλ(1)2.

The theorem above tells us that each eigenvalue of a normal Cayley graph is completely

determined by the character of the irrep. When the character theory associated with the

normal Cayley graph Γ(G,S) is not unwieldy, then it is feasible to characterize the mini-

mum eigenvalue. Using non-trivial symmetric function theory and representation theory of

symmetric group, Renteln did precisely this for the derangement graph.

Theorem 15 ([11] Renteln 2007). The minimum eigenvalue of the permutation derange-

ment graph is −( !Dn
n−1

).

A simple application of the ratio bound gives an alternate proof of the EKR theorem

for permutations. We are now ready to introduce the non-intersection graph that will be

essential for our proof of the EKR theorem for perfect matchings.
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Definition 1. Let ΓMn = Γ(M2n, D
M
n ) be the matching derangement graph defined such

that two matchings m,m′ ∈M2n are adjacent if and only if d(m,m′) has no part of size one.2

In Chapter 5 we give a thorough examination of this graph, but for now, observe that

ΓMn is not a Cayley graph since S2n/Hn is not a group. It appears that we are far from

being able to use any of the aforementioned group representation-theoretic tools; however,

if we move to the more general theory of association schemes, we will encounter a lesser-

known generalization of Theorem 14 that will serve as our representation-theoretic tool for

understanding the spectrum of ΓMn .

A nice characterization of the eigenvalues of ΓM is currently open; however, the following

combinatorial technique can be used to prove that certain values must be eigenvalues of ΓM .

A partition π = {C1, C2, · · · , Cm} of the vertices of a graph G is equitable if for every pair of

indices i, j ∈ {1, 2, · · · ,m} there is a nonnegative integer bij such that each vertex v ∈ Ci has

exactly bij neighbors in Cj, regardless of the choice of v. In this situation, the quotient G/π

obtained by contracting each partition class Ci to a single vertex is a nonsimple multigraph

whose adjacency matrix (quotient matrix) is defined as Bπ := (bij). The utility of equitable

partitions is made obvious by the following lemma.

Lemma 2. If π = {C1, C2, · · · , Cm} is an equitable partition of G with quotient matrix

Bπ, then the spectrum of Bπ is a subset of the spectrum of G.

Later, we will use this lemma to show that − DMn
2n−1

is always an eigenvalue of ΓMn .

We will use the ratio bound to prove a new EKR-type theorem for matchings, but the

following theorem, essentially due to Delsarte, will be of central importance for our main

result.

2We suppress the subscript when n is clear from context.
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Theorem 16 ([8, 29] Clique/co-Clique Bound). Let A be an association scheme on n

vertices and let Γ be the union of some of the graphs in the scheme. If C is a clique and S

is an independent set in Γ, then

|C||S| ≤ n

If |C||S| = n and x and y are the respective characteristic vectors of C and S, then

xTEjxy
TEjy = 0 ∀j > 0.

This gives rise to the following simple but useful corollary.

Corollary 4. [8] Let X be a union of graphs in an association scheme with the property

that the clique/co-clique bound holds with equality. Assume that C is a maximum clique and

S is a maximum independent set in X with characteristic vectors x and y respectively. If Ej

are the idempotents of the association scheme, then for j > 0 at most one of the vectors Ejx

and Ejy is not zero.

These results will be crucial since it turns out that ΓM is a union of graphs in an associ-

ation scheme, a unifying object of algebraic combinatorics worthy of its own chapter.
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CHAPTER 3

Association Schemes and Coherent Configurations

Most of the association schemes and coherent configurations that we consider are con-

structed from groups; however, we note that there are plenty of interesting constructions

that do not involve groups [30]. There is a variety of terminology for talking about some of

these objects, so henceforth, we reserve the term association scheme for referring to a com-

mutative association scheme and coherent configuration for referring to a non-commutative

association scheme.1 A more thorough discussion of the theory of association schemes and

coherent configurations can be found in [30–32] and [33] respectively.

3.1. Preliminaries

Definition 2. An association scheme A = {A0, A1, · · · , An} over a set X is a collection

of |X| × |X| binary matrices (associates) that satisfy the following axioms:

(1) ATi ∈ A

(2) A0 = I where I is the identity matrix.

(3)
∑n

i=0 Ai = J where J is the all-ones matrix.

(4) AiAj =
∑n

k=0 p
k
ijAk = AjAi

The numbers pkij are referred to as the intersection numbers of A. It turns out that each

Ai can be interpreted as a regular graph and the degree ki of Ai is the number of edges

incident to a vertex. If for every associate Ai we have ATi = Ai, then we say that A is a

symmetric association scheme. A collection of |X| × |X| binary matrices A over a set X is

a coherent configuration if all the axioms of Definition 2 hold except for axiom 4, that is,

1Technically we should use the term homogeneous coherent configuration, but this will create no confusion
since every coherent configuration in this work is homogeneous.
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AiAj =
∑n

k=0 p
k
ijAk 6= AjAi. Note that ATi = Ai ∀Ai ∈ A implies that AiAj = AjAi. It

is not hard to see that symmetric association schemes can also be seen as colorings of the

edges of the complete graph satisfying nice regularity conditions.

Example 4. Let A = A0, A1, · · · , An be the set permutation matrices of a commutative

group G where A0 = I. It is not hard to verify that A is an association scheme.

This example demonstrates that association schemes generalize Abelian groups. The

following shows that we can in fact construct association schemes from arbitrary groups.

Example 5. Let C0, C1, · · · , Ck be the conjugacy classes of a group G and let ACi =∑
c∈Ci Ac where Ac is the permutation matrix of the group element c. Since ACiACj =

ACjACi, we have that {ACi}0≤i≤n is an association scheme.

This association scheme is often referred to as the conjugacy class association scheme.

Recalling that conjugacy classes coincide with group elements for Abelian groups, we see

that Example 4 is a special case of Example 5.

The n + 1 associates of an association scheme A over X generate a commutative as-

sociative subalgebra A of C|X|×|X| called the Bose-Mesner algebra of A. It is well-known

that this algebra is semisimple, hence it admits a unique basis of primitive idempotents

E0, E1, E2, · · · , En. Define the ith multiplicity mi := Tr(Ei) = rank(Ei). The change of

base matrices P,Q between these two bases are defined as follows:

Ai =
n∑
j=0

PjiEj; Ei =
1

|X|

n∑
j=0

QjiAj
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The matrices P and Q are referred to as the first and second eigenmatrices respectively. It

is always the case that

ki = P0i; mi = Q0i.

and PQ = QP = |X|I. Adopting Delsarte’s notation, let pi(j) = pji and qi(j) = qji. The

values pi(j) (0 ≤ i, j ≤ n) give the eigenvalues of Ai ∈ A and if Γ =
⋃
i∈ΛAi is a union of

members ofA, then the eigenvalues are additive, that is, the jth eigenvalue of Γ is
∑

i∈Λ pi(j).

