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ABSTRACT

POLICY OPTIMIZATION FOR INDUSTRIAL BENCHMARK USING DEEP

REINFORCEMENT LEARNING

Significant advancements have been made in the field of Reinforcement Learning (RL) in re-

cent decades. Numerous novel RL environments and algorithms are mastering these problems

that have been studied, evaluated, and published. The most popular RL benchmark environments

produced by OpenAI Gym and DeepMind Labs are modeled after single/multi-player board, video

games, or single-purpose robots and the RL algorithms modeling optimal policies for playing those

games have even outperformed humans in almost all of them. However, the real-world applications

using RL is very limited, as the academic community has limited access to real industrial data and

applications. Industrial Benchmark (IB) is a novel RL benchmark motivated by Industrial Control

problems with properties such as continuous state and action spaces, high dimensionality, partially

observable state space, delayed effects combined with complex heteroscedastic stochastic behav-

ior. We have used Deep Reinforcement Learning (DRL) algorithms like Deep Q-Networks (DQN)

and Double-DQN (DDQN) to study and model optimal policies on IB. Our empirical results show

various DRL models outperforming previously published models on the same IB.
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Chapter 1

Introduction

In recent years, major advancements in the field of reinforcement learning (RL) [1] can be at-

tributed to the numerous complex benchmarks developed by the research community like OpenAI

Gym [2], DeepMind Labs [3], MuJoCo [4] and many more. These benchmarks attempt to solve

problems ranging from searching, planning, to optimizing under partial supervision. The ability to

learn from the interactions with the environment and continuously improve its performance by the

process of receiving rewards and punishments on every action taken enables RL models to train

systems to respond to unforeseen environments. Deep Reinforcement Learning (DRL) [5] which

combines RL with Artificial Neural Networks (ANN) [6] for value function approximations has

led to development of agents with superhuman performance in Atari [7] games. Deep Q-Networks

(DQN) [8] and Double-DQN (DDQN) [9] enable us to represent complex high-dimensional data,

i.e., state and action space in compact low-dimensional vectors, and therefore can be used for

optimizing policies for decision-making problems.

Industrial control systems like steel processing [10], pulp, and paper processing [11], and car

manufacturing [12] or power generation with wind or gas turbines [13] have always been an ex-

citing area of interest for the RL researchers. The hope is to develop an intelligent agent that can

learn and produce optimal policies for industrial control problems mentioned earlier. However,

these DRL algorithms have not been tested enough on real-world problems due to the high risk of

failures in these complex and expensive systems. Therefore, there is a huge demand for simulators

that have high dimensionality combined with complex heteroscedastic stochastic behavior. The

major challenge in developing such a simulator is the limited access to industrial data and appli-

cations. There are a few new simulators which have been introduced to the research community

like Industrial Benchmark (IB) [14], GEM Electric Motors [15], Micro-Grid [16], AnyTrading by

OpenAI Gym [2], and autonomous driving simulators [17] [18] [19]. IB is a novel simulator that

can be used to model industrial control problems with similar hardness and complexity as many
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real-world systems. IB is unique as it is not designed to simulate any specific industrial prob-

lem, unlike the others designed for a specific task like controlling electric motors, optimization

of micro-grids based on energy conversion by power electric converters, trading securities, and

autonomous driving.

In this work, we will use DQN and DDQN to develop optimal policies using the novel IB for

discrete action space with different architectures of Q-Network, gradient descent optimizer [20],

and uniform and prioritized experience replays.

1.1 Research Question

This work explores the following research questions:

• [RQ1] How to use Deep Reinforcement Learning for Policy Optimization for discrete action

space on an Industrial Benchmark?

• [RQ2] What are the effects of Experience Replay, architectures of Artificial Neural Net-

works, and other hyper-parameters on optimal policies for the Industrial Benchmark prob-

lem?

1.2 Overview of Approach

Industrial Benchmark (IB) [14] problem has a partially observable continuous state space of

six random variables. Three of these variables are control variables, which can take inputs from the

agent to improve the existing policy. Two other variables which depend on the complete Markov

state (Appendix A) of the environment are used to compute the reward for each state transition

(st, at −→ (st+1, at+1)) and the last observable variable represents the external load to the envi-

ronment which cannot be influenced by the agent.

Q-learning based techniques will be used for approximating the optimal action-value function

to get the best policy. We will use Double Q-learning to overcome the limitation of maximization

bias in the Q-learning. Artificial Neural Networks (ANN) [6] will be used as function approxi-

mators in DQN [8] and DDQN [9]. We will use multiple combinations of the observable state
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as an input to our neural networks. We will analyze the effect of hyper-parameters on the policy

by experimenting with different sizes and types of experience replay buffer [21], different neural

network architectures, different optimizers [20], and more. We will explore both constant and vari-

able external loads. At a minimum, we will get the best optimal policies with discrete action space

and constant external load. We have implemented all of these methods using TensorFlow [22],

Keras [23], Keras-RL [24] and IB OpenAI Gym wrapper.

1.3 Research Contributions

Through this research, we demonstrate DRL techniques to produce an optimal policy on IB.

This work presents a detailed analysis of the following design choices and hyper-parameters that

can be used to improve the RL agent’s performance.

1. We show that the external load is directly proportional to the complexity of the environment.

So, complex environments require more sophisticated models.

2. We demonstrate that Uniform Experience Replay Buffer performs better than Prioritized

Experience Replay Buffer, and we also show that increasing the size of the replay buffer

improves and stabilizes the policy.

3. We experimented with SGD and Adam optimizers and evaluated the average fitness value of

the policies for different settings.

4. We tried three different input patterns consisting of the observable state to the neural net-

works.

5. We implemented Neural Networks with four different architectures, mainly based on the

number of dense layers included in the network and evaluated the fitness value for the same

environment.

6. The update frequency of the Target Model in DDQN was evaluated for three different fre-

quencies.
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1.4 Organization

The organization of the rest of this document is as follows. Chapter 2 describes work that

is related to our work or is a prerequisite to our methodology. Chapter 3 gives an overview of

DRL algorithms, as well as describes DQN and DDQN along with all the design choices that we

made. Chapter 4 provides information about our experimental setup, implementation details, and

our empirical results. Lastly, our conclusions and future work are described in Chapter 5.
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Chapter 2

Prerequisites and Related Work

2.1 Reinforcement Learning

Reinforcement Learning (RL) [1] is one of the sub-domains of Machine Learning, which itself

is a sub-domain of Artificial Intelligence. It is classified as a semi-supervised learning technique

because the agent is trained without any prior knowledge of the environment, but it does receive

rewards (positive/neutral/negative) from its interaction with the environment. The agent needs to

discover on its own which actions lead to positive rewards and which do not. Through exploration,

an RL agent learns to interact with the environment and improves over time with experience by

maximizing (or minimizing) some cumulative reward function.

Like any other learning technique, RL has its challenges that must be considered while making

potential trade-offs. One of the major challenges is the trade-off between exploration and exploita-

tion, where an agent needs to decide between trying new actions at the risk of lower reward or

using its past experiences at the risk of getting stuck at local maxima (or minima). Another chal-

lenge is to predict if a new situation (state, action) is good or bad from its experience. And finally,

we also need to consider delayed consequences of the agent’s action, i.e., if the present high (or

low) reward is a result of the last action or some other action in the past? We will tackle these

challenges in Chapter 3.

