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ABSTRACT

PROTEIN INTERFACE PREDICTION USING GRAPH CONVOLUTIONAL NETWORKS

Proteins play a critical role in processes both within and between cells, through their interac-

tions with each other and other molecules. Proteins interact via an interface forming a protein

complex, which is difficult, expensive, and time consuming to determine experimentally, giving

rise to computational approaches. These computational approaches utilize known electrochemical

properties of protein amino acid residues in order to predict if they are a part of an interface or

not. Prediction can occur in a partner independent fashion, where amino acid residues are con-

sidered independently of their neighbor, or in a partner specific fashion, where pairs of potentially

interacting residues are considered together. Ultimately, prediction of protein interfaces can help

illuminate cellular biology, improve our understanding of diseases, and aide pharmaceutical re-

search. Interface prediction has historically been performed with a variety of methods, to include

docking, template matching, and more recently, machine learning approaches.

The field of machine learning has undergone a revolution of sorts with the emergence of con-

volutional neural networks as the leading method of choice for a wide swath of tasks. Enabled by

large quantities of data and the increasing power and availability of computing resources, convolu-

tional neural networks efficiently detect patterns in grid structured data and generate hierarchical

representations that prove useful for many types of problems. This success has motivated the work

presented in this thesis, which seeks to improve upon state of the art interface prediction methods

by incorporating concepts from convolutional neural networks.

Proteins are inherently irregular, so they don’t easily conform to a grid structure, whereas a

graph representation is much more natural. Various convolution operations have been proposed for

graph data, each geared towards a particular application. We adapted these convolutions for use in

interface prediction, and proposed two new variants. Neural networks were trained on the Docking
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Benchmark Dataset version 4.0 complexes and tested on the new complexes added in version 5.0.

Results were compared against the state of the art method partner specific method, PAIRpred [1].

Results show that multiple variants of graph convolution outperform PAIRpred, with no method

emerging as the clear winner.

In the future, additional training data may be incorporated from other sources, unsupervised

pretraining such as autoencoding may be employed, and a generalization of convolution to simpli-

cial complexes may also be explored. In addition, the various graph convolution approaches may

be applied to other applications with graph structured data, such as Quantitative Structure Activity

Relationship (QSAR) learning, and knowledge base inference.
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Chapter 1

Introduction

Many cellular processes rely on proteins, which facilitate these processes via their interactions

with one another and with small molecules within the cell [6]. Understanding protein interactions

is key to disease and pharmaceutical research, as well as our understanding of basic cellular biol-

ogy [7,8]. Proteins normally interact via an interface, a localized region of the protein with special

properties.

Experimentally identifying the interface between two proteins is a time consuming and ex-

pensive process which involves crystallization of the protein complex and imaging via x-ray crys-

tallography or nuclear magnetic resonance [9–11]. In general, more than one hundred thousand

proteins have been crystallized and imaged in the last 40 years, but doing so for weakly interacting

protein complexes remains a challenging problem [12] [13]. In contrast, computational methods

are faster, cheaper, and complement wet lab experiments by identifying the most relevant and

worthwhile experiments to attempt in vivo.

This thesis presents a novel computational method to predict the interface between a pair of

interacting proteins. The method is inspired by the success of convolutional neural networks in

image processing [14, 15], but adapts the ideas to this problem domain. Proteins are represented

as graphs and fed into a pairwise convolutional neural network with specialized convolution oper-

ations. The network makes predictions on pairs of amino acid residues of the likelihood that they

constitute a part of the interface. This method outperforms the existing state-of-the-art approach

based on a support vector machine with pairwise kernels [1].

The rest of this thesis is organized as follows. The remainder of the introduction presents

a primer on proteins and their interfaces. Chapter 2 reviews prior work in interface prediction.

Chapter 3 introduces neural networks and specifically convolutional neural networks. Chapter 4

describes how proteins can be modeled as graphs, discusses various methods of graph convolution,

and introduces the pairwise neural network architecture used for interface prediction. Chapter 5
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describes the data set, experimental procedure, and relevant metrics used to evaluate the various

graph convolution methods. Chapter 6 discusses the experimental results. Chapter 7 lays out

potential avenues of research which build upon the findings in this thesis. Appendix A contains

details pertaining to the features computed for each amino acid residue, and Appendix B describes

the software implementation used for this research.

1.1 Proteins

DNA is rightly considered the "blueprint for life," which begs the question, what is built from

those blueprints? The answer is, in many cases, information contained in DNA is used to synthesize

proteins. Proteins are composed of amino acids linked in a chain and held together by covalent

bonds. Amino acids are organic compounds consisting of a central α-carbon atom, which binds

to an amine group (NH2), a carboxyl group (COOH), a single hydrogen atom, and a side chain,

in a tetrahedral geometry. There are 21 unique amino acids encoded in eukaryotic DNA, each of

which has a distinct side chain that gives rise to structural and electro-chemical properties. Figure

1.1 depicts the different amino acids.

Two amino acids link together when the nitrogen atom from one’s amine group bonds co-

valently with the carbon atom of the other’s carboxyl group, releasing a water molecule. This

covalent bond is called a peptide bond, and an amino acid involved in at least one such bond is

referred to as an amino acid residue, or residue.

A peptide, or peptide chain, is a linear chain of amino acids held together by peptide bonds, and

the backbone of the peptide consists of all atoms participating in peptide bonds, together with the

α-carbons. If a peptide contains several residues it is referred to as a polypeptide. Proteins consist

of one or more polypeptides which are bound together. All peptides have a canonical ordering,

from the N-terminus, the residue with a free amine group, to the C-terminus, the residue with a

free carboxyl group. This matches the order that polypeptides are created during biological protein

synthesis. Figure 1.2 shows a ball and stick model of a small peptide.

2



Figure 1.1: The 21 types of amino acid encoded in eukaryotic DNA, categorized by their electrical prop-
erties. Full names, along with three letter and single letter abbreviations are given. Chemical structures are
oriented so that the carboxyl group, α-carbon, and amine groups are on top, with the side chain extending
downwards. This work is "Molecular structures of the 21 proteinogenic amino acids" by Dan Cojocari,
Princess Margaret Cancer Centre, University of Toronto. It is under a Creative Commons Attribution-Share
Alike 3.0 Unported license. File: https://commons.wikimedia.org/wiki/File:Molecular_structures_of_the_
21_proteinogenic_amino_acids.svg, License: https://creativecommons.org/licenses/by-sa/3.0/deed.en
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Figure 1.2: Ball and stick model of a peptide containing three amino acid residues (hydogens omitted).
Colors indicate, blue: α-carbon , orange: side chain, purple: carboxyl group after loss of OH, green: amine
group after loss of H. Peptide bonds are between purple and green atoms. The backbone extends horizontally
along blue, purple, and green atoms. Each sequence of atoms starting at an α-carbon and ending at the next
α-carbon lay in an amide plane. From left to right are Aspartic Acid, Alanine, and Leucine. Created with
Chimera [2].

A residue’s side chain influences how it interacts with other amino acids or other atoms and

molecules. For example, oppositely charged side chains are attracted to each other. Polar side

chains, being hydrophilic, are attracted to water molecules, and non-polar side chains, being hy-

drophobic, will prefer to avoid water and other polar molecules. Such interactions play an impor-

tant role in how proteins fold into 3D structures [6].

1.1.1 Protein Structure

Protein structure can be described via four levels of abstraction, termed primary, secondary,

tertiary, and quaternary structure. Primary structure refers to the sequence of amino acid residues

(from N-terminus to C-terminus) in a single polypeptide, and is determined by the sequence of

codons in the corresponding coding mRNA from which the protein is translated. Sequences are

typically written using a string of letters, where each unique letter corresponds to a different residue

type.
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The physical chemistry associated with peptide bonds gives rise to the property that the ni-

trogen and carbon atoms involved in the peptide bond, along with the adjacent α-carbons, all lie

within a plane, called the amide plane. Each α-carbon lies on the intersection between two amide

planes, and the planes are free to rotate with respect to each other. In some cases, side chains

prohibit certain relative angles due to steric constraints, which enforce that no two atoms may

occupy the same volume of space at the same time. In general, however, the angle between amide

planes provides flexibility in the peptide backbone, which allows for the formation of higher order

structures.

Secondary structure describes the local 3D structures that arise from the attraction of non-

adjacent residues in a polypeptide. There are three common categories of local structures: α-

helices, β-sheets, and loops. An α-helix occurs when the polypeptide coils into a barrel-like struc-

ture (like the threads of a screw) and residues from adjacent coils (a distance of three residues from

each other along the backbone) form hydrogen bonds with one another. A β-sheet occurs when

two non-adjacent sections of the polypeptide align next to each other such that residues in one of

the sections form hydrogen bonds with residues in the other section. β-sheets may be parallel or

anti-parallel, depending on the relative orientation of adjacent strands in the sheet. Figure 1.3 illus-

trates the difference between parallel and anti-parallel β-sheets. Some sections of the polypeptide

form neither helices nor sheets, and are called loops. These sections are more flexible than helices

or sheets due the lack of hydrogen bonds, and therefore are useful in connecting the end of one

helix/sheet to the beginning of another. Figure 1.4 shows a cartoon depiction of part of a protein,

with different secondary structural elements highlighted in different colors.

Helices and sheets provide some rigidity to a polypeptide, but it typically further folds into

a larger, tertiary structure, which may be globular, fibrous, or such that it resides on a cellular

membrane. After folding, some residues reside on the surface while others are buried in the core.

Because water makes up the majority of the cellular environment, protein surfaces have a higher

percentage of hydrophilic residues than cores, and cores likewise have a higher percentage of
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(a) Parallel β-sheets (b) Anti-parallel β-sheets

Figure 1.3: Cartoon examples of parallel and anti-parallel β-sheets. In parallel β-sheets, adjacent strands in
the sheet are oriented the same way, whereas in anti-parallel β-sheets, adjacent strands are oriented opposite
each other. Created with Chimera [2].

Figure 1.4: 3D cartoon of the the dehydratase domain of PpsC protein from Mycobacterium tuberculosis [3]
showing α-helices in blue, β-sheets in red, and loops in green. Created with Chimera [2].
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hydrophobic residues than surfaces. Protein cores also show higher evolutionary conservation

compared to surfaces [16].

Finally, in many cases multiple polypeptides combine together into a complex [6]. Quater-

nary structure describes the manner in which the individual polypeptides, known as subunits in

this context, combine together to form the complex. Protein complexes can be categorized as ei-

ther transient or permanent. This distinction reflects the difference in binding affinity (strength

of attraction) between single proteins in the complex, with permanent complexes having higher

and transient complexes having lower affinity. Complexes can also be categorized as either obli-

gate and non-obligate. The constituent proteins of obligate complexes typically exist only in the

complex, whereas for a non-obligate complex, each constituent protein exists both in the com-

plex and independently. Transience usually implies non-obligation and obligation usually implies

permanence, so a simpler classification of obligate vs. transient is also appropriate [17, 18]. The

temporary nature of transient interactions enables complex networks of interaction which give rise

to numerous cellular processes and the regulation thereof [18, 19]. Proteins in which all subunits

are identical are called homomeric whereas proteins with different subunits are called heteromeric.

Homomeric proteins are usually obligate and more conserved than heteromeric proteins [17] [16]

1.1.2 Protein Interfaces And Their Prediction

The locus of a protein-protein interaction is the interface, which is comprised of pairs of

residues, one from each interacting protein. These pairs may form a disulfide bond or salt bridge

which help anchor the two proteins together [16], but this is not always the case [19]. Residues

may not attract each other directly but still be considered part of the interface due to their prox-

imity. This is the case when hydrophobic residues from two proteins appear near each other in

the interface, since they do not attract each other, but this configuration is energetically favorable

compared to being exposed to water in the surrounding cellular environment [16,19]. Historically,

residues have been considered part of the interface if they are in contact with residues on the adja-

cent protein. This is typically determined in one of two ways, either the distance between any atom
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in the residue in question and any atom in the other protein is below a threshold, or the exposed

area of a residue drops sufficiently after complex formation [1, 16, 17, 19].

A survey of known protein complex structures from the Research Collaboratory for Structural

Bioinformatics (RCSB) Protein Data Bank (PDB) [12] has shown that interfaces have a higher

prevalence of hydrophobic residues, lower prevalence of hydrophilic residues, and more evolution-

ary conservation compared to non-interface surface regions [16]. The higher overall hydrophobic-

ity of an interface region biases the protein towards configurations in which the interface excludes

water by binding to another protein. The higher degree of conservation shows the functional sig-

nificance of the interfaces, although conservation is somewhat lower for transient compared to

obligate complexes [17]. Transient complexes also have a comparatively lower hydrophobicity

compared to obligate complexes, consistent with the fact that proteins in transient complexes ex-

ist outside of the complex, with interfaces exposed to water [17]. To overcome the unfavorable

energetic effects of burying more hydrophilic residues in an interface, transient interfaces usually

have higher numbers of hydrogen bonds [17]. It has also been shown that transient complexes

have less shape complementarity between the participating proteins compared to obligate com-

plexes [17]. Lastly, transient interfaces also tend to either be smaller in size (for weakly interacting

complexes) [17,18], or undergo more conformational change when forming (for strongly interact-

ing complexes) [18] compared to obligate complexes. These differences make transient interfaces

more difficult to distinguish from non-interface surface residues [18].

Historically, the problem of interface prediction has been formulated in two ways: partner-

independent and partner-specific prediction. The former variant considers a single residue from a

protein and attempts to answer the question: does this residue form part of the interface with some

other partner protein? The latter variant considers pairs of residues, each from a different protein,

and attempts to answer a more specific question: does this pair of residues constitute part of the

interface between these two proteins? The pairwise nature of partner-specific prediction allows

the consideration of the compatibility of a pair of residues, which has been found to increase
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performance [1, 20]. Methods of interface prediction include docking methods, template-based

methods, and machine learning methods.

Docking methods predict the 3D bound formation of two proteins in a complex, from which

the interface can be extracted. These methods use energy minimization techniques [21,22]. Unlike

template and machine learning methods, docking methods do not require a library of known inter-

faces in order to make good predictions, but are historically poor at accounting for conformational

change during complex formation [23].

Template based methods make predictions based on similar known interfaces. The protein

of interest is compared to a library of interfaces, and the interface is predicted from the most

similar interfaces from the library. Template methods rely on a non-redundant library and can

make predictions only when there is a sufficiently close match to an interface in the library [24].