It is well-known that when A is the conjugacy class association scheme of G, the entries

of P correspond to the character table of G. For this reason, the matrix P often referred

to as the character table of A, since it can be viewed as a natural generalization of the

character table of a finite group. The conjugacy class association scheme has received some

attention in algebraic combinatorics as it gives an association scheme-theoretical framework

for determining the eigenvalues of any normal Cayley graph. In particular, the permutation

derangement graph Γ(Sn, Dn) has been analyzed in this framework [8]. Since the repre-

sentation theory of Sn and the representation theory of the Bose-Mesner algebra A of Sn’s

conjugacy class association scheme A coincide, the theory of association schemes gives an

alternate but equivalent language for expressing representation theory of Sn. It follows that

the eigenvalues of Γ(Sn, Dn) can be described in terms of the P matrix of A.

This combinatorial language for expressing group representation theory is interesting,

but most would agree that the true power of association schemes arises when the P matrix

describes the character theory of a semisimple algebra A that is not a group algebra. The

Hamming scheme and Johnson scheme are two well-known examples of (symmetric) asso-

ciation schemes whose associates do not correspond to group conjugacy classes and whose

character tables aren’t group character tables [32].
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From Definition 2, it is clear that homogeneous coherent configurations generalize asso-

ciation schemes; however, their theory has proven to be quite difficult. It is not hard to see

that the permutation representation of any finite group is a coherent configuration. Indeed,

Higman introduced coherent configurations “to do group theory without the group” [33].

In the next section, we describe a general class of (homogeneous) coherent configurations

that arise from the action of a finite group G on G/H × G/H, where G/H is the set of

left cosets of H ≤ G. We shall see that there are a handful of exceptional cases where this

construction provides us with the nicest possible coherent configuration, that is, a symmetric

association scheme. One of these accidents will serve as the framework for our main result.

3.2. Double Coset Coherent Configurations

A more detailed exposition of all the results in this section can be found in the works [31,

33]. The following gives a straightforward way to construct a coherent configuration given

an arbitrary H ≤ G.

Let G be a group, H,K ≤ G be subgroups, and Ω = G/H. Define the (H,K)-double

coset of g ∈ G by HgK = {hgk : h ∈ H, k ∈ K}. Like cosets of G, it is well known

that the (H,K)-double cosets form an equivalence relation over G and hence partition G.

Let G act diagonally on Ω × Ω = G/H × G/H, that is, g(fH, kH) = (gfH, gkH). Let

A = {A0, A1, · · · , An} be the orbits of the diagonal action where A0 = {(ω, ω) : ω ∈ Ω}. We

shall refer to the elements ofA as orbitals. For each α ∈ Ω, let Ai(α) = {β ∈ Ω : (α, β) ∈ Ai}.

Then A0(α), A1(α), · · · , An(α) are the orbits of Gα on Ω where Gα is the stabilzer of α ∈ Ω

in G. Set ki = |Ai(α)| which is independent of the choice of α. Since ATi is also an orbit of

G, there exists some i′ for which ATi = Ai′ and ki = ki′ . We call Ai′ the paired orbital of Ai.
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The orbitals of A via

G(gH, kH) 7→ Hgk−1H

are (canonically) in bijection with the double cosets H\G/H of G.

Now let φ be the (left regular) permutation representation of G on Ω where (φ(g))xy = 1

if gx = y; otherwise (φ(g))xy = 0 ∀g ∈ G, x, y ∈ Ω. Let U ≤ GL|Ω|(C) be the set of all

|Ω| × |Ω| matrices that commute with {φ(g)}g∈G ≤ GL|Ω|(C). Then U is the centralizer

algebra or Hecke algebra of φ with basis {φ(g)}g∈G. It turns out that the Hecke algebra U

is spanned by the orbitals of A as a linear space, which implies that U is congruent to the

(non-commutative) adjacency algebra A generated by A. It follows that A is a coherent

configuration and each member of A corresponds to a (H,H)-double coset of G. In general,

we cannot expect A to be an association scheme, but the following theorem gives a few

conditions for when this does hold [31].

Theorem 17. Let A be a double coset coherent configuration. Then the following are

equivalent:

(1) A is an association scheme.

(2) The Hecke algebra A is commutative (in which case A is a Bose-Mesner algebra).

(3) Every irreducible representation of the permutation representation 1GH (G acting on

G/H) occurs with multiplicity one.

Furthermore, A is a symmetric association scheme if and only if the action of G on G/H is

generously transitive.
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When A is an association scheme, then there is a straightforward way to compute the

eigenmatrices [31]. Recall that the character table P of A is a square matrix whose rows are

indexed by the irreducibles of 1GH and whose columns are indexed by the associate classes.

Theorem 18. Let HgiH be the double coset in bijection with Ai ∈ A. Then the character

table P of a commutative double coset coherent configuration can be computed as follows.

Pji′ = pi′(j) =
1

|H|
∑

x∈HgiH

χj(x) =
1

|H|
∑
Ck

|HgiH ∩ Ck|χj(ck)

Moreover, the Q eigenmatrix can computed from the character table

Qji = qi(j) =
pj(i)mi

kj
=

1

kj|H|
∑
Ck

|Hgj′H ∩ Ck|χi(ck)

where the sums range over the conjugacy classes of G, ck is an arbitrary representative of

Ck, and i′ is the index of the orbital paired with i in A.

In the case where A is non-commutative it is no longer the case that the adjacency alge-

bra A is commutative, but the permutation representation 1GH is still semisimple [33]. This

implies that A can be decomposed into a direct sum of irreducibles, each occuring with some

multiplicity. Higman shows that the multiplicities of irreducibles (as well as most other prop-

erties) is completely determined by the intersection numbers of the coherent configuration,

which can be computed as follows [33].
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Theorem 19 (Higman 1975). Let A be a double coset coherent configuration. Then the

intersection numbers pkij are given by

pkij =
1

|H|
|HgjH ∩ gkHg−1

i H|

.

A non-commutative version of Theorem 18 for computing character tables of double

coset coherent configurations would be desirable since the above result is a rather indirect

and computationally involved route.