RL has gained a lot of popularity in recent years with the introduction of great policy opti-

mization techniques like Deep Q-Networks (DQN) [8], Double DQN (DDQN) [9], Continuous

DQN [25], Actor-Critic Model [26], and Continuous control [27], and the incredible performances

of these algorithms in Atari Games [7], and Go [28].
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2.2 Game based RL Environments

Over the years, the RL research community has introduced numerous benchmarks to evalu-

ate the performance of RL algorithms. A large number of these benchmarks are based on board

games and video games with state and action space ranging from less than 100 to more than a

million. Some of the most popular environments including Cart Pole [29], Mountain Car [30], and

Arcade Learning Environment [31] are almost always used to benchmark newer RL algorithms.

Another very significant benchmark is the MuJoCo [4], which stands for Multi-Joint dynamics

with Contact and is a physics engine with very detailed contact simulation designed for model-

based control. OpenAI Gym [2] provides a set of challenging benchmarks for continuous control

tasks like pushing/sliding/picking blocks, and in-hand object manipulations with a robotic arm for

Multi-Goal Reinforcement Learning and Hindsight Experience Replay. Obstacle Tower Environ-

ment [32] is a new benchmark designed to test agents in computer vision, navigational skills, high-

level planning, and generalization over experiences. GymGo is an environment for the board game

Go which can be used to test advanced hybrid RL algorithms like the one used in AlphaGo [28].

2.3 Other RL Environments

The OpenSim RL [33] is a musculoskeletal reinforcement learning environment that allows

researchers to develop and master complex physiologically accurate movement environments for

walking, running, and other real-world control problems.

The Gym Electric Motor (GEM) [15] is a benchmark for developing RL agents for control-

ling electric motors. It can be used to model several variants of DC motors, permanent magnet

synchronous motor, power electric converters, and mechanical load as well. It also provides a

cascaded PI-controller as a baseline for comparing RL agents.

The OpenModelica Microgrid Gym (OMG) [16] is a benchmark for simulation and control

optimization of Micro-and Smart Grids (MSG). It offers plug-and-play controller testing for mod-

eling arbitrary MSG topologies and RL-based controllers. MSGs are very important for integrating

renewable energy sources in conventional electricity grids. It is driven by power electric converters
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due to their high efficiency and flexibility. Therefore RL agents controlling electric converters in

microgrids are of great interest to researchers.

All the real-world benchmarks mentioned above are of significant importance to both the re-

search community and the industry. However, they are designed to model a specific control prob-

lem, and therefore they may not be useful in developing and testing RL agents from across do-

mains. However, there is another real-world environment that is described in the next section.

2.4 Industrial Benchmark

We have established the need for more real-world benchmarks which can help us develop

agents to model manufacturing [12] and processing in the industries [10] [11] [13]. Let us look at

the dynamics of IB [14] and understand how it can simulate a generic industrial application.

A central feature of the IB is the continuous, high-dimensional, and partially observable state

space. It has both discrete and continuous action space, which is made up of three continuous

components and affects three control inputs, namely the velocity v, gain g, and shift h. The known

reward function for this benchmark has two components with opposite dependencies on the action.

The IB dynamics include stochastic and delayed effects on the state. It is also heteroscedastic as

the observable state noise, and probability distributions are determined by the latent variables. We

can also set the external load to the environment, which is independent of the effects of the actions.

The observable state control variables v, g, and h at any given time step t are influenced by

actions at = (a1, a2, a3) where ai ∈ [−1, 1] for continuous action space and ai ∈ {−1, 0, 1}

for discrete action space. The external actions at = (a1, a2, a3) is actually represented as at =

(∆vt,∆gt,∆ht) where ∆vt, ∆gt, ∆ht depends on the entire state st. The complete state st

is the Markov state which is only partially observed by the agent. The observable state o =

(v, g, h, p, c, f) ⊂ s where p is the setpoint, c is the consumption and f is the fatigue. Setpoint p

simulates the external force, such as the speed of the wind driving a turbine or load of power plant

that directly affects the agent but it has no control over the external environment. The variable

fatigue f represents the detrimental wear and tear suffered by the system. The resources consumed
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in the processing or manufacturing like fuel, power, is represented by the variable consumption c.

Please refer to Appendix A for the complete state space.

At each time step t, the agent takes an action at at current state st to produce the next state

st+1 which contains ct+1 and ft+1. The reward is a function of consumption and fatigue and can

be calculated using eq.(2.1).

rt+1 = −ct+1 − 3ft+1, (2.1)

The Markov state st can be approximated using a sufficient number of historical observations

over a time horizon of H . Please refer to the original paper [14] for further details about the

sub-dynamics of state variables.

Hein, et al., [34] have used IB to evaluate a batch RL algorithm Particle Swarm Optimiza-

tion Policy (PSO-P) [35] and compared the results from PSO-P to the results of closed-form con-

trol policies derived from the model-based Recurrent Control Neural Network (RCNN) [36] and

model-free Neural Fitted Q-Iteration (NFQ) [37]. NFQ performed the worst among the three meth-

ods due to its limitations and instability during training. RCNN produced some good performing

closed-form policies. PSO-P outperformed the others for almost every setpoint. The main disad-

vantage of this method is the high computational efforts required for calculating the next action.

According to their calculations, it is under 8 seconds, which is still too long for many industrial

applications.

Hein, et al., [38] have used IB to autonomously generate Interpretable Fuzzy Controllers using

Fuzzy Genetic Programming Reinforcement Learning (FGPRL) and is compared with the results

from Fuzzy Particle Swarm Reinforcement Learning (FPSRL). FGPRL can select the relevant

feature from a state, determine the size of the fuzzy rule set, and adjust all control parameters

on its own in one single step. They used model-based batch reinforcement learning for training

policies and then used Monte Carlo rollouts to predict each policy’s performance. FPSRL, on

the other hand, used particle swarm intelligence to tune the fuzzy policy parameters by selecting

only the important features before the training to generate interpretable policies. However, initial
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heuristic selection and manually creating policy structures are the main limitations of this approach.

The advantage of FGPRL is that it searches the full space of fuzzy controllers and automatically

determines the essential state variables and number of fuzzy rules.

The fuzzy controllers and the interpretable policies are not directly relevant to our work, but

we will use the fitness function (2.3), and the fitness value to compare results against our optimal

policies in Chapter 4. LetR(st, π) be the sum of all past rewards defined as follows

R(st, π) =
T−1
∑

k=0

γkr(st+k, π(st+k), st+k+1)

with st+k+1 = g(st+k, at+k)

(2.2)

where state st+1 ∈ S at time step (t + 1) is generated using a transition function g : S ×

A −→ S with g(st, at) = st+1, the corresponding reward function r : S × A × S −→ R,

with r(st, at, st+1) = rt+1 and the optimal policy, π ∈ Π, where Π is the set of all policies, and

γ ∈ [0, 1] is the discount factor. Thus the overall fitness value F(π) is obtained by averaging

R(st, π) over all the starting states st ∈ S ⊂ S . Thus, the solution to the problem are policies,

π̂ ∈ argmax
π∈Π

F(π), where

F(π) = 1

|S|
∑

st∈S

R(st, π) (2.3)

is the fitness function. The fitness values for the best policy developed using FPSRL and FGPRL

are F̃ = −5700 and F̃ = −5635, respectively. The fitness values of these models are based on

the time horizon H of 100, whereas the fitness values of all the policies that we will produce in

Section 4.2 are based on the time horizon H of 1000.
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Chapter 3

Methodology

3.1 Reinforcement Learning Algorithms

Let us tackle some of the Reinforcement learning challenges [39] that we listed Section 2.1.