Machine learning methods attempt to directly predict the interface rather than compare against

a template complex or predict the bound formation, however they still use information from a

library of complexes whose interfaces are known. Machine learning approaches have included

use of neural networks and support vector machines [20] [1]. The latest SVM based approach,

PArtner-specific Interacting Residue PREDictor (PAIRpred), uses pairwise kernels which operate

on pairs of residues and incorporates both sequence and structural information of residues. The

method performs well compared to existing docking and machine learning methods [1]. More

detail of prior work in interface prediction will be given in Chapter 2.
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Chapter 2

Prior Work in Interface Prediction

As previously mentioned, the experimental determination of protein complexes is time and re-

source intensive, prompting computational modeling approaches. Esmaielbeiki, Krawczyk, Knapp,

Nebel, & Deane [25] describe three slightly different computational problems: protein interaction

prediction, protein interface prediction, and protein-protein docking. The first problem seeks to

identify pairs of proteins which interact, elucidating the complicated protein interaction networks

that give rise to cellular processes. The second problem, and the focus of this thesis, is concerned

with identifying the specific residues or pairs of residues which make up the interface. The third

problem considers two specified proteins and seeks the bound 3D structure of their complex.

2.1 Docking

Docking begins with the known unbound structures of two proteins known to interact, and con-

ducts two main steps: search and scoring. During search, the proteins are translated and rotated

relative to each other and brought into contact to create several putative 3D bound structures for

the complex. The putative structures are then evaluated by a scoring function to identify the most

likely conformation of the complex. Different docking methods differ in their the search algo-

rithms and scoring functions. Scoring functions may incorporate complementarity in geometry,

chemistry, and electrostatics, or incorporate van der Walls forces or evidence based (i.e. statistical)

potentials [24] [26]. It is worth noting that docking methods can also be used to predict interfaces,

by first solving for the 3D structure of the complex and then extracting the interface from the

complex. Indeed, docking methods were some of the earliest computational approaches developed

for modeling protein interactions [26]. One of the major advantages of docking is its ability to

produce interface predictions ab initio without requiring examples of known interfaces, which is

particularly useful when experimental complex data are sparse or absent. Unfortunately, docking

methods traditionally suffer from relatively high false positive rates, are considerably less effective
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for complexes which undergo conformational change when binding than those that do not, and are

computationally expensive because of the vast search space [26] [24].

2.2 Other Early Methods

Some early alternatives to docking used sequence information, residue properties, and unbound

structures for each protein in the complex to directly predict the interface without predicting the

structure of the whole complex. Lichtarge, Bourne, & Cohen [27] used inferred evolutionary rela-

tionships between different proteins to identify conserved residues and then identified those con-

served residues which lay on the surface of the protein. This method was based on the hypothesis

that conserved surface residues must be vital to a protein’s function and therefore probably con-

stitute an interface. Pazos, Helmer-Citterich, Ausiello, & Valencia [28] took a similar approach,

but instead looked at evolutionary relationships between protein complexes and identified pairs of

residues between the proteins in the complex which have co-evolved. This method requires only

sequence information and therefore is applicable even in cases where the protein structures are

unknown, but relies on having sufficient data to infer evolutionary relationships. Additionally, this

method is partner-specific since it identifies residue pairs which show correlated changes. Gallet,

Charloteaux, Thomas, & Brasseur [29] used a sliding window on a protein sequence and calculated

measures of hydrophobicity in a region, which can easily be calculated knowing the residue iden-

tities and secondary structure. This method requires no phylogenetic information so is applicable

even when no close evolutionary relatives can be identified.

Early methods such as those listed above were crafted for the available data and computa-

tional resources of the time, but were unable to fully account for the growing body of research

surrounding protein interfaces and their properties, as in Jones & Thornton [17]. It was Jones &

Thornton [30] that proposed a method which incorporates multiple structural features such as sur-

face planarity, protrusion, and accessible surface area, with residue level features such as solvation

potential, hydrophobicity, and interface residue propensity. They constructed a manual scoring

function whose inputs are the aforementioned features and output is a score, where higher scores
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are intended to correspond with members of the interface. They constructed a different scor-

ing function for each of three different categories of complex, reflecting observations made into

the characteristics of different complex types. These categories were homomeric and small het-

eromeric proteins, larger heteromeric proteins, and antibody/antigen complexes. Prediction was

performed on small patches of residues. Like docking, these methods avoid using examples of

known interfaces when making predictions.

Evaluation and comparison of early methods was challenging due to the paucity of experimen-

tally determined protein interfaces [25]. Thankfully, the turn of the twenty first century coincided

with an increase in the number of experimentally determined structures added to databases such as

the Protein Data Bank [12]. Curated subsets also emerged which focused on evaluating protein-

protein docking methods, such as the Critical Assessment of Predicted Interactions (CAPRI) [31]

and the Docking Benchmark Dataset (DBD) [32]. These datasets also became useful in the evalu-

ation (and sometimes training) of interface prediction methods.

2.3 Data Driven Methods

The increasing availability of data and increased interest in interface prediction led to a grow-

ing number and diversity of approaches. Template based methods emerged which utilize a non-

redundant library of known protein interfaces to make predictions about unknown proteins. For a

given query protein, a search is made in the library for known complexes where a partner is similar

to the query protein. The interface of the query protein is then inferred from the interfaces of the

most similar query results. Similarity may be measured via sequence or structural similarity [25].

Other data-driven methods have appeared which are based on either machine learning or sta-

tistical methods. Some early machine learning based approaches used a support vector machine

(SVM) to classify residues as either belonging to an interface or not. An SVM essentially provides

a scoring function which is dependent on training data rather than being manually constructed.

Koike & Takagi [33] trained an SVM classifier to perform partner-independent prediction of in-

terfaces. They represented a residue by its profile, a vector of relative abundances of each amino
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acid type among homologous proteins at that location. They experimented with different feature

representations to make predictions at a particular residue, finding that incorporating profiles from

sequential or spatially neighboring residues improves performance, as does incorporating acces-

sible surface area and accounting for the relative interface size. Bradford & Westhead [34] also

performed partner-independent prediction with an SVM classifier, but instead made predictions for

surface patches rather than individual residues. Zhou & Shan [35] were among the first to train a

neural network for partner-independent prediction. They incorporated profile and solvent exposure

of residues and their neighbors to make predictions at the residue level. Their method uses residue

profiles. In a follow up paper, Chen & Zhou [36] used an ensemble of neural networks to make a

consensus prediction concerning a residue of interest.

Various statistical approaches to interface prediction have also been proposed, many of which

attempt to model the interdependence between different residues and between residue features.

Bradford, Needham, Bulpitt, & Westhead [37] compared a naive Bayes approach to a Bayesian

network, which accounts for observed correlations between features, and found that both perform

equivalently when predicting interface patches. They also found that these methods perform well

even when some data are missing, particularly when conservation scores can’t be determined due

the absence of homologs. Friedrich, Pils, Dandekar, Schultz, & Müller [38] adapted a hidden

Markov model (HMM) originally used for homology detection [39] in order to detect interacting

residues. The advantage of an HMM is the ability to jointly model all residues in a sequence

at once. Li, Lin, Wang, & Liu [40] generalized this joint modeling to an undirected graphical

model using conditional random fields (CRFs) which performs comparably to other data based

approaches.

Early machine learning and statistical methods for interface prediction provide predictions at

the individual residue or patch level, in contrast to docking methods which generate global so-

lutions for the complex. These methods also typically incorporate both sequence and structural

information in order to make partner-independent predictions. However, in a 2007 review paper,
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Zhou & Qin [41] identified the need for partner-specific methods in order to improve prediction

specificity.

2.4 Partner Specific Methods

Whereas early partner-specific interface prediction methods are based on sequence co-evolution

or derived from docking solutions, recent approaches have also included machine learning based

methods. Notably, two such methods have incorporated the same types of features as the partner-

independent machine learning methods, but have instead considered pairs of residues from separate

proteins when making predictions.

In Prediciton of Protein-protein Interacting Position Pairs (PPiPP), Ahmad & Mizuguchi [20]

used a neural network which only uses sequence based features. They experimented with two

types of sequence based features, a sparse encoding and a position specific scoring matrix (PSSM)

encoding. The sparse encoding is a one-hot binary array of length 20 indicating the amino acid

type. The PSSM encoding instead represents each amino acid type by its log-odds frequency in

iterative multiple-sequence-alignment results. Using these features, they also experimented with

different sized sequence-windows, where a residue of interest is represented by the concatenation

of feature vectors of all residues inside a sequence window. Both the feature representations and the

sequence windows are in keeping with prior work in machine learning based partner-independent

predictors. Residues whose windows extended past the end of the bounds of the sequence were

excluded from the training set.

The data used are from version 3.0 of the Docking Benchmark Dataset [42], which includes

124 unbound and bound structures of both proteins. A pair of residues, one from each protein

was considered positive (part of the interface) if they are within 6Å of each other and negative

otherwise. Training examples were created by concatenating the feature representation of each

residue in a pair together. Due to the inherent asymmetry of this concatenation, two examples

were produced for each pair by concatenating the representations in both orders (AB and BA).

Predictions for pairs were made by taking the average prediction of the two orderings. There
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are significantly fewer positive than negative examples, so negative examples were sampled to

prevent extreme class imbalance. Specifically, either 2% or 1000 negative examples were randomly

selected, whichever was smaller.

The model consists of an ensemble of 24 neural networks, each using different window sizes

for the sparse and PSSM encodings. The predictions from each of these models are averaged to

produce a final prediction for a residue pair. Networks were evaluated in a leave-one-out fashion

(train on all but one complex and test performance on the omitted complex). Performance was

measured using area under the receiver operating characteristic curve (AUC) for each left out

complex and averaged.

The ensemble achieved an AUC of 72.9% compared to 67.9% for a single neural network with

windows of size 7 for both encodings. The authors compared this to an analogously constructed

neural network ensemble which performs partner-independent prediction. Examples consist of a

single residue which is positive if it is part of an interface and negative otherwise. Partner inde-

pendent predictions were naively converted to partner-specific predictions by averaging the scores

of each residue in the pair, yielding an AUC of 71.0%, worse than the partner-specific predic-

tor. Conversely, partner-specific predictions were converted to partner-independent predictions

by taking the max over all potential neighbors. This yielded an AUC of 66.1% for the partner-

independent prediction problem, better than the 63.8% AUC of the partner-independent model.

Thus, the partner-specific model outperformed the partner-independent model on both partner-

specific and partner-independent predictions.

In PAIRPred, Minhas, Geiss, & Ben-Hur [1] incorporated custom symmetric kernels into an

SVM formulation [1]. In addition, this method includes structural information for each residue

as well. The structure based features consisted of the relative accessible surface area (rASA),

residue depth, half sphere amino acid composition, and protrusion index. The sequence based

features included the same PSSM encoding as PPiPP, a position frequency scoring matrix (PSFM)

encoding (like the PSSM encoding but with raw frequencies instead of log-odd frequencies), and

predicted rASA (prASA).
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The authors used complexes from DBD version 3.0 [42] for comparison to PPiPP. They also

utilized the updated DBD version 4.0 [43], which is a superset of the complexes in version 3.0, and

complexes from the CAPRI [44] experiment.

The authors constructed specialized symmetric pairwise kernels which compute a similarity

between any two pairs of residues, independent of the ordering of each pair. Each pairwise kernel

is constructed by taking a symmetric combination of kernels for individual residues, where residue

kernels were themselves sums of radial basis function kernels for each feature type. Several in-

dividual pairwise kernels are summed and the result is normalized to produce the final pairwise

kernel. The authors also investigated a postprocessing step where pair scores are smoothed based

on the scores in a neighborhood around each residue. Cross validation was used to tune the soft

margin parameter C and the residue kernels and pairwise kernels were optimized in similar fash-

ion. Following the same leave-one-out procedure as Ahmad & Mizuguchi, PAIRPred achieved

an AUC of 87.3% before any postprocessing, and 88.7% after post processing. When using only

sequence based features, PAIRPred achieved an AUC of 80.9%, which demonstrates a significant

improvement over PPiPP even in the absence of structural features. Partner-independent predic-

tion was performed by taking the maximum score across all potential neighbors, and achieved an

AUC of 70.8% and 77.0% using only sequence features and all features respectively, which also

outperforms PPiPP’s best partner-independent performance.

Minhas et al. [1] note that the extreme class imbalance inherent to the partner-specific classi-

fication problem means AUC is not as easy to interpret. Therefore they also calculate the rank of

the first positive prediction (RFPP) at a given percentile, where RFPP(p) = q means that p of the

complexes in the test set have at least one true positive pair among the top q predictions. Low val-

ues of q corresponding to high values of p indicate better classifier performance because a higher

percentage of complexes have a true positive near the top predictions. The authors argue that this

is more relevant to a biologist because it indicates the trustworthiness of the top few predictions

of the classifier. PAIRPred outperforms PPiPP for values of p equal to 10, 25, 50, and 75, but is

worse at the 90% level.
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The authors conclude by noting that there is much room for improvement in partner-specific

interface prediction, particularly for complexes with a high degree of conformational change. They

propose adding new features to PAIRPred which capture shape complementarity between binding

interfaces, co-evolution, and protein flexibility. However, PAIRPred’s improvement over PPiPP

suggests that not only is the choice of features important to classifier performance, but also their

representation and the construction of the predictor itself. This supports the investigations of this

thesis into the graph representation of proteins and new convolution methods which operate on

graphs. Chapter 3 gives a primer on the convolutional neural networks which helped inspire these

new methods.
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Chapter 3

Artificial Neural Networks

Artificial neural networks are a class of machine learning algorithms which are loosely in-

spired by neuroscientific models of how biological neuronal networks operate. Early work in neu-

roscience by Santiago Ramón y Cajal indicated that the nervous system is composed of complex

networks of individual cells, later called neurons [45]. These neurons consist of a soma and axon.

The soma is the main part of the cell, and the axon extends from the soma, attaching to one or

more somata from other neurons. A neuron creates a so called "action potential" if it is sufficiently

excited by the axons attached to it, which propagates down its own axon to help excite or inhibit

other neurons to which it is attached [46]. In this way, electrical signals are propagated through a

neronal network. Work by Hodgkin & Huxley described mathematically how action potentials are

generated in neurons and propagate from one neuron to another [47].

Artificial neural networks mimic this behavior with a mathematical network of artificial neu-

rons. Mathematical signals propagate through this network, whereby each neuron performs a

simple mathematical operation on its inputs to determine its output. Feed forward artificial neural

networks are a subclass of artificial neural networks which contain no cycles, that is, there is no

sequence of input/output connections that start and end at the same neuron. This class of artifi-

cial neural network always contains at least one input neuron with nothing feeding into it, and at

least one output neuron which feeds into nothing. They therefore constitute a function, where the

input is applied to the input neurons, the signal propagates through the network, and the output

is extracted from the output neurons. If the neuron operations are parameterized, then it may be

possible to approximate various other functions through the appropriate selection of parameters.