Although the aforementioned construction applies to any subgroup H ≤ G, we will only

be concerned with the case where H ≤ Skn is a subgroup of the form Sk oSn or Sn oSk. In the

next section, we introduce the Hn\S2n/Hn-association scheme and provide some examples

for small n.

3.3. The Matching Association Scheme

The matching association scheme AM is the Hn\S2n/Hn-coherent configuration. Since

the action of S2n on M2n is generously transitive, by Theorem 17, AM is in fact a symmetric

association scheme. The theorem below gives a bijection between Hn\S2n/Hn and Part(n).

Theorem 20 ([34] MacDonald). Let w,w1 ∈ S2n. Two matchings we,w1e have the same

cycle type λ ` n if and only if w1 ∈ HnwHn.

Proof. Let Γ(w) = Γ(e, we). Color the edges of e = {e1, e2, · · · , en} red and color the

others blue. The machings we,w1e have the same cycle type if and only if Γ(w) ∼= Γ(w1),

that is to say if and only if there is a permutation h ∈ S2n that preserves edge-colors and
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maps Γ(w) onto Γ(w1). Since h sends red edges to red edges, we have h ∈ Hn and since the

blue edges w1ei of Γ(w1) are a permutation of the blue edges hwei of hΓ(w), the ei are a

permutation of the w−1
1 hwei, whence w−1

1 hw ∈ H, and consequently w1 ∈ HnwHn. �

It follows that we may identify each double coset Hn\π/Hn with its cycle type λ ` n and

therefore each associate (orbital) Aλ ∈ AM admits the following definition.

(Aλ)ij =


1, if d(i, j) = λ

0, otherwise

Since AM is a symmetric (i = i′) association scheme, ATλ = Aλ and AλAµ = AµAλ ∀λ, µ ` n.

The degree kλ of the λ-associate is simply the number of matchings whose cycle type is λ.

The character table of AM can be filled out as follows

pλ(µ) =
1

|H|
∑
ζ`2n

|HgλH ∩ Cζ |χζµ

where HgλH is the coset corresponding to cycle type λ ` n and Cζ is the conjugacy class of

S2n corresponding to ζ. In the next chapter, we give a simplification of the above formula

and a discussion of the primitive idempotents {Eλ}λ`n of AM in terms of zonal spherical

functions of Gelfand pairs.

It turns out that the matching association scheme is a special case of a meet table coherent

configuration [35] which has been studied extensively by Meagher and is defined as follows.

Let P = {p1, p2, · · · , pk} and Q = {q1, q2, · · · , qk} be k-uniform partitions of [nk], that is,

partitions of [nk] such that each part pi has size |pi| = n. Define the k × k meet table

T (P,Q) of P and Q (or vice versa) by (T (P,Q))ij = |pi ∩ qj|. Since the ordering of the
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parts is immaterial, two meet tables are isomorphic if and only if one can be obtained from

the other via permutations of the rows and/or columns. Let X be the set of all k-uniform

partitions and let d be the number of non-isomorphic meet tables over X. Let Ak be the set

of d non-isomorphic |X| × |X| binary matrices as follows.

(AT )ij =


1, if T (i, j) ∼= T

0, otherwise

Clearly, these matrices partition X × X. Meagher showed that Ak is always a coherent

configuration and is a symmetric association scheme for k = 2, n
2
. For k = n

2
, it turns out

that the meet table relation for two matchings is actually isomorphic to our relation used

for defining the associates of AM .

Proposition 1. AM ∼= A
n
2

Proof. Let x, y ∈ M2n and let L(x, y) be the multiline graph of Γ(x, y) defined as

follows. If e, e′ ∈ E are edges such that e 6= e′ as sets, then e is incident to e′ in L(x, y) if

and only if e and e′ share an endpoint. If e = e′ as sets, then that edge is incident to itself

twice in L(x, y).

Since Γ(x, y) is 2-regular, it follows that L(x, y) is a 2-regular graph with loops. The non-

isomorphic n/2×n/2 meet tables of n/2-uniform partitions are in one-to-one correspondence

with the non-isomorphic 2-regular graphs on 2n vertices with loops which in turn are in one-

to-one correspondence with the integer partitions of n. This implies that the associate classes

of AM are isomorphic to those of An
2 , which implies that AM is isomorphic to An

2 as an

association scheme. �
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Figure 3.1. An edge coloring of K15 corresponding to the matching associa-
tion scheme for n = 3. ΓMn is the graph induced by the maroon edges.

Since Sk o Sn is the stabilizer of n/k-uniform partition of [nk], it is easy to see that meet

table coherent configurations are precisely the (Sk o Sn)\Skn/(Sk o Sn)-double coset coherent

configurations.

Data for small n. Below we give data for the matching association schemes where

n = 3, 4, 5, 6. The character tables of these schemes have been computed before [36]. The

associates are given as a coloring of the edges of the complete graph. Each of the adjacency

matrices of the complete graphs have been sorted with respect to a lexicographic order on the

matchings. Each color corresponds to a λ-associate of the matching association scheme A

where λ ` n. The double cosets were computed using GAP [37] and the irreducible character

calculations were computed using the author’s implementation of the Murnaghan-Nakayama

rule.2 We also list the spectra of the matching derangement graphs for n = 3, 4, 5, 6.

2This code can be found on the author’s website.
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Table 3.1. The character table of AM3 .

13 2, 1 3
1 6 8
1 1 -2
1 -3 2

Table 3.2. A partition of S2n where n = 3. The entry (λ, µ) corresponds
to the number of permutations σ of cycle-type µ ` 2n such that d(e, σe) = λ
where λ ` n. Both the columns and the rows are sorted in lexicographical
order.

1 3 9 7 0 0 8 6 6 0 8
0 12 12 0 24 72 0 12 60 48 48
0 0 24 8 16 48 32 72 24 96 64

Figure 3.2. An edge coloring of K105 corresponding to the matching associ-
ation scheme for n = 4. ΓMn is the graph induced by the maroon and green
edges.
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Table 3.3. The character table of AM4 .

15 2, 12 22 3, 1 4
1 12 32 12 48
1 5 4 -2 -8
1 2 -8 7 -2
1 -1 -2 -2 4
1 -6 8 3 -6

Table 3.4. A partition of S2n where n = 4. The entry (λ, µ) corresponds
to the number of permutations σ of cycle-type µ ` 2n such that d(e, σe) = λ
where λ ` n. Both the columns and the rows are sorted in lexicographical
order. The first column has been omitted.