Exploitation vs. Exploration

RL algorithms are required to explicitly explore in order to ensure that its policy is truly opti-

mal. We have multiple techniques to overcome this issue such as Dynamic Programming where we

can use Bayesian reasoning to calculate the expected future reward for all actions given the current

policy is optimal and pick the best action, Greedy Strategy where we always pick the action which

we know will give the maximum reward, ǫ-greedy strategy where we can randomly select an ac-

tion with probability ǫ and exponentially decrease ǫ over time. In this work, we will use ǫ-greedy

for managing exploitation versus exploration.

Delayed Reward

The RL agent must take into account which actions are good, based on the reward that it will

get arbitrarily at some time in the future. One of the ways to solve this problem is to model it

as Markov Decision Process (MDP). A MDP consists of a set of states S and actions A, a reward

functionR : S ×A −→R and a transition function g : S ×A −→Π(S) where Π(S) is probability

distribution over the set S (i.e., maps states to probabilities). This approach assumes that we have

a model, and we are just solving for an optimal policy.

Problems where the model is not known in advance, require Model-free Methods. One of

the Model-free techniques is Q-Learning. It is an off-policy RL algorithm that takes the best

action given the current state using an action-value function, Q(st, at), which approximates Q∗,

the optimal action-value function.
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The Q-learning rule is

Q(st, at) = Q(st, at) + α(rt+1 + γmax
a′

Q(st+1, a
′)−Q(st, at))

where (st, at, rt+1, st+1) is a tuple describing transition from current state st to next state st+1 after

performing action at and getting a reward rt+1.

Algorithm 1 Q-Learning with ǫ-greedy exploration

1: procedure Q-LEARNING(ǫ, α, γ)

2: Initialize Q(s, a) for all s ∈ S, a ∈ A arbitrarily except Q(terminal, ·)

3: Initialize ǫ = 1 and it is decay, ε ∈ [0, 1)

4: π ← ǫ-greedy policy w.r.t. Q

5: for each episode do

6: Set s1 as the starting state

7: t← 1

8: loop until episode terminates

9: Select action at =















random action, with probability ǫ

max
a
Q(st, a), otherwise

10: Take action at and observe reward rt+1 and next state st+1

11: Q(st, at)← Q(st, at) + α(rt+1 + γmax
a′

Q(st+1, a
′)−Q(st, at))

12: π ← ǫ-greedy policy w.r.t. Q (policy improvement)

13: t← t+ 1

14: end loop

15: ǫ←− ε× ǫ

16: end for

17: return Q, π

18: end procedure
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Generalization

As the state and action space increases with the complexity of the problem, it becomes im-

practical and inefficient to store each transition in a table-like structure. Thus, we need to modify

Q-learning to generalize approximation while storing the experience information in a more com-

pact format. We can use Artificial Neural Networks (ANN) [6] for estimating Q values by using

state and action as input. ANN enables automatic feature extraction, which allows us to success-

fully learn optimal policies directly from the high-dimensional observable state as input.

Batch RL [40] is a sub-domain of RL which uses dynamic programming for learning action-

value functions. In general, an RL agent selects an action based on the current state of the environ-

ment using some policy, performs that action, observes the reward and new state of the environ-

ment, and updates its policy based on the reward. This process is very inefficient and converges

very slowly to the optimal policy. We can overcome these deficiencies by using Batch RL, where

the agent does not interact with the environment directly; instead, it receives a fixed sample of

transitions (sj, aj, rj, sj+1) ∀ j ∈ N , from the environment prior to the learning. Now, the agent

cannot make assumptions about the samples or the sampling process; therefore, the agent’s objec-

tive changes from learning the optimal policy to learning the best policy for the given dataset. The

action-value function is updated synchronously on the entire batch of transitions.

Deep RL [5] (DRL) is another sub-domain of RL that combines RL with deep learning which

uses powerful function approximation and compact low dimensional representation of high dimen-

sional state and action space using deep neural networks. Addressing the curse of dimensionality

in RL allowed us to solve decision-making problems with autonomous agents, some of the prime

examples are superhuman performances in games like Atari [7] and Go [28]. DRL algorithms can

be categorized as Value-Based methods like DQN [8], NFQ [37], DDQN [41], Duel DQN [42],

Policy-Based methods like Vanilla Policy Gradient (VPG) [43], Trusted Region Policy Optimiza-

tion (TRPO) [44], Proximal Policy Optimization (PPO) [45], and Actor-Critic methods like De-

terministic Policy Gradient (DPG) [46], Deep DPG (DDPG) [27], and Asynchronous Advantage

Actor-Crtic (A3C) algorithm [26].
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We will use Value-Based DRL techniques, which incorporate the concept of Batch RL. We will

also explore the effects of batch size and sampling heuristics on policy optimization using IB in

Chapter 4.

In this work, Q-learning based techniques are used for approximating the optimal action-value

function to get the best policy. We have also used Double Q-learning to overcome the limitation of

maximization bias in the Q-learning. As IB has large and continuous state and action values, we

will use ANN as function approximators in DQN and DDQN.

3.1.1 DQN

Deep Q-Networks [8] is an RL technique based on Q-learning and motivated by the success

of deep neural networks. It uses temporal difference to update the neural network, directly from

sample of transitions et = (st, at, rt+1, st+1) generated from the interactions with the environment.

DQN uses experience replay buffer to store the transitions et’s performed by the agent over multiple

episodes in a data-set D. The agent uses ǫ-greedy policy to select an action, and then it stores the

transition in the replay buffer. The complete algorithm of DQN is described in Algorithm 2.

The advantages of using DQN over Q-learning are data efficiency as we use the same transi-

tions multiple times during training. Randomly selected samples reduce the correlation between

the samples and therefore reduces variance, and the value function approximator is more stable

because of the experience replay.
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Algorithm 2 Deep Q-Learning

1: Initialize replay memory D with a fixed capacity

2: Initialize action-value function q̂ with random weights w

3: Initialize target action-value function q̂ with weights w− = w

4: for episode m = 1, ...,M do

5: Reset to initial state s1

6: for time step t = 1, ..., T do

7: Select action at =















random action, with probability ǫ

argmax
a

q̂(st, a,w
−), otherwise

8: Take action at and observe reward rt+1 and next state st+1

9: Store the transition (st, at, rt+1, st+1) in D

10: Sample uniformly a random minibatch of N transitions (sj, aj, rj+1, sj+1) from D

11: if episode ends at step j + 1 then

12: yj = rj+1

13: else

14: yj = rj+1 + γmax
a′

q̂(sj+1, a
′,w−)

15: end if

16: Perform a stochastic gradient descent step on J(w) = 1

N

∑N

j=1
(yj − q̂(sj, aj,w))2

w.r.t. parameters w

17: Every C steps reset w− = w

18: end for

19: end for

3.1.2 Double-DQN

One of the significant drawbacks of Q-learning is that the estimated values can suffer from

maximization bias because it uses the maximum over the estimated values as an estimate of the

maximum value, as seen in line 11 Algorithm 1 and lines 7 and 14 in Algorithm 2. In order to
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avoid this bias, we need to decouple maximizing the Q value and estimating the max Q value for

a given state, and this can be achieved by using two independent unbiased estimates, Q1 and Q2.

We can use one to select the maximum value with some probability p and the other to estimate the

value of the maximum with probability 1 − p. This method is known as Double Q-learning [41],

which is described in Algorithm 3.