Let the function defined by a feed forward artificial neural network be denoted by f(x|Θ), where

x is the input vector and Θ is the complete set of parameters.

For feed forward neural networks, f is computed in a sequence of layers, each consisting of

some number of neurons, which perform comparatively simple mathematical operations on their
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inputs to produce an output. A layer’s output is either used as input to the subsequent layer, or

taken as the network output if there are no subsequent layers. By convention, the input vector x

is considered the first layer of a network, with one neuron per input, where each neuron takes the

value of the respective input. The last layer in the network produces the function’s output, either a

scalar or vector of values. All intermediate layers are termed hidden layers, each of which accepts

the output of the preceding layer and produces one output per neuron in that layer. The number of

layers in a network (besides the first layer) is its depth. Mathematically, we can express the output

for layer i as hi(xi|θi), where xi is the input to the layer and θi is the set of parameters for that

layer.

Some important notes on terminology: artificial neurons are also called units, which will be

the preferred term hereafter to avoid confusion with biological neurons. Also, omitting the artifi-

cial from artificial neural networks is common parlance in the literature, and will be done in this

thesis for convenience. To avoid possible confusion, biological neuronal networks will always be

explicitly referred to as such.

A common form of neural network layer is a dense layer, in which each unit calculates a

weighted sum of the layer inputs, where the set of weights is unique to each unit. It is also common

to add a scalar bias term and apply a nonlinear activation function to the weighted sum. Dense

layers have a convenient mathematical representation:

hi(xi|W, b) = σ(Wixi + bi), (3.1)

where i indexes the layer, Wi is a matrix of weights, xi is the layer input, bi is a vector of biases,

and σ(·) is a nonlinear activation function. If there are n inputs to a layer and m units in the layer,

then W ∈ R
n×m and b ∈ R

m. The expression Wx + b is the signal, and h is the activation. For

hidden layers, activations have traditionally taken the form of a sigmoidal, or "s-shaped", function

such as the logistic function, σ(x) = 1/(1 + e−x), or hyperbolic tangent, σ(x) = tanh(x). These

sigmoidal functions switch from "off" (low value) to "on" (high value) if the weighted sum in

the argument is sufficiently high. This loosely mimics the way that signals from attached axons
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Figure 3.1: A two layer neural network with two inputs, three hidden units, and a single output. The hidden
layer and output are both dense layers, and arrows depict the weighted sum computed for each unit. Weights
for each layer are numbered according to their index in the weight matrix W

combine to trigger an action potential in a neuron. Figure 3.1 shows a graphical depiction of a

parameterized, feed forward artificial neural network.

Despite being conceptually simple, this formulation of neural networks is capable of approx-

imating any continuous function on a compact subset in R with arbitrarily small error, given

enough hidden units [48]. The challenge of using neural networks for function approximation

is in finding the appropriate set of parameters to approximate the true function. For simple feed

forward neural networks, this is accomplished by quantifying the error between the true function

Y = (y1, y1, ..., yN), and the approximation for a given training data set X = (x1, x2, ..., xN),

using a differentiable loss function L(Θ|Y,X). Recall that Θ is the total set of neural network pa-

rameters, and note that L is usually a function of the network output and the true output for a The

weights are updated by differentiating L with respect to Θ and "taking a step" in parameter space

opposite the direction of the gradient. This update step can be repeated iteratively in a process

called gradient descent, which was first proposed by Augustin-Louis Cauchy [49]. Mathemati-

cally, parameters are updated according to:

Θk+1 = Θk − η∇L(Θk|Y,X) = Θk − η

N
∑

n=1

∇L(Θk|yn, xn), (3.2)
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where k indicates the iteration and η is a tunable step size. The gradient can be efficiently calculated

using an algorithm called backpropagation [50]. Weights are usually initialized by drawing from

random distributions that have some empirical or theoretical justification [51]. A variant of this

algorithm, called stochastic gradient descent (SCG) performs an update using a gradient computed

from a random sample of the training data at each iteration. There is also a batched version where

the training data are randomly shuffled and divided into a fixed number of equal sized mini-batches,

and an update is performed on each one. When all mini-batches have been used in an update step,

this constitutes an epoch. Training can be repeated for a fixed number of epochs or until the

parameters sufficiently converge. Gradient descent is a first order method because it uses only the

gradient of the loss function, however various second order methods which incorporate the Hessian

have also been used to train neural networks [52–55].

Like many machine learning algorithms, neural networks risk overfitting, in which the network

learns to approximate the training data (which usually contain noise), rather than the underly-

ing function from which the training data are assumed to be drawn. This hinders the ability of

neural networks to generalize to unseen data. In neural networks, overfitting is commonly the re-

sult of an overcomplete parameterization coupled with overtraining [56, 57]. Many regularization

techniques have been introduced to prevent overfitting of neural networks, including early stop-

ping [58], model pruning [56], weight decay [59], lateral inhibition [60], induced sparsity [61,62],

and dropout [63], with dropout being one of the most common.

Dropout consists of randomly dropping units from the network during the training phase. Each

time a training example is presented to the network, each unit in the network is dropped with

probability p, commonly 0.5. Each application of dropout can be seen as generating a new network

whose units are a subset of the units in the original network. Given n units in a network, there are

2n possible dropout networks which all share weights with each other. During testing, no dropout

is performed, and weights are rescaled by p. This is equivalent to averaging the prediction of each

dropout network. Dropout helps prevent overfitting by limiting the effective number of parameters

in each dropout network and reducing the amount of co-adaptation among units in the network [63].
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In recent years, more advanced forms of neural networks under the moniker deep learning have

demonstrated success in sophisticated tasks, particularly for image and speech recognition [60,64–

67]. A common task is labeling an image or audio sample according to its content. Labeling tasks

are commonly decomposed into many binary tasks, where a neural network must indicate whether

a particular label is appropriate. Positive examples are those where the label is appropriate, and

negative examples are those where it is not. Deep learning has also been applied in a variety

of other applications such as quantitative structure activity relationship (QSAR) prediction [68],

particle detection [69], and reinforcement learning [70]. These advances were catalyzed by the

availability of large volumes of labeled data [71, 72] and the improvements in computing power

from general purpose graphical processing units (GP-GPUs) and distributed systems [73,74]. Such

factors allow experimentation with larger networks and more complicated layer operations such as

convolution, which are described in the following section.

3.1 Convolutional Neural Networks

Accurately labeling an image using a neural network often relies on the network’s ability to

detect low level features in the image such as edges and textures, which collectively indicate the

image’s content [61]. This is accomplished by the appropriate parameter settings, which maximize

a unit’s activation when presented with a feature of interest, and can be learned through the standard

backpropagation algorithm using training images. The challenge, however, is that the relevant

features may only occur in certain regions of the training images, so the network may not be able

to recognize that feature in a new region. Convolutional layers explicitly allow detection of features

in a translation invariant way, through a clever weight sharing strategy.

To illustrate the limitation of dense layers in translation invariant feature detection, consider

the following example. Suppose the labeling task is to determine if an image does or does not

contain a cat. Suppose further that no training image contains a cat in the upper left corner of the

image. Therefore it is possible, even if the network has learned which low level features indicate

the presence of a cat, that it will not recognize a cat contained in the upper left corner of the image,
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since it has not been explicitly shown examples of this. This may seem unlikely, but consider that

the network does not incorporate any semantic meaning of the word "cat", only that a certain set of

example images are positive examples and a certain set are negative examples. Indeed, consider the

slightly different labeling task where the classes being considered are "contains a cat anywhere but

the top left corner" and its negation. In this case, the same set of training images are appropriate

and the hope is that the network would not classify images with cats in the upper left corner as

positive examples. In most cases, the labeling task is more like the former example than the latter,

in which case it would be beneficial for the network to learn to detect objects in a translation

invariant fashion. This is the primary purpose of convolutional layers.

The term convolution is inherited from the field of functional analysis, where two functions, f

and g, are combined in the following way to generate a third function, (f ∗ g):

(f ∗ g)(t) =
∫ ∞

−∞
f(τ) g(t− τ) dτ. (3.3)

The convolution involves reflecting one function about the y axis, shifting it with respect to the

other function, and integrating the product. The value of t indicates the magnitude of shift. If

f, g : Z → R, then the discrete convolution is analogously defined as:

(f ∗ g)(t) =
∞
∑

τ=−∞
f(τ) g(t− τ). (3.4)

where t, τ ∈ Z. If we imagine f and g to be infinite dimensional vectors indexed by τ , then

convolution amounts to reversing g, shifting it by t units relative to f , and taking the dot product of

the two vectors. The same operation can be defined for two finite vectors by making them infinite

by appending infinitely many zeros before and after them. The zero portions contribute nothing to

the convolution and allow the original finite vectors to be partially overlapping. A finite vector can

be extracted from the result, since the convolution function is nonzero only when the convolved

vectors overlap. Figure 3.2 illustrates the analogy between continuous convolution and discrete

convolution of finite vectors.
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Figure 3.2: The relative position of two functions at four different values of t, for both continuous (left)
and discrete (right) convolution. The input functions are blue and green, whereas the output for that time is
indicated in red. In the continuous case, the functions are multiplied and integrated whereas in the discrete
case, the dot product of the two arrays is taken (extending either array with zeros when necessary). Note
that numbers shown are for illustration purposes only.
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Figure 3.3: Application of a 3x3 convolution filter to an input image. The dot product is taken between the
filter (green) and the function (blue) to produce a scalar output (red). Three positions of the filter are shown,
each with a unique receptive field and output position.

Convolution can be extended for functions of two variables:

(f ∗ g)(t1, t2) =
∞
∑

τ1=−∞

∞
∑

τ2=−∞
f(τ1, τ2) g(t1 − τ1, t2 − τ2), (3.5)

where t1, t2, τ1, τ2 ∈ Z. Here, f and g can be interpreted as infinite matrices, where convolution

involves reversing g in both indices, shifting it in both indices relative to f , and taking the dot

product with f . Again, this may be adapted for two finite matrices using the same infinite extension

of zeros as for vectors. This discrete, two dimensional, finite analog to convolution forms the basis

of convolutional layers in neural networks.

To understand convolution of a monochrome pixelated image, consider it as a finite matrix

where the matrix entries contain pixel values. Further, consider a smaller matrix called a filter

which entries are filter weights. By convolving the filter over the image (as previously described),

a new matrix is created where each value is the dot product of the matrices for a given shift of the

filter relative to the image. Technically the filter can be assumed reflected already, since the filter

weights are trainable parameters anyways. The region of the image covered by the filter is called

the receptive field, and the dot product can be understood as taking a weighted sum of values in

the receptive field, where the weights are precisely the filter weights. As with dense layers, each

weighted sum is typically passed through some nonlinear activation function. Figure 3.3 depicts

the application of a filter to the input of an image in three distinct positions. The dot product

between filter and image naturally extends to images with multiple channels (colors), as long as

the filter has the same number of channels as the image.

25



Figure 3.4: A convolutional neural network, consisting of alternating convolution and pooling layers, fol-
lowed by two dense layers, producing a scalar output. Stacked rectangles indicate multiple channels. These
convolutional layers increase the number of channels, which is typical but not necessary. Pooling downsam-
ples the image but retains the same number of channels.

The result of a convolution in a particular position depends on the values of the input image and

the weights, and indeed there exist weights which produce larger outputs only in the presence of

particular local features in the input. Hence convolution can be used in a neural network to detect

patterns in the input. Furthermore, since a filter is convolved across the whole image, feature

detection can be performed in a translation invariant way as desired. A filter may only detect a

particular local feature, so multiple filters can be used to detect multiple features simultaneously,

each producing a different channel in the output. Note that the output of a convolution layer

resembles the structure of the input, so convolutional layers may be stacked.

Convolutional neural networks often incorporate pooling layers, which reduce a region of the

input (e.g., 3x3 pixels for an image) to a single grid element that takes either the maximum or

average value (per channel) of the region. For simplicity in this thesis, grid elements will be called

pixels, regardless of grid dimensionality. Pooling allows downsampling of the grid, and is often

performed between convolutional layers. It’s also common to include a series of dense layers after

all convolutional layers which combine the results of convolution in a way relevant to the learning

task. In order to do this, the multichannel input must first be flattened into a one dimensional

vector. Figure 3.4 shows an example of a complete convolutional neural network.

The design of convolutional layers gives rise to certain properties which prove useful in image

related tasks:
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• Structural awareness. Convolutional filters are constructed so that they exploit the structural

characteristics of the input. Rather than treat each pixel as independent of all others, convo-

lution operates on local regions of pixels, allowing filters to detect spatial correlations in a

straightforward manner.

• Locality. Filters are typically significantly smaller than the size of the input, so for a given

position, they are operating on a local neighborhood (receptive field) of the input image. Any

features learned by a filter will necessarily be local as well. The advantage of local features

is that they are simpler and more universal than global features, since they can be combined

to construct a wide variety of complex patterns (see abstraction below). For example, filters

which detect edges or textures will be more useful to subsequent layers in the network than

a filter which recognizes only a single object or animal.

• Translation invariance. As discussed, a filter "inspects" each part of the image for a partic-

ular pattern, regardless of where that pattern occurred in the training images. This improves

generalizability because during training certain features may be presented in limited regions

of the image, but detection of those features can still operate on a global scale.

• Abstraction. Whereas a network’s first convolutional layer detects patterns in the input, sub-

sequent layers detect patterns in the output of previous layers. This promotes a hierarchical

abstraction of the input, where early layers detect local features, and subsequent layers com-

bine features into more complex patterns. For example, early filters may detect edges of

varying orientations, middle filters may detect combinations of edges which indicate curves

in space, and latter filters may detect combinations of curves which indicate a particular

handwritten letter or digit.

• Resistence to overfitting. One interpretation of a convolutional layer is that each filter is a

series of units, each responsible for a distinct receptive field on the input. A unit has nonzero

weights only for the regions of the input in its receptive field, and all units in the filters share

the same weights. This combination of weight sharing and sparsity make a convolutional
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layer less prone to overfitting compared to a dense layer with the same number of units.

Because of the weight sharing in convolutional layers, the final dense layers often contain

the majority of the parameters in the network.