4 18 28 25 0 0 0 32 32 12 24 36 0 60 0 0 0 32 32 0 48

24 48 72 0 48 288 336 0 0 24 288 456 480 48 192 192 384 192 576 384 576

0 96 128 32 64 256 576 320 704 288 768 96 384 384 384 1920 768 832 1216 1536 1536

0 48 0 48 0 192 0 384 0 0 288 192 576 384 0 384 0 384 384 768 576

0 0 192 0 0 384 768 384 384 96 1152 480 1920 384 768 1536 1536 1920 1152 3072 2304

Table 3.5. The character table of AM5

15 2, 13 22, 1 3, 12 3, 2 4, 1 5
1 20 60 80 160 240 384
1 11 6 26 -20 24 -48
1 6 11 -4 20 -26 -8
1 3 -10 2 -4 -8 16
1 0 5 -10 -10 10 4
1 -4 -3 2 10 6 -12
1 -10 15 20 -20 -30 24

Table 3.6. The character table of AM6

16 2, 14 22, 12 23 3, 13 3, 2, 1 3, 3 4, 12 4, 2 5, 1 6
1 30 180 120 160 960 640 120 720 1440 3840
1 19 48 -12 72 80 -64 -12 192 -144 -384
1 12 27 30 16 24 -8 30 -18 108 -48
1 9 -12 -12 22 -60 16 -12 12 -24 96
1 9 33 -27 -8 120 136 -27 -78 -114 -24
1 4 3 -2 -8 0 -24 -2 -18 -4 16
1 0 -21 6 4 12 16 6 -6 12 -48
1 0 15 30 -20 -60 40 30 30 -60 0
1 -3 3 -9 -8 0 4 -9 24 24 -12
1 -8 3 6 12 20 -16 6 -6 -36 48
1 -15 45 -15 40 -120 40 -15 -90 90 -120
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Figure 3.3. An edge coloring of K945 corresponding to the matching associ-
ation scheme for n = 5. ΓMn is the graph induced by the colors that are not
present along the 105× 105-block diagonal.
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Table 3.7. The spectra of ΓMn for n = 3, 4, 5, 6. The multiplicity of the
eigenvalue corresponding to λ ` n is given by Corollary 5.

13 2, 1 3
2 -2 8

14 2, 12 2, 2 3, 1 4
-3 2 5 -10 60

15 2, 13 22, 1 3, 12 3, 2 4, 1 5
4 -3 -6 12 12 -68 544

16 2, 14 22, 12 23 3, 13 3, 2, 1 32 4, 12 4, 2 5, 1 6
−29 2 70 10 −14 −14 −5 76 82 −604 6040
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CHAPTER 4

Finite Gelfand Pairs

The theory of Gelfand pairs and zonal spherical functions was originally developed in the

context of the representation theory of locally compact groups to study the harmonics of the

2-sphere SO(3)/SO(2) and other generalizations; however, the theory does not degenerate

if we require the groups to be finite. It is well-known that the characters of the irreducible

representations of a group G form an orthonormal basis of L2(C[G]) and allows one to

conduct harmonic analysis over G. Roughly speaking, the theory below is an extension that

tells us when traditional harmonic analysis over cosets G/K is feasible even though K 6E G.

The results below can be found in [34, 38].

4.1. Gelfand Pairs and Their Zonal Spherical Functions

Let L2(C[G]) be the space of complex-valued functions on G. Recall that multiplication

corresponds to convolution and the left regular action is given by (xf)(y) = f(x−1y). For

any choice of K ≤ G there is a corresponding subalgebra C(G,K) ≤ L2(C[G]) of functions

that are constant on each double coset KxK in G, more formally, C(G,K) = {f : f(kxk′) =

f(x) ∀x ∈ G, ∀k, k′ ∈ K}.

Theorem 21. Let K ≤ G be a group. Then the following are equivalent.

(1) (G,K) is a Gelfand Pair;

(2) The induced representation 1GK (permutation representation of G acting on G/K) is

multiplicity-free;

(3) The algebra C(G,K) is commutative.
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For an arbitrary group G, it is well-known that (G × G,G) is a Gelfand pair whose

decomposition into irreducibles is essentially that of C[G], hence the theory of Gelfand pairs

can be seen as a generalization of group representation theory. It follows that a K\G/K-

coherent configuration is an association scheme if and only if (G,K) is a Gelfand Pair. Also,

we have C(G,K) ∼= A where A is the Hecke (adjacency) algebra of the coherent configuration.

The lemma below gives a computationally friendly way of checking that certain K ≤ G form

a Gelfand pair.

Lemma 3. If KgK = Kg−1K ∀g ∈ G, then (G,K) is a Gelfand Pair.

Now let x0, x1, · · · , xn ∈ G be distinct representatives of the double cosets K\G/K.

Then for each double coset KxiK, define the ith sphere as follows.

Ωi := {xK : x ∈ KxiK}

It is clear that {Ωi}0≤i≤n partitions the left cosets G/K and the degrees of the K\G/K-

coherent configuration correspond to sphere sizes, that is, ki = |Ωi|. In short time we will

see that spheres essentially serve the role of conjugacy classes. For the remainder of the

section, assume that (G,K) is a Gelfand pair. Define the zonal spherical function of (G,K)

corresponding to the irreducible i as follows:

ωi(x) =
1

|K|
∑
k∈K

χi(x
−1k)

If χi is real-valued, then we have ωi = 1
|K|
∑

k∈K χi(xk), which we shall later prefer in

light of the fact that the characters of the symmetric group are integral. It follows that

ωi(kx) = ωi(xk) = ω(x) ∀x ∈ G, ∀k ∈ K and like the irreducible character functions, the
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zonal spherical functions {ωi} form an orthogonal basis of C(G,K) [34]. Recall that the

irreducible character functions are constant on conjugacy classes, so we may write χji for the

value of xi over the conjugacy class Cj. Since the zonal spherical functions are constant on

the K\G/K double cosets, we may write ωji where j is the index of a double coset KxjK.

Essentially, the zonal spherical functions ωji of C(G,K) serve the same role as the irreducible

character functions χji of C[G]. It is known that the character table of a double coset coherent

configuration is determined by its zonal spherical functions [31].

