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ABSTRACT 

 

EVALUATION OF PARAMETER AND MODEL UNCERTAINTY IN SIMPLE 

APPLICATIONS OF A 1D SEDIMENT TRANSPORT MODEL 

 This paper aims to quantify parameter and model uncertainty in simulations from 

a 1D sediment transport model using two methods from Bayesian statistics.  The first 

method, Multi-Variable Shuffled Complex Evolution Metropolis – Uncertainty Analysis 

(MSU), is an algorithm that identifies the most likely parameter values and estimates 

parameter uncertainty for models with multiple outputs.  The other method, Bayesian 

Model Averaging (BMA), determines a combined prediction based on three sediment 

transport equations and evaluates the uncertainty associated with the selection of a 

transport equation.  These tools are applied to simulations of three flume experiments.  

Results show that MSU’s ability to consider correlation between parameters improves its 

estimate of the uncertainty in the model forecasts.  Also, BMA results suggest that a 

combination of transport equations usually provides a better forecast than an individual 

equation, and the selection of a single transport equation substantially increases the 

overall uncertainty in the model forecasts. 
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1  INTRODUCTION 

Sediment transport models are used widely by government agencies, engineering 

firms, and researchers for sediment routing and sediment capacity forecasts in channels.  

Uncertainty in forecasts from these models can be very large.  In fact, it is typical for 

estimates of bed load to involve 50 – 100% uncertainty [1].  Uncertainty in dynamic 

models can arise from several sources including approximations or simplifications in the 

mathematical structure of the model (model uncertainty) and ambiguity in values selected 

for the model parameters (parameter uncertainty) [2].  For sediment transport models, no 

single formula can accurately describe sediment flows for all possible fluvial conditions 

[3].  Therefore, a transport capacity equation among the many available is typically 

selected for use based on stream type and conditions, ease of application, and calibration 

data.  The selection of a single equation introduces some uncertainty as to whether the 

correct mathematical description is being used to model the physical system.  In addition, 

each equation contains multiple parameters that cannot be measured in the field and thus 

must be calibrated in some manner, usually by adjusting their values until the model 

reproduces the system behavior for some calibration period.  All of these uncertainties 

can lead to errors in forecasts that might be used when designing channels.   

Analyses of uncertainty in the field of river erosion and sedimentation have 

focused on parameter uncertainty [4,5,6], while less attention has been paid to the 

uncertainty due to the selection of a sediment transport formula.  Ruark et al. [6] 
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developed a methodology to assess parameter uncertainty in sediment modeling.  Their 

methodology uses a multi-objective version of generalized likelihood uncertainty 

estimation (GLUE) [7] to estimate this uncertainty.  In their method, the parameters are 

initially assumed to conform to uniform distributions within specified ranges.  Parameter 

sets are then generated based on the uniform distributions and used in the model to 

simulate a calibration period.  The similarity between the observed and simulated 

behavior is used to judge the likelihood that each generated parameter set is correct.  The 

calculated likelihoods are then used to determine the individual posterior distributions for 

the parameters (i.e. the parameter distributions given the available observations).  

Parameter sets generated from these posterior distributions are then used to simulate the 

forecast period, and the associated distributions of the model outputs are determined to 

characterize the forecast uncertainty [6].  The method is relatively simple to implement, 

but it has some limitations.  First, it uses an inefficient sampling method when developing 

the posterior parameter distributions.  In particular, the method generates a large number 

of parameter sets from the specified uniform distributions and uses all of those parameter 

sets in model simulations before considering the results.  No information gained from one 

of these simulations is used to decide how to configure the next simulation.  As a result, 

many simulations are conducted in regions of the parameter space with low likelihood.  

For other modeling applications, methods that evolve the joint posterior parameter 

distribution using information (likelihood values) acquired from each simulation have 

been shown to decrease computation time [8].  Secondly, the method by Ruark et al. [6] 

does not consider possible correlations between parameters.  Specifically, it develops the 

marginal posterior parameter distributions rather than the joint posterior parameter 
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distribution.  Results in Ruark et al. [6] indicate that these correlations might be non-

trivial, and in other modeling applications, uncertainty estimates have been shown to be 

substantially different when correlations are considered [8].  Finally, the method does not 

consider sources of uncertainty other than parameter uncertainty, which might lead to 

underestimations of the overall uncertainty in the model predictions.  In other model 

applications, structural errors are known to produce more uncertainty in predictions than 

errors in model parameters or inputs [9,10]. 

Markov Chain Monte Carlo (MCMC) algorithms, tools used in Bayesian 

inference, have the ability to efficiently develop a sample from a sought posterior 

parameter distribution while including correlation between parameters [8].  Vrugt et al. 

[8] developed a MCMC algorithm called the Shuffled Complex Evolution Metropolis – 

Uncertainty Analysis (SCEM-UA) that evolves a sample of parameter sets generated 

from the assumed prior joint uniform distribution toward the joint posterior probability 

distribution.  The calculation of likelihood in this algorithm limits it to cases where a 

single model output variable is used to calibrate the parameters.  In sediment transport 

modeling applications, however, more than one model output is typically of interest (e.g., 

bed elevations and grain size distributions).  Van Griensven and Meixner [11] proposed a 

likelihood function derived from Bayesian statistics for cases with more than one output 

variable.  The improvements in efficiency that can be achieved by applying SCEM-UA 

and the importance of including parameter correlation in assessing uncertainty from 

sediment transport models with multiple outputs remains unknown. 

Bayesian Model Averaging (BMA) has been proposed as a method to account for 

model uncertainty [12,13].  In BMA, simulations from competing models are evaluated 
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based on their abilities to reproduce the calibration data for an output variable of interest.  

The uncertainty associated with each model (assuming it is the correct model) is modeled 

by a normal distribution that is centered on the model’s prediction.  BMA estimates the 

variance of each normal distribution as well as the probability that each model is correct 

to maximize the likelihood of these values given the calibration observations [14].  The 

combined distribution that is produced by BMA provides an estimate of the overall 

uncertainty including the uncertainty introduced by the different models under 

consideration.  The importance of including model uncertainty in assessing the overall 

uncertainty in sediment transport models also remains unknown. 