The above properties make convolutional neural networks well suited for structured data with

a natural hierarchy of abstraction. The structural hierarchy of proteins suggests that convolution

might be useful in interface prediction. Unfortunately, neither protein residues, nor their con-

stituent atoms are aligned in a regular grid, so the above definition of convolution cannot be di-

rectly applied. In Chapter 4, convolutions are introduced which operate on irregular structures,

namely graphs, and a graphical representation of proteins is presented which allows use of graph

convolution for protein interface prediction.
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Chapter 4

Pairwise Graph Convolutional Networks for Interface

Prediction

The methods presented in this thesis were motivated by a desire to exploit the local structure

around a residue when performing interface prediction. The biological reasoning for this is that

a residue’s neighborhood influences its propensity to participate in an interface. It was noted in

Chapter 3 that convolutional neural networks are one way of detecting features in a local neighbor-

hood, but they are limited to regular grids. Unfortunately, proteins cannot naturally be represented

as a regular grid, so convolution must be developed for a more natural representation: graphs.

4.1 Proteins As Graphs

An undirected, unweighted graph G consists of a set of vertices, V = {v1, v2, ..., vn}, and a

set of edges, E = {e1, e2, ..., em} where each edge is incident to two vertices and there is at most

one edge between two vertices. One way of representing proteins as graphs is to let each vertex

represent a residue in the protein, and each edge represent the relationship between two residues.

Thus any information pertaining to a particular residue can be associated with the relevant vertex

in the form of a feature vector. The features used in this work are drawn from features used in prior

interface prediction work [1]. Vertex features include the folloeing:

• Position specific scoring matrix, which measures the prevalence of each amino acid type

amongst protein domains similar to a region around the residue of interest.

• Relative Accessible Surface Area, which reflects the fraction of a residue that is exposed to

a potential solvent.

• Residue Depth, which is the minimum distance from the residue to the surface of the protein.
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• Protrusion Index, which measures the degree to which a sphere of radius 10 Å is filled with

atoms.

• Hydrophobicity, which indicates the tendency for an amino acid to avoid water.

• Half Sphere Amino Acid Composition, which captures the amino acid composition in two

half spheres around the residue of interest.

Likewise, any information about the relationship between two residues can be associated with the

relevant edge. The edge features used here include:

• Inter-residue distance, which gives greater weights to residues that are closer together.

• Relative orientation, which captures the normalized angle between the peptide plane of each

residue.

These edge features are defined between any two residues in the protein, so the graph is complete.

A detailed explanation of each feature is contained in Appendix A.

This representation is an abstraction of the original protein to a well studied mathematical

object, with two notable facts. First, the graph itself does not rely on a coordinate system, as is

the case when working with raw 3D positions. Second, the features contained on the graph are

also not tied to a coordinate system. This is because they either describe coordinate free attributes

of individual residues, or they describe relative spatial relationships between two residues. These

facts make a protein graph invariant to rotations or translations in space. However, since the graph

was constructed from points in 3D space, local neighborhoods of vertices can be defined using

spatial proximity. This is useful when designing convolutions that use a local neighborhood as a

receptive field. We now turn our attention to graph convolution

4.2 Graph Convolution

Recent years have seen increased attention to problems involving graph structured data, prompt-

ing developments in graph convolution to perform various tasks on those data [75]. These develop-

ments allow leveraging of deep learning techniques, which have shown great success for problems
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on regular grids. Though each variant of graph convolution is tailored to suit the data and prob-

lem being addressed, there are some common approaches which merit describing generally. These

approaches generally fall into two categories: spectral and spatial.

4.2.1 Spectral and Spatial Graph Convolution

Spectral methods of graph convolution are based on linear functions in the frequency domain

of a graph, defined using the laplacian operator L = I − D−1/2WD−1/2, where I is the identity

matrix, W is a matrix of edge weights, and D is a diagonal matrix containing the degree of each

vertex [76–78]. Each filter in a spectral convolution implies a weighting of each frequency in the

spectral decomposition of the graph [79]. In physics, the Laplacian operator is used to model the

process of diffusion. In a similar way, the graph Laplacian can be thought of as modeling diffusion

along the edges of the graph.

Spatial approaches instead directly model the diffusion process through a transition matrix, or

by defining operations in a localized neighborhood of a central vertex [77, 80]. In the latter, each

neighborhood constitutes a receptive field where a convolution operation is performed (see Figure

4.1). Spatial convolution commonly involves a vector of weights and takes a weighted sum of

neighbors, much like a discrete convolution on a grid can be viewed as taking a weighted sum

of pixels within the receptive field. Spatial convolution is more directly analogous to grid based

convolution as described in Chapter 3. There is a critical difference, however, in that receptive

fields from different parts of a graph have no natural correspondence with one another.

4.2.2 Receptive Field Correspondence in Spatial Convolution

Grid receptive fields have defined positions, such as "upper left most" or "bottom middle".

Therefore weights can be applied consistently across receptive fields such that each weight is

always applied to the same position. With graphs, there is often no such correspondence between

receptive fields, since vertices are inherently unordered and lack a specific position (recall their

coordinate free nature). The only well defined position is the center, but the problem persists in the

neighbors. See Figure 4.2. In fact, even the number of neighbors may vary from one receptive field
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Figure 4.1: Receptive fields in a graph context, where each receptive field is defined around a central vertex.
The result of convolution is applied to the central vertex in the receptive field.

Figure 4.2: The difference between grid receptive fields and graph receptive fields with respect to corre-
spondence. Grid receptive fields give rise to positions (denoted by color) which are consistent from one
receptive field to another. Graphs have no positions other than the central vertex (in blue).

to another, depending on the definition of a local neighborhood. Hence the consistent application

of weights across receptive fields is only possible after these issues have been addressed. This is

typically done in one of two ways:

1. Imposed ordering of neighbors. This approach establishes a correspondence between two

receptive fields by ordering the neighbors in each and associating neighbors that share a

common position. Ordering methods are either based on vertex characteristics, like degree

and betweenness centrality, or domain specific knowledge [81, 82]. They typically require

the number of neighbors in a receptive field to remain the same. This approach allows filter

weights which are applied to a particular position in the ordering, which, it is assumed,
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Figure 4.3: Two approaches of establishing correspondence between the neighbors of receptive fields A
and B. Central vertices are shown in blue and neighbors in green. The central vertices always correspond
with one another. Left: neighbors are ordered and placed into correspondence based on position. Unique
weights (w2–w4) can then be applied to each position in the order. Right: neighbors are left unordered and
treated identically. This requires that the same weights (w2) be used for all neighbors.

has some significance across all receptive fields. If the imposed ordering is arbitrary, this

approach has limited utility. Methods following this approach can be called ordered.

2. Identical treatment of neighbors. This approach ignores the need to establish a correspon-

dence between receptive fields and instead treats all neighbors identically. Rather than apply

different weights to neighbors depending on their position in an ordering, the same weights

are applied to each neighbor. This allows for different sizes of receptive fields and avoids

choosing an ordering method, but lacks the ability to treat each neighbor uniquely. Methods

following this approach can be called order-free.

Figure 4.3 depicts both approaches. Examples of each were evaluated for this thesis. In addi-

tion, proposed convolutions were examined which attempt to incorporate the advantages of both

ordered and order-free methods. Below is a description of each existing method followed by the

proposed methods presented in this thesis.
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4.2.3 Diffusion Based Method

As mentioned, spectral methods utilize the Laplacian operator, which is used to model diffusion

processes. Although no spectral methods were examined in this thesis, a spatial diffusion method

was. Atwood & Towsley [80] proposed a Diffusion Convolutional Neural Network (DCNN) which

converts a graph’s weight matrix to a transition matrix by normalizing its rows. The transition ma-

trix P is raised to successive exponents, generating a power series, with each power corresponding

to all walks of length equivalent to that power. For a maximum power of L, the activation of a

vertex is:

h(xi|W ) = σ

( L
∑

l=0

(Wl· ⊙ P lX)

)

, (4.1)

where W is a matrix of weights, Wl· is its lth row, ⊙ denotes broadcasted elementwise multipli-

cation, and X is a matrix of all vertices, where each row is a vertex and each column a different

feature. For each power l, all vertices that have a random walk of length l that end at the vertex

of interest are summed together, weighted by the walk probability. This sum is then multiplied

elementwise with a weight vector and summed with the result of all other powers to produce the

overall signal. Unlike other spatial convolutions presented in this thesis, this method does not use

a receptive field, instead relying on the similarity matrix to indicate proximity.

4.2.4 Ordered Method

Niepert, Ahmed, & Kutzkov [81] described an ordered graph convolution, PATCHY-SAN,

which performs classification at the graph level. This method constructs local neighborhoods

and orders neighboring vertices according to a normalization procedure. The ordered vertices

serve as the receptive field for convolution at the central vertex, which is also in the ordering. If

(x1, x2, ..., xk) is the ordered list of vertices, then convolution takes the form:

h(xi|{Wj}, b) = σ

(

1

k

k
∑

j=1

(Wjxj) + b

)

, (4.2)
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where Wj is the weight matrix for position j in the ordering. A natural ordering technique is one

which places the central vertex first and orders its neighbors from least to greatest distance from

the center. In this way, one weight matrix is used for all central vertices, another for all nearest

neighbors, etc. The vertex ordering also imposes a lexicographic ordering on the neighborhood

edges as well, so unique weights can be used to generate a signal from each edge. Adding this

term to the convolution generates:

h(xi|{Wj}, {Wjk}, b) = σ

(

1

k

k
∑

j=1

(Wjxj) +
1

k2

k−1
∑

j=1

k
∑

l=j+1

(WjkAjk) + b

)

, (4.3)

where Wjl is the weight matrix associated with edge (j, l) in the lexicographic ordering, and Ajk

is the feature vector associated with edge (j, k). Originally, Niepert, et al., convolved vertices and

edges separately and combined them in a subsequent layer. Classification is then performed on

the whole graph level. For interface prediction however, the edges and vertex signals are averaged

together and applied to the central vertex so that repeated graph convolutions may be performed

without losing the graph structure.

4.2.5 Order-Free Methods

One of the simplest forms of order-free graph convolution was proposed by Duvenaud &

Maclaurin, et al. [82], which was used for generating molecular fingerprints. This method uses

a single set of weights for all vertices in the receptive field, including the central vertex:

h(xi|W, b) = σ

(

Wxi +
1

|Ni|
W

∑

j∈Ni

(xj) + b

)

, (4.4)

where Ni is the index set of all neighbors of xi. In the original formulation, no bias term was

included, and the sum was not divided by the neighborhood size. However, when used for interface

prediction, including the bias and normalization provided better overall results.

As mentioned, center vertices may be treated separately from the neighbors, even if all neigh-

bors are treated identically. Schlichtkrull & Kipf [83] proposed such an approach called Relational
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Graph Convolutional Networks, or R-GCN. Their methods were developed for use in knowledge

bases, graph structures where the vertices are named entities and the edges capture the many bi-

nary relationships between the entities. To convolve a vertex, they take the neighborhood defined

by each relation type and sum the signal from all the neighbors in that neighborhood. The resultant

signal is the sum of signals from each relation type. For protein graphs, spatial proximity is the

only method for determining neighborhoods that makes sense biologically, so there is only one

neighborhood. The adapted version of this convolution for use in interface prediction is:

h(xi|W C,W N, b) = σ

(

W Cxi +
1

|Ni|
∑

j∈Ni

(W Nxj) + b

)

, (4.5)

where separate weight matrices, W C and W N, are used for the center and neighbors, respectively.

In the original version, a different weight matrix was used for each of the many relation types. To

tie learning across all relation types, all weight matrices were simply linear combinations of a set

of learnable basis weight matrices:

W N =
∑

b

aN
bVb

W C =
∑

b

aC
bVb

(4.6)

where {Vb} is a set of basis matrices, and aC and aN are scalar weights that combine the basis

matrices to create W C and W N, respectively. For interface prediction, R-GCNs were examined

both with and without basis matrices.

The above order-free methods do not incorporate edge information. Schütt, Arbabzadah,

Chmiela, Müller, & Tkatchenko [84] proposed a version called Deep Tensor Neural Networks

(DTNN) which creates a signal for the neighbor vertices as well as the edges which connect them

to the central vertex:
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h(xi|W,W N,W E, bN, bE) = xi +
1

|Ni|
∑

j∈Ni

σ

[

W

(

(W Nxj + bN)⊙ (W EAij + bE)

)]

, (4.7)

where ⊙ denotes the elementwise product. In this formulation, W N and W E transform vertices

and edges, respectively, into a common space, and W transforms their combination to have the

same dimensionality as the input. This convolution does not transform the input by any weight

matrix, rather it can be viewed as updating the representation at xi using information from its

neighbors. This restricts representations to always have the same dimensionality, which is not

generally required in convolutions. Again, the normalization is omitted from the original formula-

tion, but consistently improves performance when performing interface prediction. Nevertheless,

this method uniquely incorporates edge information, so that even while all neighbors use the same

weight matrix, the information on their edges is used to differentiate them. This concept is carried

forward into the convolution methods proposed below.

4.2.6 Proposed Order-Free Methods

Like DTNN, these methods incorporate edge information to help differentiate neighbors, but

also avoid imposing an arbitrary ordering on the neighbors in a receptive field. This is accom-

plished by incorporating information from the edges between each neighbor and the central vertex.

Here are two variants of graph convolution which differ only in how the edge information is incor-

porated, denoted Sum Coupling and Product Coupling. For a central vertex i on the graph and a

local neighborhood of vertices Ni, the output of Sum Coupling graph convolution is:

h(xi|W C,W N,W E, b) = σ

(

W Cxi +
1

|Ni|
∑

j∈Ni

(W Nxj +W EAij) + b

)

, (4.8)

where xi is the feature vector associated with vertex i, W C, W N and W E are weight matrices, and

b is a vector of biases. Intuitively, this calculates an activation for the central vertex, each neighbor

vertex, and each edge between a neighbor and the central vertex separately. It is the inclusion of

edge activations that allows each neighbor to be distinguished from the others on the basis of its
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relationship to the central vertex. This variant is called Sum Coupling because the neighbor vertex

and edge activations are added together. Because of this, the direct association between a neighbor

and its edge is lost. A variant which maintains the association is Product Coupling, for which the

output is:

h(xi|W C,W N,W E, b) = σ

(

W Cxi +
1

|Ni|
∑

j∈Ni

(W Nxj ⊙W EAij) + b

)

, (4.9)

where ⊙ denotes the elementwise product between two vectors or matrices. This allows a neigh-

bor’s influence on the overall activation to be modulated by its relationship to the central vertex.

For protein graphs, this means neighboring residues will contribute more or less to the overall ac-

tivation, depending on their distance from and relative orientation to the central vertex, with the

precise modulation determined by the edge activations.