Algorithm 3 Double Q-Learning

1: procedure DOUBLE Q-LEARNING(ǫ, α, γ)

2: Initialize Q1(s, a), Q2(s, a) for all s ∈ S, a ∈ A, set t← 0

3: π ← ǫ-greedy policy w.r.t. Q1 +Q2

4: loop

5: Sample action at from policy π(st)

6: Take action at and observe reward rt+1 and next state st+1

7: if u ∼ U(0, 1) > 0.5 then

8: Q1(st, at)← Q1(st, at) + α(rt+1 + γQ2(st+1, argmax
a′

Q1(st+1, a
′))−Q1(st, at))

9: else

10: Q2(st, at)← Q2(st, at) + α(rt+1 + γQ1(st+1, argmax
a′

Q2(st+1, a
′))−Q2(st, at))

11: end if

12: π ← ǫ-greedy policy w.r.t. Q1 +Q2 (policy improvement)

13: t← t+ 1

14: end loop

15: return π,Q1 +Q2

16: end procedure

Double Q-learning can eliminate sub-optimal actions more quickly than normal Q-learning and

thus reduces the training timing significantly.

DQN also suffers from maximization bias as it uses the same network values for selecting and

estimating the action, as seen in line 14 Algorithm 2. The same idea of decoupling action selection
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and action estimation can also be applied to DDQN. This can be achieved by using the target

network in the DQN as a second value function. Van Hasselt, et al., [9] proposed to evaluate the

greedy policy using the online network and estimate the value using the target network and keep

the same update policy as shown in Algorithm 4.

Algorithm 4 Double Deep Q-Learning

1: Initialize replay memory D with a fixed capacity

2: Initialize action-value function q̂ with random weights w

3: Initialize target action-value function q̂ with weights w− = w

4: for episode m = 1, ...,M do

5: Reset to initial state s1

6: for time step t = 1, ..., T do

7: Select action at =















random action, with probability ǫ

argmax
a

q̂(st, a,w), otherwise

8: Take action at and observe reward rt+1 and next state st+1

9: Store the transition (st, at, rt+1, st+1) in D

10: Sample uniformly a random minibatch of N transitions (sj, aj, rj+1, sj+1) from D

11: if episode ends at step j + 1 then

12: yj = rj+1

13: else

14: yj = rj+1 + γq̂(sj+1, argmax
a′

q̂(sj+1, a
′,w),w−)

15: end if

16: Perform a stochastic gradient descent step on J(w) = 1

N

∑N

j=1
(yj − q̂(sj, aj,w))2

w.r.t. parameters w

17: Every C steps reset w− = w

18: end for

19: end for
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3.2 Supplement or Additional Features

3.2.1 Experience Replay

Experience replay [21] has had a significant impact on the DRL algorithms and has become

standard in most RL algorithms. The main reason for its popularity is that it generates uncorre-

lated data for online learning of DRL techniques while improving the data efficiency as the same

transitions get utilized multiple times. Another approach for generating uncorrelated data is to use

multiple workers, but that changes the problem settings. In this work, we will be using uniform

and prioritized experience replay buffers.

Uniform Replay Buffer

A uniform replay buffer is a queue of the last N transitions stored in memory. It is used

to draw a set of sample transitions using a uniform random distribution where each transition is

equally likely to get picked.

Prioritized Replay Buffer

Even though uniform experience replay improves the performance and data efficiency of the

DRL algorithms, it replays the transitions at the same frequency as before without considering

their significance. Schaul, et al., [47] developed an algorithm (refer to Algorithm 5) to prioritize

experiences so that we can replay important experiences more frequently. This method is more

effective and efficient than the uniform replay. We will be using this same algorithm for our

experiments.

The prioritization of experiences is achieved by replaying transitions with high expected learn-

ing, measured in terms of the magnitude of temporal-difference error, more frequently. This intro-

duces bias due to stochastic prioritization which is corrected using importance sampling (IS) [48]

weights

wi =

(

1

N

1

P (i)

)β
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We normalize the IS weights by 1/max
i
wi for stability reasons. So the normalized IS weights is

wi =

(

1

N

1

P (i)

)β
1

max
i
wi

These normalized IS weights can now be used in Q-learning along with the TD-error as shown in

line 13 Algorithm 5.

Algorithm 5 Double DQN with proportional prioritization

1: Input: minibatch k, step-size η, replay period K and size n, exponents α and β, budget T .

2: Initialize replay memory D = ∅, ∆ = 0, p1 = 1

3: Observe s1 and choose a1 ∼ πθ(s1)

4: for t = 1, ..., T do

5: Observe st+1, rt+1, γt+1

6: Store transition (st, at, rt+1, γt+1, st+1) in D with maximal priority pt = max
i<t

pi

7: if t mod K = 0 then

8: for j = 1 to k do

9: Sample transition j ∼ P (j) = pαj /
∑

i p
α
i

10: Compute importance-sampling weight wj = (NP (j))−β/max
i
wi

11: Compute TD-error δj = rj + γjQtarget(sj, argmax
a

Q(sj, a))−Q(sj−1, aj−1)

12: Update transition priority pj ←− |δj|

13: Accumulate weight-change ∆←− ∆+ wjδj∇θQ(sj−1, aj−1)

14: end for

15: Update weight θ ←− θ + η∆, reset ∆ = 0

16: From time to time copy weights into target network θtarget ←− θ

17: end if

18: Choose action at ∼ πθ(st)

19: end for
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3.2.2 Optimizer

Optimization techniques [20] are the core component of all machine learning algorithms. As

all learning algorithms attempt to build an optimal model to learn a specific objective function

from a large source labeled/unlabeled data, optimization techniques are responsible for the success

or failure of these algorithms. There are three main categories of optimization techniques: first-

order optimization techniques based on gradient descent, high-order optimization techniques based

on Newton’s method, and heuristic derivative-free optimization techniques based on coordinate

descent.

Gradient descent based methods like Stochastic Gradient Descent (SGD) [49], and Nesterov

Accelerated Gradient Descent (NAG) [50], and adaptive learning rate methods like AdaGrad [51],

AdaDelta [52] or RMSProp [53], and Adam [54] are some of the commonly used optimizers in

DRL problems.

Gradient Descent techniques iteratively update the variables in the opposite direction of the

gradients of the objective function. The update helps the objective function to converge to the op-

timal value. This approach guarantees global optima if the objective function is a convex problem.

It often takes longer to converge when the variables are closer to the optimal values. In this work,

we will use SGD and Adam for optimizing our DRL models.

SGD

The Stochastic Gradient Descent (SGD) [49] is an unbiased estimate of the real gradient and

is computed using a randomly selected sample to update the gradient per iteration, instead of

using all the samples at every iteration. Thus, the SGD is independent of the sample size and can

achieve sub-linear convergence speed. It can also be used for online learning methods. However,

the random selection causes the gradient direction to oscillate, which is a major drawback. This

challenge can be easily handled by using a mini-batch of 50-256 independent identically distributed

samples instead of using a single sample. This reduces the variance in the gradient, stabilizes the

convergence, and improves the optimization speed.
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The learning rate is an important hyper-parameter for SGD that needs to be defined manually.

A small learning rate will significantly slow down the convergence, and a large learning rate will

overshoot and oscillate at the optima. We can use Adam to overcome this challenge that uses

adaptive learning.