The goal of this paper is to evaluate a proposed uncertainty methodology that 

addresses the limitations of the Ruark et al. [6] method.  To examine parameter 

uncertainty, we implement a multi-objective adaptation of SCEM-UA [8] following the 

work done by van Griensven and Meixner [11] entitled Multi-Variate Shuffled Complex 

Evolution Metropolis – Uncertainty Analysis (MSU).  To examine model uncertainty and 

whether it is beneficial to combine results from multiple transport equations, we apply 

BMA in a similar manner to [13] and [14].  MSU is first implemented on the calibration 

periods of three bed load driven flume experiments that are modeled using the 

Sedimentation and River Hydraulics – One Dimension (SRH-1D) model [3].  These 

experiments include a depositional case, a data-poor erosional case, and a data-rich 

erosional case.  Two types of observations are available for the calibration of all cases: 

bed profile elevation data and sediment grain size data.  The impact of model uncertainty 

on the uncertainty of two outputs, bed profile elevations and sediment grain sizes, is then 

assessed for each case study using BMA.  Three equations are available in SRH-1D to 
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treat bed load and are used in BMA: the Parker equation [15], the Wilcock and Crowe 

equation [16], and the modified Meyer-Peter and Müller equation [17].  The analyses 

included in this paper specifically focus on: (1) whether MSU’s sampling method is more 

efficient than GLUE, (2) the relative ability of MSU to constrain parameter values for 

different flume experiments and transport equations, (3) whether the multi-objective 

likelihood function identifies a parameter set that completely optimizes both bed profile 

elevation and sediment grain size outputs at the same time (4) the importance of 

including the correlation between parameters in estimating the forecast uncertainty, and 

(5) whether the choice of a transport equation adds substantially to the uncertainty in the 

model forecast.  

In the next section, the uncertainty methodology is described in detail.  Following 

that, the model used for testing the methodology (SRH-1D) is described.  Next, the 

application of the proposed methodology to the three case studies is summarized.  In the 

fifth section, results are given and explained.  Finally, conclusions are summarized in the 

last section. 
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2  METHODOLOGY 

2.1  MSU 

MSU aims to produce a sample of parameter sets from an initially unknown joint 

posterior parameter distribution.  While iterating towards such a sample, the method 

simultaneously finds the parameter set that is most likely to be the correct one.  This is 

accomplished by first generating a relatively small sample of parameter sets from the 

specified joint prior distribution.  These parameter sets are then sorted into complexes, 

and one parameter set in each complex is used as the first point in a Markov chain.  Then, 

trial parameter sets are generated based on the current point in the Markov chain and a 

so-called proposal distribution or transition kernel, which is determined from information 

in the complexes.  The trial parameter set is retained using criteria based on the 

likelihoods of the trial parameter set and the current parameter set.  Once convergence is 

reached, the sequence of parameter sets generated from the method conforms to the 

posterior distribution.  Aside from its use of a multi-objective likelihood function (see 

below), MSU is the same as SCEM-UA, which is described and tested in detail by Vrugt 

et al. [8].  Readers are referred to that paper for a more in-depth discussion, but some 

details of the algorithm are given below. 

MSU begins by generating an initial sample of parameter sets from the prior 

parameter distribution.  The sample size s is selected by the user, and the prior 

distribution is a joint uniform distribution with bounds that are specified by the user.  The 
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bounds represent the plausible range for each parameter before any calibration data is 

considered.  A uniform distribution is used because no set of parameter values within the 

range is considered more likely than any other before the available observations are used.  

Rather than generating the initial sample randomly from the uniform distribution, Latin 

Hypercube Sampling (LHS) is used.  LHS divides the parameter space into even 

increments and generates parameter sets at every point on the multi-dimensional grid 

formed by these increments [18]. 

After the initial parameter sets have been generated, they are sorted from most 

likely to least likely.  The likelihood of a given parameter set is judged by the model’s 

ability to reproduce the observed values of the model outputs when the parameter set is 

used.  Because sediment transport models have more than one output variable of interest, 

the Global Optimization Criterion (GOC) proposed by van Griensven and Meixner [11] is 

used to calculate likelihood.  The likelihood of parameter set   being correct given the 

observations obsY  is  obsYp |  and is related to the GOC as: 

 )exp()|( GOCYp obs   (1)  

where: 

 





A

a a

aa

SSE

NSSE
GOC

1 min,

 (2)  

In this equation, a is an index of model output variables, A  is the total number of output 

variables, aN  is the number of available observations of variable a , aSSE  is the sum of 

squared errors for the model predictions of variable a , and min,aSSE is the minimum sum 

of squared errors of variable a  among all of the currently available parameter sets.  
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Similar to the likelihood function for SCEM-UA, Equation (1) assumes that the residuals 

for each variable are independent, normally distributed, and have constant variance [11].  

However, the expression allows the residuals of different output variables to have 

different variances.  Specifically, the expression adjusts the performance for each output 

variable by the associated variance, where the variance of the residuals of variable a  is 

estimated as [11]: 

 

a

a
a

N

SSE min.2   (3)  

After calculation of the likelihoods, the sorted parameter sets are grouped into q 

complexes, where q is selected by the user.  If two complexes are used, for example, 

complex 1 would get the 1
st
, 3

rd
, 5

th
, etc. most likely parameter sets, and complex 2 would 

get the 2
nd

, 4
th

, 6
th

, etc. most likely parameter sets.  The first (and most likely) point in 

each complex is used as the starting point for an associated Markov Chain.  Complexes 

are used to determine how to evolve the parameter sets, while the Markov Chains track 

this evolution.   

One complex at a time, called the active complex, is then evolved using the 

Sequence Evolution Metropolis (SEM) algorithm.  To determine the next parameter set in 

the Markov Chain )1(  b  (where b  is an index for the method iterations), SEM compares 

the ratio of the average of the likelihoods of the points in the active complex to the 

average of the likelihoods of the last m  parameter sets in the corresponding Markov 

Chain to a specified threshold.  The variable qsm /  and is the number of parameter 

sets in a complex.  If this ratio is less than the threshold, then a candidate parameter set is 
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drawn from a normal distribution centered on the current parameter set of the Markov 

Chain: 

 ),(~ 21 k

n

bb cN    (4)  

where N  denotes the normal distribution, )(b  is the current parameter set, nc  is a 

scaling parameter equal to 2.4 divided by the number of uncertain parameters [8, 19], and 

k  is the covariance of the parameter sets in complex k .  If this ratio is greater than the 

threshold, a candidate parameter set is drawn from a normal distribution centered on the 

mean of the active complex: 

 ]),([~ 21 k

n

kkb cCN     (5)  

where )( kk C  is the mean of complex k .  In MSU as in SCEM-UA, the threshold is a 

large value (10
6
) [8], so new parameter sets are regularly drawn from Equation (4).  