In relation to prior methods, Sum Coupling is most similar to Fingerprint and R-GCN convolu-

tions. Unlike Fingerprint convolutions, it uses separate weights for central and neighbor vertices.

Unlike R-GCN convolutions, it does not use basis functions which tie together all weight matri-

ces. Also, Fingerprint and R-GCN convolutions do not generate signals from the edges. Product

Coupling is similar to DTNN convolutions in the way vertex and edge information is coupled to-

gether, but unlike DTNN it calculates a signal for the central vertex and allows the number of

channels/features to change layer by layer.

The receptive fields are always defined around a central vertex, so the results of convolution can

be applied to that vertex. This retains the graph structure after each convolution, so convolutional

layers are stackable, just like convolutions on grids.

A note on receptive fields: protein graphs are complete and embedded in a metric space, so

we can define a receptive field using a fixed number of closest neighbors to the central vertex. A

receptive field can also be defined using a threshold δ > 0 such that all vertices closer to the central

vertex than the threshold are included in the receptive field. All neighbors in a receptive field are

guaranteed to share an edge with the central vertex, allowing the application of equations (4.8) and
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(4.9). For incomplete graphs, a receptive field can be defined as all vertices within k hops of the

central vertex. If k = 1, both Sum and Product Coupling can directly be applied. If k > 1, then

Product Coupling can’t be directly applied to neighbors more than 1 hop away from the center

vertex, since they share no edge with the center. Though there are ways to deal with this issue,

they are not the focus of this thesis.

Lastly, to assess the benefit that incorporating information from neighboring residues has on

classification performance, the No Convolution variant is defined as:

h(xi|W C, b) = σ

(

W Cxi + b

)

, (4.10)

which excludes all neighbors. Note the similarity to Equation (3.1), except that in this case the

output is just for a single vertex rather than for the entire layer.

4.3 Pairwise Neural Network Architecture

These graph convolution operations allow the detection of local patterns on a single graph, and

produce a new representation at each vertex. Partner specific protein interaction, however, requires

classifying pairs of residues in different proteins (vertices in different graphs), which is equivalent

to making predictions on vertices in the product graph. Such predictions are made using a pairwise

neural network architecture.

A pairwise architecture consists first of two identical convolutional modules, each responsi-

ble for generating the representation for one of the proteins in the pair. A key requirement for

the pairwise architecture is symmetry, since the prediction for a pair of residues should be the

same irrespective of which leg is used for which protein. To ensure symmetry in the convolution

layers, weights are shared between layers in the different modules. The merge layer then com-

bines the vertex representations from one graph with the vertex representations from the other

into pairs. To maintain symmetry, this merge process should also be symmetric. For example,

the elementwise sum, elementwise product, and outer-product are all commutative and therefore

produce symmetric output. Another option is to combine pairs asymmetrically (e.g. concatenate

39



Merge 

Fully-
Connected

Classification Protein 1 Graph

Protein 2 Graph

Convolution (Leg 2)

Convolution (Leg 1)

Residue 
Representation

Residue Pair 
Representation

R1
R2
R3

R1
R2
R3

R1
R2
R3
R1
R2
R3
R1
R2
R3

R1
R1
R1
R2
R2
R2
R3
R3
R3

Figure 4.4: A pairwise neural network architecture that takes two protein graphs as input. Each leg contains
one or more convolutional layers. The resultant graphs are then merged to create representations of residue
pairs. After more fully connected layers, a final classification is performed for each pair.

the two representations together), but then average the predictions from each ordering of the pair.

Finally, the combined representation for each pair of residues is passed through a number of fully

connected layers. The data are represented as pairs of residues at this point. Theoretically, graph

convolution could be performed at this stage as well, this time in the product graph. However,

the computational and memory requirements of doing so prove prohibitive, since the number of

convolutions and the number of neighbors in each convolution increase quadratically in the graph

size. Hence the work in this thesis performs no convolution after merging. The final layer has a

single output for each pair indicating the prediction for that pair. See Figure 4.4 for a graphical

depiction.

This output is converted to a binary class prediction vector using a softmax function,

softmax(x) =
[

e−x

ex + e−x
,

ex

ex + e−x

]

, (4.11)

the elements of which can be interpreted as class probabilities for the negative (non-interfacial)

and positive (interfacial) classes, respectively. This output is compared to a one-hot label vector

indicating whether
(

[0, 1]
)

or not
(

[1, 0]
)

the pair constitute part of the true interface.
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This chapter has presented protein graphs, graph convolution operations, and pairwise neural

network architectures, all of which are components in this thesis’ approach to partner specific

protein interface prediction. Chapter 5 describes the experiments that were performed.
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Chapter 5

Experimental Setup

All of the spatial graph convolution methods described in Chapter 4 were evaluated and com-

pared to the existing state of the art method, PAIRpred [1]. This chapter outlines the training,

validation, and testing data used for the evaluation, as well as the experimental procedure and

relevant metrics.

5.1 Data

Each model was trained, validated, and tested using complexes from the Docking Benchmark

Dataset (DBD) version 5.0 [85], a collection of 3D crystalline structures of transient complexes in

both the bound and unbound formation. DBD is non-redundant in the sense that no two proteins

in one complex are in the same Structural Classification of Proteins (SCOP) [86] families as two

proteins in another complex, respectively. This ensures the data set is appropriate for testing, since

no complex in the test set will be too similar to a complex in the training set. Each protein is clas-

sified into either rigid body, medium difficulty, or difficult, based on the degree of conformational

change upon forming the interface. This is quantified using the root mean squared deviation of the

α-carbons after unbound and bound structures are superimposed on one another. Training and val-

idation were performed using the 175 complexes that were present in version 4.0 of DBD, whereas

the 55 new complexes added in DBD v5.0 were reserved for testing. Training and validation sets

were created using a 80%/20% partition on the DBD v4.0 complexes, such that the difficulty class

proportions in each partition were roughly equivalent. There were 140 training complexes and 35

validation complexes. Table 5.1 indicates the number of positive and negative examples used in

each dataset.

3D structures are contained in Protein Data Bank (PDB) files, which contain atomic coordinates

for each amino acid in a complex. True interfaces were determined using the bound formations,

where a pair of amino acid residues is assumed part of the interface if they are within 6 Å of each
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Table 5.1: Number of complexes and examples (residue pairs) for each phase of experimentation. Negative
examples were down sampled to a ratio of 10:1 with positive examples when training, but testing included
all examples. During model selection, three complexes were excluded from the training and validation sets
due to a software bug and missing features. These complexes were eventually included for the testing phase.

Phase Data Set Complexes Positive examples Negative examples

Model Selection
Train 138 12,632 (9.1%) 126,320 (90.9%)
Validation 34 3,042 (0.2%) 1,868,270 (99.8%)

Testing
Train + Validation 175 16,004 (9.1%) 160,040 (90.9%)
Test 55 4,871 (0.1%) 4,953,446 (99.9%)

other, consistent with prior work [1, 20, 87]. This definition permits a residue to have multiple

partners in the interface. As mentioned, two partners in the interface may not formally interact

via bonding, but the do need to be electrochemically and structurally compatible with each other.

This justifies using proximity as to define the interface rather than focusing on strictly interacting

proteins.

5.1.1 Vertex and Edge Features

Prediction must be made using the unbound formation of each protein, since the bound forma-

tion is not known a priori. Hence unbound PDB files were used to generate a graph representation

of each protein, with vertices indicating residues and edges indicating the relationships between

residues. Features were then computed for each vertex and edge using sequence and structure

information from the protein. Vertex features pertain to the degree of residue conservation, ac-

cessible surface area, depth within the protein, and protrusion. Edge features capture the distance

between two residues and their relative orientation as well. Raw distances are passed through a

Gaussian function centered at zero with a standard deviation chosen during model selection. More

detail on each feature can be found in Appendix A.

5.1.2 Handling Missing Data

In some cases, features could not be calculated for a residue, resulting in missing values. For

13 residues, the atomic coordinates of the central α-carbon were not present in the PDB files, so
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some features could not be calculated (see Appendix A for more detail). Most features rely on third

party software to calculate the features from the PDB data. For the proteins with DBD codes 2B42

and 3R9A, features related to the protrusion index could not be calculated for the receptor due to

an unknown third party software fault. These complexes were omitted during model selection but

re-introduced with imputed values before testing. Two other complexes, 1NW9 and 1PPE, were

also excluded during model selection due to a software bug. This bug was eventually fixed, so these

were also included during testing. During model selection, missing values were imputed using the

protein mean, whereas for testing, the global median (within the training, validation, or test set)

was used. In total there were 138 training and 34 validation complexes during model selection,

and there were 175 training and 55 test complexes during testing.

5.2 Experimental Procedure

Experimentation was conducted in two phases: model selection, and final testing. The model

selection phase concerned the selection of model hyper-parameters. For this phase, pairwise graph

convolutional networks were trained using the training set and evaluated on the validation set. Once

model selection was complete, the final set of hyper-parameters was used to train and test the most

promising hyperparameter configurations and compare them. For this phase, the model was trained

on the combined training and validation sets and tested on the test set. More detail about each phase

follows.

5.2.1 Model Selection

Hyper-parameters comprise all model specifications besides the parameters themselves, such

as the number and types of layers, number of units/filters in each layer, nonlinear activation func-

tion, loss function, and training procedure. Hyper-parameters are typically chosen either by some

automated process, or by manual exploration.

Methods for automated hyper-parameter selection include randomized search, grid search, or

sequential, model based optimization (SMBO) such as a Gaussian Process Optimization or Tree
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Structured Parzen Estimator Optimization [88]. The advantage of these approaches is their ability

to automatically search a hyper-parameter space without human intervention. SMBO approaches

are able to estimate the performance "response surface" in hyper-parameter space in order to ef-

ficiently find the optimum value. The disadvantage of these approaches is they require a large

number of iterations in order to converge to optimal parameters if the number of hyperparameters

is large and the search space for each is large. Random or grid search are no better. For this thesis,

some experiments were performed with SMBO algorithms, but none produced hyper-parameters

which outperformed results found by human exploration. Therefore automated approaches were

abandoned in favor of a manual search.

Several hyper-parameters were explored manually by training and validating networks under

different settings of the hyper-parameters. This exploration occurred in a one-hyper-parameter-at-

a-time fashion, alleviating the search space problem encountered with the automated algorithms,

but also limiting the ability to explore interactions between different hyper-parameters. In some

cases, the choice of hyperparameter affected training time and model convergence rate, but had lit-

tle impact on overall model performance (e.g. the nonlinear activation function, training algorithm,

the number of convolutional filters). In other cases, few values had to be searched before a local

optimum was found (e.g. the number of dense layers after merging, minibatch size, optimization

strategy, residue distance Gaussian function standard deviation). Because this manual optimization

was iterative, it is impossible to summarize how each alernative choice of hyperparameter would

change the results from the set of hyperparameters ultimately chosen. However, some trends were

observed consistently throughout testing and are worth describing in more detail. This is done

below.

As the name implies, deep networks typically perform best with more than one layer. This is

indeed the case for pairwise graph convolutional networks, although the benefit began to diminish

beyond 4 layers. To illustrate this trend, multiple depths were used during the validation and

testing phases. Typically convolutional neural networks begin with a small receptive field size

which grows in successive convolutional layers. For this problem, networks performed better if
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all layers had the same relatively large receptive field, around 21. Significantly larger receptive

fields would begin to encompass entire proteins, since the smallest protein in the data set has 29

residues. During testing, receptive field sizes of 11 and 21 were used to enable comparison. For

image convolution, it is not uncommon for the number of filters in the first convolutional layer

to be roughly an order of magnitude more than the number of input channels, and to increase in

subsequent layers. In contrast to images which may have only 1 or 3 channels, protein graphs have

70 features for each vertex, so an analogous increase in the number of filters would quickly exceed

the memory resources of a GPU. Nevertheless, a larger number of filters proved beneficial, so all

graph convolutions started with 256 filters and increased to a size of 512 in the last convolutional

layer (if the network had more than one). Smaller numbers of filters were explored but did not

perform as well. Larger numbers of filters began to exceed the memory capacity of the GPU’s

used for training.

Most model selection was performed on the proposed graph convolutions and No Convolution.

Because most of the other convolution methods are not appreciably different, an abridged model

selection process was performed for them, simply to check whether the same hyperparameters

could reasonably be used. This was indeed the case. The exception was DCNN, where the Gaus-

sian standard deviation for residue distances was observed to have a significant impact on model

performance. For this method, rather than using a value of σ = 18, much smaller values of 2Å

and 4Å were chosen for the testing phase. Given that the diffusion is occurring on a complete

graph, the smaller values allow only local information to propagate during each hop. The other

graph convolutional methods do not have this same problem, since they are restricted to a fixed

size receptive field. Diffusion convolutions do not downsample the input, so it is possible to stack

multiple convolutions on top of one another. However, additional diffusion convolutional layers

did not improve performance, so only results from a single layer were tested.
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5.2.2 Model Testing Setup

Final model testing was performed for all variants of convolution and No Convolution. For

each variant, receptive field sizes of 11 and 21 were tested (the central vertex plus 10 or 20 nearest

neighbors, respectively), with one, two, three, and four graph convolutional layers. In total, 16

combinations were tested, except DCNN as already noted. All variants followed the same training

scheme: The number of filters for networks with one convolutional layer was 256, Likewise for

two, three, and four convolutional layers the number of filters was (256, 512), (256, 256, 512), and

(256, 256, 512, 512) respectively. For DTNN, the number of filters matched the number of input

features, 70. This was required, because Equation (4.7) does not apply a weight matrix to xi. After

merging examples via concatenation, dense layers of 256 and one units were applied, with the latter

producing the model output. Except for the last layer, rectified linear units (ReLU) as the nonlinear

activation function, except for DTNN for the following reason. Note that activation functions are

being applied to each neighbor individually in Equation (4.7), which is different from the other

methods. Since ReLU is non-negative, it would force the layer output to be greater or equal to the

input. Therefore, tanh is used instead to allow for both positive and negative adjustments to xi.

Loss was computed using weighted cross entropy, a measure of the dissimilarity between two

probability distributions. Since this is a binary classification problem, the cross entropy for a

residue pair ξi is defined as:

H(ξi, yi|Θ) = −r yi0 log
(

f0(ξi|Θ)
)

− yi1 log
(

f1(ξi|Θ)
)

, (5.1)

where f = (f0, f1) is the softmax network output, interpreted as class probabilities, yi = (yi0, yi1)

is the one-hot class label, and r is the ratio of positive to negative examples, which ensures that the

set of positive examples and the set of negative examples contribute equally to the loss function.