Adam

Adaptive moment estimation (Adam) [54] is an advanced gradient descent method that uses an

adaptive learning rate in combination with momentum-based methods. It dynamically adjusts the

learning rate of each parameter based on a historical gradient from the previous time steps. The

update is formulated as follows:

The exponential decaying average of gradients mt is

mt = β1mt−1 + (1− β1)gt (3.1)

where gt is the gradient of parameter θ at time t. It also uses exponential moving average to

calculate the second-order cumulative momentum,

Vt =
√

β2Vt−1 + (1− β2)(gt)2 (3.2)

where β1, β2 are exponential decay rates. The final update to the parameter θ is

θt+1 = mt + η

√
1− β2
1− β1

mt

Vt + ε
(3.3)

where η is the initial learning rate. The default values of β1, β2 and ε are 0.9, 0.999 and 10−8.

Adam is suitable for all problems with high dimensional state and action space, and it is also

the most stable optimizer.
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Chapter 4

Evaluation And Results

4.1 Experimental Setup

We performed several experiments using DQN and DDQN for policy optimization on IB.

These experiments were performed on a single computer powered by 4-core Intel(R) Core(TM)

i7-7700HQ CPU @ 2.80GHz with 32GB of RAM and NVIDIA GeForce GTX 1050 Ti Mobile.

We have used Tensorflow [22], Keras [23], Keras-RL [24] for implementing our DRL models

with ANN [6] as function approximator with ReLU [55] activation function, and IB OpenAI Gym

wrapper for generating IB data.

We use DDQN as our default policy optimization technique. The default values of hyper-

parameters across all our experiments are as follows:

• Discount Factor γ = 0.99

• Replay Memory Size = 50,000

• Minimum Replay Memory Size = 1000

• Mini-batch Size = 64

• Update Target Model Every = 5 Episode

• Number of Episodes = 1000

The default settings for exploration are as follows:

• Epsilon ǫ = 1

• Epsilon Decay ε = 0.99

• Minimum Epsilon = 0.001
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The default settings for IB are

• Setpoint = 100

• Setpoint Type = Constant

• Reward Type = Classic

• Action Type = Discrete

• Time Horizon H = 1000 (number of steps per episode)

The default configuration of ANN used is as follows:

• Input Layer = Observable state

• First Hidden Layer = Dense Layer with 124 units

• Second Hidden Layer = Dense Layer with 56 units

• Activation Function for Hidden Layers = ReLU

• Output Layer = Dense Layer with 27 (Number of unique discrete actions) units

• Activation Function for Output Layer = Linear

• Optimizer = Adam

• Learning Rate η = 0.001

• Loss Function = Mean Squared Error

We will specify all the required hyper-parameters in each experiment where we do not use the

default settings.

Figure 4.1 shows continuous input actions (a1, a2, a3), and the corresponding outputs, the cost

and the reward as a function of time steps over three independent runs. The reward function is just

the negative of the cost function. For practical purposes, we have reduced the magnitude of the
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reward by a factor of 100 to reduce high variance due to large reward values. Figure 4.2 shows the

other observable variables (v, g, h, p, c, f) of the state space of the IB corresponding to the same

actions shown in Figure 4.1, where v is velocity, g is gain, h is shift, p is setpoint, c is consumption,

and f is fatigue.
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Figure 4.1: Action space and Reward as a function of time steps over 3 independent runs
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4.2 Empirical Results

This section presents the results from the numerous experiments performed using IB. Each

subsection contains a plot of Rewards per Episode Vs. Episode Number and a corresponding table

is summarizing the statistics for each run. We compare the different models based on the fitness

value, which is calculated using equation (2.3). The model with a bigger (smaller magnitude)

fitness value is a better model. The plots for all the experiments present the rewards per episode

of a single best run for some hyper-parameter and average over five runs for others. We have

summarized the statistics of the best models from all the experiments at the end in Section 4.2.10.

4.2.1 Setpoint

As mentioned earlier in Section 2.4, Setpoint p represents the external load that cannot be influ-

enced by the actions. In this experiment, we are trying to understand and visualize the differences

between setpoints. Figure 4.3 shows the rewards per episode for ten different setpoints, which

decrease in value (increase in cost) with an increasing setpoint. It also signifies the complexity

of the control system that we are trying to simulate. An IB environment with setpoint p = 10 is

a very easy environment to model compared to an environment with setpoint p = 100. We have

summarized the results from all the setpoints in Table 4.1.

Similarly, Figure 4.4 shows the rewards per episode for variable setpoint. A variable setpoint

changes the external load in a heteroscedastic manner. It makes the IB environment even more

complex and difficult to model. The results are summarized in Table 4.2. The results for variable

setpoints were recorded over 1000 episodes compared to 100 in the fixed setpoint to capture the

variability.
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Figure 4.3: Rewards per Episode for Setpoint P=(10, 20,...,100)

Table 4.1: Summary of Sum of All Rewards for Fixed Setpoint

Setpoint Mean Std. Dev Min Max

10 -5735.14 1744.13 -8598.07 -1898.13

20 -7367.93 2037.27 -10054.58 -2615.39

30 -8362.81 2201.67 -11873.94 -2073.98

40 -5956.25 2995.14 -13568.36 -1847.97

50 -9397.29 4184.45 -17582.52 -2550.22

60 -13769.28 6522.78 -21567.60 -2919.22

70 -16872.53 8679.07 -26061.33 -2965.23

80 -20888.54 10805.02 -32091.53 -3461.00

90 -24217.23 14097.87 -38581.09 -3581.38

100 -30718.85 17172.2 -47592.58 -3909.40
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Figure 4.4: Rewards per Episode for Variable Setpoint P=(10, 50, 100)

Table 4.2: Summary of Sum of All Rewards for Variable Setpoint

Setpoint Mean Std. Dev Min Max

10 -2973.36 1935.64 -8638.81 -918.55

50 -4607.81 3620.18 -17524.25 -1647.63

100 -12735.16 14406.51 -47367.28 -2743.87

4.2.2 Mini-batch Size

The mini-batch size determines the number of samples that will be drawn from the replay buffer

for training and optimizing the policy. We have analyzed its effect on both uniform and prioritized

replay buffers. Figure 4.5 shows the average rewards per episode across three different mini-batch

sizes for DDQN with uniform replay buffer (URB). We have summarized the results in Table 4.3,
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and we can see that mini-batch of 128 samples is better suited for DDQN with uniform replay

buffer.
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Figure 4.5: Average Rewards per Episode for DDQN with URB: Setpoint P=100, Mini-batch=(64, 128,

256)

Table 4.3: Summary of Sum of All Rewards Vs. Mini-batch Size

Setpoint Batch Size Mean Std. Dev. Min Max

100 64 -11032.31 11156.79 -44600.57 -3074.04

100 128 -10741.57 10458.93 -44158.97 -3570.59

100 256 -16710.54 8801.76 -43425.13 -3921.79

Similarly, Figure 4.6 shows the average rewards per episode for DDQN with a prioritized replay

buffer (PRB). We have summarized the results from prioritized replay buffer in Table 4.4, and we
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can see that a mini-batch of 64 samples outperforms others. In this experiment, we get better

performance from uniform replay than prioritized replay in general.
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Figure 4.6: Average Rewards per Episode for DDQN with PRB: Setpoint P=100, Mini-batch=(64, 128,

256)

Table 4.4: Summary of Rewards Sum of All Rewards with Prioritized Replay Vs. Mini-batch Size

Setpoint Batch Size Mean Std. Dev. Min Max

100 64 -14214.56 10299.48 -44012.59 -3819.32

100 128 -14870.42 10438.81 -44344.08 -3918.77

100 256 -14659.20 10415.07 -44150.09 -3803.85
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4.2.3 SGD Optimizer

Section 3.2.2 gives an overview of the optimizer [20] and the numerous options [49] [54] [51]

[52] [53] that we have at our disposal. In general, Adam [54] is considered the best optimizer

for DRL problems; therefore, we have used it as our default optimizer. In this experiment, we

are using SGD [49] as optimizer with momentum m = 0.9, and learning rates η = 0.001, and

η = 0.0001, as shown in Figure 4.7 and Figure 4.8, respectively. The DDQN models are used to

understand the effects of mini-batch size when combined with SGD, and we have summarized the

results in Table 4.5 and Table 4.6.