Equation (5) is included to prevent the Markov Chains from getting stuck in a particular 

region of the parameter space [8].  The parameter set generated by Equation (4) or (5) is 

accepted if the ratio of the likelihood of this parameter set to the likelihood of the current 

parameter set is greater than a random number generated from a uniform distribution over 

the range 0-1 [21].   This implies that the generated parameter set is always accepted if its 

likelihood is larger than the current parameter set, and it is still accepted with some 

probability if its likelihood is smaller.  If the new parameter set is accepted, it becomes 

the current position of the Markov Chain and replaces the best complex member.  

Otherwise, bb  1  and the following additional test is conducted.  The ratio of the 

likelihoods of the best and worst members in the active complex is calculated.  If this 

ratio is greater than the threshold, the covariance of the active complex might be too large 
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[8].  If the likelihood of 1b  is greater than that of the worst point in the complex, the 

worst complex member is replaced with 1b .  This replacement removes points from the 

active complex with likelihoods that are too small.  After all complexes have been 

updated, the individual complexes are re-sorted from most likely to least likely. 

The SEM procedure is repeated 5/m  times for each complex [8].  The complexes 

are then shuffled to share information between them.  To shuffle, the parameters sets 

from all complexes are re-combined into a single list and sorted from most likely to least 

likely as described earlier.  Then, they are re-organized into complexes as previously 

described and the procedure is repeated. 

The MSU algorithm converges when it is sampling from the stable posterior 

distribution.  Because more than one Markov Chain is used in the method, convergence 

can be measured by the ratio of the variance of the average parameter value from each 

chain and the average of the variances of parameter values within each chain [8, 20].  

This ratio is the basis of Gelman and Rubin’s Scale Reduction Score (SRS) [8].  MSU 

has exactly converged when the SRS of each parameter is equal to 1 [8].  Because this is 

very difficult to achieve in practice, SRS values of less than 1.2 are usually used to 

indicate approximate convergence [8, 20].   

Parameter sets generated after convergence are consistent with the posterior 

distribution.  Each parameter’s marginal posterior distribution can be inferred by creating 

histograms of the parameter values after convergence.  In addition, one can examine the 

correlation between the values of different parameters in these generated parameter sets.  

Furthermore, the generated parameter sets can be used as the basis of model simulations 
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for the forecast period which produce samples of model outputs.  The histograms of these 

outputs can then be used to judge the uncertainty in the model predictions that arises from 

the remaining parameter uncertainty.  Finally, the most likely parameter set can be 

identified after MSU converges.  This parameter set is then used in the BMA algorithm, 

which is described next. 

2.2 BMA 

BMA is a formal method used to analyze model uncertainty [12].  As Figure 1 

shows, it develops a prediction for an output variable and associated uncertainty bounds 

using a weighted average of the forecasts that are produced by a collection of potential 

models.  BMA assumes that the uncertainty associated with each model is represented by 

a normal distribution centered on its output value.  The variance for each distribution and 

the weight for the associated model (i.e. the probability that it is the correct model given 

the observed data) are then estimated to maximize the likelihood of the observed data 

occurring.  In the present application of BMA, the models under consideration are the 

sediment transport equations and the observed output variable is selected to be either bed 

profile elevations or measures of sediment grain sizes (see section 4).  The rest of this 

section provides more details about BMA, but complete descriptions and evaluations of 

the method are provided in [13] and [14]. 

The central variable in BMA is the probability that the observed value of the 

output variable   occurs under the calibration conditions given the individual model 

estimates Ii ff ,...,  where i is an index of the available models and I  is the total number 

of available models.  This probability is denoted ),...,|( Ii ffp   and is calculated as: 
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



I

i

iiiIi fgwffp
1

)|(),...,|(  (6)  

where Ii ww ,...,  are the probabilities that each model is the correct one given the 

calibration data (i.e. the posterior model probabilities) [13, 14].  The posterior model 

probabilities are nonnegative and add up to one, so they can be viewed as weights.  The 

expression )|( ii fg   is the probability of observing   given model forecast fi.  Each 

conditional probability distribution )|( ii fg   is assumed to be normal with a mean at its 

respective model forecast and a variance i
2
: 

 ),(~)|( 2

iiii fNfg   (7)  

This distribution is meant to represent the uncertainty associated with model i  assuming 

that it is the correct model structure.  BMA estimates the weights and variances for all 

models in order to maximize their likelihood given the observed data.  Observations are 

available at multiple times and locations, so this is done by maximizing the likelihood l : 

 

  













stN

ts

I

i

iststii

IiIiI

fgw

ffwwl

, 1

22

1

)|(log

),,...,|,...,,,...,( 

 (8)  

where stN  is the total number of measurements over all s  locations and t  times in the 

calibration dataset and  iststi fg |  is model s' i  conditional probability for the 

observation given that model’s forecast at space s  and time t .   

An iterative procedure called the Expectation-Maximization (EM) algorithm is 

used to solve for the values of the unknown weights and variances.  This method is a 

widely used method for obtaining maximum likelihood estimates [22, 23].  The EM 
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method uses a variable denoted istz , where  1istz   if model i  produces the best forecast 

at space s  and time t ;  otherwise, 0istz .  Even though the true values of istz are either 

zero or one, the values are not necessarily integers in the EM algorithm [13].  The 

algorithm begins with an initial guess for weights Iww ,...,1  and variances 22

1 ,..., I  as 

follows: 

 

I
wi

1


 
(9)  

 2
,

2 ˆ obsii    (10)  

for Ii ,...,1  where 2

,
ˆ

obsi  is the variance of the observations for the quantity of interest.  

After this initialization, estimates of )ˆ( istist zz  are calculating with the following equation: 

 

 










I

l

j

iiststl

j

iiststij

ist

fgw

fgw
z

1

)1(

)1(
)(

],|[

],|[
ˆ




 (11)  

where ],[~],|[ )1()1(  j

iist

j

iistst fNfg   and j  is the iteration of the EM algorithm.  

Calculation of Equation (11) represents the expectation step.  The estimation of istz  in 

Equation (11) relies on the assumption that the weights and variances are correct.  Thus, 

subsequently, the estimates of the weights and variances are updated during the 

maximization step using the following formulas: 

 


stN

ts

j

ist

st

j

i z
N

w
,

)()( ˆ
1

 (12)  
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j
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The algorithm iterates between the expectation and maximization steps until changes in 

the likelihood, weights, variances, and z  values are below predefined tolerances [14].  