The overall loss function is then:

L(Θ|{ξi, yi}) =
∑

i

H(ξi, yi|Θ), (5.2)
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which sums the cross entropy from each residue pair. This class balanced version of cross entropy

is similar to the median frequency approach taken by Eigen & Fergus [89], except that it differs by

a multiplicative constant.

All bias weights were initialized to zero. All non-bias weights were initialized by drawing from

a uniform distribution between −τ0 and τ0, where τ0 = 1√
nin

and nin is the number of inputs to

the layer. This is similar to the initialization proposed by He, Zhang, Ren & Sun [90], except they

differ by the small multiplicative constant,
√
6. Stochastic gradient descent was performed with a

learning rate of 0.1, mini-batch size of 128 pairs, for 80 epochs. Dropout with probability p = 0.5

was performed during training.

The networks were implemented in TensorFlow [91] v1.0.1 and trained using a single NVIDIA

GTX 980 or GTX TITAN X GPU. Training time varied from roughly 7 to 220 minutes depending

on convolution method, implementation, network size, GPU card, and computer resource avail-

ability. Most methods took less than 60 minutes, with the exceptions being 4 layer PATCHY-SAN

networks and R-GCNs that include basis functions.

The graph convolution variants were compared to PAIRpred, an existing state of the art partner

specific interface prediction algorithm based on an SVM with custom symmetric pairwise kernels,

proposed by Minhas et al. [1]. PAIRpred was run with the same features and data that were used

in this work for the purpose of comparison. Grid search with five-fold cross validation was used to

select the optimal kernel and soft margin parameters.

5.3 Metrics

While measures like accuracy, precision, recall, specificity, and F-score are common for many

classification problems, they are dependent on the choice of a particular classification threshold.

A metric more appropriate for interface prediction would be the area under the receiver operating

characteristic curve (AUC), because it does not rely on a particular choice of threshold. Instead,

it summarizes the true positive rate across all false positive rates, indicating threshold independent

performance of the classifier.
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In addition, in the case of an extreme class imbalance, the AUC is misleading, since the move-

ment of a single positive example can heavily influence the true positive rate compared to the effect

that a single negative example has on the false positive rate. Even with a high AUC, a classifier

may rank a number of negative examples above the first positive example, when ranking by pre-

dicted likelihood of being part of the interface. In this case, it is also useful to measure how far

down the ranked scores one has to go before encountering a true positive. A metric which captures

this directly is the rank of the first positive prediction (RFPP), where the rank is computed after

ordering pairs by classifier score. Ideally, the top ranking prediction is truly part of the interface,

in which case RFPP is 1.

Interface prediction occurs at the complex level, so AUC and RFPP should be calculated with

respect to each complex. The performance of a classifier on a set of complexes can then be sum-

marized using median AUC and RFPP across the complexes. These metrics closely mimic those

used in the PAIRpred paper [1], except that median AUC is taken instead of average.
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Chapter 6

Results

This chapter first explores the behavior of Sum and Product Coupling. Then it compares to

PAIRpred and the other variants of graph convolution. Some convolution filters are then visualized,

along with network output for one trained network. Finally, it summarizes the effect of protein size

on network training time.

6.1 Sum and Product Coupling Performance

Table 6.1 shows the results of experiments involving Sum Coupling and Product Coupling, as

well as No Convolution. Each number displayed represents a single experiment (not the average of

repeated experiments), so note that results may change if the experiments are run again with differ-

ent initial weights. To evaluate the effect of weight initialization on performance, 10 replications

were run for Sum Coupling, two layers, and a receptive field of size 21. The standard deviation of

the runs was 0.006, small compared to some of the differences observed in the results. Since these

replications were only performed for one method and set of conditions, it is possible that other

methods are more sensitive to initial conditions. Running repeated replications of each condition

could explore this. Because of the large number of methods/experiments run and the training time

for each network, this was not performed as part of this thesis.

Comparing Sum and Product Coupling to No Convolution reveals that convolution is benefi-

cial, since the convolution layers consistently perform better, regardless of the number of layers. In

other words, incorporating information from neighboring residues helps indicate whether a residue

is part of an interface, which is consistent with the biological properties of interfaces. It’s also clear

that a receptive field of size 21 is generally better than 11. Interestingly, this value is near the me-

dian number of interface residues for a single protein, which is 27. When using convolution,

performance improves with network depth up to a point, then either decreases or remains rela-

tively constant. In Sum Coupling, this maximum occurs in the second layer, whereas in Product
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Table 6.1: Median area under the receiver operating characteristic curve (AUC) across all complexes in
the test set for two variants of graph convolution, Sum Coupling and Product Coupling, as well as No
Convolution. Results are shown for two different sizes of receptive field, 11 and 21, for different numbers
of convolutional layers before the pairwise merge operation. Bold faced values indicate best performance
for each method.

Method
Receptive Field Layers Before Merge

Size 1 2 3 4

No Convolution N/A 0.815 0.812 0.800 0.811

Sum Coupling
11 0.868 0.889 0.882 0.884
21 0.875 0.903 0.880 0.890

Product Coupling
11 0.856 0.869 0.885 0.868
21 0.863 0.876 0.896 0.899

Table 6.2: Median rank of the first positive prediction (RFPP) across all complexes in the test set for two
variants of graph convolution, Sum Coupling and Product Coupling, as well as No Convolution. Results
are shown for two different sizes of receptive field, 11 and 21, for different numbers of convolutional layers
before the pairwise merge operation. Bold faced values indicate best performance for each method (lower
is better).

Method
Receptive Field Layers Before Merge

Size 1 2 3 4

No Convolution N/A 48 55 53 66

Sum Coupling
11 32 28 70 86
21 26 37 56 63

Product Coupling
11 30 46 26 51
21 26 25 36 37

Coupling, this maximum occurs in the fourth layer. Though not shown in the table, Product Cou-

pling indeed fails to improve when using 5 or 6 layers. In contrast, networks without convolution

are best with only one pre-merge layer. This suggests that depth alone does not improve perfor-

mance, but when convolution is performed, a useful hierarchical representation is learned. Other

applications of deep learning have seen this same trend of increasing and decreasing performance.

The commonly given explanations for such behavior include insufficient training data, a vanishing

gradient, and a difficulty with optimization [90].

Table 6.2 parallels Table 6.1 but shows RFPP instead of AUC. As before, Product Coupling

does better than No Convolution, regardless of the number of layers. Sum Coupling, is only better
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Figure 6.1: Median area under the receiver operating characteristic curve (AUC) across all complexes in
the test set, separated by complex class. Sum and Product Coupling are shown for two receptive field sizes
each (11 and 21), as well as No Convolution, for 1-4 pre-merge layers. Product Coupling performs better
for difficult complexes, but worse overall because ther are far more rigid and medium difficulty complexes.

than No Convolution in some cases. In this case, however, the best performance for Sum and

Product Coupling is seen for fewer layers than AUC. This difference is not surprising, considering

the cross-entropy loss function leads to optimization of performance on all pairs, not just the top

scoring ones. In other words, RFPP is not being explicitly optimized in this problem, whereas

AUC is more closely related to the quantity being optimized.

To understand the behavior of each method in more detail, we can separate performance by the

difficulty class of the test proteins. Figure 6.1 shows performance for rigid, medium difficulty, and

difficult classes, with 33, 16, and 6 complexes respectively. Here it appears that Sum and Product

Coupling are closely matched for rigid and medium difficulty. A slight difference is seen for the

difficult complexes, where Product Coupling appears to be performing better for two and three

layers, but with so few complexes it’s unclear if this is a true trend.

For another picture of performance across difficulty classes, we can examine a histogram of

AUCs, as shown in Figure 6.2. These AUCs are heavily skewed, justifying the choice of median
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Figure 6.2: Histogram of area under the receiver operating characteristic curve (AUC) for complexes in the
test set, colored by difficulty class. Scores are from Sum Coupling with two layers and receptive field size
21, which had the highest median AUC of all methods.

as a summary measure. Surprisingly, there is no clear divide between rigid, medium difficulty, and

difficult classes. In fact, the worst AUC is a rigid complex, and one difficult complex achieves

AUC above 0.9. It appears that the distinguishing characteristic between classes is the number of

complexes that achieve above 0.95 AUC. These "trivial" complexes are most frequent in the rigid

class, less so in the medium difficulty class, and absent for the difficult class. This suggests that

the networks are effectively coping with some complexes that under conformational change.

RFPP can also be separated by difficulty class. From figure 6.3 we can observe some hetero-

geneus behavior across methods, but there are some trends worth noting. For each class, there

appears to be a favored number of layers where a dip (improvement) in RFPP is observed. This

optimal depth appears to increase with difficulty class, suggesting that harder complexes require

more layers to achieve best performance. Therefore an ensemble approach with varying depths

may perform well on complexes of any difficulty.
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Figure 6.3: Median rank of the first positive prediction (RFPP) across all complexes in the test set, separated
by difficulty class. Vertical axes are log scaled. Sum and Product Coupling are shown for two receptive field
sizes each (11 and 21), as well as No Convolution, for 1-4 pre-merge layers. Lower RFPP is better. Best
performance on rigid complexes is achieved with just one layer for all networks. As difficulty increases, so
does the number of layers needed to achieve best results.
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Table 6.3: Comparison of proposed convolutions with existing classification methods. Bold values indicate
best performance for each method. For reference, retraining Sum Coupling ten times with a different random
seed yields a standard deviation of 0.006, and other methods are believed to behave similarly. *PAIRpred is
an SVM-based approach, so the result is not really associated with a layer number.

Method Variant
Layers

1 2 3 4

No Convolution N/A 0.815 0.812 0.800 0.811

Sum Coupling
RF = 11 0.868 0.889 0.882 0.884
RF = 21 0.875 0.903 0.880 0.890

Product Coupling
RF = 11 0.856 0.869 0.885 0.868
RF = 21 0.863 0.876 0.896 0.899

PAIRpred [1] N/A (0.863)* - - -

PATCHY-SAN [81]
RF = 11 0.862 0.867 0.883 0.891
RF = 21 0.850 0.875 0.897 0.886

Fingerprint [82]
RF = 11 0.857 0.850 0.863 0.833
RF = 21 0.861 0.867 0.881 0.891

R-GCN [83]

No basis fns, RF = 11 0.862 0.871 0.886 0.893
No basis fns, RF = 21 0.876 0.901 0.892 0.897
2 basis fns, RF = 11 0.851 0.872 0.779 -
2 basis fns, RF = 21 0.873 0.804 0.539 -
5 basis fns, RF = 11 0.870 0.747 0.748 -
5 basis fns, RF = 21 0.867 0.900 0.709 -

DTNN [84]
RF = 11 0.853 0.872 0.878 0.861
RF = 21 0.862 0.880 0.873 0.885

DCNN [80]

2 hops, σ = 2Å 0.782 - - -
2 hops, σ = 4Å 0.801 - - -
5 hops, σ = 2Å 0.838 - - -
5 hops, σ = 4Å 0.819 - - -
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6.2 Other Methods

Table 6.3 gives the median AUC of the various existing methods discussed. PAIRpred, the

state of the art pairwise interface predictor, establishes the baseline. Interestingly, most of the

graph convolution based methods exceed this, under the right set of hyperparameters. DCNN is

the exception, showing worse performance than PAIRpred in all cases examined. This is perhaps

unsurprising, since it differs considerably from the other convolution methods, which are very

similar to one another.

The order imposing PATCHY-SAN performs quite well, suggesting that the chosen ordering of

neighbors by proximity to the central vertex was a good one. Its best AUC of 0.897 is within one

standard deviation (0.006) of the best overall performance, which was 0.903 from Sum Coupling.

Therefore it is difficult to say whether order-free or ordered methods perform better for this prob-

lem. Only one ordered method was examined, leaving the possibility that others may do better.

Because of the unique weights used for each neighbor, ordered methods have significantly more

parameters than order-free methods, making them more susceptible to overfitting, though that is

not observed in these results. This method also uses information from all edges in the receptive

field, whereas the other methods are only concerned with edges connecting neighbors to the central

vertex.

R-GCN did best without basis matricess. The original intent for basis matricess was to allow

for weight sharing across several relation types. This is less relevant for these protein graphs

since only a single neighborhood is being considered per central vertex, so in a sense there is

only one relation type. When using basis matricess, larger networks (starting at three layers) drop

significantly in performance compared to other methods. At four layers, networks consistently

classified all residue pairs with the same score, suggesting all filters had become zero valued (note

that AUC cannot be calculated with all scores are identical). Note that AUC cannot be calculated

when all scores are identical. This is possible when using ReLU nonlinearities, since the output

and gradient vanishes for signals less than zero. It’s possible that a different initialization scheme

or a different nonlinearity would remedy this problem. Regardless, the use of basis matricess in
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this context is somewhat unjustified because these graphs lack the numerous relation types that

prompted use of basis matricess in the first place [83]. Nevertheless, the two layer, five basis

matrices version performed similarly to the best results observed. But testing with 8 basis matrices

did not show improvement. Without basis matricess, R-GCN is equivalent to Sum Coupling if

edge information is excluded. The fact that R-GCN without basis matricess performs similarly to

Sum Coupling suggests that the added edge information in Sum Coupling is not very useful.

Fingerprint is arguably the simplest form of graph convolution since it uses the same weight

matrix for both central and neighbor vertices. This simpler mode achieves its best performance at

higher depths than other, more complex convolutions. Increasing the number of layers to five or

six exhibits no substantive improvement.

Whereas PATCHY-SAN, Fingerprint, and R-GCN are most similar to Sum Coupling, DTNN

allows for a multiplicative coupling between neighbors and edges, similar to Product Coupling.

Like Product Coupling, best performance is achieved at a greater depth than the other methods, but

does not continue to improve for five or six layers. This method is notably worse than the three

just mentioned. One potentially limiting aspect of this method is that the number of channels is

necessarily unchanged.

For DCNN, five hops performs better than two hops, presumably for the same reason that a

larger receptive field is better in the other convolution methods: information is able to propagate

further across the graph. The Gaussian standard deviation determines the range of diffusion, where

smaller values limit diffusion to a localized neighborhood for each hop, and larger values allow

diffusion across longer distances. In the two hop DCNN, the larger standard deviation allows more

diffusion to occur across the graph, compensating for the limited number of hops. This explains the

overall better performance for σ = 4. In contrast, the five hop DCNN performed better for σ = 2,

suggesting that the larger number of hops allows sufficient information propagation, eliminating

the need for diffusion across greater distances for each hop.