Theorem 22. Let Γ =
⋃Λ
j Aj be a union of graphs in a K\G/K-association scheme

where (G,K) is a Gelfand pair and Λ is the index set of some subset of the associates. The

eigenvalue ηi of Γ corresponding to irreducible i in the multiplicity-free decomposition of 1GK

can be written as:

ηi =
∑
j∈Λ

|Ωj|ωji

where ωji is the value of the zonal spherical function corresponding to irreducible i on double

coset j. Moreover, ηi occurs with multiplicity ωi(1).

It is clear that we obtain Theorem 14 as a corollary if the Gelfand pair is (G×G,G).

4.2. The Gelfand Pair (S2n, Hn)

Theorem 23. (S2n, Hn) is a Gelfand Pair

Proof. From Theorem 20 it is easy to see that x−1 ∈ HnxHn if and only if x ∈ Hnx
−1Hn,

that is, the matchings ex, ex−1 have the same cycle type. Applying Lemma 3 gives the

result. �
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Now would be a good time for us to point out how lucky we are that (S2n, Hn) is a

Gelfand pair. The theorem below is due to Saxl.

Theorem 24. Let n > 18 and H ≤ Sn. If 1SnH is multiplicity free, then one of the

following holds:

(1) An−k × Ak ≤ H ≤ Sn−k × Sk for some k with 0 ≤ k < n/2;

(2) n = 2k and Ak × Ak < H ≤ Sk o S2;

(3) n = 2k and H ≤ S2 o Sk with [S2 o Sk : H] ≤ 4;

(4) n = 2k + 1 and H xes a point of [1, n] and is one of the subgroups in (2) or (3) on

the rest of [1, n];

(5) An−k × Gk ≤ H ≤ Sn−k × Gk where k = 5, 6 or 9 and Gk is AGL(1, 5), PGL(2, 5)

or PΓL(2, 8) respectively.

This result has been further refined by Godsil and Meagher, who in [39] provide a com-

plete list of the multiplicity-free permutation representations of the symmetric group. By

Theorem 24 this gives a complete list of the finite Gelfand pairs of the form (Sn, K) where

K ≤ Sn. The theorem above implies that H = Hn = S2 o Sn and H = Sn o S2 are the only

two wreath product subgroups of S2n that yield infinite families of multiplicity-free permu-

tation representations. This proves that for H 6= Hn or (Sn o S2), the H\Sn/H-coherent

configuration is non-commutative.

Since (S2n, Hn) is a Gelfand pair, it follows that the permutation representation S2n on

M2n is multiplicity-free. Define 2λ := (2λ1, 2λ2, · · · , 2λk) where λ = (λ1, λ2, · · · , λk) is an

integer partition of n.
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Theorem 25 (The M2n Decomposition Theorem). Let S2λ be the irreducible Specht

module corresponding to the partition 2λ ` 2n. Then

1S2n
Hn

=
⊕
λ`n

S2λ

The spheres of (S2n, Hn) can be written as follows.

Ωλ = {m ∈M2n : d(e,m) = λ}

The spheres partition M2n into classes based on their cycle type much like conjugacy classes

do for the symmetric group.1 Turning back to the matching association scheme AM , we

clearly have kλ = |Ωλ|, but in light of the above decomposition, the multiplicities of AM can

be computed using the hook length formula, mλ = χ2λ(1) = h(2λ).

We can even determine size of each double coset. Let Hρ be the double coset correspond-

ing to ρ ` n and let l(ρ) be the number of parts of ρ. We have the following count [34].

Lemma 4.

|Hρ| =
|Hn|2

z2ρ

=
|Hn|2

2l(ρ)zρ

where zρ is the product
∏

i≥1 i
mimi! and mi is the number of parts of ρ equal to i.

The zonal spherical functions can be computed explicitly computed as follows.

ωλ(x) =
1

|Hn|
∑
h∈Hn

χ2λ(xh)

1To be a bit more precise, we should say that these are the spheres of (S2n, Hn) centered at e, the identity
matching.
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Since zonal spherical functions are constant on double cosets Hn\S2n/Hn, we have ωλ(x) =

ωλ(y) for any y ∈ HnxHn, so write ωµλ where µ ` n.2 It turns out that the values ωµλ are

essentially the coefficients of the zonal (symmetric) polynomials Zλ [34]. To our knowledge,

there is not a simple Murnaghan-Nakayama-like rule for reading off the ωµλ coefficients of

zonal polynomials; however, in an unpublished paper, Diaconis and Lander have determined

these values for a few λ, µ ` n [34]. These formulas will be crucial for obtaining our result.

Lemma 5. p(1n)(λ) = ω
(1n)
λ = 1

Lemma 6. Let λ ` n be a shape and c be a cell of λ. Let W (c) count the number of cells

in c’s row that lie west of c and N(c) count the number of cells in c’s column that lie north

of c. Then

p(n)(λ) = ω
(n)
λ =

1

|Hn−1|
∏
c∈λ

(2W (c)−N(c))

where the product excludes the cell in the upper-left corner. Moreover, if λ covers 23, then

ω
(n)
λ = 0.

Corollary 5. Let Γ =
⋃
µ∈ΛAµ be a graph that is the union of some graphs in the

matching association scheme. The eigenvalue corresponding to λ ` n of Γ can be written as:

ηλ =
∑
µ∈Λ

|Ωµ|ωµλ

Moreover, ηλ occurs with multiplicity ωλ(1) = h(2λ).

2To avoid confusion, we note that our λ and µ are inverted with respect to MacDonald’s definition.
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Theorem 26. Let N = 2n − 1. The primitive idempotents of the matching association

scheme AM are defined as follows:

Eλ =
mλ

N !!

∑
µ`n

pµ(λ)

kµ
Aµ

(Eλ)x,y =
mλ

N !!

pd(x,y)(λ)

kd(x,y)

Moreover, the entry (Eλ)x,y = 0 if and only if the zonal spherical function ω
d(x,y)
λ = 0.

We conclude with a list of Gelfand pairs of the form (Sn, K), along with their decom-

position and what combinatorics they describe. Recall that Sλ is the irreducible of Sn

corresponding to λ ` n.