It is assumed that the weights and variances obtained by applying BMA to the calibration 

period apply to the forecast period as well [13].  Thus, the weights obtained from BMA 

can be applied directly to model outputs for the forecast period to obtain the BMA 

prediction.  Confidence intervals of the BMA prediction give insight into overall 

uncertainty present in the model predictions.  This uncertainty includes uncertainty due to 

the model structure (represented by the weights) as well as uncertainty associated with 

each model under the assumption that it is the appropriate model (represented by the 

normal distributions).  The latter uncertainty estimate includes the uncertainty due to 

parameter values, which is also determined by the MSU algorithm. 
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3  SRH-1D 

SRH-1D is used to examine the uncertainty methodology as in Ruark et al. [6].  It 

is a 1D hydraulic and sediment transport model and is used by the U.S. Bureau of 

Reclamation in channel modeling projects [3].  The program is able to simulate channels 

with a variety of characteristics including non-mobile boundaries, steady flow, non-

cohesive sediment [3], which are considered in this paper.  SRH-1D contains several 

user-defined parameters in the equations to route water and sediment flows and to 

compute bed material mixing, which are described in the following paragraphs.  For a 

more detailed description of SRH-1D’s mathematical structure than is given below, 

please refer to [6] and [3]. 

To compute flow routing, SRH-1D solves the energy equation for steady, 

gradually varied flow using the standard step method [3].  This requires use of Manning’s 

equation and, thus, specification of Manning’s roughness coefficient n , which is treated 

as an uncertain parameter. 

Sediment transport computations in SRH-1D for the cases considered here consist 

of two components: sediment routing and bed material mixing.  Because all of the cases 

are bed load driven, suspended sediment transport is ignored and the Exner equation is 

used to calculate changes in the volume of sediment on the bed [3].  This simplifies the 

mass conservation equation that is the basis of sediment routing.  Bed load transport 

capacity is calculated using one of the three following equations: the Parker equation 
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[15], the Wilcock and Crowe (W&C) equation [16], or the modified Meyer-Peter and 

Müller (MPM) equation [17].  Both the Parker and the W&C equations require 

specification of the critical shear stress r , which represents the amount of shear stress 

needed to initiate motion of the sediment, and a hiding factor  , which accounts for 

hiding and exposure of particles with different sizes in mixtures.  These two parameters 

are treated as uncertain in this paper.  The MPM equation does not use a hiding factor and 

fixes the critical shear stress at 047.0r [17].  SRH-1D uses a total adaptation length 

totL  to calculate the length over which transport capacity is reached (instead of assuming 

that sediment discharge equals the transport capacity) [3].  The transport capacity length 

totL  is a function of Lb , a user-defined parameter to compute the bed load adaptation 

length, sf , the fraction of suspended load relative to the total load, which is estimated 

using an empirical function derived by Greimann et al. [24],  , the suspended sediment 

recovery factor, and other characteristics related to the flow and the channel geometry 

[3].  Different values are used for  for deposition and erosion: 

 






             

    

scour if

deposition if

s

d




  (14)  

The bed load adaptation length Lb  and the suspended sediment recovery factors 

sd   and  are considered uncertain parameters. 

Bed material mixing is modeled by dividing the bed into layers: one active layer 

above several inactive layers.  During deposition, the active layer shifts up and deposited 

material becomes part of the new active layer while older material becomes part of the 

top inactive layer.  During erosion, the active layer shifts down and material from the 
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underlying inactive layers becomes part of the active layer.  The thickness of the active 

layer is calculated by multiplying the geometric mean of the largest sediment size class 

by the active layer thickness multiplier altn .  The user must also specify the weight of bed 

load fractions  , which is a value between zero and one that defines the proportion of the 

bed load grain size distribution that is used to determine the grain size distribution of the 

sediment that is transferred between the active layer and the topmost inactive layer.  Both 

altn  and   are considered uncertain parameters. 
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4  EXPERIMENTS 

Three flume experiments are considered as case studies in this paper; one is a 

depositional case and the other two are erosional cases.  Following Ruark et al. [6], both 

the Seal et al. [25] and Ashida and Michiue [26] experiments are used.  Because 

observational data are very limited in the Ashida and Michiue [26] experiment, another 

erosional case by Pender et al. [27] is examined.  Bed profile elevation data and sediment 

size data are available for all three experiments.  Sediment size data comes in the form of 

either profiles of grain size quantiles (i.e. D16, the grain size that 16% of sediment is 

smaller than; D50, the median grain size, and D84, the grain size that 84% of sediment is 

smaller than), or fractions of sediment in size intervals.  Table 1 provides a summary of 

the initial conditions, experimental inputs, and observations available for the three 

experiments. 

The Seal et al. [25] experiment was designed to study sediment sorting during 

aggradation in three runs (named Runs 1-3 respectively).  Downstream fining and 

armoring processes were observed in this experiment [25].  An abundance of 

observations from the experiment are available including bed profile elevations taken at 

typically 18 locations every half hour, hour, and two hours for Runs 1, 2, and 3, 

respectively.  Grain sizes (D16, D50, and D84) were also determined at a variable number 

of locations along the flume profile during 4 or 5 time intervals during the experiments.  

These measurements were assumed to apply to the middle of the time intervals for the 



19 
 

modeling exercises.  Because the only difference between runs is the sediment feed rate 

(Table 1), model parameters should remain unchanged between runs allowing for 

separate runs to be used for the calibration and forecast periods.  We used Run 2 

(duration of 32.4 hours) as the calibration period and Run 3 (duration of 64 hours) as the 

forecast period. 

The Ashida and Michiue [26] experiment was designed to simulate bed 

degradation downstream of a dam.  Bed profile elevation measurements are available at 

only three locations and six times within the 10 hour experiment, and the bed material 

distribution is reported only at the beginning and end of the experiment.  The lack of 

sediment size measurements at an intermediate point in the experiment prevents 

separation of the case study into calibration and forecast periods that both contain 

observations.  However, model predictions for hours 10 through 20 were simulated as 

though the experiment continued and used as a forecast period for the analyses described 

later. 

The Pender et al. [26] experiment was designed to study changes in bed structure 

and elevation during degradation in three runs (named Experiments 1-3).  Experiment 1 

was selected for use in this research since the observed data were easily aquired for this 

run.  Bed profile elevation measurements are available for every 2 or 3 hours (over a total 

run time of 84.6 hours) at hundreds of locations along the bed at most times.  For 

computational purposes, the number of observed locations used in MSU and BMA was 

decreased to between 21 and 42 points along the length of the bed for each time available 

depending on the availability of spatial observations at a given time.  Hours 0 – 34.1 are 

used as the calibration period and hours 34.1 – 84.6 are used as the forecast period. 
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Table 2 shows the selected minimum and maximum possible values for the eight 

uncertain parameters described in the previous section.  These values were selected to 

provide broad plausible ranges for the prior joint uniform distribution provided to MSU.  