Note: since multiple versions of each method were run against the test set, it is tempting to

select the best performance in each method for comparison. This action essentially uses the test
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set to perform further model selection, and doing so limits the generalizability of the results. It is

more appropriate to examine the trends within a method, and to compare methods under identical

experimental conditions (e.g. number of layers), if possible. It is evident, however, that Sum and

Product Coupling outperform PAIRpred under most hyperparameter settings examined. This may

indicate that the proposed convolutional methods truly generalize better than the existing SVM

based approach.

6.3 Filter Visualization

It is often difficult to understand the behavior of a model by simply looking at the overall

performance. For convolutional neural networks on images, intuition can be gained through a

variety of methods, including visualizing filters directly, tracking a filter’s activation as different

regions of the image are occluded, and identifying which images maximally activate each filter.

To understand the filters being learned in this pairwise neural network architecture, network scores

and filter activations were mapped to a protein complex heatmap. Figure 6.4 presents color maps

on the complex 3HI6 [5] which depict the true interface, maximum predicted scores for each

residue, and the activation of two filters from last convolutional layer, for the best performing

method (Sum Coupling with two layers and receptive field size of 21). Scores are partner specific,

so they are shown for a single residue after taking the maximum over all potential partners. This

partner independent visualization matches well with the true interface. In contrast, convolutional

filters occur at the residue level and can be visualized directly. The two filters shown illustrate

learned features which are useful for interface prediction. Specifically, one activates only for buried

residues (indicating an unlikeliness to participate in an interface), and the other activates only for

residues near the true interface.

6.4 Training Time

Figure 6.5 shows a log-log plot of training time as a function of the number of residue pairs in a

given complex. The relationship is roughly linear in this space, indicating a power-law relationship.
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Figure 6.4: PyMOL [4] visualizations of the best performing test complex (3HI6 [5]). Upper left: Ligand
(red) and receptor (blue), along with the true interface (yellow). Upper right: Visualization of predicted
scores, where brighter colors (cyan and orange) are higher scores and darker colors (blue and red) are lower
scores. Since scores are for pairs of residues, we take the max score over all partners in the opposing
protein. Bottom row: Activations of two filters in the second convolutional layer, where brighter colors
indicate greater activation and black indicates activation of zero. Lower left: Filter which provides higher
activations for buried residues, a useful screening criterion for interface detection. Lower right: Filter which
gives high activations for residues near the interface of this complex. Image credit: Basir Shariat and Alex
Fout.

59



Figure 6.5: Training time as a function of number of residue pairs, for a single No Convolution layer, as
well as four depths of Product Coupling, receptive field size 21. Linearity in this log-log plot indicates a
power law relationship. In this case, the relationship is near linear, with powers of 1.02, 1.22, 1.25, 1.25,
and 1.24 respectively for No Convolution 1 layer, and Product Coupling for 1, 2, 3, and 4 layers. Other
convolution methods have similar power law relationships.

Fitting lines to the data shows that the power is slightly greater than 1.0 in all cases, showing

that training time increases near linearly in the number of pairs as expected. This is due to the

pairwise nature of the problem. For problems on a single graph, the training time would likely

scale near linearly in the number of vertices. Deeper networks take longer to train, and summing

over neighbors (as in Product Coupling), takes longer than just using the central vertex (as in No

Convolution). These trends are as expected.
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Chapter 7

Possible Future Work

The work in this thesis is pertinent to emerging methods in machine learning as well as cur-

rent problems in structural bioinformatics. As such, extensions of this work can be made in sev-

eral distict veins, some focused on model formulation and training procedure, others on possible

applications outside of interface prediction. Several of these extensions are documented below,

categorized as either extensions of method or extensions of application.

7.1 Extensions of Method

7.1.1 Double Coupling and Ensemble Approaches

As discussed in Chapter 5, Sum Coupling outperforms Product Coupling on rigid and medium

difficulty complexes, whereas Product Coupling is better for difficult complexes. Therefore it

would be reasonable to incorporate both sum and Product Coupling into a single convolution op-

eration:

hi(x|W C,W N,W E, b) = σ

(

W Cxi +
1

|Ni|
∑

j∈Ni

(W Nxj)⊙ (W EAij)+W Nxj +W EAij + b

)

, (7.1)

where here the same weight matrices are used in both the Sum Coupling and Product Coupling

components to help prevent overfitting. Alternately, separate weight matrices could be used to

increase the model’s expressive power.

Recall that concerning the RFPP metric, the optimal network depth increased with complex

difficulty, where more layers were needed for complexes of greater difficulty. This suggests that an

ensemble model with multiple networks of varying depth could perform better than each individ-

ual network. Alternative ensemble approaches like boosting or bagging may also prove beneficial.

Boosting trains a sequence of "weak" models, with each added model being trained by giving
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more importance (loss weight) to examples misclassified by the existing set of models. For in-

terface prediction, this weighting can be performed on a per-complex basis, using RFPP or AUC

as an indication of performance on each complex, or on a per-residue-pair basis, using the cross

entropy loss of that specific training example. The final prediction is a weighted average of the

weak models’ predictions, with the weights determined by the validation error of each respective

model (with higher weight given to models with lower error). Bagging creates multiple datasets by

sampling with replacement from the original data set, and trains a different model on each sampled

dataset. This sampling can be performed at the complex level or the residue pair level. Again,

the final prediction is a weighted average of the weak models’ predictions, weighted according to

validation error.

7.1.2 RFPP Optimization

Predicting an entire interface is a more difficult task than predicting only a few interacting

residues in that problem. It could be that training a classifier in the former may hinder its perfor-

mance in the latter. An alternative approach would be to just focus on generating a few predictions

of high quality (i.e. confidence), which means optimizing performance on just the top positive

predictions. The existing model uses a loss function which incorporates every training example,

not just the top positive prediction, hence the model is optimized for all examples. The new ap-

proach implies treating RFPP as the primary metric and optimizing it directly. An alternate loss

function which includes the loss from only the highest scoring positive example could be used.

Hence when the loss is minimized, the performance of the highest performing positive example

will be maximized. Here a sum over all examples has been replaced by a max function, which

is not differentiable, but differentiable variants of the loss function could be constructed to enable

gradient descent based learning. This method is currently being investigated by another student in

Professor Ben-Hur’s research group.
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7.1.3 Additional Data Sources

The success of deep learning methods has been attributed to large volumes of data and deep

architectures [60]. For interface prediction, despite the large volume of recorded protein structures,

precious few complexes have been labeled in bound and unbound forms for use in model training

and testing. This dependence on small curated subsets of the available proteins has potentially lim-

ited the full leveraging of deep learning methods, however some opportunities exist for enlarging

the training and testing data.

The Docking Benchmark Dataset was conceived as a method to evaluate docking methods, and

correspondingly was carefully constructed to be non-redundant with respect to SCOP families,

in order to give a fair evaluation. However for training purposes, it may be useful to include

redundant proteins simply to provide the model with more training data. The Critical Assessment

of PRediction of Interactions (CAPRI) is an annual competition aimed at evaluating protein-protein

docking methods [31], and could also be used to help train or evaluate partner-specific protein

interface prediction methods.

7.1.4 Unsupervised Pretraining

Another approach to the problem of limited labeled complexes is to utilize the vast quantity

(>125,000) of recorded protein structures via unsupervised pre-training. Hinton and Salakhutdi-

nov (2006) [92] proposed a greedy layer-wise training algorithm for a particular form of neural

network called an autoencoder. Generally speaking, an autoencoder is simply a network trained to

reproduce the input at the output under certain constraints [93]. These constraints, such as under-

completeness, regularization, and sparsity, prevent the network from simply learning an identity

mapping of the input, and instead promote the learning of a compressed representation of the in-

put (i.e. an "encoding"). The portion of the network which compresses the input is called the

encoder, while the portion which reconstructs the input from the encoding is called the decoder.

The encoding half of the autoencoder can be used independently of the decoding half to create

representations of the input that are often useful in supervised tasks like classification [92, 94].
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Figure 7.1: Application of convolution, then deconvolution on a single channel input image. The relation-
ship between the purple pixel in the input/reconstruction and the red pixel in the encoding is captured by the
appropriate weight in the filters (lower left for convolution and upper right for deconvolution). By reflecting
the convolution filter horizontally and vertically for use in deconvolution, the same weight (W31) is used for
this relationship during both encoding and decoding.

Masci et al. (2011) [65] proposed convolutional autoencoders (CAEs) which perform convo-

lution to encode an image and deconvolution to decode the image. There is also a corresponding

unpooling operation which upsamples images which were pooled during the encoding step. De-

convolution is simply a convolution operation performed on the result of an encoding convolution,

with weights being tied between convolution and deconvolution layers. For k filters of size m×m

and c channels, the corresponding deconvolution would consist of c filters of size m × m and k

channels, where the weights have been reflected in both spatial dimensions (e.g. the weights for the

lower left pixel of the receptive field are now applied to the upper right pixel). The spatial reflec-

tion allows a particular weight to carry a specific meaning, namely it characterizes the relationship

between a particular pixel in an image and a pixel in its encoding. To illustrate this, Figure 7.1

shows a deconvolution for a single filter and single channel. CAEs are trained in the same greedy,

layerwise fashion as conventional autoencoders.

The concept of deconvolution can be applied to graph convolutions as well. Note that when

reflecting image convolution filters, the center weight remains in the same position. In the same

way, graph deconvolutions retain the same weights for the central vertex. Furthermore, since all
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neighbors use the same weights, there is no spatial reflection necessary. Deconvolution simply

consists of transposing the center and neighbor weight matrices so that channels become filters

and filters become channels. For Sum Coupling, deconvolution becomes:

x̂i(hi|W C,W N,W E∗, b∗) = σ

(

(W C)′hi +
1

|Ni|
∑

j∈Ni

[

(W N)′hj +W E∗Aij

]

+ b∗
)

, (7.2)

where x̂ denotes the reconstruction of x after deconvolving, hi is the convolved representation at

vertex i, (W C)′ is the transpose of W C, likewise for (W N)′ and W N, and both W E∗ and b∗ are

weight matrices with unshared weights. Note that graph convolutions generate representations on

vertices of the graph, not the edges, so the non-encoded edge information (Aij) must be used when

deconvolving, and the weight matrix W E∗ cannot be tied to the encoding matrix W E.

Alternately, edge representations could be created in a separate convolution operation, where

an edge’s receptive field is simply the incident vertices:

hij(Aij|W EE,W EV, be) = σ

(

W EEAij +
1

2

(

W EVxi +W EVxj

)

+ bE

)

, (7.3)

where hij is the representation of edge (i, j) , W EE is the weight matrix associated with the edge,

W EV is the weight matrix associated with the incident vertices, and bE is the bias. In this case,

vertex deconvolution can use the encoded edge representations and associated weights. Equation

(7.2) then becomes:

x̂i(hi|W C,W N,W EV, b) = σ

(

(W C)′hi +
1

|Ni|
∑

j∈Ni

[

(W N)′hj + (W EV)′hij

]

+ b∗
)

, (7.4)

where (W EV)′ is the transpose of W EF. Edges can also be deconvolved using the edge and vertex

representations:
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Âij(hij|W EE,W E, b) = σ

(

(W EE)′hij +
1

2

[

(W E)′hi + (W E)′hj

]

+ b∗E

)

. (7.5)

This added weight sharing and symmetry between convolution and deconvolution operations may

allow training of deeper networks which recognize more sophisticated structures.

7.1.5 Simplicial Complex Convolution

Graphs are only one way to model structural relationships between entities. A simplicial com-

plex is a generalization of a graph in which higher order simplices (triangles, tetrahedra, etc), in

addition to edges, describe relationships between groups of vertices. For example, just as an edge

indicates a relationship between two vertices, a triangle (or 2-simplex) indicates the relationship

between three vertices. For example, both the Čech and Vietoris-Rips definitions can be used to

construct a simplicial complex from a set of points in an underlying metric space:

Definition 7.1.1. Given a point set X in some metric space and a number ǫ > 0, the Čech complex

C Č
ǫ is the simplicial complex whose simplices are formed as follows. For each subset S ⊂ X of

points, form an (ǫ/2)-ball around each point in S, and include S as a simplex (of dimension |S|) if

there is a common point contained in all of the balls in S.

Definition 7.1.2. Given a point set X in some metric space and a number ǫ > 0, the Vietoris-Rips

complex CVR
ǫ is the simplicial complex whose simplices are formed as follows. For each subset

S ⊂ X of points, form an (ǫ/2)-ball around each point in S, and include S as a simplex (of

dimension |S|) if for each pair of balls in S there is a common point contained in both balls.

In both definitions, simplices are included in the simplicial complex based on some notion of

proximity. This means simplicial complexes are naturally equipped to identify clusters of vertices

within a neighborhood, something which can be useful for interface prediction, where local regions

of residues may constitute portions of an interface. Though the number of possible convolution

operations on simplicial complexes are many, one example is provided here as an illustration. In

this formulation, rather than sum the signal from all neighbors in the receptive field, each simplex

Sk, k ∈ {1, 2, ...K} (not counting vertices and edges, which are the lowest order simplexes) in
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the neighborhood is summed individually and the maximum simplex signal is added to the central

signal:

hi(x|W C,W N,W E1,W E2, b) =

σ

(

W Cxi +max
k

[ 1

|Sk|
∑

j∈Sk

(W Nxj +W E1Aij) +
1

|Sk|2
∑

j,l∈Sk

(W E2Ajl)
]

+ b

)

.
(7.6)

This formulation also includes secondary edges (Ajl), those between different neighbors in the

same simplex. It is possible that neighbors and edges occur in more than one simplex in the

neighborhood, but that doesn’t pose a problem because of the normalization and max function.

The use of simplicial complexes in defining convolution operations is currently being investigated

by a student in Professor Ben-Hur’s research group.

7.2 Extensions of Application

Interface prediction is not the only active area of protein research, and so the modeling of pro-

teins as graphs and use of graph convolution could potentially be used for other protein problems

as well. A common characteristic of docking methods is that they create a high number of putative

3D bound structures [44]. Graph convolutional neural networks could also be used to evaluate

putative docking solutions and rank them in order of likelihood. For example, the interface derived

from a docking solution could be compared to the interface predicted by a trained pairwise graph

convolutional neural network and ranked according to similarity with the network prediction. Sim-

ilarly, much research has been performed in protein modeling, which seeks to predict a protein’s

secondary and tertiary structures from sequence alone [95]. Though graph convolutions cannot

be used to create protein folds de novo, they can be used to evaluate a set of putative folds and

likewise rank them. In both of these applications, scoring is being performed not at the individual

vertex level, but at the graph level. These could take advantage of a global pooling method like
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taking the maximum or average across all vertices, or developing a fingerprint similar to work by

Duvenaud & Maclaurin, et al. [82].