• Group Representation Theory←→ (G×G,G)←→
⊕k

i=1 dim(Vi)Vi

• Rep. Theory of Permutations←→ (Sn × Sn, Sn)←→
⊕

λ`n f
λSλ

• Rep. Theory of k-subsets←→ (Sn, Sn−k × Sk)←→
⊕k

i=1 S
(n+k−i,i)

• Rep. Theory of Perfect Matchings←→ (S2n, S2 o Sn)←→
⊕

λ`n S
2λ

• Rep. Theory of 2-Uniform Partitions←→ (S2n, Sn o S2)←→
⊕bn/2c

i=0 S(2n−2i,2i)

Unfortunately, we cannot include the representation theory of k-uniform partitions in this

list. In the final chapter we will close with speculation on how to cope with the unfortunate

reality that (Skn, Sk o Sn) is not a Gelfand pair for k > 2.
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CHAPTER 5

The Erdős-Ko-Rado Theorem for Intersecting

Families of Perfect Matchings

A family of matchings F ⊆ M2n is intersecting if m ∩m′ 6= ∅ for all m,m′ ∈ F . We say

that a family of matchings F is trivially intersecting if it is a family of the following form.

Fij := {m ∈M2n : {i, j} ∈ m}

In this chapter, we give the first algebraic proof of the following theorem.

Theorem 27 ([40] Meagher, Moura 2005). If F is an intersecting family of matchings,

then

|F| ≤ (2(n− 1)− 1)!!

If equality holds, then F is isomorphic to a trivially intersecting family Fij.

The statement was first proven combinatorially as a special case of a more general result

on intersecting families of k-uniform partitions. Throughout this chapter, let N = 2n − 1

and let vij be the characteristic 0/1 vector of a trivially intersecting family Fij. An outline

of our proof using the module method is listed below.

(1) Define a non-intersection graph ΓM over M2n.

(2) Show that a maximum independent set of ΓM meets the clique/co-clique bound with

equality.

(3) Show that vS − 1
N
1 lives in the “standard” module S2(n−1,1).
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(4) Show that if vS is the characteristic vector of a maximum independent set of ΓM ,

then vS = vij for some i, j ∈ [2n].

By “standard” module, we mean the module that is analogous to the standard representation

of the symmetric group. In our situation, S2(n−1,1) is our “standard” module since we ob-

served that the irrep χ2(n−1,1) of 1S2n
Hn

has a natural correspondence to the shape (n−1, 1) ` n

which in turn corresponds to the standard representation χ(n−1,1) of the symmetric group.

It is clear that for any ground set X and suitably chosen intersection relation ∼, showing

steps 1 - 4 implies the EKR theorem for intersecting families of X. In the next section, we

carry out steps 1 and 2 of the module method.

5.1. The Matching Derangement Graph

We begin by proving some basic properties of the matching derangement graph ΓM .

To illustrate the similarity between the matching derangement graph and the permutation

derangement graph Γ(Sn, Dn), we recall some basic results of Γ(Sn, Dn) then prove their

analogues for ΓM .

Theorem 28. The size of a maximum clique in Γ(Sn, Dn) is n.

Proof. Clearly no clique of Γ(Sn, Dn) can have more than n vertices and any Latin

square of order n is clique of Γ(Sn, Dn). �

Theorem 29. The size of a maximum clique in ΓMn is 2n− 1.

Proof. Clearly no clique of Γ can have more than 2n− 1 vertices. Baranyai’s theorem

states that K2n admits a (2n− 1)-edge-coloring. Each color class corresponds to a matching

and no two matchings intersect, hence there is a clique of size 2n− 1 in ΓM . �
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Theorem 30. The size of a maximum independent set in Γ(Sn, Dn) is (n− 1)!.

Proof. The coset of the stabilzer of a point in Sn is a maximal independent set of size

(n− 1)! in Γ(Sn, Dn). Since Γ(Sn, Dn) is a normal Cayley graph, it follows that Γ(Sn, Dn) is

a union of graphs in the conjugacy class association scheme on Sn. Applying the clique.co-

clique bound and Theorem 28 gives the result. �

Since ΓM is regular and S2n acts transitively on M2n, ΓMn is vertex-transitive; however, no

group acts regularly on M2n, so ΓM is not a Cayley graph. The absence of a group structure

on the vertices forces us to use the more general representation-theoretic results developed

in the previous chapters.

Proposition 2. ΓM is a union of members of the matching association scheme AM .

Proof. ΓM =
⋃
λAλ where λ ranges over integer partitions that correspond to cycle

types of Sn that contain no 1-cycle. �

Theorem 31. The size of a maximum independent in ΓM is (2(n− 1)− 1)!!.

Proof. Any independent set that corresponds to Fij is a maximal independent set.

Applying Proposition 2 along with the clique/co-clique bound and Theorem 29 gives the

result. �

Theorem 32. The chromatic number of ΓMn is 2n− 1.

Proof. Clearly the chromatic number is greater than or equal to the clique number

2n − 1. Each member of the vertex partition (F1,2,F1,3, · · · ,F1,2n) is an independent set

which gives rise to a (2n− 1)-coloring of the vertices of ΓM . �
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Theorem 33. DM
n and −DM

n /(2n− 1) are eigenvalues of ΓMn .

Proof. ΓM admits an equitable partition (Fi,j,M2n \ Fi,j) with quotient matrix:

 0 DM
n

DMn
2n−1

DM
n −

DMn
2n−1


whose eigenvalues are DM

n and −DM
n /(2n − 1). By Lemma 2, these eigenvalues are always

eigenvalues of ΓMn . �

For n = 3, 4, 5, 6, it has been verified in GAP that ΓMn meets the Delsarte-Hoffman bound

with equality which motivates the following conjecture.

Conjecture 1. The least eigenvalue of the matching derangement graph is − DMn
2n−1

.

In [12], Ku and Wales show that the spectrum of the permutation derangement graph

possesses the so-called alternating sign property. The tables of Section 3.3 suggest the fol-

lowing conjecture.

Conjecture 2. ΓMn has the alternating sign property, that is, for any λ ` n

sign(η2λ) = (−1)|λ|−λ1

where η2λ is an eigenvalue of ΓM and |λ|−λ1 is the number of cells under the first row of λ.

In the next section, we carry out the third step of the module method.

5.2. The “Standard” Module

The main result of this section is proof that vS − 1
N
1 lives in the “standard” 2(n− 1, 1)-

module of the multiplicity-free representation 1S2n
Hn

where vS is the characteristic vector of
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an arbitrary maximum independent set of ΓM . Before we delve into this proof, let us take a

moment to observe our surroundings.

Our proof thus far fits entirely within the theory of association schemes; however, if we

are to the association scheme in a non-trivial manner, then we must get our hands dirty with

the representation theory of the Bose-Mesner (adjacency) algebra A.

At this point in the module method we are truly at the mercy of the adjacency algebra’s

decomposition into irreducible representations. In the case where A is a conjugacy class

association scheme, the representation theory of A is simply group representation theory,

but for more exotic (possibly non-commutative) association schemes, the decomposition A

into irreducible representations is harder to determine.