Note that r  and   are not variable when using the MPM equation in SRH-1D.  Thus, 

this equation has 6 uncertain parameters while the Parker and W&C equations have 8 

uncertain parameters.  The range for the active layer thickness multiplier altn  varies for 

each experiment, and in the Seal et al. [25] experiment, the value of altn  varies between 

sediment transport equations.  The ranges for this parameter were kept as small as 

possible for computational purposes, but they were widened in cases where the full 

posterior distribution was not captured by the initial range.   

Several method parameters need to be defined in the application of MSU.  For all 

MSU runs, an initial population size of 500s  parameter sets is organized into 2q  

complexes so that each complex contains 250 parameter sets at any one time.  These 

values make the number of SEM evolutions for each complex before shuffling, which 

was defined as 5/m  and similar to the value used in [8], equal to 50 and were found to 

be the parameters that favored quick convergence for all MSU runs considered.  The 

algorithm was run for a total of 20,000 iterations to be certain that all parameters 

converged and large samples from the posterior parameter distributions were attained.   

MSU also requires the organization of the available observations into different 

variables, which are allowed to have different variances of their residuals.  The first type 

of observation that is available for the flume experiments is bed profile elevation.  It is 

assumed that bed profile elevations at all locations in a given flume at a given time have 
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the same variance of their residuals and can therefore be treated as a single output 

variable.  The general bed profile shape stays the same throughout each experiment and 

the scale of the measurements at all locations at a given time does not vary greatly.  Bed 

profile elevations at different times are treated as different variables.  If the bed aggrades 

or degrades substantially during the experiment, the scale of these measurements can 

change with time, which would likely imply a change in the variance of the residuals as 

well.  Aggregating observations from several locations together in this way allows for 

more reliable estimates of the variances of the residuals in the method.  The other type of 

observation that is available is the sediment size data.  Similar to bed profile elevations, 

all locations are assumed to have similar variances in their residuals, while different times 

are treated as different variables.  When D16, D50, and D84 observations are available, they 

are treated as three separate variables.  When the fraction of sediment in size intervals is 

available, each size class is treated as a separate variable.  Recall that the likelihood 

function used in MSU (Equation 2) assumes that the residuals for each variable are 

normally distributed.  This assumption was tested after MSU was run and found to be 

false for some variables, however, transformations of the data did not significantly alter 

results from MSU or BMA and so were deemed unnecessary. 

Some differences are required in the application of MSU and BMA because BMA 

is not easily generalized to account for multiple variables at the same time.  Thus, BMA 

is run twice for each case study examined: once for all bed profile elevation output and 

once for all sediment size output resulting in two sets of model weights for each 

experiment.  This procedure essentially treats every bed profile elevation point as an 

observation from the same variable.  Likewise, it treats every sediment size point as an 
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observation from the same variable.  BMA has been conducted in this manner with 

meteorological and hydrologic data in previous papers [13, 14] and provides a practical 

method of combining equations to modelers. 
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5  RESULTS 

5.1 MSU Results 

The first objective of this paper is to compare the efficiency of the MSU sampling 

method to the GLUE-based sampling method used by Ruark et al. [6].  Figure 2 plots the 

Scale Reduction Score for the uncertain parameters in the nine MSU runs (the three 

flume experiments, each simulated with the three different transport equations).  The 

horizontal lines show a score of 1.2, which indicates approximate convergence, and the 

arrows indicate the approximate iteration number where convergence is achieved.  MSU 

runs that use the MPM equation converge the fastest, and MSU runs that use the W&C 

equation converge the slowest.  Because the MPM equation has only six uncertain 

parameters, it is not surprising that it converges fastest.  The larger number of iterations 

for the W&C equation to reach convergence is unexpected because it has the same 

number of parameters as the Parker equation.  However, the W&C equation has more 

difficulty simulating the observed data for all three cases than the other equations, which 

might produce the slower convergence.  The number of iterations required for 

convergence with the Parker equation is very close to the sample size of 5000 used in 

Ruark et al. [6] to obtain posterior parameter distributions for the Parker equation with 

the GLUE methodology.  Ruark et al. [6] found that a sample size of 5000 ensured 

consistent quantitative results between consecutive GLUE analyses.  Based on this 
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comparison, it appears that the MSU methodology is not substantially quicker than 

GLUE for these experiments. 

To evaluate the ability of MSU to constrain uncertain parameters, posterior 

parameter distributions were developed for all parameters.  Figure 3 shows histograms 

that represent the posterior parameter distributions for altn  for all MSU runs.  For 

reference, the prior uniform distribution (Table 2) is also shown.  Note the differences in 

the scales in these 9 plots.  Figure 3 shows that altn  can have different values and 

different degrees of certainty depending on the equation used and whether deposition or 

erosion is occurring (similar behavior is observed for other uncertain parameters).  In 

general, MSU favors larger values for altn  during deposition and smaller values for altn  

during erosion.  To evaluate MSU’s ability to constrain the parameters more generally, 

the percent change was calculated between the Interquartile Range (IQR) of the 

parameters generated from the prior distributions and the IQR of parameters generated 

the posterior distributions.  The IQR is defined as the difference between the 75% and 

25% quantiles of a data set.  Table 3 lists the percent decreases for all uncertain 

parameters for the nine MSU runs.  A value of 100% indicates that the algorithm 

identifies a single deterministic value of the parameter, while a very small value indicates 

that a large amount of uncertainty still surrounds the parameter.  In general, parameters 

are better constrained for cases with more available observations (i.e. Seal et al. [25] and 

Pender et al. [27]).  Also, certain bed material mixing parameters, namely the 

depositional and scour recovery factors, the bed load adaptation length, and the weight of 

bed load fractions are more easily constrained for the depositional case than for the 

erosional cases when the MPM equation is used.  The performance of each individual 
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equation during the calibration period using the most likely parameter set found from 

MSU is compared to the observations in Figures 4 and 5.  Note that none of the equations 

are able to capture the evolution of the sediment size fractions for the Pender et al. [27] 

case shown in Figure 5(e). 