Any application involving structured data that do not fit naturally into a grid is a potential can-

didate for graph convolutional approaches. Aside from proteins, other biological and chemical data

often meet this criterion. In particular, Quantitative Structure-Activity Relationship (QSAR) and

Quantitative Structure-Property Relationship (QSPR) both attempt to predict chemical behavior

and properties of proposed chemical structures in order to identify structures with certain desired

properties. Identified structures become candidates for laboratory synthesis and experimentation, a

much more laborious and time consuming process. This is the focus of the Fingerprint convolution

from Duvenaud & Maclaurin et al. [82]. Studies in QSAR and QSPR have long been considered

"unquestionably of great importance in modern chemistry and biochemistry" [96]. Like proteins,

chemical structures can be modeled as a graph and used to train graph convolutional networks

to predict the properties of interest. This is made possible by the vast and growing databases of

chemical structures and their corresponding structures [97, 98].

Beyond the biochemical realm, graph structured data abound. Knowledge bases are collections

of structured data in the form of triples indicating (subject, predicate, object), where subject and

object are named entities and predicate indicates the relationship between them, and pairs indi-

cating (subject, attribute), where attribute is a type or property label for subject. These data can

easily be thought of graphs, where entities are vertices, each type of predicate is one of many dif-

ferent types of edge features, and each attribute is one of many different types of vertex features.

Knowledge bases emerge in online information repositories such as YAGO [99], DBPedia [100],

and Wikidata [101], and are used in the Google search engine [102]. Due to their large size, knowl-

edge graphs are often under-annotated, where vertex relationships and properties are missing. A

graph convolutional neural network can be used to predict properties or relationships on graphs,

essentially performing automatic inference on the graph. This is the chief problem of interest for

Schichtkrull & Kipf [83].
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Appendix A

Features

The raw data associated with protein structures are found in PDB files, which contain the

protein sequence of amino acids and the atomic coordinates of each atom in each amino acid. When

performing interface prediction, a number of derived features have been found useful, which are

either calculated directly from the PDB data, or from other sources such as sequence databases.

Here, the term features describes a vector of values associated with either a vertex or edge in a

graph, with vertices corresponding to amino acid residues, and edges the relationships between

two residues. The term feature then is just a single element of the vector. Some methods described

below generate more than one feature, hence they are grouped into appropriate categories. This

appendix describes each feature category in detail, including the number of features generated,

external tools, and a description of the feature. In addition to the tools specified for each feature

category, extensive use was made of Biopython [103] to parse PDB files into convenient data

structures.

A.1 Vertex Features

A.1.1 Windowed Position Specific Scoring Matrix (PSSM)

Number of features: 20

External tools: PSI-BLAST [104]

Description: The PSSM is a set of features constructed from protein sequence alone, without any

structural information. It captures the relative abundance of each type of amino acid in proteins

which share a similar sequence in a window around the amino acid of interest. Proteins with similar

sequences to the search window are identified through PSI-BLAST, a position specific, iterative

version of BLAST, the Basic Local Alignment and Search Tool [105]. The similar sequences are

then used to generate a summary in a window around the residue of interest. For each window
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position and each residue type, a score is computed by comparing the observed counts of that

residue type in that window position to the expected count generated by a null model. The score

is then log(Qi/Pi) where Qi is the fraction of sequences with that residue type in that position,

and Pi is the expected fraction based on data-dependent pseudocounts (more detail can be found

in Altschul, et al. [105]. For this thesis, only the scores at the residue of interest were considered

(a window size of one), so there are 20 features, one for each amino acid type.

A.1.2 Relative Accessible Surface Area (rASA)

Number of features: 1

External tools: STRIDE [106]

Description: Relative Accessible Surface Area, or Solvent Accessible Area, reflects the fraction of

a residue that is exposed to a potential solvent. This is computed by sliding a spherical probe of

radius of 1.4Å (approximating the radius of a water molecule [107]) over the van der Waals surface

of the protein near the residue of interest. The Area generated by the center of the probe as it is in

contact with the residue is taken to be the accessible surface area. This is divided by the maximum

possible accessible surface area to achieve a relative measure.

A.1.3 Residue Depth

Number of features: 2

External tools: MSMS [108]

Description: Residue Depth is the minimum distance from the residue to the surface of the protein,

as calculated by MSMS. The distance is calculated in two ways: by taking the average distance of

all non-hydrogen atoms in the residue to the surface, and by taking the distance of the α-carbon to

the surface.

A.1.4 Protrusion Index

Number of features: 6

External tools: PSAIA [109]
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Description: The protrusion index indicates the degree to which a sphere (radius 10Å) centered at

a non-hydrogen atom is not filled with other atoms. Vint is the volume occupied by atoms, which

is calculated as the number of atoms times the mean atomic volume found in proteins. Vext is the

difference between the total sphere volume and Vint. The protrusion index is defined as Vext/Vint.

This value is calculated for each non-hydrogen atom in the residue, then the following summary

statistics are taken:

• Total mean: The average over all non-hydrogen atoms in the residue

• Total standard deviation: The standard deviation over all non-hydrogen atoms in the residue

• Side chain mean: The average over just non-hydrogen atoms in the residue side chain

• Side chain standard deviation: The standard deviation over just non-hydrogen atoms in the

residue side chain

• maximum: The maximum over all non-hydrogen atoms

• minimum: The minimum over all non-hydrogen atoms

All of these features are normalized to values between 0 and 1 on a per-protein basis. Normalizing

across proteins was avoided so that normalizations of existing proteins in the training set would

not change if additional proteins are added later.

A.1.5 Hydrophobicity

Number of features: 1

External tools: PSAIA [109]

Description: Hydrophobicity indicates the tendency for an amino acid to avoid water. PSAIA

calculates this value base on the scale defined by Kyte & Doolittle [110]. Hydrophobicity values

were normalized between 0 and 1 on a per-protein basis.
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A.1.6 Half Sphere Amino Acid Composition

Number of features: 40

External tools: None

Description: These features capture the residue composition in a neighborhood of the residue of

interest. The neighborhood is defined as all residues with at least one atom closer than 8Å to at

least one atom in the residue of interest. An array of counts is created which stores the number of

each type of residue in the neighborhood, which is then divided by the total count of all types. This

array is calculated for two regions, separated by the null space of the vector that is the average of

the unit vectors from the α-carbon to the side chain atoms.

A.2 Edge Features

A.2.1 Average Atomic Distance

Number of features: 1

External tools: None

Description: This feature is computed by taking the average of the distance between any two atoms

of the two residues of interest. The raw distance is then passed through a Gaussian function:

f(x) = e−x2/σ2

, (A.1)

where σ is chosen by model selection, so that this feature has a higher value for residues that are

closer together.

A.2.2 CCαO Angle

Number of features: 1

External tools: None

Description: This feature captures the relative orientation of two residues as defined by the normals

to their adjacent peptide planes. Let XCα
, XC , and XO be the positions vectors of the α-carbon,
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carboxyl-group carbon, and carboxyl-group oxygen, respectively. The normal is then defined as:

N̂ =
(XO −XC)× (XCα

−XC)

||(XO −XC)× (XCα
−XC)||

, (A.2)

where × denotes the cross product, and || · || the L2 norm. The angle between residues i and j is

then:

C CαO = cos−1

(

N̂i · N̂j

||N̂i|| ||N̂j||

)

(A.3)

Finally, the angle is normalized to be between 0 and 1 by dividing by 2π.

A.3 Missing Data

In Section 5.1.2 it was noted that 13 residues were not provided with an α-carbon in the cor-

responding PDB file. These residues were determined to be partial records at the end of a protein

chain, where only a single atom was listed. This made calculation of Half Sphere Amino Acid

Composition, Residue Depth, and CCαO Angle impossible. Upon inspection, these partial records

were deemed to be legitimate residues and so were retained, with the missing features imputed

according to the procedure described in Chapter 5.
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Appendix B

Software Implementation

The main software used in this thesis was written in Python version 2.7.13. Rather than writing

several individual scripts which each ran their own experiments, the software was written as a

unified framework which would allow consistent use of data, rapid experimentation, and reuse of

critical experimental code. This experiment briefly describes some of the notable elements of the

software.

B.1 Experiment Specification Files

Experiments are specified using the YAML data format, a human readable data serialization

language. To run an experiment, the user calls the main experiment running script and passes

the specification file name as an argument. The specification file fully defines the experiment(s)

being run, to include the data format, model architecture, and training/testing procedure. This has a

number of advantages. First, it ensures traceability from experimental conditions to results. A copy

of the experiment file is placed in the same directory of the experiment results, ensuring that any

results from past experiments can be understood and interpreted appropriately. Second, it allows

rapid iteration of experimentation, since running a modified version of an experiment is requires a

simple modification of the specification file. Third, it allows concurrent researchers to review each

others’ work without having lengthy discussions about the precise experimental settings used. For

illustration, the contents of an example YAML file are shown below (for Sum Coupling, receptive

field size 21, for one, two , three, and four layers):

type: ’experimentset’

common:

type: ’traintest’

args:

test_frequency: 80
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vis_frequency: 80

test_before_train: True

num_epochs: 80

minibatch_size: 128

test_batch_size: 2000

checkpoint_frequency: 80

data:

dataset: "dbd5"

train_list: ["train_list_w_2B42.yml", "validate_list.yml"]

test_list: "test_list_w_3R9A.yml"

n_train: -1

n_test: -1

train_ratio: 10

test_ratio: -1

nans: "global_median"

features:

- "WINDOWED_POSITION_SPECIFIC_SCORING_MATRIX"

- "RELATIVE_ACCESSIBLE_SURFACE_AREA"

- "RESIDUE_DEPTH"

- "PROTRUSION_INDEX"

- "HALF_SPHERE_EXPOSURE"

- "RES_DIST_AVE"

#- "RES_DIST_STD"

- "ANGLE_CCAO"

#- "ANGLE_HSAA_COS"

feature_args:

profile_params:

window_size: 1

blast-database: "/s/<host>/a/tmp/blastdb/db"
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distance_matrix:

preprocess: ["gaussian_kernel", 18]

angle_matrix:

preprocess: "divide_pi"

representation: "pairwise_data_per_protein_with_hood_indices"

metrics:

- "learning_rate"

- "params"

- "loss_train"

- "loss_test"

- "roc_train"

- "roc_test"

- "rfpp_train"

- "rfpp_test"

model:

name: "PWClassifier"

layer_args: {init: "he", coupling: "sum", bias_init: "zero",

nonlin: "relu", dropout_keep_prob: 0.5}

loss: "tf_weighted_crossent"

loss_args:

pn_ratio: 0.1

optimizer: "tf_sgd"

optimizer_args:

learning_rate: 0.1

experiments:

- - "1_layer_rf20"

- data:

nhood_size: 20

model:
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layers:

- ["star_v_conv", {filters: 256}]

- ["merge_gather_swap_paired_examples",

{mode: ["concat"]}, ["merge"]]

- ["dense", {out_dims: 512}]

- ["dense", {out_dims: 1, nonlin: "linear"}]

- ["combine_swapped"]

- - "2_layer_rf20"

- data:

nhood_size: 20

model:

layers:

- ["star_v_conv", {filters: 256}]

- ["star_v_conv", {filters: 512}]

- ["merge_gather_swap_paired_examples",

{mode: ["concat"]}, ["merge"]]

- ["dense", {out_dims: 512}]

- ["dense", {out_dims: 1, nonlin: "linear"}]

- ["combine_swapped"]

- - "3_layer_rf20"

- data:

nhood_size: 20

model:

layers:

- ["star_v_conv", {filters: 256}]

- ["star_v_conv", {filters: 256}]

- ["star_v_conv", {filters: 512}]

- ["merge_gather_swap_paired_examples",

{mode: ["concat"]}, ["merge"]]
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- ["dense", {out_dims: 512}]

- ["dense", {out_dims: 1, nonlin: "linear"}]

- ["combine_swapped"]

- - "4_layer_rf20"

- data:

nhood_size: 20

model:

layers:

- ["star_v_conv", {filters: 256}]

- ["star_v_conv", {filters: 256}]

- ["star_v_conv", {filters: 512}]

- ["star_v_conv", {filters: 512}]

- ["merge_gather_swap_paired_examples",

{mode: ["concat"]}, ["merge"]]

- ["dense", {out_dims: 512}]

- ["dense", {out_dims: 1, nonlin: "linear"}]

- ["combine_swapped"]

B.2 Convolution Functions

Because all convolution approaches used a similar neural network architecture, each layer type

was implemented as a function, and the relevant function is named in the experiment specification

file (for example, "star_v_conv" in the YAML code above). Each layer function would receive as

inputs the outputs of the previous layer(s), and any number of keyword arguments specific to that

layer. The layer would define any TensorFlow operations on the inputs that produce the layer’s

output. Below is an example function implementing a convolutional layer, which is a simplified

version of "star_v_conv" mentioned above.

def star_v_conv(layer_input, filters, init, bias_init, nonlin,

coupling, dropout_keep_prob, bias, **kwargs):
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# get inputs

vertices, edges, nh_indices = layer_input

v_shape = vertices.get_shape()

e_shape = edges.get_shape()

nh_size = nh_indices.get_shape()[1].value

# create weights

Wvc = tf.Variable(initializer(init, (v_shape[1].value, filters)))

bv = tf.Variable(initializer(bias_init, (filters,)), name="bv")

Wvn = tf.Variable(initializer(init, (v_shape[1].value, filters)))

We = tf.Variable(initializer(init, (e_shape[2].value, filters)))

# create central vertex signals

Zc = tf.matmul(vertices, Wvc, name="Zc")

# create neighbor signals

e_We = tf.tensordot(edges, We, axes=[[2], [0]], name="e_We")

v_Wvn = tf.matmul(vertices, Wvn, name="v_Wvn")

if coupling == "sum":

Zn = tf.divide(

tf.reduce_sum(tf.gather(v_Wvn, nh_indices), 1) \\

+ tf.reduce_sum(e_We, 1), \\

nh_size)

elif coupling == "product":

Zn = tf.divide(

tf.reduce_sum(tf.gather(v_Wvn, nh_indices) \\

* e_We, axis=1), \\

nh_size)
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# signal

sig = Zn + Zc

if bias:

sig += bv

# pass through the nonlinearity

z = tf.reshape(nonlin(sig), tf.constant([-1, filters]))

# dropout

z = tf.nn.dropout(z, dropout_keep_prob)

return z
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