In general, the models with learning rate η = 0.001 outperforms all the models with learning

rate η = 0.0001, and the best model among the better models is the one with mini-batch of 512

samples.
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Figure 4.7: Rewards per Episode for DDQN using SGD optimizer and URB: Setpoint P=100, Learning

Rate η = 0.001, Mini-batch=(64, 128, 256, 512)
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Table 4.5: Summary of Sum of All Rewards using SDG with η = 0.001 Vs. Mini-batch Size

Setpoint Batch Size Mean Std. Dev. Min Max

100 64 -5038.18 1724.48 -14603.27 -3471.33

100 128 -4886.08 1705.72 -13077.59 -3299.84

100 256 -5124.71 2239.50 -14816.15 -3305.11

100 512 -4395.18 2095.30 -16378.02 -2744.79
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Figure 4.8: Rewards per Episode for DDQN using SGD optimizer and URB: Setpoint P=100, Learning

Rate η = 0.0001, Mini-batch=(64, 128, 256, 512)
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Table 4.6: Summary of Sum of All Rewards using SDG η = 0.0001 Vs. Mini-batch Size

Setpoint Batch Size Mean Std. Dev. Min Max

100 64 -7383.91 2679.34 -18823.70 -3576.57

100 128 -7057.65 7437.44 -46946.59 -3887.79

100 256 -8449.20 8193.44 -47644.25 -4379.80

100 512 -7765.93 8627.84 -47407.39 -3206.80

4.2.4 ANN Architectures

In Section 3.1, we mentioned the need for generalization, and we also mentioned that we would

use ANN to achieve that. In this experiment, we will explore the effects of the number of hidden

dense layers in ANN on the performance of DDQN models. A model with zero dense layers is a

linear model. The number of units in the first, second, and third dense layers is 124, 56, and 124,

respectively, and they were selected randomly.

Figure 4.9 shows the average reward per episode for DDQN with uniform replay buffer (URB)

models across several dense layers. Figure 4.10 shows the same for DDQN models with a priori-

tized replay buffer (PRB).

The results from each set of models are summarized in Table 4.7 and Table 4.8. In general, the

model with more dense layers performs better in both settings. The models with uniform replay

have outperformed their counterparts with prioritized replay. Based on these results, we can claim

that ANN with uniform replay performs better than the same ANN with prioritized replay.
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Figure 4.9: Average Rewards per Episode for DDQN with URB: Setpoint P=100, NN Hidden layers=(0,

1=124, 2=56, 3=124)

Table 4.7: Summary of Sum of All Rewards for DDQN Vs. Number of Dense Layers

Setpoint Num of Dense Layer Mean Std. Dev Min Max

100 0 -23655.09 13246.99 -45443.12 -3723.10

100 1 -11430.57 11065.34 -44529.65 -2838.93

100 2 -11032.31 11156.79 -44600.57 -3074.04

100 3 -6686.92 7524.28 -41407.52 -2880.93
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Figure 4.10: Average Rewards per Episode for DDQN with PRB: Setpoint P=100, NN Hidden layers=(0,

1=124, 2=56, 3=124)

Table 4.8: Summary of Sum of All Rewards for DDQN with PRB Vs. Number of Dense Layers

Setpoint Num of Dense Layer Mean Std. Dev Min Max

100 0 -26904.02 11240.68 -44917.72 -3779.61

100 1 -10736.12 10714.12 -44410.98 -3042.04

100 2 -14214.56 10299.48 -44012.59 -3819.32

100 3 -7202.13 7910.00 -42092.31 -2770.99

4.2.5 DQN

We have mostly used DDQN in all the experiments for reasons mentioned in Section 3.1. In

this experiment, we will use DQN to learn the policy for the IB problem. DQN uses the same Q-
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net to select the best action and to estimate the maximum value function for that action. In theory,

DQN models will suffer from maximization bias and will be unstable to model problems like IB.

The same hypothesis can be confirmed from Figure 4.11 and Figure 4.12. The results for DQN

models are summarized in Table 4.9 and Table 4.10.
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Figure 4.11: Rewards per Episode for DQN with URB: Setpoint P=100, NN Hidden layers=(0, 1=124,

2=56)

Table 4.9: Summary of Sum of All Rewards for DQN Vs. Number of Dense Layers

Setpoint Num of Dense Layer Mean Std. Dev Min Max

100 0 -8979.82 6576.28 -44268.75 -3461.81

100 1 -10613.48 11078.02 -48034.36 -2800.96

100 2 -21168.30 13957.35 -48024.85 -3147.80
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Figure 4.12: Rewards per Episode for DQN with PRB: Setpoint P=100, NN Hidden layers=(0, 1=124,

2=56)

Table 4.10: Summary of Sum of All Rewards for DQN with PRB Vs. Number of Dense Layers

Setpoint Num of Dense Layer Mean Std. Dev Min Max

100 0 -13293.53 10441.78 -47723.53 -3258.22

100 1 -8657.39 6710.42 -47483.94 -2669.50

100 2 -28215.85 13179.32 -48036.62 -3332.44

4.2.6 DDQN with Target Model updated every episode

In all the DDQN models that have seen so far, we were updating the target model every five

episodes to ensure stability. We suspect that the target model is not able to keep up with the

variations in the environment. Therefore, in this experiment, we decided to update the target model
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in every episode. Figure 4.13 and Figure 4.14, shows the average reward per episode for uniform

and prioritized replay respectively. The results are summarized in Table 4.11 and Table 4.12, and

we can see the significant improvement in results compared to the previous results.
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Figure 4.13: Average Rewards per Episode for DDQN with URB and Target Model updated every episode:

Setpoints P=100, NN Hidden layers=(0, 1=124, 2=56, 3=124)

Table 4.11: Summary of Sum of All Rewards for DDQN with Target Model updated every episode

Setpoint Num of Dense Layer Mean Std. Dev Min Max

100 0 -6704.16 6860.30 -36848.46 -3153.34

100 1 -6032.01 4859.15 -35556.74 -2667.84

100 2 -7984.18 4881.11 -29846.85 -2873.51

100 3 -6055.18 3034.30 -16727.48 -2786.02
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Figure 4.14: Average Rewards per Episode for DDQN with PRB and Target Model updated every episode:

Setpoints P=100, NN Hidden layers=(0, 1=124, 2=56, 3=124)

Table 4.12: Summary of Sum of All Rewards for DDQN with PRB and Target Model updated every episode

Setpoint Num of Dense Layer Mean Std. Dev Min Max

100 0 -5906.40 7186.25 -37560.60 -2930.66

100 1 -6873.84 5571.45 -34928.66 -2545.41

100 2 -11265.57 6346.57 -38431.29 -4036.28

100 3 -9660.24 5554.69 -30199.65 -2746.15

4.2.7 DDQN with Target Model updated every other episode

Similar to our last experiment, we also wanted to see if updating the target model every other

episode further improves the performance or not. Figure 4.15 and Figure 4.16 shows the results
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from DDQN models with different number of dense layers for both types of replay buffers. We

can observe from the summaries of these models, as seen in Table 4.13 and Table 4.14 that models

update every other episode also performs better than models updated every five episodes. It is

evident that the target model must be updated more frequently than our default policy.
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Figure 4.15: Rewards per Episode for DDQN with URB and Target Model updated every alternate episode:

Setpoint P=100, NN Hidden layers=(0, 1=124, 2=56, 3=124)

Table 4.13: Summary of Sum of All Rewards for DDQN with Target Model updated every alternate episode

Setpoint Num of Dense Layer Mean Std. Dev Min Max

100 0 -7727.23 9702.57 -42780.71 -2797.13

100 1 -5096.49 6577.57 -42189.23 -2305.73

100 2 -5404.14 6633.26 -41854.39 -2323.57

100 3 -8128.60 8745.39 -46977.44 -2843.71
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Figure 4.16: Rewards per Episode for DDQN with PRB and Target Model updated every alternate episode:

Setpoint P=100, NN Hidden layers=(0, 1=124, 2=56, 3=124)

Table 4.14: Summary of Sum of All Rewards for DDQN with PRB and Target Model updated every alter-

nate episode

Setpoint Num of Dense Layer Mean Std. Dev Min Max

100 0 -9831.50 12039.82 -43198.96 -2719.47

100 1 -8919.87 10929.45 -46863.78 -2617.66

100 2 -10791.03 12377.70 -48027.71 -2409.93

100 3 -7939.46 9433.53 -47875.71 -2328.19

4.2.8 Experience Replay Buffer

We have discussed experience replay buffers in detail in Section 3.2.1. Here, we will evaluate

the effects of replay buffer size on the performance for both uniform and prioritized replay buffers.
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Figure 4.17 and Figure 4.18 shows the results for DDQN with uniform and prioritized replay

buffers, respectively. The replay buffer size of 100,000 produced the best results in both cases, as

seen in summaries of the models described in Table 4.15 and Table 4.16.
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Figure 4.17: Average Rewards per Episode for DDQN with URB Size=(10k, 50k, 100k), Setpoint P=100

Table 4.15: Summary of Sum of All Rewards for DDQN Vs. Size of Uniform Replay Buffer

Setpoint Replay Buffer Size Mean Std. Dev Min Max

100 10k -12129.97 9546.47 -43143.38 -3735.83

100 50k -11032.31 11156.79 -44600.57 -3074.04

100 100k -9236.51 11094.01 -44740.94 -2824.23
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Figure 4.18: Average Rewards per Episode for DDQN with PRB Size=(10k, 50k, 100k), Setpoint P=100

Table 4.16: Summary of Sum of All Rewards for DDQN Vs. Size of Prioritized Replay Buffer

Setpoint Replay Buffer Size Mean Std. Dev Min Max

100 10k -11582.78 9489.59 -42867.10 -4048.51

100 50k -14214.56 10299.48 -44012.59 -3819.32

100 100k -11189.28 10869.74 -44542.95 -3408.89

4.2.9 Input States

We also experimented with three different formats of input to ANN. Figure 4.19 shows the

normal input format, which consists of N random transitions drawn from the experience replay.

Figure 4.20 shows the sequential input format with sequential window k = 3, where a sequential

window is formed three consecutive transitions, drawn randomly from the experience replay. Fig-
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ure 4.21 shows the third input format, which again consists of N random samples drawn from the

experience replay, but each sample is a combination of the current transition combined with the

last two transitions forming a serial window of k = 3 states.

Current State (si , ai) Next State (ri+1 , si+1)

Current State (sj , aj) Next State (rj+1 , sj+1)

Current State (sk , ak) Next State (rk+1 , sk+1)

Current State (sx , ax) Next State (rx+1 , sx+1)

Current State (sy , ay) Next State (ry+1 , sy+1)

…
.

Figure 4.19: Design of Normal Input State

The rationale for testing different input formats is to understand if representing the same data

in another format can provide more insight into the problem or not. In case of the sequential state,

ANN is trained on mini-batch containing sample of transitions (si+t−1, si+t, si+t+1) ∀ i ∈ N , which

introduces little bit of correlation while maintaining generalization. We are considering sequential

states because we hypothesize that it will produce more stable policies than normal state.
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On the other hand, in long state, three previous states are used to form a single input to the ANN

to produce the next state and the reward like (si+t−2, si+t−1, si+t, ai+t) −→ (ri+t+1, si+t+1) ∀ i ∈

N . The ANN now receives three times the number of inputs compared to normal or sequential

state. We hypothesize that the new transformed state as input will provide more information which

should further improve the policy.

Current State (si , ai) Next State (ri+1 , si+1)

Current State (si+1 , ai+1) Next State (ri+2 , si+2)

Current State (si+2 , ai+2) Next State (ri+3 , si+3)

Current State (sk , ak) Next State (rk+1 , sk+1)

Current State (sk+1 , ak+1) Next State (rk+2 , sk+2)

Current State (sk+2 , ak+2) Next State (rk+3 , sk+3)

Current State (sx , ax) Next State (rx+1 , sx+1)

Current State (sx+1 , ax+1) Next State (rx+2 , sx+2)

Current State (sx+2 , ax+2) Next State (rx+3 , sx+3)

…

Figure 4.20: Design of Sequential Input State with window k=3
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Current State (si , si+1 , si+2 , ai ) Next State (ri+3 , si+3 )

Current State (sj , sj+1 , sj+2 , aj ) Next State (rj+3 , sj+3 )

Current State (sk , sk+1 , sk+2 , ak ) Next State (rk+3 , sk+3 )

Current State (sx , sx+1 , sx+2 , ax ) Next State (rx+3 , sx+3 )

Current State (sy , sy+1 , sy+2 , ay ) Next State (ry+3 , sy+3 )

…
.

Figure 4.21: Design of Long Input State with overlap k=3

Figure 4.22 shows the reward per episode for serial windows of size 1, 3, and 5 for setpoint 10

and 100, and the results are summarized in Table 4.17. We can see from the results that they are

significantly better in comparison to the normal state, which is the same as the sequential state with

a sequential window, k = 1. The results support our hypothesis that the sequential state produces

more stable and better policies. Figure 4.23 shows the rewards per episode for sequential state

across different mini-batch sizes and its results are summarized in Table 4.18.
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Figure 4.22: Rewards per Episode: Setpoint P=(10 & 100), Sequential States k=(1, 3, 5)

Table 4.17: Summary of Rewards for k Sequential States

Setpoint Window Mean Std. Dev Min Max

10 1 -5735.14 1744.13 -8598.07 -1898.13

10 3 -6744.74 1762.94 -8606.56 -1895.30

10 5 -5371.68 1999.33 -8656.13 -1655.21

100 1 -30718.85 17172.20 -47592.58 -3909.40

100 3 -35004.10 15102.42 -47676.62 -3949.97

100 5 -31425.28 16177.17 -47155.55 -3552.49
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Figure 4.23: Rewards per Episode: Setpoint P=100, Sequential States k=(1 & 3), Mini-batch=(64, 128,

256)

Table 4.18: Summary of Rewards for Sequential States Vs. Mini-batch Size

Setpoint Window Batch Size Mean Std. Dev Min Max

100 1 64 -12909.95 13983.14 -47778.67 -2821.35

100 3 64 -9128.12 12219.18 -45280.54 -2467.03

100 3 128 -11021.44 12988.45 -47764.92 -2855.04

100 3 256 -9680.52 10534.58 -44472.53 -2726.99

Figure 4.25 shows the rewards per episode for the long state against the normal state, and Fig-

ure 4.25 shows the rewards per episode for a long state with different ANN architecture against the