To assess the impact of using a multi-objective likelihood function on the 

identification of the most likely parameter sets, GOC values for parameter sets after 

convergence of MSU were analyzed.  Recall that errors of two types of model outputs 

(bed elevation and sediment size) are incorporated into the calculation of the GOC.  Thus, 

the GOC summation in Equation (2) can be separated into the terms that correspond to 

bed profile elevations and the terms that correspond to sediment grain sizes.  Figure 6 

plots the separated GOC terms on each axis after they have been normalized by the 

values of the most likely point (determined using the combined GOC).  Each point in 

these plots represents a parameter set included in the sample after convergence.  The 

normalization puts the most likely parameter set at coordinates (1,1).  Any point that has 

a coordinate less than 1 would provide a better estimate for the observation type that is 

associated with that axis than the most likely point.  Data from the Seal et al. [25] case 

with MPM was used to create Figure 6(a), data from the Pender et al. [27] case with 

Parker was used to create Figure 6(b), and data from the Ashida and Michiue [26] case 

with MPM was used to create Figure 6(c).  These plots represent different cases that were 

observed.  In Figure 6(a), the most likely point sacrifices some performance in both bed 

profile elevation and sediment size predictions to achieve an overall good performance.  

In Figure 6(b), the most likely point sacrifices bed profile elevation to obtain a better 

sediment size prediction.  Note that if a parameter set existed that could optimize 
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performance of both types of model outputs at the same time, these graphs would have a 

square corner at point (1,1) like Figure 6(c).  This situation rarely occurred in the MSU 

runs.  Sediment grain size was the variable whose performance was usually sacrificed in 

the nine MSU runs.  These trade-offs suggest that sediment transport modelers should be 

careful about merging a wide variety of data into a single, multi-objective likelihood 

function if one variable has particular importance in their model application. 

Another objective of this paper is to evaluate the importance of accounting for 

correlation when assessing the impacts of parameter uncertainty.  To assess the strength 

of correlation in the values of different parameters in the posterior distribution, the 

probability that the correlation observed between a pair of parameters has occurred by 

chance given that the true correlation is zero and approximately normally distributed was 

calculated at a confidence level of 95%.  This analysis was done for all pairs of 

parameters using up to 5000 parameter sets after convergence (where available) for all 

nine MSU runs.  87% of the parameter pairs have a significant correlation.  Of the 87%, 

73% of parameter pairs have a correlation coefficient stronger than ±0.1, and 19% of 

parameter pairs have a correlation coefficient stronger than ±0.4.  More parameter pairs 

have stronger correlations in the more complex equations (Parker and W&C), which 

suggests that parameter correlations may be more important to consider when these two 

equations are used for modeling.  The parameter pairs that are correlated and the value of 

this correlation both vary between cases and equations.  

The implications of ignoring this correlation when assessing the uncertainty of 

model forecasts was explored by running two types of simulations with the parameter 

sets from the posterior distribution.  First, up to 5000 parameter sets obtained after 
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convergence of MSU were used to simulate the forecast periods for each of the nine 

cases.  Associated samples of bed elevation and sediment grain size profiles from SRH-

1D at three times (beginning, middle, and end of the forecast periods) and three locations 

(upstream, midstream, and downstream of the flumes) were obtained.  When the 

available sediment size data were fractions in different class sizes, three class sizes 

(small, medium, and large) were obtained.  Then the average IQRs for the bed profile 

elevation data and the sediment grain size data were calculated.  Second, the values for 

each parameter in the parameter sets from MSU after convergence were randomly 

reordered to remove any correlation between different parameters while maintaining the 

correct marginal distributions.  The reordered parameters were used to simulate the 

forecast periods, and the IQRs of the same outputs were calculated.  Figure 7 shows the 

average IQRs for the bed profile and sediment grain size data for all three experiments 

when the parameter correlations are included and neglected.  In general, removing 

parameter correlations has little effect on IQRs generated from the MPM equation for all 

three cases.  For the Parker and W&C equations, inclusion of parameter correlation is 

more important when estimating bed profile elevation than sediment grain sizes for the 

depositional case (Seal et al. [25]).  Interestingly, for both erosional cases, the results are 

opposite when examining the Parker and W&C equations.  Specifically, parameter 

correlation is very important when estimating sediment grain sizes and not as important 

when estimating bed profile elevations.  Overall, these results suggest that parameter 

correlations should be included when assessing uncertainty in sediment transport model 

forecasts. 
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5.2 BMA Results 

BMA was used to determine weights for the three transport equations based on 

their ability to reproduce the observations, and these weights are reported in Table 4.  

Note that within each experiment, BMA suggests a different set of equations for 

predicting bed profile elevation than it suggests for predicting sediment grain sizes.  

When bed profile elevation observations are used, the Parker equation dominates in the 

depositional case (Seal et al. [25]) with a weight of 0.84.  Though the Parker equation 

performs best, the W&C equation also matches observations relatively well and has a 

weight of 0.16.  The MPM equation dominates the profile elevation in both erosional 

cases (Ashida and Michiue [26], Pender et al. [27]) with weights of 1.00 and 0.98.  The 

high weights associated with MPM for these experiments suggest that there is a high 

probability that it is the correct transport equation for these cases when predicting bed 

profile elevation.  The forecast periods verify the inferences.  In particular, the forecasts 

produced by weighting the transport equations as suggested by BMA match the 

observations better than the individual models do.  Figure 8 illustrates this tendency for 

the Seal et al. [25] and the Pender et al. [27] cases, showing BMA predictions along with 

individual model predictions, the observations, and the 90% confidence interval on the 

BMA prediction (calculated based on the combined BMA distribution).  Observations for 

the Ashida and Michiue [26] case were not available for the forecast period, so a similar 

comparison cannot be made in this case.   

When sediment grain size is used as the observational data, the BMA results are 

rather different.  As Table 4 shows, BMA suggests a different combination of equations 

for sediment grain sizes in all cases.  For the Seal et al. [25] depositional case, a 
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combination of all three equations is suggested by BMA.  For the Ashida and Michiue 

[26] erosional case, BMA suggests a combination of the Parker and MPM equations, 

while for the Pender et al. [26] erosional case, BMA suggests a combination of the Parker 

and W&C equations.  Figure 9 shows the BMA predictions along with individual model 

predictions, observations, and the 90% confidence interval of the BMA prediction 

(calculated based on the combined BMA distribution) for the forecast period for sediment 

grain size outputs of the Seal et al. [25] and the Pender et al. [27] experiments.  For the 

Seal et al. [25] case, the BMA combination provides a prediction that is a compromise of 

all of the D16, D50, and D84 profiles.  For the Pender et al. [27] case, however, the W&C 

equation actually outperforms BMA during the forecast period (although none of the 

equations performs particularly well and the uncertainty bounds are quite large).  Here, it 

is worth noting that none of the sediment transport equations were able to capture the 

evolution of the sediment size distributions throughout the calibration period of the 

experiment. 