Recall that if A is a (non-commutative) double coset H\G/H association scheme (which

is a natural case in EKR combinatorics), then its adjacency algebra A is isomorphic to

the permutation representation 1GH . We saw that when G = H = Sn, we obtain the left

regular representation 1SnSn whose decomposition contains all of the irreducible representations

χλ of Sn each occurring with multiplicity h(λ). For arbitrary permutation representations

1GH , determining which irreducibles appear with what multiplicity in the decomposition is

difficult. It is natural to study the circumstances under which this decomposition is as nice

as possible, which is one of aims of the theory of Finite Gelfand pairs. Theorem 24 tells us

that when G = Sn, we do not get a multiplicity-free representation unless we are lucky. Since

(S2n, Hn) happens to be a Gelfand pair, the character theory is understood well-enough to

calculate the primitive idempotents {Ei}, which will be of utmost importance in the proof

below.
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Figure 5.1. An illustration of the cell values in the product of Lemma 6

We now show that the characteristic vector vS of any maximum independent set S of ΓMn

lives in the sum of trivial 2(n)-module and the “standard” 2(n− 1, 1)-module. Our proof is

similar to the one given in [8] for permutations.1

Theorem 34. Let vS be the characteristic vector of a maximum independent set of ΓMn .

Then the vector vS − 1
N
1 exists in the 2(n− 1, 1)-module.

Proof. It is immediate that 1T (vS − 1
N
1) = 0, thus the vector cannot exist in the

(all-ones) 2(n)-module. For any maximum clique C of ΓMn define

ωλ(C) =
∑
c∈C

ωλ(c)

Since ΓMn meets the clique/co-clique bound with equality, we have Corollary 4 at our disposal.

If there exists a maximum clique C such that ωλ(C) 6= 0 ∀λ 6= (n − 1, 1), (n), then by

Theorem 26 it follows that EλvC 6= 0 ∀λ 6= (n−1, 1), (n), thus EλvS = 0 ∀λ 6= (n−1, 1), (n).

A theorem of Lucas illustrated in Figure 2.4 showed that there there is a nice 1-factorization

C that includes the identity matching e ∈ C and for any two matchings x, y ∈ C, d(x, y) =

1We point out a slight error in their proof. It is not true that χ
(n)
λ = ±1 for all λ ` n. This is only the case if

λ is a rim hook (see Corollary 3); otherwise, χ
(n)
λ = 0. This minor error has no impact on the correctness of

their result since if χ
(n)
λ = 0, then χλ(C) 6= 0 since it is assumed that 1 ∈ C, and clearly χλ(1) 6= 0 ∀n > 0.
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(n). By Theorem 29, C is a maximum clique of ΓMn . Since zonal spherical functions act like

character functions, we may write ωλ(C) as follows:

ωλ(C) =
∑
c∈C

ωλ(c)

= ω1n

λ + 2(n− 1)ω
(n)
λ

By Lemma 5, ω1n

λ = 1 ∀λ ` n and, so it suffices to show such that ω
(n)
λ 6= − 1

2(n−1)
for all

λ 6= (n− 1, 1). We prove that ω(n−1,1)(C) = 0, then show that |ω(n)
(n)| > |ω

(n)
(n−1,1)| > |ω

(n)
λ | for

all λ 6= (n), (n− 1, 1).

By Lemma 5 we have ω
(n)
(n) = 1. By Lemma 6 we have ω(n−1,1)(C) = 0 since ω

(n)
(n−1,1)

evaluates to −|Hn−2|
|Hn−1| = − 1

2(n−1)
. We show that |Hn−2| is the largest value that the numerator

of Lemma 6 can be and it is obtained only when λ = (n− 1, 1).

By Lemma 6 the only λ ` n that do not evaluate to zero must be of the form (n− k, 1k)

where 0 ≤ k < n or (n− j, j − k, 1k) where 0 ≤ k < j < n.

For any shape λ = (n − k, 1k) where k > n
2
, we have |ω(n)

λ | < |ω
(n)
λ′ | where λ′ ` n is the

transpose of λ. It is also easy to see that |ω(n)

(n−k,1k)
| < |ω(n)

(n−k+1,1k−1)
| where 1 ≤ k ≤ n

2
, hence

|ω(n)
(n−1,1)| > |ω

(n)
λ | holds for λ ` n of the form (n− k, 1k) where k > 1.

Let λ = (n− j, j − k, 1k) where 2 < k < j < n and let µ = λ \ λ1 be shape obtained by

removing the first row. For µ = (j − k, 1k) where k > j
2
, using similar reasoning, we have

|ω(j)
(λ1,µ)| < |ω

(j)
(λ1,µ′)

|. It is also true that |ω(n)

(λ1,j−k,1k)
| < |ω(n)

(λ1,j−k+1,1k−1)
| where 1 ≤ k < j

2
.

For the case where 1 ≤ k ≤ 2, it is easy to see that removing the bottom left cell of λ and

placing it in the upper right hand corner always gives a new shape with a larger character
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sum, hence |ω(n)
(n−1,1)| > |ω

(n)
λ | for all valid shapes of the form (n−j, j−k, 1k), which completes

the proof. �

Corollary 6. The minimum eigenvalue of A(n) ∈ AM is p(n−1,1)((n)) = −|Hn−2|.

Proof. Since pλ((n)) = |Ω(n)|ω(n)
λ and p(n)((n)) = |Ω(n)|ω(n)

(n) = |Ω(n)| is always positive,

it follows that p(n−1,1)((n)) is the unique least eigenvalue of A(n). Moreover,

p(n−1,1)((n)) = |Ω(n)|ω(n)
(n−1,1)

= |Hn−1| −
|Hn−2|
|Hn−1|

(Lemma 4)

= −|Hn−2|

�

The corollary above along with the ratio bound gives the following theorem.

Theorem 35. Let F be a family of matchings such that for any two members x, y ∈ F ,

x ∪ y is disconnected. Then |F| ≤ (2(n− 1)− 1)!!. This bound is tight.

Proof. By the ratio bound, we have

|F| ≤ (2n− 1)!!
|Hn−2|

|Hn−1|+ |Hn−2|
=

(2n− 1)!

|Hn−2|(2n− 1)

= (2(n− 1)− 1)!!