47



normal state with the default setting. The results of the experiments are summarized in Table 4.19

and Table 4.20, respectively. We can see that the long state does not improve the fitness value.
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Figure 4.24: Rewards per Episode: Setpoints P=(10 & 100), Long State k=3

Table 4.19: Summary of Long State Vs. Normal State

Setpoint State Type Mean Std. Dev. Min Max

10 Normal -5735.14 1744.13 -8598.07 -1898.13

10 Long -6538.21 1698.62 -8518.45 -1622.97

100 Normal -30718.85 17172.20 -47592.58 -3909.40

100 Long -31841.07 16938.53 -47803.97 -3548.36
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Figure 4.25: Rewards per Episode: Setpoint P=10, Long State k=3, Mini-batch=(64, 128), NN Hidden

layers=(1=124,2=56,3=56)

Table 4.20: Summary of Long State Vs. Neural Network Layers Vs. Mini-batch Size

Setpoint State/ Batch/ Dense_Layer Size Mean Std. Dev. Min Max

10 Normal -5735.14 1744.13 -8598.07 -1898.13

10 Long 64 -6538.21 1698.62 -8518.45 -1622.97

10 Long 64 Dense -5939.05 2001.46 -8538.23 -1457.47

10 Long 128 Dense -5769.73 2222.4 -8647.88 -2148.54

4.2.10 Summary

Finally, Table 4.21 summarizes the best models from all the experiments that produced rele-

vant results along with an Oracle (the known reward function), and a fixed random model with
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no learning/training. All models that have performed better than the random model without any

learning have been highlighted with bold text. Overall, we can say that prioritized replay does not

perform better than uniform replay for DDQN with at least one dense layer. The performance of

DQN is reasonable but not significant. The most important observation is the target model update

frequency. The DDQN model, with the target model, updated every episode outperforms all the

other models in similar settings. As mentioned in Section 2.4, the fitness values for the best policy

developed using FPSRL and FGPRL [38] are F̃ = −5700 and F̃ = −5635, respectively. Please

note that the fitness values of these models are based on the time horizon T of 100, whereas the

fitness values of all the policies that we have produced and summarized Table 4.21 are based on

the time horizon T of 1000. Even though it is not an apples-to-apples comparison, but our models

have outperformed the best of FPSRL and FGPRL [38].

Table 4.21: Summary of all the best models

Model Name Setpoint Mean Std. Dev Min Max

Oracle 100 -4838.15 1835.29 -20093.91 -2856.39

Random with no learning 100 -8760.45 540.68 -8914.76 -3650.82

DQN with 0 dense layer 100 -8979.82 6576.28 -44268.75 -3461.81

DQN with PRB

and 1 dense layer

100 -8657.39 6710.42 -47483.94 -2669.50

DDQN with batch-size=128 100 -10741.57 10458.93 -44158.97 -3570.59

DDQN with PRB and

batch-size=64

100 -14214.56 10299.48 -44012.59 -3819.32

512 mini sdg (100 episodes) 100 -4395.18 2095.30 -16378.02 -2744.79

DDQN with 3 dense layers 100 -6686.92 7524.28 -41407.52 -2880.93
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Table 4.21 continued from previous page

Model Name Setpoint Mean Std. Dev Min Max

DDQN with PRB and

3 dense layers

100 -7202.13 7910.00 -42092.31 -2770.99

DDQN with 1 dense layers

and target update

every episode

100 -6032.01 4859.15 -35556.74 -2667.84

DDQN with PRB,

0 dense layer and target

update every episode

100 -5906.40 7186.25 -37560.60 -2930.66

DDQN with 1 dense layer

and target update

every other episode

100 -5096.49 6577.57 -42189.23 -2305.73

DDQN with PRB,

3 dense layers and target

update every other episode

100 -7939.46 9433.53 -47875.71 -2328.19

DDQN with URB=100k 100 -9236.51 11094.01 -44740.94 -2824.23

DDQN with PRB=100k 100 -11189.28 10869.74 -44542.95 -3408.89

DDQN with window=3

batch-size=64

100 -9128.12 12219.18 -45280.54 -2467.03

FPSRL 10-100 -5700* - - -

FGPRL 10-100 -5635* - - -
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Chapter 5

Conclusions and Future Work

This study evaluates the performance of DRL algorithms DQN and DDQN on the novel Indus-

trial Benchmark problem. We conduct numerous experiments to develop a deeper understanding

of the IB problem. We showed using our empirical results that (1) the external load which is con-

trolled by the setpoint is directly related to the complexity of the simulated problem and requires

sophisticated models, (2) uniform replay buffer performs better than prioritized replay buffer for

non-linear models, (3) both SGD and Adam optimizers can be used to generate good policies with

careful tuning of hyper-parameters, (4) different patterns of the observable state as input did not

improve the performance in comparison to using the complete observable state as input, (5) the

number of dense layers affected both the fitness value and the stability of the model, and (6) the

update frequency of the Target model in DDQN had a significant impact on all the models. Our

results show that DDQN with the target model updated every episode tends to generate the best

policy for the IB problem.

5.1 Future Work

Our experiments and results successfully highlight the significance of IB as a benchmark for

RL algorithms. It utilizes the external load and the control variables to simulate a real-world indus-

trial control system and eliminates the problem of a lack of quality industrial data for researchers.

Furthermore, IB can simulate the same environment for both discrete and continuous actions en-

ables us to make an apples-to-apples comparison of RL algorithms irrespective of the action type

they support.

In this work, we have focused on the discrete action space of IB, and so there is a lot to be

explored in the realms of continuous action space. The results from DQN and DDQN may be

optimized further by using more complex ANN [56] for functional approximation. Smarter policy

optimization techniques like Proximal Policy Optimization (PPO) [45], Trust Region Policy Opti-
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mization (TRPO) [44], and Actor-Critic model [26], can be used to generate more efficient, optimal

and generalized policies. The continuous control policies, which use Continuous-DQN (CDQN)

with Normalized Acceleration Function (NAF) [25] can also incorporate actor-critic models [27],

which would improve the performance of our models both in terms of stability and accuracy. This

work will encourage other researchers to include the realistic IB in future comparative studies of

reinforcement learning algorithms for involving real-world problems.
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Appendix A

State Description

The IB state space is only partially observable. The observation vector which consists of ob-

servable variables does not fulfill the Markov property. The observation vector ot at time t com-

prises current values of velocity vt, gain gt, shift ht, setpoint pt, consumption ct, and fatigue ft.

A state space that consists of 20 values fulfills the Markov property with the minimum number

of variables. The complete Markov state comprises of the observation vector ( vt, gt, ht, pt, ct, and

ft), and some latent variables of the sub-dynamics. Please refer to the original paper [14] for more

details about the sub-dynamics of the latent variables.

Table A.1: IB Markovian State [14].

text name or description symbol
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—
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– setpoint pt
velocity vt
gain gt
shift ht
consumption ct
fatigue ft

operational cost at t− 1 θt−1

operational cost at t− 2 θt−2

operational cost at t− 3 θt−3

operational cost at t− 4 θt−4

operational cost at t− 5 θt−5

operational cost at t− 6 θt−6

operational cost at t− 7 θt−7

operational cost at t− 8 θt−8

operational cost at t− 9 θt−9

1st latent variable of mis-calibration δ
2nd latent variable of mis-calibration ψ
3rd latent variable of mis-calibration φ
1st latent variable fatigue µv

2nd latent variable fatigue µg
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