The uncertainty bounds produced by BMA include both parameter and model 

uncertainty.  To estimate the amount of uncertainty attributable to the selection of a 

sediment transport equation, the average IQRs of output histograms generated from MSU 

(shown in Figure 7), which consider only parameter uncertainty, were compared to the 

average IQRs of the respective BMA predictive distributions.  To calculate the IQRs for 

BMA, the same times, locations, and variables were used as in Figure 7.  It should be 

noted that MSU and BMA are built on different statistical models for uncertainty as 

explained earlier, so the comparison performed here cannot be viewed as exact.  Figure 

10 compares the IQRs for the bed profile elevation and the sediment size outputs for the 
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three cases.  In all cases, the IQR values from the BMA predictions, which include model 

uncertainty, are greater than the IQR values of the equations used in the BMA prediction, 

which represent only parameter uncertainty.  For the Ashida and Michiue [26] case with 

the bed profile elevation data, the IQR for the Parker equation is larger than the BMA 

IQR, but the Parker equation is not used in the BMA estimate (Figure 10(c)).  Recall that 

none of the proposed sediment transport capacity equations are able to capture the 

evolution of the sediment size distributions during the calibration period of the Pender et 

al. [26] case (Figure 5(e)), but parameters are constrained relatively well (Table 3).  This 

behavior is reflected in the large difference between the IQR values of the three equations 

and the value that includes model uncertainty (Figure 10(f)).  Here, the BMA IQR is 

more than 99% larger than all three equation IQRs.  Compare this to Figure 10(d) which 

shows a smaller difference between the forecast uncertainty resulting from parameter 

values and the forecast uncertainty resulting from both parameter values and equations in 

sediment size distributions for the Ashida and Michiue [26] case.  In this case, MSU is 

not able to constrain parameters very well, but BMA was able to match the observations 

(for the calibration period). 



31 
 

6  CONCLUSIONS 

The research summarized in this paper explores methodologies for analyzing 

uncertainty due to parameter estimation (parameter uncertainty) and uncertainty due to 

the selection of a sediment transport capacity equation (model uncertainty) and attempts 

to improve on the methodology proposed by Ruark et al. [6].  MSU is used to evaluate 

parameter uncertainty, while BMA is used to explore model uncertainty.  The 

conclusions inferred from the evaluations of these methods are summarized below. 

 

(1) Even though MSU has a more sophisticated means to develop parameter posterior 

probability distributions, it does not necessarily converge faster than the GLUE 

method used in Ruark et al. [6].  The GLUE method generates a large sample (5000 

parameter sets) from a joint uniform distribution and generates the marginal posterior 

distributions based on likelihood values calculated from model simulations.  MSU 

begins with a smaller sample (500 parameter sets) generated from a joint uniform 

distribution and evolves the joint posterior parameter distribution based on frequent 

calculation of likelihoods and sharing of information between simulations.  The speed 

of convergence for MSU depends on the dimension of the optimization problem 

(number of uncertain parameters) and the transport equation being used.  It can also 

depend on the prior distributions placed on the parameters.  If some information is 

known about the correct posterior distributions of parameters beforehand, this 
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information can be used in the definition of the prior distributions to possibly speed 

up convergence. 

(2) MSU is able to constrain the parameters in equations with fewer uncertain parameters 

(i.e. the MPM equation) more easily than the parameters in more complex equations 

(i.e. the Parker and W&C equations).  When the MPM equations is used, it was also 

seen that certain bed material mixing parameters, specifically the depositional and 

scour recovery factors, the bed load adaptation length, and the weight of bed load 

fractions, could be more easily constrained for the depositional case than for the 

erosional case. 

(3) In nearly all MSU runs, the most likely parameter set sacrificed performance with 

respect to one of the output variables, most often sediment size, in order to produce 

relatively good performance for both bed profile elevation and sediment grain size 

data.  Rarely was one parameter set available that could produce the best performance 

for both types of observations at the same time.  In cases where one variable is more 

important than the other for practical reasons, a modeler might choose to separate the 

variables rather than using a multi-objective likelihood function. 

(4) Inclusion of parameter correlations substantially alters the estimation of uncertainty in 

the SRH-1D forecasts for some cases and thus should not be overlooked in 

uncertainty assessments.  The importance differs between depositional and erosional 

cases and matters most when using equations with more parameters (Parker and 

W&C).  In the depositional experiment by Seal et al. [25], it was found that parameter 

correlations are more important when modeling bed profile elevation than for 
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sediment grain sizes.  This result is reversed for the two erosional experiments 

(Ashida and Michiue [26] and Pender et al. [27]).  MSU accounts for parameter 

correlations whereas the GLUE method does not. 

(5) Results of BMA indicate that the equation(s) best suited for predicting one type of 

output (i.e. bed profile elevation) are not necessarily best suited for predicting a 

different type of output (i.e. sediment grain sizes).  In most cases, using a 

combination of equations from BMA produces a better forecast than using a single 

transport equation.  It was also seen that for all forecast periods, including model 

uncertainty along with parameter uncertainty substantially widens the bounds of 

uncertainty on the forecasts.  This result suggests that the uncertainty associated with 

the selection of the transport equation should be considered when assessing overall 

uncertainty in sediment transport modeling applications. 

The methodology examined in this paper should be tested on additional 

experiments as well as field cases.  In particular, the case studies should be expanded to 

include experiments that study bed material load (which includes suspended load derived 

from the bed), which would substantially increase the number of transport capacity 

equations available for comparison.  Field cases should consider reaches that involve 

both deposition and erosion.  The multi-objective likelihood approach could also be 

applied to other output variables such as water profile elevation, water velocity, channel 

width, etc.  In addition, further research could establish a multi-objective BMA method 

where weights represent the ability of an equation to correctly produce more than one 

output variable. 
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TABLES AND FIGURES 
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Table 1: Summary of the initial conditions, experimental inputs, and observations for the 

three experiments. 

Experiment Seal et al. [25] Ashida and Michiue [26] Pender et al. [27] 

Period Calibration Forecast Calibration Forecast Calibration Forecast 

 

 

Channel geometry 

 

 

Shape: rectangular 

Length: 45 m 

Width: 0.3 m 

Slope: 0.2% 

Shape: rectangular 

Length: 20 m 

Width: 0.8 m 

Slope: 1.0% 

Shape: trapezoidal with 45° side 

slopes 

Length: 20 m 

Width 2.46 m 

Slope: 0.26% 

Volumetric flow rate (m3/s) 0.049 0.314 0.117 

Time period of experiment 

(hr) 
0 – 32.4 0 – 64 0 – 10 

10 – 20 
0 – 32.1 32.1 – 84.6 

Sediment feed rate (kg/s) 0.09 0.05 0 0 

Bed material diameter range 

(mm) 

0.125 – 65 0.2 – 10 0.25 – 22.63 

Number of observed size 

fraction intervals 
9 12 13 

Median diameter (D50) (mm) 5 1.5 4 

Number of bed profile 

elevation observations for 

calibration 

518 - 18 - 597 - 

Type of sediment size data 
Sediment grain size (D16, 

D50, and D84) profiles 

Fractions of sediment in 

size intervals 
Fractions of sediment in size intervals 

Number of sediment size 

observations for calibration 
165 - 12 - 104 - 
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Table 2: Uniform distribution bounds for uncertain parameters. 