Any family of the form Fij = {m ∈M2n : {i, j} ∈ m} is maximum independent set of ΓMn of

size (2(n− 1)− 1)!! and since A(n) is a subgraph of ΓMn , Fij = {m ∈M2n : {i, j} ∈ m} must

also be a maximum independent set of A(n), hence the bound is tight. �
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The result is a bit surprising, since it tells us that a maximum independent set of the

matching derangement graph does not increase in size even if we remove all edges except

those that belong to the (n)-associate. A similar result has been observed before in the

permutation EKR setting [9]. We now carry out the fourth and final step of the module

method.

5.3. The Matching Polytope of K2n

We conclude this chapter with a short proof that the trivially intersecting families Fij

are the only intersecting families of size (2(n− 1)− 1)!!. The proof is nearly identical to an

unpublished result of Godsil and Meagher’s that can be found in [21].

Let M be a N !! ×
(

2n
2

)
matrix whose columns correspond to characteristic vectors vij

of trivially intersecting families of matchings Fij. The rows of M are indexed by the N !!

perfect matchings of K2n and each row of M is the characteristic vector of a perfect matching

of K2n. It follows that the convex hull of the rows of M is M(K2n), the perfect matching

polytope of K2n and the rows of M are the vertices of M(K2n).

Let z be the characteristic 0/1 vector of any maximum independent set Z of ΓMn . Note

that since M has constant row sums, 1 is in the column space of M . By Theorem 34, z− 1
N
1

lives in the “standard” module, hence any z can be expressed Mh = z for some h ∈ R(n2).

Obviously zmin = 0 and zmax = 1, so by Lemma 1 we have that the rows of M indexed by

the support of z correspond to the vertex set of a face F1 of M(K2n) and the remaining rows

of M correspond to the vertex set of a face F0 of M(K2n). Moreover, since z is a 0/1 vector,

we have that F0 and F1 are parallel faces that partition the vertices of M(K2n). Corollary 2
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implies that the facets of M(K2n) are precisely the sets:

Fe = {x ∈M(K2n) : x(e) = 0}

In other words, the vertices of any facet Fe are those matchings of K2n that do not contain

e = {i, j} ∈ E(K2n) some i, j ∈ [2n]. Since every face lies in a facet, we have that F0 and

F1 both lie in facets of M(K2n). In particular, there is some Fe such that F0 ⊆ Fe, which

implies that x(e) = 1 for every vertex x ∈ F1. In other words, z is supported by matchings

m such that e ∈ m, of which there (2(n− 1)− 1)!!. Since the support of z can be no larger

than (2(n− 1)− 1)!!, it follows that z = vij for some i, j ∈ [2n].
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CHAPTER 6

Intersecting Families of 1-Factors of Complete

Uniform Hypergraphs

In [8], Godsil and Meagher ask whether the module method can be used to prove the

EKR theorem for intersecting families of 1-factors (matchings) of the complete r-uniform

hypergraph Krn
r for r > 2. We have already observed via Theorem 24 that (Srn, Sr o Srn)

is typically not a Gelfand pair, hence the (Sr o Srn)\Srn/(Sr o Srn)-double coset coherent

configuration is not commutative. We conclude with some speculation on how to circumvent

this obstacle and a state a few cases where the decomposition of 1SrnSroSn is known.

6.1. 1-Skeletons of Polytopes

It is probably not accidental that the (n)-associates of both the conjugacy class associa-

tion scheme of Sn and the matching association scheme are isomorphic to the 1-skeletons of

their respective matching polytopes. Note that dimS(n−1,1) = dimM(Kn,n) and dimS2(n−1,1) =

dimM(K2n). Indeed, these polytopes are related to the eigenpolytopes [41] of the eigenspace

corresponding to the “standard” representation [21]. In [41], Godsil classifies the distance

regular regular graphs that are isomorphic to the 1-skeleton of their eigenpolytope cor-

responding to the second largest eigenvalue. It would be interesting to investigate other

association schemes that arise in EKR combinatorics and classify those whose (n)-associate

is isomorphic to the 1-skeleton of the eigenpolytope of its “standard” representation.

An obstacle for using the module method for r > 2 is that the “standard” representation

might occur with multiplicity greater than one; however, it seems plausible that polytopes
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could be used to infer which representation is the “standard” representation in the decom-

position of 1SrnSroSn along with the multiplicity of the “standard” representation. The polytope

P ⊆ R(rnr ) whose vertices are the 1-factors of Krn
r is a natural and very symmetric object,

so a nice formula for dimP does not seem too far-fetched.1

6.2. Parallelisms

The proof of Theorem 34 relies on the fact that there always exists a “nice” maximum

clique in ΓMn , that is, a maximum clique whose members all have the same cycle type.

Equivalently, for
(

[2n]
2

)
, there was a nice parallelism Π where (n) ` n was the cycle type

of each π ∈ Π. In light of this, we only had to consider character sums χ
(n)
λ , which made

the character calculations relatively painless. When more cycle types must be considered,

then these calculations often become far too complicated. If the module method is to be

generalized to Krn
r , then the following questions must be addressed. What is the “simplest”

isomorphism-type for parallelisms of
(

[3n]
3

)
? Is there a canonical “simplest” isomorphism-type

for
(

[kn]
k

)
?

6.3. Future Work

From Theorem 24 it follows that (S2n, Sn o S2) is a Gelfand pair, but the combinatorics

it describes are the 2-uniform partitions, which are rather uninteresting from an EKR point

of view. However, one can interpret 1S2n
SnoS2

as the multiplicity-free representation theory of

n indistinguishable balls in n distinguishable urns, or equivalently, decks of playing cards

where one pays attention only to card color. It seems quite possible to obtain Diaconis-type

stationarity and mixing results in this arena, which to our knowledge have not been obtained.

1A system of linear inequalities that defines the 1-factor polytope of an arbitrary r-uniform hypergraph on
rn vertices for r > 2 (like Edmonds, Lovasz, and Pulleyblank did for r = 2) is probably much too ambitious.
There doesn’t appear to be an easy way to generalize their result.

59



Thrall has determined the multiplicities of irreducibles of the decomposition of 1S3n
SnoS3

[42],

which is slightly more interesting than 1S2n
SnoS2

from an EKR point of view and may be a good

place to ease into the non-commutative setting. Finally, it has recently come to the author’s

attention that Littlewood and Foulkes have determined the multiplicities of irreducibles in

the decomposition of 1SknSkoSn for k < 7 [43, 44], so it may be plausible for one to give an

algebraic proof of the EKR theorem for intersecting families of 1-factors of the complete

r-uniform hypergraph for r < 7 via the module method.
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