Parameter 
Minimum 

Value 
Maximum Value 

Manning’s roughness coefficient ( n ) 0.015 0.065 

Critical shear stress ( r ) 0.01 0.06 

Hiding factor ( ) 0 1 

Active layer thickness multiplier ( altn ) 0.1 4
a
, 6

b
, 10

c
, 15

d 

Deposition recovery factor ( d ) 0.05 1 

Scour recovery factor ( s ) 0.05 1 

Bed load adaptation length ( Lb ) 0 10 

Weight of bed load fractions ( ) 0 1 
a
Pender et al. [27] case 

b
Ashida and Michiue [26] case 

c
Seal et al. [25] case with the Parker and W&C equations 

d
Seal et al. [25] case with the MPM equation 
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Table 3: The percent decrease in the Interquartile Range (IQR) of parameters generated 

from their prior uniform distributions and the IQR of parameters generated from MSU 

after convergence. 
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Table 4: BMA weights for the three equations and two model outputs for calibration 

periods of the three experiments. 

Experiment 
Parker W&C MPM 

Bed Profile Elevation BMA Weights 

Seal et al. [25] 0.84 0.16 0.00 

Ashida and Michiue [26] 0.00 0.00 1.00 

Pender et al. [27] 0.02 0.00 0.98 

 Sediment Grain Size BMA Weights 

Seal et al. [25] 0.27 0.42 0.45 

Ashida and Michiue [26] 0.54 0.00 0.55 

Pender et al. [27] 0.19 0.58 0.00 
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Figure 1: Example of BMA.  The BMA PDF is the sum of the three weighted model 

PDFs. 
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Figure 2: Gelman and Rubin’s convergence diagnostic: the Scale Reduction Score (SRS) 

for the 20,000 iterations of MSU.  The SRS is shown for all uncertain parameters, 

experiments, and equations.  Arrows indicate the point of convergence in each plot. 
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Figure 3: Histograms for the active layer thickness multiplier created from MSU samples 

after convergence for all experiments and equations.  The original uniform distribution 

placed on the parameter is shown in black and its posterior distribution from MSU is 

shown in grey. 
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Figure 4: Individual model responses and corresponding observations of bed profile 

elevation for the calibration period of (a) the Seal et al. [25] case showing bed profile 

elevation at 32.4 hours, (b) the Ashida and Michiue [26] case showing bed profile 

elevation at 10 hours, and (c) the Pender et al. [27] case showing bed profile elevation at 

32.1 hours 
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Figure 5: Individual model responses and corresponding observations of sediment size 

data for the calibration period of (a-c) the Seal et al. [25] case showing the (a) D16, (b) 

D50, and (c) D84 profile at 27 hours, (d) the Ashida and Michiue [26] case showing 

cumulative sediment size fractions at 10 hours, and (e) the Pender et al. [27] case 

showing cumulative sediment size fractions at 32.1 hours 
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Figure 6: Plots of bed profile elevation GOC and sediment grain size GOC for the (a) 

Seal et al. [25] with MPM run, (b) Pender et al. [27] with Parker run, and (c) Ashida and 

Michiue [26] with MPM run.  The most likely point is indicated with an x. 
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Figure 7: The average over time and space of the Interquartile Range (IQR) for the bed 

profile elevation or sediment size outputs (as labeled) from the forecast periods of the 

three experiments when simulated with the three transport equations.  The black bars 

describe model outputs using parameter sets generated from MSU after convergence and 

the white bars correspond to model outputs generated using these same parameters sets 

after they have been shuffled to remove correlation.  The percentages indicate the change 

in the IQR in each case when correlation is removed. 
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Figure 8:  BMA predictions, individual model responses, corresponding observations, 

and the 90% Confidence Interval (CI) on the BMA prediction of bed profile elevation for 

the forecast period of (a) the Seal et al. [25] case showing bed profile elevation at 32 

hours, and (b) the Pender et al. [27] case showing bed profile elevation at 62.4 hours. 
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Figure 9:  BMA predictions, individual model responses, corresponding observations, 

and the 90% Confidence Interval (CI) on the BMA prediction of sediment size data for 

the forecast period of (a) the Seal et al. [25] case showing the D16 profile at 34 hours, (b) 

the Seal et al. [25] case showing the D50 profile at 34 hours, (c) the Seal et al. [25] case 

showing the D84 profile at 34 hours, and (d) the Pender et al. [27] case showing 

cumulative sediment size fractions at 62.3 hours 
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Figure 10: The average over time and space of the Interquartile Range (IQR) for the bed 

profile elevation or sediment size outputs (as labeled) from the forecast periods of the 

three experiments when simulated with the three transport equations.  The black bars are 

associated with individual models and represent approximate parameter uncertainty.  The 

white bars are associated with the BMA prediction and represent both parameter and 

model uncertainty.  For reference, the weights applied to each equation to create the 

BMA forecast are reported above each black bar.  Note the that the size of the white bar 

is given in (f) because it is much larger than the other bars shown. 
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Figure 11: Posterior probability distributions for each parameter for the Seal et al. [25] 

case with the Parker equation. 
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Figure 12: Posterior probability distributions for each parameter for the Seal et al. [25] 

case with the W&C equation. 
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Figure 13: Posterior probability distributions for each parameter for the Seal et al. [25] 

case with the MPM equation. 
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Figure 14: Posterior probability distributions for each parameter for the Ashida and 

Michiue [26] case with the Parker equation. 
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Figure 15: Posterior probability distributions for each parameter for the Ashida and 

Michiue [26] case with the W&C equation. 
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Figure 16: Posterior probability distributions for each parameter for the Ashida and 

Michiue [26] case with the MPM equation. 
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Figure 17: Posterior probability distributions for each parameter for the Pender et al. [27] 

case with the Parker equation. 
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Figure 18: Posterior probability distributions for each parameter for the Pender et al. [27] 

case with the W&C equation. 
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Figure 19: Posterior probability distributions for each parameter for the Pender et al. [27] 

case with the MPM equation. 

 


